WO2018159967A1 - 무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2018159967A1 WO2018159967A1 PCT/KR2018/002328 KR2018002328W WO2018159967A1 WO 2018159967 A1 WO2018159967 A1 WO 2018159967A1 KR 2018002328 W KR2018002328 W KR 2018002328W WO 2018159967 A1 WO2018159967 A1 WO 2018159967A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prss
- prs
- base station
- terminal
- resource
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
- G01S5/0018—Transmission from mobile station to base station
- G01S5/0036—Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0221—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0226—Transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/088—Hybrid systems, i.e. switching and combining using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J4/00—Combined time-division and frequency-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0805—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
- H04L43/0811—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
- H04L43/0882—Utilisation of link capacity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
- H04L43/0894—Packet rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for measuring and reporting a reference signal for determining a location of a terminal in a wireless communication system supporting beamforming.
- next-generation communication systems e.g., 5G or New RAT
- Scenarios under discussion include Enhanced Mobile BroadBand (eMBB), Ultra-reliable Machine-Type Communications (uMTC) and Massive Machine-Type Communications (mMTC).
- eMBB is a next generation mobile communication scenario having characteristics such as high spectrum efficiency, high user experience data rate, and high peak data rate.
- uMTC is a next-generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, and Ultra High Availability. For example, V2X, Emergency Service, Remote Remote Control and the like.
- the mMTC is a next generation mobile communication scenario having characteristics of low cost, low energy and short packet, massive connectivity, and the like, and may include, for example, IoT.
- the uMTC service has very limited OTA Latency Requirement, high mobility and high reliability (eg, OTA Latency ⁇ 1 ms, Mobility> 500 km / h, BLER ⁇ 10 -6 ).
- New RAT new radio access technology
- An object of the present invention is to provide a method and apparatus for determining the location of a terminal more accurately and efficiently in a wireless communication system supporting beamforming.
- a method for measuring and reporting a positioning reference signal (PRS) by the terminal comprising: measuring a plurality of positioning reference signals (PRS) to which beamforming is applied; And reporting a measurement result of at least two or more PRSs of the plurality of PRSs to a base station, wherein the plurality of PRSs are received through different transmission beams, and the terminal is each of the at least two PRSs. At least one of the transmission beam identification information indicating through which transmission beam is received and the resource identification information indicating through which resource each of the at least two or more PRSs are received may be reported to the base station together with the measurement result.
- PRS positioning reference signal
- a terminal for measuring and reporting a positioning reference signal the receiver; transmitter; And a processor that controls the receiver to measure a plurality of positioning reference signals (PRSs) to which beamforming is applied, and controls the transmitter to report measurement results of at least two or more PRSs of the plurality of PRSs to a base station.
- the plurality of PRSs may be received through different transmission beams, and the processor may transmit transmission beam identification information indicating which transmission beam has received each of the at least two PRSs, and which resource each of the at least two PRSs is. At least one of the resource identification information indicating whether received through the can be reported to the base station with the measurement result.
- Transmission beam identification information or resource identification information of each of the at least two PRSs may be reported to the base station in pairs with a measurement result of the corresponding PRS.
- the terminal may receive the plurality of PRSs through beam sweeping of the plurality of receive beams.
- the terminal may report, to the base station, the reception beam identification information indicating which reception beam each of the at least two PRSs has been received.
- the terminal may transmit a PRS request to the base station.
- the plurality of PRSs may be received in response to a PRS request of the terminal.
- the PRS request of the terminal may include identification information or resource information of the transmission beams preferred by the terminal.
- the terminal may select and report K PRSs having the largest received power among the plurality of PRSs.
- Multiple transmit beams corresponding to the multiple PRSs may be formed on different resources.
- Multiple beams corresponding to the multiple PRSs are time division multiplexed (TDM) through separate beam sweeping, frequency multiplexed (FDM) on the same time resource, or TDM through beam group-sweeping. It can be multiplexed in a hybrid manner of FDM.
- the measurement result reported to the base station may include reception power values of the at least two or more PRSs or a reception time difference between the at least two or more PRSs.
- the terminal reports the PRS measurement result along with information for beam identification of the corresponding PRS to the base station, so that the position of the terminal is determined in units of beams in a specific direction. Can be estimated accurately.
- 1 illustrates a 5G service scenario and performance requirements.
- FIG. 2 illustrates physical channels used in a 3GPP LTE / LTE-A system and a general signal transmission method using the same.
- 3 illustrates a structure of a radio frame of the 3GPP LTE / LTE-A system.
- FIG. 4 shows an FDD scheme and a TDD scheme of a 3GPP LTE / LTE-A system.
- FIG. 5 shows an uplink data transmission procedure of a 3GPP LTE / LTE-A system.
- FIG. 6 illustrates the structure of a self-contained subframe in accordance with an embodiment of the present invention.
- FIG. 7 shows a hybrid beamforming structure from the TXRU and physical antenna perspectives.
- FIG. 8 illustrates beam sweeping in downlink transmission of synchronization signals and system information.
- FIG. 10 illustrates a scheme for PRS through beam sweeping in units of 7-symbols according to an embodiment of the present invention.
- FIG. 11 shows that 14 beams transmit a PRS based on an FDM scheme according to an embodiment of the present invention.
- FIG. 12 shows a structure for transmitting a PRS for each beam by a mixed method of TDM and FDM according to an embodiment of the present invention.
- FIG. 13 illustrates two base stations transmitting a PRS in accordance with an embodiment of the present invention.
- FIG. 14 illustrates a UE trigger-based aperiodic UL PRS transmission request and a UL PRS resource allocation method according to an embodiment of the present invention.
- FIG. 15 illustrates a terminal positioning method through a DL PRS according to an embodiment of the present invention.
- 16 is a block diagram illustrating a base station and a terminal according to an embodiment of the present invention.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
- LTE-A Advanced is an evolution of 3GPP LTE.
- New RAT Before discussing New RAT, let's take a quick look at the 3GPP LTE / LTE-A system.
- the following description of 3GPP LTE / LTE-A may be referred to to help understand New RAT, and some LTE / LTE-A operations and settings that do not conflict with the design of New RAT may be applied to New RAT.
- New RAT may be referred to as 5G mobile communication for convenience.
- FIG. 2 is a diagram for describing physical channels used in a 3GPP LTE / LTE-A system and a general signal transmission method using the same.
- the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
- the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and acquires information such as a cell ID. do.
- the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell.
- PBCH physical broadcast channel
- the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
- DL RS downlink reference signal
- the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDSCH) according to the physical downlink control channel (PDCCH) and the physical downlink control channel information in step S102.
- PDSCH physical downlink control channel
- PDCCH physical downlink control channel
- System information can be obtained.
- the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
- the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
- PRACH physical random access channel
- S105 additional physical random access channel
- S106 reception of a physical downlink control channel and a corresponding physical downlink shared channel
- the UE After performing the above-described procedure, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
- the physical uplink control channel (PUCCH) transmission (S108) may be performed.
- the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
- UCI includes Hybrid Automatic Repeat ReQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
- HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
- HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
- UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
- First message transmission First, the UE selects one random access preamble randomly from a set of random access preambles indicated by system information or a handover command, and selects the random access preamble.
- a physical random access channel (PRACH) resource that can be transmitted may be selected and transmitted.
- PRACH physical random access channel
- the base station After the UE transmits the random access preamble, the base station attempts to receive its random access response within the random access response receiving window indicated by the system information or the handover command.
- the random access response information may be transmitted in the form of a MAC PDU, and the MAC PDU may be transmitted through a physical downlink shared channel (PDSCH).
- PDSCH physical downlink shared channel
- the UE monitors a physical downlink control channel (PDCCH). That is, the PDCCH preferably includes information of a terminal that should receive the PDSCH, frequency and time information of radio resources of the PDSCH, a transmission format of the PDSCH, and the like.
- the UE Once the UE succeeds in receiving the PDCCH transmitted to the UE, it can properly receive the random access response transmitted to the PDSCH according to the information of the PDCCH.
- the random access response includes a random access preamble identifier (ID; for example, RAPID (Random Access Preamble IDentifier)), an UL grant indicating an uplink radio resource, and a temporary C-RNTI. And Timing Advance Command (TAC).
- ID random access preamble identifier
- RAPID Random Access Preamble IDentifier
- TAC Timing Advance Command
- the terminal When the terminal receives the random access response valid for the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC and stores the temporary cell identifier. In addition, the data to be transmitted may be stored in the message 3 buffer in response to receiving a valid random access response. Meanwhile, the terminal transmits data (ie, a third message) to the base station by using the received UL grant.
- the third message should include the identifier of the terminal.
- the base station cannot determine which terminals perform the random access process, because the terminal needs to be identified for future collision resolution.
- the terminal After the terminal transmits data including its identifier through the UL grant included in the random access response, the terminal waits for an instruction of the base station to resolve the collision. That is, it attempts to receive a PDCCH to receive a specific message. When the terminal receives the PDCCH through its cell identifier, the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
- 3 illustrates a structure of a radio frame in a 3GPP LTE / LTE-A system.
- uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
- the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
- One frame consists of 10 subframes, and the subframe consists of two slots in the time domain.
- the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
- TTI transmission time interval
- one subframe may have a length of 1 ms
- one slot may have a length of 0.5 ms.
- One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
- RBs resource blocks
- an OFDM symbol represents one symbol period.
- An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
- the RB may include a plurality of consecutive subcarriers in one slot.
- the number of OFDM symbols included in the slot may vary according to a cyclic prefix (CP) configuration.
- CP has an extended CP (normal CP) and a normal CP (normal CP).
- normal CP when an OFDM symbol is configured by a normal CP, the number of OFDM symbols included in one slot may be seven.
- the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
- the number of OFDM symbols included in one slot may be six.
- an extended CP may be used to further reduce intersymbol interference.
- one subframe When a normal CP is used, since one slot includes 7 OFDM symbols, one subframe includes 14 OFDM symbols. In this case, the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH). That is, when a normal CP is used, one RB is defined as 12 subcarriers and 7 OFDM symbols at intervals of 15 kHz.
- PDCCH physical downlink control channel
- PDSCH physical downlink shared channel
- the center frequency 6 RB is a primary synchronization signal (PSS) for synchronization, a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH) for transmitting system information.
- PSS primary synchronization signal
- SSS secondary synchronization signal
- PBCH physical broadcast channel
- FIG. 4 illustrates FDD and TDD in an LTE / LTE-A system.
- FDD frequency bands of downlink and uplink are divided.
- TDD time division duplexing
- SC-FDMA may also be referred to as discrete Fourier transform-spreading-orthogonal frequency divisional multiple access (DFT-s-OFDMA).
- SC-FDMA is a transmission method that can keep the Peak-to-Average Power Ratio (PAPR) or Cube Metric (CM) value low, and the non-linear distortion range of the power amplifier It is a transmission scheme for efficient transmission avoiding.
- PAPR is a parameter representing a characteristic of a waveform, and is a value obtained by dividing a peak value of an amplitude of a waveform by a time averaged root mean square (RMS) value.
- CM is another measure that can represent the value that PAPR represents.
- PAPR is associated with the dynamic range that the power amplifier must support on the transmit side. That is, in order to support a transmission scheme having a high PAPR value, the dynamic range (or linear section) of the power amplifier is required to be wide. The wider the dynamic range of the power amplifier, the higher the price of the power amplifier. Therefore, a transmission scheme that maintains a low PAPR value is advantageous for uplink transmission. Accordingly, SC-FDMA, which can maintain a low PAPR value, is currently used as an uplink transmission scheme of a 3GPP LTE system.
- 5 is a block diagram for explaining a DFT-s-OFDMA (or SC-FDMA) scheme of LTE uplink.
- One or more codewords subjected to the encoding process by the encoder may be scrambled using the UE-specific scrambling signal.
- the scrambled codeword is modulated into a complex symbol in the BPSK, QPSK, 16 QAM, or 64QAM scheme according to the type and / or channel state of the transmitted signal.
- the modulated complex symbol is then mapped to one or more layers.
- One codeword may be mapped and transmitted in a symbol unit to one layer, but one codeword may be distributed and mapped in up to four layers. Thus, one codeword is distributed and mapped in a plurality of layers. In this case, the symbols constituting each codeword may be sequentially mapped and transmitted for each layer. Meanwhile, in the case of a single codeword based transmission configuration, only one encoder and a modulation block exist.
- the layer-mapped signal as described above may be transform precoded. Specifically, precoding by a Discrete Fourier Transform (DFT) may be performed on the layer-mapped signal, and a predetermined precoding matrix selected according to the channel state is multiplied by the layer-mapped signal to each transmit antenna. Can be assigned.
- DFT Discrete Fourier Transform
- the transmission signal for each antenna processed as described above is mapped to a time-frequency resource element to be used for transmission, and then may be transmitted through each antenna via an OFDM signal generator.
- subframes need to be newly designed to satisfy the low latency requirements.
- a self-contained subframe may be referred to simply as a subframe.
- resource sections eg, a downlink control channel and an uplink control channel
- downlink control channel e.g., a downlink control channel and an uplink control channel
- subframes are configured in the order of DL control region-data region-UL control region, but the present invention is not limited thereto.
- subframes may be configured in the order of a DL control region-UL control region-data region.
- Self-contained subframes may be divided into DL self-contained subframes and UL self-contained subframes according to the direction of data transmitted in the corresponding subframe.
- a time gap is required for a base station and a UE to switch from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
- at least one OFDM symbol corresponding to a time point of switching from DL to UL in a self-contained subframe structure is set to a guard period (GP).
- the GP is located at the time of transition from DL to UL. For example, in a DL subframe, the GP is located between the DL data area and the UL control area, and in the UL subframe, the GP is located between the DL control area and the UL data area.
- one subframe may be defined as a certain length of time.
- the duration of one subframe in NR may be fixed to 1 ms.
- the number of symbols included in one subframe may be determined according to the subcarrier spacing.
- the subcarrier interval is 15 kHz
- 14 symbols may be included in one subframe.
- the subcarrier interval is doubled to 30 kHz
- the duration of one symbol is reduced by half, so that a total of 28 symbols may be included in one subframe.
- the subcarrier interval may be 15 kHz * 2 n
- the number of symbols included in one subframe may be 14 * 2 n .
- n is an integer such as 0, 1, 2., and the like, and is not necessarily limited to a positive integer. For example, if n is a negative integer ⁇ 1, one subframe may include a total of seven symbols.
- the wavelength is shortened, so that a plurality of antenna elements may be installed in the same area.
- the wavelength is 1 cm, and a total of 100 antenna elements may be arranged two-dimensionally at a 0.5 ⁇ (wavelength) interval in a panel of 5 ⁇ 5 cm. Therefore, according to the mmW scheme, the beamforming gain is improved by increasing the number of antenna elements, and the coverage and / or the throughput improvement are expected.
- TXRU Transceiver Unit
- this analog beamforming method has a disadvantage in that the beam is formed in the same direction for the entire band, so that frequency selective beamforming cannot be performed.
- hybrid beamforming may be considered that maps a total of B (where, B ⁇ Q) TXRUs for a total of Q antenna elements.
- B TXRUs and Q antenna elements are interconnected, the direction of beams that can be transmitted simultaneously is generally limited to B or less.
- Analog beamforming may refer to an operation of performing precoding (or combining) in the RF terminal.
- the baseband stage and the RF stage perform precoding (or combining), respectively.
- Hybrid beamforming has the advantage of reducing the number of RF chains and the number of digital-to-analog (D / A) converters or analog-to-digital (A / D) converters.
- the hybrid beamforming structure may be represented by N TXRUs (Transceiver units) and M physical antennas.
- the digital beamforming for the L data layers to be transmitted by the transmitting end may be represented by an N by L matrix.
- the N digital signals converted through the N by L matrix are converted into analog signals through TXRU, and then analog beamforming is expressed by the M by N matrix.
- FIG. 7 schematically illustrates a hybrid beamforming structure in terms of the TXRU and physical antenna.
- the number of digital beams is L
- the number of analog beams is N.
