WO2021221352A1 - 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치 - Google Patents

무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치 Download PDF

Info

Publication number
WO2021221352A1
WO2021221352A1 PCT/KR2021/004661 KR2021004661W WO2021221352A1 WO 2021221352 A1 WO2021221352 A1 WO 2021221352A1 KR 2021004661 W KR2021004661 W KR 2021004661W WO 2021221352 A1 WO2021221352 A1 WO 2021221352A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmission
prs
message
information
Prior art date
Application number
PCT/KR2021/004661
Other languages
English (en)
French (fr)
Inventor
김병길
김영대
이창수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020227032727A priority Critical patent/KR20220150444A/ko
Priority to US17/906,789 priority patent/US20230254838A1/en
Priority to CN202180029871.4A priority patent/CN115428391A/zh
Publication of WO2021221352A1 publication Critical patent/WO2021221352A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the following description relates to a wireless communication system, and relates to a method and an apparatus for performing positioning using a beamformed signal in a wireless communication system.
  • the wireless communication system is a multiple access system that supports communication with multiple users by sharing available system resources (eg, bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency
  • a sidelink refers to a communication method in which a direct link is established between user equipment (UE), and voice or data is directly exchanged between terminals without going through a base station (BS).
  • SL is being considered as one way to solve the burden of the base station due to the rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and infrastructure-built objects through wired/wireless communication.
  • V2X can be divided into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided through a PC5 interface and/or a Uu interface.
  • next-generation radio access technology in consideration of the like may be referred to as a new radio access technology (RAT) or a new radio (NR).
  • RAT new radio access technology
  • NR new radio
  • V2X vehicle-to-everything
  • the present disclosure relates to a method and apparatus for efficiently performing positioning in a wireless communication system.
  • the present disclosure relates to a method and apparatus for performing positioning using a beamformed signal in a wireless communication system.
  • the present disclosure relates to a method and apparatus for reducing the time required for positioning in a wireless communication system.
  • the present disclosure relates to a method and apparatus for simultaneously performing beam management and positioning preparation procedures in a wireless communication system.
  • a method of operating a first terminal in a wireless communication system includes transmitting first messages requesting transmission of a positioning reference signal (PRS) using a plurality of transmission beams, the plurality of transmission beams Receiving a second message indicating at least one transmission beam from a second terminal, transmitting a third message including scheduling information for transmission of the PRS to the second terminal using the transmission beam , and receiving the PRS from the second terminal based on the scheduling information.
  • PRS positioning reference signal
  • At least one of first messages for requesting transmission of a positioning reference signal (PRS) transmitted from the first terminal using a plurality of transmission beams Receiving one, transmitting a second message indicating at least one transmission beam among the plurality of transmission beams to the first terminal, transmitted by the first terminal using the at least one transmission beam, Receiving a third message including scheduling information for transmission of the PRS, and transmitting the PRS to the first terminal based on the scheduling information.
  • PRS positioning reference signal
  • the first terminal includes a transceiver and a processor connected to the transceiver.
  • the processor transmits first messages requesting transmission of a positioning reference signal (PRS) using a plurality of transmission beams, and transmits a second message indicating at least one transmission beam among the plurality of transmission beams to a second terminal , transmit a third message including scheduling information for transmission of the PRS to the second terminal using the transmission beam, and receive the PRS from the second terminal based on the scheduling information have.
  • PRS positioning reference signal
  • the second terminal in a wireless communication system includes a transceiver and a processor connected to the transceiver.
  • the processor is configured to receive at least one of first messages requesting transmission of a positioning reference signal (PRS), transmitted from a first terminal using a plurality of transmission beams, and transmit at least one of the plurality of transmission beams.
  • PRS positioning reference signal
  • Transmitting a second message indicating a beam to the first terminal, and receiving a third message including scheduling information for transmission of the PRS transmitted from the first terminal using the at least one transmission beam, may transmit the PRS to the first terminal based on the scheduling information.
  • the first device may include at least one memory and at least one processor functionally connected to the at least one memory.
  • the at least one processor transmits, by the first device, first messages requesting transmission of a positioning reference signal (PRS) using a plurality of transmission beams, and indicates at least one transmission beam among the plurality of transmission beams. to receive a second message from a second device, and transmit a third message including scheduling information for transmission of the PRS to the second device using the transmission beam, and based on the scheduling information, the second It can be controlled to receive the PRS from the device.
  • PRS positioning reference signal
  • a non-transitory computer-readable medium storing at least one instruction is executable by a processor, the at least one instruction being executable.
  • the at least one command may be configured such that a first device transmits first messages requesting transmission of a positioning reference signal (PRS) using a plurality of transmission beams, and the first device transmits at least one of the plurality of transmission beams.
  • PRS positioning reference signal
  • Receive a second message indicating a transmission beam from a second device and the first device transmits a third message including scheduling information for transmission of the PRS to the second device using the transmission beam,
  • the first device may instruct to receive the PRS from the second device based on the scheduling information.
  • positioning can be effectively performed in a wireless communication system.
  • a procedure for requesting and scheduling a positioning reference signal (PRS) transmission in a millimeter wave (mm Wave) band and a beam management procedure for each process are separately performed for PRS request and The time taken to receive can be reduced.
  • PRS positioning reference signal
  • Effects obtainable in the embodiments of the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned are the technical fields to which the technical configuration of the present disclosure is applied from the description of the embodiments of the present disclosure below. It can be clearly derived and understood by those of ordinary skill in the art. That is, unintended effects of implementing the configuration described in the present disclosure may also be derived by those of ordinary skill in the art from the embodiments of the present disclosure.
  • FIG. 1 illustrates a structure of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 illustrates functional division between NG-RAN and 5GC according to an embodiment of the present disclosure.
  • 3A and 3B illustrate a radio protocol architecture, according to an embodiment of the present disclosure.
  • FIG. 4 illustrates a structure of an NR radio frame according to an embodiment of the present disclosure.
  • FIG. 5 illustrates a slot structure of an NR frame according to an embodiment of the present disclosure.
  • FIG. 6 illustrates an example of a BWP according to an embodiment of the present disclosure.
  • 7A and 7B illustrate a radio protocol architecture for SL communication, according to an embodiment of the present disclosure.
  • FIG. 8 illustrates a synchronization source or synchronization reference of V2X, according to an embodiment of the present disclosure.
  • 9A and 9B illustrate a procedure for a terminal to perform V2X or SL communication according to a transmission mode, according to an embodiment of the present disclosure.
  • 10A to 10C illustrate three types of casts, according to an embodiment of the present disclosure.
  • FIG. 11 illustrates a resource unit for CBR measurement according to an embodiment of the present disclosure.
  • FIG. 12 illustrates an example of an architecture in a 5G system in which positioning of a UE connected to a Next Generation-Radio Access Network (NG-RAN) or E-UTRAN is possible, according to an embodiment of the present disclosure.
  • NG-RAN Next Generation-Radio Access Network
  • E-UTRAN E-UTRAN
  • FIG. 13 illustrates an implementation example of a network for measuring a location of a UE according to an embodiment of the present disclosure.
  • LTP LTE Positioning Protocol
  • NRPPa NR Positioning Protocol A
  • FIG. 16 illustrates an Observed Time Difference Of Arrival (OTDOA) positioning method according to an embodiment of the present disclosure.
  • OTDOA Observed Time Difference Of Arrival
  • FIG. 17 illustrates the concept of a positioning procedure based on a positioning reference signal (PRS) request in a wireless communication system according to an embodiment of the present disclosure.
  • PRS positioning reference signal
  • FIG. 18 illustrates an example of an operating method of a terminal performing positioning in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 19 illustrates an example of an operation method of a terminal assisting positioning in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 20 illustrates an example of a procedure for request-based PRS transmission in a wireless communication system according to an embodiment of the present disclosure.
  • 21 illustrates an example of resource pools allocated for each service in a wireless communication system according to an embodiment of the present disclosure.
  • 22 illustrates an example of resource pools allocated for each beam in a wireless communication system according to an embodiment of the present disclosure.
  • 23 illustrates an example of a communication system, according to an embodiment of the present disclosure.
  • FIG. 24 illustrates an example of a wireless device, according to an embodiment of the present disclosure.
  • 25 illustrates a circuit for processing a transmission signal according to an embodiment of the present disclosure.
  • 26 illustrates another example of a wireless device according to an embodiment of the present disclosure.
  • FIG. 27 illustrates an example of a portable device according to an embodiment of the present disclosure.
  • FIG. 28 illustrates an example of a vehicle or autonomous vehicle, according to an embodiment of the present disclosure.
  • each component or feature may be considered optional unless explicitly stated otherwise.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some components and/or features may be combined to configure an embodiment of the present disclosure.
  • the order of operations described in embodiments of the present disclosure may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • a or B (A or B) may mean “only A”, “only B”, or “both A and B”.
  • a or B (A or B)” in the present specification may be interpreted as “A and/or B (A and/or B)”.
  • A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
  • a slash (/) or a comma (comma) may mean “and/or”.
  • A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
  • A, B, C may mean “A, B, or C”.
  • At least one of A and B may mean “only A”, “only B” or “both A and B”. Also, in the present specification, the expression “at least one of A or B” or “at least one of A and/or B” means “at least one of A and/or B”. It can be interpreted the same as "A and B (at least one of A and B)”.
  • At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means can mean “at least one of A, B and C”.
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • PDCCH control information
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • a higher layer parameter may be a parameter set for the terminal, set in advance, or a predefined parameter.
  • the base station or the network may transmit higher layer parameters to the terminal.
  • the higher layer parameter may be transmitted through radio resource control (RRC) signaling or medium access control (MAC) signaling.
  • RRC radio resource control
  • MAC medium access control
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e, and provides backward compatibility with a system based on IEEE 802.16e.
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), and employs OFDMA in downlink and SC in uplink - Adopt FDMA.
  • LTE-A (advanced) is an evolution of 3GPP LTE.
  • 5G NR is a successor technology of LTE-A, and is a new clean-slate type mobile communication system with characteristics such as high performance, low latency, and high availability. 5G NR can utilize all available spectrum resources, from low frequency bands below 1 GHz, to intermediate frequency bands from 1 GHz to 10 GHz, and high frequency (millimeter wave) bands above 24 GHz.
  • 5G NR is mainly described, but the technical idea according to an embodiment of the present disclosure is not limited thereto.
  • UE User Equipment
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • 3GPP NR e.g. 5G
  • UE User Equipment
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • FIG. 1 illustrates a structure of a wireless communication system according to an embodiment of the present disclosure.
  • the embodiment of FIG. 1 may be combined with various embodiments of the present disclosure.
  • a wireless communication system includes a radio access network (RAN) 102 and a core network 103 .
  • the radio access network 102 includes a base station 120 that provides a control plane and a user plane to a terminal 110 .
  • the terminal 110 may be fixed or mobile, and includes a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be called another term such as a mobile terminal, an advanced mobile station (AMS), or a wireless device.
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the base station 120 means a node that provides a radio access service to the terminal 110, and a fixed station, Node B, eNB (eNode B), gNB (gNode B), ng-eNB, advanced base station (advanced station) It may be referred to as a base station (ABS) or other terms such as an access point, a base tansceiver system (BTS), or an access point (AP).
  • the core network 103 includes a core network entity 130 .
  • the core network entity 130 may be defined in various ways according to functions, and may be referred to as other terms such as a core network node, a network node, and a network equipment.
  • the radio access network 102 may be referred to as an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), and the core network 103 may be referred to as an evolved packet core (EPC).
  • the core network 103 includes a Mobility Management Entity (MME), a Serving Gateway (S-GW), and a packet data network-gateway (P-GW).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • P-GW packet data network-gateway
  • the MME has access information of the terminal or information about the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • the S-GW is a gateway having E-UTRAN as an endpoint
  • the P-GW is a gateway having a packet data network (PDN) as an endpoint.
  • PDN packet data network
  • the radio access network 102 may be referred to as NG-RAN, and the core network 103 may be referred to as 5GC (5G core).
  • the core network 103 includes an access and mobility management function (AMF), a user plane function (UPF), and a session management function (SMF).
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • the AMF provides a function for access and mobility management in units of terminals
  • the UPF performs a function of mutually transferring data units between the upper data network and the wireless access network 102
  • the SMF provides a session management function.
  • the base stations 120 may be connected to each other through an Xn interface.
  • the base station 120 may be connected to the core network 103 through an NG interface.
  • the base station 130 may be connected to the AMF through the NG-C interface, may be connected to the UPF through the NG-U interface.
  • FIG. 2 illustrates functional division between NG-RAN and 5GC according to an embodiment of the present disclosure.
  • the embodiment of FIG. 2 may be combined with various embodiments of the present disclosure.
  • the gNB is inter-cell radio resource management (Inter Cell RRM), radio bearer management (radio bearer control), connection mobility control (Connection Mobility Control), radio admission control (Radio Admission Control), measurement settings and Functions such as measurement configuration & provision and dynamic resource allocation may be provided.
  • AMF may provide functions such as NAS (Non Access Stratum) security, idle state mobility processing, and the like.
  • the UPF may provide functions such as mobility anchoring and protocol data unit (PDU) processing.
  • a Session Management Function (SMF) may provide functions such as terminal Internet Protocol (IP) address assignment, PDU session control, and the like.
  • IP Internet Protocol
  • the layers of the radio interface protocol between the terminal and the network are the first layer (layer 1, L1), a second layer (layer 2, L2), and a third layer (layer 3, L3) may be divided.
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer is a radio resource between the terminal and the network. It plays a role in controlling resources.
  • the RRC layer exchanges RRC messages between the terminal and the base station.
  • FIG. 3A and 3B illustrate a radio protocol architecture, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 3 may be combined with various embodiments of the present disclosure.
  • FIG. 3A illustrates a radio protocol structure for a user plane
  • FIG. 3B illustrates a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer provides an information transmission service to an upper layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel.
  • MAC medium access control
  • Data moves between the MAC layer and the physical layer through the transport channel. Transmission channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the physical channel may be modulated in an Orthogonal Frequency Division Multiplexing (OFDM) scheme, and time and frequency are used as radio resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
  • the MAC layer provides a logical channel multiplexing function by mapping a plurality of logical channels to a single transport channel.
  • the MAC sublayer provides data transfer services on logical channels.
  • the RLC layer performs concatenation, segmentation, and reassembly of RLC service data units (SDUs).
  • SDUs RLC service data units
  • the RLC layer has a transparent mode (Transparent Mode, TM), an unacknowledged mode (Unacknowledged Mode, UM) and an acknowledged mode (Acknowledged Mode).
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM acknowledged Mode
  • AM RLC provides error correction through automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (physical layer or PHY layer) and the second layer (MAC layer, RLC layer, and Packet Data Convergence Protocol (PDCP) layer) for data transfer between the terminal and the network.
  • the functions of the PDCP layer in the user plane include delivery of user data, header compression and ciphering.
  • the functions of the PDCP layer in the control plane include transmission of control plane data and encryption/integrity protection.
  • the SDAP Service Data Adaptation Protocol
  • the SDAP layer performs mapping between QoS flows and data radio bearers, and marking QoS flow identifiers (IDs) in downlink and uplink packets.
  • Setting the RB means defining the characteristics of a radio protocol layer and channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB may be further divided into a Signaling Radio Bearer (SRB) and a Data Radio Bearer (DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the terminal When an RRC connection is established between the RRC layer of the terminal and the RRC layer of the base station, the terminal is in the RRC_CONNECTED state, otherwise it is in the RRC_IDLE state.
  • the RRC_INACTIVE state is additionally defined, and the UE in the RRC_INACTIVE state may release the connection with the base station while maintaining the connection with the core network.
  • a downlink transmission channel for transmitting data from the network to the terminal there are a BCH (Broadcast Channel) for transmitting system information and a downlink SCH (Shared Channel) for transmitting user traffic or control messages. Traffic or control messages of downlink multicast or broadcast services may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • a random access channel RACH
  • SCH uplink shared channel
  • the logical channels that are located above the transport channel and are mapped to the transport channel include a Broadcast Control Channel (BCCH), a Paging Control Channel (PCCH), a Common Control Channel (CCCH), a Multicast Control Channel (MCCH), and a Multicast Traffic Channel (MTCH). channels), etc.
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic Channel
  • a physical channel consists of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame is composed of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of sub-carriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for a Physical Downlink Control Channel (PDCCH), that is, an L1/L2 control channel.
  • PDCCH Physical Downlink Control Channel
  • a Transmission Time Interval (TTI) is a unit time of subframe transmission.
  • FIG. 4 illustrates a structure of an NR radio frame according to an embodiment of the present disclosure.
  • the embodiment of FIG. 4 may be combined with various embodiments of the present disclosure.
  • radio frames may be used in uplink and downlink transmission in NR.
  • a radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF).
  • a half-frame may include 5 1ms subframes (Subframe, SF).
  • a subframe may be divided into one or more slots, and the number of slots in a subframe may be determined according to a subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot may include 14 symbols.
  • each slot may include 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol), a single carrier-FDMA (SC-FDMA) symbol (or a Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) symbol).
  • N slot symb When normal CP is used, the number of symbols per slot (N slot symb ), the number of slots per frame (N frame, ⁇ slot ) and the number of slots per subframe (N subframe, ⁇ slot) according to the SCS setting ( ⁇ ) ) may vary.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • an (absolute time) interval of a time resource eg, a subframe, a slot, or a TTI
  • a TU Time Unit
  • multiple numerology or SCS to support various 5G services may be supported. For example, when SCS is 15 kHz, wide area in traditional cellular bands can be supported, and when SCS is 30 kHz/60 kHz, dense-urban, lower latency) and a wider carrier bandwidth may be supported. For SCS of 60 kHz or higher, bandwidths greater than 24.25 GHz may be supported to overcome phase noise.
  • the NR frequency band may be defined as two types of frequency ranges.
  • the two types of frequency ranges may be FR1 and FR2.
  • the numerical value of the frequency range may be changed, for example, the frequency range corresponding to each of FR1 and FR2 (Corresponding frequency range) may be 450MHz-6000MHz and 24250MHz-52600MHz.
  • the supported SCS may be 15, 30, 60 kHz for FR1, and 60, 120, and 240 kHz for FR2.
  • FR1 may mean "sub 6GHz range”
  • FR2 may mean “above 6GHz range”
  • mmW millimeter wave
  • FR1 may be defined to include a band of 410 MHz to 7125 MHz. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher.
  • a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) included in FR1 may include an unlicensed band.
  • the unlicensed band may be used for various purposes, for example, for communication for a vehicle (eg, autonomous driving).
  • FIG. 5 illustrates a slot structure of an NR frame according to an embodiment of the present disclosure.
  • the embodiment of FIG. 5 may be combined with various embodiments of the present disclosure.
  • a slot includes a plurality of symbols in the time domain.
  • one slot may include 14 symbols, but in the case of an extended CP, one slot may include 12 symbols.
  • one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P Physical Resource Block
  • a carrier may include a maximum of N (eg, 5) BWPs. Data communication may be performed through the activated BWP.
  • Each element may be referred to as a resource element (RE) in the resource grid, and one complex symbol may be mapped.
  • RE resource element
  • the wireless interface between the terminal and the terminal or the wireless interface between the terminal and the network may be composed of an L1 layer, an L2 layer, and an L3 layer.
  • the L1 layer may mean a physical layer.
  • the L2 layer may mean at least one of a MAC layer, an RLC layer, a PDCP layer, and an SDAP layer.
  • the L3 layer may mean an RRC layer.
  • a BWP may be a contiguous set of physical resource blocks (PRBs) in a given neurology.
  • PRB may be selected from a contiguous subset of a common resource block (CRB) for a given neuronology on a given carrier.
  • CRB common resource block
  • the reception bandwidth and transmission bandwidth of the terminal need not be as large as the bandwidth of the cell, and the reception bandwidth and transmission bandwidth of the terminal may be adjusted.
  • the network/base station may inform the terminal of bandwidth adjustment.
  • the terminal may receive information/configuration for bandwidth adjustment from the network/base station.
  • the terminal may perform bandwidth adjustment based on the received information/configuration.
  • the bandwidth adjustment may include reducing/expanding the bandwidth, changing the location of the bandwidth, or changing the subcarrier spacing of the bandwidth.
  • bandwidth may be reduced during periods of low activity to conserve power.
  • the location of the bandwidth may shift in the frequency domain.
  • the location of the bandwidth may be shifted in the frequency domain to increase scheduling flexibility.
  • the subcarrier spacing of the bandwidth may be changed.
  • the subcarrier spacing of the bandwidth may be changed to allow for different services.
  • a subset of the total cell bandwidth of a cell may be referred to as a BWP (Bandwidth Part).
  • BA may be performed by the base station/network setting the BWP to the terminal, and notifying the terminal of the currently active BWP among the BWPs in which the base station/network is set.
  • the BWP may be at least one of an active BWP, an initial BWP, and/or a default BWP.
  • the UE may not monitor downlink radio link quality in a DL BWP other than an active DL BWP on a PCell (primary cell).
  • the UE may not receive PDCCH, PDSCH, or CSI-RS (except for RRM) outside of the active DL BWP.
  • the UE may not trigger a CSI (Channel State Information) report for the inactive DL BWP.
  • the UE may not transmit a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared Channel (PUSCH) outside the active UL BWP.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the initial BWP may be given as a contiguous RB set for a maintaining minimum system information (RMSI) CORESET (control resource set) (set by PBCH).
  • RMSI minimum system information
  • the initial BWP may be given by a system information block (SIB) for a random access procedure.
  • SIB system information block
  • the default BWP may be set by a higher layer.
  • the initial value of the default BWP may be the initial DL BWP.
  • DCI downlink control information
  • BWP may be defined for SL.
  • the same SL BWP can be used for transmission and reception.
  • the transmitting terminal may transmit an SL channel or an SL signal on a specific BWP
  • the receiving terminal may receive an SL channel or an SL signal on the specific BWP.
  • the SL BWP may be defined separately from the Uu BWP, and the SL BWP may have separate configuration signaling from the Uu BWP.
  • the terminal may receive the configuration for the SL BWP from the base station / network.
  • the SL BWP may be configured (in advance) for the out-of-coverage NR V2X terminal and the RRC_IDLE terminal within the carrier. For a UE in RRC_CONNECTED mode, at least one SL BWP may be activated in a carrier.
  • FIG. 6 illustrates an example of a BWP according to an embodiment of the present disclosure.
  • the embodiment of FIG. 6 may be combined with various embodiments of the present disclosure. In the embodiment of FIG. 6 , it is assumed that there are three BWPs.
  • a common resource block may be a numbered carrier resource block from one end to the other end of a carrier band.
  • the PRB may be a numbered resource block within each BWP.
  • Point A may indicate a common reference point for a resource block grid (resource block grid).
  • BWP may be set by a point A, an offset from the point A (N start BWP ), and a bandwidth (N size BWP ).
  • the point A may be an external reference point of the PRB of the carrier to which subcarrier 0 of all neumonologies (eg, all neutronologies supported by the network in that carrier) is aligned.
  • the offset may be the PRB spacing between point A and the lowest subcarrier in a given numerology.
  • the bandwidth may be the number of PRBs in a given numerology.
  • FIG. 7A and 7B illustrate a radio protocol architecture for SL communication, according to an embodiment of the present disclosure. 7A and 7B may be combined with various embodiments of the present disclosure. Specifically, FIG. 7A shows a user plane protocol stack, and FIG. 7B illustrates a control plane protocol stack.
  • SLSS SL Synchronization Signal
  • the SLSS is an SL-specific sequence and may include a Primary Sidelink Synchronization Signal (PSSS) and a Secondary Sidelink Synchronization Signal (SSSS).
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • the PSSS may be referred to as a Sidelink Primary Synchronization Signal (S-PSS)
  • S-SSS Sidelink Secondary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • length-127 M-sequences may be used for S-PSS
  • length-127 Gold sequences may be used for S-SSS.
  • the terminal may detect an initial signal using S-PSS and may obtain synchronization.
  • the UE may acquire detailed synchronization using S-PSS and S-SSS, and may detect a synchronization signal ID.
  • PSBCH Physical Sidelink Broadcast Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the basic information is information related to SLSS, duplex mode (Duplex Mode, DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool related information, type of application related to SLSS, It may be a subframe offset, broadcast information, or the like.
  • the payload size of PSBCH may be 56 bits including a CRC of 24 bits.
  • S-PSS, S-SSS, and PSBCH may be included in a block format supporting periodic transmission (eg, SL SS (Synchronization Signal)/PSBCH block, hereinafter S-SSB (Sidelink-Synchronization Signal Block)).
  • the S-SSB may have the same numerology (ie, SCS and CP length) as a Physical Sidelink Control Channel (PSCCH)/Physical Sidelink Shared Channel (PSSCH) in the carrier, and the transmission bandwidth is (pre)set SL BWP (Sidelink) BWP).
  • the bandwidth of the S-SSB may be 11 resource blocks (RBs).
  • the PSBCH may span 11 RBs.
  • the frequency position of the S-SSB may be set (in advance). Therefore, the UE does not need to perform hysteresis detection in the frequency to discover the S-SSB in the carrier.
  • the UE may generate an S-SS/PSBCH block (ie, S-SSB), and the UE may generate an S-SS/PSBCH block (ie, S-SSB) on a physical resource. can be mapped to and transmitted.
  • TDMA time division multiple access
  • FDMA frequency division multiples access
  • ISI Inter Symbol Interference
  • ICI Inter Carrier Interference
  • SLSS sidelink synchronization signal
  • MIB-SL-V2X master information block-sidelink-V2X
  • RLC radio link control
  • FIG. 8 illustrates a synchronization source or synchronization reference of V2X, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 8 may be combined with various embodiments of the present disclosure.
  • the terminal is directly synchronized to GNSS (global navigation satellite systems), or indirectly synchronized to the GNSS through the terminal (in network coverage or out of network coverage) synchronized to the GNSS.
  • GNSS global navigation satellite systems
  • the UE may calculate the DFN and the subframe number using Coordinated Universal Time (UTC) and a (pre)set Direct Frame Number (DFN) offset.
  • UTC Coordinated Universal Time
  • DFN Direct Frame Number
  • the terminal may be directly synchronized with the base station or may be synchronized with another terminal synchronized with the base station in time/frequency.
  • the base station may be an eNB or a gNB.
  • the terminal may receive synchronization information provided by the base station and may be directly synchronized with the base station. Thereafter, the terminal may provide synchronization information to other adjacent terminals.
  • the terminal timing is set as the synchronization reference, the terminal is a cell (if within cell coverage at the frequency), primary cell or serving cell (when out of cell coverage at the frequency) associated with the frequency for synchronization and downlink measurement ) can be followed.
  • a base station may provide a synchronization setting for a carrier used for V2X or SL communication.
  • the terminal may follow the synchronization setting received from the base station. If the terminal does not detect any cell in the carrier used for the V2X or SL communication and does not receive a synchronization setting from the serving cell, the terminal may follow the preset synchronization setting.
  • the terminal may be synchronized with another terminal that has not obtained synchronization information directly or indirectly from the base station or GNSS.
  • the synchronization source and preference may be preset in the terminal.
  • the synchronization source and preference may be set through a control message provided by the base station.
  • the SL synchronization source may be associated with a synchronization priority.
  • the relationship between the synchronization source and the synchronization priority may be defined as in Table 2 or Table 3.
  • Table 2 or Table 3 is only an example, and the relationship between the synchronization source and the synchronization priority may be defined in various forms.
  • GNSS-based synchronization Base station-based synchronization (eNB/gNB-based synchronization) P0 GNSS base station P1 All terminals synchronized directly to GNSS All terminals directly synchronized to the base station P2 All terminals indirectly synchronized to GNSS All terminals indirectly synchronized with the base station P3 all other terminals GNSS P4 N/A All terminals synchronized directly to GNSS P5 N/A All terminals indirectly synchronized to GNSS P6 N/A all other terminals
