WO2022198591A1 - 一种非周期定位参考信号的测量上报方法和装置 - Google Patents

一种非周期定位参考信号的测量上报方法和装置 Download PDF

Info

Publication number
WO2022198591A1
WO2022198591A1 PCT/CN2021/083087 CN2021083087W WO2022198591A1 WO 2022198591 A1 WO2022198591 A1 WO 2022198591A1 CN 2021083087 W CN2021083087 W CN 2021083087W WO 2022198591 A1 WO2022198591 A1 WO 2022198591A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperiodic
prs
value
time information
terminal device
Prior art date
Application number
PCT/CN2021/083087
Other languages
English (en)
French (fr)
Inventor
高鑫
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180093983.6A priority Critical patent/CN116868531A/zh
Priority to PCT/CN2021/083087 priority patent/WO2022198591A1/zh
Publication of WO2022198591A1 publication Critical patent/WO2022198591A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and apparatus for reporting measurement of aperiodic positioning reference signals.
  • DL-TDOA downlink-time of arrival
  • DL-AOD downlink-angle of departure
  • UL-TDOA uplink-time of arrival
  • -TDOA uplink angle of arrival
  • multi-RTT multi-user round-trip delay
  • the DL-TDOA, UL-TDOA and multi-RTT algorithms are based on the time of arrival positioning technology, that is, the receiving end is required to measure the arrival time of the signal sent by the transmitting end, and then convert it into the distance information between the two, and finally get to be determined. position of the bit target.
  • DL-AOD and UL-AOA are angle-based positioning technologies, that is, the receiver measures the angle of arrival of the reference signal sent by the transmitter, and then infers the receiver's location based on the angle information between the receiver and multiple transmitters with known positions.
  • the premise of realizing the positioning function is that the sending and receiving parties need to coordinate to measure the positioning reference signal (PRS), and perform subsequent positioning calculations according to the measurement results of the PRS.
  • PRS positioning reference signal
  • the network device In the NR Rel-16 protocol version, only periodic PRS transmission is supported, that is, once the positioning function is enabled, the network device will continue to send PRS according to the configured period, which will bring the following two problems:
  • data cannot be sent and received on the symbols for sending PRS, resulting in a decrease in data throughput.
  • the UE For user equipment (UE), the UE needs to receive PRS from multiple network devices, and the resource overhead is too high, even Interrupt data reception.
  • the UE needs to receive the PRS according to a specific period. If the period is too large, the delay of the entire positioning will increase, and if the period is too small, the resource overhead of positioning will be increased.
  • the embodiments of the present application provide an aperiodic PRS measurement reporting method and device, which are used to reduce positioning delay and positioning resource overhead.
  • a measurement reporting method for aperiodic PRS may be executed by a terminal device, or a chip with similar functions of the terminal device.
  • the terminal device can receive aperiodic PRS configuration information.
  • the terminal device may also receive the first value from the network device.
  • the first value may be used to indicate the reporting configuration information of n aperiodic PRSs of the terminal device.
  • the reporting configuration information of one aperiodic PRS may include reporting time information of m aperiodic PRSs. n and m are integers greater than 0.
  • the terminal device may receive the aperiodic PRS based on the aperiodic PRS configuration information.
  • the terminal device may report the measurement report of the aperiodic PRS based on the received aperiodic PRS and one of the n*m aperiodic PRS reporting time information.
  • the network device can trigger the terminal device to measure and report aperiodic PRS, and the network device can indicate to the terminal device n*m aperiodic PRS reporting time information. Therefore, the terminal device may determine the reporting time of the aperiodic PRS at one of the n*m aperiodic PRS reporting time information, and report the measurement report of the aperiodic PRS at the reporting time of the aperiodic PRS. Since the above-mentioned PRS is an aperiodic PRS, the positioning resource overhead can be reduced, and the positioning of the terminal equipment can be realized by the aperiodic PRS when there is a positioning requirement.
  • the terminal device may receive the second value from the network device.
  • the terminal device may determine, based on the second value, one piece of aperiodic PRS reporting time information from n*m pieces of aperiodic PRS reporting time information; one piece of aperiodic PRS reporting time information may be used to determine the sending time of the measurement report for reporting the aperiodic PRS .
  • the terminal device can determine an aperiodic PRS reporting time information through the second value from the network device, and then determine the sending time of the aperiodic PRS measurement report, so that the sending time of the aperiodic PRS measurement report conforms to the network device scheduling.
  • the second value may be used to indicate the transmission time information of the communication data of the terminal device.
  • the above communication data may not include the measurement report of the aperiodic PRS and the aperiodic CSI.
  • the terminal device can determine an aperiodic PRS reporting time information according to the transmission time information of the communication data, which can reduce the possibility of conflict between the measurement report of the aperiodic PRS and the communication data.
  • the terminal device may select one aperiodic PRS reporting time information indicated by the second value among m aperiodic PRS reporting time information.
  • the terminal device may select the aperiodic PRS reporting time information indicated by the second value from the reporting configuration information of each aperiodic PRS, and the terminal device may report time information from n aperiodic PRSs, Select an aperiodic PRS to report time information.
  • the terminal device can determine an aperiodic PRS reporting time information based on the second value indicated by the network device, which can reduce the possibility of conflict between the aperiodic PRS measurement report and the communication data.
  • the terminal device may select the aperiodic PRS reporting time information with the largest value from the n aperiodic PRS reporting time information.
  • the terminal device may select n aperiodic PRSs to report time information according to the second value, and report the time information in the n aperiodic PRSs Among them, selecting the aperiodic PRS reporting time information with the largest value, and then determining the sending time of the aperiodic PRS measurement report, allows the terminal device to receive and measure the PRS for a longer time, which can improve the accuracy of positioning.
  • the terminal device may determine a larger value among the determined aperiodic PRS reporting time information and the second value. value of .
  • the terminal device may report the measurement report of the aperiodic PRS based on the larger value.
  • the terminal device can report the time information at the second value and an aperiodic PRS determined above, and report the measurement report of the aperiodic PRS, which can make the terminal device have a longer time.
  • the reception and measurement of PRS is performed.
  • the terminal device may report an aperiodic PRS measurement report based on an aperiodic PRS reporting time information.
  • the terminal device can report the measurement report of the aperiodic PRS based on the above-determined aperiodic PRS reporting time information, which can reduce the positioning delay.
  • the terminal device may receive a third value, where the third value is used to instruct the terminal device to report the aperiodic CSI reporting time information of the aperiodic channel state information (channel state information, CSI) report.
  • the terminal device may determine a larger value among the fourth value and the second value. The fourth value is determined based on the third value and the determined aperiodic PRS reporting time information. The terminal device may report the measurement report of the aperiodic PRS based on the larger value.
  • the terminal device when a terminal device is triggered to report aperiodic CSI and aperiodic PRS at the same time and there is communication data to be transmitted, the terminal device can report time information based on aperiodic CSI, transmission time information of communication data, and aperiodic PRS reporting time information, and determine a larger value, so that the terminal device can report the aperiodic PRS measurement report based on the larger value. Therefore, the terminal device can have more time to receive and measure the PRS and the aperiodic channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the fourth value is specifically the sum of the third value and the determined time indicated by the aperiodic PRS reporting time information.
  • the terminal device when the terminal device is simultaneously triggered to report aperiodic CSI and aperiodic PRS and has communication data to be transmitted, the terminal device can sum the reporting time of the aperiodic CSI and the reporting time of the aperiodic PRS, and then combine the Two values are compared, and a larger value is selected to report aperiodic PRS, so that the terminal device has more time to receive and measure CSI-RS and PRS.
  • the terminal device receives a third value, and the third value may be used to instruct the terminal device to report the aperiodic CSI reporting time information of the aperiodic channel state information CSI report.
  • the terminal device may report the measurement report of the aperiodic PRS based on the reporting time information of an aperiodic PRS and the third value.
  • the terminal device may report an aperiodic PRS measurement report based on the fifth value; the fifth value may specifically be the sum of an aperiodic PRS reporting time information and the third value.
  • the terminal device when the terminal device is simultaneously triggered to report aperiodic CSI and aperiodic PRS but there is no communication data to be transmitted, the terminal device can perform aperiodic PRS based on the reporting time of aperiodic CSI and the reporting time of aperiodic PRS. It can make the terminal device have more time to measure and report the CSI-RS and PRS.
  • the terminal device may send the first capability information to the positioning server and/or the network device.
  • the first capability information may include that the terminal device supports positioning of aperiodic PRS.
  • the terminal device can send the capability information of supporting aperiodic PRS positioning to the positioning server and the network device, so that the network device and the positioning server can trigger the terminal device to perform the reporting of the aperiodic PRS when the positioning service needs to be performed, which can reduce the The cost of locating resources.
  • the terminal device may send second capability information to the positioning server and/or the network device, where the second capability information may include that the terminal device supports simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting.
  • the second capability information may include that the terminal device does not support simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting.
  • the terminal device can report whether it supports simultaneous triggering of aperiodic CSI reporting and aperiodic PRS reporting.
  • Sending the above-mentioned first value and third value can make the terminal device perform aperiodic PRS reporting or perform aperiodic CSI reporting.
  • the first value and the second value may be carried in downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the network device can trigger the terminal device to perform aperiodic PRS reporting through DCI.
  • an aperiodic PRS measurement reporting method may be performed by a network device, or a chip with similar network device functions.
  • the network device may send the first value to the terminal device, and the first value may be used to indicate the reporting configuration information of n aperiodic PRSs of the terminal device.
  • the reporting configuration information of one aperiodic PRS may include reporting time information of m aperiodic PRSs, where n and m are integers greater than 0.
  • the network device may receive an aperiodic PRS measurement report from the terminal device based on one of the n*m aperiodic PRS reporting time information.
  • the network device can trigger the terminal device to measure and report aperiodic PRS, and the network device can indicate to the terminal device n*m aperiodic PRS reporting time information. Therefore, the terminal device may determine the reporting time of the aperiodic PRS at one of the n*m aperiodic PRS reporting time information, and report the measurement report of the aperiodic PRS at the reporting time of the aperiodic PRS. Since the above-mentioned PRS is an aperiodic PRS, the positioning resource overhead can be reduced, and the positioning of the terminal equipment can be realized by the aperiodic PRS when there is a positioning requirement.
  • the network device may send a second value to the terminal device, and the second value may be used to determine one of the n*m pieces of aperiodic PRS reporting time information.
  • the method for determining one aperiodic PRS reporting time information from n*m pieces of aperiodic PRS reporting time information reference may be made to the relevant description of the above first aspect, which will not be repeated here.
  • the network device can indicate the second value to the terminal device, which is used to determine the aperiodic PRS reporting time information, so that the sending time of the aperiodic PRS measurement report conforms to the scheduling of the network device.
  • the second value is used to indicate the transmission time information of the communication data of the terminal device.
  • the terminal device can determine an aperiodic PRS reporting time information according to the transmission time information of the communication data, which can reduce the possibility of conflict between the measurement report of the aperiodic PRS and the communication data.
  • the second value may be used to indicate one of m pieces of aperiodic PRS reporting time information included in each aperiodic PRS reporting configuration information.
  • n is equal to 1
  • the network device may receive the measurement report of the aperiodic PRS based on the reporting time information of an aperiodic PRS indicated by the second value.
  • n is greater than 1, the network device may receive the measurement report of the aperiodic PRS based on one of the reporting time information of the n aperiodic PRSs.
  • the network device can determine an aperiodic PRS reporting time information based on the second value to receive the aperiodic PRS measurement report, which can reduce the possibility of conflict between the aperiodic PRS measurement report and the communication data.
  • the network device receives the measurement report of the aperiodic PRS based on the reporting time information of the aperiodic PRS with the largest value among the reporting time information of the n aperiodic PRSs.
  • the terminal device may select n aperiodic PRSs to report time information according to the second value, and report the time information in the n aperiodic PRSs Among them, selecting the aperiodic PRS reporting time information with the largest value, and then determining the sending time of the aperiodic PRS measurement report, allows the terminal device to receive and measure the PRS for a longer time, which can improve the accuracy of positioning.
  • the network device may receive the measurement report of the aperiodic PRS based on the second value and the determined value of the aperiodic PRS reporting time information, which has a larger value.
  • the network device may receive an aperiodic PRS measurement report from the terminal device based on the determined one aperiodic PRS reporting time information.
  • the network device may try to receive the measurement report of the aperiodic PRS at the above two times.
  • the network device receives the measurement report of the aperiodic PRS at a larger value among the second value and the determined aperiodic PRS reporting time information, which can reduce the possibility of conflict between the terminal device transmitting the measurement report of the aperiodic PRS and the communication data.
  • the network device reports time information in a determined aperiodic PRS, and receives the measurement report of the aperiodic PRS, which can reduce the positioning delay.
  • the network device may send a third value to the terminal device, where the third value may be used to instruct the terminal device to report the aperiodic CSI reporting time information of the aperiodic CSI report.
  • the network device may receive the measurement report of the aperiodic PRS based on the fourth value and the larger value of the second value, where the fourth value is determined based on the third value and the determined aperiodic PRS reporting time information.
  • the network device may receive an aperiodic PRS measurement report from the terminal device based on the determined one aperiodic PRS reporting time information and the third value.
  • the network device when the network device triggers the terminal device to perform aperiodic CSI reporting at the same time, the network device can determine the reporting time of the aperiodic PRS based on the reporting time of the aperiodic CSI and the reporting time of the aperiodic PRS, which can make the terminal device have more time to receive and measure PRS and CSI-RS.
  • the fourth value is specifically the sum of the third value and the determined time indicated by the aperiodic PRS reporting time information.
  • the terminal device when the terminal device is simultaneously triggered to report aperiodic CSI and aperiodic PRS and has communication data to be transmitted, the terminal device can sum the reporting time of the aperiodic CSI and the reporting time of the aperiodic PRS, and then combine the Two values are compared, and a larger value is selected to report aperiodic PRS, so that the terminal device has more time to receive and measure CSI-RS and PRS.
  • the network device may receive the second capability information from the terminal device; .
  • the second capability information includes that the terminal device supports simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting.
  • the second capability information includes that the terminal device does not support simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting.
  • the terminal device can report whether it supports simultaneous triggering of aperiodic CSI reporting and aperiodic PRS reporting. If the terminal device does not support simultaneous triggering of aperiodic CSI reporting and aperiodic PRS reporting, the network device will not send the above-mentioned
  • the first value and the third value enable the terminal device to perform aperiodic PRS reporting or perform aperiodic CSI reporting.
  • the network device may send the aperiodic PRS configuration information to the terminal device; the network device may send the aperiodic PRS based on the aperiodic PRS configuration information.
  • the network device can send the aperiodic PRS based on the aperiodic PRS configuration information, so that the terminal device performs aperiodic PRS reporting.
  • the network device may send the measurement report of the aperiodic PRS to the positioning server.
  • the network device can send the aperiodic PRS measurement report reported by the terminal device to the positioning server, so that the positioning server can calculate the position information of the terminal device.
  • a communication apparatus may include various modules/units for implementing the first aspect or any possible implementation manner of the first aspect, or may further include a communication device for implementing the second aspect or the second aspect.
  • Each module/unit in any possible implementation of the aspect.
  • the processing unit and the transceiver unit may be included in various modules/units for implementing the first aspect or any possible implementation manner of the first aspect, or may further include a communication device for implementing the second aspect or the second aspect.
  • Each module/unit in any possible implementation of the aspect.
  • the processing unit and the transceiver unit may be any possible implementation of the aspect.
  • the apparatus includes, when each module/unit is used to execute the first aspect or any possible implementation manner of the first aspect, the transceiver unit, configured to receive the aperiodic positioning reference signal PRS configuration information; the The transceiver unit is further configured to receive a first value from a network device; the first value is used to indicate the reporting configuration information of n aperiodic PRSs; wherein, the reporting configuration information of one aperiodic PRS includes m aperiodic PRS reports time information; n and m are integers greater than 0; the transceiver unit is further configured to receive an aperiodic PRS based on the aperiodic PRS configuration information; the processing unit is configured to generate the aperiodic PRS based on the received aperiodic PRS The measurement report of the aperiodic PRS; the transceiver unit is further configured to report the measurement report of the aperiodic PRS based on one of the n*m pieces of the aperiodic PRS
  • the transceiving unit is further configured to receive a second value from the network device; the processing unit is further configured to, based on the second value, select from the n*m aperiodic PRSs One aperiodic PRS reporting time information is determined in the reporting time information; the one aperiodic PRS reporting time information is used to determine the sending time for reporting the measurement report of the aperiodic PRS.
  • the second value is used to indicate transmission time information of the communication data of the terminal device.
  • the processing unit when the processing unit determines one piece of aperiodic PRS reporting time information from the n*m pieces of the aperiodic PRS reporting time information based on the second value, the processing unit is specifically configured to: When n is equal to 1, among the m pieces of aperiodic PRS reporting time information, select one aperiodic PRS reporting time information indicated by the second value; or, when the n is greater than 1, select one aperiodic PRS reporting time information from each aperiodic PRS In the reporting configuration information, the aperiodic PRS reporting time information indicated by the second value is selected; and one aperiodic PRS reporting time information is selected from the n aperiodic PRS reporting time information.
  • the processing unit when the n is greater than 1, when the processing unit selects an aperiodic PRS to report the time information from the n aperiodic PRS reporting time information, the processing unit is specifically configured to: report the time information from the n aperiodic PRSs. In the time information, select the aperiodic PRS with the largest value to report the time information.
  • the processing unit when the device has communication data transmitted by the transmission time information indicated by the second value, the processing unit is further configured to report the time information and the time information in the determined one aperiodic PRS
  • the second value is determined to be a larger value; the transceiver unit reports the measurement time reporting of the aperiodic PRS based on one of the n*m aperiodic PRS reporting time information, and is specifically configured to: based on the aperiodic PRS Take a larger value to report the measurement report of the aperiodic PRS.
  • the transceiver unit reports the measurement time reporting of the aperiodic PRS based on one of the n*m aperiodic PRS reporting time information, specifically for: the device does not need to When the communication data is transmitted at the transmission time indicated by the second value, the measurement report of the aperiodic PRS is reported based on the reporting time information of the aperiodic PRS.
  • the transceiver unit is further configured to receive a third value, where the third value is used to instruct the device to report the aperiodic CSI reporting time information of the aperiodic channel state information CSI report;
  • the processing unit is further configured to: determine a value with a larger value among the fourth value and the second value; the fourth value is Determined based on the third value and a determined aperiodic PRS reporting time information; the transceiver unit reports the measurement timing of the aperiodic PRS based on one of the n*m pieces of the aperiodic PRS reporting time information , which is specifically used for: reporting the measurement report of the aperiodic PRS based on the larger value.
  • the fourth value is specifically the sum of the third value and the time indicated by the determined one aperiodic PRS reporting time information.
  • the transceiver unit is further configured to receive a third value, where the third value is used to instruct the terminal device to report the aperiodic CSI reporting time information of the aperiodic channel state information CSI report;
  • the transceiver unit reports the measurement of the aperiodic PRS based on one of the n*m aperiodic PRS reporting time information
  • the time reporting is specifically used for: reporting the measurement report of the aperiodic PRS based on the reporting time information of the one aperiodic PRS and the third value.
  • the transceiver unit when reporting the measurement report of the aperiodic PRS based on the one aperiodic PRS reporting time information and the third value, is specifically configured to: based on the fifth value, report the The measurement report of the aperiodic PRS; the fifth value is the sum of the reporting time information of the one aperiodic PRS and the third value.
  • the transceiver unit is further configured to: send first capability information to the positioning server and/or network device; the first capability information includes that the terminal device supports aperiodic PRS positioning.
  • the transceiver unit is further configured to: send second capability information to the positioning server and/or network device; the second capability information includes that the terminal device supports aperiodic PRS reporting and aperiodic CSI The reporting is triggered simultaneously; or the second capability information includes that the terminal device does not support simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting.
  • the first value and the second value are carried in downlink control information DCI.
  • the apparatus includes, when each module/unit in the second aspect or any possible implementation manner of the second aspect is executed, the transceiver unit, configured to send the first value to the terminal device; the first The value is used to indicate the reporting configuration information of n aperiodic PRSs of the terminal device; wherein, the reporting configuration information of one aperiodic PRS includes m aperiodic PRS reporting time information; n and m are integers greater than 0; the The processing unit is configured to determine one of the n*m pieces of the aperiodic PRS reporting time information; the transceiver unit is further configured to receive, based on one of the n*m pieces of the aperiodic PRS reporting time information, A measurement report of the aperiodic PRS from the terminal device.
  • the transceiver unit is further configured to: send a second value to the terminal device; the second value is used to determine one of the n*m pieces of aperiodic PRS reporting time information.
  • the second value is used to indicate transmission time information of the communication data of the terminal device.
  • the second value is used to indicate one of m pieces of aperiodic aperiodic PRS reporting time information included in each aperiodic PRS reporting configuration information; the transceiver unit is based on n*m
  • One of the aperiodic PRS reporting time information when receiving the measurement report of the aperiodic PRS from the terminal device, is specifically used for: when the n is equal to 1, based on one of the aperiodic PRS reporting time information indicated by the second value reporting time information of the aperiodic PRS, receiving the measurement report of the aperiodic PRS; when the n is greater than 1, receiving the measurement report of the aperiodic PRS based on one of the reporting time information of the n aperiodic PRSs Report.
  • the transceiver unit when the n is greater than 1, is specifically configured to: The measurement report of the aperiodic PRS is received based on the reporting time information of the aperiodic PRS with the largest value among the reporting time information of the n aperiodic PRSs.
  • the transceiver unit when receiving the measurement report of the aperiodic PRS from the terminal device based on one of the n*m pieces of the aperiodic PRS reporting time information, is specifically configured to: The second value and the determined one of the aperiodic PRS reporting time information have a larger value, and receive the measurement report of the aperiodic PRS; or, based on the determined one of the aperiodic PRS reporting Time information, receiving the measurement report of the aperiodic PRS from the terminal device.
  • the transceiver unit is further configured to send a third value to the terminal device, where the third value is used to instruct the terminal device to report aperiodic CSI reporting time information of the aperiodic CSI report;
  • the transceiver unit is specifically configured to: based on the first The larger value among the four values and the second value is received, and the measurement report of the aperiodic PRS is received; the fourth value is determined based on the third value and the determined reporting time information of an aperiodic PRS; or,
  • the transceiver unit is specifically configured to: based on the determined one aperiodic PRS reporting time information and the third value, receiving a measurement report of the aperiodic PRS from the terminal device.
  • the fourth value is specifically the sum of the third value and the time indicated by the determined one aperiodic PRS reporting time information.
