WO2020015610A1 - 定位方法、装置及设备 - Google Patents

定位方法、装置及设备 Download PDF

Info

Publication number
WO2020015610A1
WO2020015610A1 PCT/CN2019/096018 CN2019096018W WO2020015610A1 WO 2020015610 A1 WO2020015610 A1 WO 2020015610A1 CN 2019096018 W CN2019096018 W CN 2019096018W WO 2020015610 A1 WO2020015610 A1 WO 2020015610A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
frequency domain
domain resource
positioning
preset
Prior art date
Application number
PCT/CN2019/096018
Other languages
English (en)
French (fr)
Inventor
王艺
朱俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19837737.6A priority Critical patent/EP3783974B1/en
Publication of WO2020015610A1 publication Critical patent/WO2020015610A1/zh
Priority to US17/102,120 priority patent/US11914060B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0215Interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0268Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a positioning method, device, and device.
  • wireless location-based location services have exploded in many areas, such as navigation and autonomous driving, traffic dispatching, the Internet of Things, emergency assistance, equipment detection, disaster prevention, and personalized information services.
  • 3GPP 3rd Generation Partnership Project
  • TR technical report 22.862 proposed that the positioning accuracy of the 5th generation (5G) mobile communication needs to reach 30 cm to 1 Meter.
  • the existing positioning methods may include: a positioning method based on the time of arrival (TOA) of positioning reference signals (PRS), a time difference of arrival based on PRS (TDOA) ) Positioning method, PRS-based angle of arrival (AOA) positioning method, and joint positioning method based on at least two measurement parameters described above.
  • TOA time of arrival
  • PRS positioning reference signals
  • TDOA time difference of arrival based on PRS
  • AOA angle of arrival
  • joint positioning method based on at least two measurement parameters described above.
  • the measurement accuracy of the TOA / TDOA-based positioning method depends on the measurement accuracy of the signal arrival time, and the measurement accuracy of the signal arrival time is directly proportional to the bandwidth continuously occupied by the PRS, that is, the larger the bandwidth, the higher the accuracy.
  • the TOA / TDOA measurement accuracy is required to be less than or equal to 1 nanosecond (ns), that is, the bandwidth for transmitting PRS is required to be at least 1 gigahertz (GHz).
  • ns nanosecond
  • GHz gigahertz
  • service data is usually not transmitted on the time-frequency resources occupied by the PRS.
  • PRS the AOA-based positioning method itself requires very few frequency domain resources, in order to reduce the interference of service data on PRS, only PRS is transmitted in the same time slot or subframe occupied by PRS, and service data is not transmitted, resulting in A large number of time-frequency resources in the time slot or subframe are idle.
  • the bandwidth of the licensed spectrum is ultimately limited, and the time domain resources are also limited. Therefore, if more time-frequency resources are reserved for high-precision positioning, the time-frequency resources required for service data will be crowded up, thereby reducing the system capacity and working efficiency of the communication system.
  • This application provides a positioning method, device, and device, which are intended to be applicable to quickly and accurately determine the location of a terminal without occupying a large amount of frequency domain resources in the licensed spectrum.
  • a positioning method including: receiving a first positioning reference signal PRS on a first frequency domain resource, and receiving a second PRS on a second frequency domain resource.
  • the first frequency domain resource is a frequency domain resource in an unlicensed spectrum; the second frequency domain resource is a frequency domain resource in a licensed spectrum.
  • a first positioning measurement result corresponding to the first PRS and a second positioning measurement result corresponding to the second PRS are determined.
  • the position of the terminal is determined according to the first positioning measurement result and the second positioning measurement result.
  • the positioning method provided in the present application can use an unlicensed spectrum to receive and measure a first PRS with a large spectrum bandwidth required for high-precision positioning, use an allocated frequency domain resource in the licensed spectrum to receive and measure a second PRS, and
  • the first positioning measurement result corresponding to one PRS and the second positioning measurement result corresponding to the second PRS determine the location of the terminal, avoiding occupying a large amount of frequency domain resources in the authorized spectrum during the high-precision positioning of the terminal, which can In the case of a large number of frequency domain resources in the authorized spectrum, the location of the terminal can be determined quickly and accurately, and more frequency domain resources in the authorized spectrum can be reserved for service data transmission, and the resource utilization rate of the authorized spectrum is improved, thereby improving System capacity and working efficiency of communication systems.
  • the first frequency domain resource may be a frequency domain resource of a first preset bandwidth in the unlicensed spectrum, where the first preset bandwidth is usually a larger bandwidth to ensure the measurement of the first PRS. Precision.
  • the second frequency domain resource may be a frequency domain resource of a second preset bandwidth in the licensed spectrum, where the second preset bandwidth is usually a smaller bandwidth to reserve more frequency domain resources in the licensed spectrum for Service data transmission to improve the resource utilization of the licensed spectrum and improve the system capacity and working efficiency of the communication system.