- the New RAT system considers a method of introducing a plurality of antenna panels capable of performing hybrid beamforming independently of each other. It is becoming.
- the base station when the base station utilizes a plurality of analog beams, the analog beams advantageous for signal reception may be different for each terminal. Accordingly, the base station may perform beam sweeping on the synchronization signal, system information, and / or paging, and change a plurality of analog beams to be applied in a specific subframe (SF) for each symbol. It can be to have.
- SF subframe
- a physical broadcast channel refers to a physical resource or a physical channel for transmitting system information of a New RAT system by broadcasting.
- beam 1 may be set in symbol 1 and beam 8 may be set in symbol 8.
- Analog beams belonging to different antenna panels in one symbol may be transmitted simultaneously.
- antenna panel 1 may transmit analog beam 1
- antenna panel 2 may transmit analog beam 2 within one symbol.
- BRS Beam RS
- Beam RS which is a reference signal RS transmitted through a single analog beam (corresponding to a specific antenna panel)
- the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam. For example, in FIG. 8, there are eight BRS antenna ports from R0 to R7, and if a different analog beam is configured for each antenna port, BRS may be transmitted through eight analog beams on one symbol.
- the synchronization signal or the xPBCH may be transmitted through all the analog beams in the analog beam group so that the terminal in a specific direction as well as the terminal in a specific direction can be well received.
- analog beamforming is considered in the NR system.
- coverage may be extended by performing analog beamforming based on a large number of antennas.
- the system needs to be designed in consideration of analog beamforming in the below 6 GHz as well as the mmWave band.
- the single beamforming case and the multiple beamforming case may be divided according to the capability of the base station.
- single beamforming means performing analog beamforming in only one direction in one symbol.
- multiple beamforming means performing analog beamforming in multiple directions in one symbol.
- New RAT considers beam reciprocity, i.e., receiving the same beam as the transmission beam. This assumption may be particularly valid in the TDD band.
- the base station should be able to cover the DL coverage by using multiple beams, and the NR requires a higher requirement than the existing system for positioning (e.g., UE positioning).
- the beam width is narrowed.
- more precise positioning may be performed by using beamforming.
- a reference signal for positioning will be referred to as a positioning reference signal (PRS).
- PRS positioning reference signal
- embodiments of a PRS transmission / reception method and positioning method through beamforming will be described.
- both time domain beam sweeping and frequency domain beam sweeping may be supported, or only one of them may be supported.
- Proposal # 1 time / frequency resource setting for base station transmitting PRS
- Example 1-1 A base station can operate N Tx Beams in a TDM manner.
- the base station may transmit the PRS N times through a beam configured for each of the N time resources.
- the time resource of each beam transmitting the PRS may be set to a multiple of Symbol / Mini-slot / Slot / Subframe.
- the frequency resource over which the PRS is transmitted may be wideband or subband.
- FIG 9 illustrates sweeping in total of 14 Beams symbol units according to an embodiment of the present invention.
- the PRS is repeatedly transmitted through a beam corresponding to each symbol.
- FIG. 10 illustrates a scheme for PRS through beam sweeping in units of 7-symbols according to an embodiment of the present invention.
- the PRS is transmitted through Beam 1 during symbols 0 through 6, and the PRS is transmitted through Beam 2 during symbols 7 through 13.
- Example 1-2 A base station can operate N Tx Beams in an FDM manner.
- the base station may transmit the PRS N times through a beam configured in each of the N frequency resource blocks.
- the time resource of each beam through which the PRS is transmitted may be set to a multiple of Symbol / Mini-slot / Slot / Subframe.
- FIG. 11 shows that 14 beams transmit a PRS based on an FDM scheme according to an embodiment of the present invention.
- four RBs are used to transmit 1 beam.
- Example 1-3 A base station can operate N Tx Beams in a TDM / FDM manner.
- the base station may transmit the PRS N times through N beams.
- the time resource of each beam through which the PRS is transmitted may be set to a multiple of Symbol / Mini-slot / Slot / Subframe.
- the frequency resource over which the PRS is transmitted may be wideband or subband.
- the size of the time / frequency resource block may vary for each beam.
- FIG. 12 shows a structure for transmitting a PRS for each beam by a mixed method of TDM and FDM according to an embodiment of the present invention.
- Beams 0 to 6 of the 14 multiplexed beams are transmitted in symbols 0 to 6, and Beams 7 to 14 are transmitted in symbols 0 to 13.
- the first seven beams are FDM over the first seven symbols, and the remaining seven beams are FDM over the next seven symbols.
- the structure in which the PRS is transmitted may be predefined or configured through an upper layer signal (e.g., RRC).
- the terminal may perform measurement and reporting through the PRS received for each beam.
- the base station may increase the accuracy of positioning by controlling the Tx Beamforming direction through beam-by-beam reporting.
- Example 1-1, 1-2, and 1-3 even a base station operating N beams may transmit PRS only for M beams.
- M may be equal to, less than or greater than N.
- the base station may increase the granularity of Tx Beamforming for positioning than N Tx Beams for coverage.
- M ⁇ N the base station can reduce the system overhead by reducing the resources used for Tx Beamforming for positioning.
- the period at which the base station transmits the PRS may be known as a higher layer signal.
- the PRS may not be transmitted periodically but may be transmitted aperiodically. For example, when a specific event (eg, when a service such as URLLC is triggered) occurs, the base station informs the PRS of periodic PRS by informing that it is aperiodic PRS Symbol / Slot / Mini-slot / Subframe through common signaling. You can send regardless of the period of.
- the UE may recognize that the aperiodic PRS is transmitted based on common signaling, and may perform PRS measurement and reporting.
- a PRS may be set and transmitted to a port for each beam. For example, different antenna ports are allocated for each beam, and when a PRS is transmitted through each beam, the UE may distinguish different beams and PRSs transmitted through the port.
- Proposal # 2 The base station To the terminal Method of instructing report and report method of terminal
- the base station may set the terminal to report the received power (e.g., RSRP) or distance (e.g., distance between the base station and the terminal) of the PRS received for each beam to the terminal.
- the received power of the PRS may be used to estimate the distance between the terminal and the base station.
- the base station may estimate the distance between the base station and the terminal in consideration of the difference between the transmit power of the PRS, the receive power of the PRS, and path attenuation.
- the base station may instruct the terminal to measure and report on M beam (s). M may be larger or smaller than the number N of beams operated by the base station.
- a beam ID may be used as a method of indicating M beams to be reported by the UE
- the base station reports measurement of M beams through resource information (eg, resource ID) for each beam instead of the beam ID. May be indicated.
- resource information eg, resource ID
- the base station may instruct the terminal to report the received power of the PRS for the beam ID 1,2,3, but the base station measures and reports the power of the PRS in the resource ID 1,2,3 You can also tell them to do it. Since the base station knows the information (e.g., Beam direction or Beam ID, etc.) of the beam applied to each resource ID, the base station can obtain the received power information of the PRS corresponding to each beam.
- the terminal may report together the PRI (PRS resource information) (e.g., PRS ID) and the received power of the PRS.
- the received power of the PRS and the PRI may be reported in pairs.
- the UE may report (RSRP 1, PRI 1) for PRS 1 and (RSRP 2, PRI 2) for PRS 2. (RSRP N, PRI N) for PRS N.
- RSRP is used as a measurement value for convenience of description, and the present invention is not limited thereto, and other measurement values (eg, reception time, or reception signal time difference (RSTD)) are paired with PRI. May be
- the terminal may report the estimated distance to the base station through the difference between the reference transmission power and the reception power of the PRS.
- Example 2-2 The base station may set the terminal to report the K largest received power values (or the estimated distance therefrom) and the corresponding Beam ID to the terminal.
- the terminal receives the information (eg, Beam ID) and the K PRSs of the beams that transmitted the K PRSs representing the largest received power among the PRSs transmitted N times.
- the power value may be reported to the base station.
- Beam ID may be replaced with PRI.
- the base station may report a time difference (e.g., RSTD) for each beam or PRS resource to the terminal.
- RSTD time difference
- the terminal may report the reception time difference between the PRSs.
- Any one of a plurality of PRSs may be a reference to report a reception time difference between the PRSs.
- the terminal may report the time difference to the base station based on a reference beam or a reference PRS set by a predefined or network.
- the UE may report a time difference for each beam.
- the UE may report beam information (e.g., Bea, ID) or PRI in association with a time difference value.
- one base station may transmit a plurality of PRSs through a plurality of beams
- the plurality of PRSs transmitted through the plurality of beams may correspond to different base stations.
- the base station may instruct the terminal to report the time difference by receiving a PRS from another base station for each Beam or PRS resource.
- the UE may distinguish PRSs transmitted by different base stations through different time / frequency resource patterns.
- the time / frequency resource pattern of the PRS may vary depending on the Cell ID.
- the terminal may classify the time / frequency resource pattern of each base station based on the cell ID or may receive information on the time / frequency resource pattern of each base station from the network.
- the terminal may not classify PRSs transmitted by different base stations by Cell ID but may classify PRS time / frequency patterns according to Beam ID. For example, the time / frequency resource pattern of the PRS may be determined based on the Beam ID. In this case, the UE may distinguish the PRSs from each other by using the Beam ID without identifying which base station the PRS is received from.
- FIG. 13 illustrates two base stations transmitting a PRS in accordance with an embodiment of the present invention.
- BS 1 and BS 2 transmit PRSs within a resource allocated to Beam 7.
- the PRS resource of the base station 1 and the PRS resource of the base station 2 may be different from each other in the beam 7 allocated resource. For example, PRSs transmitted by different base stations may not be simultaneously transmitted on the same PRS resource.
- Each base station may have different PRS resources.
- the UE may calculate and report a difference in reception time by compensating for a predetermined difference in transmission time. For example, when the PRS resource of the base station 1 starts from the first symbol and the PRS resource of the base station 2 starts from the second symbol, the terminal may calculate the RSTD using a time interval between the first symbol and the second symbol.
- PRSs of different base stations may be transmitted on the same resource.
- PRSs of different base stations may be multiplexed based on CDM, and the terminal may distinguish PRSs of respective base stations through orthogonality of the PRSs.
- a plurality of base stations may be replaced with a plurality of cells.
- the multiple cells may correspond to one or more base stations.
- Example 2-4 The base station can signal a plurality of pairs of ⁇ Cell ID, Beam ID ⁇ to the terminal as a target of time difference measurement.
- the base station may instruct the terminal to report the time difference through the PRS measurement for the four cells.
- the UE has a Cell ID of 1 and simultaneously Beam
- the PRS resource whose ID corresponds to 3 is measured.
- the terminal may measure a PRS resource corresponding to a Cell ID of 2 and a Beam ID of 4, a PRS resource of a Cell ID of 3 and a Beam ID of 2, and a PRS resource of a Cell ID of 4 and a Beam ID of 3 Can be.
- the terminal may report the difference in PRS reception time for each cell identified through the Cell ID to the base station.
- the base station may indicate the PRI to the terminal instead of the Beam ID.
- the base station may also inform the terminal of the PRS resource mapping information of another cell through the RRC or higher signals.
- Example 2-5 The base station may instruct the terminal to report the measurement result only for the cell ID and beam ID combinations representing the K large PRS received powers.
- the UE can report the measurement result for only K ⁇ Cell ID, Beam ID ⁇ pairs having a good reception signal.
- the UE may select K beams for each cell as a reception power reference, and report a difference in reception time for PRSs of K beams among all cells. For example, if there are 4 Cells and K is 3, the UE may report 4 Combination 2 times 9 time difference values.
- the base station may inform the terminal of the report instruction described in Examples 2-1 to 2-5 through a physical layer signal (e.g., UE-specific or common signal) or a higher layer signal (e.g., RRC).
- a physical layer signal e.g., UE-specific or common signal
- a higher layer signal e.g., RRC
- the distance information may also be estimated through phase differences of multiple signals that are not power-based.
- Proposal # 3 Base station utilizes Beam ID Positioning How to pass information to a location server
- the base station may transmit not only the cell ID but also beam information corresponding to the beam ID and the beam ID (e.g., beam direction). Alternatively, the base station may transmit only the beam direction excluding the beam ID to the location server.
- the location server may be difficult to identify the beam by using only the beam ID, so the base station may transmit information such as the direction of the beam to the location server.
- the base station may include its boresight information in the information delivered to the location server.
- Proposal # 4 Channel Reported by UE
- Example 4-1 UE may report PRS measurement result through PUCCH (e.g., NR-PUCCH).
- PUCCH e.g., NR-PUCCH
- the terminal may report the PRI / Beam ID and the received power / time difference information to the base station through the PUCCH.
- Example 4-2 The UE may report the PRS measurement result through the PUSCH.
- the terminal may include the PRI / Beam ID in the corresponding report.
- the base station may change the logical information to information that can be recognized by the location server, not logical information of the base station. For example, if the PRI is used dynamically in the base station, the base station may transmit the beamforming angle and beam width information corresponding to the PRI to the location server.
- Proposal # 5 Terminal Rx Beam Sweeping Received through Direction of arrival (DoA) Measurement and reporting method
- the UE may measure and report PRS reception power for each Rx beam. For example, in FIG. 12, in the time / frequency resource block to which Tx Beam 1 is applied, the UE may measure PRS for each Rx receiving beam through Rx receiving beamforming.
- the UE may report the Rx Beam ID to the base station in addition to the Tx Beam ID / PRI and the received power / time difference.
- the UE may take the form of a combination of ⁇ Tx Beam ID, Rx Beam ID, PRS received power ⁇ .
- the UE may report only K Rx Beams from which the largest received power value is obtained among a plurality of Beams generated through Rx Beamforming. This can be set by the base station to the terminal.
- the terminal may report the information direction and bore site information corresponding to the Rx Beam ID together with the Rx Beam ID to the base station.
- the base station may request the corresponding information from the terminal (e.g. higher layer signaling such as RRC).
- Proposal # 6 Method for UE to Aperiodally Request PRS Transmission from Base Station
- the terminal may request the base station aperiodically to transmit the PRS.
- the terminal may request a base station to transmit a PRS. have.
- the UE may request PRS transmission through UE dedicated beamforming or PRS transmission through a specific resource to the base station.
- the beam ID for which the terminal requests PRS may be an ID of a Tx Beam in which the terminal transmits DL days or an ID of a Tx Beam in which the terminal has most recently received data.
- the Beam ID for requesting the PRS by the UE may be the ID of the Tx Beam used in the initial access.
- the request of the terminal may be transmitted through an upper layer signal or a physical layer signal such as RRC.
- the UL PRS transmitted by the UE may be introduced in the NR.
- the requirement of positioning resolution at NR may be enhanced.
- a positioning technique triggered by a terminal may be required to support a service requiring accuracy of a location such as an emergency medical service.
- SRS Sounding RS
- a resource shortage problem may occur to support many massive terminals.
- UL RS is newly proposed for NR positioning in addition to the existing SRS.
- the number of antennas in the base station can be increased, the Rx beamforming of the base station is possible, the number of antennas in the UE can also be increased, Tx Beamforming (e.g., analog / digital beamforming) of the UE is possible. Therefore, a method of improving positioning accuracy through Rx / Tx beamforming of the base station / UE will be described.
- Proposal # 7 Framework for UL PRS Transmission of UE
- the base station may configure resources for periodic PRS transmission to the terminal.
- the UL PRS Configuration may include a period and a location of time / frequency resources of the UL PRS. If two or more UL PRSs are CDMs, the UL PRS Configuration may include CDM code information or a cyclic shift value.
- the UL PRS Configuration may be transmitted in a higher layer signal such as RRC.
- the base station may activate / deactivate periodic PRS transmission through a physical layer control channel or an upper layer signal.
- the base station may request the terminal for aperiodic PRS transmission through the DL control channel.
- the DCI requesting aperiodic PRS transmission may include UL PRS resource location and / or code information for PRS multiplexing.
- the DCI may include precoding information (e.g., precoding index) of the terminal.
- the DCI may inform the number of repetitive transmissions of the PRS together with the resource.