  • GNSS-based synchronization Base station-based synchronization (eNB/gNB-based synchronization) P0 GNSS base station P1 All terminals synchronized directly to GNSS All terminals directly synchronized to the base station P2 All terminals indirectly synchronized to GNSS All terminals indirectly synchronized with the base station P3 base station GNSS P4 All terminals directly synchronized to the base station All terminals synchronized directly to GNSS P5 All terminals indirectly synchronized with the base station All terminals indirectly synchronized to GNSS P6 Remaining terminal(s) with low priority Remaining terminal(s) with low priority
  • the base station may include at least one of a gNB or an eNB.
  • Whether to use GNSS-based synchronization or base station-based synchronization may be set (in advance).
  • the UE may derive the transmission timing of the UE from the available synchronization criterion having the highest priority.
  • the terminal may (re)select a synchronization reference, and the terminal may obtain synchronization from the synchronization reference.
  • the UE may perform SL communication (eg, PSCCH/PSSCH transmission/reception, Physical Sidelink Feedback Channel (PSFCH) transmission/reception, S-SSB transmission/reception, reference signal transmission/reception, etc.) based on the obtained synchronization.
  • SL communication eg, PSCCH/PSSCH transmission/reception, Physical Sidelink Feedback Channel (PSFCH) transmission/reception, S-SSB transmission/reception, reference signal transmission/reception, etc.
  • 9A and 9B illustrate a procedure for a terminal to perform V2X or SL communication according to a transmission mode, according to an embodiment of the present disclosure.
  • 9A and 9B may be combined with various embodiments of the present disclosure.
  • the transmission mode may be referred to as a mode or a resource allocation mode.
  • a transmission mode in LTE may be referred to as an LTE transmission mode
  • a transmission mode in NR may be referred to as an NR resource allocation mode.
  • FIG. 9A illustrates a terminal operation related to LTE transmission mode 1 or LTE transmission mode 3 .
  • FIG. 9A illustrates a terminal operation related to NR resource allocation mode 1.
  • LTE transmission mode 1 may be applied to general SL communication
  • LTE transmission mode 3 may be applied to V2X communication.
  • FIG. 9B illustrates a terminal operation related to LTE transmission mode 2 or LTE transmission mode 4. Or, for example, FIG. 9B illustrates a terminal operation related to NR resource allocation mode 2.
  • the base station may schedule an SL resource to be used by the terminal for SL transmission.
  • the base station may transmit information related to SL resources and/or information related to UL resources to the first terminal.
  • the UL resource may include a PUCCH resource and/or a PUSCH resource.
  • the UL resource may be a resource for reporting SL HARQ feedback to the base station.
  • the first terminal may receive information related to a dynamic grant (DG) resource and/or information related to a configured grant (CG) resource from the base station.
  • the CG resource may include a CG type 1 resource or a CG type 2 resource.
  • the DG resource may be a resource configured/allocated by the base station to the first terminal through downlink control information (DCI).
  • the CG resource may be a (periodic) resource configured/allocated by the base station to the first terminal through DCI and/or RRC message.
  • the base station may transmit an RRC message including information related to the CG resource to the first terminal.
  • the base station may transmit an RRC message including information related to the CG resource to the first terminal, and the base station transmits DCI related to activation or release of the CG resource. It can be transmitted to the first terminal.
  • the first terminal may transmit a PSCCH (eg, sidelink control information (SCI) or 1 st- stage SCI) to the second terminal based on the resource scheduling.
  • a PSCCH eg, sidelink control information (SCI) or 1 st- stage SCI
  • PSSCH eg, 2 nd -stage SCI, MAC PDU, data, etc.
  • the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal.
  • HARQ feedback information eg, NACK information or ACK information
  • the first terminal may transmit/report the HARQ feedback information to the base station through PUCCH or PUSCH.
  • the HARQ feedback information reported to the base station may be information generated by the first terminal based on HARQ feedback information received from the second terminal.
  • the HARQ feedback information reported to the base station may be information generated by the first terminal based on a preset rule.
  • the DCI may be a DCI for scheduling of an SL.
  • the format of the DCI may be DCI format 3_0 or DCI format 3_1. Table 4 shows an example of DCI for SL scheduling.
  • the UE may determine an SL transmission resource within an SL resource configured by a base station/network or a preset SL resource.
  • the configured SL resource or the preset SL resource may be a resource pool.
  • the UE may autonomously select or schedule a resource for SL transmission.
  • the terminal may perform SL communication by selecting a resource by itself within a set resource pool.
  • the terminal may select a resource by itself within the selection window by performing a sensing (sensing) and resource (re)selection procedure.
  • the sensing may be performed in units of subchannels.
  • the first terminal select the resource itself in the resource pool PSCCH by using the resources (e.g., SCI (Sidelink Control Information) or the 1 st -stage SCI) may be transmitted to the second terminal. Subsequently, the first terminal may transmit a PSSCH (eg, 2 nd -stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal. Thereafter, the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal. Referring to FIG. 9A or FIG. 9B , for example, a first terminal may transmit an SCI to a second terminal on a PSCCH.
  • SCI Servicelink Control Information
  • the first terminal may transmit two consecutive SCIs (eg, 2-stage SCI) to the second terminal on the PSCCH and/or the PSSCH.
  • the second terminal may decode two consecutive SCIs (eg, 2-stage SCI) to receive the PSSCH from the first terminal.
  • SCI is transmitted on PSCCH 1 st SCI
  • SCI claim 1, 1 may be called st -stage SCI or SCI format 1 st -stage
  • SCI transmitted on the 2 nd PSSCH SCI SCI Claim 2, 2
  • It can be called nd -stage SCI or 2 nd -stage SCI format.
  • 1 st -stage SCI format may include SCI format 1-A
  • 2 nd -stage SCI format may include SCI format 2-A and/or SCI format 2-B.
  • Table 5 shows an example of the 1st-stage SCI format.
  • Table 6 shows an example of a 2 nd -stage SCI format.
  • the first terminal may receive the PSFCH based on Table 7.
  • the first terminal and the second terminal may determine the PSFCH resource based on Table 7, and the second terminal may transmit the HARQ feedback to the first terminal using the PSFCH resource.
  • the first terminal may transmit SL HARQ feedback to the base station through PUCCH and/or PUSCH.
  • FIGS. 10A to 10C illustrate three types of casts, according to an embodiment of the present disclosure.
  • the embodiments of FIGS. 10A to 10C may be combined with various embodiments of the present disclosure.
  • FIG. 10A shows SL communication of a broadcast type
  • FIG. 10B shows SL communication of a unicast type
  • FIG. 10C shows groupcast communication.
  • a type of SL communication is illustrated.
  • the terminal may perform one-to-one communication with another terminal.
  • groupcast type SL communication the terminal may perform SL communication with one or more terminals in a group to which the terminal belongs.
  • SL groupcast communication may be replaced with SL multicast communication, SL one-to-many communication, or the like.
  • SL HARQ feedback may be enabled for unicast.
  • the receiving terminal in non-CBG (non-Code Block Group) operation, when the receiving terminal decodes the PSCCH targeting the receiving terminal, and the receiving terminal successfully decodes the transport block related to the PSCCH, the receiving terminal HARQ-ACK may be generated. And, the receiving terminal may transmit the HARQ-ACK to the transmitting terminal.
  • the receiving terminal after the receiving terminal decodes the PSCCH targeting the receiving terminal, if the receiving terminal does not successfully decode the transport block related to the PSCCH, the receiving terminal may generate a HARQ-NACK. And, the receiving terminal may transmit the HARQ-NACK to the transmitting terminal.
  • SL HARQ feedback may be enabled for groupcast.
  • two HARQ feedback options may be supported for groupcast.
  • Groupcast option 1 After the receiving terminal decodes the PSCCH targeting the receiving terminal, if the receiving terminal fails to decode the transport block related to the PSCCH, the receiving terminal transmits the HARQ-NACK through the PSFCH It can be transmitted to the transmitting terminal. On the other hand, if the receiving terminal decodes the PSCCH targeting the receiving terminal, and the receiving terminal successfully decodes the transport block related to the PSCCH, the receiving terminal may not transmit the HARQ-ACK to the transmitting terminal.
  • (2) groupcast option 2 If the receiving terminal fails to decode a transport block related to the PSCCH after the receiving terminal decodes the PSCCH targeting the receiving terminal, the receiving terminal transmits HARQ-NACK through the PSFCH It can be transmitted to the transmitting terminal. And, when the receiving terminal decodes the PSCCH targeting the receiving terminal, and the receiving terminal successfully decodes the transport block related to the PSCCH, the receiving terminal may transmit a HARQ-ACK to the transmitting terminal through the PSFCH.
  • all terminals performing groupcast communication may share a PSFCH resource.
  • terminals belonging to the same group may transmit HARQ feedback using the same PSFCH resource.
  • each terminal performing groupcast communication may use different PSFCH resources for HARQ feedback transmission.
  • terminals belonging to the same group may transmit HARQ feedback using different PSFCH resources.
  • HARQ-ACK may be referred to as ACK, ACK information, or positive-ACK information
  • HARQ-NACK may be referred to as NACK, NACK information, or negative-ACK information.
  • SL measurement and reporting between terminals may be considered in SL.
  • the receiving terminal may receive a reference signal from the transmitting terminal, and the receiving terminal may measure a channel state for the transmitting terminal based on the reference signal.
  • the receiving terminal may report channel state information (CSI) to the transmitting terminal.
  • CSI channel state information
  • SL-related measurement and reporting may include measurement and reporting of CBR, and reporting of location information.
  • CSI Channel Status Information
  • V2X examples include CQI (Channel Quality Indicator), PMI (Precoding Matrix Index), RI (Rank Indicator), RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), path gain (pathgain)/pathloss, SRI (Sounding Reference Symbols, Resource Indicator), CRI (CSI-RS Resource Indicator), interference condition, vehicle motion, and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Index
  • RI Rank Indicator
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • path gain pathgain
  • SRI Sounding Reference Symbols
  • Resource Indicator Resource Indicator
  • CRI CSI-RS Resource Indicator
  • interference condition vehicle motion, and the like.
  • the transmitting terminal may transmit a CSI-RS to the receiving terminal, and the receiving terminal may measure CQI or RI by using the CSI-RS.
  • the CSI-RS may be referred to as an SL CSI-RS.
  • the CSI-RS may be confined within PSSCH transmission.
  • the transmitting terminal may transmit the CSI-RS to the receiving terminal by including the CSI-RS on the PSSCH resource.
  • the terminal determines whether the energy measured in the unit time/frequency resource is above a certain level, and determines the amount and frequency of its transmission resource according to the ratio of the unit time/frequency resource in which the energy of the predetermined level or more is observed.
  • a ratio of time/frequency resources in which energy of a certain level or higher is observed may be defined as a channel congestion ratio (CBR).
  • CBR channel congestion ratio
  • the UE may measure CBR for a channel/frequency. Additionally, the UE may transmit the measured CBR to the network/base station.
  • FIG. 11 illustrates a resource unit for CBR measurement according to an embodiment of the present disclosure.
  • the embodiment of FIG. 11 may be combined with various embodiments of the present disclosure.
  • the measurement result of RSSI is a sub having a value greater than or equal to a preset threshold. It may mean the number of channels. Alternatively, the CBR may mean a ratio of subchannels having a value greater than or equal to a preset threshold among subchannels during a specific period. For example, in the embodiment of FIG.
  • CBR may mean the ratio of the hatched subchannels during the 100ms period. Additionally, the terminal may report the CBR to the base station.
  • the UE may perform one CBR measurement for one resource pool.
  • the PSFCH resource may be excluded from the CBR measurement.
  • the UE may measure a channel occupancy ratio (CR). Specifically, the terminal measures the CBR, and the terminal according to the CBR, the maximum value (CRlimitk) of the channel occupancy ratio (Channel occupancy Ratio k, CRk) that the traffic corresponding to each priority (eg, k) can occupy. ) can be determined. For example, the terminal may derive the maximum value (CRlimitk) of the channel occupancy for the priority of each traffic based on the CBR measurement value predetermined table. For example, in the case of traffic having a relatively high priority, the terminal may derive a maximum value of a relatively large channel occupancy.
  • CR channel occupancy ratio
  • the terminal may perform congestion control by limiting the sum of the channel occupancy rates of traffic having a priority k of traffic lower than i to a predetermined value or less. According to this method, a stronger channel occupancy limit may be applied to traffic having a relatively low priority.
  • the UE may perform SL congestion control by using methods such as adjusting the size of transmission power, dropping packets, determining whether to retransmit, and adjusting the size of the transmission RB (MCS adjustment).
  • SL CBR and SL RSSI are as follows.
  • the slot index may be based on a physical slot index.
  • the SL CBR measured in slot n is the portion of subchannels in which the SL RSSI measured by the UE in the resource pool, sensed over the CBR measurement window [na, n-1], exceeds a (pre)set threshold.
  • a is equal to 100 or 100 ⁇ 2 ⁇ slots.
  • SL CBR may be applied to RRC_IDLE intra-frequency, RRC_IDLE inter-frequency, RRC_CONNECTED intra-frequency, and RRC_CONNECTED inter-frequency.
  • SL RSSI is defined as a linear average of total received power (in [W]) observed in subchannels configured in OFDM symbols of slots configured for PSCCH and PSSCH starting from the second OFDM symbol.
  • the reference point for SL RSSI will be the antenna connector of the UE.
  • the SL RSSI will be measured based on the combined signal from the antenna elements corresponding to the given receiver branch.
  • the reported SL RSSI value will not be less than the corresponding SL RSSI of any of the individual receiver branches.
  • the SL RSSI may be applied to RRC_IDLE intra-frequency, RRC_IDLE inter-frequency, RRC_CONNECTED intra-frequency, and RRC_CONNECTED inter-frequency.
  • SL CR Choccupancy Ratio
  • the SL CR evaluated in slot n is the total number of subchannels used for transmission in slot [na, n-1] and granted in slot [n, n+b] in slot [na, n] +b] divided by the total number of configured subchannels in the transmission pool.
  • SL CR may be applied to RRC_IDLE intra-frequency, RRC_IDLE inter-frequency, RRC_CONNECTED intra-frequency, and RRC_CONNECTED inter-frequency.
  • a may be a positive integer
  • b may be 0, or a may be a positive integer.
  • SL CR is evaluated for each (re)transmission. In evaluating the SL CR, according to the grant(s) present in slot [n+1, n+b] without packet dropping, the UE will assume that the transmission parameter used in slot n is reused.
  • the slot index may be a physical slot index.
  • SL CR may be calculated for each priority level. If it is a member of the established sidelink grant defined in TS 38.321, the resource is treated as granted.
  • FIG. 12 illustrates an example of an architecture in a 5G system in which positioning of a UE connected to a Next Generation-Radio Access Network (NG-RAN) or E-UTRAN is possible, according to an embodiment of the present disclosure.
  • NG-RAN Next Generation-Radio Access Network
  • E-UTRAN E-UTRAN
  • the AMF receives a request for a location service related to a specific target UE from another entity such as a Gateway Mobile Location Center (GMLC), or starts a location service on behalf of the specific target UE in the AMF itself. may decide to Then, the AMF may transmit a location service request to a Location Management Function (LMF). Upon receiving the location service request, the LMF may process the location service request and return a processing result including the estimated location of the UE to the AMF. Meanwhile, when the location service request is received from another entity such as the GMLC other than the AMF, the AMF may transfer the processing result received from the LMF to the other entity.
  • GMLC Gateway Mobile Location Center
  • New generation evolved-NB and gNB are network elements of NG-RAN that can provide a measurement result for location estimation, and can measure a radio signal for a target UE and deliver the result to the LMF.
  • the ng-eNB may control some TPs (Transmission Points) such as remote radio heads or PRS-only TPs supporting a Positioning Reference Signal (PRS) based beacon system for E-UTRA.
  • TPs Transmission Points
  • PRS Positioning Reference Signal
  • the LMF is connected to an Enhanced Serving Mobile Location Center (E-SMLC), and the E-SMLC may enable the LMF to access the E-UTRAN.
  • E-SMLC uses a downlink measurement obtained by the target UE through a signal transmitted from the LMF eNB and/or PRS-dedicated TPs in the E-UTRAN to OTDOA, which is one of the positioning methods of the E-UTRAN. (Observed Time Difference Of Arrival) can be supported.
  • the LMF may be connected to a SUPL Location Platform (SLP).
  • the LMF may support and manage different location services for target UEs.
  • the LMF may interact with the serving ng-eNB or serving gNB for the target UE to obtain the UE's location measurement.
  • the LMF determines a positioning method based on LCS (Location Service) client type, required Quality of Service (QoS), UE positioning capabilities, gNB positioning capability and ng-eNB positioning capability, etc. and may apply this positioning method to the serving gNB and/or the serving ng-eNB.
  • the LMF may determine a position estimate for the target UE and additional information such as accuracy of the position estimate and velocity.
  • the SLP is a SUPL (Secure User Plane Location) entity responsible for positioning through a user plane.
  • the UE is downlinked through sources such as NG-RAN and E-UTRAN, different Global Navigation Satellite System (GNSS), Terrestrial Beacon System (TBS), Wireless Local Access Network (WLAN) access point, Bluetooth beacon and UE barometric pressure sensor, etc.
  • Link signal can be measured.
  • the UE may include the LCS application, and may access the LCS application through communication with a network to which the UE is connected or other applications included in the UE.
  • the LCS application may include measurement and calculation functions necessary to determine the location of the UE.
  • the UE may include an independent positioning function such as a Global Positioning System (GPS), and may report the location of the UE independently of NG-RAN transmission.
  • GPS Global Positioning System
  • the independently acquired positioning information may be utilized as auxiliary information of positioning information acquired from the network.
  • FIG. 13 illustrates an implementation example of a network for measuring a location of a UE according to an embodiment of the present disclosure.
  • CM-IDLE Connection Management - IDLE
  • the AMF When the UE is in the CM-IDLE (Connection Management - IDLE) state, when the AMF receives a location service request, the AMF establishes a signaling connection with the UE, and performs a network trigger service to allocate a specific serving gNB or ng-eNB. you can request This operation process is omitted in FIG. 13 . That is, in FIG. 13 , it may be assumed that the UE is in a connected mode. However, the signaling connection may be released during the positioning process by the NG-RAN for reasons such as signaling and data inactivity.
  • a 5GC entity such as a GMLC may request a location service for measuring the location of a target UE as a serving AMF.
  • the serving AMF may determine that the location service is necessary for measuring the location of the target UE. For example, to measure the location of the UE for an emergency call (emergency call), the serving AMF may determine to directly perform the location service.
  • step 2 the AMF sends a location service request to the LMF, and according to step 3a, the LMF serves location procedures for obtaining location measurement data or location measurement assistance data ng-eNB; You can start with the serving gNB.
  • step 3b the LMF may initiate location procedures for downlink positioning with the UE.
  • the LMF may transmit location assistance data defined in 3GPP TS 36.355 to the UE, or obtain a location estimate or location measurement.
  • step 3b may be additionally performed after step 3a is performed, or may be performed instead of step 3a.
  • the LMF may provide a location service response to the AMF.
  • the location service response may include information on whether the location estimation of the UE was successful and the location estimate of the UE.
  • the AMF may transmit a location service response to a 5GC entity such as GMLC, and if the procedure of FIG. 13 is initiated by step 1b, the AMF is a location related to an emergency call, etc.
  • a location service response may be used.
  • LTP LTE Positioning Protocol
  • the LPP PDU may be transmitted through the NAS PDU between the AMF and the UE.
  • the LPP is a target device (eg, a UE in the control plane or a SUPL Enabled Terminal (SET) in the user plane) and a location server (eg, LMF in the control plane or SLP in the user plane). ) can be terminated.
  • LPP messages are transparent over intermediate network interfaces using appropriate protocols such as NG Application Protocol (NGAP) over NG-Control Plane (NG-C) interfaces, NAS/RRC over LTE-Uu and NR-Uu interfaces. (Transparent) It can be delivered in the form of a PDU.
  • NGAP NG Application Protocol
  • N-C NG-Control Plane
  • NAS/RRC over LTE-Uu and NR-Uu interfaces.
  • Transparent It can be delivered in the form of a PDU.
  • the LPP protocol enables positioning for NR and LTE using multiple positioning methods.
  • the target device and the location server may exchange capability information, exchange auxiliary data for positioning, and/or exchange location information.
  • error information exchange and/or an instruction to stop the LPP procedure may be performed through the LPP message.
  • NRPPa NR Positioning Protocol A
  • NRPPa may be used for information exchange between the NG-RAN node and the LMF.
  • NRPPa includes E-CID (Enhanced-Cell ID) for measurement transmitted from ng-eNB to LMF, data to support OTDOA positioning method, Cell-ID and Cell location ID for NR Cell ID positioning method. can be exchanged
  • E-CID Enhanced-Cell ID
  • the AMF may route NRPPa PDUs based on the routing ID of the associated LMF through the NG-C interface even if there is no information on the associated NRPPa transaction.
  • the procedures of the NRPPa protocol for location and data collection can be divided into two types.
  • the first type is a UE associated procedure for delivering information (eg, location measurement information, etc.) about a specific UE, and the second type is applicable to the NG-RAN node and related TPs. It is a non-UE associated procedure for transmitting information (eg, gNB/ng-eNB/TP timing information, etc.).
  • the two types of procedures may be supported independently or simultaneously.
  • positioning methods supported by NG-RAN include GNSS, OTDOA, enhanced cell ID (E-CID), barometric pressure sensor positioning, WLAN positioning, Bluetooth positioning, and terrestrial beacon system (TBS), Uplink Time Difference of Arrival (UTDOA). etc. may exist.
  • any one positioning method may be used to measure the location of the UE, but two or more positioning methods may be used to measure the location of the UE.
  • FIG. 16 illustrates an Observed Time Difference Of Arrival (OTDOA) positioning method according to an embodiment of the present disclosure.
  • OTDOA Observed Time Difference Of Arrival
  • the OTDOA positioning method uses the measurement timing of downlink signals received by the UE from multiple TPs including an eNB, an ng-eNB, and a PRS dedicated TP.
  • the UE measures the timing of the received downlink signals by using the location assistance data received from the location server.
  • the location of the UE may be determined based on the measurement result and the geographic coordinates of the neighboring TPs.
  • the UE connected to the gNB may request a measurement gap for OTDOA measurement from the TP. If the UE does not recognize a single frequency network (SFN) for at least one TP in the OTDOA assistance data, the UE refers to the OTDOA before requesting a measurement gap for performing Reference Signal Time Difference (RSTD) measurement.
  • SFN single frequency network
  • RSTD Reference Signal Time Difference
  • An autonomous gap may be used to obtain the SFN of a cell (reference cell).
  • the RSTD may be defined based on the smallest relative time difference between the boundaries of two subframes respectively received from the reference cell and the measurement cell. That is, it may be calculated based on the relative time difference between the start time of the subframe of the closest reference cell to the start time of the subframe received from the measurement cell. Meanwhile, the reference cell may be selected by the UE.
  • TOA time of arrival
  • TP 1, TP 2, and TP 3 measure the TOA for each of TP 1, TP 2, and TP 3, and based on the three TOAs, the RSTD for TP 1-TP 2, RSTD for TP 2-TP 3, and TP 3-TP 1
  • a geometric hyperbola can be determined based on this, and the point at which the hyperbola intersects can be estimated as the location of the UE.
  • the estimated location of the UE may be known as a specific range according to the measurement uncertainty.
  • RSTDs for two TPs may be calculated based on Equation (1).
  • ⁇ x t , y t ⁇ is the (unknown) coordinates of the target UE
  • ⁇ x i , y i ⁇ is the coordinates of the (known) TP
  • ⁇ x 1 , y 1 ⁇ may be the coordinates of a reference TP (or another TP).
  • (T i -T 1 ) is a transmission time offset between two TPs, which may be referred to as “Real Time Differences” (RTDs)
  • RTDs Real Time Differences
  • n i , n 1 may represent values related to UE TOA measurement errors.
  • the location of the UE may be measured via geographic information of the UE's serving ng-eNB, serving gNB and/or serving cell.
  • geographic information of the serving ng-eNB, the serving gNB, and/or the serving cell may be obtained through paging, registration, or the like.
  • the E-CID positioning method may use additional UE measurement and/or NG-RAN radio resources for improving the UE position estimate in addition to the CID positioning method.
  • some of the same measurement methods as the measurement control system of the RRC protocol may be used, but in general, additional measurement is not performed only for the location measurement of the UE.
  • a separate measurement configuration or measurement control message may not be provided in order to measure the location of the UE, and the UE does not expect that an additional measurement operation only for location measurement will be requested.
  • the UE may report a measurement value obtained through generally measurable measurement methods.
  • the serving gNB may implement the E-CID positioning method using the E-UTRA measurement provided from the UE.
  • measurement elements that can be used for E-CID positioning may be as follows.
  • E-UTRA RSRP Reference Signal Received Power
  • E-UTRA RSRQ Reference Signal Received Quality
  • UE E-UTRA reception-transmission time difference Rx-Tx Time difference
  • GERAN GSM EDGE Random Access Network
  • WLAN RSSI Reference Signal Strength Indication
  • UTRAN CPICH Common Pilot Channel
  • RSCP Receiveived Signal Code Power
  • ng-eNB reception-transmission time difference Rx-Tx Time difference
  • Timing Advance TADV
  • Angle of Arrival AoA
  • TADV may be divided into Type 1 and Type 2 as follows.
  • TADV Type 1 (ng-eNB receive-transmit time difference) + (UE E-UTRA receive-transmit time difference)
  • TADV Type 2 ng-eNB receive-transmit time difference
  • AoA may be used to measure the direction of the UE.
  • AoA may be defined as the estimated angle for the position of the UE in a counterclockwise direction from the base station/TP. In this case, the geographic reference direction may be north.
  • the base station/TP may use an uplink signal such as a sounding reference signal (SRS) and/or a demodulation reference signal (DMRS) for AoA measurement.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • the larger the antenna array arrangement the higher the AoA measurement accuracy.
  • signals received from adjacent antenna elements may have a constant phase-rotate.
  • UTDOA is a method of determining the location of the UE by estimating the arrival time of the SRS.
  • the serving cell may use it as a reference cell to estimate the location of the UE through the difference in arrival time with another cell (or base station/TP).
  • the E-SMLC may indicate a serving cell of the target UE to instruct the target UE to transmit SRS.
  • the E-SMLC may provide a configuration such as whether the SRS is periodic/aperiodic, bandwidth, and frequency/group/sequence hopping.
  • the present disclosure describes a technique for performing positioning using a beamformed signal in a wireless communication system. Specifically, the present disclosure proposes a technique capable of reducing the time required for positioning by integrating a positioning procedure and a beam management procedure into one procedure.
  • high-precision positioning is an essential technology element.
  • transmission of a wideband positioning reference signal PRS
  • PRS wideband positioning reference signal
  • Beam management is required. Accordingly, the present disclosure describes various embodiments capable of efficiently performing PRS scheduling and beam management.
  • FIG. 17 illustrates the concept of a positioning procedure based on a positioning reference signal (PRS) request in a wireless communication system according to an embodiment of the present disclosure.
  • PRS positioning reference signal
  • the first vehicle terminal 1710 intends to perform positioning.
  • a second vehicle terminal 1720 and two fixed nodes 1730a and 1730b exist around the first vehicle terminal 1710 .
  • each of the fixed nodes 1730a and 1730b may be a road side unit (RSU) or a base station.
  • the fixed nodes 1730a and 1730b may transmit a PRS for positioning of a nearby device (eg, the first vehicle terminal 1710). That is, the fixed nodes 1730a and 1730b may periodically transmit the PRS without a separate request.
  • Each of the fixed nodes 1730a and 1730b may repeatedly transmit PRSs according to a set pattern. Accordingly, the first vehicle terminal 1710 may measure the reception times of the received PRSs, perform direct positioning based on the reception times, or transmit the measurement result to an upper node (eg, an LMF).
  • an upper node eg, an LMF
  • the first vehicle terminal 1710 may Positioning may be performed using PRS signals.
  • PRS signals when a sufficient number of fixed PRS sources do not exist in the vicinity, it may be difficult to perform a positioning operation.
  • the first vehicle terminal 1710 may request another terminal, for example, the second vehicle terminal 1720, to transmit the PRS. Accordingly, the first vehicle terminal 1710 may further secure a device for providing a PRS (hereinafter, a 'PRS source') and may perform positioning. Furthermore, even if there are no fixed PRS sources in the vicinity, according to various embodiments, the first vehicle terminal 1710 uses a plurality of other terminals including the second vehicle terminal 1720 to perform positioning as PRS sources. can be utilized
  • the UE may request another UE to operate as a PRS source, and the other UE may operate as a PRS source.
  • the terminals may perform mutual communication using the beamformed signal.
  • a procedure for matching a transmission beam and a reception beam between terminals should be preceded. If the above procedure and the beam matching procedure are separately performed, the time delay until the final PRS transmission will increase.
  • a procedure for requesting PRS transmission and allocating resources and a procedure for managing a beam are required.
  • the two procedures are sequentially performed, excessive time delay may occur in a vehicle-to-vehicle communication environment with strict end-to-end latency conditions. Therefore, it is necessary to minimize the time delay until the final PRS transmission by organically combining the PRS scheduling procedure and the beam management procedure.
  • the present disclosure proposes a method of organically combining the above-described procedure for requesting PRS transmission and allocating resources to exchange PRS in a millimeter wave sidelink system and a procedure for matching beams between two vehicle terminals. do.
  • beamforming may be applied to messages or signals transmitted by the aforementioned vehicle terminals. Beam-related reports may be included in some messages.
  • 18 illustrates an example of an operating method of a terminal performing positioning in a wireless communication system according to an embodiment of the present disclosure. 18 illustrates an operation method of a terminal (eg, the first vehicle terminal 1710) that receives an RPS signal.
  • a terminal eg, the first vehicle terminal 1710
  • the terminal transmits a PRS request message.
  • the terminal transmits a message requesting to operate as a PRS source to other nearby terminals.
  • the PRS request message includes information indicating that PRS transmission is requested.
  • the PRS request message may be transmitted without specifying the destination terminal.
  • the terminal repeatedly transmits the PRS request message using a plurality of beams. That is, the UE transmits PRS request messages using different beams.
  • the terminal receives a PRS response message.
  • the terminal receives a PRS response message from another terminal that has received the PRS request message.
  • the PRS response message is a response indicating that another terminal will transmit the PRS, and includes identification information of the other terminal.
  • the PRS response message may include information related to selection of at least one beam (eg, an indication of the selected beam, measurement information, etc.). In this case, information related to selection may be expressed explicitly or implicitly.
  • the information related to selection indicates a transmission beam, but a reception beam for receiving a signal transmitted from another terminal may also be identified according to channel reciprocity.
  • the terminal transmits a PRS scheduling message.
  • the scheduling message includes information related to a resource for transmitting the PRS.