  • the first preset bandwidth may be the entire bandwidth in the unlicensed spectrum to further improve the measurement accuracy of the first PRS.
  • the second preset bandwidth may be a part of the bandwidth in the licensed spectrum, so as to reduce frequency domain resources in the licensed spectrum occupied by high-precision positioning, so as to reserve more resources for service data transmission, and further improve the bandwidth in the licensed spectrum. Frequency-domain resource utilization improves system capacity and work efficiency of communication systems.
  • the first frequency domain resource is a frequency domain resource in an unlicensed spectrum corresponding to a preset time window; wherein the preset time window includes a first preset number of time units, and the time units are as follows One: symbol and time slot.
  • the first preset number of time units may be one time unit, such as one symbol, in order to centrally transmit the first PRS to simplify time-frequency resource allocation.
  • the first preset number of time units may also be at least two time units, and the time diversity gain of the first PRS transmitted by different time units may be used to further improve the measurement accuracy of the first PRS, or A PRS sets multiple alternative time units to improve the probability of the first PRS transmission being successful, thereby improving the reliability of the measurement of the first PRS.
  • a litsen before talk (LBT) method can also be used to determine whether or not There are no other signals on the licensed spectrum, such as the signaling and / or data of another wireless system, which can avoid the interference of other signals on the first PRS transmitted on the unlicensed spectrum, thereby further improving the first PRS and the second PRS Measurement accuracy.
  • the at least two time units may be discontinuous, partially continuous, or all continuous. As long as the at least two time units are located within the same preset time window, the time correlation between different time units can be used to further Improve the measurement accuracy of the first PRS.
  • the second frequency domain resource may also be a frequency domain resource in the authorized spectrum corresponding to the preset time window, that is, the second frequency domain resource and the first frequency domain resource both correspond to the preset time window.
  • the frequency domain resources can be regarded as a strong time correlation between the first PRS and the second PRS, which can further improve the positioning accuracy.
  • the preset time window is within a preset period, and the preset period includes a second preset number of consecutive time units, and the second preset number is greater than the first preset number. It can be understood that the purpose of setting the preset period is to periodically transmit the first PRS and the second PRS, so as to refresh the location of the terminal in time.
  • the first positioning measurement result includes the arrival time TOA of the first PRS; the second positioning measurement result includes the arrival angle AOA of the second PRS.
  • determining the location of the terminal according to the first positioning measurement result and the second positioning measurement result may include: determining the location of the terminal according to TOA and AOA, that is, determining the circumferential radius of the base station as the circle center according to the TOA of the first PRS, It is determined according to the AOA when the second PRS arrives at the base station or terminal, and the terminal position can be determined based on the above-mentioned circle with the base station as the center and one AOA. It does not involve the calculation process of the circle with multiple base stations as the center, which can simplify the determination of the terminal position. The amount of calculation, thereby improving the positioning efficiency.
  • the measurement result of the first PRS includes a time of arrival difference TDOA, where TDOA is a difference between a time of arrival of a first PRS sent by a terminal and a TOA of a different network device, or a first PRS sent by a different network device The difference between the arrival time TOA of the terminal; the measurement result of the second PRS is the arrival angle AOA of the second PRS.
  • TDOA is a difference between a time of arrival of a first PRS sent by a terminal and a TOA of a different network device, or a first PRS sent by a different network device
  • the difference between the arrival time TOA of the terminal; the measurement result of the second PRS is the arrival angle AOA of the second PRS.
  • determining the location of the terminal according to the first positioning measurement result and the second positioning measurement result includes: determining the location of the terminal according to TDOA and AOA, and the base station arriving at the two base stations and / or the terminal's AOA according to the second PRS Determine the location of the terminal, that is, only the TDOA involving the first PRS arriving and / or leaving the two base stations is needed to determine a hyperbola that focuses on the two base stations, and does not involve at least two of the at least three base stations.
  • the situation where the terminal position can be determined by combining at least three hyperbola with two pairs as the focus can reduce the calculation amount of positioning the terminal position, thereby improving the positioning efficiency.
  • a positioning device in a second aspect, includes a receiving module and a determining module.
  • the receiving module is configured to receive a first positioning reference signal PRS on a first frequency domain resource, and receive a second PRS on a second frequency domain resource.
  • the first frequency domain resource is a frequency domain resource in an unlicensed spectrum
  • the second frequency domain resource is a frequency domain resource in a licensed spectrum.
  • a determining module configured to determine the first positioning measurement result corresponding to the first PRS and the second positioning measurement result corresponding to the second PRS according to the first PRS and the second PRS, and according to the first positioning measurement result and the second positioning measurement result To determine the location of the terminal.