- a configuration such as a resource location for aperiodic PRS may be configured through higher layer signaling, and the DCI may request the UE to transmit aperiodic PRS based on the previously configured PRS configuration.
- the terminal transmits aperiodic PRS at the designated location.
- Example 7-1 / 7-2 different UEs may be multiplexed with UL PRSs (e.g., FDM / TDM / CDM).
- UL PRSs e.g., FDM / TDM / CDM
- the UL PRS time / frequency resource may be located in a UL Subframe.
- the UL PRS resource and the PRACH resource may be FDM in the same subframe.
- the time resource information of the PRACH transmitted through the MIB or the SIB may further include frequency offset / allocation frequency size information for the FDM of the PRACH and the UL PRS.
- the UE can know the time resource position (e.g., subframe number, PRS period) of the PRS by reading the PRACH information of the MIB or SIB, and can know the PRS resource through the frequency offset / assigned frequency information.
- the beam sweeping is simultaneously applied to the PRACH and the UL PRS to reduce the number of UL subframes to be fixed for UL in TDD.
- Proposal # 8 Reciprocity based UL PRS transmission (UE-Triggering)
- the NR can support UE triggering events.
- the terminal can increase the positioning accuracy by using the base station / terminal beamforming.
- the UE may recognize a beam having a high power in the DL beam in advance from the DL RS measurement (e.g., D RS for measurement use) in an environment in which beam reciprocity is effective.
- the terminal and the base station may utilize beamforming for positioning through such advance information.
- FIG. 14 illustrates a UE trigger-based aperiodic UL PRS transmission request and a UL PRS resource allocation method according to an embodiment of the present invention.
- the UE requests UL PRS resource allocation from the serving base station (1405).
- a signal for requesting a PRS resource may be transmitted through a UL control channel (e.g., PUCCH).
- the signal for the PRS resource request may be newly defined, or an existing scheduling request (SR) signal may be reused for the PRS resource request.
- the PRS resource request may be delivered through an upper signal such as an RRC.
- the terminal may include the Cell ID and Beam ID (or measurement resource ID) of the neighboring base stations obtained through DL RS measurement of the neighboring base stations in the PRS resource request.
- the serving base station checks the Cell ID and the Beam ID included in the PRS resource allocation request, and requests the corresponding base stations for UL PRS resources (1410). At this time, the serving base station may transmit the Beam ID to neighboring base stations. For example, the serving base station may deliver a beam ID preferred by the terminal. Rx Beamforming may be fixed by beam ID transmission.
- the neighbor base stations may inform the serving base station of its UL PRS resource configuration (1415).
- the UL PRS resource configuration may specify not only time / frequency resource transmission time but also repetition considering Rx beamforming.
- the serving base station informs the terminal of the UL PRS resources of its own and neighboring base stations (1420). For example, the serving base station may inform the terminal of UL PRS time / frequency resources of the serving base station and neighboring base stations. If the UL PRS time / frequency resources of the serving base station and neighboring base stations are different, the serving base station may designate a specific precoding set for serving cell interference control. For example, the serving base station may inform the terminal of the precoding index set that the terminal can use for transmitting the UL PRS to the neighbor base stations. The information may be transmitted through a physical layer signal or an upper layer signal such as an RRC.
- the terminal transmits the UL PRS to each base station through the UL PRS resources (1425).
- the UE may determine the precoding for the UL PRS transmission according to the DL Beam correspondence among the precoding indexes informed by the base station.
- the network transmits a plurality of DL PRSs (1505).
- the network may include at least one base station.
- the plurality of DL PRSs may be aperiodic DL PRSs transmitted as a response to a PRS request of the terminal.
- the PRS request of the terminal may include identification information or resource information of the transmission beams preferred by the terminal.
- the plurality of DL PRSs may be periodic DL PRSs.
- Beamforming may be applied to multiple PRSs. For example, multiple PRSs can be transmitted on different transmit beams.
- Multiple transmit beams corresponding to multiple PRSs may be formed on different resources.
- Multiple beams corresponding to multiple PRSs are time-division multiplexed (TDM) via separate beam sweeping, frequency multiplexed (FDM) on the same time resource, or TDM and FDM via beam group-sweeping Can be multiplexed in a hybrid manner.
- TDM time-division multiplexed
- FDM frequency multiplexed
- TDM and FDM beam group-sweeping Can be multiplexed in a hybrid manner.
- the UE measures a plurality of PRSs to which beamforming is applied (1510).
- the UE reports a measurement result of at least two or more PRSs among the plurality of PRSs to the base station (1515).
- the measurement result reported to the base station may include received power values of at least two or more PRSs or a reception time difference between the at least two or more PRSs.
- the transmission beam identification information (eg, Beam ID) indicating which transmission beam has received each of the at least two PRSs, and the resource identification information (eg, which resource has received each of the at least two or more PRSs) , PRI) may be reported to the base station along with the measurement result.
- the transmission beam identification information or the resource identification information of each of the at least two PRSs may be reported to the base station in pairs with the measurement result of the corresponding PRS.
- the terminal may receive a plurality of PRSs through beam sweeping for the plurality of receive beams.
- the terminal may report the reception beam identification information indicating which reception beam each of the at least two PRSs has been received to the base station together with the measurement result.
- the UE may select and report K PRSs having the largest received power among the plurality of PRSs.
- the explicit PRI or Beam ID is reported, but the present invention is not limited thereto and the beam information may be identified in an implicit manner.
- the UL resource eg, time / frequency / OC code / Cyclic Shift, etc.
- the base station determines which UL resource the UE's report is received through.
- the RPI or Beam ID can be determined. In this case, the RPI or Beam ID may be omitted from the report of the terminal.
- 16 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100 according to an embodiment of the present invention.
- the wireless communication system 100 may include one or more base stations and / or one or more terminals. .
- Base station 105 is a transmit (Tx) data processor 115, symbol modulator 120, transmitter 125, transmit and receive antenna 130, processor 180, memory 185, receiver 190, symbol demodulator ( 195, receive data processor 197.
- the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
- the transmit and receive antennas 130 and 135 are shown as one in the base station 105 and the terminal 110, respectively, the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas.
- the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system.
- MIMO multiple input multiple output
- the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
- SU-MIMO single user-MIMO
- MU-MIMO multi-user-MIMO
- the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
- the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
- the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
- each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
- pilot symbols may be sent continuously.
- the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
- Transmitter 125 receives the stream of symbols and converts it into one or more analog signals and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
- the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
- Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
- the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
- the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
- the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
- the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
- the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
- the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
- the transmit antenna 135 transmits the generated uplink signal to the base station 105.
- the transmitter and the receiver in the terminal and the base station may be configured as one radio frequency (RF) unit.
- RF radio frequency
- an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
- the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
- the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
- Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
- Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
- the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
- the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
- the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs Field programmable gate arrays
- the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
- the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
- the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
- the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
- a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
- the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
- each component or feature is to be considered optional unless stated otherwise.
- Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
- the present invention can be applied to various wireless communication systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말이 PRS(positioning reference signal)를 측정 보고하는 방법은, 빔 포밍이 적용된 다수의 PRS(positioning reference signal)들을 측정하는 단계; 및 상기 다수의 PRS들 중 적어도 둘 이상의 PRS들에 대한 측정 결과를 기지국에 보고하는 단계를 포함하되, 상기 다수의 PRS들은 각기 다른 송신 빔들을 통해 수신되며, 상기 단말은 상기 적어도 둘 이상의 PRS들 각각을 어느 송신 빔을 통해 수신하였는지를 나타내는 송신 빔 식별 정보 및 상기 적어도 둘 이상의 PRS들 각각을 어느 자원을 통해 수신하였는지를 나타내는 자원 식별 정보 중 적어도 하나를 상기 측정 결과와 함께 상기 기지국에 보고할 수 있다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 빔포밍을 지원하는 무선 통신 시스템에서의 단말의 위치 결정을 위하여 참조 신호를 측정 보고하는 방법 및 이를 위한 장치에 관한 것이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 최근 차세대 통신 시스템(e.g., 5G 또는 New RAT)의 시나리오들이 논의되고 있다. 논의 중인 시나리오들은 eMBB(Enhanced Mobile BroadBand), uMTC(Ultra-reliable Machine-Type Communications) 및 mMTC(Massive Machine-Type Communications)를 포함한다. eMBB는 높은 스펙트럼 효율성(High Spectrum Efficiency), 높은 사용자 경험 데이터 전송률(High User Experienced Data Rate), 높은 피크 데이터 전송률(High Peak Data Rate) 등의 특성을 갖는 차세대 이동 통신 시나리오이다. uMTC는 매우 높은 신뢰성(Ultra Reliable), 매우 낮은 지연(Ultra Low Latency) 및 매우 높은 사용성(Ultra High Availability) 등의 특성을 갖는 차세대 이동통신 시나리오로서, 예컨대, V2X, 긴급 서비스(Emergency Service), 원격 제어(Remote Control) 등을 포함한다. mMTC는 저 비용(Low Cost), 저 전력(Low Energy) 및 작은 패킷(Short Packet), 대규모 연결(Massive Connectivity) 등의 특성을 갖는 차세대 이동통신 시나리오로서, 예컨대 IoT를 포함 할 수 있다.
도 1은 5G를 위한 IMT 2020에서 제시된 핵심 성능 요구 사항과 서비스 시나리오 별 5G 성능 요구사항과의 연관성을 나타낸다. 특히, uMTC 서비스는 OTA 지연 요구 사항 (Over The Air Latency Requirement)이 매우 제한적이고, 높은 이동성과 높은 신뢰성이 요구된다 (e.g., OTA Latency < 1ms, Mobility > 500km/h, BLER < 10-6).
이와 같이 eMBB, mMTC 및 URLCC 등을 고려한 새로운 무선 접속 기술(New RAT)이 차세대 무선 통신을 위하여 논의되고 있다.
본 발명이 이루고자 하는 기술적 과제는, 빔 포밍을 지원하는 무선 통신 시스템에서 단말의 위치를 보다 정확하고 효율적으로 결정하기 위한 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명의 기술적 과제는 상술된 기술적 과제에 제한되지 않으며, 다른 기술적 과제들이 본 발명의 실시예로부터 유추될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 무선 통신 시스템에서 단말이 PRS(positioning reference signal)를 측정 보고하는 방법은, 빔 포밍이 적용된 다수의 PRS(positioning reference signal)들을 측정하는 단계; 및 상기 다수의 PRS들 중 적어도 둘 이상의 PRS들에 대한 측정 결과를 기지국에 보고하는 단계를 포함하되, 상기 다수의 PRS들은 각기 다른 송신 빔들을 통해 수신되며, 상기 단말은 상기 적어도 둘 이상의 PRS들 각각을 어느 송신 빔을 통해 수신하였는지를 나타내는 송신 빔 식별 정보 및 상기 적어도 둘 이상의 PRS들 각각을 어느 자원을 통해 수신하였는지를 나타내는 자원 식별 정보 중 적어도 하나를 상기 측정 결과와 함께 상기 기지국에 보고할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 다른 일 측면에 따라 PRS(positioning reference signal)를 측정 보고하는 단말은, 수신기; 송신기; 및 상기 수신기를 제어하여 빔 포밍이 적용된 다수의 PRS(positioning reference signal)들을 측정하고, 상기 송신기를 제어하여 상기 다수의 PRS들 중 적어도 둘 이상의 PRS들에 대한 측정 결과를 기지국에 보고하는 프로세서를 포함하되, 상기 다수의 PRS들은 각기 다른 송신 빔들을 통해 수신되며, 상기 프로세서는 상기 적어도 둘 이상의 PRS들 각각을 어느 송신 빔을 통해 수신하였는지를 나타내는 송신 빔 식별 정보 및 상기 적어도 둘 이상의 PRS들 각각을 어느 자원을 통해 수신하였는지를 나타내는 자원 식별 정보 중 적어도 하나를 상기 측정 결과와 함께 상기 기지국에 보고할 수 있다.
상기 적어도 둘 이상의 PRS들 각각의 송신 빔 식별 정보 또는 자원 식별 정보는 해당 PRS의 측정 결과와 쌍을 이루어 상기 기지국에 보고될 수 있다.
상기 단말은 다수의 수신 빔들에 대한 빔 스윕핑(sweeping)을 통해 상기 다수의 PRS들을 수신할 수 있다. 상기 단말은 상기 적어도 둘 이상의 PRS들 각각을 어느 수신 빔을 통해 수신하였는지를 나타내는 수신 빔 식별 정보를 상기 측정 결과와 함께 상기 기지국에 보고할 수 있다.
상기 단말은 PRS 요청을 상기 기지국에 송신할 수 있다. 상기 다수의 PRS들은 상기 단말의 PRS 요청에 대한 응답으로 수신될 수 있다. 상기 단말의 PRS 요청은, 상기 단말이 선호하는 송신 빔들의 식별 정보 또는 자원 정보를 포함할 수 있다.
상기 단말은 상기 다수의 PRS들 중에서 수신 전력이 가장 큰 K개의 PRS들을 선택하여 보고할 수 있다.
상기 다수의 PRS들에 대응하는 다수의 송신 빔들은 각기 다른 자원들 상에서 형성될 수 있다.
상기 다수의 PRS들에 대응하는 다수의 빔들은 개별적인 빔 스윕핑(sweeping)을 통해 시분할 다중화(TDM)되거나, 동일한 시간 자원 상에 주파수 다중화(FDM)되거나, 또는 빔 그룹-스윕핑을 통해 TDM과 FDM의 하이브리드 방식으로 다중화될 수 있다.
상기 기지국에 보고되는 측정 결과는, 상기 적어도 둘 이상의 PRS들의 수신 전력 값들 또는 상기 적어도 둘 이상의 PRS들 간의 수신 시간 차이를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 빔포밍을 지원하는 무선 통신 시스템에서 단말이 PRS 측정 결과와 함께 해당 PRS의 빔 식별을 위한 정보를 함께 기지국에 보고하므로 단말의 위치가 특정 방향의 빔 단위로 보다 정확하게 추정될 수 있다.
본 발명의 기술적 효과는 상술된 기술적 효과에 제한되지 않으며, 다른 기술적 효과들이 본 발명의 실시예로부터 유추될 수 있다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다. 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 5G 서비스 시나리오와 성능 요구사항을 나타낸다.
도 2는 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 3은 3GPP LTE/LTE-A 시스템의 무선 프레임(radio frame)의 구조를 예시한다.
도 4는 3GPP LTE/LTE-A 시스템의 FDD 방식과 TDD 방식을 나타낸다.
도 5는 3GPP LTE/LTE-A 시스템의 상향링크 데이터 송신 절차를 나타낸다.
도 6은 본 발명의 일 실시예에 따른 자체-포함(self-contained) 서브프레임의 구조를 예시한다.
도 7은 상기 TXRU 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 도시한다.
도 8은 동기 신호 및 시스템 정보의 하향링크 전송에서의 빔 스윕핑을 도시한다.
도 9는 본 발명의 일 실시예에 따라서 총 14개의 Beam들 심볼 단위로 스윕핑하는 것을 도시한다.
도 10은 본 발명의 일 실시예에 따라서 7-심볼 단위의 Beam 스윕핑을 통해 PRS를 방안을 도시한다.
도 11은 본 발명의 일 실시예에 따라서 14개의 빔들이 FDM 방식에 기반하여 PRS를 송신하는 것을 도시한다.
도 12는 본 발명의 일 실시예에 따라서 TDM과 FDM 혼합된 방법으로 각 Beam별로 PRS를 전송하는 구조를 나타낸다.
도 13은 본 발명의 일 실시예에 따라서 2개의 기지국들이 PRS를 송신하는 것을 도시한다.
도 14는 본 발명의 일 실시예에 따라서 단말 트리거 기반의 비주기적 UL PRS 송신 요청 및 UL PRS 자원 할당 방법을 나타낸다.
도 15는 본 발명의 일 실시예에 따른 DL PRS를 통한 단말 포지셔닝 방법을 도시한다.