  • the PRS scheduling message may be transmitted together with a reference signal for decoding in another terminal.
  • the terminal transmits the PRS scheduling message through at least one beam selected by another terminal.
  • the terminal may repeatedly transmit a PRS scheduling message. Through this, before the PRS transmission is performed, a beam pair for PRS transmission of another UE and PRS reception of the UE is determined.
  • the terminal receives the PRS.
  • the terminal may receive the PRS transmitted from another terminal in the resource indicated by the PRS scheduling message. If necessary, the PRS may be received together with positioning assist data.
  • the positioning assistance information may include location information (eg, coordinates, distance, etc.) of another terminal.
  • the terminal receives the PRS by using the reception beam confirmed by the information related to the selection included in the PRS response message.
  • the terminal may perform positioning using the PRS received from another terminal and the PRS received from at least one other PRS source (eg, another terminal, RSU, base station, etc.). Specifically, the UE may calculate the time difference between PRSs received from different PRS sources. The calculated time difference information may be transmitted to a higher node or may be used directly by the terminal for location calculation.
  • the PRS received from another terminal may perform positioning using the PRS received from at least one other PRS source (eg, another terminal, RSU, base station, etc.).
  • the UE may calculate the time difference between PRSs received from different PRS sources.
  • the calculated time difference information may be transmitted to a higher node or may be used directly by the terminal for location calculation.
  • 19 illustrates an example of an operation method of a terminal assisting positioning in a wireless communication system according to an embodiment of the present disclosure.
  • 19 illustrates an operation method of a terminal (eg, the second vehicle terminal 1720) that transmits an RPS signal.
  • the terminal receives a PRS request message.
  • the terminal receives a message requesting to operate as a PRS source from another terminal.
  • the PRS request message includes information indicating that PRS transmission is requested. Since the terminal cannot know the direction of another terminal or a beam direction suitable for communication with another terminal, according to an embodiment, the terminal may receive the signal of the PRS request message in a wide beam. In this case, since another terminal repeatedly transmits the PRS request message through different transmission beams, the terminal may select at least one preferred transmission beam based on whether the PRS request message has been received and a measurement result.
  • the terminal transmits a PRS response message.
  • the terminal transmits a PRS response message to another terminal that has transmitted the PRS request message.
  • the PRS response message is a response indicating that the terminal will transmit the PRS, and includes identification information of the terminal.
  • the PRS response message may include information related to selection of at least one beam (eg, an indication of the selected beam, measurement information, etc.). In this case, information related to selection may be expressed explicitly or implicitly.
  • the terminal receives a PRS scheduling message.
  • the scheduling message includes information related to a resource for transmitting the PRS.
  • the PRS scheduling message may be received together with a reference signal to enable channel estimation for decoding.
  • another terminal repeatedly transmits a PRS scheduling message.
  • the UE may attempt to receive the PRS scheduling message using a plurality of reception beams, and may select at least one preferred reception beam based on whether the PRS scheduling message has been received and a measurement result. Through this, before PRS transmission is performed, determination of a beam pair for PRS transmission of the terminal and PRS reception of another terminal is completed.
  • the terminal transmits a PRS.
  • the UE may transmit the PRS received from another UE in the resource indicated by the PRS scheduling message. If necessary, the UE may transmit PRS and positioning assistance data together.
  • the positioning assistance information may include location information (eg, coordinates, distance, etc.) of the terminal.
  • the terminal transmits the PRS using a transmission beam corresponding to a reception beam selected based on the PRS scheduling message.
  • PRS source securing and beam matching may be performed through one procedure.
  • PRS transmission and reception using the beamformed signal between the first terminal requesting PRS transmission and the second terminal transmitting the PRS can be quickly performed.
  • the second terminal selects the transmission beam of the first terminal based on the PRS request message, and feeds back the selected beam through the PRS response message, so that the first terminal can determine the beam to be used for PRS reception.
  • the second terminal acquires information related to a resource for PRS transmission, measures a reception beam, and a beam to be used for PRS transmission can be decided
  • the messages to be transmitted may include information indicating the purpose or type of each message and information on resources for transmitting subsequent messages.
  • the PRS request message includes information indicating that PRS transmission is requested and information on a resource (eg, resource pool) for transmitting a PRS response message, and the information included is either explicitly or implicitly. can be expressed implicitly.
  • information about beam selection included in the PRS response message may be expressed explicitly or implicitly.
  • the beam index may be included in the PRS response message.
  • an effect of implicitly performing beam reporting when transmitting a PRS response message may be obtained.
  • an effect of signaling a service can be obtained.
  • a PRS request procedure according to a more specific embodiment will be described with reference to FIG. 20 .
  • a terminal requesting a PRS is referred to as an 'agent vehicle'
  • a terminal transmitting the PRS is referred to as an 'anchor vehicle'.
  • 20 illustrates an example of a procedure for request-based PRS transmission in a wireless communication system according to an embodiment of the present disclosure.
  • 20 illustrates the signal exchange between the agent vehicle 2010 and the anchor vehicle 2020.
  • FIG. 20 illustrates transmission beamforming or reception beamforming of each of the agent vehicle 2010 and the anchor vehicle 2020 during transmission and reception of each message.
  • the agent vehicle 2010 may transmit a PRS request message, and the anchor vehicle 2020 may receive the PRS request message.
  • the agent vehicle 2010 may request PRS transmission to a nearby vehicle for positioning.
  • the PRS request message includes information indicating that PRS transmission is requested.
  • the request for PRS transmission may be expressed by an explicit indicator (eg, a service ID corresponding to the PRS request) or implicitly.
  • the PRS request message may be transmitted through a resource pool allocated for the location service (hereinafter, 'PRS request resource pool') to inform the PRS transmission request.
  • the anchor vehicle 3020 may receive a PRS request message by monitoring the PRS request resource pool.
  • the PRS request message may be in the form of a discovery signal, and the PRS request message may be signaled through a service ID in the discovery signal.
  • different individual discovery resource pools may be allocated according to the requested service.
  • the discovery resource pool may be allocated as shown in FIG. 21 .
  • a plurality of resource pools 2102 to 2106 may be allocated to different time-frequency domains. If the resource pool 2102 among the plurality of resource pools 2102 to 2106 is allocated for the location service, the PRS request message is transmitted through the resource pool 2102 .
  • the anchor vehicle 2020 interested in the positioning service monitors only the discovery resource pool allocated for the positioning service.
  • the PRS request message may be in the form of a beamformed signal, and may be repeatedly transmitted using different beams.
  • the PRS request message may include the ID of the agent vehicle 2010 and information related to at least one resource for sending a response from another vehicle receiving it.
  • PRS requests transmitted using different beams may include different PRS request response resource information.
  • the anchor vehicle 2020 transmits a PRS request response message.
  • the anchor vehicle 2020 may transmit a PRS request response message when attempting to transmit the PRS.
  • the PRS request response message may include IDs of the agent vehicle 2010 and the anchor vehicle 2020, and may include information about at least one resource for the agent vehicle 2010 to transmit the PRS scheduling message.
  • the agent vehicle 2010 cannot know which reception beam can be used to receive the signal transmitted from the anchor vehicle 2020. Accordingly, the agent vehicle 2010 attempts to receive the RPS request response message using a plurality of reception beams, and receives the RPS request response message using at least one of the plurality of reception beams.
  • the PRS request response message may include information related to beam(s) preferred by the anchor vehicle 2020.
  • the information related to the preferred beam(s) may include a beam index, a reference signal received power (RSRP) of the corresponding beam, and the like.
  • RSRP reference signal received power
  • the agent vehicle 2010 receives a PRS request response message from the resource, thereby allowing the anchor vehicle 2020 to prefer It can know the transmission beam information.
  • resource pools may be allocated as shown in FIG. 22 .
  • a plurality of resource pools 2202 to 2214 corresponding to different beams may be allocated.
  • the anchor vehicle 2020 selects the PRS request message transmitted through beam-4
  • the anchor vehicle 2030 transmits a PRS request response message through the resource pool 2208 corresponding to beam-4.
  • the anchor vehicle 2020 receives the PRS request, it is possible to determine whether to transmit the PRS request response according to whether the measured RSRP value exceeds a specific threshold by measuring the RSRP from the received signal.
  • the threshold value may be a value set by the network or preset in the terminal.
  • the agent vehicle 2010 receiving the PRS request response message may transmit a PRS scheduling message.
  • the PRS scheduling message may include information related to at least one resource for the anchor vehicle 2020 to transmit the PRS.
  • the PRS scheduling information may be beamformed, and for the PRS scheduling message, the beam may be a beam related to beam information included in the PRS request response message or a beam related to a resource from which the PRS request response is received.
  • the PRS scheduling message may be multiplexed together with a reference signal, and the reference signal may be used for decoding the PRS scheduling message.
  • the PRS scheduling message may be repeatedly transmitted using the same beam together with the reference signal.
  • the PRS scheduling message or the reference signal may be used to select an optimal reception beam in the anchor vehicle 2020 .
  • the reception beam selected using the reference signal may be used as a transmission beam for the anchor vehicle 2020 to transmit the PRS according to the principle of channel reciprocity.
  • the anchor vehicle 2020 transmits a PRS.
  • the anchor vehicle 2020 receiving the PRS scheduling message may acquire resource information for transmitting the PRS.
  • the anchor vehicle 2020 may receive PRS scheduling messages using different beams, and may select at least one reception beam through measurement such as RSRP.
  • the selected reception beam(s) may be a beam suitable for transmission according to the principle of transmission/reception channel reciprocity, and may be used for PRS transmission.
  • the PRS may be repeatedly transmitted, and in this case, it may be transmitted through the same transmission beam or different transmission beams.
  • the PRS may be multiplexed with the positioning assistance data, and the PRS may be used for decoding the positioning assistance data.
  • the positioning assistance data may include coordinates of the anchor vehicle 2020 or information (eg, coordinates, distance, etc.) of a fixed reference point that the anchor vehicle 2020 has.
  • the agent vehicle 2010 may repeatedly transmit the PRS scheduling message to determine the reception beam of the anchor vehicle 2020 .
  • the number of repeated transmissions is preferably equal to the number of candidate reception beams usable in the anchor vehicle 2020 .
  • the PRS scheduling message is less than the number of candidate reception beams usable in the anchor vehicle 2020. Only a number (eg, once) can be transmitted. To this end, the agent vehicle 2010 needs to obtain information related to the beamforming capability of the anchor vehicle 2020 . Therefore, according to another embodiment, before or during the procedure of FIG. 20 , or through one of the messages described in FIG.
  • the agent vehicle 2010 receives information about the beamforming capability of the anchor vehicle 2020 .
  • the information on the beamforming capability may indicate the number of transmissions of a signal (eg, a PRS scheduling message) necessary for the anchor vehicle 2020 to determine a reception beam.
  • the PRS request message and the PRS request response message may be transmitted through the resource pool.
  • information on the resource pool may be provided through a procedure separate from the procedure illustrated in FIG. 20 .
  • information on the resource pool may be included in system information transmitted by the base station or may be predefined.
  • the present disclosure proposes a new procedure in which a PRS request procedure and a beam management procedure are organically combined.
  • the PRS request procedure and the beam management procedure can be performed in parallel, so that the time delay until the final PRS transmission can be reduced.
  • 23 illustrates an example of a communication system, according to an embodiment of the present disclosure. 23 may be combined with various embodiments of the present disclosure.
  • a communication system applied to the present disclosure includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR, LTE), and may be referred to as a communication/wireless/5G device.
  • the wireless device may include a robot 110a, a vehicle 110b-1, a vehicle 110b-2, an extended reality (XR) device 110c, a hand-held device 110d, and a home appliance. appliance) 110e, an Internet of Thing (IoT) device 110f, and an artificial intelligence (AI) device/server 110g.
  • a wireless access technology eg, 5G NR, LTE
  • XR extended reality
  • IoT Internet of Thing
  • AI artificial intelligence
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicles 110b-1 and 110b-2 may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • the XR device 110c includes augmented reality (AR)/virtual reality (VR)/mixed reality (MR) devices, and includes a head-mounted device (HMD), a head-up display (HUD) provided in a vehicle, a television, It may be implemented in the form of a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device 110d may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
  • the home appliance 110e may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device 110f may include a sensor, a smart meter, and the like.
  • the base stations 120a to 120e and the network may be implemented as a wireless device, and a specific wireless device 120a may operate as a base station/network node to other wireless devices.
  • the wireless communication technology implemented in the wireless devices 110a to 110f of the present specification may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G.
  • the NB-IoT technology may be an example of a LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names. no.
  • the wireless communication technology implemented in the wireless devices 110a to 110f of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be called by various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine It may be implemented in at least one of various standards such as Type Communication, and/or 7) LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless devices 110a to 110f of the present specification is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) considering low power communication.
  • LPWAN Low Power Wide Area Network
  • the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
  • the wireless devices 110a to 110f may be connected to a network through the base stations 120a to 120e.
  • AI technology may be applied to the wireless devices 110a to 110f, and the wireless devices 110a to 110f may be connected to the AI server 110g through a network.
  • the network may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 110a to 110f may communicate with each other through the base stations 120a to 120e/network, but may communicate directly (eg, sidelink communication) without using the base stations 120a to 120e/network. have.
  • the vehicles 110b-1 and 110b-2 may perform direct communication (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication).
  • the IoT device 110f eg, a sensor
  • the IoT device 110f may communicate directly with another IoT device (eg, a sensor) or other wireless devices 110a to 110f.
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 110a to 110f/base stations 120a to 120e, and the base stations 120a to 120e/base stations 120a to 120e.
  • wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg, relay, integrated access backhaul (IAB)). This can be done via radio access technology (eg 5G NR).
  • radio access technology eg 5G NR
  • the wireless device and the base station/wireless device, and the base station and the base station may transmit/receive radio signals to each other.
  • the wireless communication/connection 150a , 150b , 150c may transmit/receive signals through various physical channels.
  • various configuration information setting processes for transmission/reception of wireless signals various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.) , at least a part of a resource allocation process, etc. may be performed.
  • FIG. 24 illustrates an example of a wireless device, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 24 may be combined with various embodiments of the present disclosure.
  • the first wireless device 200a and the second wireless device 200b may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 200a, second wireless device 200b ⁇ is ⁇ wireless device 110x, base station 120x ⁇ of FIG. 1 and/or ⁇ wireless device 110x, wireless device 110x) ⁇ can be matched.
  • the first wireless device 200a includes one or more processors 202a and one or more memories 204a, and may further include one or more transceivers 206a and/or one or more antennas 208a.
  • the processor 202a controls the memory 204a and/or the transceiver 206a and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein.
  • the processor 202a may process information in the memory 204a to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 206a.
  • the processor 202a may receive the radio signal including the second information/signal through the transceiver 206a, and then store the information obtained from the signal processing of the second information/signal in the memory 204a.
  • the memory 204a may be connected to the processor 202a and may store various information related to the operation of the processor 202a.
  • the memory 204a may provide instructions for performing some or all of the processes controlled by the processor 202a, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202a and the memory 204a may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206a may be coupled to the processor 202a and may transmit and/or receive wireless signals via one or more antennas 208a.
  • the transceiver 206a may include a transmitter and/or a receiver.
  • the transceiver 206a may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200b performs wireless communication with the first wireless device 200a, and includes one or more processors 202b, one or more memories 204b, and additionally one or more transceivers 206b and/or one
  • the above antenna 208b may be further included.
  • the functions of the one or more processors 202b, one or more memories 204b, one or more transceivers 206b, and/or one or more antennas 208b may include the one or more processors 202a, one or more memories of the first wireless device 200a. 204a, one or more transceivers 206a and/or one or more antennas 208a.
  • one or more protocol layers may be implemented by one or more processors 202a, 202b.
  • one or more processors (202a, 202b) is one or more layers (eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control) and a functional layer such as service data adaptation protocol (SDAP)).
  • the one or more processors 202a, 202b may include one or more protocol data units (PDUs), one or more service data units (SDUs), messages, It can generate control information, data or information.
  • PDUs protocol data units
  • SDUs service data units
  • the one or more processors 202a and 202b generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , to one or more transceivers 206a, 206b.
  • the one or more processors 202a, 202b may receive a signal (eg, a baseband signal) from one or more transceivers 206a, 206b, and may be described in any of the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • PDUs, SDUs, messages, control information, data, or information may be acquired according to the above.
  • One or more processors 202a, 202b may be referred to as controllers, microcontrollers, microprocessors, or microcomputers.
  • One or more processors 202a, 202b may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this document may be implemented using firmware or software, which may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed in this document may contain firmware or software configured to perform one or more processors 202a, 202b, or stored in one or more memories 204a, 204b. It may be driven by the above processors 202a and 202b.
  • the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 204a, 204b may be coupled to one or more processors 202a, 202b and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 204a, 204b may include read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), flash memory, hard drives, registers, cache memory, computer readable storage media and/or It may consist of a combination of these.
  • One or more memories 204a, 204b may be located inside and/or external to one or more processors 202a, 202b. Further, one or more memories 204a, 204b may be coupled to one or more processors 202a, 202b through various technologies, such as wired or wireless connections.
  • the one or more transceivers 206a, 206b may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts herein, to one or more other devices.
  • the one or more transceivers 206a, 206b may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods, and/or flow charts, etc. disclosed herein, from one or more other devices. have.
  • one or more transceivers 206a, 206b may be coupled to one or more antennas 208a, 208b via the one or more antennas 208a, 208b to the descriptions, functions, procedures, proposals, methods and/or described herein.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 206a, 206b converts the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 202a, 202b. It can be converted into a baseband signal.
  • One or more transceivers 206a, 206b may convert user data, control information, radio signals/channels, etc. processed using one or more processors 202a, 202b from baseband signals to RF band signals.
  • one or more transceivers 206a, 206b may include (analog) oscillators and/or filters.
  • FIG. 25 illustrates a circuit for processing a transmission signal according to an embodiment of the present disclosure.
  • the embodiment of FIG. 25 may be combined with various embodiments of the present disclosure.
  • the signal processing circuit 300 may include a scrambler 310 , a modulator 320 , a layer mapper 330 , a precoder 340 , a resource mapper 350 , and a signal generator 360 .
  • the operation/function of FIG. 25 may be performed by the processors 202a and 202b and/or the transceivers 206a and 206b of FIG. 24 .
  • the hardware elements of FIG. 25 may be implemented in the processors 202a and 202b and/or the transceivers 206a and 206b of FIG. 24 .
  • blocks 310 to 360 may be implemented in the processors 202a and 202b of FIG. 24 .
  • blocks 310 to 350 may be implemented in the processors 202a and 202b of FIG. 24
  • block 360 may be implemented in the transceivers 206a and 206b of FIG. 24 , and the embodiment is not limited thereto.
  • the codeword may be converted into a wireless signal through the signal processing circuit 300 of FIG. 25 .
  • the codeword is a coded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH) of FIG. 25 .
  • the codeword may be converted into a scrambled bit sequence by the scrambler 310 .
  • a scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like.
  • the scrambled bit sequence may be modulated by a modulator 320 into a modulation symbol sequence.
  • the modulation method may include pi/2-binary phase shift keying (pi/2-BPSK), m-phase shift keying (m-PSK), m-quadrature amplitude modulation (m-QAM),
  • the complex modulation symbol sequence may be mapped to one or more transport layers by a layer mapper 330 .
  • Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 340 (precoding).
  • the output z of the precoder 340 may be obtained by multiplying the output y of the layer mapper 330 by the precoding matrix W of N*M.
  • N is the number of antenna ports
  • M is the number of transmission layers.
  • the precoder 340 may perform precoding after performing transform precoding (eg, discrete fourier transform (DFT) transform) on the complex modulation symbols. Also, the precoder 340 may perform precoding without performing transform precoding.
  • transform precoding eg, discrete fourier transform (DFT) transform
  • the resource mapper 350 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
  • the signal generator 360 generates a radio signal from the mapped modulation symbols, and the generated radio signal may be transmitted to another device through each antenna.
  • the signal generator 360 may include an inverse fast fourier transform (IFFT) module and a cyclic prefix (CP) inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like. .
  • IFFT inverse fast fourier transform
  • CP cyclic prefix
  • DAC digital-to-analog converter
  • a signal processing procedure for a received signal in the wireless device may be configured in reverse of the signal processing procedure of FIG. 25 .
  • the wireless device eg, 200a or 200b of FIG. 24
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a fast fourier transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT fast fourier transform
  • the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process.
  • the codeword may be restored to the original information block through decoding.
  • the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a postcoder, a demodulator, a descrambler, and a decoder.
  • 26 illustrates another example of a wireless device according to an embodiment of the present disclosure. 26 may be combined with various embodiments of the present disclosure.
  • a wireless device 300 corresponds to the wireless devices 200a and 200b of FIG. 24 , and includes various elements, components, units/units, and/or modules. ) can be composed of
  • the wireless device 400 may include a communication unit 410 , a control unit 420 , a memory unit 430 , and an additional element 440 .
  • the communication unit 410 may include a communication circuit 412 and transceiver(s) 414 .
  • the communication unit 410 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • communication circuitry 412 may include one or more processors 202a, 202b and/or one or more memories 204a, 204b of FIG. 24 .
  • transceiver(s) 414 may include one or more transceivers 206a , 206b and/or one or more antennas 208a , 208b of FIG. 24 .
  • the controller 420 may include one or more processor sets.
  • the controller 420 may include a set of a communication control processor, an application processor (AP), an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
  • the controller 420 is electrically connected to the communication unit 410 , the memory unit 430 , and the additional element 440 , and controls general operations of the wireless device.
  • the controller 420 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 430 .
  • control unit 420 transmits the information stored in the memory unit 430 to the outside (eg, another communication device) through the communication unit 410 through a wireless/wired interface, or externally through the communication unit 410 (eg: Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 430 .
  • the memory unit 430 may include RAM, dynamic RAM (DRAM), ROM, flash memory, volatile memory, non-volatile memory, and/or a combination thereof. have.
  • the memory unit 430 may store data/parameters/programs/codes/commands necessary for driving the wireless device 400 . Also, the memory unit 430 may store input/output data/information.
  • the additional element 440 may be variously configured according to the type of the wireless device.
  • the additional element 440 may include at least one of a power unit/battery, an input/output unit, a driving unit, and a computing unit.
  • the wireless device 400 may include a robot ( FIGS. 1 and 110a ), a vehicle ( FIGS. 1 , 110b-1 , 110b-2 ), an XR device ( FIGS. 1 and 110c ), and a mobile device ( FIGS. 1 and 110d ). ), home appliances (FIGS. 1, 110e), IoT devices (FIGS.
  • the wireless device may be mobile or used in a fixed location depending on the use-example/service.
  • FIG. 27 illustrates an example of a portable device according to an embodiment of the present disclosure.
  • 27 illustrates a portable device applied to the present disclosure.
  • the mobile device may include a smartphone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer).
  • the embodiment of FIG. 27 may be combined with various embodiments of the present disclosure.
  • the portable device 500 includes an antenna unit 508 , a communication unit 510 , a control unit 520 , a memory unit 530 , a power supply unit 540a , an interface unit 540b , and an input/output unit 540c .
  • the antenna unit 508 may be configured as a part of the communication unit 510 .
  • Blocks 510 to 530/540a to 540c respectively correspond to blocks 410 to 430/440 of FIG. 26, and redundant descriptions are omitted.
  • the communication unit 510 may transmit and receive signals, the control unit 520 may control the portable device 500 , and the memory unit 530 may store data and the like.
  • the power supply unit 540a supplies power to the portable device 500 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 540b may support a connection between the portable device 500 and other external devices.
  • the interface unit 540b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device.
  • the input/output unit 540c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 540c may include a camera, a microphone, a user input unit, a display unit 540d, a speaker, and/or a haptic module.
  • the input/output unit 540c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 530 . can be saved.
  • the communication unit 510 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or a base station, the communication unit 510 may restore the received radio signal to original information/signal.
  • the restored information/signal may be stored in the memory unit 530 and output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 540c.
  • 28 illustrates an example of a vehicle or autonomous vehicle, according to an embodiment of the present disclosure.
  • 28 illustrates a vehicle or an autonomous driving vehicle applied to the present disclosure.
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, etc., but is not limited to the shape of the vehicle.
  • the embodiment of FIG. 28 may be combined with various embodiments of the present disclosure.
  • the vehicle or autonomous driving vehicle 600 includes an antenna unit 608 , a communication unit 610 , a control unit 620 , a driving unit 640a , a power supply unit 640b , a sensor unit 640c and autonomous driving.
  • a portion 640d may be included.
  • the antenna unit 650 may be configured as a part of the communication unit 610 .
  • Blocks 610/630/640a to 640d correspond to blocks 510/530/540 of FIG. 27, respectively, and redundant descriptions are omitted.
  • the communication unit 610 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), servers, and the like.
  • the controller 620 may perform various operations by controlling elements of the vehicle or the autonomous driving vehicle 100 .
  • the controller 120 may include an Electronic Control Unit (ECU).
  • the driving unit 640a may cause the vehicle or the autonomous driving vehicle 600 to run on the ground.
  • the driving unit 640a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 640b supplies power to the vehicle or the autonomous driving vehicle 600 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 640c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 640c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 640d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 610 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 640d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 620 may control the driving unit 640a to move the vehicle or the autonomous driving vehicle 600 along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 610 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 640c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 640d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
  • the communication unit 610 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • examples of the above-described proposed method may also be included as one of the implementation methods of the present disclosure, it is obvious that they may be regarded as a kind of proposed method.
  • the above-described proposed methods may be implemented independently, but may also be implemented in the form of a combination (or merge) of some of the proposed methods.
  • Rules may be defined so that the base station informs the terminal of whether the proposed methods are applied or not (or information on the rules of the proposed methods) through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • Embodiments of the present disclosure may be applied to various wireless access systems.
  • various radio access systems there is a 3rd Generation Partnership Project (3GPP) or a 3GPP2 system.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP2 3rd Generation Partnership Project2
  • Embodiments of the present disclosure may be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied. Furthermore, the proposed method can be applied to mmWave and THzWave communication systems using very high frequency bands.
  • embodiments of the present disclosure may be applied to various applications such as free-running vehicles and drones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 무선 통신 시스템에서 빔포밍된(beamformed) 신호를 이용하여 측위(positioning)를 수행하기 위한 것으로서, 무선 통신 시스템에서 단말의 동작 방법은, 복수의 송신 빔들을 이용하여 PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 송신하는 단계, 상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 제2 단말로부터 수신하는 단계, 상기 송신 빔을 이용하여 상기 제2 단말에게 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 송신하는 단계, 및 상기 스케줄링 정보에 기반하여 상기 제2 단말로부터 상기 PRS를 수신하는 단계를 포함할 수 있다.