  • the transceiver unit is further configured to: receive second capability information from the terminal device; the second capability information includes that the terminal device supports simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting; Or the second capability information includes that the terminal device does not support simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting.
  • the transceiver unit is further configured to: send aperiodic PRS configuration information to the terminal device; and send aperiodic PRS based on the aperiodic PRS configuration information.
  • the transceiver unit is further configured to: send the measurement report of the aperiodic PRS to a positioning server.
  • a communication apparatus in a fourth aspect, includes a processor and a transceiver.
  • the transceiver performs the transceiving steps of the method in the first aspect or any possible implementation manner of the first aspect, or performs the transceiving steps of the method in the second aspect or any possible implementation manner of the second aspect.
  • the processor uses the hardware resources in the controller to execute processing steps other than the sending and receiving steps of the method in the first aspect or any possible implementation manner of the first aspect, or execute the second aspect or any one of the second aspect. Processing steps other than the transceiving step of the method in one possible implementation.
  • the communication device further includes a memory.
  • the memory can be located inside the device, or it can be located outside the device and connected to the device.
  • the memory may be integrated with the processor.
  • a chip in a fifth aspect, includes a logic circuit and a communication interface.
  • a communication interface is used to input aperiodic PRS configuration information, and a first value.
  • the communication interface is further configured to input an aperiodic PRS based on the PRS configuration information.
  • the logic circuit is configured to generate a measurement report of the aperiodic PRS based on the received aperiodic PRS; the communication interface is further configured to output the time information based on one of the n*m aperiodic PRS reporting time information. The measurement report of the aperiodic PRS.
  • the communication interface is used to output the first value.
  • the logic circuit is configured to determine one of the n*m pieces of the aperiodic PRS reporting time information.
  • the communication interface is further configured to input the measurement report of the aperiodic PRS based on one of the n*m pieces of the aperiodic PRS reporting time information.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, when the computer-readable storage medium runs on a computer, the computer executes the methods of the above aspects.
  • the present application provides a computer program product storing instructions that, when executed on a computer, cause the computer to perform the methods of the above aspects.
  • the present application provides a communication system, including at least one of the above-mentioned terminal equipment and at least one of the above-mentioned network equipment.
  • FIG. 1 is an exemplary flow chart of the measurement and reporting of periodic PRS
  • Fig. 2 is a schematic diagram of calculating terminal equipment position information based on TDOS positioning technology
  • 3A is a schematic diagram of periodic PRS
  • FIG. 3B is a schematic diagram of the reporting time of CSI
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 5 is one of the exemplary flowcharts of the method for measuring and reporting an aperiodic PRS provided by an embodiment of the present application
  • 6A is one of the schematic diagrams of the sending time of the measurement report of the aperiodic PRS provided by the embodiment of the present application;
  • FIG. 6B is a schematic diagram of the sending time of the measurement report of the aperiodic PRS provided by the embodiment of the present application.
  • FIG. 7A is a schematic diagram of the sending time of the measurement report of the aperiodic PRS provided by the embodiment of the present application.
  • FIG. 7B is a schematic diagram of the sending time of the measurement report of the aperiodic PRS provided by the embodiment of the present application.
  • FIG. 8 is one of the exemplary flowcharts of the method for measuring and reporting aperiodic PRS provided by an embodiment of the present application.
  • FIG. 9 is one of schematic diagrams of a communication device provided by an embodiment of the present application.
  • FIG. 10 is one of schematic diagrams of a communication apparatus provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • “Plurality” means two or more, and other quantifiers are similar.
  • “And/or” describes the association relationship between associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • occurrences of the singular forms “a”, “an” and “the” do not mean “one or only one” unless the context clearly dictates otherwise, but rather “one or more” in one".
  • a device means to one or more such devices.
  • at least one (at least one of). «" means one or any combination of subsequent associated objects, for example "at least one of A, B and C” includes A, B, C, AB, AC, BC, or ABC.
  • the LMF requests the configuration information of the PRS from the network device.
  • the network device sends the configuration information of the PRS to the LMF.
  • the LMF indicates the configuration information of the PRS to the UE.
  • the UE After receiving the instruction of the LMF, the UE receives the PRS sent by the network device.
  • the UE measures the received PRS.
  • TDOA Time Division Multiple Access
  • AOA AOA
  • AOD AOD of PRS
  • the UE reports the measurement result of the PRS to the LMF.
  • the LMF performs processing according to the measurement result of the PRS to obtain the location information of the UE.
  • TDOA positioning technology is to estimate the position of the target by calculating the intersection of the hyperbola.
  • the coordinates of the i-th base station are defined here as ( xi , y i ), and the coordinates of the target to be located are (x UE , y UE ).
  • the UE measures the arrival time difference ⁇ t i1 between the PRS of other base stations and the PRS of the reference base station.
  • the distance between two fixed points on the hyperbola is the arrival time difference of the PRS, and the UE is located on the hyperbola with two base stations as the focus, the following equations can be listed:
  • Equation (1) and (2) can be combined to obtain (x UE , y UE ), that is, the position coordinates of UE.
  • the premise of realizing the positioning function is that both the sender and the receiver need to coordinate to measure the PRS, and perform subsequent positioning calculation based on the obtained relevant measurement results.
  • the base station In the NR Rel-16 protocol version, only periodic PRS transmission is supported, that is, once the positioning function is enabled, the base station will continue to send PRS according to the configured period, which will bring the following two problems: First, UE Data cannot be sent and received on the symbol for sending PRS, resulting in a decrease in data throughput. For the UE, the UE needs to receive PRS from multiple network devices, and the resource overhead is too large, and the data reception may even be interrupted. On the other hand, the UE needs to receive the PRS according to a specific period. If the period is too large, the entire positioning delay will increase, and if the period is too small, the positioning resource overhead will be increased, as shown in Figure 3A.
  • the embodiments of the present application provide an aperiodic PRS measurement reporting method.
  • the network device sends the aperiodic PRS at a certain moment, and the terminal device measures the aperiodic PRS at the corresponding receiving time, and reports the measurement result.
  • the location management function network element (location management function, LMF) can process and obtain the location information of the terminal device based on the measurement result reported by the terminal device.
  • the base station will send downlink control information (DCI) to the UE, and the DCI will include an indication field, a CSI request.
  • This field indicates an aperiodic CSI trigger state, and each aperiodic CSI trigger state is associated with one or more aperiodic CSI reporting configurations.
  • an aperiodic CSI reporting configuration will include a CSI reporting time parameter list, and the value in the parameter list represents the time slot offset for reporting CSI.
  • an aperiodic CSI reporting configuration is also associated with some CSI-RS resource configurations, that is, which CSI-RS resources the UE needs to measure before reporting, or the measurement results reported by the UE are based on which CSI-RS measurements are obtained.
  • DCI also carries a field, Time domain resource assignment, which is used to indicate the time domain location of the physical uplink shared channel (PUSCH) and the occupied time domain. number of symbols.
  • PUSCH physical uplink shared channel
  • time slot interval between the PUSCH and DCI scheduled by DCI is k2
  • time slot offset of aperiodic CSI reporting is Y
  • the standard protocol TS38.214-g30 version has the following provisions:
  • the PUSCH indicated by the DCI is only used for data transmission without scheduling aperiodic CSI reporting, or the PUSCH is scheduled for data transmission and instructed for aperiodic CSI reporting.
  • the PUSCH indicated by the DCI is only used to carry aperiodic CSI reporting information without data transmission.
  • the time slot where the PUSCH is located is not determined by the time domain allocation field, but is indicated by the CSI request field.
  • m is indicated by the time domain allocation field
  • Y j refers to the time slot offset of the jth aperiodic CSI report in an aperiodic CSI reporting configuration scheduled by DCI
  • max j refers to the maximum value of Y j .
  • the reason for taking the maximum value is because one DCI may trigger the reporting of multiple aperiodic CSI.
  • the maximum slot offset in all aperiodic reports is used as the aperiodic CSI reporting slot offset and the slot offset where the PUSCH is located. .
  • the advantage of this is that it can ensure that the UE can report on the PUSCH in time after measuring all aperiodic CSI-RS.
  • aperiodic PRS is very different from aperiodic CSI-RS.
  • aperiodic PRS is sent to UE by multiple network devices.
  • UE needs to receive PRS from multiple network devices, and for each received PRS, UE needs to perform relevant detection to determine its arrival time and received power. And this process will take up a lot of chip resources.
  • For positioning at least the PRSs of three network devices need to be measured to satisfy the basic positioning function, and the time interval between the PRSs sent by different network devices reaching the UE is also uncertain.
  • it is necessary to request a measurement interval from the network device to measure the PRS that is, within this measurement time window, the UE will only receive the PRS, but will not receive other data or signals.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new generation radio access technology
  • 6G systems future communication systems, such as 6G systems.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 4 shows a schematic diagram of a communication system applicable to the communication method of the embodiment of the present application.
  • the communication system 400 includes a terminal device 401 and a network device 402 , an access and mobility management function network element AMF403 and a location management function network element LMF404 .
  • the terminal equipment also known as user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc., is a device that provides voice and/or data connectivity to users. sexual equipment.
  • the terminal device may include a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device can be: a mobile phone (mobile phone), a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device, a virtual reality (virtual reality, VR) device, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid ), wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • the terminal device described in FIG. 4 is shown as UE, which is only an example and does not limit the terminal device.
  • a network device also referred to as an access network device (access network, AN) provides wireless access services to the terminal device.
  • the access network device is a device in the communication system that accesses the terminal device to a wireless network.
  • the access network device is a node in a radio access network, which may also be referred to as a base station, or may also be referred to as a radio access network (radio access network, RAN) node (or device).
  • RAN radio access network
  • access network equipment are: gNB, transmission reception point (TRP), transmission point (TP), evolved Node B (evolved Node B, eNB), radio network controller ( radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • TRP transmission reception point
  • TP transmission point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • base band unit base band unit, BBU
  • wireless fidelity wireless fidelity, Wifi
  • the access and mobility management function network element AMF can be used to manage the access control and mobility of the terminal equipment. In practical applications, it includes a network framework in long term evolution (LTE).
  • LTE long term evolution
  • MME China Mobility Management Entity
  • the selection of management function network elements the management of mobility state transition, etc.
  • the access and mobility management function network element may be an AMF (access and mobility management function) network element, such as shown in Figure 4, in future communications, such as in 6G, the access and mobility management function
  • the functional network element may still be an AMF network element, or have other names, which are not limited in this application.
  • the AMF may provide Namf services.
  • the location management function network element LMF also known as a location server, may be used to determine the location of the UE, obtain downlink location measurements or location estimates from the UE, and the like.
  • LMF location management function
  • FIG. 4 the location management function network element (location management function, LMF) is shown in FIG. 4, and in a future communication system, such as in 6G, the location management function network element can still be an LMF network element, Or there are other names, which are not limited in this application.
  • an exemplary flowchart of a method for measuring and reporting an aperiodic PRS may include the following steps.
  • Step 501 The terminal device receives the PRS configuration information.
  • the PRS configuration information here may be sent to the terminal device by a network device that is providing services for the terminal device, or may also be sent to the terminal device by the LMF.
  • the LMF may request the network device to report the PRS configuration information when receiving the positioning request information.
  • the foregoing PRS configuration information may include information such as bandwidth, period, and number of symbols of the PRS.
  • the resource type may also be included, where the resource type may be used to indicate the type of the PRS.
  • the resource type can include periodic, semi-static and aperiodic.
  • the resource type in the above PRS configuration information is aperiodic. It should be understood that other information contained in the PRS configuration information in this embodiment of the present application may refer to the prior art, and the present application only focuses on describing that the above-mentioned PRS configuration information is the configuration information of aperiodic PRS.
  • Step 502 The network device sends the first value to the terminal device, and the corresponding terminal device receives the first value.
  • the first value may be used to indicate the reporting configuration information of n aperiodic PRSs of the terminal device.
  • the reporting configuration information of one aperiodic PRS may include reporting time information of m aperiodic PRSs. Both n and m here are integers greater than 0.
  • Step 503 The terminal device receives the PRS based on the PRS configuration information.
  • the terminal device may receive the PRS sent by the network device based on the PRS configuration information.
  • the terminal device can respectively receive the PRS sent by the multiple network devices according to the multiple PRS configuration information.
  • the terminal device may measure the received PRS to obtain a measurement result.
  • the measurement result may be the signal to interference plus noise ratio (SINR) of the PRS, the reference signal receiving power (RSRP), the reference signal receiving quality (RSRQ), Relative time of arrival (RTOA) or angle of arrival (AOA).
  • SINR signal to interference plus noise ratio
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • RTOA Relative time of arrival
  • AOA angle of arrival
  • the measurement result may also be a quantification result of the foregoing multiple measurement quantities.
  • Step 504 The terminal device reports a PRS measurement report based on the received PRS.
  • the terminal device may report the measurement report of the PRS based on one of the reporting time information of the n*m aperiodic PRSs.
  • the PRS measurement report here may include the PRS measurement result.
  • the terminal device may report the PRS measurement report to the network device, or the terminal device may send the PRS measurement report to the LMF.
  • the above-mentioned first value may be used to indicate an aperiodic trigger state, and each aperiodic trigger state may be associated with one or more aperiodic PRS reporting configuration information.
  • the network device may send the first value to the terminal device through DCI. For example, a new field "PRS request (PRS request)" is added in DCI format 0_1/0_2 to indicate an aperiodic trigger state.
  • PRS request PRS request
  • the signaling 1 may contain the following information elements:
  • aperiodicPRSTriggerStateList interpreted as an aperiodic trigger state table.
  • the value (SEQUENCE) of aperiodicPRSTriggerStateList is defined as the first value, which is interpreted as the aperiodic trigger state indicated by the first value in the aperiodic trigger state table above.
  • the value range of the first value may be from 1 to the maximum value (maxNrofPRS-TriggerStates) of the values of the aperiodic trigger states.
  • aperiodicPRSTriggerStateList interpreted as the aperiodic trigger state indicated by the first value above.
  • the value of aperiodicPRSTriggerStateList (SEQUENCE) is used for one or more indicating aperiodic PRS reporting configuration information tables (PRSReportConfigList).
  • PRSReportConfigList aperiodic PRS reporting configuration information tables
  • the above-mentioned PRS reporting configuration information table may contain one or more values, and each value may be used to indicate an aperiodic PRS reporting configuration information.
  • the range of the value of the PRS reporting configuration information may be from 1 to the maximum value of the aperiodic PRS reporting configuration information (maxNrofReportConfigPerAperiodicTrigger).
  • the one or more aperiodic PRS reporting configuration information tables may be configured by the network device to the terminal device before triggering the aperiodic PRS reporting.
  • the network device may indicate one or more aperiodic PRS reporting configuration information to the terminal device through high-layer signaling.
  • the second signaling that carries the configuration information for aperiodic PRS reporting is introduced.
  • the second signaling may include the following information elements:
  • PRSReportConfig which is interpreted as aperiodic PRS reporting configuration information. Wherein, one aperiodic PRS reporting configuration information corresponds to one value.
  • reportSlotOffsetList which is interpreted as an aperiodic PRS reporting time slot offset list.
  • the table may contain one or more values, and each value may indicate an aperiodic PRS reporting time slot offset.
  • the aperiodic reporting time slot offset here refers to the time slot offset between the time slot for reporting the measurement report of the aperiodic PRS and the reception of the signaling triggering the aperiodic PRS measurement.
  • the aperiodic PRS reporting slot offset table may also be a sending schedule of the aperiodic PRS measurement report, and each value in the table may be used to indicate the sending time of an aperiodic PRS measurement report.
  • the second signaling may further include the identifier of the downlink PRS resource set, the identifier of the downlink PRS resource, and the like.
  • the identifier of the downlink PRS resource set is used to indicate the downlink PRS resource set configured by the network device, and the identifier of the downlink PRS resource may be used to indicate the downlink PRS resource that the terminal device can receive in the above-mentioned downlink PRS resource set.
  • the network device may trigger the terminal device to receive the aperiodic PRS through the above signaling, and report the measurement report of the aperiodic PRS.
  • the terminal device may determine the measurement of reporting the aperiodic PRS according to the reporting configuration information of the n aperiodic PRSs indicated by the first value and the m aperiodic PRS reporting time information included in the reporting configuration information of each aperiodic PRS time of the report.
  • the terminal device may receive the second value from the network device.
  • the above-mentioned second value may be used to indicate the transmission time information of the communication data of the terminal device.
  • the second value may be the value of the time domain resource allocation field in the aforementioned DCI.
  • the terminal device may determine one piece of aperiodic PRS reporting time information from n*m pieces of aperiodic PRS reporting time information according to the second value.
  • the aperiodic PRS reporting time information may be the sending time of the aperiodic PRS measurement report, or may also be time difference information between the sending time of the aperiodic PRS measurement report and the receiving time of the first value.
  • the terminal device may determine the sending time of the measurement report of the aperiodic PRS based on the determined one aperiodic PRS reporting time information.
  • the above-mentioned second value may also be the sending time of the communication data indicated by the network device.
  • the terminal device determines, among m pieces of aperiodic PRS reporting time information included in the reporting configuration information of an aperiodic PRS indicated by the first value, one of the aperiodic PRSs indicated by the second value Aperiodic PRS reports time information.
  • the value of the second value may be defined as j, and one aperiodic PRS reporting time information indicated by the second value may be the jth aperiodic PRS reporting time information.
  • the reporting time information of m aperiodic PRSs included in the reporting configuration information of an aperiodic PRS indicated by the first value is (a1, a2, a3, a4, a5, a6), respectively, and the second value is 3
  • the aperiodic PRS reporting time information indicated by the second value may be a3.
  • the terminal device may separately determine the aperiodic PRS reporting time information indicated by n second values from the n aperiodic PRS reporting time information.
  • the terminal device may select one aperiodic PRS reporting time information from the n aperiodic PRS reporting time information.
  • the terminal device may randomly select an aperiodic PRS reporting time information from the n aperiodic PRS reporting time information, or the terminal device may select an aperiodic one with the largest value from the n aperiodic PRS reporting time information.
  • the first value indicates the reporting configuration information of three aperiodic PRSs, which are A1, A2, and A3, respectively.
  • the aperiodic PRS reporting time information included in A1 may be (a1, a2, a3, a4, a5, a6), and the aperiodic PRS reporting time information included in A2 may be (b1, b2, b3, b4, b5),
  • the aperiodic PRS reporting time information included in A3 may be (c1, c2, c3, c4, c5, c6).
  • the value of the second value may be 4, and the terminal device may determine three aperiodic PRS reporting time information, a4, b4 and c4, according to the second value.
  • the terminal device may randomly select an aperiodic PRS reporting time information from a4, b4 and c4, and determine the sending time of the aperiodic PRS measurement report according to the selected aperiodic PRS reporting time information. For example, the terminal device may select a4, and determine the sending time of the measurement report of the aperiodic PRS according to a4. Alternatively, the terminal device may select the aperiodic PRS reporting time information with the largest value among a4, b4 and c4, and determine the sending time of the aperiodic PRS measurement report according to the aperiodic PRS reporting time information with the largest value. For example, a4 ⁇ b4 ⁇ c4, the terminal device may determine the sending time of the measurement report of the aperiodic PRS according to c4.
  • the terminal device can be in A1, A2, and A3. Determine the reporting time information of two aperiodic PRSs, a6 and c6.
  • the terminal device can select an aperiodic PRS reporting time information from a6 and c6, and then determine the sending time of the aperiodic PRS measurement report, or the terminal device can select a non-periodic PRS reporting time information with the largest value in a6 and c6. , and then determine the sending time of the measurement report of the aperiodic PRS.
  • the terminal device may determine the sending time of the measurement report of the aperiodic PRS according to the information on the reporting time of an aperiodic PRS determined above.
  • the method for the terminal device to determine the sending time of the measurement report of the aperiodic PRS may include the following two methods. In the following embodiments, one determined aperiodic PRS reporting time information may be defined as P.
  • Method 1 The terminal device is not triggered to perform aperiodic CSI reporting.
  • the measurement report of the aperiodic PRS may be determined according to the sending time of the communication data to be transmitted by the terminal equipment and the above-determined aperiodic PRS reporting time information sending time.
  • the preset duration here may be the duration between the time when the terminal device receives the first value and the time when the terminal device reports the measurement report of the aperiodic PRS.
  • the terminal device may determine the measurement report of the aperiodic PRS according to the transmission time of the communication data to be transmitted and the above-determined aperiodic PRS reporting time information. send time.
  • the terminal device may select a larger value among the determined aperiodic PRS reporting time information and the second value .
  • the terminal device may send an aperiodic PRS measurement report based on the selected larger value.
  • the terminal device receives the DCI from the network device in the time slot n, the communication data is transmitted on the PUSCH scheduled by the DCI, and the DCI triggers aperiodic PRS reporting.
  • the second value K2 is indicated in the above-mentioned DCI.
  • the PUSCH transmission time slot carrying the measurement report of the aperiodic PRS can be determined by n+max(K2,P). Assuming that K2>P, the terminal device may send the PUSCH carrying the measurement report of the aperiodic PRS on time slot n+K2.
  • the transmission time slot of the measurement report carrying the aperiodic PRS may be determined by max(K2, P). Assuming that K2>P, the terminal device may send the PUSCH carrying the measurement report of the aperiodic PRS on K2.
  • the PUSCH may also carry communication data of the terminal device.
  • the terminal device may send an aperiodic PRS measurement report based on the determined one aperiodic PRS reporting time information.
  • the terminal device receives DCI from the network device in time slot n, there is no communication data transmission on the PUSCH scheduled by the DCI and the DCI triggers aperiodic PRS reporting. Then the PUSCH transmission time of the measurement report carrying the aperiodic PRS is determined by n+P. Wherein, the terminal device may send the PUSCH carrying the measurement report of the aperiodic PRS on the time slot n+P.
  • the transmission time slot of the measurement report carrying the aperiodic PRS may be determined by P.
  • the terminal device may send the PUSCH carrying the measurement report of the aperiodic PRS on the time slot P.
  • Method 2 Trigger the terminal device to perform aperiodic CSI reporting.
  • the terminal device may determine the non-periodic CSI reporting time according to the time of reporting the aperiodic CSI, the transmission time of the communication data to be transmitted, and the above-determined aperiodic PRS reporting time information.
  • the sending time of the measurement report of the periodic PRS for the preset duration, please refer to the description in Method 1 above.
  • the terminal device may determine the non-periodic CSI according to the time of reporting the aperiodic CSI, the sending time of the communication data to be transmitted, and the above-determined aperiodic PRS reporting time information.
  • the sending time of the measurement report of the periodic PRS may be determined according to the time of reporting the aperiodic CSI, the sending time of the communication data to be transmitted, and the above-determined aperiodic PRS reporting time information.
  • the method for determining the reporting time of the aperiodic CSI may be the same as the method for reporting the time information of the aperiodic PRS in the embodiment of the present application.
  • the network device may determine one or more aperiodic CSI reporting configuration information for the terminal device.
  • the reporting configuration information of each aperiodic CSI may include reporting times of k aperiodic CSIs.
  • the terminal device may select a corresponding one aperiodic CSI reporting time from the k aperiodic CSI reporting times according to the second value.
  • the terminal device may select the reporting times of the aperiodic CSI indicated by the y second values from the reporting times of the k*y aperiodic CSIs.