도 16은 본 발명의 일 실시예에 따른 기지국 및 단말을 도시한 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 기반의 이동 통신 시스템을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
New RAT을 논의 하기에 앞서, 3GPP LTE/LTE-A 시스템에 대해서 간략히 살펴본다. 후술하는 3GPP LTE/LTE-A에 대한 설명은 New RAT의 이해를 돕기 위해 참조 될 수 있으며, New RAT의 설계와 상충되지 않는 몇몇의 LTE/LTE-A 동작과 설정들은 New RAT에도 적용될 수도 있다. New RAT은 편의상 5G 이동 통신으로 지칭될 수도 있다.
●
3GPP
LTE
/
LTE
-A 시스템
도 2는 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID(Identity) 등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리방송채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크제어채널(Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송(S105) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신(S106)과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널/물리하향링크공유채널 수신(S107) 및 물리상향링크공유채널(Physical Uplink Shared Channel, PUSCH)/물리상향링크제어채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK 혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX 중 적어도 하나를 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
상술된 LTE 시스템에서 경쟁 기반 랜덤 엑세스 과정을 보다 구체적으로 설명한다.
(1) 제 1 메시지 전송: 먼저, 단말은 시스템 정보 또는 핸드오버 명령(Handover Command)을 통해 지시된 임의접속 프리앰블의 집합에서 임의로(randomly) 하나의 임의접속 프리앰블을 선택하고, 상기 임의접속 프리앰블을 전송할 수 있는 PRACH(Physical Random Access Channel) 자원을 선택하여 전송할 수 있다.
(2) 제 2 메시지 수신: 단말은 임의접속 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 임의접속 응답 수신 윈도우 내에서 자신의 임의접속 응답의 수신을 시도한다. 좀더 자세하게, 임의접속 응답 정보는 MAC PDU의 형식으로 전송될 수 있으며, 상기 MAC PDU는 PDSCH(Physical Downlink Shared CHannel)을 통해 전달될 수 있다. 또한 상기 PDSCH로 전달되는 정보를 단말이 적절하게 수신하기 위해 단말은 PDCCH(Physical Downlink Control CHannel)를 모니터링하는 것이 바람직하다. 즉, PDCCH에는 상기 PDSCH를 수신해야 하는 단말의 정보와, 상기 PDSCH의 무선자원의 주파수 그리고 시간 정보, 그리고 상기 PDSCH의 전송 형식 등이 포함되어 있는 것이 바람직하다. 일단 단말이 자신에게 전송되는 PDCCH의 수신에 성공하면, 상기 PDCCH의 정보들에 따라 PDSCH로 전송되는 임의접속 응답을 적절히 수신할 수 있다. 그리고 상기 임의접속 응답에는 랜덤 액세스 프리앰블 구별자(ID; 예를 들어, RAPID (Random Access Preamble IDentifier)), 상향링크 무선자원을 알려주는 상향링크 승인 (UL Grant), 임시 셀 식별자 (Temporary C-RNTI) 그리고 시간 동기 보정 값 (Timing Advance Command: TAC)들이 포함될 수 있다.
(3) 제 3 메시지 전송: 단말이 자신에게 유효한 임의접속 응답을 수신한 경우에는, 상기 임의접속 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, 임시 셀 식별자를 저장한다. 또한 유효한 임의접속 응답 수신에 대응하여 전송할 데이터를 메시지3 버퍼에 저장할 수 있다. 한편, 단말은 수신된 UL 승인을 이용하여, 데이터(즉, 제 3 메시지)를 기지국으로 전송한다. 제 3 메시지는 단말의 식별자가 포함되어야 한다. 경쟁 기반 랜덤 액세스 과정에서는 기지국에서 어떠한 단말들이 상기 임의접속 과정을 수행하는지 판단할 수 없는데, 차후에 충돌해결을 하기 위해서는 단말을 식별해야 하기 때문이다.
(4) 제 4 메시지 수신: 단말이 임의접속 응답에 포함된 UL 승인을 통해 자신의 식별자를 포함한 데이터를 전송 한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다. 단말이 자신의 셀 식별자를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 임의접속 과정이 수행되었다고 판단하고, 임의접속 과정을 종료한다.
도 3은 3GPP LTE/LTE-A 시스템에 무선 프레임의 구조를 예시한다. 셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
하나의 프레임(frame)은 10개의 서브프레임(subframe)으로 구성되고, 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. RB는 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix) 구성(configuration)에 따라 달라질 수 있다. CP는 확장 CP(extended CP)와 노멀 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 노멀 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 노멀 CP인 경우보다 적다. 확장 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널 상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP가 사용될 수 있다. 노멀 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다. 즉, 노멀 CP가 사용되는 경우 15 kHz 간격의 부반송파 12개와 7개의 OFDM Symbol로 하나의 RB가 정의된다.
중심 주파수 6 RB(Center Frequency 6RB)는 동기화를 위한 주 동기 신호(Primary Synchronization Signal, PSS), 부 동기 신호(Secondary Synchronization Signal, SSS) 및 시스템 정보 전송을 위한 물리 방송 신호(Physical Broadcast Channel, PBCH)를 전달한다. 상술된 프레임 구조, 신호 및 채널들의 위치는 노멀/확장 CP, TDD/FDD에 따라서 변경될 수 있다.
도 4는 LTE/LTE-A 시스템에서의 FDD 및 TDD를 예시한다. 도 4를 참조하면, FDD 의 경우, 하향링크와 상향링크의 주파수 대역이 구분되어 있다. TDD의 경우 동일 밴드 내에서 서브프레임 단위로 하향링크 영역과 상향링크 영역이 구분된다.
이하에서는 LTE의 상향링크 다중 접속 기법들에 대하여 설명한다.
우선, SC-FDMA 전송 방식에 대하여 설명한다. SC-FDMA는 DFT-s-OFDMA(discrete Fourier transform-spreading-orthogonal frequency divisional multiple access)로 칭하여지기도 한다. SC-FDMA는 첨두전력대평균전력비 (Peak-to-Average Power Ratio; PAPR) 또는 CM(Cube Metric) 값을 낮게 유지할 수 있는 전송 방식이며, 전력 증폭기의 비-선형(non-linear) 왜곡 구간을 피하여 효율적으로 전송하기 위한 전송 방식이다. PAPR은 파형(Waveform)의 특성을 나타내는 파라미터로서, 파형의 진폭(amplitude)의 첨두(peak) 값을 시간 평균된 RMS(Root Mean Square) 값으로 나눈 값이다. CM은 PAPR이 나타내는 수치를 대변할 수 있는 또 다른 측정값이다. PAPR은 송신측에서 전력 증폭기가 지원해야 하는 동적 범위(dynamic range)와 연관된다. 즉, PAPR 값이 높은 전송 방식을 지원하기 위해서는 전력 증폭기의 동적 범위(또는 선형 구간)가 넓을 것이 요구된다. 전력 증폭기의 동적 범위가 넓을 수록 전력 증폭기의 가격이 상승하므로, PAPR 값을 낮게 유지하는 전송 방식이 상향링크 전송에 유리하다. 이에 따라, PAPR 값을 낮게 유지할 수 있는 SC-FDMA가 현재 3GPP LTE 시스템의 상향링크 전송 방식으로 사용되고 있다.
도 5는 LTE 상향링크의 DFT-s-OFDMA (또는 SC-FDMA) 방식을 설명하기 위한 블록도이다.
인코더에 의하여 부호화 과정을 거친 하나 이상의 코드워드는 단말 특정 스크램블링 신호를 이용하여 스크램블링될 수 있다. 스크램블링된 코드워드는 전송 신호의 종류 및/또는 채널 상태에 따라 BPSK, QPSK, 16 QAM 또는 64QAM 방식으로 복소 심볼로 변조된다. 그 후, 변조된 복소 심볼은 하나 이상의 레이어에 매핑된다.
하나의 코드워드는 하나의 레이어에 심볼 단위로 매핑되어 전송될 수도 있으나, 하나의 코드워드가 최대 4개의 레이어에 분산되어 매핑될 수도 있으며, 이와 같이 하나의 코드워드가 복수의 레이어에 분산되어 매핑되는 경우, 각 코드워드를 이루는 심볼들은 레이어별로 순차적으로 매핑되어 전송될 수 있다. 한편, 단일 코드워드 기반 전송 구성의 경우에는 인코더 및 변조 블록이 하나씩만 존재하게 된다.
이와 같이 레이어 매핑된 신호는 변환 프리코딩(Transform precoding)될 수 있다. 구체적으로, 레이어 매핑된 신호에 대하여 이산 푸리에 변환(Discrete Fourier Transform; DFT)에 의한 프리코딩이 수행될 수 있으며, 레이어 매핑된 신호에 채널 상태에 따라 선택된 소정 프리코딩 행렬이 곱해져서 각 전송 안테나에 할당될 수 있다. 이와 같이 처리된 각 안테나별 전송 신호는 각각 전송에 이용될 시간-주파수 자원 요소에 매핑되며, 이후 OFDM 신호 생성기를 거쳐 각 안테나를 통해 전송될 수 있다.
● New RAT
New RAT 성능 요구 사항 중, 저지연 요구조건을 만족시키기 위하여 서브프레임이 새롭게 설계될 필요가 있다.
[Self-contained Subframe]
도 6은 New RAT을 위해서 새롭게 제안되는 Self-contained Subframe 을 예시한다. 이하에서, self-contained subframe은 간략히 서브프레임으로 지칭될 수도 있다.
TDD 기반의 Self-contained Subframe 구조에 따르면 하나의 서브프레임 내에 하향링크와 상향링크를 위한 자원구간(예를 들어, 하향링크 제어 채널 및 상향링크 제어 채널)이 존재한다.
도 6에 도시된 self-contained subframe 구조에서는 DL 제어 영역-데이터 영역-UL 제어 영역 순서로 서브프레임이 구성되는 것을 예시하였지만, 본 발명은 이에 한정되지 않는다. 예컨대, 다른 Self-contained Subframe 구조로서, DL 제어 영역-UL 제어 영역-데이터 영역의 순서로 서브프레임이 구성될 수도 있다.
Self-contained subframe은 해당 서브프레임에서 전송되는 데이터의 방향에 따라서 DL Self-contained subframe과 UL Self-contained subframe으로 구분될 수 있다.
이러한 self-contained subframe 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 시간 갭(time gap)이 필요하다. 이를 위하여 self-contained subframe 구조에서 DL에서 UL로 전환되는 시점에 해당하는 적어도 하나의 OFDM symbol이 GP(guard period)로 설정된다. GP는 DL에서 UL로 전환되는 시점에 위치한다. 예컨대, DL 서브프레임에서 GP는 DL 데이터 영역과 UL 제어 영역 사이에 위치하고, UL 서브프레임에서 GP는 DL 제어 영역과 UL 데이터 영역 사이에 위치한다.
한편, 1 서브프레임은 일정한 시간 길이로 정의될 수도 있다. 예를 들어, NR에서 1 서브프레임의 시간 길이(duration)은 1 ms로 고정될 수도 있다. 이 때, 1 심볼 길이는 서브캐리어 간격(subcarrier spacing)에 따라서 결정되므로, 1 서브프레임에 포함되는 심볼의 개수는 서브캐리어 간격에 따라서 결정될 수 있다. 예를 들어, 서브캐리어 간격이 15 kHz일 경우, 1 서브프레임에는 14개의 심볼들이 포함될 수 있다. 하지만, 서브캐리어 간격이 2배로 증가하여 30 kHz 가 되면, 1 심볼의 길이(duration)은 반으로 줄어들기 대문에 1 서브프레임에 총 28개의 심볼들이 포함될 수 있다. 서브캐리어 간격은 15 kHz * 2n이 될 수 있고, 1 서브프레임에 포함되는 심볼들의 개수는 14 * 2n이 될 수 있다. n은 0, 1, 2.. 등의 정수로서, 반드시 양의 정수에 한정되지 않는다. 예를 들어, n이 음의 정수 -1 이라면, 1 서브프레임에는 총 7개의 심볼들이 포함될 수 있다.
[Analog beamforming]
밀리미터 웨이브(Millimeter Wave, mmW)가 사용되는 경우 파장이 짧아지므로 동일 면적에 다수 개의 안테나 엘리먼트들이 설치될 수 있다. 예컨대, 30 GHz 대역에서 파장은 1 cm로써, 5 X 5 cm의 판넬(panel)에는 0.5 λ(파장) 간격으로 총 100개의 안테나 엘리먼트들이 2-차원으로 배열 될 수 있다. 그러므로 mmW 방식에 따르면, 다수 개의 안테나 엘리먼트들이 사용됨으로써 빔포밍 이득이 향상되고, 커버리지를 증가 및/또는 쓰루풋 향상이 기대된다.
mmW 방식에서 안테나 엘리먼트 별로 TXRU(Transceiver Unit)가 설치되면 안테나 엘리먼트 개별적으로 전송 파워 및 위상 조절이 가능하고, 따라서 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나 100여개의 안테나 엘리먼트들 모두에 개별적으로 TXRU를 설치하는 것은 비용 측면에서 실효성이 떨어지는 문제가 있다.
대안적으로, 하나의 TXRU에 다수 개의 안테나 엘리먼트들을 맵핑하고, 아날로그 위상 천이기(analog phase shifter)로 빔 방향을 조절하는 방식이 고려될 수 있다. 그러나, 이러한 아날로그 빔포밍 방식은 전 대역에 대하여 같은 방향으로 빔이 형성되므로, 주파수 선택적 빔포밍이 수행될 수 없다는 단점이 있다.
또 다른 대안으로서, 디지털 빔포밍과 아날로그 빔포밍의 하이브리드 형태로서, 총 Q개의 안테나 엘리먼트들에 대하여 총 B (where, B<Q)개의 TXRUs를 맵핑하는 하이브리드 빔포밍이 고려될 수 있다. B개의 TXRUs와 Q개의 안테나 엘리먼트들을 상호 연결하는 방식에 따라서 달라질 수 있지만, 일반적으로 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한된다.
이와 같이 NR 시스템에서 다수의 안테나들을 이용하여, 디지털 빔포밍과 아날로그 빔포밍이 결합된 하이브리드 빔포밍 기법이 논의되고 있다. 아날로그 빔포밍 (또는 RF beamforming)은 RF 단에서 프리코딩 (또는 Combining)을 수행하는 동작을 의미할 수 있다. 하이브리드 빔포밍에서 베이스 밴드(Baseband) 단과 RF 단은 각각 프리코딩 (또는 Combining)을 수행한다. 하이브리드 빔포밍은 RF chain 수와 D/A(Digital to Analog) 컨버터 또는 A/D (Analog to Digital) 컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다.
편의상 하이브리드 빔포밍 구조는 N개 TXRUs(Transceiver units)와 M개의 물리적 안테나들로 표현될 수 있다. 이 때, 송신 단에서 전송할 L개 데이터 레이어들에 대한 디지털 빔포밍은 N by L 행렬로 표현될 수 있다. N by L 행렬을 통해 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환되고, 이후 아날로그 신호에 M by N 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 7은 상기 TXRU 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도식화한 것이다. 도 7에서 디지털 빔의 개수는 L개 이며, 아날로그 빔의 개수는 N개이다.
New RAT 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경함으로써 특정한 지역에 위치한 단말에게 보다 효율적으로 빔포밍을 수행하는 방안이 고려되고 있다.
도 7에서 N개의 TXRU들과 M개의 RF 안테나들을 하나의 안테나 패널(panel)로 정의할 때, New RAT 시스템에서는 서로 독립적으로 하이브리드 빔포밍을 수행할 수 있는 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.
이와 같이 기지국이 복수의 아날로그 빔들을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 따라서 기지국은 동기 신호, 시스템 정보 및/또는 페이징 등에 대해서는 빔 스윕핑(Beam sweeping)을 수행하여 특정 서브프레임(SF)에서 적용할 복수 아날로그 빔들을 심볼 별로 변경할 수 있고, 이를 통해 모든 단말이 수신 기회를 가질 수 있도록 할 수 있다.