Description

무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 빔포밍된(beamformed) 신호를 이용하여 측위(positioning)를 수행하기 위한 방법 및 장치에 관한 것이다.
무선 통신 시스템은 가용한 시스템 자원(예를 들어, 대역폭, 전송 전력 등)을 공유하여 다중 사용자와의 통신을 지원하는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다.
V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.
본 개시는 무선 통신 시스템에서 측위(positioning)를 효율적으로 수행하기 위한 방법 및 장치에 관한 것이다.
본 개시는 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치에 관한 것이다.
본 개시는 무선 통신 시스템에서 측위에 소요되는 시간을 줄이기 위한 방법 및 장치에 관한 것이다
본 개시는 무선 통신 시스템에서 빔 관리(beam management) 및 측위의 준비 절차를 동시에 수행하기 위한 방법 및 장치에 관한 것이다.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시의 일 예로서, 무선 통신 시스템에서 제1 단말의 동작 방법은, 복수의 송신 빔들을 이용하여 PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 송신하는 단계, 상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 제2 단말로부터 수신하는 단계, 상기 송신 빔을 이용하여 상기 제2 단말에게 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 송신하는 단계, 및 상기 스케줄링 정보에 기반하여 상기 제2 단말로부터 상기 PRS를 수신하는 단계를 포함할 수 있다.
본 개시의 일 예로서, 무선 통신 시스템에서 제2 단말의 동작 방법은, 제1 단말에서 복수의 송신 빔들을 이용하여 송신된, PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 중 적어도 하나를 수신하는 단계, 상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 상기 제1 단말에게 송신하는 단계, 상기 제1 단말에서 상기 적어도 하나의 송신 빔을 이용하여 송신된, 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 수신하는 단계, 및 상기 스케줄링 정보에 기반하여 상기 PRS를 상기 제1 단말에게 송신하는 단계를 포함할 수 있다.
본 개시의 일 예로서, 무선 통신 시스템에서 제1 단말은, 송수신기 및 상기 송수신기와 연결된 프로세서를 포함한다. 상기 프로세서는, 복수의 송신 빔들을 이용하여 PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 송신하고, 상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 제2 단말로부터 수신하고, 상기 송신 빔을 이용하여 상기 제2 단말에게 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 송신하고, 상기 스케줄링 정보에 기반하여 상기 제2 단말로부터 상기 PRS를 수신할 수 있다.
본 개시의 일 예로서, 무선 통신 시스템에서 제2 단말은, 송수신기 및 상기 송수신기와 연결된 프로세서를 포함한다. 상기 프로세서는, 제1 단말에서 복수의 송신 빔들을 이용하여 송신된, PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 중 적어도 하나를 수신하고, 상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 상기 제1 단말에게 송신하고, 상기 제1 단말에서 상기 적어도 하나의 송신 빔을 이용하여 송신된, 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 수신하고, 상기 스케줄링 정보에 기반하여 상기 PRS를 상기 제1 단말에게 송신할 수 있다.
본 개시의 일 예로서, 제1 장치는 적어도 하나의 메모리 및 상기 적어도 하나의 메모리들과 기능적으로 연결되어 있는 적어도 하나의 프로세서를 포함할 수 있다. 상기 적어도 하나의 프로세서는 상기 제1 장치가, 복수의 송신 빔들을 이용하여 PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 송신하고, 상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 제2 장치로부터 수신하고, 상기 송신 빔을 이용하여 상기 제2 장치에게 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 송신하고, 상기 스케줄링 정보에 기반하여 상기 제2 장치로부터 상기 PRS를 수신하도록 제어할 수 있다.
본 개시의 일 예로서, 적어도 하나의 명령어(instructions)을 저장하는 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)는, 프로세서에 의해 실행 가능한(executable) 상기 적어도 하나의 명령어를 포함할 수 있다. 상기 적어도 하나의 명령어는, 제1 장치가 복수의 송신 빔들을 이용하여 PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 송신하고, 상기 제1 장치가 상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 제2 장치로부터 수신하고, 상기 제1 장치가 상기 송신 빔을 이용하여 상기 제2 장치에게 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 송신하고, 상기 제1 장치가 상기 스케줄링 정보에 기반하여 상기 제2 장치로부터 상기 PRS를 수신하도록 지시할 수 있다.
상술한 본 개시의 양태들은 본 개시의 바람직한 실시 예들 중 일부에 불과하며, 본 개시의 기술적 특징들이 반영된 다양한 실시 예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 개시의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 개시에 기초한 실시 예들에 의해 하기와 같은 효과가 있을 수 있다.
본 개시에 따르면, 무선 통신 시스템에서 측위(positioning)가 효과적으로 수행될 수 있다.
또한, 본 개시에 따르면, 밀리미터 파(mm Wave)대역에서 PRS(positioning reference signal) 전송 요청 및 스케줄링을 위한 절차 및 빔 관리(beam management) 절차를 각각의 과정을 별도로 수행하는 경우 보다 PRS를 요청 및 수신하기 위해 소요되는 시간이 감소할 수 있다.
본 개시의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 개시의 실시 예들에 대한 기재로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 개시에서 서술하는 구성을 실시함에 따른 의도하지 않은 효과들 역시 본 개시의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 개시에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시에 대한 실시 예들을 제공할 수 있다. 다만, 본 개시의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미할 수 있다.
도 1은 본 개시의 일 실시 예에 따른, 무선 통신 시스템의 구조를 도시한다.
도 2는 본 개시의 일 실시 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 도시한다.
도 3a 및 도 3b는 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 도시한다.
도 4는 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 도시한다.
도 5는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 도시한다.
도 6은 본 개시의 일 실시 예에 따른, BWP의 일 예를 도시한다.
도 7a 및 도 7b는 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 도시한다.
도 8은 본 개시의 일 실시 예에 따른, V2X의 동기화 소스(synchronization source) 또는 동기화 기준(synchronization reference)을 도시한다.
도 9a 및 도 9b는 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 도시한다.
도 10a 내지 도 10c는 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입들을 도시한다.
도 11은 본 개시의 일 실시 예에 따른, CBR 측정을 위한 자원 단위를 도시한다.
도 12는 본 개시의 일 실시 예에 따라, NG-RAN (Next Generation-Radio Access Network) 또는 E-UTRAN에 접속되는 UE에 대한 측위가 가능한, 5G 시스템에서의 아키텍처의 일 예를 도시한다.
도 13은 본 개시의 일 실시 예에 따라 UE의 위치를 측정하기 위한 네트워크의 구현 예를 도시한다.
도 14는 본 개시의 일 실시 예에 따라 LMF와 UE 간의 LPP(LTE Positioning Protocol) 메시지 전송을 지원하기 위해 사용되는 프로토콜 레이어의 일 예를 도시한다.
도 15는 본 개시의 일 실시 예에 따라 LMF와 NG-RAN 노드 간의 NRPPa(NR Positioning Protocol A) PDU 전송을 지원하는데 사용되는 프로토콜 레이어의 일 예를 도시한다.
도 16은 본 개시의 일 실시 예에 따른 OTDOA(Observed Time Difference Of Arrival) 측위 방법을 도시한다.
도 17은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PRS(positioning reference signal) 요청에 기반한 측위 절차의 개념을 도시한다.
도 18은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 측위를 수행하는 단말의 동작 방법의 예를 도시한다.
도 19는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 측위를 보조하는 단말의 동작 방법의 예를 도시한다.
도 20은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 요청 기반의 PRS 송신을 위한 절차의 예를 도시한다.
도 21은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 서비스 별로 할당된 자원 풀들의 예를 도시한다.
도 22는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 빔 별로 할당된 자원 풀들의 예를 도시한다.
도 23은 본 개시의 일 실시 예에 따른, 통신 시스템 예를 도시한다.
도 24는 본 개시의 일 실시 예에 따른, 무선 기기의 예를 도시한다.
도 25는 본 개시의 일 실시 예에 따른, 전송 신호를 처리하는 회로를 도시한다.
도 26은 본 개시의 일 실시 예에 따른, 무선 기기의 다른 예를 도시한다.
도 27은 본 개시의 일 실시 예에 따른, 휴대 기기의 예를 도시한다.
도 28은 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량의 예를 도시한다.
이하의 실시 예들은 본 개시의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시 예를 구성할 수도 있다. 본 개시의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 개시의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시를 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 명세서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 명세서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 명세서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 명세서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 명세서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "제어 정보(PDCCH)"로 표시된 경우, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 "제어 정보"는 "PDCCH"로 제한(limit)되지 않고, "PDDCH"가 "제어 정보"의 일례로 제안된 것일 수 있다. 또한, "제어 정보(즉, PDCCH)"로 표시된 경우에도, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다.
이하의 설명에서 '~일 때, ~ 경우(when, if, in case of)'는 '~에 기초하여/기반하여(based on)'로 대체될 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
본 명세서에서, 상위 계층 파라미터(higher layer parameter) 단말에 대하여 설정되거나, 사전에 설정되거나, 사전에 정의된 파라미터일 수 있다. 예를 들어, 기지국 또는 네트워크는 상위 계층 파라미터를 단말에게 전송할 수 있다. 예를 들어, 상위 계층 파라미터는 RRC(radio resource control) 시그널링 또는 MAC(medium access control) 시그널링을 통해서 전송될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.
설명을 명확하게 하기 위해, 5G NR을 위주로 기술하지만 본 개시의 일 실시 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.
본 명세서에서 사용된 용어 및 기술 중에서 구체적으로 설명되지 않은 용어 및 기술에 대해서는, 본 명세서가 출원되기 전에 공개된 무선 통신 표준 문서가 참조될 수 있다. 예를 들어, 다음 문서가 참조될 수 있다.
(1) 3GPP LTE
- 3GPP TS 36.211: Physical channels and modulation
- 3GPP TS 36.212: Multiplexing and channel coding
- 3GPP TS 36.213: Physical layer procedures
- 3GPP TS 36.214: Physical layer; Measurements
- 3GPP TS 36.300: Overall description
- 3GPP TS 36.304: User Equipment (UE) procedures in idle mode
- 3GPP TS 36.314: Layer 2 - Measurements
- 3GPP TS 36.321: Medium Access Control (MAC) protocol
- 3GPP TS 36.322: Radio Link Control (RLC) protocol
- 3GPP TS 36.323: Packet Data Convergence Protocol (PDCP)
- 3GPP TS 36.331: Radio Resource Control (RRC) protocol
(2) 3GPP NR (e.g. 5G)
- 3GPP TS 38.211: Physical channels and modulation
- 3GPP TS 38.212: Multiplexing and channel coding
- 3GPP TS 38.213: Physical layer procedures for control
- 3GPP TS 38.214: Physical layer procedures for data
- 3GPP TS 38.215: Physical layer measurements
- 3GPP TS 38.300: Overall description
- 3GPP TS 38.304: User Equipment (UE) procedures in idle mode and in RRC inactive state
- 3GPP TS 38.321: Medium Access Control (MAC) protocol
- 3GPP TS 38.322: Radio Link Control (RLC) protocol
- 3GPP TS 38.323: Packet Data Convergence Protocol (PDCP)
- 3GPP TS 38.331: Radio Resource Control (RRC) protocol
- 3GPP TS 37.324: Service Data Adaptation Protocol (SDAP)
- 3GPP TS 37.340: Multi-connectivity; Overall description
본 개시에 적용 가능한 통신 시스템
도 1은 본 개시의 일 실시 예에 따른, 무선 통신 시스템의 구조를 도시한다. 도 1의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 1을 참고하면, 무선 통신 시스템은 무선 접속 망(radio access network, RAN)(102) 및 코어 망(core network)(103)을 포함한다. 무선 접속 망(102)은 단말(terminal)(110)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(base station)(120)을 포함한다. 단말(110)은 고정되거나 이동성을 가질 수 있으며, 사용자 장비(user equipment, UE), 이동국(mobile station, MS), 가입자국(subscriber station, SS), 이동 가입자 단말(mobile subscriber station, MSS), 이동 단말(mobile terminal) 또는 발전된 이동 단말(advanced mobile station, AMS), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(120)은 단말(110)에게 무선 접속 서비스를 제공하는 노드를 의미하며, 고정국(fixed station), Node B, eNB(eNode B), gNB(gNode B), ng-eNB, 발전된 기지국(advanced base station, ABS) 또는 억세스 포인트(access point), BTS(base tansceiver system), 액세스 포인트(access point, AP) 등 다른 용어로 불릴 수 있다. 코어 망(103)은 코어 망 엔티티(entity)(130)를 포함한다. 코어 망 엔티티(130)는 기능에 따라 다양하게 정의될 수 있으며, 코어 망 노드(node), 네트워크 노드(network node), 네트워크 장비(network equipment) 등 다른 용어로 불릴 수 있다.
적용되는 시스템 규격에 따라 시스템의 구성 요소들이 다르게 지칭될 수 있다. LTE 또는 LTE-A 규격의 경우, 무선 접속 망(102)은 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)으로, 코어 망(103)은 EPC(evolved packet core)로 지칭될 수 있다. 이 경우, 코어 망(103)는 MME(Mobility Management Entity), S-GW(Serving Gateway) 및 P-GW(packet data network-gateway)를 포함한다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN(packet data network)을 종단점으로 갖는 게이트웨이이다.
5G NR 규격의 경우, 무선 접속 망(102)은 NG-RAN으로, 코어 망(103)은 5GC(5G core)로 지칭될 수 있다. 이 경우, 코어 망(103)는 AMF(access and mobility management function), UPF(user plane function), SMF(session management function)를 포함한다. AMF는 단말 단위의 접속 및 이동성 관리를 위한 기능을 제공하며, UPF는 상위의 데이터 망 및 무선 접속 망(102) 간 데이터 유닛을 상호 전달하는 기능을 수행하고, SMF는 세션 관리 기능을 제공한다.
기지국(120)은 상호 간에 Xn 인터페이스로 연결될 수 있다. 기지국(120)은 코어 망(103)과 NG 인터페이스를 통해 연결될 수 있다. 보다 구체적으로, 기지국(130)은 NG-C 인터페이스를 통해 AMF와 연결될 수 있고, NG-U 인터페이스를 통해 UPF와 연결될 수 있다.
도 2는 본 개시의 일 실시 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 도시한다. 도 2의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 2를 참고하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(radio bearer control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS(Non Access Stratum) 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU(Protocol Data Unit) 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP(Internet Protocol) 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.
단말과 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 제1 계층(layer 1, L1), 제2 계층(layer 2, L2), 제3 계층(layer 3, L3)로 구분될 수 있다. 이 중에서, 제1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해, RRC 계층은 단말과 기지국 간 RRC 메시지를 교환하게 한다.
도 3a 및 도 3b는 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 도시한다. 도 3의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 3a는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를, 도 3b는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 예시한다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어 신호 전송을 위한 프로토콜 스택이다.
도 3a 및 도 3b를 참고하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
RLC 계층은 RLC SDU(Service Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명 모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인 모드(Acknowledged Mode, AM)의 세 가지의 동작 모드들을 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(physical 계층 또는 PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.
SDAP(Service Data Adaptation Protocol) 계층은 사용자 평면에서만 정의된다. SDAP 계층은 QoS 플로우(flow)와 데이터 무선 베어러 간의 매핑, 하향링크 및 상향링크 패킷 내 QoS 플로우 식별자(ID) 마킹 등을 수행한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 기지국의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리 채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(sub-carrier)로 구성된다. 하나의 서브프레임(sub-frame)은 시간 영역에서 복수의 OFDM 심벌(symbol)들로 구성된다. 자원 블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어 채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예: 첫 번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
무선 자원 구조
도 4는 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 도시한다. 도 4의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 4를 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA(Single Carrier-FDMA) 심볼 (또는, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM) 심볼)을 포함할 수 있다.
노멀 CP가 사용되는 경우, SCS 설정(μ)에 따라 슬롯 별 심볼의 개수(Nslot symb), 프레임 별 슬롯의 개수(Nframe,μ slot)와 서브프레임 별 슬롯의 개수(Nsubframe,μ slot)는 달라질 수 있다. 예를 들어, SCS(=15*2μ), Nslot symb, Nframe,μ slot, Nsubframe,μ slot는, u=0인 경우 15KHz, 14, 10, 1이고, u=1인 경우 30KHz, 14, 20, 2이고, u=2인 경우 60KHz, 14, 40, 4이고, u=3인 경우 120KHz, 14, 80, 8이고, u=4인 경우 240KHz, 14, 160, 16일 수 있다. 이와 달리, 확장 CP가 사용되는 경우, SCS(=15*2μ), Nslot symb, Nframe,μ slot, Nsubframe,μ slot는, u=2인 경우 60KHz, 12, 40, 4일 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들 간에 OFDM(A) 뉴머놀로지(numerology)(예: SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예: 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, FR1 및 FR2 각각에 대응하는 주파수 범위(Corresponding frequency range)는 450MHz-6000MHz 및 24250MHz-52600MHz일 수 있다. 그리고, 지원되는 SCS는 FR1의 경우 15, 30, 60kHz, FR2의 경우 60, 120, 240kHz일 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 "sub 6GHz range"를 의미할 수 있고, FR2는 "above 6GHz range"를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, 전술한 주파수 범위의 예와 비교하여, FR1은 410MHz 내지 7125MHz의 대역을 포함하는 것으로 정의될 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
도 5는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 도시한다. 도 5의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 5를 참고하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예: SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
한편, 단말과 단말 간 무선 인터페이스 또는 단말과 네트워크 간 무선 인터페이스는 L1 계층, L2 계층 및 L3 계층으로 구성될 수 있다. 본 개시의 다양한 실시 예에서, L1 계층은 물리(physical) 계층을 의미할 수 있다. 또한, 예를 들어, L2 계층은 MAC 계층, RLC 계층, PDCP 계층 및 SDAP 계층 중 적어도 하나를 의미할 수 있다. 또한, 예를 들어, L3 계층은 RRC 계층을 의미할 수 있다.
BWP(bandwidth part)
BWP는 주어진 뉴머놀로지에서 PRB(physical resource block)의 연속적인 집합일 수 있다. PRB는 주어진 캐리어 상에서 주어진 뉴머놀로지에 대한 CRB(common resource block)의 연속적인 부분 집합으로부터 선택될 수 있다.
BA(Bandwidth Adaptation)을 사용하면, 단말의 수신 대역폭 및 전송 대역폭은 셀의 대역폭만큼 클 필요가 없으며, 단말의 수신 대역폭 및 전송 대역폭은 조정될 수 있다. 예를 들어, 네트워크/기지국은 대역폭 조정을 단말에게 알릴 수 있다. 예를 들어, 단말은 대역폭 조정을 위한 정보/설정을 네트워크/기지국으로부터 수신할 수 있다. 이 경우, 단말은 상기 수신된 정보/설정을 기반으로 대역폭 조정을 수행할 수 있다. 예를 들어, 상기 대역폭 조정은 대역폭의 축소/확대, 대역폭의 위치 변경 또는 대역폭의 서브캐리어 스페이싱의 변경을 포함할 수 있다.
예를 들어, 대역폭은 파워를 세이브하기 위해 활동이 적은 기간 동안 축소될 수 있다. 예를 들어, 대역폭의 위치는 주파수 도메인에서 이동할 수 있다. 예를 들어, 대역폭의 위치는 스케줄링 유연성(scheduling flexibility)을 증가시키기 위해 주파수 도메인에서 이동할 수 있다. 예를 들어, 대역폭의 서브캐리어 스페이싱(subcarrier spacing)은 변경될 수 있다. 예를 들어, 대역폭의 서브캐리어 스페이싱은 상이한 서비스를 허용하기 위해 변경될 수 있다. 셀의 총 셀 대역폭의 서브셋은 BWP(Bandwidth Part)라고 칭할 수 있다. BA는 기지국/네트워크가 단말에게 BWP를 설정하고, 기지국/네트워크가 설정된 BWP 중에서 현재 활성 상태인 BWP를 단말에게 알림으로써 수행될 수 있다.
예를 들어, BWP는 활성(active) BWP, 이니셜(initial) BWP 및/또는 디폴트(default) BWP 중 적어도 어느 하나일 수 있다. 예를 들어, 단말은 PCell(primary cell) 상의 활성(active) DL BWP 이외의 DL BWP에서 다운 링크 무선 링크 품질(downlink radio link quality)을 모니터링하지 않을 수 있다. 예를 들어, 단말은 활성 DL BWP의 외부에서 PDCCH, PDSCH 또는 CSI-RS(단, RRM 제외)를 수신하지 않을 수 있다. 예를 들어, 단말은 비활성 DL BWP에 대한 CSI(Channel State Information) 보고를 트리거하지 않을 수 있다. 예를 들어, 단말은 활성 UL BWP 외부에서 PUCCH(Physical Uplink Control Channel) 또는 PUSCH(Physical Uplink Shared Channel)를 전송하지 않을 수 있다. 예를 들어, 하향링크의 경우, 이니셜 BWP는 (PBCH에 의해 설정된) RMSI(remaining minimum system information) CORESET(control resource set)에 대한 연속적인 RB 세트로 주어질 수 있다. 예를 들어, 상향링크의 경우, 이니셜 BWP는 랜덤 액세스 절차를 위해 SIB(system information block)에 의해 주어질 수 있다. 예를 들어, 디폴트 BWP는 상위 계층에 의해 설정될 수 있다. 예를 들어, 디폴트 BWP의 초기 값은 이니셜 DL BWP일 수 있다. 에너지 세이빙을 위해, 단말이 일정 기간 동안 DCI(downlink control information)를 검출하지 못하면, 단말은 상기 단말의 활성 BWP를 디폴트 BWP로 스위칭할 수 있다.
한편, BWP는 SL에 대하여 정의될 수 있다. 동일한 SL BWP는 전송 및 수신에 사용될 수 있다. 예를 들어, 전송 단말은 특정 BWP 상에서 SL 채널 또는 SL 신호를 전송할 수 있고, 수신 단말은 상기 특정 BWP 상에서 SL 채널 또는 SL 신호를 수신할 수 있다. 면허 캐리어(licensed carrier)에서, SL BWP는 Uu BWP와 별도로 정의될 수 있으며, SL BWP는 Uu BWP와 별도의 설정 시그널링(separate configuration signalling)을 가질 수 있다. 예를 들어, 단말은 SL BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. SL BWP는 캐리어 내에서 out-of-coverage NR V2X 단말 및 RRC_IDLE 단말에 대하여 (미리) 설정될 수 있다. RRC_CONNECTED 모드의 단말에 대하여, 적어도 하나의 SL BWP가 캐리어 내에서 활성화될 수 있다.
도 6은 본 개시의 일 실시 예에 따른, BWP의 일 예를 도시한다. 도 6의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 도 6의 실시 예에서, BWP는 세 개라고 가정한다.
도 6을 참조하면, CRB(common resource block)는 캐리어 밴드의 한 쪽 끝에서부터 다른 쪽 끝까지 번호가 매겨진 캐리어 자원 블록일 수 있다. 그리고, PRB는 각 BWP 내에서 번호가 매겨진 자원 블록일 수 있다. 포인트 A는 자원 블록 그리드(resource block grid)에 대한 공통 참조 포인트(common reference point)를 지시할 수 있다.
BWP는 포인트 A, 포인트 A로부터의 오프셋(Nstart BWP) 및 대역폭(Nsize BWP)에 의해 설정될 수 있다. 예를 들어, 포인트 A는 모든 뉴머놀로지(예를 들어, 해당 캐리어에서 네트워크에 의해 지원되는 모든 뉴머놀로지)의 서브캐리어 0이 정렬되는 캐리어의 PRB의 외부 참조 포인트일 수 있다. 예를 들어, 오프셋은 주어진 뉴머놀로지에서 가장 낮은 서브캐리어와 포인트 A 사이의 PRB 간격일 수 있다. 예를 들어, 대역폭은 주어진 뉴머놀로지에서 PRB의 개수일 수 있다.
V2X 또는 사이드링크(sidelink, SL) 통신
도 7a 및 도 7b는 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 도시한다. 도 7a 및 도 7b의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 7(a)는 사용자 평면 프로토콜 스택을 나타내고, 도 7b는 제어 평면 프로토콜 스택을 예시한다.
SL 동기 신호(Sidelink Synchronization Signal, SLSS) 및 동기화 정보
SLSS는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 히스테리시스 검출(hypothesis detection)을 수행할 필요가 없다.
예를 들어, 표 1을 기반으로, 단말은 S-SS/PSBCH 블록(즉, S-SSB)을 생성할 수 있고, 단말은 S-SS/PSBCH 블록(즉, S-SSB)을 물리 자원 상에 맵핑하여 전송할 수 있다.
Figure PCTKR2021004661-appb-I000001