  • the terminal device may select a maximum aperiodic CSI reporting time from the y aperiodic CSI reporting times.
  • the terminal device may determine a larger value among the second value and the fourth value.
  • the fourth value here may be the sum of the third value and the time indicated by the determined aperiodic PRS reporting time information P; the third value may be the offset between the time slot for reporting aperiodic CSI indicated in the above-mentioned CSI request field and n or the third value may be the time slot for reporting aperiodic CSI indicated in the above-mentioned CSI request field.
  • the terminal device may determine the sending time of the measurement report of the aperiodic PRS according to a larger value of the second value and the fourth value.
  • the terminal device receives the DCI from the network device in time slot n, the DCI schedules PUSCH for communication data transmission and the DCI triggers aperiodic PRS reporting and aperiodic CSI reporting.
  • the second value K2 is indicated in the above-mentioned DCI.
  • the third value Y is also indicated in the above-mentioned DCI.
  • the transmission time slot of the PUSCH carrying the measurement report of the aperiodic PRS can be determined by n+max(K2, Y+P). Assuming K2 ⁇ Y+P, the terminal device may send the PUSCH carrying the measurement report of the aperiodic PRS on time slot n+Y+P.
  • the transmission time slot of the PUSCH carrying the measurement report of the aperiodic PRS may be determined by max(K2, Y+P). Assuming K2 ⁇ Y+P, the terminal device may send the PUSCH carrying the measurement report of the aperiodic PRS on time slot Y+P.
  • the above-mentioned PUSCH may further include communication data and/or aperiodic CSI. It should be understood that the timings of receiving CSI-RS and receiving PRS in FIG. 7A are exemplary, and are not limited to the fact that the terminal device first receives CSI-RS and then receives PRS, or that the terminal device first receives PRS and then receives CSI-RS. .
  • the terminal device may determine the sending time of the measurement report of the aperiodic PRS according to the fifth value.
  • the fifth value may be the sum of the aperiodic PRS reporting time information P and the third value Y determined above.
  • the terminal device receives DCI from the network device in time slot n, there is no communication data transmission on the PUSCH scheduled by the DCI and the DCI triggers aperiodic PRS reporting and aperiodic CSI reporting.
  • the second value K2 is indicated in the above-mentioned DCI.
  • the third value Y is also indicated in the above-mentioned DCI.
  • the transmission time slot of the PUSCH carrying the measurement report of the aperiodic PRS can be determined by n+Y+P.
  • the terminal device may send the PUSCH carrying the measurement report of the aperiodic PRS on time slot n+Y+P.
  • the transmission time slot of the PUSCH carrying the measurement report of the aperiodic PRS may be determined by Y+P.
  • the terminal device may send the PUSCH carrying the measurement report of the aperiodic PRS on time slot Y+P.
  • the above-mentioned PUSCH may further include communication data and/or aperiodic CSI. It should be understood that the timings of receiving CSI-RS and receiving PRS in FIG. 7B are exemplary, and are not limited to the fact that the terminal equipment first receives CSI-RS and then receives PRS, or that the terminal equipment first receives PRS and then receives CSI-RS. .
  • the sending time of the measurement report of the aperiodic PRS of the terminal device in different situations may be as shown in Table 1 below.
  • the sending time of the aperiodic PRS measurement report determined by the terminal device based on the foregoing method 1 and method 2 may be the sending time of the aperiodic PRS measurement report actually sent by the terminal device.
  • a time offset may be set between the actual time when the terminal device sends the measurement report of the aperiodic PRS and the above determined sending time.
  • the terminal device determines that the sending time of the aperiodic PRS measurement report is n+Y+P, and the actual time the terminal device sends the aperiodic PRS measurement report may be n+Y+P+offset.
  • the offset here is the value of the time offset, and the value of the time offset may be sent by the network device to the terminal device, or may be specified by a protocol, or may be negotiated between the network device and the terminal device.
  • the network device may receive the aperiodic PRS measurement report from the terminal device at the above-mentioned sending time of the aperiodic PRS measurement report, or the actual sending time of the aperiodic PRS measurement report.
  • the network device may send the measurement result of the aperiodic PRS to the LMF.
  • the LMF can process the location information of the terminal device based on the measurement result of the aperiodic PRS.
  • the LMF may use the UL-AOA positioning technology or the UL-TDOA positioning technology to process and obtain the location information of the terminal device. It should be noted that the LMF may also use other positioning technologies to determine the location information of the terminal device, which is not specifically limited in this application.
  • the network device can trigger the terminal device to perform aperiodic PRS reporting through DCI.
  • the terminal device may determine the sending time of the aperiodic PRS measurement report according to one or more of the communication data transmission time, the aperiodic CSI reporting time, and the aperiodic PRS reporting time. Therefore, when aperiodic CSI reporting and aperiodic PRS reporting are triggered at the same time, the terminal device can have enough time to receive and measure the PRS, which can improve the positioning accuracy and improve the positioning performance of the aperiodic PRS.
  • the terminal device may send the first capability information to the positioning server and/or the network device.
  • the first capability information here includes that the terminal device supports positioning of aperiodic PRS.
  • the first capability information may also include the PRS processing capability of the terminal device and the PRS measurement capability of the terminal device.
  • the terminal device may send the second capability information to the positioning server and/or the network device.
  • the second capability information here may be used to indicate that the terminal device supports simultaneous triggering of aperiodic CSI reporting and aperiodic PRS reporting, or the second capability information may be used to indicate that the terminal device does not support simultaneous aperiodic CSI reporting and aperiodic PRS reporting trigger.
  • the network device may trigger the terminal device to perform aperiodic PRS reporting and aperiodic CSI reporting through one DCI.
  • the DCI that triggers the terminal device to perform aperiodic PRS reporting includes the CSI request field and the first value.
  • the terminal device does not support simultaneous triggering of aperiodic CSI and aperiodic PRS, when the network device triggers the terminal device to perform aperiodic PRS reporting through one DCI, the one DCI cannot trigger the terminal device to perform aperiodic CSI reporting.
  • the DCI that triggers the terminal device to perform aperiodic PRS reporting does not include the CSI request field or the third value.
  • the sending time of the measurement report of the aperiodic PRS may be shown in Table 2 below.
  • an exemplary flowchart of a method for measuring and reporting aperiodic PRS may include the following steps:
  • Step 801 the LMF receives a positioning request message.
  • the positioning request information here can be used to request the location information of the terminal device.
  • the positioning request information may be sent by the terminal device, or may also be initiated by a third-party server that wants to obtain the location information of the terminal device.
  • the location request information may be a location service request (location service request) message, or may also be a newly defined message.
  • Step 802 The LMF sends a positioning capability request message to the terminal device.
  • the positioning capability request message here can be used to request the positioning capability information of the terminal device.
  • the LMF may send a positioning capability request message to the terminal device through a long term evolution positioning protocol (Long term evolution positioning protocol, LPP) message.
  • LPP long term evolution positioning protocol
  • the location capability request message may be an LPP request capability (request capabilities) message, or may also be a newly defined message.
  • Step 803 The terminal device sends the first capability information to the LMF.
  • the terminal device may also send the second capability information to the LMF.
  • the first capability information and the second capability information reference may be made to the relevant descriptions in the method embodiment shown in FIG. 5 above, and details are not repeated here.
  • Step 804 the LMF requests the configuration information of the aperiodic PRS from the network device.
  • the LMF may send a transmission and reception point (transmission and reception point, TRP) information (information) request (request) message to the network device.
  • TRP information request message may be used to request the network device to report the configuration information of the aperiodic PRS.
  • the LMF may send the configuration information of the aperiodic PRS to the terminal device.
  • Step 805 The network device sends the configuration information of the aperiodic PRS to the LMF.
  • the LMF may send the configuration information of the aperiodic PRS to the terminal device, or the network device may send the configuration information of the aperiodic PRS to the terminal device.
  • Step 806 The network device sends the DCI to the terminal device.
  • the DCI here can be used to trigger the terminal device to perform aperiodic PRS reporting.
  • the DCI may contain the first value.
  • the DCI may further include a second value and a third value.
  • reference may be made to the related descriptions of signaling 1 and signaling 2 in the method embodiment shown in FIG. 5 , and details are not repeated here.
  • Step 807 The network device sends the aperiodic PRS, and the corresponding terminal device receives the aperiodic PRS.
  • a plurality of network devices can broadcast aperiodic PRS, and a terminal device can receive aperiodic PRS from a plurality of network devices.
  • Step 808 The terminal device measures the received aperiodic PRS.
  • the terminal device may receive the PRS from one or more network devices according to the configuration information of the aperiodic PRS from the network device or from the LMF, and measure the received PRS.
  • Step 809 The terminal device sends an aperiodic PRS measurement report to the network device.
  • the terminal equipment may carry the measurement report of the aperiodic PRS on the PUSCH.
  • the terminal equipment may carry the measurement report of the aperiodic PRS on the PUSCH.
  • Step 810 The network device sends the measurement result of the aperiodic PRS to the LMF.
  • Step 811 The LMF processes and obtains the location information of the terminal device according to the measurement result of the aperiodic PRS.
  • the LMF may use the UL-AOA positioning technology or the UL-TDOA positioning technology to process and obtain the location information of the terminal device. It should be understood that the LMF may also use other positioning technologies to process and obtain the location information of the terminal device, which is not specifically limited in this application.
  • the embodiments of the present application provide the timing logic relationship when reporting aperiodic PRS, so that the terminal device and the base station have a unified understanding of when to transmit the PUSCH carrying the measurement report of the aperiodic PRS. For example, if the DCI only triggers the reporting of aperiodic PRS, the time slot in which the PUSCH carrying the measurement report of the aperiodic PRS is located can be determined by the aperiodic PRS reporting time information, so that the UE has enough time to measure the aperiodic PRS. .
  • the terminal equipment not only needs to measure CSI-RS, but also PRS, and both also need time-division measurement, so it is necessary to reserve enough time for the terminal equipment to perform Therefore, the reporting time needs to be determined based on the aperiodic CSI reporting time information and the aperiodic PRS reporting time information. This can not only improve the integrity of CSI-RS measurement, but also improve the positioning accuracy of aperiodic PRS.
  • an apparatus 900 is provided.
  • the apparatus 900 can execute each step performed by the terminal device and the network device side in the above method, which is not described in detail here in order to avoid repetition.
  • the apparatus 900 includes: a transceiver unit 910, a processing unit 920, and optionally, a storage unit 930; the processing unit 920 may be connected to the storage unit 930 and the transceiver unit 910, respectively, and the storage unit 930 may also be connected to the transceiver unit 910. Wherein, the processing unit 920 may be integrated with the storage unit 930 .
  • the transceiver unit 910 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 920 may also be referred to as a processor, a processing board, a processing module, a processing device, or the like.
  • the device for implementing the receiving function in the transceiver unit 910 may be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 910 may be regarded as a transmitting unit, that is, the transceiver unit 910 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the transceiver unit 910 is configured to perform the sending and receiving operations on the terminal device and the network device side in the above method embodiments
  • the processing unit 920 is configured to perform the above method embodiments except for the sending and receiving operations on the terminal device and the network device side. other operations.
  • the transceiver unit 910 is configured to perform the receiving operation on the side of the terminal device and the network device or the sending operation on the side of the terminal device and the network device in FIG. 5 .
  • the transceiving unit 910 is further configured to perform other transceiving steps on the side of the terminal device and the network device in the embodiments of the present application.
  • the processing unit 920 is configured to perform the processing steps on the terminal device side in FIG. 5
  • the processing unit 920 is configured to perform other processing steps on the terminal device side and the network device side in the embodiments of the present application.
  • the storage unit 930 for storing computer programs
  • the transceiver unit 910 when the apparatus 900 is configured to perform the steps performed on the side of the terminal device, the transceiver unit 910 is configured to receive the aperiodic positioning reference signal PRS configuration information; the transceiver unit 910 is further configured to receive the first information from the network device.
  • the transceiver unit 910 is further configured to receive an aperiodic PRS based on the aperiodic PRS configuration information; the processing unit 920 is configured to generate a measurement of the aperiodic PRS based on the received aperiodic PRS report; the transceiver unit 910 is further configured to report the measurement report of the aperiodic PRS based on one of the n*m pieces of the aperiodic PRS reporting time information.
  • the aperiodic PRS configuration information, the aperiodic PRS reporting configuration information, and the aperiodic PRS reporting time information reference may be made to the relevant description of the method embodiment shown in FIG. 5 .
  • the transceiver unit 910 is further configured to receive a second value from the network device; the processing unit 920 is further configured to, based on the second value, select from the n*m non- In the periodic PRS reporting time information, a non-periodic PRS reporting time information is determined.
  • aperiodic PRS reporting time information For the second value and the determined aperiodic PRS reporting time information, reference may be made to the relevant description in the method embodiment shown in FIG. 5 , and details are not repeated here.
  • the processing unit 920 is specifically configured to: when the n is equal to 1 , in the m pieces of aperiodic PRS reporting time information, select one aperiodic PRS reporting time information indicated by the second value; or, when the n is greater than 1, from the reporting configuration information of each aperiodic PRS , select the aperiodic PRS reporting time information indicated by the second value; select one aperiodic PRS reporting time information from the n aperiodic PRS reporting time information.
  • the processing unit 920 when the n is greater than 1, when the processing unit 920 selects an aperiodic PRS to report time information from the n aperiodic PRS reporting time information, the processing unit 920 is specifically configured to: select one aperiodic PRS to report time information from the n aperiodic PRSs. In the reporting time information, select the aperiodic PRS reporting time information with the largest value.
  • the processing unit 920 is further configured to report the time information and all the time information in the determined one aperiodic PRS.
  • a value with a larger value is determined in the second value; the transceiver unit 910 reports the measurement time report of the aperiodic PRS based on one of the n*m aperiodic PRS reporting time information, and is specifically used for: based on For the larger value, the measurement report of the aperiodic PRS is reported.
  • the transceiver unit 910 reports the measurement reporting time of the aperiodic PRS based on one of the n*m reporting time information of the aperiodic PRS, specifically for: the device does not need to When the communication data is transmitted at the transmission time indicated by the second value, the measurement report of the aperiodic PRS is reported based on the reporting time information of the one aperiodic PRS.
  • the transceiver unit 910 is further configured to receive a third value, where the third value is used to instruct the device to report the aperiodic CSI reporting time information of the aperiodic channel state information CSI report;
  • the processing unit 920 is further configured to: determine a larger value among the fourth value and the second value; the fourth value The value is determined based on the third value and a determined aperiodic PRS reporting time information; the transceiver unit 910 reports the aperiodic PRS based on one of the n*m aperiodic PRS reporting time information
  • the measurement time report is specifically used to: report the measurement report of the aperiodic PRS based on the larger value.
  • the fourth value reference may be made to the relevant description in the method embodiment shown in FIG. 5 , and details are not repeated here.
  • the transceiver unit 910 is further configured to receive a third value, where the third value is used to instruct the terminal device to report the aperiodic CSI reporting time information of the aperiodic channel state information CSI report;
  • the transceiver unit 910 reports the aperiodic PRS based on one of the n*m aperiodic PRS reporting time information.
  • the measurement time reporting is specifically used for: reporting the measurement report of the aperiodic PRS based on the reporting time information of the one aperiodic PRS and the third value.
  • the transceiver unit 910 when reporting the measurement report of the aperiodic PRS based on the one aperiodic PRS reporting time information and the third value, is specifically configured to: based on the fifth value, report The measurement report of the aperiodic PRS; the fifth value is the sum of the reporting time information of the one aperiodic PRS and the third value.
  • the transceiver unit 910 is further configured to: send first capability information to the positioning server and/or network device; the first capability information includes that the terminal device supports aperiodic PRS positioning.
  • the transceiver unit 910 is further configured to: send second capability information to the positioning server and/or network device; the second capability information includes that the terminal device supports aperiodic PRS reporting and aperiodic PRS reporting. CSI reporting is triggered simultaneously; or the second capability information includes that the terminal device does not support simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface; the processing unit may be an integrated processor, a microprocessor or an integrated circuit.
  • the transceiver unit can input data and output data, and the processing unit can determine output data according to the input data.
  • the transceiving unit may input the aperiodic PRS configuration information, and the first value.
  • the transceiver unit may also input aperiodic PRS based on the PRS configuration information.
  • the processing unit may generate a measurement report of the aperiodic PRS based on the aperiodic PRS.
  • the transceiver unit may also output an aperiodic PRS measurement report.
  • the transceiver unit 910 is configured to send the first value to the terminal device.
  • the processing unit 920 is configured to determine one of the n*m pieces of the aperiodic PRS reporting time information; the transceiver unit 910 is further configured to report the time information based on the n*m pieces of the aperiodic PRSs.
  • One of the measurement reports of the aperiodic PRS from the terminal equipment is received.
  • the aperiodic PRS configuration information, the aperiodic PRS reporting configuration information, and the aperiodic PRS reporting time information reference may be made to the relevant description of the method embodiment shown in FIG. 5 .
  • the transceiver unit 910 is further configured to: send a second value to the terminal device; the second value is used to determine one of the n*m pieces of the aperiodic PRS reporting time information .
  • the second value and the determined aperiodic PRS reporting time information reference may be made to the relevant description in the method embodiment shown in FIG. 5 , and details are not repeated here.
  • the second value is used to indicate one of m pieces of aperiodic aperiodic PRS reporting time information included in each aperiodic PRS reporting configuration information; the transceiver unit 910 is based on n* One of the m pieces of the aperiodic PRS reporting time information, when receiving the measurement report of the aperiodic PRS from the terminal device, is specifically used for: when the n is equal to 1, based on the one indicated by the second value The aperiodic PRS reporting time information, receiving the measurement report of the aperiodic PRS; when the n is greater than 1, receiving the aperiodic PRS based on one of the reporting time information of the aperiodic PRS. measurement report.
  • the transceiver unit 910 when receiving the measurement report of the aperiodic PRS based on one of the reporting time information of the n aperiodic PRSs, is specifically configured to: Receive the measurement report of the aperiodic PRS based on the reporting time information of the aperiodic PRS with the largest value among the reporting time information of the n aperiodic PRSs.
  • the transceiver unit 910 when receiving the measurement report of the aperiodic PRS from the terminal device based on one of the n*m pieces of the aperiodic PRS reporting time information, is specifically configured to: Receive the measurement report of the aperiodic PRS based on the second value and the determined one of the aperiodic PRS reporting time information, which has a larger value; or, based on the determined one of the aperiodic PRSs reporting time information, and receiving a measurement report of the aperiodic PRS from the terminal device.
  • the transceiver unit 910 is further configured to send a third value to the terminal device, where the third value is used to instruct the terminal device to report aperiodic CSI reporting time information of the aperiodic CSI report;
  • the transceiver unit 910 is specifically configured to: Receive the measurement report of the aperiodic PRS based on the larger value among the fourth value and the second value; the fourth value is determined based on the third value and the determined reporting time information of an aperiodic PRS;
  • the transceiver unit 910 receives the measurement report of the aperiodic PRS from the terminal device based on the determined one of the aperiodic PRS reporting time information, it is specifically configured to: based on the determined one of the aperiodic PRS
  • the PRS reports the time information and the third value, and receives the measurement report of the aperiodic PRS from the terminal device.
  • the fourth value reference may be made to the fourth value.
  • the transceiver unit 910 is further configured to: receive second capability information from the terminal device; the second capability information includes that the terminal device supports simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting ; or the second capability information includes that the terminal device does not support simultaneous triggering of aperiodic PRS reporting and aperiodic CSI reporting.
  • the transceiver unit 910 is further configured to: send aperiodic PRS configuration information to the terminal device; and send aperiodic PRS based on the aperiodic PRS configuration information.
  • the transceiver unit 910 is further configured to: send the measurement report of the aperiodic PRS to a positioning server.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface; the processing unit may be an integrated processor, a microprocessor or an integrated circuit.
  • the transceiver unit can input data and output data, and the processing unit can determine output data according to the input data. For example, the transceiving unit may output the first value.
  • the processing unit may determine one of the n*m pieces of the aperiodic PRS reporting time information.
  • the transceiver unit may also input the measurement report of the aperiodic PRS based on one of the n*m pieces of the aperiodic PRS reporting time information.
  • an apparatus 1000 with a communication function provided by an embodiment of the present application is used to implement the function of a terminal device or a network device in the foregoing method.
  • the device When the device is used to implement the function of the terminal device in the above method, the device may be a terminal device, a chip with similar functions of the terminal device, or a device that can be matched and used with the terminal device.
  • the device When the device is used to implement the function of the network device in the above method, the device may be a network device, or a chip with similar functions of the network device, or a device that can be matched and used with the network device.
  • the apparatus 1000 includes at least one processor 1020, configured to implement the function of the terminal device or the network device in the method provided in the embodiment of the present application.
  • the apparatus 1000 may also include a communication interface 1010 .
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 1010 is used by the apparatus in the apparatus 1000 to communicate with other devices.
  • the processor 1020 may perform the function of the processing unit 920 shown in FIG. 9
  • the communication interface 1010 may perform the function of the transceiver unit 910 shown in FIG. 9 .
  • the apparatus 1000 may also include at least one memory 1030 for storing program instructions and/or data.
  • Memory 1030 is coupled to processor 1020 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may cooperate with the memory 1030 .
  • Processor 1020 may execute program instructions stored in memory 1030 . At least one of the at least one memory may be included in the processor.
  • the specific connection medium between the communication interface 1010 , the processor 1020 , and the memory 1030 is not limited in this embodiment of the present application.
  • the memory 1030, the processor 1020, and the communication interface 1010 are connected through a bus 1040 in FIG. 10.
  • the bus is represented by a thick line in FIG. 10, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • An embodiment of the present application further provides a terminal device, where the terminal device may be a terminal device or a circuit.
  • the terminal device may be configured to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 11 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device takes a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the processor may execute the software program stored in the memory to cause the terminal device to perform the steps performed by the terminal device in the foregoing method embodiments, which will not be repeated.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 11 only one memory and processor are shown in FIG. 11 . In an actual end device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • an antenna with a transceiver function and a radio frequency circuit can be regarded as a transceiver unit of a terminal device.
  • the transceiver unit 1110 shown in FIG. 11 regards a processor with a processing function as a processing unit of the terminal device.
  • the processing unit 1120 shown in FIG. 11 .
  • a computer-readable storage medium is provided, and an instruction is stored thereon.
  • the instruction is executed, the method on the terminal device side or the network device side in the above method embodiment is performed.
  • a computer program product including an instruction is provided, and when the instruction is executed, the method on the terminal device side or the network device side in the above method embodiments is executed.
  • a communication system may include the above-mentioned at least one terminal device and the above-mentioned at least one network device.
  • processors mentioned in the embodiments of the present invention may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application-specific integrated circuits ( Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present invention may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种非周期定位参考信号的测量上报方法和装置,用来减少定位时延和减少定位资源开销,涉及无线通信技术领域。该方法中,终端设备可以接收非周期PRS配置信息。终端设备还可以接收来自网络设备的第一值。其中,该第一值可以用于指示终端设备的n个非周期PRS的上报配置信息。一个非周期PRS的上报配置信息可以包括m个非周期PRS上报时间信息。n和m是大于0的整数。终端设备可以基于非周期PRS配置信息,接收非周期PRS。终端设备可以基于接收的非周期PRS和n*m个非周期PRS上报时间信息中的一个,上报非周期PRS的测量报告。