도 8은 동기 신호 및 시스템 정보의 하향링크 전송에서의 빔 스윕핑을 도시한다. xPBCH (physical broadcast channel)는 New RAT 시스템의 시스템 정보를 브로드캐스팅 방식으로 전송하기 위한 물리적 자원 또는 물리 채널을 의미한다.
도 8에서는 서브프레임에 총 14개 심볼들이 포함되는 것을 가정하였으며, 각 심볼마다 다른 빔이 설정될 수 있다. 예컨대, 1번 심볼에서는 빔 1이 설정되고, 8번 심볼에서는 빔 8번이 설정될 수 있다.
한 심볼 내에서 서로 다른 안테나 패널들에 속하는 아날로그 빔들은 동시 전송될 수도 있다. 예컨대, 1 심볼 내에서 안테나 패널 1은 아날로그 빔 1을 송신하고, 안테나 패널 2는 아날로그 빔 2를 송신할 수 있다. 이 경우 아날로그 빔 별로 채널을 측정하기 위해 (특정 안테나 패널에 대응되는) 단일 아날로그 빔을 통해 전송되는 참조 신호(RS)인 BRS (Beam RS)가 도입될 수 있다.
BRS는 복수의 안테나 포트들에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 예컨대, 도 8에서는 R0 내지 R7까지 총 8개의 BRS 안테나 포트들이 존재하며, 각 안테나 포트마다 다른 아날로그 빔이 설정된다면 1 심볼 상에서 총 8개의 아날로그 빔들을 통해 BRS가 각각 송신될 수 있다.
한편, BRS와는 달리 동기 신호 또는 xPBCH는 특정 방향의 단말 뿐 아니라 셀 내에서 임의의 위치에 있는 단말이 잘 수신할 수 있도록 아날로그 빔 그룹 내 모든 아날로그 빔들을 통해 동기 신호 또는 xPBCH가 전송될 수도 있다.
이와 같이 NR 시스템에서는 아날로그 빔포밍이 고려되고 있다. 특히, mmWave에서는 많은 수의 안테나들을 바탕으로 아날로그 빔포밍을 수행하여 커버리지가 확장될 수 있다.
mmWave 대역뿐만 아니라 below 6 GHz에서도 아날로그 빔포밍을 고려하여 시스템이 설계될 필요가 있다. 또한, 기지국의 캐퍼빌리티(capability)에 따라 단일 빔포밍 케이스와 다중 빔포밍 케이스가 구분될 수 있다. 여기서, 단일 빔포밍은 한 심볼에서는 한 방향으로만 아날로그 빔포밍을 수행하는 것을 의미한다. 반면에, 다중 빔포밍은 한 심볼에서 여러 방향의 아날로그 빔포밍을 수행하는 것을 의미한다.
New RAT에서는 빔 가역성(beam reciprocity), 즉 전송 빔과 동일 빔으로 수신하는 것을 고려하고 있다. 이와 같은 가정은 TDD 밴드에서 특히 유효할 수 있다.
기지국은 다중의 빔들을 이용해서 DL 커버리지를 커버할 수 있어야 하며, NR 에서는 포지셔닝(positioning) (e.g., 단말의 위치 측정)에 대하여 기존 시스템 보다 더 높은 요건(requirement)을 요구한다.
한편, 많은 안테나들을 통해 빔포밍이 수행되는 경우 빔 폭이 좁아지는데, 이와 같은 빔포밍 특성을 고려할 때 빔포밍을 활용하여 보다 정밀한 포지셔닝(positioning) 이 수행될 수 있다.
포지셔닝을 위한 참조 신호를 PRS (positioning reference signal)로 지칭하기로 한다. 이하에서는 빔포밍을 통한 PRS 송수신 방법 및 포지셔닝 방법에 대한 실시예들을 살펴본다.
[DOWNLINK POSITIONING REFERENCE SIGNAL]
DL PRS에 대하여 살펴본다. 먼저, 후술하는 예시들을 통해 살펴볼 DL PRS 관련 내용을 간략히 정리하면 다음과 같다.
1. PRS 시간/주파수 설정:
- 자원과 빔 간의 맵핑 방법 (e.g., TDM/FDM/(TDM/FDM))
- 안테나 포트 ID와 빔 간의 맵핑 방법
2. 기지국의 보고 지시 및 단말의 보고:
- Beam ID (또는 PRS 자원 ID)와 수신 전력을 함께 보고하는 방법
- Beam ID와 시간 차이를 함께 보고하는 방법
- PRS 자원 ID와 시간 차이를 보고하는 방법: (i) Wideband 보고, (ii) Subband 보고
3. 기지국 간의 빔 정렬(beam align) 방안
후술하는 모든 실시예들에서 시간 도메인 빔 스위핑과 주파수 도메인 빔 스위핑이 모두 지원될 수도 있고, 이들 중 하나만 지원될 수도 있다.
또한 후술하는 제안들과 실시예들에 부여된 인덱스는 설명의 편의를 위한 것이지, 각각이 반드시 독립적인 발명으로 실시되어야만 하는 것은 아니다. 예컨대, 다른 인덱스를 갖는 실시예들/제안들이라도 서로 상충하지 않는 범위 내에서 함께 실시될 수 있다.
Proposal #1: 기지국이 PRS를 전송하는 시간/주파수 자원 설정
(i) Example 1-1: 기지국이 TDM 방식으로 N개의 Tx Beam들을 운용할 수 있다. 기지국은 N개 시간 자원들 각각에 설정된 Beam을 통해 PRS를 N번 전송할 수 있다.
PRS를 전송하는 각 Beam의 시간 자원은 Symbol/Mini-slot/Slot/Subframe의 배수로 설정될 수 있다.
또한 PRS가 전송되는 주파수 자원은 Wideband 또는 Subband 일 수도 있다.
도 9는 본 발명의 일 실시예에 따라서 총 14개의 Beam들 심볼 단위로 스윕핑하는 것을 도시한다. 이 때, PRS는 각 심볼에 해당하는 Beam을 통해 반복 송신 된다.
도 10은 본 발명의 일 실시예에 따라서 7-심볼 단위의 Beam 스윕핑을 통해 PRS를 방안을 도시한다. 도 10을 참조하면, 심볼 0~6 동안 Beam 1을 통해 PRS가 송신되고, 심볼 7~13 동안 Beam 2를 통해 PRS가 송신된다.
(ii) Example 1-2: 기지국이 FDM 방식으로 N개의 Tx Beam들을 운용할 수 있다. 기지국은 N개의 주파수 자원 블록들 각각에 설정된 Beam을 통해 PRS를 N번 전송할 수 있다.
PRS가 전송되는 각 Beam의 시간 자원은 Symbol/Mini-slot/Slot/Subframe의 배수로 설정될 수 있다.
도 11은 본 발명의 일 실시예에 따라서 14개의 빔들이 FDM 방식에 기반하여 PRS를 송신하는 것을 도시한다. 도 11에서 4개의 RBs이 1 Beam을 송신하는데 사용된다.
(iii) Example 1-3: 기지국은 TDM/FDM 방식으로 N개의 Tx Beam들을 운용할 수 있다. 기지국은 N개의 Beam들을 통해 PRS를 N번 전송할 수 있다.
PRS가 전송되는 각 Beam의 시간 자원은 Symbol/Mini-slot/Slot/Subframe의 배수로 설정될 수 있다.
또한 PRS가 전송되는 주파수 자원은 Wideband 또는 Subband 일 수도 있다.
또한, 각 Beam 마다 시간/주파수 자원 블록의 크기가 다를 수 있다.
도 12는 본 발명의 일 실시예에 따라서 TDM과 FDM 혼합된 방법으로 각 Beam별로 PRS를 전송하는 구조를 나타낸다.
도 12를 참조하면, 다중화된 14개의 빔들 중 Beam 0~6은 심볼 0~6에서 송신되고, Beam 7~14은 심볼 0~13에서 송신된다. 다시 말해, 처음 7개의 심볼들에 걸쳐서 처음 7개 Beam들이 FDM되고, 다음 7개의 심볼에서는 나머지 7개의 Beam들이 FDM된다.
Example 1-1,1-2,1-3에서 PRS가 전송되는 구조는 사전 정의되거나 또는 상위 계층 신호(e.g., RRC)를 통해 설정될 수 있다. 단말은 Beam 별로 수신되는 PRS를 통해서 측정 및 보고를 수행할 수 있다. 또한, 기지국은 Beam 별 보고를 통해서 Tx Beamforming 방향을 제어하여 포지셔닝(positioning)의 정확도를 높일 수 있다.
Example 1-1,1-2,1-3에서 N개의 Beam들을 운영하는 기지국이라도, M개의 Beam만을 위한 PRS를 전송할 수 있다. 여기서 M은 N보다 같거나 작거나 클 수도 있다. M > N 경우 기지국은 포지셔닝(positioning)을 위한 Tx Beamforming의 입도(granularity)를 커버리지를 위한 N개의 Tx Beam보다 높일 수 있다. 반면에, M < N 경우는 기지국은 포지셔닝(positioning)을 위한 Tx Beamforming에 사용되는 자원을 자원을 줄임으로써 시스템 오버헤드를 줄일 수 있다.
기지국이 PRS를 전송하는 주기는 상위 계층 신호로 알려질 수 있다. PRS는 반드시 주기적으로 송신되는 것이 아니라 비주기적으로 송신될 수도 있다. 예를 들어, 특정 이벤트 (e.g., URLLC등의 서비스가 트리거되는 경우 등)가 발생하는 경우, 기지국은 공통 시그널링을 통해 비주기적 PRS Symbol/Slot/Mini-slot/Subframe 임을 알리면서, PRS를 주기적 PRS의 주기와 무관하게 전송할 수 있다. 단말은 공통 시그널링을 기반으로 비주기적 PRS가 전송됨을 인지하고, PRS 측정 및 보고를 수행할 수 있다.
자원 맵핑을 통해 Beam을 구분하는 Example 1-1,1-2,1-3 방법과 달리, 본 발명의 다른 일 예에 따르면 PRS를 Beam별 포트에 설정하여 송신할 있다. 예를 들어, Beam 별로 각기 다른 안테나 포트가 할당되고, 각 빔을 통해 PRS가 송신되면 단말은 포트를 통해서 서로 다른 Beam들 및 이를 통해 송신되는 PRS를 구분할 수 있다.
Proposal #2: 기지국이
단말에게
보고를 지시하는 방법 및 단말의 보고 방법
(i) Example 2-1: 기지국은 단말에게 Beam 별로 수신된 PRS의 수신 전력(e.g., RSRP)또는 거리(e.g., 기지국과 단말 간 거리)를 보고할 것을 단말에 설정할 수 있다. PRS의 수신 전력은 단말과 기지국 간의 거리를 추정하는데 이용될 수 있다. 예컨대, 기지국은 PRS의 송신 전력과 PRS의 수신 전력 차이 및 경로 감쇄 등을 고려하여 기지국과 단말 간의 거리를 추정할 수 있으며, 이에 한정되지 않는다.
기지국은 단말에 M개의 Beam(s)에 대해서 측정 보고할 것을 지시할 수 있다. M은 기지국이 운용하는 Beam들의 개수 N 보다 크거나 작을 수도 있다.
단말이 보고 해야 하는 M개의 Beam들을 지시하는 방법으로써 Beam ID가 이용될 수도 있으나, 이와 달리 기지국은 Beam ID가 아닌 각 Beam에 대한 자원 정보(e.g., 자원 ID)를 통해서 M개의 빔들에 대한 측정 보고를 지시할 수도 있다. 예를 들어, 기지국은 Beam ID 1,2,3에 대한 PRS의 수신 전력을 보고할 것을 단말에 지시할 수도 있지만, 이와 달리 기지국은 자원 ID 1,2,3에 있는 PRS의 전력을 측정하여 보고할 것을 지시할 수도 있다. 기지국은 각 자원 ID 마다 자신이 적용한 Beam의 정보(e.g., Beam 방향 혹은 Beam ID 등)을 알고 있으므로, 각 빔에 해당하는 PRS의 수신 전력 정보를 획득할 수 있다.
따라서, 단말은 PRS의 측정을 기지국에 보고할 때, PRI (PRS resource information) (e.g., PRS ID)와 PRS의 수신 전력을 함께 보고할 수 있다. 예컨대, PRS의 수신 전력과 PRI가 1 쌍을 이루어 보고될 수 있다. 단말은 PRS 1에 대한 (RSRP 1, PRI 1), PRS 2에 대한 (RSRP 2, PRI 2).. PRS N에 대한 (RSRP N, PRI N)을 보고할 수 있다. 본 실시예에서 측정 값으로 RSRP를 예로 든 것은 설명의 편의를 위함이며 본 발명은 이에 한정되지 않으며 다른 측정 값(e.g., 수신 시간, 또는 수신 신호 시간 차이(RSTD))이 PRI와 쌍을 이루어 보고될 수도 있다.
또 다른 예로, 단말은 레퍼런스 송신 전력과 PRS의 수신 전력 간의 차이를 통해서 추정된 거리를 기지국에 보고할 수도 있다.
(ii) Example 2-2: 기지국은 단말에게 K개의 가장 큰 수신 전력 값들 (또는 이를 통해 추정된 거리) 및 그에 대응하는 Beam ID를 보고할 것을 단말에 설정할 수도 있다.
기지국이 N개의 Beam들을 통해 PRS를 송신한다고 가정할 때, 단말은 N번 송신되는 PRS들 중에서 가장 큰 수신 전력을 나타내는 K개의 PRS를 송신한 Beam의 정보(e.g., Beam ID) 및 K개의 PRS 수신 전력 값을 기지국에 보고할 수 있다.
본 실시예에서 Beam ID는 PRI로 대체될 수도 있다.
(iii) Example 2-3: 기지국은 단말에게 Beam 별 또는 PRS 자원 별로 시간 차이(e.g., RSTD)를 보고할 수 있다.
일 예로, 단말이 다수의 빔들을 통해 다수의 PRS들을 수신하면, PRS들의 수신 시간이 서로 다를 수 있다. 따라서, 단말은 PRS들 간의 수신 시간 차이를 보고할 수 있다. PRS들 간의 수신 시간 차이를 보고하기 위하여 다수의 PRS들 중 어느 하나가 기준이 될 수도 있다. 예컨대, 단말은 사전 정의 또는 네트워크에 의해 설정된 Reference Beam 또는 Reference PRS를 기준으로 시간 차이를 기지국에 보고할 수 있다. 단말은 각 Beam 별로 시간 차이를 보고할 수 있는데, 예를 들어, Beam 정보(e.g., Bea, ID)나 PRI를 시간 차이 값과 연계시켜 보고할 수 있다.
1 기지국이 다수의 Beam들을 통해 다수의 PRS들을 송신할 수도 있으나, 이와 달리 다수의 Beam들을 통해 송신되는 다수의 PRS들은 서로 다른 기지국에 대응할 수도 있다.
일 예로, 기지국은 단말에게 Beam 혹은 PRS 자원 별로 다른 기지국에서부터 오는 PRS를 수신하여 시간 차이를 보고할 것을 지시할 수 있다. 단말은 서로 다른 기지국들이 전송하는 PRS들을 서로 다른 시간/주파수 자원 패턴들을 통해 구분할 수 있다. 예컨대, Cell ID에 따라서 PRS의 시간/주파수 자원 패턴이 달라 질 수도 있다. 단말은 Cell ID를 기반으로 각 기지국의 시간/주파수 자원 패턴을 구분하거나 또는 네트워크로부터 각 기지국의 시간/주파수 자원 패턴에 대한 정보를 수신할 수 있다.
단말은 서로 다른 기지국들이 전송하는 PRS들을 Cell ID로 구분하는 것이 아니라 Beam ID에 따른 PRS 시간/주파수 패턴으로 구분할 수도 있다. 예를 들어, PRS의 시간/주파수 자원 패턴이 Beam ID 기반으로 결정될 수 있다. 이 경우, 단말은 해당 PRS가 어느 기지국으로부터 수신된 것인지를 식별할 필요 없이, Beam ID를 이용하여 PRS 들을 서로 구분할 수 있다.