Figure PCTKR2021004661-appb-I000002
SL 단말의 동기 획득
TDMA(time division multiple access) 및 FDMA(frequency division multiples access) 시스템에서, 정확한 시간 및 주파수 동기화는 필수적이다. 시간 및 주파수 동기화가 정확하게 되지 않으면, 심볼 간 간섭(Inter Symbol Interference, ISI) 및 반송파 간 간섭(Inter Carrier Interference, ICI)으로 인해 시스템 성능이 저하될 수 있다. 이는, V2X에서도 마찬가지이다. V2X에서는 시간/주파수 동기화를 위해, 물리 계층에서는 SL 동기 신호(sidelink synchronization signal, SLSS)를 사용할 수 있고, RLC(radio link control) 계층에서는 MIB-SL-V2X(master information block-sidelink-V2X)를 사용할 수 있다.
도 8은 본 개시의 일 실시 예에 따른, V2X의 동기화 소스(synchronization source) 또는 동기화 기준(synchronization reference)을 도시한다. 도 8의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 8을 참고하면, V2X에서, 단말은 GNSS(global navigation satellite systems)에 직접적으로 동기화 되거나, 또는 GNSS에 직접적으로 동기화된 (네트워크 커버리지 내의 또는 네트워크 커버리지 밖의) 단말을 통해 비간접적으로 GNSS에 동기화 될 수 있다. GNSS가 동기화 소스로 설정된 경우, 단말은 UTC(Coordinated Universal Time) 및 (미리) 설정된 DFN(Direct Frame Number) 오프셋을 사용하여 DFN 및 서브프레임 번호를 계산할 수 있다.
또는, 단말은 기지국에 직접 동기화되거나, 기지국에 시간/주파수 동기화된 다른 단말에게 동기화될 수 있다. 예를 들어, 상기 기지국은 eNB 또는 gNB일 수 있다. 예를 들어, 단말이 네트워크 커버리지 내에 있는 경우, 상기 단말은 기지국이 제공하는 동기화 정보를 수신하고, 상기 기지국에 직접 동기화될 수 있다. 그 후, 상기 단말은 동기화 정보를 인접한 다른 단말에게 제공할 수 있다. 기지국 타이밍이 동기화 기준으로 설정된 경우, 단말은 동기화 및 하향링크 측정을 위해 해당 주파수에 연관된 셀(상기 주파수에서 셀 커버리지 내에 있는 경우), 프라이머리 셀 또는 서빙 셀(상기 주파수에서 셀 커버리지 바깥에 있는 경우)을 따를 수 있다.
기지국(예를 들어, 서빙 셀)은 V2X 또는 SL 통신에 사용되는 반송파에 대한 동기화 설정을 제공할 수 있다. 이 경우, 단말은 상기 기지국으로부터 수신한 동기화 설정을 따를 수 있다. 만약, 단말이 상기 V2X 또는 SL 통신에 사용되는 반송파에서 어떤 셀도 검출하지 못했고, 서빙 셀로부터 동기화 설정도 수신하지 못했다면, 상기 단말은 미리 설정된 동기화 설정을 따를 수 있다.
또는, 단말은 기지국이나 GNSS로부터 직접 또는 간접적으로 동기화 정보를 획득하지 못한 다른 단말에게 동기화될 수도 있다. 동기화 소스 및 선호도는 단말에게 미리 설정될 수 있다. 또는, 동기화 소스 및 선호도는 기지국에 의하여 제공되는 제어 메시지를 통해 설정될 수 있다.
SL 동기화 소스는 동기화 우선 순위와 연관될 수 있다. 예를 들어, 동기화 소스와 동기화 우선 순위 사이의 관계는 표 2 또는 표 3과 같이 정의될 수 있다. 표 2 또는 표 3은 일 예에 불과하며, 동기화 소스와 동기화 우선 순위 사이의 관계는 다양한 형태로 정의될 수 있다.
우선
순위
레벨
GNSS 기반의 동기화
(GNSS-based synchronization)
기지국 기반의 동기화
(eNB/gNB-based synchronization)
P0 GNSS 기지국
P1 GNSS에 직접 동기화된 모든 단말 기지국에 직접 동기화된 모든 단말
P2 GNSS에 간접 동기화된 모든 단말 기지국에 간접 동기화된 모든 단말
P3 다른 모든 단말 GNSS
P4 N/A GNSS에 직접 동기화된 모든 단말
P5 N/A GNSS에 간접 동기화된 모든 단말
P6 N/A 다른 모든 단말
우선
순위
레벨
GNSS 기반의 동기화
(GNSS-based synchronization)
기지국 기반의 동기화
(eNB/gNB-based synchronization)
P0 GNSS 기지국
P1 GNSS에 직접 동기화된 모든 단말 기지국에 직접 동기화된 모든 단말
P2 GNSS에 간접 동기화된 모든 단말 기지국에 간접 동기화된 모든 단말
P3 기지국 GNSS
P4 기지국에 직접 동기화된 모든 단말 GNSS에 직접 동기화된 모든 단말
P5 기지국에 간접 동기화된 모든 단말 GNSS에 간접 동기화된 모든 단말
P6 낮은 우선 순위를 가지는 남은 단말(들) 낮은 우선 순위를 가지는 남은 단말(들)
표 2 또는 표 3에서, P0가 가장 높은 우선 순위를 의미할 수 있고, P6이 가장 낮은 우선순위를 의미할 수 있다. 표 2 또는 표 3에서, 기지국은 gNB 또는 eNB 중 적어도 어느 하나를 포함할 수 있다.
GNSS 기반의 동기화 또는 기지국 기반의 동기화를 사용할지 여부는 (미리) 설정될 수 있다. 싱글-캐리어 동작에서, 단말은 가장 높은 우선 순위를 가지는 이용 가능한 동기화 기준으로부터 상기 단말의 전송 타이밍을 유도할 수 있다.
예를 들어, 단말은 동기화 기준(synchronization reference)을 (재)선택할 수 있고, 단말은 상기 동기화 기준으로부터 동기를 획득할 수 있다. 그리고, 단말은 획득된 동기를 기반으로 SL 통신(예: PSCCH/PSSCH 송수신, PSFCH(Physical Sidelink Feedback Channel) 송수신, S-SSB 송수신, 참조 신호 송수신 등)을 수행할 수 있다.
도 9a 및 도 9b는 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 도시한다. 도 9a 및 도 9b의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.
예를 들어, 도 9a는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 예시한다. 또는, 예를 들어, 도 9a는 NR 자원 할당 모드 1과 관련된 단말 동작을 예시한다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.
예를 들어, 도 9b는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 예시한다. 또는, 예를 들어, 도 9b는 NR 자원 할당 모드 2와 관련된 단말 동작을 예시한다.
도 9a를 참고하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 기지국은 제1 단말에게 SL 자원과 관련된 정보 및/또는 UL 자원과 관련된 정보를 전송할 수 있다. 예를 들어, 상기 UL 자원은 PUCCH 자원 및/또는 PUSCH 자원을 포함할 수 있다. 예를 들어, 상기 UL 자원은 SL HARQ 피드백을 기지국에게 보고하기 위한 자원일 수 있다.
예를 들어, 제1 단말은 DG(dynamic grant) 자원과 관련된 정보 및/또는 CG(configured grant) 자원과 관련된 정보를 기지국으로부터 수신할 수 있다. 예를 들어, CG 자원은 CG 타입 1 자원 또는 CG 타입 2 자원을 포함할 수 있다. 본 명세서에서, DG 자원은, 기지국이 DCI(downlink control information)를 통해서 제1 단말에게 설정/할당하는 자원일 수 있다. 본 명세서에서, CG 자원은, 기지국이 DCI 및/또는 RRC 메시지를 통해서 제1 단말에게 설정/할당하는 (주기적인) 자원일 수 있다. 예를 들어, CG 타입 1 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제1 단말에게 전송할 수 있다. 예를 들어, CG 타입 2 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제1 단말에게 전송할 수 있고, 기지국은 CG 자원의 활성화(activation) 또는 해제(release)와 관련된 DCI를 제1 단말에게 전송할 수 있다.
이어, 제1 단말은 상기 자원 스케줄링을 기반으로 PSCCH(예: SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제2 단말에게 전송할 수 있다. 이후, 제1 단말은 상기 PSCCH와 관련된 PSSCH(예: 2nd-stage SCI, MAC PDU, 데이터 등)를 제2 단말에게 전송할 수 있다. 이후, 제1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제2 단말로부터 수신할 수 있다. 예를 들어, HARQ 피드백 정보(예: NACK 정보 또는 ACK 정보)가 상기 PSFCH를 통해서 상기 제2 단말로부터 수신될 수 있다. 이후, 제1 단말은 HARQ 피드백 정보를 PUCCH 또는 PUSCH를 통해서 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제1 단말이 상기 제2 단말로부터 수신한 HARQ 피드백 정보를 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제1 단말이 사전에 설정된 규칙을 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 DCI는 SL의 스케줄링을 위한 DCI일 수 있다. 예를 들어, 상기 DCI의 포맷은 DCI 포맷 3_0 또는 DCI 포맷 3_1일 수 있다. 표 4는 SL의 스케줄링을 위한 DCI의 일 예를 나타낸다.
3GPP TS 38.212
Figure PCTKR2021004661-appb-I000003

Figure PCTKR2021004661-appb-I000004

Figure PCTKR2021004661-appb-I000005
도 9b를 참고하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 예를 들어, 자원 풀 내에서 자원을 스스로 선택한 제1 단말은 상기 자원을 사용하여 PSCCH(예: SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제2 단말에게 전송할 수 있다. 이어, 제1 단말은 상기 PSCCH와 관련된 PSSCH(예: 2nd-stage SCI, MAC PDU, 데이터 등)를 제2 단말에게 전송할 수 있다. 이후, 제1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제2 단말로부터 수신할 수 있다. 도 9a 또는 도 9b를 참고하면, 예를 들어, 제1 단말은 PSCCH 상에서 SCI를 제2 단말에게 전송할 수 있다. 또는, 예를 들어, 제1 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예: 2-stage SCI)를 제2 단말에게 전송할 수 있다. 이 경우, 제2 단말은 PSSCH를 제1 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예: 2-stage SCI)를 디코딩할 수 있다. 본 명세서에서, PSCCH 상에서 전송되는 SCI는 1st SCI, 제1 SCI, 1st-stage SCI 또는 1st-stage SCI 포맷이라고 칭할 수 있고, PSSCH 상에서 전송되는 SCI는 2nd SCI, 제2 SCI, 2nd-stage SCI 또는 2nd-stage SCI 포맷이라고 칭할 수 있다. 예를 들어, 1st-stage SCI 포맷은 SCI 포맷 1-A를 포함할 수 있고, 2nd-stage SCI 포맷은 SCI 포맷 2-A 및/또는 SCI 포맷 2-B를 포함할 수 있다. 표 5는 1st-stage SCI 포맷의 일 예를 나타낸다.
3GPP TS 38.212
Figure PCTKR2021004661-appb-I000006

Figure PCTKR2021004661-appb-I000007

Figure PCTKR2021004661-appb-I000008

Figure PCTKR2021004661-appb-I000009
표 6은 2nd-stage SCI 포맷의 일 예를 나타낸다.
3GPP TS 38.212
Figure PCTKR2021004661-appb-I000010

Figure PCTKR2021004661-appb-I000011

Figure PCTKR2021004661-appb-I000012
도 9a 또는 도 9b를 참고하면, 제1 단말은 표 7을 기반으로 PSFCH를 수신할 수 있다. 예를 들어, 제1 단말 및 제2 단말은 표 7을 기반으로 PSFCH 자원을 결정할 수 있고, 제2 단말은 PSFCH 자원을 사용하여 HARQ 피드백을 제1 단말에게 전송할 수 있다.
3GPP TS 38.213
Figure PCTKR2021004661-appb-I000013

Figure PCTKR2021004661-appb-I000014

Figure PCTKR2021004661-appb-I000015

Figure PCTKR2021004661-appb-I000016

Figure PCTKR2021004661-appb-I000017

Figure PCTKR2021004661-appb-I000018

Figure PCTKR2021004661-appb-I000019
도 9a를 참고하면, 제1 단말은 표 8을 기반으로, PUCCH 및/또는 PUSCH를 통해서 SL HARQ 피드백을 기지국에게 전송할 수 있다.
3GPP TS 38.213
Figure PCTKR2021004661-appb-I000020