Description

一种非周期定位参考信号的测量上报方法和装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种非周期定位参考信号的测量上报方法和装置。
背景技术
在3GPP标准中,支持下行到达时间差(down link-time of arrival,DL-TDOA)、下行离开角(down link-angle of departure,DL-AOD)、上行到达时间差(up link-time of arrival,UL-TDOA)、上行到达角(up link-angle of arrival,UL-AOA)、多用户往返时延(multi-round trip time,multi-RTT)等多种定位技术。其中DL-TDOA、UL-TDOA以及multi-RTT算法是基于到达时间的定位技术,即需要接收端来测量发送端发送的信号的到达时间,进而换算成二者之间的距离信息,最后得到待定位目标的位置。DL-AOD和UL-AOA是基于角度的定位技术,即接收端测量发送端发送的参考信号的到达角度,然后根据接收方与已知位置的多个发送端的角度信息来推断接收方的位置。
实现定位功能的前提是收发双方需要协调来测量定位参考信号(positioning reference signal,PRS),并根据PRS的测量结果进行后续的定位计算。在NR Rel-16协议版本中,只支持周期性的PRS发送,即一旦开启定位功能,网络设备会按照配置的周期,持续的发送PRS,这会带来以下两方面的问题:
第一方面,在发送PRS的符号上不能收发数据,造成数据吞吐率下降,对于用户设备(user equipment,UE)而言,UE需要接收来自多个网络设备的PRS,资源开销太大,甚至会中断数据的接收。另一方面,UE需要按照特定的周期来接收PRS,如果周期太大,会使得整个定位的时延增加,而如果周期太小,又增加了定位的资源开销。
发明内容
本申请实施例提供了一种非周期PRS的测量上报方法和装置,用来减少定位时延和减少定位资源开销。
第一方面,提供了非周期PRS的测量上报方法。该方法可以由终端设备执行,或者类似终端设备功能的芯片执行。该方法中,终端设备可以接收非周期PRS配置信息。终端设备还可以接收来自网络设备的第一值。其中,该第一值可以用于指示终端设备的n个非周期PRS的上报配置信息。一个非周期PRS的上报配置信息可以包括m个非周期PRS上报时间信息。n和m是大于0的整数。终端设备可以基于非周期PRS配置信息,接收非周期PRS。终端设备可以基于接收的非周期PRS和n*m个非周期PRS上报时间信息中的一个,上报非周期PRS的测量报告。
基于上述方案,网络设备可以触发终端设备进行非周期PRS的测量以及上报,并且网络设备可以向终端设备指示n*m个非周期PRS上报时间信息。因此,终端设备可以在n*m个非周期PRS上报时间信息中的一个,确定非周期PRS的上报时间,并在非周期PRS的上报时间上报非周期PRS的测量报告。由于上述PRS是非周期的PRS,因此可以减少定位资源开销,在有定位需求时可以通过非周期PRS实现的对终端设备的定位。
在一种可能的实现方式中,终端设备可以接收来自网络设备的第二值。终端设备可以基于第二值,从n*m个非周期PRS上报时间信息中确定一个非周期PRS上报时间信息;一个非周期PRS上报时间信息可以用于确定上报非周期PRS的测量报告的发送时间。
基于上述方案,终端设备可以通过来自网络设备的第二值,确定一个非周期PRS上报时间信息,继而确定非周期PRS的测量报告的发送时间,使得非周期PRS的测量报告的发送时间符合网络设备的调度。
在一种可能的实现方式中,第二值可以用于指示终端设备的通信数据的传输时间信息。可选的,上述通信数据可以不包含非周期PRS的测量报告以及非周期CSI。
基于上述方案,终端设备可以根据通信数据的传输时间信息,确定一个非周期PRS上报时间信息,可以降低非周期PRS的测量报告与通信数据发生冲突的可能性。
在一种可能的实现方式中,在n等于1时,终端设备可以在m个非周期PRS上报时间信息中,选择第二值指示的一个非周期PRS上报时间信息。或者,在n大于1时,终端设备可以从每一个非周期PRS的上报配置信息中,选择第二值指示的非周期PRS上报时间信息,终端设备可以从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息。
基于上述方案,终端设备可以基于网络设备指示的第二值,确定一个非周期PRS上报时间信息,可以降低非周期PRS的测量报告与通信数据发生冲突的可能性。
在一种可能的实现方式中,终端设备可以从n个非周期PRS上报时间信息中,选择取值最大的非周期PRS上报时间信息。
基于上述方案,在网络设备为终端设备指示多个非周期PRS的上报配置信息时,终端设备可以根据第二值,选择n个非周期PRS上报时间信息,并在n个非周期PRS上报时间信息中,选择取值最大的非周期PRS上报时间信息,继而确定非周期PRS的测量报告的发送时间,可以使得终端设备有较长的时间进行PRS的接收和测量,可以提高定位的准确性。
在一种可能的实现方式中,在终端设备存在在第二值指示的传输时间信息传输的通信数据时,终端设备可以在确定的一个非周期PRS上报时间信息和第二值中确定取值大的值。终端设备可以基于取值大的值,上报非周期PRS的测量报告。
基于上述方案,如果终端设备存在待传输的通信数据,终端设备可以在第二值和上述确定的一个非周期PRS上报时间信息,上报非周期PRS的测量报告,可以使得终端设备有较长的时间进行PRS的接收和测量。
在一种可能的实现方式中,终端设备不存在需要在第二值指示的传输时间传输的通信数据时,终端设备可以基于一个非周期PRS上报时间信息,上报非周期PRS的测量报告。
基于上述方案,如果终端设备不存在待传输的通信数据时,终端设备可以基于上述确定的一个非周期PRS上报时间信息,上报非周期PRS的测量报告,可以减少定位的时延。
在一种可能的实现方式中,终端设备可以接收第三值,第三值用于指示终端设备上报非周期信道状态信息(channel state information,CSI)报告的非周期CSI上报时间信息。在终端设备存在在第二值指示的传输时间信息传输的通信数据时,终端设备可以在第四值和第二值中确定取值大的值。其中,第四值为基于第三值和确定的一个非周期PRS上报时间信息确定的。终端设备可以基于取值大的值,上报非周期PRS的测量报告。
基于上述方案,在终端设备同时被触发非周期CSI上报和非周期PRS上报且有待传输 的通信数据时,终端设备可以基于非周期CSI上报时间信息、通信数据的传输时间信息和非周期PRS上报时间信息,确定一个取值较大的值,使得终端设备可以基于取值较大的值上报非周期PRS的测量报告。因此,可以使得终端设备有较多的时间进行PRS和非周期信道状态信息参考信号(channel state information reference signal,CSI-RS)的接收和测量。
在一种可能的实现方式中,第四值具体为第三值和确定的一个非周期PRS上报时间信息指示的时间的和。
基于上述方案,终端设备在被同时触发非周期CSI上报和非周期PRS上报且有待传输的通信数据时,终端设备可以对非周期CSI的上报时间和非周期PRS的上报时间求和,继而与第二值进行比较,选择一个较大的值,进行非周期PRS的上报,可以使得终端设备有较多的时间进行CSI-RS和PRS的接收与测量。
在一种可能的实现方式中,终端设备接收第三值,第三值可以用于指示终端设备上报非周期信道状态信息CSI报告的非周期CSI上报时间信息。终端设备可以基于一个非周期PRS上报时间信息和第三值,上报非周期PRS的测量报告。可选的,终端设备可以基于第五值,上报非周期PRS的测量报告;第五值具体可以为一个非周期PRS上报时间信息和第三值的和。
基于上述方案,在终端设备同时被触发非周期CSI上报和非周期PRS上报但无待传输的通信数据时,终端设备可以基于非周期CSI的上报时间和非周期PRS的上报时间,进行非周期PRS的上报,可以使得终端设备有较多的时间进行CSI-RS和PRS的测量与上报。
在一种可能的实现方式中,终端设备可以向定位服务器和/或网络设备发送第一能力信息。该第一能力信息可以包括所述终端设备支持非周期PRS的定位。
基于上述方案,终端设备可以向定位服务器和网络设备发送支持非周期PRS的定位的能力信息,可以使得网络设备和定位服务器在需要执行定位服务时,触发终端设备执行非周期PRS的上报,可以降低定位资源的开销。
在一种可能的实现方式中,终端设备可以向定位服务器和/或网络设备发送第二能力信息,第二能力信息可以包括终端设备支持非周期PRS上报和非周期CSI上报同时触发。或者,第二能力信息可以包括终端设备不支持非周期PRS上报和非周期CSI上报同时触发。
基于上述方案,终端设备可以上报是否支持非周期CSI上报和非周期PRS上报同时触发,如果终端设备不支持非周期CSI上报和非周期PRS上报同时触发,网络设备或定位服务器不会向终端设备同时发送上述第一值和第三值,可以使得终端设备执行非周期PRS上报或者执行非周期CSI上报。
在一种可能的实现方式中,第一值和第二值可以携带在下行控制信息(downlink control information,DCI)中。基于上述方案,网络设备可以通过DCI触发终端设备执行非周期PRS的上报。
第二方面,提供一种非周期PRS测量上报方法。该方法可以由网络设备执行,或者类似网络设备功能的芯片执行。该方法中,网络设备可以向终端设备发送第一值,第一值可以用于指示终端设备的n个非周期PRS的上报配置信息。其中,一个非周期PRS的上报配置信息可以包括m个非周期PRS上报时间信息,n和m是大于0的整数。网络设备可以基于n*m个非周期PRS上报时间信息中的一个,接收来自终端设备的非周期PRS的测量报告。
基于上述方案,网络设备可以触发终端设备进行非周期PRS的测量以及上报,并且网络设备可以向终端设备指示n*m个非周期PRS上报时间信息。因此,终端设备可以在n*m个非周期PRS上报时间信息中的一个,确定非周期PRS的上报时间,并在非周期PRS的上报时间上报非周期PRS的测量报告。由于上述PRS是非周期的PRS,因此可以减少定位资源开销,在有定位需求时可以通过非周期PRS实现的对终端设备的定位。
在一种可能的实现方式中,网络设备可以向终端设备发送第二值,第二值可以用于确定n*m个非周期PRS上报时间信息中的一个。其中,确定从n*m个非周期PRS上报时间信息中确定一个非周期PRS上报时间信息的方法可以参见上述第一方面的相关描述,此处不再赘述。
基于上述方案,网络设备可以向终端设备指示第二值,用来确定非周期PRS上报时间信息,使得非周期PRS的测量报告的发送时间符合网络设备的调度。
在一种可能的实现方式中,第二值用于指示终端设备的通信数据的传输时间信息。
基于上述方案,终端设备可以根据通信数据的传输时间信息,确定一个非周期PRS上报时间信息,可以降低非周期PRS的测量报告与通信数据发生冲突的可能性。
在一种可能的实现方式中,第二值可以用于指示每一个非周期PRS上报配置信息中包含的m个非周期PRS上报时间信息中的一个。在n等于1时,网络设备可以基于第二值指示的一个非周期PRS上报时间信息,接收非周期PRS的测量报告。在n大于1时,网络设备可以基于n个非周期PRS的上报时间信息中的一个,接收非周期PRS的测量报告。
基于上述方案,网络设备可以基于第二值,确定一个非周期PRS上报时间信息来接收非周期PRS的测量报告,可以降低非周期PRS的测量报告与通信数据发生冲突的可能性。
在一种可能的实现方式中,网络设备基于n个非周期PRS的上报时间信息中取值最大的一个非周期PRS上报时间信息,接收非周期PRS的测量报告。
基于上述方案,在网络设备为终端设备指示多个非周期PRS的上报配置信息时,终端设备可以根据第二值,选择n个非周期PRS上报时间信息,并在n个非周期PRS上报时间信息中,选择取值最大的非周期PRS上报时间信息,继而确定非周期PRS的测量报告的发送时间,可以使得终端设备有较长的时间进行PRS的接收和测量,可以提高定位的准确性。
在一种可能的实现方式中,网络设备可以基于第二值和确定的一个非周期PRS上报时间信息中取值大的值,接收非周期PRS的测量报告。或者,网络设备可以基于确定的一个非周期PRS上报时间信息,接收来自终端设备的非周期PRS的测量报告。
基于上述方案,网络设备可以在上述两个时间尝试接收非周期PRS的测量报告。网络设备在第二值和确定的一个非周期PRS上报时间信息中取值大的值接收非周期PRS的测量报告,可以降低终端设备传输非周期PRS的测量报告与通信数据时冲突的可能性。网络设备在确定的一个非周期PRS上报时间信息,接收非周期PRS的测量报告,可以降低定位的时延。
在一种可能的实现方式中,网络设备可以向终端设备发送第三值,第三值可以用于指示终端设备上报非周期CSI报告的非周期CSI上报时间信息。网络设备可以基于第四值和第二值中取值大的值,接收非周期PRS的测量报告,第四值为基于第三值和确定的一个非周期PRS上报时间信息确定的。或者,网络设备可以基于确定的一个非周期PRS上报时间信息和第三值,接收来自终端设备的非周期PRS的测量报告。
基于上述方案,网络设备同时触发终端设备执行非周期CSI上报时,网络设备可以基于非周期CSI的上报时间以及非周期PRS的上报时间,确定非周期PRS的上报时间,可以使得终端设备有较多的时间接收和测量PRS以及CSI-RS。
在一种可能的实现方式中,第四值具体为第三值和确定的一个非周期PRS上报时间信息指示的时间的和。
基于上述方案,终端设备在被同时触发非周期CSI上报和非周期PRS上报且有待传输的通信数据时,终端设备可以对非周期CSI的上报时间和非周期PRS的上报时间求和,继而与第二值进行比较,选择一个较大的值,进行非周期PRS的上报,可以使得终端设备有较多的时间进行CSI-RS和PRS的接收与测量。
在一种可能的实现方式中,网络设备可以接收来自终端设备的第二能力信息;。其中,第二能力信息包括终端设备支持非周期PRS上报和非周期CSI上报同时触发。或者,第二能力信息包括终端设备不支持非周期PRS上报和非周期CSI上报同时触。
基于上述方案,终端设备可以上报是否支持非周期CSI上报和非周期PRS上报同时触发,如果终端设备不支持非周期CSI上报和非周期PRS上报同时触发,网络设备不会向终端设备同时发送上述第一值和第三值,可以使得终端设备执行非周期PRS上报或者执行非周期CSI上报。
在一种可能的实现方式中,网络设备可以将非周期PRS配置信息发送给终端设备;网络设备可以基于非周期PRS配置信息,发送非周期PRS。
基于上述方案,网络设备可以基于非周期PRS配置信息发送非周期PRS,使得终端设备执行非周期PRS上报。
在一种可能的实现方式中,网络设备可以将非周期PRS的测量报告发送给定位服务器。
基于上述方案,网络设备可以将终端设备上报的非周期PRS的测量报告发送给定位服务器,使得定位服务器可以解算出终端设备的位置信息。
第三方面,提供一种通信装置,该装置可以包括用于执行第一方面或第一方面任一种可能实现方式中的各个模块/单元,或者还可以包括用于执行第二方面或第二方面任一种可能实现方式中的各个模块/单元。比如,处理单元和收发单元。
示例性的,该装置包括用于执行第一方面或第一方面任一种可能实现方式中的各个模块/单元时,所述收发单元,用于接收非周期定位参考信号PRS配置信息;所述收发单元,还用于接收来自网络设备的第一值;所述第一值用于指示n个非周期PRS的上报配置信息;其中,一个非周期PRS的上报配置信息包括m个非周期PRS上报时间信息;n和m是大于0的整数;所述收发单元,还用于基于所述非周期PRS配置信息,接收非周期PRS;所述处理单元,用于基于接收的所述非周期PRS生成所述非周期PRS的测量报告;所述收发单元,还用于基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报告。
在一种设计中,所述收发单元,还用于接收来自网络设备的第二值;所述处理单元,还用于基于所述第二值,从所述n*m个所述非周期PRS上报时间信息中确定一个非周期PRS上报时间信息;所述一个非周期PRS上报时间信息用于确定上报所述非周期PRS的测量报告的发送时间。
在一种设计中,所述第二值用于指示所述终端设备的通信数据的传输时间信息。
在一种设计中,所述处理单元基于所述第二值,从所述n*m个所述非周期PRS上报 时间信息中确定一个非周期PRS上报时间信息时,具体用于:在所述n等于1时,在所述m个非周期PRS上报时间信息中,选择所述第二值指示的一个非周期PRS上报时间信息;或者,在所述n大于1时,从每一个非周期PRS的上报配置信息中,选择所述第二值指示的非周期PRS上报时间信息;从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息。
在一种设计中,在所述n大于1时,所述处理单元从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息时,具体用于:从n个非周期PRS上报时间信息中,选择取值最大的非周期PRS上报时间信息。
在一种设计中,在所述装置存在在所述第二值指示的传输时间信息传输的通信数据时,所述处理单元还用于在确定的所述一个非周期PRS上报时间信息和所述第二值中确定取值大的值;所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:基于所述取值大的值,上报所述非周期PRS的测量报告。
在一种设计中,所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:所述装置不存在需要在所述第二值指示的传输时间传输的通信数据时,基于所述一个非周期PRS上报时间信息,上报所述非周期PRS的测量报告。
在一种设计中,所述收发单元,还用于接收第三值,所述第三值用于指示所述装置上报非周期信道状态信息CSI报告的非周期CSI上报时间信息;在所述装置存在在所述第二值指示的传输时间信息传输的通信数据时,所述处理单元还用于:在第四值和所述第二值中确定取值大的值;所述第四值为基于所述第三值和确定的一个非周期PRS上报时间信息确定的;所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:基于所述取值大的值,上报所述非周期PRS的测量报告。
在一种设计中,所述第四值具体为所述第三值和所述确定的一个非周期PRS上报时间信息指示的时间的和。
在一种设计中,所述收发单元,还用于接收第三值,所述第三值用于指示所述终端设备上报非周期信道状态信息CSI报告的非周期CSI上报时间信息;在所述装置不存在在所述第二值指示的传输时间信息传输的通信数据时,所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:基于所述一个非周期PRS上报时间信息和所述第三值,上报所述非周期PRS的测量报告。
在一种设计中,所述收发单元在基于所述一个非周期PRS上报时间信息和所述第三值,上报所述非周期PRS的测量报告时,具体用于:基于第五值,上报所述非周期PRS的测量报告;所述第五值是所述一个非周期PRS上报时间信息和所述第三值的和。
在一种设计中,所述收发单元还用于:向所述定位服务器和/或网络设备发送第一能力信息;所述第一能力信息包括所述终端设备支持非周期PRS的定位。
在一种设计中,所述收发单元还用于:向所述定位服务器和/或网络设备发送第二能力信息;所述第二能力信息包括所述终端设备支持非周期PRS上报和非周期CSI上报同时触发;或者所述第二能力信息包括所述终端设备不支持非周期PRS上报和非周期CSI上报同时触发。
在一种设计中,所述第一值和所述第二值携带在下行控制信息DCI中。
示例性的,该装置包括用于执行第二方面或第二方面任一种可能实现方式中的各个模块/单元时,所述收发单元,用于向终端设备发送第一值;所述第一值用于指示所述终端设备的n个非周期PRS的上报配置信息;其中,一个非周期PRS的上报配置信息包括m个非周期PRS上报时间信息;n和m是大于0的整数;所述处理单元,用于确定n*m个所述非周期PRS上报时间信息中的一个;所述收发单元,还用于基于所述n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告。
在一种设计中,所述收发单元还用于:向所述终端设备发送第二值;所述第二值用于确定所述n*m个所述非周期PRS上报时间信息中的一个。
在一种设计中,所述第二值用于指示所述终端设备的通信数据的传输时间信息。
在一种设计中,所述第二值用于指示每一个非周期PRS上报配置信息中包含的m个非周期所述非周期PRS上报时间信息中的一个;所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告时,具体用于:在所述n等于1时,基于第二值指示的一个所述非周期PRS上报时间信息,接收所述非周期PRS的测量报告;在所述n大于1时,基于n个所述非周期PRS的上报时间信息中的一个,接收所述非周期PRS的测量报告。
在一种设计中,在所述n大于1时,所述收发单元在基于n个所述非周期PRS的上报时间信息中的一个,接收所述非周期PRS的测量报告时,具体用于:基于n个所述非周期PRS的上报时间信息中取值最大的一个非周期PRS上报时间信息,接收所述非周期PRS的测量报告。
在一种设计中,所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告时,具体用于:基于所述第二值和确定的一个所述非周期PRS上报时间信息中的一个中取值较大的值,接收所述非周期PRS的测量报告;或者,基于确定的一个所述非周期PRS上报时间信息,接收来自所述终端设备的所述非周期PRS的测量报告。
在一种设计中,所述收发单元,还用于向所述终端设备发送第三值,所述第三值用于指示所述终端设备上报非周期CSI报告的非周期CSI上报时间信息;所述收发单元在基于所述第二值和确定的一个所述非周期PRS上报时间信息中的一个中取值较大的值,接收所述非周期PRS的测量报告时,具体用于:基于第四值和第二值中取值大的值,接收所述非周期PRS的测量报告;所述第四值为基于所述第三值和确定的一个非周期PRS上报时间信息确定的;或者,所述收发单元在基于确定的一个所述非周期PRS上报时间信息,接收来自所述终端设备的所述非周期PRS的测量报告时,具体用于:基于所述确定的一个非周期PRS上报时间信息和所述第三值,接收来自所述终端设备的所述非周期PRS的测量报告。
在一种设计中,所述第四值具体为所述第三值和所述确定的一个非周期PRS上报时间信息指示的时间的和。
在一种设计中,所述收发单元还用于:接收来自所述终端设备的第二能力信息;所述第二能力信息包括所述终端设备支持非周期PRS上报和非周期CSI上报同时触发;或者所述第二能力信息包括所述终端设备不支持非周期PRS上报和非周期CSI上报同时触发。