  • the positioning device provided in the present application can receive and measure a first PRS with a larger spectrum bandwidth required for high-precision positioning by using an unlicensed spectrum, and receive and measure a second PRS by using an allocated frequency domain resource in the licensed spectrum, and The first positioning measurement result corresponding to one PRS and the second positioning measurement result corresponding to the second PRS determine the location of the terminal, avoiding occupying a large amount of frequency domain resources in the authorized spectrum during the high-precision positioning of the terminal, which can In the case of a large number of frequency domain resources in the authorized spectrum, the location of the terminal can be determined quickly and accurately, and more frequency domain resources in the authorized spectrum can be reserved for service data transmission, and the resource utilization rate of the authorized spectrum is improved, thereby improving System capacity and working efficiency of communication systems.
  • the first frequency domain resource may be a frequency domain resource of a first preset bandwidth in the unlicensed spectrum, where the first preset bandwidth is a larger bandwidth to ensure the measurement accuracy of the first PRS.
  • the second frequency domain resource may be a frequency domain resource of a second preset bandwidth in the authorized spectrum, where the second preset bandwidth is a smaller bandwidth to reserve more frequency domain resources in the authorized spectrum for services. Data transmission to improve the resource utilization of the licensed spectrum and improve the system capacity and working efficiency of the communication system.
  • the first preset bandwidth may be the entire bandwidth in the unlicensed spectrum to further improve the measurement accuracy of the first PRS.
  • the second preset bandwidth may be a part of the bandwidth in the licensed spectrum, so as to reduce frequency domain resources in the licensed spectrum occupied by high-precision positioning, so as to reserve more resources for service data transmission, and further improve the bandwidth in the licensed spectrum. Frequency-domain resource utilization improves system capacity and work efficiency of communication systems.
  • the first frequency domain resource is a frequency domain resource in an unlicensed spectrum corresponding to a preset time window; wherein the preset time window includes a first preset number of time units, and the time units are One: symbol and time slot.
  • the first preset number of time units may be one time unit, such as one symbol, in order to centrally transmit the first PRS to simplify time-frequency resource allocation.
  • the first preset number of time units may also be at least two time units, and the time diversity gain of the first PRS transmitted by different time units may be used to further improve the measurement accuracy of the first PRS, or A PRS sets multiple alternative time units to improve the probability of the first PRS transmission being successful, thereby improving the reliability of measuring the first PRS. It is also possible to use LBT to determine that no other signals exist on the unlicensed spectrum, such as another The signaling and / or data of a wireless system can avoid interference caused by other signals on the first PRS transmitted on the unlicensed spectrum, thereby further improving the measurement accuracy of the first PRS and the second PRS.
  • the at least two time units may be discontinuous, partially continuous, or all continuous. As long as the at least two time units are located within the same preset time window, the time correlation between different time units can be used to further Improve the measurement accuracy of the first PRS.
  • the second frequency domain resource may also be a frequency domain resource in the authorized spectrum corresponding to the preset time window, that is, the second frequency domain resource and the first frequency domain resource are both corresponding to the preset time window.
  • the frequency domain resources can be regarded as a strong time correlation between the first PRS and the second PRS, which can further improve the positioning accuracy.
  • the preset time window is within a preset period, and the preset period includes a second preset number of consecutive time units, and the second preset number is greater than the first preset number. It can be understood that the purpose of setting the preset period is to periodically transmit the first PRS and the second PRS, so as to refresh the location of the terminal in time.
  • the measurement result of the first PRS includes a time of arrival difference TDOA, where TDOA is a difference between the time of arrival of the first PRS sent by the terminal to different network devices or the TOA, or the first PRS sent by different network devices arrives at the terminal The difference in arrival time TOA; the measurement result of the second PRS is the arrival angle AOA of the second PRS.
  • the determining module is further configured to determine the location of the terminal according to the TDOA and AOA.
  • the device may be a terminal, a base station, or a network device that has a signal connection with the terminal and / or the base station and is used to perform the positioning method provided in the first aspect, such as a location management function (location management function, LMF) equipment can also be a software system installed on the terminal, base station, and LMF service center, which is not limited in this application.
  • a location management function location management function, LMF
  • LMF location management function
  • a positioning device in a third aspect, includes a processor and a memory coupled to the processor.
  • the memory is used to store computer programs.
  • the processor is configured to execute a computer program stored in the memory, so that the positioning device executes the method according to the first aspect and any of its various optional implementations.
  • the positioning device includes one or more processors and a communication unit.
  • the one or more processors are configured to support the apparatus to perform a corresponding function of the positioning device in the above method. For example, determine TDOA, TOA, AOA, and terminal locations.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and / or transmitting functions. For example, a first PRS is received or transmitted, and a second PRS is received or transmitted.
  • the positioning device may further include one or more memories, and the memory is configured to be coupled to the processor, and stores the program instructions and / or data necessary for the positioning device.