도 13은 본 발명의 일 실시예에 따라서 2개의 기지국들이 PRS를 송신하는 것을 도시한다.
도 13을 참조하면, Beam 7이 할당된 자원 내에서 기지국 1과 기지국 2가 PRS를 각각 송신한다. Beam 7이 할당된 자원 내에서 기지국 1의 PRS 자원과 기지국 2의 PRS 자원은 서로 상이할 수 있다. 예컨대, 서로 다른 기지국들이 전송하는 PRS들은 동일한 PRS 자원 상에 동시 전송되지 않을 수 있다.
기지국 마다 다른 PRS 자원을 가질 수 있다. 이 경우 단말은 미리 정해진 전송 시간 차이만큼을 보상하여 수신 시간 차이를 계산하여 보고할 수 있다. 예컨대, 기지국 1의 PRS 자원은 제1 심볼부터, 기지국 2의 PRS 자원은 제2 심볼부터 시작할 때, 단말은 제1 심볼과 제2 심볼 간의 시간 간격을 이용하여 RSTD를 계산할 수 있다.
다른 예로, 서로 다른 기지국들의 PRS들이 동일한 자원 상에 송신될 수도 있다. 예컨대, 서로 다른 기지국의 PRS들이 CDM 기반으로 다중화 될 수 있으며, 단말은 PRS들의 직교성을 통해서 각 기지국의 PRS를 구분할 수 있다.
본 실시예에서 다수의 기지국들은 다수의 셀들로 대체될 수도 있다. 다수의 셀들은 하나 또는 그 이상의 기지국들에 해당할 수 있다.
(iv) Example 2-4: 기지국은 단말에게 시간 차이 측정의 대상으로써 {Cell ID, Beam ID}의 쌍을 다수개 시그널링 할 수 있다.
예를 들어, 기지국은 4개의 셀들에 대한 PRS 측정을 통해 시간 차이를 보고할 것을 단말에 지시할 수 있다. 기지국이 {Cell ID, Beam ID} = {1, 3}, {2, 4}, {3,2}, {4,3}를 단말에 지시하였다고 가정하면, 단말은 Cell ID가 1이고 동시에 Beam ID가 3에 해당하는 PRS 자원을 측정한다. 그리고, 단말은 Cell ID가 2이고 동시에 Beam ID가 4에 해당하는 PRS 자원, Cell ID가 3이고 동시에 Beam ID가 2인 PRS 자원, 및 Cell ID가 4이고 Beam ID가 3인 PRS 자원을 측정할 수 있다. 이어서, 단말은 Cell ID를 통해 식별된 각 셀에 대한 PRS 수신 시간의 차이를 기지국에 보고할 수 있다.
본 예시에서 기지국은 Beam ID 대신에 PRI를 단말에 지시할 수 있다. 또한 기지국은 다른 셀의 PRS 자원 맵핑 정보도 RRC혹은 상위 신호를 통해서 단말에 알려 줄 수도 있다.
(v) Example 2-5: 기지국은 K개의 큰 PRS 수신 전력을 나타내는 Cell ID 및 Beam ID 조합에 대해서만 측정 결과를 보고 하도록 단말에 지시할 수 있다.
예를 들어, 단말이 각 Cell의 Beam ID 마다 PRS 수신 전력을 측정 후, 수신 신호가 좋은 K개의 {Cell ID, Beam ID} 쌍들에 대해서만 측정 결과를 보고 할 수 있다.
또한 단말은 Cell 별로 K개의 Beam들을 수신 전력 기준으로 선택하고, 모든 Cell들간 K개의 Beam들의 PRS들에 대한 수신 시간 차이를 보고할 수 있다. 예를 들어, Cell이 4개이고 K가 3이면 단말은 총 4 Combination 2 곱하기 9개의 시간 차이 값들을 보고 할 수 있다.
기지국은 단말에게 Example 2-1 내지 2-5에서 설명된 보고 지시를 물리 계층 신호 (e.g., UE-specific or common signal) 혹은 상위 계층 신호(e.g., RRC)를 통해서 알려 줄 수 있다.
또한, 앞서 설명된 실시예들에서 거리 정보는 전력 기반이 아닌 다중 신호의 위상 차이(phase difference)를 통해서도 추정될 수도 있다.
Proposal #3: 기지국이 Beam ID를 활용하여
포지셔닝
정보를 위치 서버(location server)에 전달하는 방법
기지국은 위치 서버에 포지셔닝 정보를 전달할 때, Cell ID 뿐만 아니라 Beam ID 및 Beam ID에 상응하는 Beam 정보(e.g., Beam 방향)을 같이 전달할 수 있다. 혹은, 기지국은 Beam ID를 제외한 Beam 방향만 위치 서버에 전달할 수도 있다.
Beam ID는 기지국 내에서만 유일한 식별자 일 수 있기 때문에, 위치 서버는 Beam ID 만으로는 해당 Beam을 식별하기 어려울 수 있기 때문에 기지국은 위치 서버에 해당 Beam 에 대한 방향 등의 정보를 송신할 수 있다.
또한, 기지국은 위치 서버에 전달하는 정보에 자신의 보어 사이트(boresight) 정보를 포함할 수 있다.
Proposal #4: 단말이 보고하는 채널
(i) Example 4-1: 단말은 PUCCH(e.g., NR-PUCCH)를 통해서 PRS 측정 결과를 보고할 수 있다. 예컨대, 단말은 PUCCH 를 통해서 PRI/Beam ID 및 수신 전력/시간 차이 정보를 기지국에 보고할 수 있다.
(ii) Example 4-2: 단말은 PUSCH를 통해서 PRS 측정 결과를 보고할 수 있다. 예컨대, 데이터 채널을 통해 PRS 측정 결과를 보고할 때에 단말은 PRI/Beam ID를 해당 보고에 포함시킬 수 있다.
기지국은 위치 서버에게 전달할 때는 기지국의 논리적 정보가 아닌 위치 서버가 인지할 수 있는 정보로 논리적 정보를 변경하여 전달하라 수 있다. 예를 들어, PRI가 기지국 내에서 동적으로 사용된다면, 기지국은 PRI에 상응하는 Beamforming 각과 Beam width 정보를 위치 서버에 전달할 수 있다.
Proposal #5: 단말이
Rx
Beam
스윕핑을
통해서 수신
DoA(direction of arrival)를
측정 및 보고 방법
단말이 Rx Beam별 PRS 수신 전력을 측정하여 보고할 수 있다. 예를 들어, 도 12에서 Tx Beam 1번이 적용된 시간/주파수 자원 블록에서 단말은 Rx 수신 Beamforming을 통해서 PRS를 각 Rx 수신 Beam 별로 측정할 수 있다.
단말은 Tx Beam ID/PRI 및 수신 전력/시간 차이에 추가적으로 Rx Beam ID를 기지국에 보고할 수 있다. 예를 들어, 단말은 {Tx Beam ID, Rx Beam ID, PRS received power} 조합을 형태가 될 수 있다. 또한 단말은 Rx Beamforming 을 통해 생성된 다수의 Beam들 중 가장 큰 수신 전력 값이 획득되는 K개의 Rx Beam에 대해서만 보고할 수도 있다. 이는 기지국이 단말에 설정 할 수 있다.
또한 단말은 Rx Beam ID와 함께 Rx Beam ID에 상응하는 정보 방향(direction) 및 보어 사이트 정보를 기지국에 보고할 수 있다. 또는 기지국이 해당 정보를 단말에 요청(e.g., RRC 등의 상위 계층 시그널링)할 수 있다.
Proposal #6: 단말이 기지국에게 PRS 전송을 비주기적으로 요청하는 방법
단말은 기지국에게 PRS 전송을 비주기적으로 요청할 수 있다.
예를 들어, 단말의 위치를 기반으로 동작하는 우선 순위(priority)가 높은 서비스를 위해서 단말의 위치 업데이트 혹은 해상도 신뢰성(resolution reliability) 향상이 필요할 수 있고, 이를 위해 단말은 기지국에게 PRS 전송을 요청할 수 있다.
일 예로, 단말은 기지국에 UE dedicated Beamforming을 통한 PRS 송신을 요청하거나 또는 특정 자원을 통한 PRS 송신을 요청할 수 있다. 예를 들어, 단말은 기지국에게 Beam ID=2에 해당하는 Tx Beamforming으로 PRS를 전송하도록 요청할 수 있다. 또는 단말은 Beam ID=2에 해당하는 PRS 자원을 통해 PRS를 송신할 것을 기지국에 요청할 수 있다.
이 때, 단말이 PRS를 요청하는 Beam ID는 단말이 DL 데이를 전송 받는 Tx Beam의 ID이거나 또는 단말이 가장 최근에 데이터를 받았던 Tx Beam의 ID일 수 있다. 또는, 단말이 PRS를 요청하는 Beam ID는 초기 접속(Initial Access)에서 사용한 Tx Beam의 ID일 수도 있다.
이와 같은 단말의 요청은 RRC 등의 상위 계층 신호 혹은 물리 계층 신호를 통해서 송신될 수 있다.
[UPLINK POSITIONING REFERENCE SIGNAL]
이상에서는 DL PRS 측면에서 살펴보았으나, NR에서는 단말이 송신하는 UL PRS가 도입될 수도 있다.
NR에서 포지셔닝 해상도(resolution)의 요구 조건이 강화될 수 있다. 일 예로, 응급 의료 서비스와 같이 위치에 대한 정확도를 요구하는 서비스 지원을 위해서는 단말이 트리거링하는 포지셔닝 기법이 필요할 수 있다. 또한, 기존 LTE UL에서 CSI 획득을 위해 사용되는 SRS (Sounding RS)의 경우, 많은 대규모(massive) 단말들을 지원하기에는 자원 부족 문제가 발생할 수 있다.
따라서, 기존 SRS 이외에 NR 포지셔닝을 위해 UL RS가 새롭게 제안된다.
한편, 기지국에서 안테나 수가 많아 질 수 있어 기지국의 Rx Beamforming이 가능하며, UE에서도 안테나 수가 많아 질 수 있어 UE의 Tx Beamforming(e.g., analog/digital beamforming)이 가능하다. 따라서, 기지국/UE의 Rx/Tx Beamforming을 통해 포지셔닝의 정확도를 향상시키는 방법을 살펴본다.
Proposal #7: 단말의 UL PRS 전송을 위한 Framework
(i) Example 7-1: 주기적 UL PRS 송신
기지국은 단말에게 Periodic PRS 전송을 위한 자원을 설정할 수 있다. UL PRS Configuration은 UL PRS의 시간/주파수 자원의 주기 및 위치 등을 포함할 수 있다. 만약, 2 이상의 UL PRS들이 CDM 되는 경우 UL PRS Configuration은 CDM 코드 정보 또는 순환 천이(cyclic shift)값 등을 포함할 수 있다. UL PRS Configuration은 RRC 등의 상위 계층 신호로 송신될 수 있다.
기지국은 물리 계층 제어 채널 또는 상위 계층 신호를 통해서 주기적 PRS 전송을 활성화/비활성화 할 수 있다.
(ii) Example 7-2: 비 주기적(aperiodic) UL PRS 송신
기지국은 DL 제어채널을 통해 비 주기적 PRS 전송을 단말에게 요청할 수 있다. 일 예로, 비 주기적 PRS 전송을 요청하는 DCI는 UL PRS 자원 위치 및/또는 PRS 다중화를 위한 코드 정보 등을 포함할 수 있다. 또한, DCI는 단말의 프리코딩 정보(e.g., Precoding index)를 포함할 수 있다. 또한, DCI는 PRS의 반복 전송 횟수를 자원과 함께 알려줄 수 있다. 또는 비 주기적 PRS를 위한 자원 위치 등의 Configuration 은 상위 계층 시그널링을 통해 설정되고, DCI는 앞서 설정된 PRS Configuration을 기반으로 비 주기적 PRS 전송 할것을 단말에 요청할 수도 있다.
단말은 지정 받은 위치에서 비주기적 PRS를 전송한다.
Example 7-1/7-2에서 서로 다른 단말들이 UL PRS들이 다중화(e.g., FDM/TDM/CDM)될 수 있다.
UL PRS 시간/주파수 자원은 UL Subframe에 위치할 수 있다. 또는, UL PRS 자원과 PRACH 자원은 동일 서브프레임에 FDM 될 수 있다. 이 경우 MIB 또는 SIB을 통해 송신되는 PRACH의 시간 자원 정보는 PRACH와 UL PRS의 FDM을 위한 주파수 오프셋/할당 주파수 크기 정보를 더 포함할 수 있다. 예컨대, 단말은 MIB 또는 SIB의 PRACH 정보를 읽음으로써 PRS의 시간 자원 위치 (e.g., 서브프레임 번호, PRS 주기)등을 알 수 있으며, 주파수 오프셋/ 할당 주파수 정보를 통해서 PRS 자원을 알 수 있다. 본 예시에 따르면 Beam Sweeping이 PRACH와 UL PRS에 동시에 적용되어 TDD에서는 UL 용도로 고정되어야 하는 UL subframe 개수를 줄일 수 있다.
Proposal #8: Reciprocity based UL PRS transmission (UE-Triggering)
빠른 포지셔닝 또는 미세한 포지셔닝 해상도가 요구되는 서비스를 위해 NR은 단말 트리거링 이벤트를 지원할 수 있다. 이 때, 단말은 기지국/단말 Beamforming 을 활용하여 포지셔닝 정확도를 높일 수 있다.
또한, Beam Reciprocity가 유효한 환경에서 단말은 DL RS(e.g., 측정 용도의 D RS) 측정으로부터 DL Beam중에서 전력이 높은 Beam을 미리 인지할 수 있다. 단말과 기지국은 이와 같은 사전 정보를 통해서 Beamforming을 포지셔닝에 활용할 수 있다.
도 14는 본 발명의 일 실시예에 따라서 단말 트리거 기반의 비주기적 UL PRS 송신 요청 및 UL PRS 자원 할당 방법을 나타낸다.
도 14를 참조하면 단말은 서빙 기지국에 UL PRS 자원 할당을 요청한다(1405). PRS 자원 요청을 위한 신호는 UL 제어 채널(e.g., PUCCH)을 통해서 전송될 수 있다. PRS 자원 요청을 위한 신호는 새롭게 정의되거나 또는 기존의 SR(Scheduling request) 신호가 PRS 자원 요청을 위해 재사용될 수 있다. 또는, PRS 자원 요청을 RRC와 같은 상위 신호를 통해 전달될 수도 있다. 단말은 주변 기지국들의 DL RS 측정을 통해서 획득한 주변 기지국들의 Cell ID와 Beam ID (또는 측정 자원 ID)등을 PRS 자원 요청에 포함시킬 수 있다.
서빙 기지국은 PRS 자원 할당 요청에서 포함된 Cell ID와 Beam ID를 확인하고, 해당 기지국들에게 UL PRS 자원을 요청한다(1410). 이 때, 서빙 기지국은 주변 기지국들에게 Beam ID를 같이 전달할 수 있다. 예컨대, 서빙 기지국은 단말이 선호하는 Beam ID를 전달할 수 있다. Beam ID 전달을 통해 Rx Beamforming이 고정될 수 있다.
주변 기지국들은 서빙 기지국에게 자신의 UL PRS 자원 설정을 알려 줄 수 있다(1415). UL PRS 자원 설정은 시간/주파수 자원 전송 시점뿐만 아니라 Rx Beamforming을 고려한 반복도 지정할 수 있다.
서빙 기지국은 자신 및 주변 기지국의 UL PRS 자원을 단말에게 알려준다(1420). 예컨대, 서빙 기지국은, 서빙 기지국과 주변 기지국들의 UL PRS 시간/주파수 자원을 단말에 알려 줄 수 있다. 만약 서빙 기지국과 주변 기지국들의 UL PRS 시간/주파수 자원이 다를 경우, 서빙 셀 간섭 제어를 위해서 서빙 기지국은 특정 프리코딩 세트를 지정할 수도 있다. 예를 들어, 서빙 기지국은 단말이 주변 기지국에 UL PRS를 전송을 위해 사용할 수 있는 프리코딩 인덱스 세트를 단말에 알려 줄 수 있다. 해당 정보는 물리 계층 신호 혹은 RRC 등의 상위 계층 신호를 통해 전송될 수 있다.