Figure PCTKR2021004661-appb-I000021

Figure PCTKR2021004661-appb-I000022

Figure PCTKR2021004661-appb-I000023

Figure PCTKR2021004661-appb-I000024

Figure PCTKR2021004661-appb-I000025

Figure PCTKR2021004661-appb-I000026

Figure PCTKR2021004661-appb-I000027

Figure PCTKR2021004661-appb-I000028
도 10a 내지 도 10c는 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입들을 도시한다. 10a 내지 도 10c의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.구체적으로, 도 10a는 브로드캐스트 타입의 SL 통신을, 도 10b는 유니캐스트 타입의 SL 통신을, 도 10c는 그룹캐스트 타입의 SL 통신을 예시한다. 유니캐스트 타입의 SL 통신의 경우, 단말은 다른 단말과 일 대 일 통신을 수행할 수 있다. 그룹캐스트 타입의 SL 통신의 경우, 단말은 자신이 속하는 그룹 내의 하나 이상의 단말과 SL 통신을 수행할 수 있다. 본 개시의 다양한 실시 예에서, SL 그룹캐스트 통신은 SL 멀티캐스트(multicast) 통신, SL 일 대 다(one-to-many) 통신 등으로 대체될 수 있다.
HARQ(Hybrid Automatic Repeat Request) 절차
SL HARQ 피드백은 유니캐스트에 대하여 인에이블될 수 있다. 이 경우, non-CBG(non-Code Block Group) 동작에서, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-ACK을 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하지 못하면, 수신 단말은 HARQ-NACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-NACK을 전송 단말에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 그룹캐스트에 대하여 인에이블될 수 있다. 예를 들어, non-CBG 동작에서, 두 가지 HARQ 피드백 옵션이 그룹캐스트에 대하여 지원될 수 있다.
(1) 그룹캐스트 옵션 1: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 전송 단말에게 전송하지 않을 수 있다.
(2) 그룹캐스트 옵션 2: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 그리고, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 1이 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 모든 단말은 PSFCH 자원을 공유할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 동일한 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 2가 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 각각의 단말은 HARQ 피드백 전송을 위해 서로 다른 PSFCH 자원을 사용할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 서로 다른 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
본 명세서에서, HARQ-ACK은 ACK, ACK 정보 또는 긍정(positive)-ACK 정보라고 칭할 수 있고, HARQ-NACK은 NACK, NACK 정보 또는 부정(negative)-ACK 정보라고 칭할 수 있다.
SL 측정(measurement) 및 보고(reporting)
QoS 예측(prediction), 초기 전송 파라미터 셋팅(initial transmission parameter setting), 링크 적응(link adaptation), 링크 관리(link management), 어드미션 제어(admission control) 등의 목적으로, 단말 간의 SL 측정 및 보고(예를 들어, RSRP, RSRQ)가 SL에서 고려될 수 있다. 예를 들어, 수신 단말은 전송 단말로부터 참조 신호를 수신할 수 있고, 수신 단말은 참조 신호를 기반으로 전송 단말에 대한 채널 상태를 측정할 수 있다. 그리고, 수신 단말은 채널 상태 정보(Channel State Information, CSI)를 전송 단말에게 보고할 수 있다. SL 관련 측정 및 보고는 CBR의 측정 및 보고, 및 위치 정보의 보고를 포함할 수 있다. V2X에 대한 CSI(Channel Status Information)의 예는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator), RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality), 경로이득(pathgain)/경로손실(pathloss), SRI(SRS, Sounding Reference Symbols, Resource Indicator), CRI(CSI-RS Resource Indicator), 간섭 조건(interference condition), 차량 동작(vehicle motion) 등일 수 있다. CSI 보고는 설정에 따라 활성화 및 비활성화될 수 있다.
예를 들어, 전송 단말은 CSI-RS를 수신 단말에게 전송할 수 있고, 수신 단말은 상기 CSI-RS를 이용하여 CQI 또는 RI를 측정할 수 있다. 예를 들어, 상기 CSI-RS는 SL CSI-RS라고 칭할 수 있다. 예를 들어, 상기 CSI-RS는 PSSCH 전송 내에 국한(confined)될 수 있다. 예를 들어, 전송 단말은 PSSCH 자원 상에 CSI-RS를 포함시켜 수신 단말에게 전송할 수 있다.
SL 혼잡 제어(sidelink congestion control)
예를 들어, 단말은 단위 시간/주파수 자원에서 측정된 에너지가 일정 수준 이상인지 여부를 판단하고, 일정 수준 이상의 에너지가 관찰된 단위 시간/주파수 자원의 비율에 따라서 자신의 전송 자원의 양 및 빈도를 조절할 수 있다. 본 명세서에서, 일정 수준 이상의 에너지가 관찰된 시간/주파수 자원의 비율을 채널 혼잡 비율(Channel Busy Ratio, CBR)이라고 정의할 수 있다. 단말은 채널/주파수에 대하여 CBR을 측정할 수 있다. 부가적으로, 단말은 측정된 CBR을 네트워크/기지국에게 전송할 수 있다.
도 11은 본 개시의 일 실시 예에 따른, CBR 측정을 위한 자원 단위를 도시한다. 도 11의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 11을 참고하면, CBR은 단말이 특정 구간(예를 들어, 100ms) 동안 서브채널 단위로 RSSI(Received Signal Strength Indicator)를 측정한 결과, RSSI의 측정 결과 값이 미리 설정된 임계치 이상의 값을 가지는 서브채널의 개수를 의미할 수 있다. 또는, CBR은 특정 구간 동안의 서브채널 중 미리 설정된 임계치 이상의 값을 가지는 서브채널의 비율을 의미할 수 있다. 예를 들어, 도 Z11의 실시 예에서, 빗금 쳐진 서브채널이 미리 설정된 임계치 이상의 값을 가지는 서브채널이라고 가정하는 경우, CBR은 100ms 구간 동안 빗금 쳐진 서브채널의 비율을 의미할 수 있다. 부가적으로, 단말은 CBR을 기지국에게 보고할 수 있다.
예를 들어, PSCCH와 PSSCH가 주파수 영역에서 멀티플렉싱되는 경우, 단말은 하나의 자원 풀에 대하여 하나의 CBR 측정을 수행할 수 있다. 여기서, 만약 PSFCH 자원이 설정되거나 사전에 설정된다면, 상기 PSFCH 자원은 상기 CBR 측정에서 제외될 수 있다.
나아가, 트래픽(예를 들어, 패킷)의 우선 순위를 고려한 혼잡 제어가 필요할 수 있다. 이를 위해, 예를 들어, 단말은 채널 점유율(Channel occupancy Ratio, CR)을 측정할 수 있다. 구체적으로, 단말은 CBR을 측정하고, 단말은 상기 CBR에 따라서 각각의 우선 순위(예를 들어, k)에 해당하는 트래픽이 점유할 수 있는 채널 점유율(Channel occupancy Ratio k, CRk)의 최댓값(CRlimitk)을 결정할 수 있다. 예를 들어, 단말은 CBR 측정값 미리 정해진 표를 기반으로, 각각의 트래픽의 우선 순위에 대한 채널 점유율의 최댓값(CRlimitk)을 도출할 수 있다. 예를 들어, 상대적으로 우선 순위가 높은 트래픽의 경우, 단말은 상대적으로 큰 채널 점유율의 최댓값을 도출할 수 있다. 그 후, 단말은 트래픽의 우선 순위 k가 i보다 낮은 트래픽들의 채널 점유율의 총합을 일정 값 이하로 제한함으로써, 혼잡 제어를 수행할 수 있다. 이러한 방법에 의하면, 상대적으로 우선 순위가 낮은 트래픽들에 더 강한 채널 점유율 제한이 걸릴 수 있다.
그 이외에, 단말은 전송 전력의 크기 조절, 패킷의 드롭(drop), 재전송 여부의 결정, 전송 RB 크기 조절(MCS 조정) 등의 방법을 이용하여, SL 혼잡 제어를 수행할 수 있다.
SL CBR 및 SL RSSI의 일 예는 다음과 같다. 아래 설명에서, 슬롯 인덱스는 물리 슬롯 인덱스(physical slot index)를 기반으로 할 수 있다.
슬롯 n에서 측정된 SL CBR은, CBR 측정 윈도우 [n-a, n-1]에 걸쳐 센싱된, 자원 풀내에서 UE에 의해 측정된 SL RSSI가 (미리) 설정된 임계치를 초과하는 서브 채널들의 부분(portion)으로 정의된다. 여기서, 상위 계층 파라미터 timeWindowSize-CBR에 따라, a는 100 또는 100·2μ개 슬롯들과 같다. SL CBR은 RRC_IDLE intra-frequency, RRC_IDLE inter-frequency, RRC_CONNECTED intra-frequency, RRC_CONNECTED inter-frequency에 적용될 수 있다.
SL RSSI는, 두번째 OFDM 심볼에서 시작하는 PSCCH 및 PSSCH를 위해 설정된 슬롯의 OFDM 심볼들 내의 설정된 서브채널에서 관찰되는 총 수신 전력([W] 단위)의 선형 평균으로 정의된다. FR1에 대하여, SL RSSI를 위한 참조 포인트는 UE의 안테나 커넥터일 것이다(shall be). FR2에 대하여, SL RSSI는 주어진 수신기 브랜치에 대응하는 안테나 요소들로부터의 결합된 신호에 기반하여 측정될 것이다. FR1 및 FR2에 대하여, 수신 다이버시티가 UE에 의해 사용되는 경우, 보고되는 SL RSSI 값은 개별적인 수신기 브랜치들 중 어떤 것의 대응되는 SL RSSI보다 작지 아니할 것이다. SL RSSI는 RRC_IDLE intra-frequency, RRC_IDLE inter-frequency, RRC_CONNECTED intra-frequency, RRC_CONNECTED inter-frequency에 적용될 수 있다.
SL CR(Channel occupancy Ratio)의 일 예는 다음과 같다. 슬롯 n에서 평가된 SL CR은, 슬롯 [n-a, n-1] 내에서 전송을 위해 사용된 그리고 슬롯 [n, n+b] 내의 허여된(granted) 서브채널들의 총 개수를 슬롯 [n-a, n+b]에 걸친 송신 풀 내의 설정된 서브채널들의 총 개수로 나눈 것으로 정의된다. SL CR은 RRC_IDLE intra-frequency, RRC_IDLE inter-frequency, RRC_CONNECTED intra-frequency, RRC_CONNECTED inter-frequency에 적용될 수 있다. 여기서, a는 양의 정수이고, b는 0이거나, 또는 a는 양의 정수일 수 있다. a 및 b는 UE 구현에 의해 결정되며, 상위 계층 파라미터 timeWindowSize-CBR에 따라, a+b+1=1000 또는 a+b+1=1000·2μ일 수 있다. b < (a+b+1)/2이며, n+b는 현재 전송을 위한 허여(grant)의 마지막 전송 기회를 초과하지 아니할 것이다. SL CR은 각 (재)전송에 대해 평가된다. SL CR을 평가함에 있어서, 패킷 드랍(packet dropping) 없이 슬롯 [n+1, n+b]에서 존재하는 허여(들)에 따라, UE는 슬롯 n에서 사용된 전송 파라미터가 재사용됨을 가정할 것이다. 슬롯 인덱스는 물리적 술롯 인덱스일 수 있다. SL CR은 우선순위 레벨 별로 계산될 수 있다. TS 38.321에 정의된 설정된 사이드링크 허여의 멤버(member)이면, 해당 자원은 허여된 것으로 취급된다.
포지셔닝(positioning)
도 12는 본 개시의 일 실시 예에 따라, NG-RAN (Next Generation-Radio Access Network) 또는 E-UTRAN에 접속되는 UE에 대한 측위가 가능한, 5G 시스템에서의 아키텍처의 일 예를 도시한다.
도 12를 참고하면, AMF는 특정 타겟 UE와 관련된 위치 서비스에 대한 요청을 GMLC(Gateway Mobile Location Center)와 같은 다른 엔티티(entity)로부터 수신하거나, AMF 자체에서 특정 타겟 UE를 대신하여 위치 서비스를 시작하기로 결정할 수 있다. 그러면, AMF는 LMF(Location Management Function)에게 위치 서비스 요청을 전송할 수 있다. 상기 위치 서비스 요청을 수신한 LMF는 상기 위치 서비스 요청을 처리하여 UE의 추정된 위치 등을 포함하는 처리 결과를 AMF에 반환할 수 있다. 한편, 위치 서비스 요청이 AMF이 이외에 GMLC와 같은 다른 엔티티로부터 수신된 경우에, AMF는 LMF로부터 수신한 처리 결과를 다른 엔티티로 전달할 수 있다.
ng-eNB(new generation evolved-NB) 및 gNB는 위치 추정을 위한 측정 결과를 제공할 수 있는 NG-RAN의 네트워크 요소이며, 타겟 UE에 대한 무선 신호를 측정하고 그 결과값을 LMF에 전달할 수 있다. 또한, ng-eNB는 원격 무선 헤드(remote radio heads)와 같은 몇몇 TP (Transmission Point)들 또는 E-UTRA를 위한 PRS(Positioning Reference Signal) 기반 비콘 시스템을 지원하는 PRS 전용 TP들을 제어할 수 있다.
LMF는 E-SMLC(Enhanced Serving Mobile Location Centre)와 연결되고, E-SMLC는 LMF가 E-UTRAN에 접속 가능하게 할 수 있다. 예를 들어, E-SMLC는 LMF가 eNB 및/또는 E-UTRAN 내의 PRS 전용 TP들로부터 전송된 신호를 통해 타겟 UE가 획득한 하향링크 측정을 이용하여 E-UTRAN의 측위 방법들 중 하나인 OTDOA (Observed Time Difference Of Arrival)을 지원하도록 할 수 있다.
한편, LMF는 SLP(SUPL Location Platform)에 연결될 수 있다. LMF는 타겟 UE들에 대한 서로 상이한 위치 결정 서비스들을 지원하고 관리할 수 있다. LMF는 UE의 위치 측정을 획득하기 위하여, 타겟 UE를 위한 서빙 ng-eNB 또는 서빙 gNB와 상호 작용할 수 있다. 타겟 UE의 측위를 위하여, LMF는 LCS(Location Service) 클라이언트 유형, 요구되는 QoS(Quality of Service), UE 측위 능력(UE positioning capabilities), gNB 측위 능력 및 ng-eNB 측위 능력 등에 기반하여 측위 방법을 결정하고, 이러한 측위 방법을 서빙 gNB 및/또는 서빙 ng-eNB에게 적용할 수 있다. 그리고, LMF는 타겟 UE에 대한 위치 추정치와 위치 추정 및 속도의 정확도와 같은 추가 정보를 결정할 수 있다. SLP는 사용자 평면(user plane)을 통해 측위를 담당하는 SUPL (Secure User Plane Location) 엔티티이다.
UE는 NG-RAN 및 E-UTRAN, 서로 상이한 GNSS(Global Navigation Satellite System), TBS(Terrestrial Beacon System), WLAN(Wireless Local Access Network) 접속 포인트, 블루투스 비콘 및 UE 기압 센서 등과 같은 소스 등을 통해 하향링크 신호를 측정할 수 있다. UE는 LCS 어플리케이션을 포함할 수도 있고, UE가 접속된 네트워크와의 통신 또는 UE에 포함된 다른 어플리케이션을 통해 LCS 어플리케이션에 접속할 수 있다. LCS 어플리케이션은 UE의 위치를 결정하는 데 필요한 측정 및 계산 기능을 포함할 수 있다. 예를 들어, UE는 GPS (Global Positioning System) 과 같은 독립적인 측위 기능을 포함할 수 있고, NG-RAN 전송과는 독립적으로 UE의 위치를 보고할 수 있다. 이러한 독립적으로 획득한 측위 정보는 네트워크로부터 획득한 측위 정보의 보조 정보로서 활용될 수도 있다.
도 13은 본 개시의 일 실시 예에 따라 UE의 위치를 측정하기 위한 네트워크의 구현 예를 나타낸다.
UE가 CM-IDLE(Connection Management - IDLE) 상태에 있을 때, AMF가 위치 서비스 요청을 수신하면, AMF는 UE와의 시그널링 연결을 수립하고, 특정 서빙 gNB 또는 ng-eNB를 할당하기 위해 네트워크 트리거 서비스를 요청할 수 있다. 이러한 동작 과정은 도 13에서는 생략되어 있다. 즉, 도 13에서는 UE가 연결 모드(connected mode)에 있는 것으로 가정할 수 있다. 하지만, 시그널링 및 데이터 비활성 등의 이유로 NG-RAN에 의해 시그널링 연결이 측위 과정이 진행되는 도중에 해제될 수도 있다.
도 13를 참고하여 구체적으로 UE의 위치를 측정하기 위한 네트워크의 동작 과정을 살펴보면, 단계 1a에서, GMLC와 같은 5GC 엔티티는 서빙 AMF로 타겟 UE의 위치를 측정하기 위한 위치 서비스를 요청할 수 있다. 다만, GMLC가 위치 서비스를 요청하지 않더라도, 단계 1b에 따라, 서빙 AMF가 타겟 UE의 위치를 측정하기 위한 위치 서비스가 필요하다고 결정할 수도 있다. 예를 들어, 긴급 호출(emergency call)을 위한 UE의 위치를 측정하기 위하여, 서빙 AMF가 직접 위치 서비스를 수행할 것을 결정할 수도 있다.
그 후, AMF는 단계 2에 따라, LMF로 위치 서비스 요청을 전송하고, 단계 3a에 따라, LMF는 위치 측정 데이터 또는 위치 측정 보조 데이터를 획득하기 위한 위치 절차(location procedures)를 서빙 ng-eNB, 서빙 gNB와 함께 시작할 수 있다. 추가적으로, 단계 3b에 따라, LMF는 UE와 함께 하향링크 측위를 위한 위치 절차(location procedures) 시작할 수 있다. 예를 들어, LMF는 UE에게 위치 보조 데이터(Assistance data defined in 3GPP TS 36.355)를 전송하거나, 위치 추정치 또는 위치 측정치를 획득할 수 있다. 한편, 단계 3b는 단계 3a가 수행된 이후 추가적으로 수행될 수도 있으나, 단계 3a에 대신하여 수행될 수도 있다.
단계 4에서 LMF는 AMF에 위치 서비스 응답을 제공할 수 있다. 또한, 위치 서비스 응답에는 UE의 위치 추정이 성공했는지 여부에 대한 정보 및 UE의 위치 추정치가 포함될 수 있다. 그 후, 단계 1a에 의해 도 13의 절차가 개시되었다면, AMF는 GMLC와 같은 5GC 엔티티에 위치 서비스 응답을 전달할 수 있으며, 단계 1b에 의해 도 13의 절차가 개시되었다면, AMF는 긴급 호출 등에 관련된 위치 서비스 제공을 위하여, 위치 서비스 응답을 이용할 수 있다.
도 14는 본 개시의 일 실시 예에 따라 LMF와 UE 간의 LPP(LTE Positioning Protocol) 메시지 전송을 지원하기 위해 사용되는 프로토콜 레이어의 일 예를 도시한다.
LPP PDU는 AMF와 UE 간의 NAS PDU를 통해 전송될 수 있다. 도 14를 참고하면, LPP는 타겟 장치(예들 들어, 제어 평면에서의 UE 또는 사용자 평면에서의 SET(SUPL Enabled Terminal))와 위치 서버(예를 들어, 제어 평면에서의 LMF 또는 사용자 평면에서의 SLP) 사이를 연결(terminated)할 수 있다. LPP 메시지는 NG-C(NG-Control Plane) 인터페이스를 통한 NGAP(NG Application Protocol), LTE-Uu 및 NR-Uu 인터페이스를 통한 NAS/RRC 등의 적절한 프로토콜을 사용하여 중간 네트워크 인터페이스를 통해 트랜스패런트(Transparent) PDU 형태로 전달될 수 있다. LPP 프로토콜은 다양항 측위 방법을 사용하여 NR 및 LTE를 위한 측위가 가능하도록 한다.
예를 들어, LPP 프로토콜을 통하여 타겟 장치 및 위치 서버는 상호 간의 성능(capability) 정보 교환, 측위를 위한 보조 데이터 교환 및/또는 위치 정보를 교환할 수 있다. 또한, LPP 메시지를 통해 에러 정보 교환 및/또는 LPP 절차의 중단 지시 등을 수행할 수도 있다.
도 15는 본 개시의 일 실시 예에 따라 LMF와 NG-RAN 노드 간의 NRPPa(NR Positioning Protocol A) PDU 전송을 지원하는데 사용되는 프로토콜 레이어의 일 예를 도시한다.
NRPPa는 NG-RAN 노드와 LMF 간의 정보 교환에 사용될 수 있다. 구체적으로 NRPPa는 ng-eNB에서 LMF로 전송되는 측정을 위한 E-CID(Enhanced-Cell ID), OTDOA 측위 방법을 지원하기 위한 데이터, NR Cell ID 측위 방법을 위한 Cell-ID 및 Cell 위치 ID 등을 교환할 수 있다. AMF는 연관된 NRPPa 트랜잭션(transaction)에 대한 정보가 없더라도, NG-C 인터페이스를 통해 연관된 LMF의 라우팅 ID를 기반으로 NRPPa PDU들을 라우팅할 수 있다.
위치 및 데이터 수집을 위한 NRPPa 프로토콜의 절차는 2가지 유형으로 구분될 수 있다. 첫 번째 유형은, 특정 UE에 대한 정보 (예를 들어, 위치 측정 정보 등)를 전달하기 위한 UE 관련 절차(UE associated procedure)이고, 두 번째 유형은, NG-RAN 노드 및 관련된 TP들에 적용 가능한 정보 (예를 들어, gNB/ng-eNB/TP 타이밍 정보 등)을 전달하기 위한 비 UE 관련 절차 (non UE associated procedure)이다. 상기 2가지 유형의 절차는 독립적으로 지원될 수도 있고, 동시에 지원될 수도 있다.
한편, NG-RAN에서 지원하는 측위 방법들에는 GNSS, OTDOA, E-CID(enhanced cell ID), 기압 센서 측위, WLAN 측위, 블루투스 측위 및 TBS (terrestrial beacon system), UTDOA(Uplink Time Difference of Arrival) 등이 있을 수 있다. 상기 측위 방법들 중, 어느 하나의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있지만, 둘 이상의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있다.
(1) OTDOA (Observed Time Difference Of Arrival)
도 16은 본 개시의 일 실시 예에 따른 OTDOA(Observed Time Difference Of Arrival) 측위 방법을 도시한다.
OTDOA 측위 방법은 UE가 eNB, ng-eNB 및 PRS 전용 TP를 포함하는 다수의 TP들로부터 수신된 하향링크 신호들의 측정 타이밍을 이용한다. UE는 위치 서버로부터 수신된 위치 보조 데이터를 이용하여 수신된 하향링크 신호들의 타이밍을 측정한다. 그리고 이러한 측정 결과 및 이웃 TP들의 지리적 좌표들을 기반으로 UE의 위치를 결정할 수 있다.
gNB에 연결된 UE는 TP로부터 OTDOA 측정을 위한 측정 갭(gap)을 요청할 수 있다. 만약, UE가 OTDOA 보조 데이터 내의 적어도 하나의 TP를 위한 SFN(Single Frequency Network)을 인지하지 못하면, UE는 RSTD(Reference Signal Time Difference) 측정(Measurement)을 수행하기 위한 측정 갭을 요청하기 전에 OTDOA 참조 셀(reference cell)의 SFN을 획득하기 위해 자율적인 갭(autonomous gap)을 사용할 수 있다.
여기서, RSTD는 참조 셀과 측정 셀로부터 각각 수신된 2개의 서브프레임들의 경계 간의 가장 작은 상대적인 시간 차를 기반으로 정의될 수 있다. 즉, 측정 셀로부터 수신된 서브 프레임의 시작 시간에 가장 가까운 참조 셀의 서브프레임의 시작 시간 간의 상대적인 시간 차이를 기반으로 계산될 수 있다. 한편, 참조 셀은 UE에 의해 선택될 수 있다.
정확한 OTDOA 측정을 위해서는 지리적으로 분산된 3개 이상의 TP들 또는 기지국들로부터 수신된 신호의 TOA(time of arrival)을 측정하는 것이 필요하다. 예를 들어, TP 1, TP 2 및 TP 3 각각에 대한 TOA를 측정하고, 3개의 TOA를 기반으로 TP 1-TP 2에 대한 RSTD, TP 2-TP 3에 대한 RSTD 및 TP 3-TP 1에 대한 RSTD를 계산하여, 이를 기반으로 기하학적 쌍곡선을 결정하고, 이러한 쌍곡선이 교차하는 지점을 UE의 위치로 추정할 수 있다. 이 때, 각 TOA 측정에 대한 정확도 및/또는 불확실성이 생길 수 있는 바, 추정된 UE의 위치는 측정 불확실성에 따른 특정 범위로 알려질 수도 있다.
예를 들어, 두 TP에 대한 RSTD는 [수학식 1]을 기반으로 산출될 수 있다.
Figure PCTKR2021004661-appb-M000001
여기서, c는 빛의 속도이고, {xt, yt}는 타겟 UE의 (알려지지 않은) 좌표이고, {xi, yi}는 (알려진) TP의 좌표이며, {x1, y1}은 참조 TP (또는 다른 TP)의 좌표일 수 있다. 여기서, (Ti-T1)은 두 TP 간의 전송 시간 오프셋으로서, "Real Time Differences" (RTDs)로 명칭될 수 있으며, ni, n1은 UE TOA 측정 에러에 관한 값을 나타낼 수 있다.
(2) E-CID (Enhanced Cell ID)
셀 ID (CID) 측위 방법에서, UE의 위치는 UE의 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보를 통해 측정될 수 있다. 예를 들어, 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보는 페이징(paging), 등록(registration) 등을 통해 획득될 수 있다.
한편, E-CID 측위 방법은 CID 측위 방법에 더하여 UE 위치 추정치를 향상 시키기 위한 추가적인 UE 측정 및/또는 NG-RAN 무선 자원 등을 이용할 수 있다. E-CID 측위 방법에서, RRC 프로토콜의 측정 제어 시스템과 동일한 측정 방법들 중 일부를 사용할 수 있지만, 일반적으로 UE의 위치 측정만을 위하여 추가적인 측정을 하지 않는다. 다시 말해, UE의 위치를 측정하기 위하여 별도의 측정 설정 (measurement configuration) 또는 측정 제어 메시지(measurement control message)는 제공되지 않을 수 있으며, UE 또한 위치 측정만을 위한 추가적인 측정 동작이 요청될 것을 기대하지 않고, UE가 일반적으로 측정 가능한 측정 방법들을 통해 획득된 측정값을 보고할 수 있다.
예를 들어, 서빙 gNB는 UE로부터 제공되는 E-UTRA 측정치를 사용하여 E-CID 측위 방법을 구현할 수 있다.
E-CID 측위를 위해 사용할 수 있는 측정 요소의 예를 들면 다음과 같을 수 있다.
- UE 측정: E-UTRA RSRP (Reference Signal Received Power), E-UTRA RSRQ (Reference Signal Received Quality), UE E-UTRA 수신-송신 시간차 (Rx-Tx Time difference), GERAN(GSM EDGE Random Access Network)/WLAN RSSI (Reference Signal Strength Indication), UTRAN CPICH (Common Pilot Channel) RSCP (Received Signal Code Power), UTRAN CPICH Ec/Io
- E-UTRAN 측정: ng-eNB 수신-송신 시간차 (Rx-Tx Time difference), 타이밍 어드밴스 (Timing Advance, TADV), Angle of Arrival (AoA)
여기서, TADV는 아래와 같이 Type 1과 Type 2로 구분될 수 있다.
TADV Type 1 = (ng-eNB 수신-송신 시간차)+(UE E-UTRA 수신-송신 시간차)
TADV Type 2 = ng-eNB 수신-송신 시간차
한편, AoA는 UE의 방향을 측정하는데 사용될 수 있다. AoA는 기지국/TP로부터 반 시계 방향으로 UE의 위치에 대한 추정 각도로 정의될 수 있다. 이 때, 지리적 기준 방향은 북쪽일 수 있다. 기지국/TP는 AoA 측정을 위해 SRS (Sounding Reference Signal) 및/또는 DMRS (Demodulation Reference Signal)과 같은 상향링크 신호를 이용할 수 있다. 또한, 안테나 어레이의 배열이 클수록 AoA의 측정 정확도가 높아지며, 동일한 간격으로 안테나 어레이들이 배열된 경우, 인접한 안테나 소자들에서 수신된 신호들은 일정한 위상 변화(Phase-Rotate)를 가질 수 있다.
(3) UTDOA (Uplink Time Difference of Arrival)
UTDOA는 SRS의 도달 시간을 추정하여 UE의 위치를 결정하는 방법이다. 추정된 SRS 도달 시간을 산출할 때, 서빙 셀이 참조 셀로 사용하여, 다른 셀 (혹은 기지국/TP)와의 도달 시간 차이를 통해 UE의 위치를 추정할 수 있다. UTDOA를 구현하기 위해 E-SMLC는 타겟 UE에게 SRS 전송을 지시하기 위해, 타겟 UE의 서빙 셀을 지시할 수 있다. 또한, E-SMLC는 SRS의 주기적/비주기적 여부, 대역폭 및 주파수/그룹/시퀀스 호핑 등과 같은 설정(configuration)을 제공할 수 있다.
본 개시의 구체적인 실시 예
이하 본 개시는 무선 통신 시스템에서 빔포밍된(beamformed) 신호를 이용하여 측위(positioning)를 수행하기 위한 기술을 설명한다. 구체적으로, 본 개시는 측위 절차 및 빔 관리(beam management) 절차를 하나의 절차로 통합함으로써 측위에 소요되는 시간을 줄일 수 있는 기술을 제안한다.
자율주행 등 차량 관련 어플리케이션에서 고정밀 측위는 필수 기술 요소이다. 이를 위해, 광대역 PRS(positioning reference signal)의 전송이 요구된다. 기존 면허 대역의 스펙트럼 부족으로 인해, 밀리미터파 비면허 대역(mmWave unlicensed band)의 이용이 필요하며, 이 경우 필수적으로 밀리미터파 차량들 간 통신 링크, 즉, 밀리미터파 V2X 사이드링크에서 PRS 전송을 위한 스케줄링 및 빔관리가 필요하다. 이에 따라, 본 개시는 PRS의 스케줄링 및 빔 관리를 효율적으로 수행할 수 있는 다양한 실시 예들을 설명한다.
도 17은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PRS(positioning reference signal) 요청에 기반한 측위 절차의 개념을 도시한다.
도 17을 참고하면, 제1 차량 단말(1710)이 측위를 수행하고자 한다. 제1 차량 단말(1710)의 주변에 제2 차량 단말(1720) 및 2개의 고정 노드들(1730a, 1730b)이 존재한다. 여기서, 고정 노드들(1730a, 1730b) 각각은 RSU(road side unit) 또는 기지국일 수 있다. 고정 노드들(1730a, 1730b)은 주변의 장치(예:제1 차량 단말(1710))의 측위를 위한 PRS를 송신할 수 있다. 즉, 고정 노드들(1730a, 1730b)은 별도의 요청 없이 주기적으로 PRS를 송신할 수 있다. 고정 노드들(1730a, 1730b) 각각은 설정된 패턴에 따라 반복적으로 PRS들을 송신할 수 있다. 이에 따라, 제1 차량 단말(1710)은 수신되는 PRS들의 수신 시각들을 측정하고, 수신 시각들에 기반하여 직접 측위를 수행하거나, 측정 결과를 상위 노드(예: LMF)에게 전달할 수 있다.
일반적으로, TDOA 또는 OTDOA 기법에 따라 측위를 수행하기 위해, 일정 개수 이상의 신호 소스(source)들이 요구된다. 측위를 수행하고자 하는 제1 차량 단말(1710)의 주변에 PRS를 송신하는 고정 노드(이하 '고정 PRS 소스')들이 충분히 존재한다면, 제1 차량 단말(1710)은 주변의 고정 PRS 소스들로부터의 PRS 신호들을 이용하여 측위를 수행할 수 있다. 하지만, 주변에 충분한 개수의 고정 PRS 소스들이 존재하지 아니하는 경우, 측위 동작의 수행이 어려울 수 있다.
이 경우, 다양한 실시 예들에 따라, 제1 차량 단말(1710)은 다른 단말, 예를 들어, 제2 차량 단말(1720)에게 PRS의 송신을 요청할 수 있다. 이에 따라, 제1 차량 단말(1710)은 PRS를 제공하는 장치(이하 'PRS 소스')를 더 확보할 수 있고, 측위를 수행할 수 있다. 나아가, 주변에 고정 PRS 소스들이 존재하지 아니하더라도, 다양한 실시 예들에 따라, 제1 차량 단말(1710)은 측위를 수행하기 위해 제2 차량 단말(1720)을 포함하는 복수의 다른 단말들을 PRS 소스들로서 활용할 수 있다.
도 17를 참고하여 설명한 바와 같은 절차에 따라, 단말은 다른 단말에게 PRS 소스로서 동작할 것을 요청하고, 다른 단말은 PRS 소스로서 동작할 수 있다. 이때, 단말들은 빔포밍된 신호를 이용하여 상호 통신을 수행할 수 있다. 이 경우, 단말들 간 송신 빔 및 수신 빔을 정합(match)하는 절차가 선행되어야 하는데, 전술한 절차와 빔 정합 절차를 별도로 수행한다면, 최종 PRS 송신까지의 시간 지연이 증가할 것이다.
다시 말해, 밀리미터파 사이드링크 시스템에서 PRS를 송신/수신하기 위해서, PRS 전송을 요청하고 자원을 할당하는 절차와 빔을 관리하는 절차가 요구된다. 두 가지 절차들을 순차적으로 수행할 경우, 종단 간 지연(end-to-end latency) 조건이 엄격한 차량 간 통신 환경에서 과도한 시간 지연이 발생할 수 있다. 따라서, PRS 스케줄링 절차 및 빔 관리 절차를 유기적으로 결합함으로써, 최종 PRS 전송까지의 시간 지연을 최소화할 필요가 있다.
따라서, 본 개시는 밀리미터파 사이드링크 시스템에서 PRS를 주고받기 위해 PRS 전송을 요청하고 자원을 할당하는 전술한 절차와 두 차량 단말들 간의 빔을 정합(match)하는 절차를 유기적으로 결합하는 방안을 제안한다. 빔 정합을 위해, 전술한 차량 단말들이 송신하는 메시지들 또는 신호들에 빔포밍이 적용될 수 있고. 빔에 관련된 보고가 일부 메시지에 포함될 수 있다.
도 18은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 측위를 수행하는 단말의 동작 방법의 예를 도시한다. 도 18은 RPS 신호를 수신하는 단말(예: 제1 차량 단말(1710))의 동작 방법을 예시한다.
도 18을 참고하면, S1801 단계에서, 단말은 PRS 요청 메시지를 송신한다. 다시 말해, 단말은 주변의 다른 단말에게 PRS 소스로 동작해줄 것으로 요청하는 메시지를 송신한다. PRS 요청 메시지는 PRS 송신을 요청함을 알리는 정보를 포함한다. PRS 요청 메시지는 목적지 단말을 특정함 없이 송신될 수 있다. 이때, 일 실시 예에 따라, 단말은 PRS 요청 메시지를 복수의 빔들을 사용하여 반복적으로 송신한다. 즉, 단말은 서로 다른 빔들을 이용하여 PRS 요청 메시지들을 송신한다.
S1803 단계에서, 단말은 PRS 응답 메시지를 수신한다. 단말은 PRS 요청 메시지를 수신한 다른 단말로부터 PRS 응답 메시지를 수신한다. PRS 응답 메시지는 다른 단말이 PRS를 송신할 것임을 알리는 응답으로서, 다른 단말의 식별 정보를 포함한다. 또한, 일 실시 예에 따라, PRS 응답 메시지는 적어도 하나의 빔의 선택에 관련된 정보(예: 선택된 빔에 대한 지시, 측정 정보 등)를 포함할 수 있다. 이때, 선택에 관련된 정보는 명시적으로 또는 묵시적으로 표현될 수 있다. 선택에 관련된 정보는 송신 빔을 지시하지만, 채널 상호성에 따라, 다른 단말에서 송신된 신호를 수신하기 위한 수신 빔도 확인될 수 있다.
S1805 단계에서, 단말은 PRS 스케줄링 메시지를 송신한다. 스케줄링 메시지는 PRS를 송신하기 위한 자원에 관련된 정보를 포함한다. PRS 스케줄링 메시지는, 다른 단말에서의 디코딩을 위해, 기준 신호와 함께 송신될 수 있다. 이때, 일 실시 예에 따라, 단말은 다른 단말에 의해 선택된 적어도 하나의 빔을 통해 PRS 스케줄링 메시지를 송신한다. 나아가, 다른 단말의 수신 빔 결정을 위해, 단말은 PRS 스케줄링 메시지를 반복적으로 송신할 수 있다. 이를 통해, PRS 송신이 수행되기 전, 다른 단말의 PRS 송신 및 단말의 PRS 수신을 위한 빔 쌍(beam pair)이 결정된다.
S1807 단계에서, 단말은 PRS를 수신한다. 단말은 PRS 스케줄링 메시지에 의해 지시된 자원에서 다른 단말로부터 송신된 PRS를 수신할 수 있다. 필요에 따라, PRS는 측위 보조 데이터(positioning assist data)와 함께 수신될 수 있다. 예를 들어, 측위 보조 정보는 다른 단말의 위치 정보(예: 좌표, 거리 등)를 포함할 수 있다. 이때, 일 실시 예에 따라, 단말은 PRS 응답 메시지에 포함된 선택에 관련된 정보에 의해 확인된 수신 빔을 이용하여 PRS를 수신한다.
도 18에 도시되지 아니하였으나, 단말은 다른 단말로부터 수신된 PRS 및 다른 적어도 하나의 PRS 소스(예: 또 다른 단말, RSU, 기지국 등)로부터 수신된 PRS들을 이용하여 측위를 수행할 수 있다. 구체적으로, 단말은 서로 다른 PRS 소스들로부터 수신된 PRS들의 시간 차를 계산할 수 있다. 계산된 시간 차 정보는 상위 노드로 전달되거나, 또는 위치 계산을 위해 단말에 의해 직접 사용될 수 있다.
도 19는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 측위를 보조하는 단말의 동작 방법의 예를 도시한다. 도 19는 RPS 신호를 송신하는 단말(예: 제2 차량 단말(1720))의 동작 방법을 예시한다.