  • the one or more memories may be integrated with the processor, or may be separately provided from the processor. This application is not limited.
  • the positioning device may be a network device, for example, a base station gNB in a new radio (NR) system or an evolved node (B) in a long term evolution (LTE) system. It can also be a terminal, such as a mobile phone and tablet, or an LMF service center.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input / output (input / output, I / O) circuit or interface.
  • the positioning device may also be a communication chip.
  • the communication unit may be an input / output circuit or an interface of a communication chip.
  • the above positioning device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the positioning device executes the first aspect and any of the possible implementations of the positioning device. Positioning method.
  • a positioning system includes the foregoing terminal and network device, and a positioning device that can perform the positioning method according to any one of the first aspect and various optional implementation manners thereof.
  • the positioning device may be any one of a terminal, a network device, and an LMF service center connected to the terminal and / or the network device.
  • a computer-readable storage medium for storing a computer program, the computer program including instructions for performing the method described in the first aspect or any one of the possible implementation manners of the first aspect.
  • a computer program product includes computer program code that, when the computer program code runs on a computer, causes the computer to execute any one of the first aspect or the first aspect. It is possible to implement the method described in the way.
  • the method provided in the embodiment of the present application can provide a method for determining power and / or power headroom in a multi-beam scenario, and is suitable for power control or power headroom reporting in a multi-beam scenario. For example, it is applicable to an NR system. Report power control or power headroom.
  • FIG. 1 is a first schematic architecture diagram of a communication system to which a positioning method according to an embodiment of the present application is applied;
  • FIG. 1 is a first schematic architecture diagram of a communication system to which a positioning method according to an embodiment of the present application is applied;
  • FIG. 2 is a first schematic flowchart of a positioning method according to an embodiment of the present application
  • FIG. 3A is a first schematic diagram of allocating frequency domain resources in an unlicensed spectrum to a first PRS in a positioning method according to an embodiment of the present application;
  • 3B is a second schematic diagram of allocating frequency domain resources in unlicensed spectrum to a first PRS in a positioning method according to an embodiment of the present application;
  • FIG. 3C is a third schematic diagram of allocating frequency domain resources in the unlicensed spectrum to the first PRS in the positioning method according to the embodiment of the present application.
  • 3D is a fourth schematic diagram of allocating frequency domain resources in an unlicensed spectrum to a first PRS in a positioning method according to an embodiment of the present application;
  • 3E is a schematic diagram of a transmission pattern of a first PRS in a positioning method according to an embodiment of the present application
  • 3F is a schematic diagram of allocating frequency domain resources in a licensed spectrum for a second PRS in a positioning method according to an embodiment of the present application;
  • FIG. 4A is a schematic diagram of a TOA + AOA joint positioning method according to an embodiment of the present application.
  • 4B is a schematic diagram of a scenario of a TDOA + AOA joint positioning method according to an embodiment of the present application
  • FIG. 5 is a second schematic architecture diagram of a communication system to which a positioning method according to an embodiment of the present application is applied;
  • FIG. 6A is a second schematic flowchart of a positioning method according to an embodiment of the present application.
  • FIG. 6B is a third schematic flowchart of a positioning method according to an embodiment of the present application.
  • 6C is a schematic flowchart 4 of a positioning method according to an embodiment of the present application.
  • 6D is a schematic flowchart V of a positioning method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an LMF service center according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a positioning device according to an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: LTE systems, worldwide interoperability for microwave access (WiMAX) communication systems, and 5th generation (5G) systems in the future.
  • LTE systems worldwide interoperability for microwave access (WiMAX) communication systems
  • 5G systems 5th generation systems in the future.
  • NR system and future communication systems, such as the 6th generation (6G) system.
  • 6G 6th generation
  • the word "exemplary” is used to indicate an example, illustration, or description. Any embodiment or design described as “example” in this application should not be construed as more preferred or advantageous over other embodiments or designs. Rather, the term usage example is intended to present the concept in a concrete way.
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application. Those of ordinary skill in the art may know that with the network The evolution of the architecture and the emergence of new business scenarios. The technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • the embodiments of the present application can be applied to both a traditional typical network and a future UE-centric network.
  • the UE-centric network introduces a non-cell network architecture, that is, a large number of small stations are deployed in a specific area to form a hyper cell, and each small station is a transmission point of the super cell ( transmission and reception point (TRP or transmission point, TP), and is connected to a centralized controller (controller).
  • TRP transmission and reception point
  • TP transmission point
  • the network-side device When the UE moves in the super cell, the network-side device always selects a new sub-cluster for the UE to serve it, thereby avoiding real cell switching and achieving UE service continuity.
  • the network-side equipment includes a communication system equipment, such as a base station.
  • FIG. 1 is a schematic diagram of a communication system applicable to a communication method according to an embodiment of the present application.