단말은 UL PRS 자원을 통해 각 기지국에 UL PRS를 전송한다(1425). 단말은 기지국이 알려준 프리코딩 인덱스 중에서 DL Beam correspondence에 맞춰 UL PRS 전송을 위한 프리코딩을 결정할 수 있다.
본 실시예는 Beamforming을 기반으로 기술했으나, Beamforming이 없는 환경에서도 동일하게 적용될 수 있다.
도 15는 본 발명의 일 실시예에 따른 DL PRS를 통한 단말 포지셔닝 방법을 도시한다. 앞서 설명된 내용과 중복하는 설명은 생략될 수 있다.
도 15를 참조하면, 네트워크는 다수의 DL PRS들을 송신한다(1505). 네트워크는 적어도 하나 이상의 기지국들을 포함할 수 있다. 일 예로, 다수의 DL PRS들은 단말의 PRS 요청에 대한 응답으로서 송신되는 비주기적 DL PRS들일 수도 있다. 단말의 PRS 요청은 단말이 선호하는 송신 빔들의 식별 정보 또는 자원 정보를 포함할 수 있다. 다른 예로, 다수의 DL PRS들은 주기적 DL PRS들일 수도 있다.
다수의 PRS들에는 빔포밍이 적용될 수 있다. 예컨대, 다수의 PRS들은 각기 다른 송신 빔들을 통해 송신될 수 있다.
다수의 PRS들에 대응하는 다수의 송신 빔들은 각기 다른 자원들 상에서 형성될 수 있다.
다수의 PRS들에 대응하는 다수의 빔들은 개별적인 빔 스윕핑(sweeping)을 통해 시분할 다중화(TDM)되거나, 동일한 시간 자원 상에 주파수 다중화(FDM)되거나, 또는 빔 그룹-스윕핑을 통해 TDM과 FDM의 하이브리드 방식으로 다중화될 수 있다.
단말은 빔 포밍이 적용된 다수의 PRS들을 측정한다(1510).
단말은 다수의 PRS들 중 적어도 둘 이상의 PRS들에 대한 측정 결과를 기지국에 보고한다(1515). 기지국에 보고되는 측정 결과는, 적어도 둘 이상의 PRS들의 수신 전력 값들 또는 적어도 둘 이상의 PRS들 간의 수신 시간 차이를 포함할 수 있다.
일 예로, 단말은 적어도 둘 이상의 PRS들 각각을 어느 송신 빔을 통해 수신하였는지를 나타내는 송신 빔 식별 정보 (e.g., Beam ID) 및 적어도 둘 이상의 PRS들 각각을 어느 자원을 통해 수신하였는지를 나타내는 자원 식별 정보 (e.g., PRI) 중 적어도 하나를 측정 결과와 함께 기지국에 보고할 수 있다. 예컨대, 적어도 둘 이상의 PRS들 각각의 송신 빔 식별 정보 또는 자원 식별 정보는 해당 PRS의 측정 결과와 쌍을 이루어 기지국에 보고될 수 있다.
또한, 단말은 다수의 수신 빔들에 대한 빔 스윕핑(sweeping)을 통해 다수의 PRS들을 수신할 수 있다. 단말은 적어도 둘 이상의 PRS들 각각을 어느 수신 빔을 통해 수신하였는지를 나타내는 수신 빔 식별 정보를 상기 측정 결과와 함께 기지국에 보고할 수 있다.
또한, 단말은 다수의 PRS들 중에서 수신 전력이 가장 큰 K개의 PRS들을 선택하여 보고할 수 있다.
이상에서는 명시적인 PRI 또는 Beam ID의 보고를 예시하였으나, 본 발명은 이에 한정되지 않으며 암묵적인 방식으로 빔 정보가 식별될 수도 있다. 예를 들어, RPI 또는 Beam ID를 기반으로 단말의 보고가 송신될 UL 자원(e.g., 시간/주파수/OC 코드/Cyclic Shift 등)이 결정된다면, 기지국은 어느 UL 자원을 통해 단말의 보고가 수신되는지에 따라서 RPI 또는 Beam ID를 파악할 수도 있다. 이 경우, RPI 또는 Beam ID가 단말의 보고로부터 생략될 수도 있다.
도 16은 본 발명의 일 실시예에 따른 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input MultipleOutput)시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting)하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술된 바와 같이 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다.
Claims (15)
- 무선 통신 시스템에서 단말이 PRS(positioning reference signal)를 측정 보고하는 방법에 있어서,빔 포밍이 적용된 다수의 PRS(positioning reference signal)들을 측정하는 단계; 및상기 다수의 PRS들 중 적어도 둘 이상의 PRS들에 대한 측정 결과를 기지국에 보고하는 단계를 포함하되,상기 다수의 PRS들은 각기 다른 송신 빔들을 통해 수신되며,상기 단말은 상기 적어도 둘 이상의 PRS들 각각을 어느 송신 빔을 통해 수신하였는지를 나타내는 송신 빔 식별 정보 및 상기 적어도 둘 이상의 PRS들 각각을 어느 자원을 통해 수신하였는지를 나타내는 자원 식별 정보 중 적어도 하나를 상기 측정 결과와 함께 상기 기지국에 보고하는, PRS 측정 보고 방법.
- 제 1 항에 있어서,상기 적어도 둘 이상의 PRS들 각각의 송신 빔 식별 정보 또는 자원 식별 정보는 해당 PRS의 측정 결과와 쌍을 이루어 상기 기지국에 보고되는, PRS 측정 보고 방법.
- 제 1 항에 있어서,상기 단말은 다수의 수신 빔들에 대한 빔 스윕핑(sweeping)을 통해 상기 다수의 PRS들을 수신하며,상기 단말은 상기 적어도 둘 이상의 PRS들 각각을 어느 수신 빔을 통해 수신하였는지를 나타내는 수신 빔 식별 정보를 상기 측정 결과와 함께 상기 기지국에 보고하는, PRS 측정 보고 방법.
- 제 1 항에 있어서,상기 단말이 PRS 요청을 상기 기지국에 송신하는 단계를 더 포함하며,상기 다수의 PRS들은 상기 단말의 PRS 요청에 대한 응답으로 수신되는, PRS 측정 보고 방법.
- 제 4 항에 있어서,상기 단말의 PRS 요청은, 상기 단말이 선호하는 송신 빔들의 식별 정보 또는 자원 정보를 포함하는, PRS 측정 보고 방법.
- 제 1 항에 있어서,상기 단말은 상기 다수의 PRS들 중에서 수신 전력이 가장 큰 K개의 PRS들을 선택하여 보고하는, PRS 측정 보고 방법.
- 제 1 항에 있어서,상기 다수의 PRS들에 대응하는 다수의 송신 빔들은 각기 다른 자원들 상에서 형성되는, PRS 측정 보고 방법.
- 제 1 항에 있어서,상기 다수의 PRS들에 대응하는 다수의 빔들은 개별적인 빔 스윕핑(sweeping)을 통해 시분할 다중화(TDM)되거나, 동일한 시간 자원 상에 주파수 다중화(FDM)되거나, 또는 빔 그룹-스윕핑을 통해 TDM과 FDM의 하이브리드 방식으로 다중화되는, PRS 측정 보고 방법.
- 제 1 항에 있어서,상기 기지국에 보고되는 측정 결과는, 상기 적어도 둘 이상의 PRS들의 수신 전력 값들 또는 상기 적어도 둘 이상의 PRS들 간의 수신 시간 차이를 포함하는, PRS 측정 보고 방법.
- PRS(positioning reference signal)를 측정 보고하는 단말에 있어서,수신기;송신기; 및상기 수신기를 제어하여 빔 포밍이 적용된 다수의 PRS(positioning reference signal)들을 측정하고, 상기 송신기를 제어하여 상기 다수의 PRS들 중 적어도 둘 이상의 PRS들에 대한 측정 결과를 기지국에 보고하는 프로세서를 포함하되,상기 다수의 PRS들은 각기 다른 송신 빔들을 통해 수신되며,상기 프로세서는 상기 적어도 둘 이상의 PRS들 각각을 어느 송신 빔을 통해 수신하였는지를 나타내는 송신 빔 식별 정보 및 상기 적어도 둘 이상의 PRS들 각각을 어느 자원을 통해 수신하였는지를 나타내는 자원 식별 정보 중 적어도 하나를 상기 측정 결과와 함께 상기 기지국에 보고하는, 단말.
- 제 10 항에 있어서,상기 적어도 둘 이상의 PRS들 각각의 송신 빔 식별 정보 또는 자원 식별 정보는 해당 PRS의 측정 결과와 쌍을 이루어 상기 기지국에 보고되는, 단말.
- 제 10 항에 있어서,상기 프로세서는 다수의 수신 빔들에 대한 빔 스윕핑(sweeping)을 통해 상기 다수의 PRS들을 수신하며,상기 프로세서는 상기 적어도 둘 이상의 PRS들 각각을 어느 수신 빔을 통해 수신하였는지를 나타내는 수신 빔 식별 정보를 상기 측정 결과와 함께 상기 기지국에 보고하는, 단말.
- 제 10 항에 있어서,상기 프로세서는 PRS 요청을 상기 기지국에 송신하고,상기 다수의 PRS들은 상기 PRS 요청에 대한 응답으로 수신되는, 단말.
- 제 13 항에 있어서,상기 PRS 요청은, 상기 단말이 선호하는 송신 빔들의 식별 정보 또는 자원 정보를 포함하는, 단말.
- 제 10 항에 있어서,상기 프로세서는 상기 다수의 PRS들 중에서 수신 전력이 가장 큰 K개의 PRS들을 선택하여 보고하는, 단말.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/489,192 US11122455B2 (en) | 2017-02-28 | 2018-02-26 | Method for positioning terminal in wireless communication system and apparatus therefor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762464385P | 2017-02-28 | 2017-02-28 | |
US62/464,385 | 2017-02-28 | ||
US201762470831P | 2017-03-13 | 2017-03-13 | |
US62/470,831 | 2017-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159967A1 true WO2018159967A1 (ko) | 2018-09-07 |
Family
ID=63371323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/002328 WO2018159967A1 (ko) | 2017-02-28 | 2018-02-26 | 무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11122455B2 (ko) |
WO (1) | WO2018159967A1 (ko) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020146820A1 (en) * | 2019-01-11 | 2020-07-16 | Apple Inc. | Resource allocation, reference signal design, and beam management for new radio (nr) positioning |
CN111435910A (zh) * | 2019-01-11 | 2020-07-21 | 株式会社Kt | 在新无线电中执行定位的装置和方法 |
KR20200087672A (ko) * | 2019-01-11 | 2020-07-21 | 주식회사 케이티 | 차세대 무선망에서 포지셔닝을 수행하는 방법 및 장치 |
CN111565414A (zh) * | 2019-02-13 | 2020-08-21 | 华为技术有限公司 | 一种确定定向定位参考信号的方法及装置 |
CN112237035A (zh) * | 2019-01-11 | 2021-01-15 | Lg电子株式会社 | 用于在无线通信系统中获得定位信息的方法及其设备 |
CN112889321A (zh) * | 2018-10-31 | 2021-06-01 | 高通股份有限公司 | 用于无线网络中定位参考信号的按需传输的方法和系统 |
CN113196817A (zh) * | 2018-11-01 | 2021-07-30 | 弗劳恩霍夫应用研究促进协会 | 在通信网络中进行定位测量的波束管理方法和设备 |
WO2021221352A1 (ko) * | 2020-04-27 | 2021-11-04 | 엘지전자 주식회사 | 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치 |
CN113615234A (zh) * | 2019-03-28 | 2021-11-05 | 索尼集团公司 | 终端设备、基站设备、通信方法和基站设备控制方法 |
CN113711656A (zh) * | 2019-05-02 | 2021-11-26 | 高通股份有限公司 | 非周期性和跨分量载波定位参考信号 |
WO2021259056A1 (zh) * | 2020-06-24 | 2021-12-30 | 大唐移动通信设备有限公司 | 一种载波相位定位参考信号的传输方法及装置 |
WO2022025732A1 (ko) * | 2020-07-31 | 2022-02-03 | 엘지전자 주식회사 | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 |
WO2022031143A1 (ko) * | 2020-08-07 | 2022-02-10 | 엘지전자 주식회사 | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 |
EP3923643A4 (en) * | 2019-02-15 | 2022-03-23 | Huawei Technologies Co., Ltd. | METHOD AND APPARATUS FOR POSITIONING A TERMINAL DEVICE |
CN114342427A (zh) * | 2019-08-29 | 2022-04-12 | Lg 电子株式会社 | 在无线通信系统中用户设备的方法 |
EP3952411A4 (en) * | 2019-03-26 | 2022-05-11 | Vivo Mobile Communication Co., Ltd. | METHOD FOR REPORTING POSITIONING MEASUREMENT INFORMATION, TERMINAL, AND NETWORK DEVICE |
CN114503447A (zh) * | 2019-10-04 | 2022-05-13 | 索尼集团公司 | 波束成形和定位参考信号传输 |
EP3965485A4 (en) * | 2019-04-29 | 2023-01-11 | ZTE Corporation | METHOD AND DEVICE FOR REALIZING UPLINK POSITIONING AND STORAGE MEDIUM |
US11576008B2 (en) | 2018-09-27 | 2023-02-07 | Sony Group Corporation | On demand positioning in a wireless communication system |
US11785620B2 (en) | 2018-12-12 | 2023-10-10 | Qualcomm Incorporated | Systems and methods for super low latency location service for wireless networks |
US11782121B2 (en) | 2019-01-11 | 2023-10-10 | Sony Group Corporation | Method and device for positioning utilizing beam information |
WO2024071999A1 (ko) * | 2022-09-26 | 2024-04-04 | 엘지전자 주식회사 | Prs와 관련된 무선 통신을 수행하는 방법 및 장치 |
US12041578B2 (en) | 2018-10-31 | 2024-07-16 | Qualcomm Incorporated | System and methods for supporting uplink and downlink positioning procedures in a wireless network |
US12114229B2 (en) | 2018-12-12 | 2024-10-08 | Qualcomm Incorporated | Systems and methods for location reporting with low latency for wireless networks |
KR102717496B1 (ko) * | 2019-03-26 | 2024-10-16 | 비보 모바일 커뮤니케이션 컴퍼니 리미티드 | 측위 측정 정보 보고 방법, 단말 및 네트워크 장치 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11277876B2 (en) * | 2018-03-30 | 2022-03-15 | Hyundai Motor Company | Method and apparatus for low latency communication in vehicle-to-everything communication system |
CN110366093A (zh) * | 2018-04-03 | 2019-10-22 | 索尼公司 | 电子设备、用户设备、方法和计算机可读存储介质 |
US11750346B2 (en) * | 2018-04-03 | 2023-09-05 | Qualcomm Incorporated | Signal structure for navigation and positioning signals |
CN110351878B (zh) * | 2018-04-04 | 2023-07-14 | 华为技术有限公司 | 一种随机接入处理方法和相关设备 |
US11689313B2 (en) * | 2018-07-06 | 2023-06-27 | Qualcomm Incorporated | Re-allocation of positioning reference signal resources to accommodate another transmission |
WO2020033226A1 (en) * | 2018-08-07 | 2020-02-13 | Idac Holdings, Inc. | Methods for resource reservation to satisfy new radio (nr) vehicular communications (v2x) quality of service (qos) requirements |
WO2020069283A1 (en) * | 2018-09-27 | 2020-04-02 | Sony Corporation | User equipment positioning estimation in wireless networks with base stations that support multibeam operation |
US11558877B2 (en) | 2018-11-12 | 2023-01-17 | Qualcomm Incorporated | Managing an overlap between a set of resources allocated to a positioning reference signal and a set of resources allocated to a physical channel |
US11134361B2 (en) | 2019-02-14 | 2021-09-28 | Qualcomm Incorporated | Systems and architectures for support of high-performance location in a Next Generation Radio Access Network |
WO2020167055A1 (ko) * | 2019-02-15 | 2020-08-20 | 엘지전자 주식회사 | 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치 |
US11121822B2 (en) | 2019-10-30 | 2021-09-14 | Qualcomm Incorporated | Hybrid automatic repeat request (HARQ) with basic service set (BSS) and station identification |
CN113194531B (zh) * | 2020-01-14 | 2023-01-20 | 维沃移动通信有限公司 | 定位方法及通信设备 |
US11632687B2 (en) * | 2020-01-27 | 2023-04-18 | Qualcomm Incorporated | Positioning measurement data |
BR112022015937A2 (pt) * | 2020-02-13 | 2022-10-04 | Nokia Technologies Oy | Varredura de feixe na transmissão de sinal de referência para posicionamento de ul |
WO2021162923A1 (en) * | 2020-02-14 | 2021-08-19 | Qualcomm Incorporated | Beam management in positioning signaling |
WO2021183197A1 (en) * | 2020-03-10 | 2021-09-16 | Qualcomm Incorporated | Physical layer considerations for ue positioning |
CN113556668B (zh) * | 2020-04-16 | 2022-09-30 | 北京紫光展锐通信技术有限公司 | 一种定位参考信号接收方法及用户设备 |
CN115552807A (zh) | 2020-05-12 | 2022-12-30 | Lg电子株式会社 | 在无线通信系统中发送和接收信号的方法和支持该方法的设备 |
WO2021240477A1 (en) * | 2020-05-29 | 2021-12-02 | Lenovo (Singapore) Pte. Ltd. | Reporting positioning measurements |
US20210389410A1 (en) * | 2020-06-12 | 2021-12-16 | Qualcomm Incorporated | Passive positioning with analog beamforming |