도 19를 참고하면, S1901 단계에서, 단말은 PRS 요청 메시지를 수신한다. 다시 말해, 단말은 다른 단말로부터 PRS 소스로 동작해줄 것으로 요청하는 메시지를 수신한다. PRS 요청 메시지는 PRS 송신을 요청함을 알리는 정보를 포함한다. 단말은 다른 단말의 방향 또는 다른 단말과의 통신에 적합한 빔 방향을 알 수 없기 때문에, 일 실시 예에 따라, 단말은 넓은 빔으로 PRS 요청 메시지의 신호를 수신할 수 있다. 이때, 다른 단말은 PRS 요청 메시지를 서로 다른 송신 빔들을 통해 반복적으로 송신하므로, 단말은 PRS 요청 메시지의 수신 여부 및 측정 결과에 기반하여 선호하는 적어도 하나의 송신 빔을 선택할 수 있다.
S1903 단계에서, 단말은 PRS 응답 메시지를 송신한다. 단말은 PRS 요청 메시지를 송신한 다른 단말에게 PRS 응답 메시지를 송신한다. PRS 응답 메시지는 단말이 PRS를 송신할 것임을 알리는 응답으로서, 단말의 식별 정보를 포함한다. 또한, 일 실시 예에 따라, PRS 응답 메시지는 적어도 하나의 빔의 선택에 관련된 정보(예: 선택된 빔에 대한 지시, 측정 정보 등)를 포함할 수 있다. 이때, 선택에 관련된 정보는 명시적으로 또는 묵시적으로 표현될 수 있다.
S1905 단계에서, 단말은 PRS 스케줄링 메시지를 수신한다. 스케줄링 메시지는 PRS를 송신하기 위한 자원에 관련된 정보를 포함한다. PRS 스케줄링 메시지는 디코딩을 위한 채널 추정이 가능하도록 기준 신호와 함께 수신될 수 있다. 이때, 일 실시 예에 따라, 다른 단말은 PRS 스케줄링 메시지를 반복적으로 송신한다. 이에 따라, 단말을 복수의 수신 빔들을 이용하여 PRS 스케줄링 메시지의 수신을 시도하고, PRS 스케줄링 메시지의 수신 여부 및 측정 결과에 기반하여 선호하는 적어도 하나의 수신 빔을 선택할 수 있다. 이를 통해, PRS 송신이 수행되기 전, 단말의 PRS 송신 및 다른 단말의 PRS 수신을 위한 빔 쌍(beam pair)의 결정이 완료된다.
S1907 단계에서, 단말은 PRS를 송신한다. 단말은 PRS 스케줄링 메시지에 의해 지시된 자원에서 다른 단말로부터 수신된 PRS를 송신할 수 있다. 필요에 따라, 단말은 PRS 및 측위 보조 데이터를 함께 송신할 수 있다. 예를 들어, 측위 보조 정보는 단말의 위치 정보(예: 좌표, 거리 등)를 포함할 수 있다. 이때, 일 실시 예에 따라, 단말은 PRS 스케줄링 메시지에 기반하여 선택된 수신 빔에 대응하는 송신 빔을 이용하여 PRS를 송신한다.
도 18 및 도 19를 참고하여 설명한 실시 예들과 같이, PRS 소스 확보 및 빔 정합이 하나의 절차를 통해 이루어질 수 있다. 이를 통해, PRS 송신을 요청하는 제1 단말 및 PRS를 송신하는 제2 단말 간 빔포밍된 신호를 이용한 PRS 송신 및 수신이 빠르게 이루어질 수 있다. 구체적으로, 제2 단말이 PRS 요청 메시지에 기반하여 제1 단말의 송신 빔을 선택하고, 선택된 빔을 PRS 응답 메시지를 통해 피드백함으로써, 제1 단말은 PRS 수신을 위해 사용할 빔을 결정할 수 있다. 또한, 제1 단말이 PRS 스케줄링 메시지를 동일 빔을 이용하여 반복적으로 송신함으로써, 제2 단말이 PRS 송신을 위한 자원에 관련된 정보를 획득함과 동시에, 수신 빔을 측정하고, PRS 송신을 위해 사용할 빔을 결정할 수 있다.
전술한 절차에서, 송신되는 메시지들은 각 메시지의 목적 또는 타입을 나타내는 정보, 후속 메시지를 송신하기 위한 자원에 대한 정보를 포함할 수 있다. 예를 들어, PRS 요청 메시지는 PRS 송신을 요청함을 알리는 정보, PRS 응답 메시지를 송신하기 위한 자원(예: 자원 풀)에 대한 정보를 포함하며, 포함되는 정보는 명시적으로(explicitly) 또는 묵시적으로(implicitly) 표현될 수 있다.
유사하게, PRS 응답 메시지에 포함되는 빔의 선택에 관한 정보는 명시적으로 또는 묵시적으로 표현될 수 있다. 예를 들어, 빔 인덱스가 PRS 응답 메시지에 포함될 수 있다. 다른 예로, 각 빔에 대한 고유의(unique) 응답 자원들을 할당함으로써, PRS 응답 메시지 전송 시 묵시적으로 빔 보고(beam reporting)를 수행하는 효과가 얻어질 수 있다. 또한, 서비스마다 서로 다른 요청 전송 자원을 할당함으로써, 서비스를 시그널링하는 효과가 얻어질 수 있다.
이하, 보다 구체적인 실시 예에 따른 PRS 요청 절차가 도 20을 참고하여 설명된다. 도 20에서, PRS를 요청하는 단말은 '에이전트 차량(agent vehicle)', PRS를 송신하는 단말은 '앵커 차량'으로 지칭된다.
도 20은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 요청 기반의 PRS 송신을 위한 절차의 예를 도시한다. 도 20은 에이전트 차량(2010) 및 앵커 차량(2020) 간 신호 교환을 예시한다. 또한, 도 20은 각 메시지의 송신 및 수신 시 에이전트 차량(2010) 및 앵커 차량(2020) 각각의 송신 빔포밍 또는 수신 빔포밍을 예시한다.
도 20을 참고하면, S2001 단계에서, 에이전트 차량(2010)은 PRS 요청 메시지를 송신하고, 앵커 차량(2020)는 PRS 요청 메시지를 수신할 수 있다. 에이전트 차량(2010)은 측위를 위해 주변 차량에 PRS 전송을 요청할 수 있다. 여기서, PRS 요청 메시지는 PRS 송신을 요청함을 알리는 정보를 포함한다. PRS 송신을 요청함은 명시적은 지시자에 의해 표현되거나(예: PRS 요청에 대응하는 서비스 ID) 또는 묵시적으로(implicitly) 표현될 수 있다. 예를 들어, PRS 요청 메시지는 측위 서비스를 위해 할당된 자원 풀(이하 'PRS 요청 자원 풀')을 통해 송신됨으로써, PRS 송신 요청을 알릴 수 있다. PRS 요청 자원 풀이 사용되는 경우, 앵커 차량(3020)은 PRS 요청 자원 풀을 모니터링함으로써, PRS 요청 메시지를 수신할 수 있다.
일 실시 예에 따라, PRS 요청 메시지는 디스커버리 신호(discovery signal) 형태일 수 있으며, PRS를 요청하는 것임을 디스커버리 신호 내의 서비스 ID를 통해 시그널링 할 수 있다. 혹은, 요청하는 서비스에 따라 서로 다른 개별적인 디스커버리 자원 풀(discovery resource pool)이 할당될 수 있다. 예를 들어, 디스커버리 자원 풀은 도 21과 같이 할당될 수 있다. 도 21을 참고하면, 복수의 자원 풀들(2102 내지 2106)이 서로 다른 시간-주파수 영역에 할당될 수 있다. 복수의 자원 풀들(2102 내지 2106) 중 자원 풀(2102)이 측위 서비스를 위해 할당된 것이면, PRS 요청 메시지는 자원 풀(2102)을 통해 송신된다.
이 경우, 측위 서비스에 관심 있는 앵커 차량(2020)은 측위 서비스 용으로 할당된 디스커버리 자원 풀만 모니터링(monitoring)한다. PRS 요청 메시지는 빔포밍된 신호의 형태일 수 있으며, 서로 다른 빔들을 이용하여 반복적으로 송신될 수 있다. PRS 요청 메시지는 에이전트 차량(2010)의 ID 및 이를 수신한 다른 차량이 응답을 보내기 위한 적어도 하나의 자원에 관련된 정보를 포함할 수 있다. 서로 다른 빔을 이용하여 송신된 PRS 요청들은 서로 다른 PRS 요청 응답 자원 정보를 포함할 수 있다.
S2003 단계에서, 앵커 차량(2020)은 PRS 요청 응답 메시지를 송신한다. 앵커 차량(2020)은 PRS 요청 메시지를 수신한 뒤, PRS를 전송하고자 할 경우 PRS 요청 응답 메시지를 전송할 수 있다. PRS 요청 응답 메시지는 에이전트 차량(2010) 및 앵커 차량(2020)의 ID가 포함될 수 있으며 에이전트 차량(2010)이 PRS 스케줄링 메시지를 송신하기 위한 적어도 하나의 자원에 관한 정보를 포함할 수 있다. 이때, 에이전트 차량(2010)은 앵커 차량(2020)에서 송신되는 신호를 어느 수신 빔을 이용하여 수신할 수 있는지 알 수 없다. 따라서, 에이전트 차량(2010)은 복수의 수신 빔들을 이용하여 RPS 요청 응답 메시지의 수신을 시도하고, 복수의 수신 빔들 중 적어도 하나를 이용하여 RPS 요청 응답 메시지를 수신한다.
여러 빔들로 PRS 요청 메시지들이 수신된 경우, PRS 요청 응답메시지는 앵커 차량(2020)이 선호하는(preferred) 빔(들)에 관련된 정보를 포함할 수 있다. 선호하는 빔(들)에 관련된 정보는 빔 인덱스, 해당 빔의 RSRP(reference signal received power) 등을 포함할 수 있다. 또는, 앵커 차량(2020)이 특정 빔과 연관된 PRS 요청 메시지에 의해 지정된 PRS 요청 응답 자원을 선택할 경우, 에이전트 차량(2010)은 해당 자원에서 PRS 요청 응답 메시지를 수신함으로써 앵커 차량(2020)이 선호하는 송신 빔 정보를 알 수 있다.
예를 들어, 자원 풀들은 도 22와 같이 할당될 수 있다. 도 22를 참고하면, 서로 다른 빔들에 대응하는 복수의 자원 풀들(2202 내지 2214)이 할당될 수 있다. 앵커 차량(2020)이 빔-4로 송신된 PRS 요청 메시지를 선택하면, 앵커 차량(2030)은 빔-4에 대응하는 자원 풀(2208)을 통해 PRS 요청 응답 메시지를 송신한다. 앵커 차량(2020)이 PRS 요청을 수신했을 때 수신된 신호로부터 RSRP를 측정하여 측정된 RSRP값이 특정 문턱값을 넘는지의 여부에 따라 PRS 요청 응답을 전송할 지 여부를 정할 수 있다. 이때, 문턱값은 네트워크에 의해 설정되거나 단말에 미리 설정된 값일 수 있다.
S2005 단계에서, PRS 요청 응답 메시지를 수신한 에이전트 차량(2010)은 PRS 스케줄링 메시지를 전송할 수 있다. PRS 스케줄링 메시지는 앵커 차량(2020)이 PRS를 전송하기 위한 적어도 하나의 자원에 관련된 정보가 포함될 수 있다. PRS 스케줄링정보는 빔포밍될 수 있으며, PRS 스케줄링 메시지를 위해 빔은 PRS 요청 응답 메시지 내에 포함된 빔 정보에 관련된 빔 혹은 PRS 요청 응답이 수신된 자원과 연관된 빔일 수 있다. PRS 스케줄링 메시지는 기준 신호와 함께 다중화될(multiplexed) 수 있으며, 기준 신호는 PRS 스케줄링 메시지를 디코딩하기 위한 용도로 사용될 수 있다. 또한, PRS 스케줄링 메시지는 기준 신호와 함께 동일한 빔을 이용해서 반복적으로 전송될 수 있다. 이때, PRS 스케줄링 메시지 또는 기준 신호는 앵커 차량(2020)에서 최적의 수신 빔을 선택하기 위해 사용될 수 있다. 기준 신호를 이용하여 선택된 수신 빔은 송수신 채널 상호성(channel reciprocity) 원리에 따라 앵커 차량(2020)이 PRS를 전송하기 위한 송신 빔으로 사용될 수 있다.
S2007 단계에서, 앵커 차량(2020)은 PRS를 송신한다. PRS 스케줄링 메시지를 수신한 앵커 차량(2020)은 PRS를 전송하기 위한 자원 정보를 획득할 수 있다. 또한, 복수의 PRS 스케줄링 메시지들을 수신하는 경우, 앵커 차량(2020)은 서로 다른 빔을 이용해서 PRS 스케줄링 메시지들을 수신할 수 있으며, RSRP 등의 측정을 통해 적어도 하나의 수신 빔을 선택할 수 있다. 선택된 수신 빔(들)은 송수신 채널 상호성 원리에 의해 송신에 적합한(suitable) 빔일 수 있으며, PRS 전송에 사용될 수 있다. PRS는 반복적으로 송신될 수 있으며, 이때 동일한 송신 빔 혹은 서로 다른 송신 빔으로 전송될 수 있다. PRS는 측위 보조 데이터와 함께 다중화될 수 있으며, PRS는 측위 보조 데이터의 디코딩을 위해 사용될 수 있다. 측위 보조 데이터는 앵커 차량(2020)의 좌표 혹은 앵커 차량(2020)이 갖고 있는 고정 기준점(fixed reference)의 정보(예: 좌표, 거리 등)을 포함할 수 있다.
도 20을 참고하여 설명한 실시 예에서, 에이전트 차량(2010)은 앵커 차량(2020)의 수신 빔 결정을 위해 PRS 스케줄링 메시지는 반복적으로 송신할 수 있다. 이때, 반복적인 송신의 횟수는 앵커 차량(2020)에서 사용 가능한 후보 수신 빔들의 개수와 동일한 것이 바람직하다. 다른 실시 예에 따라, 만일 앵커 차량(2020)이 동시에 복수의 수신 빔들을 형성할 수 있는 능력(capability)을 가지는 경우, PRS 스케줄링 메시지는 앵커 차량(2020)에서 사용 가능한 후보 수신 빔들의 개수 보다 적은 횟수(예: 1회)만 송신될 수 있다. 이를 위해, 에이전트 차량(2010)은 앵커 차량(2020)의 빔포밍 능력에 관련된 정보를 획득해야 한다. 따라서, 다른 실시 예에 따라, 도 20의 절차 시작 전 또는 절차 중간에 또는 도 20에서 설명된 메시지들 중 하나를 통해, 에이전트 차량(2010)은 앵커 차량(2020)의 빔포밍 능력에 대한 정보를 획득할 수 있다. 예를 들어, 빔포밍 능력에 대한 정보는 앵커 차량(2020)의 수신 빔 결정을 위해 필요한 신호(예: PRS 스케줄링 메시지)의 송신 횟수를 지시할 수 있다.
또한, 도 20을 참고하여 설명한 절차에서, 일 실시 예에 따라, PRS 요청 메시지 및 PRS 요청 응답 메시지는 자원 풀을 통해 송신될 수 있다. 이때, 자원 풀에 대한 정보는 도 20에 예시된 절차와 별개의 절차를 통해 제공될 수 있다. 예를 들어, 자원 풀에 대한 정보는 기지국이 송신하는 시스템 정보에 포함되거나, 또는 미리 정의될 수 있다.
전술한 바와 같이, 본 개시는 PRS를 요청하는 절차와 빔 관리 절차를 유기적으로 결합한 새로운 절차를 제안한다. 제안된 절차를 이용하면 PRS 요청 절차와 빔 관리 절차를 병렬적으로 수행할 수 있어 최종 PRS 전송까지 시간 지연이 감소할 수 있다.
본 개시의 실시 예들이 적용 가능한 시스템 및 다양한 장치들
본 개시의 다양한 실시 예들은 상호 결합될 수 있다.
이하 본 개시의 다양한 실시 예가 적용될 수 있는 장치에 대하여 설명한다. 이로 제한되는 것은 아니지만, 본 문서에 개시된 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예: 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 23은 본 개시의 일 실시 예에 따른, 통신 시스템 예를 도시한다. 도 23의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 23을 참조하면, 본 개시에 적용되는 통신 시스템은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예: 5G NR, LTE)을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(110a), 차량(110b-1, 110b-2), XR(extended reality) 기기(110c), 휴대 기기(hand-held device)(110d), 가전(home appliance)(110e), IoT(Internet of Thing) 기기(110f), AI(artificial intelligence) 기기/서버(110g) 중 적어도 하나를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량(110b-1, 110b-2)은 UAV(unmanned aerial vehicle)(예: 드론)를 포함할 수 있다. XR 기기(110c)는 AR(augmented reality)/VR(virtual reality)/MR(mixed reality) 기기를 포함하며, HMD(head-mounted device), 차량에 구비된 HUD(head-up display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기(110d)는 스마트폰, 스마트패드, 웨어러블 기기(예: 스마트워치, 스마트글래스), 컴퓨터(예: 노트북 등) 등을 포함할 수 있다. 가전(110e)은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기(110f)는 센서, 스마트 미터 등을 포함할 수 있다. 예를 들어, 기지국(120a~120e), 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(120a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
여기서, 본 명세서의 무선 기기(110a~110f)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(110a~110f)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(110a~110f)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
무선 기기(110a~110f)는 기지국(120a~120e)을 통해 네트워크와 연결될 수 있다. 무선 기기(110a~110f)에는 AI 기술이 적용될 수 있으며, 무선 기기(110a~110f)는 네트워크를 통해 AI 서버(110g)와 연결될 수 있다. 네트워크는 3G 네트워크, 4G(예: LTE) 네트워크 또는 5G(예: NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(110a~110f)는 기지국(120a~120e)/네트워크를 통해 서로 통신할 수도 있지만, 기지국(120a~120e)/네트워크를 통하지 않고 직접 통신(예, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(110b-1, 110b-2)은 직접 통신(예, V2V(vehicle to vehicle)/V2X(vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(110f)(예: 센서)는 다른 IoT 기기(예: 센서) 또는 다른 무선 기기(110a~110f)와 직접 통신을 할 수 있다.
무선 기기(110a~110f)/기지국(120a~120e), 기지국(120a~120e)/기지국(120a~120e) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(예, relay, IAB(integrated access backhaul))과 같은 다양한 무선 접속 기술(예: 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예: 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 24는 본 개시의 일 실시 예에 따른, 무선 기기의 예를 도시한다. 도 24의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 24를 참고하면, 제1 무선 기기(200a)와 제2 무선 기기(200b)는 다양한 무선 접속 기술(예: LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(200a), 제2 무선 기기(200b)}은 도 1의 {무선 기기(110x), 기지국(120x)} 및/또는 {무선 기기(110x), 무선 기기(110x)}에 대응할 수 있다.
제1 무선 기기(200a)는 하나 이상의 프로세서(202a) 및 하나 이상의 메모리(204a)를 포함하며, 추가적으로 하나 이상의 송수신기(206a) 및/또는 하나 이상의 안테나(208a)을 더 포함할 수 있다. 프로세서(202a)는 메모리(204a) 및/또는 송수신기(206a)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202a)는 메모리(204a) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(206a)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202a)는 송수신기(206a)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204a)에 저장할 수 있다. 메모리(204a)는 프로세서(202a)와 연결될 수 있고, 프로세서(202a)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204a)는 프로세서(202a)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202a)와 메모리(204a)는 무선 통신 기술(예: LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206a)는 프로세서(202a)와 연결될 수 있고, 하나 이상의 안테나(208a)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206a)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(206a)는 RF(radio frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200b)는 제1 무선 기기(200a)와 무선 통신을 수행하며, 하나 이상의 프로세서(202b), 하나 이상의 메모리(204b)를 포함하며, 추가적으로 하나 이상의 송수신기(206b) 및/또는 하나 이상의 안테나(208b)를 더 포함할 수 있다. 하나 이상의 프로세서(202b), 하나 이상의 메모리(204b), 하나 이상의 송수신기(206b) 및/또는 하나 이상의 안테나(208b)의 기능은 제1 무선 기기(200a)의 하나 이상의 프로세서(202a), 하나 이상의 메모리(204a), 하나 이상의 송수신기(206a) 및/또는 하나 이상의 안테나(208a)와 유사하다.
이하, 무선 기기(200a, 200b)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(202a, 202b)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 계층(예: PHY(physical), MAC(media access control), RLC(radio link control), PDCP(packet data convergence protocol), RRC(radio resource control), SDAP(service data adaptation protocol)와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit), 하나 이상의 SDU(service data unit), 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예: 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(206a, 206b)에게 제공할 수 있다. 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)로부터 신호(예: 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(202a, 202b)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(202a, 202b)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(application specific integrated circuit), 하나 이상의 DSP(digital signal processor), 하나 이상의 DSPD(digital signal processing device), 하나 이상의 PLD(programmable logic device) 또는 하나 이상의 FPGA(field programmable gate arrays)가 하나 이상의 프로세서(202a, 202b)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(202a, 202b)에 포함되거나, 하나 이상의 메모리(204a, 204b)에 저장되어 하나 이상의 프로세서(202a, 202b)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(204a, 204b)는 ROM(read only memory), RAM(random access memory), EPROM(erasable programmable read only memory), 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(204a, 204b)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(202a, 202b)와 연결될 수 있다.
하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 또한, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 안테나(208a, 208b)와 연결될 수 있고, 하나 이상의 안테나(208a, 208b)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예: 안테나 포트)일 수 있다. 하나 이상의 송수신기(206a, 206b)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(202a, 202b)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 프로세서(202a, 202b)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(206a, 206b)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 25는 본 개시의 일 실시 예에 따른, 전송 신호를 처리하는 회로를 도시한다. 도 25의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 25를 참고하면, 신호 처리 회로(300)는 스크램블러(310), 변조기(320), 레이어 매퍼(330), 프리코더(340), 자원 매퍼(350), 신호 생성기(360)를 포함할 수 있다. 이때, 일 예로, 도 25의 동작/기능은 도 24의 프로세서(202a, 202b) 및/또는 송수신기(206a, 206b)에서 수행될 수 있다. 또한, 일 예로, 도 25의 하드웨어 요소는 도 24의 프로세서(202a, 202b) 및/또는 송수신기(206a, 206b)에서 구현될 수 있다. 일 예로, 블록 310~360은 도 24의 프로세서(202a, 202b)에서 구현될 수 있다. 또한, 블록 310~350은 도 24의 프로세서(202a, 202b)에서 구현되고, 블록 360은 도 24의 송수신기(206a, 206b)에서 구현될 수 있으며, 상술한 실시 예로 한정되지 않는다.
코드워드는 도 25의 신호 처리 회로(300)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예: UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 도 25의 다양한 물리 채널(예: PUSCH, PDSCH)을 통해 전송될 수 있다. 구체적으로, 코드워드는 스크램블러(310)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(320)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-binary phase shift keying), m-PSK(m-phase shift keying), m-QAM(m-quadrature amplitude modulation) 등을 포함할 수 있다.
복소 변조 심볼 시퀀스는 레이어 매퍼(330)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(340)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(340)의 출력 z는 레이어 매퍼(330)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(340)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예: DFT(discrete fourier transform) 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(340)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(350)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예: CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(360)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(360)는 IFFT(inverse fast fourier transform) 모듈 및 CP(cyclic prefix) 삽입기, DAC(digital-to-analog converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 25의 신호 처리 과정의 역으로 구성될 수 있다. 일 예로, 무선 기기(예: 도 24의 200a, 200b)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(fast fourier transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
도 26은 본 개시의 일 실시 예에 따른, 무선 기기의 다른 예를 도시한다. 도 26의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 26을 참고하면, 무선 기기(300)는 도 24의 무선 기기(200a, 200b)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(400)는 통신부(410), 제어부(420), 메모리부(430) 및 추가 요소(440)를 포함할 수 있다.
통신부(410)는 통신 회로(412) 및 송수신기(들)(414)을 포함할 수 있다. 통신부(410)는 다른 무선 기기, 기지국들과 신호(예: 데이터, 제어 신호 등)를 송수신할 수 있다. 예를 들어, 통신 회로(412)는 도 24의 하나 이상의 프로세서(202a, 202b) 및/또는 하나 이상의 메모리(204a, 204b)를 포함할 수 있다. 예를 들어, 송수신기(들)(414)는 도 24의 하나 이상의 송수신기(206a, 206b) 및/또는 하나 이상의 안테나(208a, 208b)을 포함할 수 있다.
제어부(420)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(420)는 통신 제어 프로세서, 어플리케이션 프로세서(application processor, AP), ECU(electronic control unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 제어부(420)는 통신부(410), 메모리부(430) 및 추가 요소(440)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(420)는 메모리부(430)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(420)는 메모리부(430)에 저장된 정보를 통신부(410)을 통해 외부(예: 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(410)를 통해 외부(예: 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(430)에 저장할 수 있다.
메모리부(430)는 RAM, DRAM(dynamic RAM), ROM, 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다. 메모리부(430)는 무선 기기(400)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(430)는 입/출력되는 데이터/정보 등을 저장할 수 있다.
추가 요소(440)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(440)는 파워 유닛/배터리, 입출력부(input/output unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기(400)는 로봇(도 1, 110a), 차량(도 1, 110b-1, 110b-2), XR 기기(도 1, 110c), 휴대 기기(도 1, 110d), 가전(도 1, 110e), IoT 기기(도 1, 110f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 1, 140), 기지국(도 1, 120), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 27은 본 개시의 일 실시 예에 따른, 휴대 기기의 예를 도시한다. 도 27은 본 개시에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예: 스마트워치, 스마트글래스), 휴대용 컴퓨터(예: 노트북 등)을 포함할 수 있다. 도 27의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 27을 참조하면, 휴대 기기(500)는 안테나부(508), 통신부(510), 제어부(520), 메모리부(530), 전원공급부(540a), 인터페이스부(540b) 및 입출력부(540c)를 포함할 수 있다. 안테나부(508)는 통신부(510)의 일부로 구성될 수 있다. 블록 510~530/540a~540c는 각각 도 26의 블록 410~430/440에 대응하며, 중복된 설명은 생략된다.
통신부(510)는 신호를 송수신하고, 제어부(520)는 휴대 기기(500)를 제어하고, 메모리부(530)는 데이터 등을 저장할 수 있다. 전원공급부(540a)는 휴대 기기(500)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(540b)는 휴대 기기(500)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(540b)는 외부 기기와의 연결을 위한 다양한 포트(예: 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(540c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(540c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(540d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(540c)는 사용자로부터 입력된 정보/신호(예: 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(530)에 저장될 수 있다. 통신부(510)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(510)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(530)에 저장된 뒤, 입출력부(540c)를 통해 다양한 형태(예: 문자, 음성, 이미지, 비디오, 햅틱)로 출력될 수 있다.
도 28은 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량의 예를 도시한다. 도 28은 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(aerial vehicle, AV), 선박 등으로 구현될 수 있으며, 차량의 형태로 한정되는 것은 아니다. 도 28의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 28을 참조하면, 차량 또는 자율 주행 차량(600)은 안테나부(608), 통신부(610), 제어부(620), 구동부(640a), 전원공급부(640b), 센서부(640c) 및 자율 주행부(640d)를 포함할 수 있다. 안테나부(650)는 통신부(610)의 일부로 구성될 수 있다. 블록 610/630/640a~640d는 각각 도 27의 블록 510/530/540에 대응하며, 중복된 설명은 생략된다.
통신부(610)는 다른 차량, 기지국(예: 기지국, 노변 유닛(road side unit) 등), 서버 등의 외부 기기들과 신호(예: 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(620)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(640a)는 차량 또는 자율 주행 차량(600)을 지상에서 주행하게 할 수 있다. 구동부(640a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(640b)는 차량 또는 자율 주행 차량(600)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(640c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(640c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(640d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(610)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(640d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(620)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(600)이 자율 주행 경로를 따라 이동하도록 구동부(640a)를 제어할 수 있다(예: 속도/방향 조절). 자율 주행 도중에 통신부(610)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(640c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(640d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(610)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
본 개시는 본 개시에서 서술하는 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 개시의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다.
본 개시의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave, THzWave 통신 시스템에도 적용될 수 있다.
추가적으로, 본 개시의 실시 예들은 자유 주행 차량, 드론 등 다양한 애플리케이션에도 적용될 수 있다.