  • the communication system includes a network device 102, a network device 104, and a terminal 106.
  • the positioning reference signal (positioning reference signal) transmitted between at least one of the network device 102 and the network device 104 and the terminal 106 can be measured. signal, PRS) to determine the location of the terminal 106.
  • the network device 102 or the network device 104 may further include a plurality of components related to signal transmission and reception (for example, a processor, a modulator, a multiplexer, a demodulator or a demultiplexer, etc.).
  • a processor for example, a processor, a modulator, a multiplexer, a demodulator or a demultiplexer, etc.
  • the network device is a device with a wireless transceiver function or a chip that can be set on the device.
  • the device includes, but is not limited to: an eNB, a radio network controller (RNC), a node B (Node B, NB), Base station controller (BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), baseband unit (BBU), wireless security
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point, etc. in a wireless (fidelity, WIFI) system can also be 5G, such as gNB in an NR system, or a transmission point (TRP or TP).
  • Terminals can also be referred to as user equipment (UE), access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile devices, user terminals, terminal devices, wireless communication devices, users Agent or user device.
  • the terminal in the embodiment of the present application may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, or an industrial terminal.
  • Wireless terminal in industrial control wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals in smart phones, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal and chips that can be disposed in the foregoing terminal are collectively referred to as a terminal.
  • both the network device 102 and the network device 104 can communicate with multiple terminals (such as the terminal 106 shown in the figure).
  • the network device 102 and the network device 104 may communicate with any number of terminals similar to the terminal 106.
  • the terminal communicating with the network device 102 and the terminal communicating with the network device 104 may be the same or different.
  • the terminal 106 shown in FIG. 1 can communicate with the network device 102 and the network device 104 at the same time, but this only shows one possible scenario. In some scenarios, the terminal may only communicate with the network device 102 or the network device 104 This application does not limit this.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding.
  • the communication system may further include other network devices or other terminals, which are not shown in FIG. 1.
  • one node can send signals to at least one other node.
  • a node can also receive signals sent by at least one other node.
  • the node here may refer to a base station, user equipment, and the like.
  • the terminal 106 in FIG. 1 may send a PRS to the network device 102 and the network device 106.
  • the terminal 106 in FIG. 1 may also receive the positioning reference signals sent by the network device 102 and the network device 106.
  • PRS can be transmitted on the licensed spectrum (including sending and receiving), can also be transmitted on the unlicensed spectrum, and can also be transmitted on both the licensed spectrum and the unlicensed spectrum.
  • an embodiment of the present application provides a positioning method, which is suitable for positioning of the terminal 106 in the communication system shown in FIG. 1.
  • the uplink may refer to the terminal as the transmitting end, the network device as the receiving end, and the downlink may refer to the network device as the transmitting end and the terminal as the receiving end.
  • uplink may refer to one transmission direction, and downlink may refer to another transmission direction opposite to the uplink.
  • the positioning method includes S201-S204:
  • the first frequency domain resource is a frequency domain resource in an unlicensed spectrum.
  • the first frequency domain resource may be a frequency domain resource of a first preset bandwidth in the unlicensed spectrum.
  • the first preset bandwidth is usually a large bandwidth to ensure the measurement accuracy of the first PRS.
  • the first preset bandwidth is the entire bandwidth in the unlicensed spectrum to further improve the measurement accuracy of the first PRS.
  • the first frequency domain resource is a frequency domain resource in an unlicensed spectrum corresponding to a preset time window.
  • the preset time window includes a first preset number of time units, and the time unit is one of the following: a symbol and a slot.
  • the first preset number may be greater than or equal to one.
  • the first preset number of time units may be one time unit, so as to collectively transmit the first PRS.
  • all the subcarriers in a time unit may be used to transmit the first PRS. Since this time unit is no longer used to transmit data or other control signals, there is no need to consider whether the subcarriers allocated for the first PRS conflict with the subcarriers used to transmit data or other control signals, which can reduce the first PRS. Operational complexity of allocating time-frequency resources.
  • FIG. 3A and FIG. 3B respectively show schematic diagrams of transmitting a first PRS on one time slot.
  • the first PRS is transmitted over the entire bandwidth of the unlicensed spectrum of symbol 6 in the time slot.
  • the first PRS may also be transmitted on the entire bandwidth of the unlicensed spectrum of other symbols in the time slot, which is not limited in this embodiment of the present application.
  • the first PRS may also be transmitted on multiple symbols of the time slot. For example, as shown in FIG. 3B, one subcarrier may be allocated on each of timeslot symbols 3 to 6 and symbols 9 to 13 for transmission of the first PRS.
  • FIG. 3A and FIG. 3B show only one resource block (RB) on the unlicensed spectrum, that is, the frequency domain resource allocation on the 12 subcarriers.