在一种设计中,所述收发单元还用于:将非周期PRS配置信息发送给所述终端设备; 基于所述非周期PRS配置信息,发送非周期PRS。
在一种设计中,所述收发单元还用于:将所述非周期PRS的测量报告发送给定位服务器。
第四方面,提供了一种通信装置,通信装置包括处理器和收发机。收发机执行第一方面或第一方面任一种可能实现方式中方法的收发步骤,或者执行第二方面或第二方面任一种可能实现方式中方法的收发步骤。控制器运行时,处理器利用控制器中的硬件资源执行第一方面或第一方面任一种可能实现方式中方法的除收发步骤以外的处理步骤,或者执行第二方面或第二方面任一种可能实现方式中方法的除收发步骤以外的处理步骤。
在一种可能的实现方式中,通信装置还包括存储器。该存储器可以位于装置内部,或者也可以位于装置外部,与所述装置相连。
在一种可能的实现方式中,存储器可以与处理器集成在一起。
第五方面,提供了一种芯片,该芯片包括逻辑电路和通信接口。
在一种设计中,通信接口用于输入非周期PRS配置信息,以及第一值。所述通信接口还用于基于PRS配置信息,输入非周期PRS。所述逻辑电路用于基于接收的所述非周期PRS生成所述非周期PRS的测量报告;所述通信接口还用于基于n*m个所述非周期PRS上报时间信息中的一个,输出所述非周期PRS的测量报告。
在一种设计中,所述通信接口用于输出第一值。所述逻辑电路用于确定n*m个所述非周期PRS上报时间信息中的一个。所述通信接口还用于基于所述n*m个所述非周期PRS上报时间信息中的一个,输入所述非周期PRS的测量报告。
第六方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第七方面,本申请提供了一种存储指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第八方面,本申请提供一种通信系统,包括至少一个上述的终端设备和至少一个上述的网络设备。
另外,第三方面至第八方面的有益效果可以参见如第一方面至第二方面所示的有益效果。
附图说明
图1为周期性PRS的测量和上报的示例性流程图;
图2为基于TDOS定位技术解算终端设备位置信息的示意图;
图3A为周期性PRS的示意图;
图3B为CSI的上报时间示意图;
图4为本申请实施例提供的通信系统示意图;
图5为本申请实施例提供的非周期PRS的测量上报方法的示例性流程图之一;
图6A为本申请实施例提供的非周期PRS的测量报告的发送时间示意图之一;
图6B为本申请实施例提供的非周期PRS的测量报告的发送时间示意图之;
图7A为本申请实施例提供的非周期PRS的测量报告的发送时间示意图之;
图7B为本申请实施例提供的非周期PRS的测量报告的发送时间示意图之;
图8为本申请实施例提供的非周期PRS的测量上报方法的示例性流程图之一;
图9为本申请实施例提供的通信装置的示意图之一;
图10为本申请实施例提供的通信装置的示意图之一;
图11为本申请实施例提供的终端设备的示意图。
具体实施方式
本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,其它量词与之类似。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。
下面结合附图对本申请实施例提供的方法进行说明。
在最新的3GPP标准中,支持DL-TDOA、DL-AOD、UL-TDOA、UL-AOA、multi-RTT等多种定位技术。下面以DL-TDOA技术为例简单介绍定位的流程,参阅图1可以包括以下步骤:
S1、LMF向网络设备请求PRS的配置信息。
S2、网络设备将PRS的配置信息发送给LMF。
S3、LMF向UE指示PRS的配置信息。
S4、UE在接收到LMF的指示后,接收网络设备发送的PRS。
S5、UE对接收到的PRS进行测量。
例如测量PRS的TDOA、AOA和AOD等。
S6、UE将PRS的测量结果上报给LMF。
S7、LMF根据PRS的测量结果进行处理,得到UE的位置信息。
参阅图2,介绍一下基于TDOA的定位技术如何对测量结果进行处理得到待定位目标的位置。TDOA定位技术是通过计算双曲线的交点来估计目标的位置。如图2所示,假设3个基站的位置是已知的,这里定义第i个基站的坐标为(x i,y i),待定位目标的坐标为(x UE,y UE)。假设把第1个基站作为参考基站,UE分别测量其他基站的PRS与参考基站的PRS之间的到达时间差Δt i1。根据双曲线的定义,双曲线上的两个固定的点的距离为PRS的到达时间差,UE位于以两个基站为焦点的双曲线上,则可以列出以下方程组:
Figure PCTCN2021083087-appb-000001
Figure PCTCN2021083087-appb-000002
上述两个方程中,c为光速,因为只有两个未知数(x UE,y UE),联合方程(1)和(2)就可以得到(x UE,y UE),即UE的位置坐标。
从上述定位流程及定位方法中可以发现,实现定位功能的前提是收发双方需要协调来测量PRS,并基于得到相关测量结果进行后续的定位计算。在NR Rel-16协议版本中,只支持周期性的PRS发送,即一旦开启定位功能,基站会按照配置的周期,持续的发送PRS,这会带来以下两方面的问题:第一方面,UE在发送PRS的符号上不能收发数据,造成数据吞吐率下降,对UE而言,UE需要接收来自多个网络设备的PRS,资源开销太大,甚至 会中断数据的接收。另一方面,UE需要按照特定的周期来接收PRS,如果周期太大,会使得整个定位的时延增加,而如果周期太小,又增加了定位的资源开销,如图3A所示。
基于上述问题,本申请实施例提供了一种非周期PRS的测量上报方法。该方法中,网络设备在某一个时刻发送非周期PRS,终端设备在相应的接收时间测量非周期PRS,并将测量结果进行上报。位置管理功能网元(location management function,LMF)可以基于终端设备上报的测量结果,处理得到终端设备的位置信息。
以下,介绍本申请实施例涉及的数据传输时间和非周期信道状态信息参考信号(channel state information reference signal,CSI-RS)上报时间。首先,基站会向UE发送下行控制信息(down link control information,DCI),该DCI中会包含一个指示字段,CSI请求(CSI request)。该字段会指示一种非周期CSI触发状态,而每一种非周期CSI触发状态会关联一个或多个非周期CSI的上报配置。其中,一个非周期CSI的上报配置里面会包含一个CSI上报时间参数列表,该参数列表中的数值代表的是上报CSI的时隙偏置。而UE具体适用哪一个非周期CSI的上报配置,以及哪一个上报CSI的时隙偏置,由DCI指示。此外,一个非周期CSI上报配置里面还会关联一些CSI-RS的资源配置,即UE需要测量哪些CSI-RS资源后进行上报,或者说UE上报的测量结果是根据哪些CSI-RS测量得到的。
此外,DCI中还会携带一个字段,时域资源分配(Time domain resource assignment),该字段的作用是指示物理上行共享信道(physical uplink shared channel,PUSCH)所在的时域位置,以及占用的时域符号个数。这里假设PUSCH所在时隙为Ks,DCI调度的PUSCH与DCI的时隙间隔为k2,非周期CSI上报的时隙偏置为Y,则DCI、PUSCH和非周期CSI上报所在时隙的时序关系如图3B所示。
具体的,如果一个DCI中同时出现了时域资源分配字段和CSI请求字段的时候,PUSCH所在的真正时隙是由这两个字段来共同决定的。在标准协议TS38.214-g30版本中有如下规定:
当UE收到一个DCI,该DCI指示的PUSCH只用来数据传输而没有调度非周期CSI上报,或者该PUSCH即被调度了数据传输又被指示了非周期CSI上报,此时PUSCH真正所在时隙由DCI中的时域分配字段来指示,即该字段会指示一个时隙偏置值K 2,PUSCH所在时隙为:K s=n+K 2
当UE收到一个DCI,该DCI指示的PUSCH只用来承载非周期CSI上报信息,而没有数据传输,此时PUSCH所在时隙并不是由时域分配字段决定,而是由CSI请求字段所指示的CSI上报时刻来决定:K 2=max jY j(m+1)。
其中,m是由时域分配字段来指示,Y j是指DCI调度的一个非周期CSI上报配置中,第j个非周期CSI上报的时隙偏置,max j是指取Y j的最大值。之所以取最大值是因为一个DCI可能触发了多个非周期CSI的上报,这里以所有非周期上报里面的最大时隙偏置作为非周期CSI上报时隙偏置以及PUSCH所在的时隙偏置。这样做的好处是可以保证UE测量完所有非周期CSI-RS后都能来得及在PUSCH上报。
需要说明的是,非周期PRS与非周期CSI-RS有很大的区别。首先非周期PRS是由多个网络设备发给UE的,UE需要接收来自多个网络设备的PRS,并且对于每一个接收到的PRS,UE都需要进行相关检测来确定其到达时间以及接收功率,而这个过程会占用大量的芯片资源。首先对于定位来说,至少需要测量得到3个网络设备的PRS才能满足基本的定位功能,而不同网络设备发送的PRS到达UE的时间间隔也是不确定的。而且对于大部分UE,需要向网络设备请求测量间隔来进行PRS的测量,即在这个测量时间窗内UE只会接 收PRS,而不会接收其他数据或信号。
总之,UE在上报非周期PRS测量结果之前,需要保证足够的时间来接收并测量有效的PRS,才不会影响定位精度。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图4示出的通信系统为例详细说明适用于本申请实施例的通信系统。图4示出了适用于本申请实施例的通信方法的通信系统的示意图。如图4所示,该通信系统400包括终端设备401和网络设备402、接入与移动性管理功能网元AMF403和定位管理功能网元LMF404。
下面对本申请实施例的通信系统的各个网元或设备的功能进行详细描述:
所述终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,所述终端设备可以包括具有无线连接功能的手持式设备、车载设备等。目前,所述终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。其中,图4中所述终端设备以UE示出,仅作为示例,并不对终端设备进行限定。
网络设备,又可以称为接入网设备(access network,AN),向所述终端设备提供无线接入服务。所述接入网设备是所述通信系统中将所述终端设备接入到无线网络的设备。所述接入网设备为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些接入网设备的举例为:gNB、传输接收点(transmission reception point,TRP)、传输接点(transmission point,TP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。
所述接入与移动性管理功能网元AMF,可用于对所述终端设备的接入控制和移动性进 行管理,在实际应用中,其包括了长期演进(long term evolution,LTE)中网络框架中移动管理实体(mobility management entity,MME)里的移动性管理功能,并加入了接入管理功能,具体可以负责所述终端设备的注册、移动性管理、跟踪区更新流程、可达性检测、会话管理功能网元的选择、移动状态转换管理等。例如,在5G中,所述接入与移动管理功能网元可以是AMF(access and mobility management function)网元,例如图4所示,在未来通信,如6G中,所述接入与移动管理功能网元仍可以是AMF网元,或有其它的名称,本申请不做限定。当所述接入与移动管理功能网元是AMF网元时,所述AMF可以提供Namf服务。
所述定位管理功能网元LMF,又可以称为定位服务器,可以用于确定UE的位置、从UE获得下行链路位置测量或位置估计等。例如,在5G中,所述位置管理功能网元(location management function,LMF)如图4所示,在未来通信系统中,如6G中,所述位置管理功能网元仍可以是LMF网元,或有其它的名称,本申请不做限定。
参阅图5,为本申请实施例提供的非周期PRS的测量上报方法的示例性流程图,可以包括以下步骤。
步骤501:终端设备接收PRS配置信息。
这里的PRS配置信息可以是正在为终端设备提供服务的网络设备发送给终端设备的,或者也可以是LMF发送给终端设备的。其中,LMF可以在接收到定位请求信息时,请求网络设备上报PRS配置信息。
上述PRS配置信息中可以包含PRS的带宽、周期和符号数等信息。此外,还可以包括资源类型,这里的资源类型可以用于指示PRS的类型。其中,资源类型可以包括周期、半静态和非周期。上述PRS配置信息中资源类型是非周期。应理解,本申请实施例中PRS配置信息中包含的其他信息可以参见现有技术,本申请仅重点描述上述PRS配置信息是非周期PRS的配置信息。
步骤502:网络设备向终端设备发送第一值,相应的终端设备接收第一值。
其中,第一值可以用于指示终端设备的n个非周期PRS的上报配置信息。一个非周期PRS的上报配置信息可以包括m个非周期PRS的上报时间信息。这里的n和m均是大于0的整数。
步骤503:终端设备基于PRS配置信息,接收PRS。
其中,终端设备可以基于PRS配置信息,接收网络设备发送的PRS。终端设备可以根据多个PRS配置信息,分别接收多个网络设备发送的PRS。
在一个示例中,终端设备可以对接收到的PRS进行测量,得到测量结果。其中,测量结果可以是PRS的信号与干扰噪声比(signal to interference plus noise ratio,SINR)、参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、相对到达时间(relative time of arrival,RTOA)或者到达角(angle of arrival,AOA)。可选的,测量结果也可以是上述多个测量量的量化结果。
步骤504:终端设备基于接收的PRS,上报PRS的测量报告。
其中,终端设备可以基于上述n*m个非周期PRS的上报时间信息中的一个,上报PRS的测量报告。这里的PRS的测量报告可以包含PRS的测量结果。可选的,终端设备可以向网络设备上报PRS的测量报告,或者终端设备可以向LMF发送PRS的测量报告。
以下,首先对第一值进行解释和说明。
上述第一值可以用于指示一个非周期触发状态,每一个非周期触发状态可以关联一个或多个非周期PRS上报配置信息。网络设备可以通过DCI向终端设备发送第一值。例如,在DCI format 0_1/0_2中添加一个新的字段“PRS请求(PRS request)”,用于指示一个非周期触发状态。以下,介绍承载上述第一值的信令一。该信令一中可以包含以下信息元素:
1、aperiodicPRSTriggerStateList,解释为非周期触发状态表。其中,aperiodicPRSTriggerStateList的取值(SEQUENC)定义为第一值,解释为上述非周期触发状态表中,第一值所指示的非周期触发状态。第一值的取值的范围可以是从1到非周期触发状态的取值的最大值(maxNrofPRS-TriggerStates)。
2、aperiodicPRSTriggerStateList,解释为上述第一值所指示的非周期触发状态。其中,aperiodicPRSTriggerStateList的取值(SEQUENC)用于一个或多个指示非周期PRS上报配置信息表(PRSReportConfigList)。上述PRS上报配置信息表可以包含一个或多个取值,每一个取值可以用于指示一个非周期PRS上报配置信息。其中,PRS上报配置信息的取值的范围可以是从1到非周期PRS上报配置信息的取值的最大值(maxNrofReportConfigPerAperiodicTrigger)。
需要说明的是,上述一个或多个非周期PRS上报配置信息表可以是网络设备在触发非周期PRS上报之前,配置给终端设备的。比如,网络设备可以通过高层信令,向终端设备指示一个或多个非周期PRS上报配置信息。以下,介绍承载非周期PRS上报配置信息的信令二。该信令二可以包括以下信息元素:
1、PRSReportConfig,解释为非周期PRS上报配置信息。其中,一个非周期PRS上报配置信息对应有一个取值。
2、reportSlotOffsetList,解释为非周期PRS上报时隙偏移表。该表中可以包含一个或多个取值,每一个取值可以指示一个非周期PRS上报时隙偏移。这里的非周期上报时隙偏移是指上报非周期PRS的测量报告的时隙与接收触发非周期PRS测量的信令之间的时隙偏移。可选的,非周期PRS上报时隙偏移表也可以是非周期PRS的测量报告的发送时间表,该表中每一个取值可以用于指示一个非周期PRS的测量报告的发送时间。
可选的,信令二还可以包含下行PRS资源集的标识、下行PRS资源的标识等。其中,下行PRS资源集的标识用于指示网络设备配置的下行PRS资源集,下行PRS资源的标识可以用于指示上述下行PRS资源集中终端设备可以接收的下行PRS资源。
在一种可能的实现方式中,网络设备可以通过上述信令一触发终端设备接收非周期PRS,并上报非周期PRS的测量报告。
以下,对终端设备上报非周期PRS的测量报告的时间进行说明。其中,终端设备可以根据第一值指示的n个非周期PRS的上报配置信息,以及每一个非周期PRS的上报配置信息包含的m个非周期PRS上报时间信息中,确定上报非周期PRS的测量报告的时间。其中,终端设备可以接收来自网络设备的第二值。上述第二值可以用于指示终端设备的通信数据的传输时间信息。例如,该第二值可以是前述DCI中时域资源分配字段的取值。终端设备可以根据所述第二值,从n*m个非周期PRS上报时间信息中确定一个非周期PRS上报时间信息。该非周期PRS上报时间信息可以是非周期PRS的测量报告的发送时间,或者也可以是非周期PRS的测量报告的发送时间与第一值的接收时间之间的时间差信息。终端设备可以基于确定的一个非周期PRS上报时间信息,确定非周期PRS的测量报告的发送时间。可选的,上述第二值也可以是网络设备指示的通信数据的发送时间。
在一种可能的实现方式中,在n等于1时,终端设备在第一值指示的一个非周期PRS的上报配置信息包含的m个非周期PRS上报时间信息中,确定第二值指示的一个非周期PRS上报时间信息。其中,可以将第二值的取值定义为j,第二值指示的一个非周期PRS 上报时间信息可以是第j个非周期PRS上报时间信息。举例来说,第一值指示的一个非周期PRS的上报配置信息包含的m个非周期PRS上报时间信息分别为(a1,a2,a3,a4,a5,a6),第二值取值为3,则第二值指示的非周期PRS上报时间信息可以是a3。
另一种可能的实现方式中,在n大于1时,终端设备可以从n非周期PRS上报时间信息中,分别确定n个第二值指示的非周期PRS上报时间信息。终端设备可以从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息。可选的,终端设备可以从n个非周期PRS上报时间信息中,随机选择一个非周期PRS上报时间信息,或者终端设备可以从n个非周期PRS上报时间信息中选择一个取值最大的非周期PRS上报时间信息。举例来说,第一值指示了三个非周期PRS的上报配置信息,分别为A1、A2和A3。其中,A1包含的非周期PRS上报时间信息可以是(a1,a2,a3,a4,a5,a6),A2包含的非周期PRS上报时间信息可以是(b1,b2,b3,b4,b5),A3包含的非周期PRS上报时间信息可以是(c1,c2,c3,c4,c5,c6)。第二值的取值可以是4,则终端设备可以根据第二值确定三个非周期PRS上报时间信息,a4,b4和c4。其中,终端设备可以在a4,b4和c4中随机选择一个非周期PRS上报时间信息,并根据选择的一个非周期PRS上报时间信息确定非周期PRS的测量报告的发送时间。例如,终端设备可以选择a4,根据a4确定非周期PRS的测量报告的发送时间。或者,终端设备可以在a4,b4和c4中选择取值最大的非周期PRS上报时间信息,并根据取值最大的非周期PRS上报时间信息确定非周期PRS的测量报告的发送时间。例如,a4<b4<c4,则终端设备可以根据c4确定非周期PRS的测量报告的发送时间。
可选的,假设第二值取值为6,由于A2中包含5个非周期PRS上报时间信息,即不存在第6个非周期PRS上报时间信息,则终端设备可以在A1、A2和A3中确定两个非周期PRS上报时间信息,a6和c6。终端设备可以在a6和c6中选择一个非周期PRS上报时间信息,进而确定非周期PRS的测量报告的发送时间,或者终端设备可以在a6和c6中选择一个取值最大的非周期PRS上报时间信息,进而确定非周期PRS的测量报告的发送时间。
终端设备可以根据上述确定的一个非周期PRS上报时间信息确定非周期PRS的测量报告的发送时间。其中,终端设备确定非周期PRS的测量报告的发送时间的方法,可以包括以下两种方法。在以下实施例中,可以将确定的一个非周期PRS上报时间信息定义为P。
方法一、未触发终端设备进行非周期CSI上报。
其中,如果在预设时长内未触发终端设备进行非周期CSI上报,则可以根据终端设备的待传输通信数据的发送时间和上述确定的一个非周期PRS上报时间信息,确定非周期PRS的测量报告的发送时间。这里的预设时长可以是终端设备接收到上述第一值的时间至终端设备上报非周期PRS的测量报告的时间之间的时长。或者,如果承载上述第一值的信令未触发非周期CSI上报,则终端设备可以根据待传输通信数据的发送时间和上述确定的一个非周期PRS上报时间信息,确定非周期PRS的测量报告的发送时间。
在一个示例中,如果终端设备在第二值所指示的时间上有通信数据传输,则终端设备可以在确定的一个非周期PRS上报时间信息和第二值中,选择取值较大的一个值。终端设备可以基于选择的较大的一个值,发送非周期PRS的测量报告。
举例来说,参阅图6A,终端设备在时隙n接收来自网络设备的DCI,该DCI调度的PUSCH上有通信数据传输并且该DCI触发了非周期PRS上报。其中,上述DCI中指示了第二值K2。那么承载非周期PRS的测量报告的PUSCH发送时隙可以由n+max(K2,P)来决 定。假设K2>P,则终端设备可以在时隙n+K2上发送承载非周期PRS的测量报告的PUSCH。
或者,承载非周期PRS的测量报告的发送时隙可以由max(K2,P)来决定。假设K2>P,则终端设备可以在K2上发送承载非周期PRS的测量报告的PUSCH。可选的,该PUSCH中还可以承载终端设备的通信数据。
另一个示例中,如果终端设备在第二值所指示的时间上没有通信数据传输,则终端设备可以基于确定的一个非周期PRS上报时间信息,发送非周期PRS的测量报告。