Claims (16)

  1. 무선 통신 시스템에서 제1 단말의 동작 방법에 있어서,
    복수의 송신 빔들을 이용하여 PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 송신하는 단계;
    상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 제2 단말로부터 수신하는 단계;
    상기 송신 빔을 이용하여 상기 제2 단말에게 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 송신하는 단계; 및
    상기 스케줄링 정보에 기반하여 상기 제2 단말로부터 상기 PRS를 수신하는 단계를 포함하는 방법.
  2. 청구항 1에 있어서,
    상기 제1 메시지들은, 상기 PRS의 송신을 요청함을 알리는 정보를 포함하거나, 또는 상기 PRS의 송신에 대응하는 자원 풀(resource pool)을 통해 송신되는 방법.
  3. 청구항 1에 있어서,
    상기 제1 메시지들은, 상기 제2 메시지를 송신하기 위한 자원에 관련된 정보를 포함하는 방법.
  4. 청구항 3에 있어서,
    상기 자원에 관련된 정보는, 상기 제1 메시지들을 송신하기 위해 사용되는 송신 빔에 따라 다르게 설정되는 방법.
  5. 청구항 1에 있어서,
    상기 제2 메시지는, 상기 적어도 하나의 송신 빔을 지시하는 정보를 포함하거나, 또는 적어도 하나의 송신 빔에 대응하는 자원 풀을 통해 송신되는 방법.
  6. 청구항 1에 있어서,
    상기 제2 메시지는, 상기 제3 메시지를 송신하기 위한 자원에 관련된 정보를 포함하는 방법.
  7. 청구항 1에 있어서,
    상기 제3 메시지는, 상기 제2 메시지에 의해 지시되는 송신 빔을 이용하여 반복적으로 송신되는 방법.
  8. 청구항 1에 있어서,
    상기 PRS는, 상기 제2 메시지에 의해 지시되는 송신 빔에 대응하는 수신 빔을 이용하여 수신되는 방법.
  9. 청구항 1에 있어서,
    상기 제2 단말의 위치 정보 또는 상기 제2 단말이 가진 고정 기준점(fixed reference)의 위치 정보를 수신하는 단계를 더 포함하는 방법.
  10. 무선 통신 시스템에서 제2 단말의 동작 방법에 있어서,
    제1 단말에서 복수의 송신 빔들을 이용하여 송신된, PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 중 적어도 하나를 수신하는 단계;
    상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 상기 제1 단말에게 송신하는 단계;
    상기 제1 단말에서 상기 적어도 하나의 송신 빔을 이용하여 송신된, 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 수신하는 단계; 및
    상기 스케줄링 정보에 기반하여 상기 PRS를 상기 제1 단말에게 송신하는 단계를 포함하는 방법.
  11. 청구항 10에 있어서,
    상기 제3 메시지는, 복수의 수신 빔들을 이용하여 수신되는 방법.
  12. 청구항 10에 있어서,
    상기 제3 메시지와 다중화된 기준 신호들을 수신하는 단계;
    상기 기준 신호들에 기반하여, 복수의 수신 빔들 중 적어도 하나의 수신 빔을 선택하는 단계; 및
    상기 적어도 하나의 수신 빔에 대응하는 적어도 하나의 송신 빔을 확인함으로써, 상기 PRS를 송신하기 위한 송신 빔을 결정하는 단계를 더 포함하는 방법.
  13. 무선 통신 시스템에서 제1 단말에 있어서,
    송수신기; 및
    상기 송수신기와 연결된 프로세서를 포함하며,
    상기 프로세서는,
    복수의 송신 빔들을 이용하여 PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 송신하고,
    상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 제2 단말로부터 수신하고,
    상기 송신 빔을 이용하여 상기 제2 단말에게 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 송신하고,
    상기 스케줄링 정보에 기반하여 상기 제2 단말로부터 상기 PRS를 수신하도록 제어하는 제1 단말.
  14. 무선 통신 시스템에서 제2 단말은,
    송수신기; 및
    상기 송수신기와 연결된 프로세서를 포함하며,
    상기 프로세서는,
    제1 단말에서 복수의 송신 빔들을 이용하여 송신된, PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 중 적어도 하나를 수신하고,
    상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 상기 제1 단말에게 송신하고,
    상기 제1 단말에서 상기 적어도 하나의 송신 빔을 이용하여 송신된, 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 수신하고,
    상기 스케줄링 정보에 기반하여 상기 PRS를 상기 제1 단말에게 송신하도록 제어하는 제2 단말.
  15. 적어도 하나의 메모리 및 상기 적어도 하나의 메모리들과 기능적으로 연결되어 있는 적어도 하나의 프로세서를 포함하는 제1 장치에 있어서,
    상기 적어도 하나의 프로세서는 상기 제1 장치가,
    복수의 송신 빔들을 이용하여 PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 송신하고,
    상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 제2 장치로부터 수신하고,
    상기 송신 빔을 이용하여 상기 제2 장치에게 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 송신하고,
    상기 스케줄링 정보에 기반하여 상기 제2 장치로부터 상기 PRS를 수신하도록 제어하는 제1 장치.
  16. 적어도 하나의 명령어(instructions)을 저장하는 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서,
    프로세서에 의해 실행 가능한(executable) 상기 적어도 하나의 명령어를 포함하며,
    상기 적어도 하나의 명령어는,
    제1 장치가 복수의 송신 빔들을 이용하여 PRS(positioning reference signal)의 송신을 요청하는 제1 메시지들을 송신하고,
    상기 제1 장치가 상기 복수의 송신 빔들 중 적어도 하나의 송신 빔을 지시하는 제2 메시지를 제2 장치로부터 수신하고,
    상기 제1 장치가 상기 송신 빔을 이용하여 상기 제2 장치에게 상기 PRS의 송신을 위한 스케줄링 정보를 포함하는 제3 메시지를 송신하고,
    상기 제1 장치가 상기 스케줄링 정보에 기반하여 상기 제2 장치로부터 상기 PRS를 수신하도록 지시하는 컴퓨터 판독 가능 매체.
PCT/KR2021/004661 2020-04-27 2021-04-13 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치 WO2021221352A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227032727A KR20220150444A (ko) 2020-04-27 2021-04-13 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치
US17/906,789 US20230254838A1 (en) 2020-04-27 2021-04-13 Method and device for performing positioning by means of beamformed signal in wireless communication system
CN202180029871.4A CN115428391A (zh) 2020-04-27 2021-04-13 无线通信系统中借助于波束成形的信号执行定位的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200050502 2020-04-27
KR10-2020-0050502 2020-04-27

Publications (1)

Publication Number Publication Date
WO2021221352A1 true WO2021221352A1 (ko) 2021-11-04

Family

ID=78373657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004661 WO2021221352A1 (ko) 2020-04-27 2021-04-13 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치

Country Status (4)

Country Link
US (1) US20230254838A1 (ko)
KR (1) KR20220150444A (ko)
CN (1) CN115428391A (ko)
WO (1) WO2021221352A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122416A1 (en) * 2021-12-24 2023-06-29 Qualcomm Incorporated Channel busy ratio (cbr) for sidelink positioning resource pools
WO2023179536A1 (zh) * 2022-03-21 2023-09-28 维沃移动通信有限公司 Sl-prs调度方法、装置、终端及介质
WO2024031377A1 (zh) * 2022-08-09 2024-02-15 Oppo广东移动通信有限公司 通信方法以及终端设备
WO2024037409A1 (zh) * 2022-08-15 2024-02-22 维沃移动通信有限公司 定位消息传输方法、终端及网络侧设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220317278A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Protocol exchange parameters for sidelink-based ranging and positioning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013852A1 (ko) * 2014-07-24 2016-01-28 엘지전자(주) 무선 통신 시스템에서 포지셔닝을 수행하기 위한 방법 및 이를 위한 장치
WO2018159967A1 (ko) * 2017-02-28 2018-09-07 엘지전자 주식회사 무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치
WO2019036578A1 (en) * 2017-08-17 2019-02-21 Intel Corporation SELECTING RESOURCES FOR LATERAL LINK COMMUNICATION BASED ON GEOLOCATION INFORMATION
US20200028648A1 (en) * 2018-07-19 2020-01-23 Qualcomm Incorporated On-demand positioning reference signal (prs)
WO2020068310A1 (en) * 2018-09-27 2020-04-02 Sony Corporation On demand positioning in a wireless communication system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10021667B2 (en) * 2016-06-23 2018-07-10 Qualcomm Incorporated Positioning in beamformed communications
US10757583B2 (en) * 2017-08-10 2020-08-25 Qualcomm Incorporated Uplink-based positioning reference signaling in multi-beam systems
US11442135B2 (en) * 2018-05-31 2022-09-13 Qualcomm Incorporated Positioning methods for wireless networks that utilize beamformed communication
WO2020050646A1 (ko) * 2018-09-05 2020-03-12 엘지전자 주식회사 측위 참조 신호를 송수신하는 방법 및 이를 위한 장치
JP7297879B2 (ja) * 2018-09-27 2023-06-26 ソニーグループ株式会社 マルチビーム動作をサポートする基地局を有する無線ネットワークにおけるユーザ機器の測位推定

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013852A1 (ko) * 2014-07-24 2016-01-28 엘지전자(주) 무선 통신 시스템에서 포지셔닝을 수행하기 위한 방법 및 이를 위한 장치
WO2018159967A1 (ko) * 2017-02-28 2018-09-07 엘지전자 주식회사 무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치
WO2019036578A1 (en) * 2017-08-17 2019-02-21 Intel Corporation SELECTING RESOURCES FOR LATERAL LINK COMMUNICATION BASED ON GEOLOCATION INFORMATION
US20200028648A1 (en) * 2018-07-19 2020-01-23 Qualcomm Incorporated On-demand positioning reference signal (prs)
WO2020068310A1 (en) * 2018-09-27 2020-04-02 Sony Corporation On demand positioning in a wireless communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122416A1 (en) * 2021-12-24 2023-06-29 Qualcomm Incorporated Channel busy ratio (cbr) for sidelink positioning resource pools
WO2023179536A1 (zh) * 2022-03-21 2023-09-28 维沃移动通信有限公司 Sl-prs调度方法、装置、终端及介质
WO2024031377A1 (zh) * 2022-08-09 2024-02-15 Oppo广东移动通信有限公司 通信方法以及终端设备
WO2024037409A1 (zh) * 2022-08-15 2024-02-22 维沃移动通信有限公司 定位消息传输方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN115428391A (zh) 2022-12-02
KR20220150444A (ko) 2022-11-10
US20230254838A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
WO2020251318A1 (ko) Nr v2x에서 서버 단말의 prs 전송에 기반한 사이드링크 포지셔닝
WO2020246842A1 (ko) Nr v2x에서 단일 단말의 prs 전송에 기반한 사이드링크 포지셔닝
WO2021086093A1 (ko) Nr v2x에서 s-prs를 전송하는 방법 및 장치
WO2021133104A1 (ko) 사이드링크 측위를 위한 사전 구성된 prs 전송 방법 및 이를 위한 장치
WO2020256311A1 (ko) Nr v2x에서 사이드링크 rtt를 이용한 포지셔닝 방법 및 장치
WO2021112610A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 포지셔닝 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2022045798A1 (ko) 네트워크 설정 기반의 사이드링크 측위 방법 및 장치
WO2021101182A1 (ko) 사이드링크 측위를 위한 제어 정보 전송 방법 및 이를 위한 장치
WO2022085894A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 측위와 관련된 신호를 송수신하는 방법 및 이를 위한 장치
WO2021040494A1 (ko) 무선통신시스템에서 사용자기기의 방법
WO2021221352A1 (ko) 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치
WO2021221362A1 (ko) 무선 통신 시스템에서 인접 단말로부터의 신호에 기반하여 측위를 수행하기 위한 방법 및 장치
WO2020256365A1 (ko) 사이드링크 tdoa에 기반한 포지셔닝
WO2021141404A1 (ko) 사이드링크 기반의 측위를 수행하는 방법 및 장치
WO2021215826A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2021215771A1 (ko) 무선 통신 시스템에서 단말의 위치 결정 방법 및 장치
WO2021125631A1 (en) Method and apparatus for efficient assistance data transfer in nr positioning
WO2021221463A1 (ko) Nr v2x에서 비-독립적 비면허 대역 기반의 측위 방법 및 장치
WO2021221419A1 (ko) 무선 통신 시스템에서 단말의 신호 송수신 방법 및 장치
WO2022005052A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2023043259A1 (ko) 사이드링크 불연속 수신 동작 방법 및 장치
WO2023038504A1 (ko) 사이드링크 불연속수신 동작 방법 및 장치
WO2023163564A1 (ko) Sl 측위를 위한 상위 계층 절차를 수행하는 방법 및 장치
WO2024080628A1 (ko) 무선 통신 시스템에서 사이드링크 포지셔닝에서 다중 qos 클래스 지원 방법 및 이를 위한 장치
WO2024080631A1 (ko) 무선 통신 시스템에서 포지셔닝을 위한 타이밍 에러 그룹 정보 송신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227032727

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797268

Country of ref document: EP

Kind code of ref document: A1