  • RB resource block
  • the first preset number of time units may also be at least two time units, so as to use the time diversity gain of the first PRS transmitted by different time units to further improve the measurement accuracy of the first PRS.
  • the first PRS received in the at least two time units are combined for demodulation and channel decoding to obtain a more accurate measurement result.
  • multiple alternative time units may also be set for transmitting the first PRS, so that the first PRS is transmitted on the entire bandwidth of the unlicensed spectrum corresponding to any one of the multiple alternative time units, thereby improving the first The probability of a PRS transmission being successful, thereby improving the reliability of measuring the first PRS.
  • the first preset number of time units includes the following four candidate time slots: time slots 1-4. Therefore, any one or more time slots may be selected in the time slots 1-4 for transmitting the first PRS. For example, if the first PRS is selected to be transmitted on time slot 1, it may not be necessary to transmit the first PRS on time slots 2-4. If the first PRS is not selected to be transmitted on time slot 1, the first PRS may be transmitted on time slot 2. It can be understood that when the slot at the front is not selected for transmitting the first PRS, the slot after the slot can be selected for transmitting the first PRS, which is not described in the foregoing embodiment.
  • the receiver may not know on which time units the first PRS is transmitted. Therefore, in order to ensure that the receiver reliably receives the first PRS, At each time unit in the time unit, the receiver needs to perform a blind inspection of the first PRS. Of course, if the receiver knows that the sender will only send the first PRS on one of multiple time units, the receiver can immediately stop receiving the first PRS on a certain time unit and immediately stop on that time unit. The first PRS is received at a subsequent candidate time unit to reduce the workload of receiving the first PRS and save power consumption. For example, as shown in FIG.
  • the receiver receives The party will immediately stop receiving the first PRS, that is, it will not receive the first PRS on time slots 2-4.
  • the LBT method may also be adopted, and when it is determined that there are no other signals on the unlicensed spectrum, for example, signaling and / or data of another wireless system, the first PRS is transmitted on the unlicensed spectrum to reduce The probability that the first PRS is interfered by other signals transmitted on the unlicensed spectrum, thereby further improving the measurement accuracy of the first PRS and the second PRS.
  • the frequency domain resources in the unlicensed spectrum corresponding to each of the at least two time units may be obtained by expanding the frequency domain resources shown in FIG. 3A or FIG. 3B in the time domain direction.
  • the first PRS is transmitted on the frequency domain resources in the entire bandwidth of the unlicensed spectrum corresponding to the symbols 6 of slot 1 and symbol 6 of slot 2.
  • one subcarrier for transmitting the first PRS is allocated on each of symbols 3 to 6 and symbols 9 to 13 of time slot 2 and time slot 3, respectively.
  • the at least two time units may be discontinuous, partially continuous, or all continuous.
  • the time correlation between different time units can be used to reduce The adverse effect of the time-varying characteristics of the wireless channel on the measurement result can further improve the measurement accuracy of the first PRS.
  • the above-mentioned at least two time units are three time slots as an example for description.
  • the preset time window includes time slot 1 to time slot 5, and the at least two time units include time slot 1, time slot 3, and time slot 5, that is, all time units are discontinuous.
  • the preset time window includes time slot 1 to time slot 4, and the at least two time units include time slot 1, time slot 2, and time slot 4, or time slot 1, time slot 3, and time slot 4, ie, Only part of the time unit is continuous.
  • the preset time window includes time slot 1 to time slot 3, and the at least two time units also include time slot 1 to time slot 3, that is, all are continuous.
  • the PDCCH is transmitted on symbols 0 to 2 of the time slot, and the first PRS is not transmitted on symbols 0 to 2 of the time slot to avoid the PDCCH.
  • the DMRS / CSI-RS is transmitted on the subcarrier 6 of the symbol 8 in the time slot, but the first PRS is not transmitted on the subcarrier 6 of the symbol 8 to avoid the DMRS / CSI-RS.
  • the preset time window is within a preset period, and the preset period includes a second preset number of consecutive time units, and the second preset number is greater than the first preset number. It can be understood that the purpose of setting the preset period is to periodically transmit the first PRS, so that the first positioning measurement result can be updated in time, and the position of the terminal can be refreshed in time.
  • the time unit is a time slot
  • the preset period is a radio frame
  • the preset time window is slot 1 to slot 4, that is, the preset time window and the preset period
  • the offset between the start time units is 1 slot.
  • the preset period can be flexibly configured by a network device, such as a base station, or LMT: each preset period can include only one preset time window, or it can include multiple preset time windows. This is not limited.
  • the preset time window shown in FIG. 3E includes 4 time slots, there will be transmission opportunities in each time slot, that is, there are multiple transmission opportunities for the first PRS.
  • the LBT method can be used to determine the corresponding time slot.
  • one or more idle time slots in a preset time window are selected to transmit the first PRS, so as to reduce the probability that the first PRS is interfered, thereby improving the measurement accuracy of the first PRS.