举例来说,参阅图6B,终端设备在时隙n接收来自网络设备的DCI,该DCI调度的PUSCH上没有通信数据传输并且该DCI触发了非周期PRS上报。那么承载非周期PRS的测量报告的PUSCH传输时刻由n+P来决定。其中,终端设备可以在时隙n+P上发送承载非周期PRS的测量报告的PUSCH。
或者,承载非周期PRS的测量报告的发送时隙可以由P来决定。其中,终端设备可以在时隙P上发送承载非周期PRS的测量报告的PUSCH。
方法二、触发终端设备进行非周期CSI上报。
其中,如果在预设时长内触发终端设备进行非周期CSI上报,则终端设备可以根据上报非周期CSI的时间、待传输通信数据的发送时间和上述确定的一个非周期PRS上报时间信息,确定非周期PRS的测量报告的发送时间。预设时长可以参见上述方法一中的描述。或者,如果承载上述第一值的信令触发非周期CSI上报,则终端设备可以根据上报非周期CSI的时间、待传输通信数据的发送时间和上述确定的一个非周期PRS上报时间信息,确定非周期PRS的测量报告的发送时间。
需要说明的是,确定非周期CSI的上报时间的方法可以与本申请实施例中非周期PRS上报时间信息的方法相同。举例来说,网络设备可以为终端设备确定一个或多个非周期CSI的上报配置信息。每个非周期CSI的上报配置信息中可以包含k个非周期CSI的上报时间。其中,如果网络设备为终端设备确定一个非周期CSI的上报配置信息,终端设备可以根据第二值从k个非周期CSI的上报时间中选择相应的一个非周期CSI的上报时间。如果网络设备为终端设备确定y个非周期CSI的上报配置信息,终端设备可以从k*y个非周期CSI的上报时间中,选择y个第二值指示的非周期CSI的上报时间。终端设备可以从y个非周期CSI的上报时间中,选择一个最大的非周期CSI的上报时间。
在一个示例中,如果终端设备在第二值所指示的时间上有通信数据传输,则终端设备可以在第二值和第四值中确定一个较大的值。这里的第四值可以是第三值与确定的一个非周期PRS上报时间信息P指示的时间的和;第三值可以是上述CSI request字段中指示的上报非周期CSI的时隙与n的偏移,或者第三值可以是上述CSI request字段中指示的上报非周期CSI的时隙。终端设备可以根据第二值和第四值中一个较大的值,确定非周期PRS的测量报告的发送时间。
举例来说,参阅图7A,终端设备在时隙n接收来自网络设备的DCI,该DCI调度的PUSCH上有通信数据传输并且该DCI触发了非周期PRS上报以及非周期CSI上报。其中,上述DCI中指示了第二值K2。上述DCI中也指示了第三值Y。那么承载非周期PRS的测量报告的PUSCH的发送时隙可以由n+max(K2,Y+P)来决定。假设K2<Y+P,则终端设备可以在时隙n+Y+P上发送承载非周期PRS的测量报告的PUSCH。
或者,承载非周期PRS的测量报告的PUSCH的发送时隙可以由max(K2,Y+P)来决定。假设K2<Y+P,则终端设备可以在时隙Y+P上发送承载非周期PRS的测量报告的PUSCH。 可选的,上述PUSCH中还可以包含通信数据和/或非周期CSI。应理解,图7A中接收CSI-RS和接收PRS的时序是示例性的,并不限定于终端设备先接收CSI-RS再接收PRS,或者也不限定于终端设备先接收PRS再接收CSI-RS。
另一个示例中,如果终端设备在第二值所指示的时间上没有通信数据传输,则终端设备可以根据第五值确定非周期PRS的测量报告的发送时间。其中,第五值可以是上述确定的一个非周期PRS上报时间信息P与第三值Y的和。
举例来说,参阅图7B,终端设备在时隙n接收来自网络设备的DCI,该DCI调度的PUSCH上没有通信数据传输并且该DCI触发了非周期PRS上报以及非周期CSI上报。其中,上述DCI中指示了第二值K2。上述DCI中也指示了第三值Y。那么承载非周期PRS的测量报告的PUSCH的发送时隙可以由n+Y+P来决定。终端设备可以在时隙n+Y+P上发送承载非周期PRS的测量报告的PUSCH。
或者,承载非周期PRS的测量报告的PUSCH的发送时隙可以有Y+P来决定。终端设备可以在时隙Y+P上发送承载非周期PRS的测量报告的PUSCH。可选的,上述PUSCH中还可以包含通信数据和/或非周期CSI。应理解,图7B中接收CSI-RS和接收PRS的时序是示例性的,并不限定于终端设备先接收CSI-RS再接收PRS,或者也不限定于终端设备先接收PRS再接收CSI-RS。
基于上述方法一和方法二,在不同情况下终端设备的非周期PRS的测量报告的发送时间,可以如下表1所示。
表1
有无通信数据传输 有无非周期CSI上报 有无非周期PRS上报 PUSCH开始时隙
n+max(K2,P+Y)
n+max(K2,P)
n+P
n+Y+P
可选的,终端设备基于上述方法一和方法二确定的非周期PRS的测量报告的发送时间,可以是终端设备实际发送非周期PRS的测量报告的发送时间。或者,终端设备发送非周期PRS的测量报告的实际时间,与上述确定的发送时间之间可以设置一个时间偏移。例如,终端设备基于上述方法一和方法二确定非周期PRS的测量报告的发送时间为n+Y+P,终端设备发送非周期PRS的测量报告的实际时间可以是n+Y+P+offset。这里的offset为时间偏移的取值,时间偏移的取值可以是网络设备发送给终端设备的、或者可以是协议规定的,或者也可以是网络设备和终端设备协商的。
网络设备可以在上述非周期PRS的测量报告的发送时间,或者非周期PRS的测量报告的实际发送时间,接收来自终端设备的非周期PRS的测量报告。网络设备可以将非周期PRS的测量结果发送给LMF。LMF可以基于非周期PRS的测量结果,处理得到终端设备的位置信息。其中,LMF可以采用UL-AOA定位技术,或者UL-TDOA定位技术处理得到终端设备的位置信息。需要说明的是,LMF也可以采用其他的定位技术确定终端设备的位置信息,本申请不做具体限定。
基于上述方案,网络设备可以通过DCI触发终端设备进行非周期PRS上报。终端设备可以根据通信数据传输时间、非周期CSI上报时间和非周期PRS上报时间中的一个或多 个,确定非周期PRS的测量报告的发送时间。因此,在同时触发非周期CSI上报和非周期PRS上报时,终端设备可以有足够的时间接收和测量PRS,可以提高定位精度,提高了非周期PRS的定位性能。
在一种可能的实现方式中,终端设备可以向定位服务器和/或网络设备发送第一能力信息。这里的第一能力信息包括终端设备支持非周期PRS的定位。可选的,该第一能力信息也可以包括终端设备对PRS的处理能力和终端设备对PRS的测量能力等。
另一种可能的实现方式中,终端设备可以向定位服务器和/或网络设备发送第二能力信息。这里的第二能力信息可以用于指示终端设备支持非周期CSI上报和非周期PRS上报的同时触发,或者第二能力信息可以用于指示终端设备不支持非周期CSI上报和非周期PRS上报的同时触发。可选的,如果终端设备支持非周期CSI上报和非周期PRS上报,则网络设备可以通过一个DCI触发终端设备进行非周期PRS上报和非周期CSI上报。例如,触发终端设备进行非周期PRS上报的DCI中包含CSI request字段和第一值。如果终端设备不支持非周期CSI和非周期PRS同时触发,则网络设备在通过一个DCI触发终端设备进行非周期PRS上报时,该一个DCI不可以触发终端设备进行非周期CSI上报。例如,触发终端设备进行非周期PRS上报的DCI中不包含CSI request字段或者第三值。
在一个示例中,在终端设备不支持非周期CSI和非周期PRS同时触发时,非周期PRS的测量报告的发送时间可以由以下表2所示。
表2
有无通信数据传输 有无非周期CSI上报 有无非周期PRS上报 PUSCH开始时隙
n+max(K2,P)
n+P
以下,通过具体实施例对本申请提供的非周期PRS的测量上报方法进行说明。
实施例1、
参阅图8,为本申请实施例提供的非周期PRS的测量上报方法的示例性流程图,可以包括以下步骤:
步骤801、LMF接收定位请求消息。
这里的定位请求信息可以用于请求终端设备的位置信息。其中,该定位请求信息可以是终端设备发送的,或者也可以是想要获取终端设备的位置信息的第三方服务器发起的。该定位请求信息可以是位置服务请求(location service request)消息,或者也可以是新定义消息。
步骤802、LMF向终端设备发送定位能力请求消息。
这里的定位能力请求消息可以用于请求终端设备的定位能力信息。其中,LMF可以通过长期演进定位协议(long term evolution positioning protocol,LPP)消息向终端设备发送定位能力请求消息。该定位能力请求消息可以是LPP请求能力(request capabilities)消息,或者也可以是新定义消息。
步骤803、终端设备向LMF发送第一能力信息。
可选的,终端设备也可以向LMF发送第二能力信息。其中,第一能力信息和第二能力信息可以参见上述如图5所示的方法实施例中的相关描述,此处不再赘述。
步骤804、LMF向网络设备请求非周期PRS的配置信息。
其中,LMF可以向网络设备发送传输接收点(transmission and reception point,TRP)信息(information)请求(request)消息。该TRP information request消息可以用于请求网络设备上报非周期PRS的配置信息。可选的,LMF可以向终端设备发送该非周期PRS的配置信息。
步骤805、网络设备向LMF发送非周期PRS的配置信息。
其中,非周期PRS的配置信息可以参见如图5所示的方法实施例中的相关描述,此处不再赘述。可选的,LMF可以向终端设备发送该非周期PRS的配置信息,或者网络设备可以向终端设备发送该非周期PRS的配置信息。
步骤806、网络设备向终端设备发送DCI。
这里的DCI可以用于触发终端设备进行非周期PRS上报。该DCI中可以包含第一值。可选的,该DCI中还可以包含第二值和第三值。其中,该DCI可以参见如图5所示的方法实施例中信令一和信令二的相关描述,此处不再赘述。
步骤807:网络设备发送非周期PRS,相应的终端设备接收非周期PRS。
其中,多个网络设备可以广播非周期PRS,终端设备可以接收来自多个网络设备的非周期PRS。
步骤808、终端设备对接收到的非周期PRS进行测量。
其中,终端设备可以根据来自网络设备或者来自LMF的非周期PRS的配置信息,接收来自一个或多个网络设备的PRS,并对接收到的PRS进行测量。
步骤809、终端设备向网络设备发送非周期PRS的测量报告。
其中,终端设备可以在PUSCH上承载非周期PRS的测量报告。非周期PRS的测量报告的发送时间可以参见如图5所示的方法实施例中的相关描述,此处不再赘述。
步骤810、网络设备向LMF发送非周期PRS的测量结果。
步骤811、LMF根据非周期PRS的测量结果,处理得到终端设备的位置信息。
其中,LMF可以采用UL-AOA定位技术,或者UL-TDOA定位技术处理得到终端设备的位置信息。应理解,LMF还可以采用其他定位技术处理得到终端设备的位置信息,本申请不做具体限定。
本申请实施例给出了非周期PRS上报时的时序逻辑关系,使得终端设备和基站对于何时传输承载非周期PRS的测量报告的PUSCH有了统一的理解。例如,如果DCI只触发了非周期PRS的上报,此时承载非周期PRS的测量报告的PUSCH所在时隙可以由非周期PRS上报时间信息来决定,这样可以使得UE有足够时间来测量非周期PRS。而对于非周期CSI和非周期PRS上报同时触发的情景,终端设备不仅需要测量CSI-RS,还要测量PRS,而且二者还需要分时测量,所以需要给终端设备预留足够的时间来进行测量,所以上报时间需要以非周期CSI上报时间信息和非周期PRS上报时间信息来决定。这样既可以提高CSI-RS测量的完整性,又可以提高非周期PRS的定位精度。
基于与上述通信方法的同一技术构思,如图9所示,提供了一种装置900。装置900能够执行上述方法中由终端设备和网络设备侧执行的各个步骤,为了避免重复,此处不再详述。
装置900包括:收发单元910、处理单元920,可选的,还包括存储单元930;处理单元920可以分别与存储单元930和收发单元910相连,所述存储单元930也可以与收发单 元910相连。其中,处理单元920可以与存储单元930集成。收发单元910也可以称为收发器、收发机、收发装置等。处理单元920也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元910用于执行上述方法实施例中终端设备和网络设备侧的发送操作和接收操作,处理单元920用于执行上述方法实施例中终端设备和网络设备侧上除了收发操作之外的其他操作。例如,在一种实现方式中,收发单元910用于执行图5中的终端设备和网络设备侧的接收操作或终端设备和网络设备侧的发送操作。和/或收发单元910还用于执行本申请实施例中终端设备和网络设备侧的其他收发步骤。处理单元920,用于执行图5中的终端设备侧的处理步骤,和/或处理单元920用于执行本申请实施例中终端设备和网络设备侧的其他处理步骤。
所述存储单元930,用于存储计算机程序;
示例性的,装置900用于执行终端设备侧执行的步骤时,所述收发单元910,用于接收非周期定位参考信号PRS配置信息;所述收发单元910,还用于接收来自网络设备的第一值;所述收发单元910,还用于基于所述非周期PRS配置信息,接收非周期PRS;所述处理单元920,用于基于接收的所述非周期PRS生成所述非周期PRS的测量报告;所述收发单元910,还用于基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报告。其中,所述第一值、所述非周期PRS配置信息、非周期PRS的上报配置信息和非周期PRS上报时间信息可以参见如图5所示的方法实施例的相关描述。
在一种设计中,所述收发单元910,还用于接收来自网络设备的第二值;所述处理单元920,还用于基于所述第二值,从所述n*m个所述非周期PRS上报时间信息中确定一个非周期PRS上报时间信息。其中,第二值与确定的一个非周期PRS上报时间信息可以参见如图5所示的方法实施例中的相关描述,此处不再赘述。
所述处理单元920在基于所述第二值,从所述n*m个所述非周期PRS上报时间信息中确定一个非周期PRS上报时间信息时,具体用于:在所述n等于1时,在所述m个非周期PRS上报时间信息中,选择所述第二值指示的一个非周期PRS上报时间信息;或者,在所述n大于1时,从每一个非周期PRS的上报配置信息中,选择所述第二值指示的非周期PRS上报时间信息;从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息。
在一种设计中,在所述n大于1时,所述处理单元920从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息时,具体用于:从n个非周期PRS上报时间信息中,选择取值最大的非周期PRS上报时间信息。
在一种设计中,在所述装置存在在所述第二值指示的传输时间信息传输的通信数据时,所述处理单元920还用于在确定的所述一个非周期PRS上报时间信息和所述第二值中确定取值大的值;所述收发单元910在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:基于所述取值大的值,上报所述非周期PRS的测量报告。
在一种设计中,所述收发单元910在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:所述装置不存在需要在所述第二值指示的传输时间传输的通信数据时,基于所述一个非周期PRS上报时间信息,上报所述非周期PRS的测量报告。
在一种设计中,所述收发单元910,还用于接收第三值,所述第三值用于指示所述装置上报非周期信道状态信息CSI报告的非周期CSI上报时间信息;在所述装置存在在所述第二值指示的传输时间信息传输的通信数据时,所述处理单元920还用于:在第四值和所述第二值中确定取值大的值;所述第四值为基于所述第三值和确定的一个非周期PRS上报时间信息确定的;所述收发单元910在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:基于所述取值大的值,上报所述非周期PRS的测量报告。所述第四值可以参见如图5所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述收发单元910,还用于接收第三值,所述第三值用于指示所述终端设备上报非周期信道状态信息CSI报告的非周期CSI上报时间信息;在所述装置不存在在所述第二值指示的传输时间信息传输的通信数据时,所述收发单元910在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:基于所述一个非周期PRS上报时间信息和所述第三值,上报所述非周期PRS的测量报告。
在一种设计中,所述收发单元910在基于所述一个非周期PRS上报时间信息和所述第三值,上报所述非周期PRS的测量报告时,具体用于:基于第五值,上报所述非周期PRS的测量报告;所述第五值是所述一个非周期PRS上报时间信息和所述第三值的和。
在一种设计中,所述收发单元910还用于:向所述定位服务器和/或网络设备发送第一能力信息;所述第一能力信息包括所述终端设备支持非周期PRS的定位。
在一种设计中,所述收发单元910还用于:向所述定位服务器和/或网络设备发送第二能力信息;所述第二能力信息包括所述终端设备支持非周期PRS上报和非周期CSI上报同时触发;或者所述第二能力信息包括所述终端设备不支持非周期PRS上报和非周期CSI上报同时触发。
当该装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。所述收发单元可以输入数据和输出数据,处理单元可以根据输入数据确定输出数据。例如,收发单元可以输入非周期PRS配置信息,以及第一值。所述收发单元还可以基于PRS配置信息,输入非周期PRS。所述处理单元可以基于所述非周期PRS生成所述非周期PRS的测量报告。所述收发单元还可以输出非周期PRS的测量报告。
示例性的,装置900用于执行网络设备侧执行的步骤时,所述收发单元910,用于向终端设备发送第一值。所述处理单元920,用于确定n*m个所述非周期PRS上报时间信息中的一个;所述收发单元910,还用于基于所述n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告。其中,所述第一值、所述非周期PRS配置信息、非周期PRS的上报配置信息和非周期PRS上报时间信息可以参见如图5所示的方法实施例的相关描述。
在一种设计中,所述收发单元910还用于:向所述终端设备发送第二值;所述第二值用于确定所述n*m个所述非周期PRS上报时间信息中的一个。其中,第二值与确定的一 个非周期PRS上报时间信息可以参见如图5所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述第二值用于指示每一个非周期PRS上报配置信息中包含的m个非周期所述非周期PRS上报时间信息中的一个;所述收发单元910在基于n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告时,具体用于:在所述n等于1时,基于第二值指示的一个所述非周期PRS上报时间信息,接收所述非周期PRS的测量报告;在所述n大于1时,基于n个所述非周期PRS的上报时间信息中的一个,接收所述非周期PRS的测量报告。
在一种设计中,在所述n大于1时,所述收发单元910在基于n个所述非周期PRS的上报时间信息中的一个,接收所述非周期PRS的测量报告时,具体用于:基于n个所述非周期PRS的上报时间信息中取值最大的一个非周期PRS上报时间信息,接收所述非周期PRS的测量报告。
在一种设计中,所述收发单元910在基于n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告时,具体用于:基于所述第二值和确定的一个所述非周期PRS上报时间信息中的一个中取值较大的值,接收所述非周期PRS的测量报告;或者,基于确定的一个所述非周期PRS上报时间信息,接收来自所述终端设备的所述非周期PRS的测量报告。
在一种设计中,所述收发单元910,还用于向所述终端设备发送第三值,所述第三值用于指示所述终端设备上报非周期CSI报告的非周期CSI上报时间信息;所述收发单元910在基于所述第二值和确定的一个所述非周期PRS上报时间信息中的一个中取值较大的值,接收所述非周期PRS的测量报告时,具体用于:基于第四值和第二值中取值大的值,接收所述非周期PRS的测量报告;所述第四值为基于所述第三值和确定的一个非周期PRS上报时间信息确定的;或者,所述收发单元910在基于确定的一个所述非周期PRS上报时间信息,接收来自所述终端设备的所述非周期PRS的测量报告时,具体用于:基于所述确定的一个非周期PRS上报时间信息和所述第三值,接收来自所述终端设备的所述非周期PRS的测量报告。所述第四值可以参见如图5所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述收发单元910还用于:接收来自所述终端设备的第二能力信息;所述第二能力信息包括所述终端设备支持非周期PRS上报和非周期CSI上报同时触发;或者所述第二能力信息包括所述终端设备不支持非周期PRS上报和非周期CSI上报同时触发。
在一种设计中,所述收发单元910还用于:将非周期PRS配置信息发送给所述终端设备;基于所述非周期PRS配置信息,发送非周期PRS。
在一种设计中,所述收发单元910还用于:将所述非周期PRS的测量报告发送给定位服务器。
当该装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。所述收发单元可以输入数据和输出数据,处理单元可以根据输入数据确定输出数据。例如,收发单元可以输出第一值。所述处理单元可以确定n*m个所述非周期PRS上报时间信息中的一个。所述收发单元还可以基于所述n*m个所述非周期PRS上报时间信息中的一个,输入所述非周期PRS的测量报告。
如图10所示为本申请实施例提供的具有通信功能的装置1000,用于实现上述方法中终端设备或网络设备的功能。该装置用于实现上述方法中终端设备的功能时,该装置可以是终端设备,也可以是类似终端设备功能的芯片,或者是能够和终端设备匹配使用的装置。该装置用于实现上述方法中网络设备的功能时,该装置可以是网络设备,也可以是类似网络设备功能的芯片,或者是能够和网络设备匹配使用的装置。
装置1000包括至少一个处理器1020,用于实现本申请实施例提供的方法中终端设备或网络设备的功能。装置1000还可以包括通信接口1010。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1010用于装置1000中的装置可以和其它设备进行通信。所述处理器1020可以完成如图9所示的处理单元920的功能,所述通信接口1010可以完成如图9所示的收发单元910的功能。