US11950201B2 (en) * | 2020-07-29 | 2024-04-02 | Qualcomm Incorporated | Triggering of an aperiodic or semi-periodic positioning reference signal procedure |
WO2022069793A1 (en) * | 2020-09-30 | 2022-04-07 | Nokia Technologies Oy | Compensating for dynamic antenna array phase deviation |
US11910349B2 (en) * | 2020-10-08 | 2024-02-20 | Apple Inc. | Physical layer signaling by devices for requesting positioning-resources |
US11910350B2 (en) | 2020-10-08 | 2024-02-20 | Apple Inc. | Physical layer signaling by base stations for provisioning positioning-resources |
CN116097842A (zh) * | 2020-10-15 | 2023-05-09 | 华为技术有限公司 | 一种下行定位方法及通信装置 |
US11852740B2 (en) * | 2020-11-13 | 2023-12-26 | Qualcomm Incorporated | Systems and methods for positioning enhancements using beam relation crowdsourcing |
KR20220074450A (ko) * | 2020-11-27 | 2022-06-03 | 주식회사 아이티엘 | 무선 통신 시스템에서 비-주기적 위치 참조신호를 생성하는 방법 및 장치 |
CN114765854A (zh) * | 2021-01-15 | 2022-07-19 | 维沃移动通信有限公司 | 定位方法、装置、设备及存储介质 |
US20230044082A1 (en) * | 2021-08-05 | 2023-02-09 | Qualcomm Incorporated | Frequency domain beam sweep by assisting nodes |
CN117560760A (zh) * | 2022-08-05 | 2024-02-13 | 维沃移动通信有限公司 | 载波相位定位方法、装置、设备及介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016093662A1 (ko) * | 2014-12-12 | 2016-06-16 | 엘지전자 주식회사 | 기계타입통신을 지원하는 무선접속시스템에서 포지셔닝 참조신호를 전송하는 방법 및 장치 |
WO2016099079A1 (ko) * | 2014-12-16 | 2016-06-23 | 엘지전자 주식회사 | 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치 |
US20160295366A1 (en) * | 2015-03-31 | 2016-10-06 | Sony Corporation | Method and apparatus for positioning a mobile terminal in a radio network |
US20170026938A1 (en) * | 2015-07-21 | 2017-01-26 | Samsung Electronics Co., Ltd | Method and apparatus for beam-level radio resource management and mobility in cellular network |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104333403B (zh) * | 2013-07-22 | 2018-09-11 | 财团法人工业技术研究院 | 天线阵列通信系统的通信方法、用户装置及基站 |
CN105637953A (zh) * | 2014-05-30 | 2016-06-01 | 华为技术有限公司 | 一种定位方法、网络侧设备、定位节点及定位系统 |
US10310051B2 (en) * | 2014-07-04 | 2019-06-04 | Lg Electronics Inc. | Method for receiving reference signal in wireless communication system and apparatus therefor |
WO2016013852A1 (ko) * | 2014-07-24 | 2016-01-28 | 엘지전자(주) | 무선 통신 시스템에서 포지셔닝을 수행하기 위한 방법 및 이를 위한 장치 |
US10341807B2 (en) * | 2015-08-07 | 2019-07-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Differentiated positioning |
US11284282B2 (en) * | 2016-11-04 | 2022-03-22 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Beam measurement method, terminal and network device |
-
2018
- 2018-02-26 WO PCT/KR2018/002328 patent/WO2018159967A1/ko active Application Filing
- 2018-02-26 US US16/489,192 patent/US11122455B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016093662A1 (ko) * | 2014-12-12 | 2016-06-16 | 엘지전자 주식회사 | 기계타입통신을 지원하는 무선접속시스템에서 포지셔닝 참조신호를 전송하는 방법 및 장치 |
WO2016099079A1 (ko) * | 2014-12-16 | 2016-06-23 | 엘지전자 주식회사 | 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치 |
US20160295366A1 (en) * | 2015-03-31 | 2016-10-06 | Sony Corporation | Method and apparatus for positioning a mobile terminal in a radio network |
US20170026938A1 (en) * | 2015-07-21 | 2017-01-26 | Samsung Electronics Co., Ltd | Method and apparatus for beam-level radio resource management and mobility in cellular network |
Non-Patent Citations (1)
Title |
---|
ZTE ET AL., R1-1608966, 3GPP T SG RAN WG1 MEETING #86B, vol. Consider, 1 October 2016 (2016-10-01), Lisbon, Portugal, XP051149019 * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11736904B2 (en) | 2018-09-27 | 2023-08-22 | Sony Group Corporation | On demand positioning in a wireless communication system |
US11576008B2 (en) | 2018-09-27 | 2023-02-07 | Sony Group Corporation | On demand positioning in a wireless communication system |
CN112889321A (zh) * | 2018-10-31 | 2021-06-01 | 高通股份有限公司 | 用于无线网络中定位参考信号的按需传输的方法和系统 |
CN112889321B (zh) * | 2018-10-31 | 2024-04-26 | 高通股份有限公司 | 用于无线网络中定位参考信号的按需传输的方法和系统 |
US12041578B2 (en) | 2018-10-31 | 2024-07-16 | Qualcomm Incorporated | System and methods for supporting uplink and downlink positioning procedures in a wireless network |
US12047844B2 (en) | 2018-10-31 | 2024-07-23 | Qualcomm Incorporated | Methods and systems for on-demand transmission of a positioning reference signal in a wireless network |
CN113196817B (zh) * | 2018-11-01 | 2024-02-02 | 皇家飞利浦有限公司 | 在通信网络中进行定位测量的波束管理方法和设备 |
CN113196817A (zh) * | 2018-11-01 | 2021-07-30 | 弗劳恩霍夫应用研究促进协会 | 在通信网络中进行定位测量的波束管理方法和设备 |
US11785620B2 (en) | 2018-12-12 | 2023-10-10 | Qualcomm Incorporated | Systems and methods for super low latency location service for wireless networks |
TWI818132B (zh) * | 2018-12-12 | 2023-10-11 | 美商高通公司 | 用於無線網路之超低延遲位置服務之系統及方法 |
US12114229B2 (en) | 2018-12-12 | 2024-10-08 | Qualcomm Incorporated | Systems and methods for location reporting with low latency for wireless networks |
US11206631B2 (en) | 2019-01-11 | 2021-12-21 | Kt Corporation | Apparatus and method for performing positioning in new radio |
US11782121B2 (en) | 2019-01-11 | 2023-10-10 | Sony Group Corporation | Method and device for positioning utilizing beam information |
US11695459B2 (en) | 2019-01-11 | 2023-07-04 | Apple Inc. | Resource allocation, reference signal design, and beam management for new radio (NR) positioning |
CN113273102A (zh) * | 2019-01-11 | 2021-08-17 | 苹果公司 | 新无线电(nr)定位的资源分配、参考信号设计和波束管理 |
CN112237035A (zh) * | 2019-01-11 | 2021-01-15 | Lg电子株式会社 | 用于在无线通信系统中获得定位信息的方法及其设备 |
JP2022517937A (ja) * | 2019-01-11 | 2022-03-11 | アップル インコーポレイテッド | 新無線(nr)位置決めのためのリソース割り当て、基準信号設計、及びビーム管理 |
CN111435910A (zh) * | 2019-01-11 | 2020-07-21 | 株式会社Kt | 在新无线电中执行定位的装置和方法 |
KR102331189B1 (ko) * | 2019-01-11 | 2021-11-29 | 주식회사 케이티 | 차세대 무선망에서 포지셔닝을 수행하는 방법 및 장치 |
JP7379499B2 (ja) | 2019-01-11 | 2023-11-14 | アップル インコーポレイテッド | 新無線(nr)位置決めのためのリソース割り当て、基準信号設計、及びビーム管理 |
WO2020146820A1 (en) * | 2019-01-11 | 2020-07-16 | Apple Inc. | Resource allocation, reference signal design, and beam management for new radio (nr) positioning |
KR20200087672A (ko) * | 2019-01-11 | 2020-07-21 | 주식회사 케이티 | 차세대 무선망에서 포지셔닝을 수행하는 방법 및 장치 |
CN111565414B (zh) * | 2019-02-13 | 2022-04-05 | 华为技术有限公司 | 一种用于定位的波束信息获取方法及装置 |
CN111565414A (zh) * | 2019-02-13 | 2020-08-21 | 华为技术有限公司 | 一种确定定向定位参考信号的方法及装置 |
US11588538B2 (en) | 2019-02-13 | 2023-02-21 | Huawei Technologies Co., Ltd. | Positioning beam information obtaining method and apparatus |
EP3923643A4 (en) * | 2019-02-15 | 2022-03-23 | Huawei Technologies Co., Ltd. | METHOD AND APPARATUS FOR POSITIONING A TERMINAL DEVICE |
US12085637B2 (en) | 2019-02-15 | 2024-09-10 | Huawei Technologies Co., Ltd. | Method and apparatus for positioning terminal device |
EP3952411A4 (en) * | 2019-03-26 | 2022-05-11 | Vivo Mobile Communication Co., Ltd. | METHOD FOR REPORTING POSITIONING MEASUREMENT INFORMATION, TERMINAL, AND NETWORK DEVICE |
JP2022528836A (ja) * | 2019-03-26 | 2022-06-16 | 維沃移動通信有限公司 | ポジショニング測定情報の報告方法、端末及びネットワーク機器 |
KR102717496B1 (ko) * | 2019-03-26 | 2024-10-16 | 비보 모바일 커뮤니케이션 컴퍼니 리미티드 | 측위 측정 정보 보고 방법, 단말 및 네트워크 장치 |
JP7417626B2 (ja) | 2019-03-26 | 2024-01-18 | 維沃移動通信有限公司 | ポジショニング測定情報の報告方法、端末及びネットワーク機器 |
CN113615234A (zh) * | 2019-03-28 | 2021-11-05 | 索尼集团公司 | 终端设备、基站设备、通信方法和基站设备控制方法 |
EP3965485A4 (en) * | 2019-04-29 | 2023-01-11 | ZTE Corporation | METHOD AND DEVICE FOR REALIZING UPLINK POSITIONING AND STORAGE MEDIUM |
CN113711656A (zh) * | 2019-05-02 | 2021-11-26 | 高通股份有限公司 | 非周期性和跨分量载波定位参考信号 |
TWI833952B (zh) * | 2019-05-02 | 2024-03-01 | 美商高通公司 | 非週期性及交叉分量載波定位參考信號 |
CN114342427A (zh) * | 2019-08-29 | 2022-04-12 | Lg 电子株式会社 | 在无线通信系统中用户设备的方法 |
CN114503447B (zh) * | 2019-10-04 | 2024-04-05 | 索尼集团公司 | 波束成形和定位参考信号传输 |
CN114503447A (zh) * | 2019-10-04 | 2022-05-13 | 索尼集团公司 | 波束成形和定位参考信号传输 |
WO2021221352A1 (ko) * | 2020-04-27 | 2021-11-04 | 엘지전자 주식회사 | 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치 |
WO2021259056A1 (zh) * | 2020-06-24 | 2021-12-30 | 大唐移动通信设备有限公司 | 一种载波相位定位参考信号的传输方法及装置 |
WO2022025732A1 (ko) * | 2020-07-31 | 2022-02-03 | 엘지전자 주식회사 | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 |
WO2022031143A1 (ko) * | 2020-08-07 | 2022-02-10 | 엘지전자 주식회사 | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 |
WO2024071999A1 (ko) * | 2022-09-26 | 2024-04-04 | 엘지전자 주식회사 | Prs와 관련된 무선 통신을 수행하는 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
US20190380056A1 (en) | 2019-12-12 |
US11122455B2 (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018159967A1 (ko) | 무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치 | |
WO2018203674A1 (ko) | 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치 | |
WO2018174494A1 (ko) | 임의 접속 프리앰블을 전송하는 방법과 사용자기기, 및 임의 접속 프리앰블을 수신하는 방법 및 기지국 | |
WO2018016907A1 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송신 또는 수신하는 방법 및 이를 위한 장치 | |
WO2018169318A1 (ko) | 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 | |
WO2019098770A1 (ko) | 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치 | |
WO2018084604A1 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송신 또는 수신하는 방법 및 이를 위한 장치 | |
WO2018182283A1 (ko) | 임의 접속 채널을 전송하는 방법과 사용자기기, 및 임의 접속 채널을 수신하는 방법 및 기지국 | |
WO2018230984A1 (ko) | 동기 신호 블록을 측정하는 방법 및 이를 위한 장치 | |
WO2018147700A1 (ko) | 무선 통신 시스템에서 단말과 복수의 trp (transmission and reception point)를 포함하는 기지국의 신호 송수신 방법 및 이를 위한 장치 | |
WO2018203628A1 (ko) | 임의 접속 채널 신호를 전송하는 방법과 사용자기기, 및 임의 접속 채널 신호를 수신하는 방법 및 기지국 | |
WO2018151554A1 (ko) | Srs 설정 정보를 수신하는 방법 및 이를 위한 단말 | |
WO2018151533A1 (ko) | 무선 통신 시스템에서, 데이터를 송수신하는 방법 및 이를 위한 장치 | |
WO2017171322A2 (ko) | 차세대 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 이를 위한 장치 | |
WO2018231030A1 (ko) | 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널을 송수신하는 방법 및 이를 지원하는 장치 | |
WO2018021865A1 (ko) | 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 장치 | |
WO2018084660A1 (ko) | 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치 | |
EP3602946A1 (en) | Method and apparatus for indication of reference signals in wireless systems | |
WO2019022329A1 (ko) | Srs를 전송하는 방법 및 이를 위한 단말 | |
WO2017196025A2 (ko) | 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 | |
WO2019031917A1 (ko) | 무선 통신 시스템에서, 참조 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2011119005A2 (en) | Method and base station for receiving reference signal, and method and user equipment for receiving reference signal | |
WO2018093103A1 (ko) | 가용 자원에 대한 정보를 전송하는 방법 및 이를 위한 장치 | |
WO2018147527A1 (ko) | 차세대 이동통신 시스템에서 측정 수행 방법 및 단말 | |
WO2018030841A1 (ko) | 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761576 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18761576 Country of ref document: EP Kind code of ref document: A1 |