  • the following steps may be used to send the first PRS:
  • Step 1 Perform LBT on time slot 0 of radio frame n to determine whether there is an idle channel on the unlicensed spectrum. For example, if the received signal strength on the frequency domain resource in the unlicensed spectrum corresponding to time slot 0 is less than the strength threshold, it is considered that there is an idle channel on the unlicensed spectrum.
  • Step 2 Determine whether to send the first PRS on the frequency domain resource in the unlicensed spectrum corresponding to the preset time window of the radio frame n and how to send the first PRS according to the execution result of step 1.
  • step 2 can be performed in any of the following ways:
  • Method 1 If there is an idle channel on the unlicensed spectrum corresponding to time slot 0 of radio frame n, the first PRS is transmitted in each time slot from time slot 1 to time slot 4 of radio frame n.
  • Method 2 If there is an idle channel on the unlicensed spectrum corresponding to time slot 0 of radio frame n, the first PRS is transmitted on time slot 1 of radio frame n, and the first PRS is not transmitted on time slots 2 to 4.
  • Step 1 If there is no idle channel on the unlicensed spectrum corresponding to time slot 0 of radio frame n, then step 1 is continued on time slot 1 of radio frame n, and then it is considered to be performed on time slot 1 of radio frame n. The result of step 1 performs step 2 again.
  • Method 4 If there is no idle channel on the unlicensed spectrum corresponding to time slot 0 of radio frame n, the first PRS is not sent on time slot 1 to time slot 4 of radio frame n, but on radio frame n + 1 Continue to step 1 on time slot 0, and then depending on the execution result of step 1 on time slot 0 of the radio frame n + 1, perform the fourth method in step 2 again until the free channel is heard, and then perform the step in step 2 Ways one to three.
  • step 2 In practical applications, one of the four methods described above can be used to perform step 2 or the four methods described above can be combined to perform step 2, which is not limited in this embodiment of the present application.
  • manner 1 in step 2 may be performed in radio frame n
  • manner 2 in step 2 may be performed in radio frame n + 1.
  • the preset period is synchronized with the radio frame, and the offset may be 0 or multiple time slots, which is not limited in the embodiment of the present application.
  • the preset period may not be 10 time slots, for example, it may also be 20, 80, or 160 time slots, which is not limited in this embodiment of the present application.
  • the preset period may be set as one time slot, and the preset time window may be set as at least one symbol. If the preset time window includes at least two symbols, for each of the at least two symbols, the first PRS may also be sent by using the above-mentioned LBT method, which is not repeated in this embodiment of the present application.
  • the first PRS can be transmitted in the downlink direction, that is, the network device is the sender, the terminal is the receiver, or it can be transmitted in the uplink direction, that is, the terminal is the sender, and the network device is the receiver. This is not limited. It can be understood that, in the embodiment of the present application, the measurement subject of the first PRS should be the receiver.
  • the second frequency domain resource is a frequency domain resource in the licensed spectrum.
  • the second frequency domain resource may be a frequency domain resource of a second preset bandwidth in the authorized spectrum, where the second preset bandwidth is usually a smaller bandwidth to reserve more frequency domain resources in the authorized spectrum for service data transmission.
  • the second preset bandwidth may be a part of the bandwidth in the licensed spectrum.
  • FIG. 3F shows an example of transmitting a second PRS on a frequency domain resource in a licensed spectrum corresponding to one time slot.
  • the second PRS may be transmitted on subcarriers 0, 4, and 8 in the licensed spectrum corresponding to the last symbol (symbol 13) of the time slot.
  • the second PRS may also be transmitted on other subcarriers in the authorized spectrum corresponding to the last symbol, and may also be transmitted on some subcarriers in the authorized spectrum corresponding to other symbols in the timeslot. Not limited.
  • the second PRS and the first PRS can be transmitted on the same or adjacent time units.
  • the second PRS is transmitted on the last one of the above four time slots.
  • the second PRS may also be transmitted on one or more other time slots among the above four time slots, which is not limited in this embodiment of the present application.
  • the second frequency domain resource may also be a frequency domain resource in the authorized spectrum corresponding to the preset time window, that is, the second frequency domain resource and the first frequency domain resource are the same preset time window.
  • the corresponding frequency domain resources can be regarded as a strong time correlation between the first PRS and the second PRS, which can further improve the positioning accuracy.
  • the second PRS may also be transmitted in a periodic manner, in order to update the second positioning measurement result in time, and complete the location refresh of the terminal.
  • the second PRS can be transmitted in the downlink direction, that is, the network device is the sender, the terminal is the receiver, or it can be transmitted in the uplink direction, that is, the terminal is the sender, and the network device is the receiver.
  • This application implements Examples do not limit this.