装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及通信接口1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种终端设备,该终端设备可以是终端设备也可以是电路。该终端设备可以用于执行上述方法实施例中由终端设备所执行的动作。
图11示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图11中,终端设备以手机作为例子。如图11所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。处理器可以执行存储器中存储的软件程序以使得该终端设备执行如前述方法实施例中终端设备执行的步骤,不做赘述。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,如图11中所示的收发单元1110将具有处理功能的处理器视为终端设备的处理单元,如图11所示的处理单元1120。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧或网络设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧或网络设备侧的方法。
作为本实施例的另一种形式,提供一种通信系统,该系统可以包括上述至少一个终端设备和上述至少一个网络设备。
应理解,本发明实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种非周期定位参考信号非周期PRS的测量上报方法,其特征在于,包括:
    终端设备接收非周期定位参考信号PRS配置信息;
    所述终端设备接收来自网络设备的第一值;所述第一值用于指示所述终端设备的n个非周期PRS的上报配置信息;其中,一个非周期PRS的上报配置信息包括m个非周期PRS上报时间信息;n和m是大于0的整数;
    所述终端设备基于所述非周期PRS配置信息,接收非周期PRS;
    所述终端设备基于接收的所述非周期PRS和n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报告。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述终端设备接收来自网络设备的第二值;
    所述终端设备基于所述第二值,从所述n*m个所述非周期PRS上报时间信息中确定一个非周期PRS上报时间信息;所述一个非周期PRS上报时间信息用于确定上报所述非周期PRS的测量报告的发送时间。
  3. 根据权利要求2所述的方法,其特征在于,所述第二值用于指示所述终端设备的通信数据的传输时间信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端设备基于所述第二值,从所述n*m个所述非周期PRS上报时间信息中确定一个非周期PRS上报时间信息,包括:
    在所述n等于1时,所述终端设备在所述m个非周期PRS上报时间信息中,选择所述第二值指示的一个非周期PRS上报时间信息;或者
    在所述n大于1时,所述终端设备从每一个非周期PRS的上报配置信息中,选择所述第二值指示的非周期PRS上报时间信息,所述终端设备从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息。
  5. 根据权利要求4所述的方法,其特征在于,在所述n大于1时,所述终端设备从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息,包括:
    所述终端设备从n个非周期PRS上报时间信息中,选择取值最大的非周期PRS上报时间信息。
  6. 根据权利要求2-4任一所述的方法,其特征在于,还包括:
    在所述终端设备存在在所述第二值指示的传输时间信息传输的通信数据时,所述终端设备在确定的所述一个非周期PRS上报时间信息和所述第二值中确定取值大的值;
    所述终端设备基于接收的所述非周期PRS和n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报告,包括:
    所述终端设备基于所述取值大的值,上报所述非周期PRS的测量报告。
  7. 根据权利要求2-6任一所述的方法,其特征在于,所述终端设备基于接收的所述非周期PRS和n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报告,包括:
    所述终端设备不存在需要在所述第二值指示的传输时间传输的通信数据时,所述终端设备基于所述一个非周期PRS上报时间信息,上报所述非周期PRS的测量报告。
  8. 根据权利要求6所述的方法,其特征在于,还包括:
    所述终端设备接收第三值,所述第三值用于指示所述终端设备上报非周期信道状态信息CSI报告的非周期CSI上报时间信息;
    在所述终端设备存在在所述第二值指示的传输时间信息传输的通信数据时,所述终端设备在确定的所述一个非周期PRS上报时间信息和所述第二值中确定取值大的值,包括:
    在所述终端设备存在在所述第二值指示的传输时间信息传输的通信数据时,所述终端设备在第四值和所述第二值中确定取值大的值;所述第四值为基于所述第三值和确定的一个非周期PRS上报时间信息确定的;
    所述终端设备基于接收的所述非周期PRS和n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报告,包括:
    所述终端设备基于所述取值大的值,上报所述非周期PRS的测量报告。
  9. 根据权利要求8所述的方法,其特征在于,所述第四值具体为所述第三值和所述确定的一个非周期PRS上报时间信息指示的时间的和。
  10. 根据权利要求7所述的方法,其特征在于,还包括:
    所述终端设备接收第三值,所述第三值用于指示所述终端设备上报非周期信道状态信息CSI报告的非周期CSI上报时间信息;
    在所述终端设备不存在在所述第二值指示的传输时间信息传输的通信数据时,所述终端设备基于所述一个非周期PRS上报时间信息,上报所述非周期PRS的测量报告,包括:
    所述终端设备基于所述一个非周期PRS上报时间信息和所述第三值,上报所述非周期PRS的测量报告。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备基于所述一个非周期PRS上报时间信息和所述第三值,上报所述非周期PRS的测量报告,包括:
    所述终端设备基于第五值,上报所述非周期PRS的测量报告;所述第五值是所述一个非周期PRS上报时间信息和所述第三值的和。
  12. 根据权利要求1-11任一所述的方法,其特征在于,还包括:
    所述终端设备向所述定位服务器和/或网络设备发送第一能力信息;所述第一能力信息包括所述终端设备支持非周期PRS的定位。
  13. 根据权利要求8-11任一所述的方法,其特征在于,还包括:
    所述终端设备向所述定位服务器和/或网络设备发送第二能力信息;所述第二能力信息包括所述终端设备支持非周期PRS上报和非周期CSI上报同时触发;或者所述第二能力信息包括所述终端设备不支持非周期PRS上报和非周期CSI上报同时触发。
  14. 根据权利要求2所述的方法,其特征在于,所述第一值和所述第二值携带在下行控制信息DCI中。
  15. 一种非周期定位参考信号PRS的测量上报方法,其特征在于,包括:
    网络设备向终端设备发送第一值;所述第一值用于指示所述终端设备的n个非周期PRS的上报配置信息;其中,一个非周期PRS的上报配置信息包括m个非周期PRS上报时间信息;n和m是大于0的整数;
    所述网络设备基于n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送第二值;所述第二值用于确定所述n*m个所述非周期PRS上报时间信息中的一个。
  17. 根据权利要求16所述的方法,其特征在于,所述第二值用于指示所述终端设备的通信数据的传输时间信息。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第二值用于指示每一个非周期PRS上报配置信息中包含的m个所述非周期PRS上报时间信息中的一个;
    所述网络设备基于n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告,包括:
    在所述n等于1时,所述网络设备基于第二值指示的一个所述非周期PRS上报时间信息,接收所述非周期PRS的测量报告;
    在所述n大于1时,所述网络设备基于n个所述非周期PRS的上报时间信息中的一个,接收所述非周期PRS的测量报告。
  19. 根据权利要求18所述的方法,其特征在于,在所述n大于1时,所述网络设备基于n个所述非周期PRS的上报时间信息中的一个,接收所述非周期PRS的测量报告,包括:
    所述网络设备基于n个所述非周期PRS的上报时间信息中取值最大的一个非周期PRS上报时间信息,接收所述非周期PRS的测量报告。
  20. 根据权利要求16-18任一所述的方法,其特征在于,所述网络设备基于n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告,包括:
    所述网络设备基于所述第二值和确定的一个所述非周期PRS上报时间信息中取值大的值,接收所述非周期PRS的测量报告;或者
    所述网络设备基于确定的一个所述非周期PRS上报时间信息,接收来自所述终端设备的所述非周期PRS的测量报告。
  21. 根据权利要求20所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送第三值,所述第三值用于指示所述终端设备上报非周期CSI报告的非周期CSI上报时间信息;
    所述网络设备基于所述第二值和确定的一个所述非周期PRS上报时间信息中取值大的值,接收所述非周期PRS的测量报告,包括:
    所述网络设备基于第四值和第二值中取值大的值,接收所述非周期PRS的测量报告;所述第四值为基于所述第三值和确定的一个非周期PRS上报时间信息确定的;或者
    所述网络设备基于确定的一个所述非周期PRS上报时间信息,接收来自所述终端设备的所述非周期PRS的测量报告,包括:
    所述网络设备基于所述确定的一个非周期PRS上报时间信息和所述第三值,接收来自所述终端设备的所述非周期PRS的测量报告。
  22. 根据权利要求21所述的方法,其特征在于,所述第四值具体为所述第三值和所述确定的一个非周期PRS上报时间信息指示的时间的和。
  23. 根据权利要求21或22所述的方法,其特征在于,还包括:
    所述网络设备接收来自所述终端设备的第二能力信息;所述第二能力信息包括所述终端设备支持非周期PRS上报和非周期CSI上报同时触发;或者所述第二能力信息包括所述 终端设备不支持非周期PRS上报和非周期CSI上报同时触。
  24. 根据权利要求15-23任一所述的方法,其特征在于,还包括:
    所述网络设备将非周期PRS配置信息发送给所述终端设备;
    所述网络设备基于所述非周期PRS配置信息,发送非周期PRS。
  25. 根据权利要求15-24任一所述的方法,其特征在于,还包括:
    所述网络设备将所述非周期PRS的测量报告发送给定位服务器。
  26. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于接收非周期定位参考信号PRS配置信息;
    所述收发单元,还用于接收来自网络设备的第一值;所述第一值用于指示n个非周期PRS的上报配置信息;其中,一个非周期PRS的上报配置信息包括m个非周期PRS上报时间信息;n和m是大于0的整数;
    所述收发单元,还用于基于所述非周期PRS配置信息,接收非周期PRS;
    所述处理单元,用于基于接收的所述非周期PRS生成所述非周期PRS的测量报告;
    所述收发单元,还用于基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报告。
  27. 根据权利要求26所述的装置,其特征在于:
    所述收发单元,还用于接收来自网络设备的第二值;
    所述处理单元,还用于基于所述第二值,从所述n*m个所述非周期PRS上报时间信息中确定一个非周期PRS上报时间信息;所述一个非周期PRS上报时间信息用于确定上报所述非周期PRS的测量报告的发送时间。
  28. 根据权利要求27所述的装置,其特征在于,所述第二值用于指示所述终端设备的通信数据的传输时间信息。
  29. 根据权利要求27或28所述的装置,其特征在于,所述处理单元基于所述第二值,从所述n*m个所述非周期PRS上报时间信息中确定一个非周期PRS上报时间信息时,具体用于:
    在所述n等于1时,在所述m个非周期PRS上报时间信息中,选择所述第二值指示的一个非周期PRS上报时间信息;或者
    在所述n大于1时,从每一个非周期PRS的上报配置信息中,选择所述第二值指示的非周期PRS上报时间信息;从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息。
  30. 根据权利要求29所述的装置,其特征在于,在所述n大于1时,所述处理单元从n个非周期PRS上报时间信息中,选择一个非周期PRS上报时间信息时,具体用于:
    从n个非周期PRS上报时间信息中,选择取值最大的非周期PRS上报时间信息。
  31. 根据权利要求27-30任一所述的装置,其特征在于:
    在所述装置存在在所述第二值指示的传输时间信息传输的通信数据时,所述处理单元还用于在确定的所述一个非周期PRS上报时间信息和所述第二值中确定取值大的值;
    所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:
    基于所述取值大的值,上报所述非周期PRS的测量报告。
  32. 根据权利要求27-31任一所述的装置,其特征在于,所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:
    所述装置不存在需要在所述第二值指示的传输时间传输的通信数据时,基于所述一个非周期PRS上报时间信息,上报所述非周期PRS的测量报告。
  33. 根据权利要求31所述的装置,其特征在于:
    所述收发单元,还用于接收第三值,所述第三值用于指示所述装置上报非周期信道状态信息CSI报告的非周期CSI上报时间信息;
    在所述装置存在在所述第二值指示的传输时间信息传输的通信数据时,所述处理单元还用于:在第四值和所述第二值中确定取值大的值;所述第四值为基于所述第三值和确定的一个非周期PRS上报时间信息确定的;
    所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:
    基于所述取值大的值,上报所述非周期PRS的测量报告。
  34. 根据权利要求33所述的装置,其特征在于,所述第四值具体为所述第三值和所述确定的一个非周期PRS上报时间信息指示的时间的和。
  35. 根据权利要求32所述的装置,其特征在于:
    所述收发单元,还用于接收第三值,所述第三值用于指示所述终端设备上报非周期信道状态信息CSI报告的非周期CSI上报时间信息;
    在所述装置不存在在所述第二值指示的传输时间信息传输的通信数据时,所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,上报所述非周期PRS的测量报时,具体用于:
    基于所述一个非周期PRS上报时间信息和所述第三值,上报所述非周期PRS的测量报告。
  36. 根据权利要求35所述的装置,其特征在于,所述收发单元在基于所述一个非周期PRS上报时间信息和所述第三值,上报所述非周期PRS的测量报告时,具体用于:
    基于第五值,上报所述非周期PRS的测量报告;所述第五值是所述一个非周期PRS上报时间信息和所述第三值的和。
  37. 根据权利要求26-36任一所述的装置,其特征在于,所述收发单元还用于:
    向所述定位服务器和/或网络设备发送第一能力信息;所述第一能力信息包括所述终端设备支持非周期PRS的定位。
  38. 根据权利要求33-37任一所述的装置,其特征在于,所述收发单元还用于:
    向所述定位服务器和/或网络设备发送第二能力信息;所述第二能力信息包括所述终端设备支持非周期PRS上报和非周期CSI上报同时触发;或者所述第二能力信息包括所述终端设备不支持非周期PRS上报和非周期CSI上报同时触发。
  39. 根据权利要求27所述的装置,其特征在于,所述第一值和所述第二值携带在下行控制信息DCI中。
  40. 一种通信装置,其特征在于,包括:处理单元和收发单元
    所述收发单元,用于向终端设备发送第一值;所述第一值用于指示所述终端设备的n个非周期PRS的上报配置信息;其中,一个非周期PRS的上报配置信息包括m个非周期 PRS上报时间信息;n和m是大于0的整数;
    所述处理单元,用于确定n*m个所述非周期PRS上报时间信息中的一个;
    所述收发单元,还用于基于所述n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告。
  41. 根据权利要求40所述的装置,其特征在于,所述收发单元还用于:
    向所述终端设备发送第二值;所述第二值用于确定所述n*m个所述非周期PRS上报时间信息中的一个。
  42. 根据权利要求41所述的装置,其特征在于,所述第二值用于指示所述终端设备的通信数据的传输时间信息。
  43. 根据权利要求41或42所述的装置,其特征在于,所述第二值用于指示每一个非周期PRS上报配置信息中包含的m个非周期所述非周期PRS上报时间信息中的一个;
    所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告时,具体用于:
    在所述n等于1时,基于第二值指示的一个所述非周期PRS上报时间信息,接收所述非周期PRS的测量报告;
    在所述n大于1时,基于n个所述非周期PRS的上报时间信息中的一个,接收所述非周期PRS的测量报告。
  44. 根据权利要求43所述的装置,其特征在于,在所述n大于1时,所述收发单元在基于n个所述非周期PRS的上报时间信息中的一个,接收所述非周期PRS的测量报告时,具体用于:
    基于n个所述非周期PRS的上报时间信息中取值最大的一个非周期PRS上报时间信息,接收所述非周期PRS的测量报告。
  45. 根据权利要求41-44任一所述的装置,其特征在于,所述收发单元在基于n*m个所述非周期PRS上报时间信息中的一个,接收来自所述终端设备的所述非周期PRS的测量报告时,具体用于:
    基于所述第二值和确定的一个所述非周期PRS上报时间信息中的一个中取值大的值,接收所述非周期PRS的测量报告;或者
    基于确定的一个所述非周期PRS上报时间信息,接收来自所述终端设备的所述非周期PRS的测量报告。
  46. 根据权利要求45所述的装置,其特征在于:
    所述收发单元,还用于向所述终端设备发送第三值,所述第三值用于指示所述终端设备上报非周期CSI报告的非周期CSI上报时间信息;
    所述收发单元在基于所述第二值和确定的一个所述非周期PRS上报时间信息中的一个中取值大的值,接收所述非周期PRS的测量报告时,具体用于:
    基于第四值和第二值中取值大的值,接收所述非周期PRS的测量报告;所述第四值为基于所述第三值和确定的一个非周期PRS上报时间信息确定的;或者
    所述收发单元在基于确定的一个所述非周期PRS上报时间信息,接收来自所述终端设备的所述非周期PRS的测量报告时,具体用于:
    基于所述确定的一个非周期PRS上报时间信息和所述第三值,接收来自所述终端设备的所述非周期PRS的测量报告。
  47. 根据权利要求46所述的装置,其特征在于,所述第四值具体为所述第三值和所述确定的一个非周期PRS上报时间信息指示的时间的和。
  48. 根据权利要求46或47所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述终端设备的第二能力信息;所述第二能力信息包括所述终端设备支持非周期PRS上报和非周期CSI上报同时触发;或者所述第二能力信息包括所述终端设备不支持非周期PRS上报和非周期CSI上报同时触发。
  49. 根据权利要求40-48任一所述的装置,其特征在于,所述收发单元还用于:
    将非周期PRS配置信息发送给所述终端设备;
    基于所述非周期PRS配置信息,发送非周期PRS。
  50. 根据权利要求40-49任一所述的装置,其特征在于,所述收发单元还用于:
    将所述非周期PRS的测量报告发送给定位服务器。
  51. 一种通信装置,其特征在于,所述装置包括处理器和存储器,
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行存储器中的计算机程序或指令,使所述装置执行如权利要求1-14中任一项所述的方法或者使所述装置执行如权利要求15-25任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被电子装置调用时,使所述电子装置执行如权利要求1-14中任一项所述的方法或者使所述电子装置执行如权利要求15-25任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,当所述计算机程序产品在电子装置上运行时,使得电子装置执行如权利要求1-14中任一项所述的方法或者使所述电子装置执行如权利要求15-25任一项所述的方法。
PCT/CN2021/083087 2021-03-25 2021-03-25 一种非周期定位参考信号的测量上报方法和装置 WO2022198591A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180093983.6A CN116868531A (zh) 2021-03-25 2021-03-25 一种非周期定位参考信号的测量上报方法和装置
PCT/CN2021/083087 WO2022198591A1 (zh) 2021-03-25 2021-03-25 一种非周期定位参考信号的测量上报方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083087 WO2022198591A1 (zh) 2021-03-25 2021-03-25 一种非周期定位参考信号的测量上报方法和装置

Publications (1)

Publication Number Publication Date
WO2022198591A1 true WO2022198591A1 (zh) 2022-09-29

Family

ID=83396262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083087 WO2022198591A1 (zh) 2021-03-25 2021-03-25 一种非周期定位参考信号的测量上报方法和装置

Country Status (2)

Country Link
CN (1) CN116868531A (zh)
WO (1) WO2022198591A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247494A (zh) * 2012-03-30 2014-12-24 夏普株式会社 对上行链路控制信息uci的传输调度中的冲突解决
CN107733595A (zh) * 2016-08-11 2018-02-23 上海诺基亚贝尔股份有限公司 用于信道状态信息参考信号的传输和报告的方法和设备
US20180241532A1 (en) * 2015-08-13 2018-08-23 Ntt Docomo, Inc. Base station, user equipment, and method of csi-rs transmission
CN110326228A (zh) * 2016-08-11 2019-10-11 康维达无线有限责任公司 用于新无线电的csi反馈设计
CN112449370A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 定位的方法和通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247494A (zh) * 2012-03-30 2014-12-24 夏普株式会社 对上行链路控制信息uci的传输调度中的冲突解决
US20180241532A1 (en) * 2015-08-13 2018-08-23 Ntt Docomo, Inc. Base station, user equipment, and method of csi-rs transmission
CN107733595A (zh) * 2016-08-11 2018-02-23 上海诺基亚贝尔股份有限公司 用于信道状态信息参考信号的传输和报告的方法和设备
CN110326228A (zh) * 2016-08-11 2019-10-11 康维达无线有限责任公司 用于新无线电的csi反馈设计
CN112449370A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 定位的方法和通信装置

Also Published As

Publication number Publication date
CN116868531A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2021023093A1 (zh) 感知方法和通信装置
WO2021008581A1 (zh) 用于定位的方法和通信装置
WO2020015610A1 (zh) 定位方法、装置及设备
WO2018127066A1 (zh) 一种上行测量信号的指示方法及装置
WO2021031714A1 (zh) 一种基于相对角度的定位方法及装置
WO2021204293A1 (zh) 定位信号处理方法及装置
US20220224488A1 (en) Reference signal configuration determining method and apparatus
WO2021120023A1 (zh) 一种定位方法及装置
WO2020164517A1 (zh) 用于测量信号的方法和通信装置
WO2021047666A1 (zh) 一种探测参考信号传输的方法、相关设备以及存储介质
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2022063261A1 (zh) 一种上行参考信号的关联方法及通信装置
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2021027919A1 (zh) 传输参考信号的方法及设备
WO2018202168A1 (zh) 信息传输方法及装置
US20230026332A1 (en) Wireless communication method and communication apparatus
WO2022198591A1 (zh) 一种非周期定位参考信号的测量上报方法和装置
WO2022147800A1 (zh) 一种定位信息的传输方法和装置
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2021207908A1 (zh) 一种随机接入方法及终端设备
WO2024027539A1 (zh) 支持Wi-Fi感知的通信方法和相关产品
WO2022206306A1 (zh) 一种通信方法和装置
WO2024032280A1 (zh) 定位配置方法、装置及存储介质
WO2022141592A1 (zh) 一种定位方法和装置
WO2024045823A1 (zh) 参考信号处理方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093983.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932216

Country of ref document: EP

Kind code of ref document: A1