  • the transmission direction of the second PRS and the transmission direction of the first PRS may be the same or different, which is not limited in the embodiment of the present application.
  • both the first PRS and the second PRS are transmitted in the downlink direction.
  • the first PRS is transmitted in the downlink direction
  • the second PRS is transmitted in the uplink direction.
  • S201 may be executed first, then S202, or S202 may be executed first, and then S201 may be executed, and S202 may be executed during the execution of S201.
  • the measurement subject of the first PRS and the measurement subject of the second PRS are each a receiver.
  • the measurement subject of the first PRS is a network device, and if the first PRS is transmitted in the downlink direction, the measurement subject of the first PRS is a terminal.
  • the measurement subject of the second PRS can be determined, which is not described in the embodiment of the present application.
  • the first positioning measurement result may include the arrival time TOA of the first PRS
  • the second positioning measurement result may include the arrival angle AOA of the second PRS.
  • determining the position of the terminal according to the first positioning measurement result and the second positioning measurement result in S204 may include the following steps:
  • the location of the terminal is determined, that is, the location of the terminal is determined by using the TOA + AOA joint positioning method.
  • FIG. 4A shows a schematic diagram of a scenario for determining a terminal location.
  • the propagation time (arrival time-sending time) of the first PRS between the terminal and the network device can be calculated, and the communication between the terminal and the network device can be determined.
  • the distance R (the product of the propagation time and the propagation speed of the electromagnetic wave) can further determine a circle with the location of the network device as the center and R as the radius, and the terminal is located on the circumference of the circle.
  • the location of the network device may be a latitude and longitude of the network device, or a coordinate value in a coordinate system where the network device is located, which is not limited in the embodiment of the present application.
  • Cartesian coordinate system Assuming that the rectangular coordinates of the terminal are (x, y), the system of equations composed of the following two formulas can be obtained according to the rectangular coordinates (x 0 , y 0 ), R, and ⁇ of the network device. Cartesian coordinates of the terminal (x, y):
  • is defined by the included angle between the propagation path of the second PRS and the positive direction of the x-coordinate axis, and its value range is: 0 ⁇ ⁇ ⁇ 2 ⁇ .
  • can also be defined in other ways, for example, ⁇ is defined as the included angle between the propagation path of the second PRS and the positive direction of the y-axis, which is not limited in this embodiment of the present application.
  • the measurement result of the first PRS may include a time of arrival difference TDOA, where TDOA is a difference between the time of arrival of the first PRS sent by the terminal to different network devices, or the time of arrival of the first PRS sent by different network devices to the terminal TOA difference; the measurement result of the second PRS is the arrival angle AOA of the second PRS.
  • determining the position of the terminal according to the first positioning measurement result and the second positioning measurement result in S204 may include the following steps:
  • FIG. 4B illustrates another scenario for determining the location of the terminal.
  • the terminal 106 transmits the first PRS and the second PRS with the network device 102 and the network device 106, respectively.
  • the rectangular coordinates of the network device 102 are (-c, 0) and the rectangular coordinates of the network device 104 are (c, 0).
  • the TDOA of the first PRS and the two AOAs of the second PRS (that is, ⁇ and ⁇ in FIG. 4B) ) Can be obtained by measurement, then the rectangular coordinates of the terminal are (x, y), which can be obtained by solving the system of equations composed of the following formulas:
  • V is the speed of electromagnetic wave propagation, that is, the speed of light.
  • ⁇ and ⁇ may be defined in the same manner as ⁇ , or may be defined in different manners, which are not limited in the embodiment of the present application.
  • the transmission direction of the second PRS may be the same as or different from the first PRS.
  • S204 in the positioning method provided in the embodiment of the present application may be performed by a network device, a terminal, or a third-party execution subject, such as an LMF service center, that has a signal connection with the network device and / or the terminal.
  • LMF service center is the prior art, the embodiments of the present application will not repeat them.
  • Tables 1 to 3 show summary information of several scenarios to which the positioning method provided in the embodiments of the present application is applicable.
  • FIG. 5 shows a schematic architecture diagram of another communication network to which the positioning method according to the embodiment of the present application is applicable.
  • the first PRS is transmitted on the downlink unlicensed spectrum between the network device 102 and the terminal 106
  • the second PRS is transmitted on the uplink authorized spectrum between the network device 102 and the terminal 106.
  • S204 in the foregoing method embodiment may be performed by the network device 102, the detachment 106, or the LMF service center, which is not limited in the embodiment of the present application.
  • FIGS. 6A to 6D respectively show scenes 2 shown in Table 1 in Table 1 of the embodiment of the present application, scenes 7 shown in Table 2, sub-scenes 2 in scene 6, and scenes 12 shown in Table 3.
  • the method shown in FIG. 2 can be specifically implemented as S301-S305:
  • the network device 102 sends a first PRS to the terminal 106.
  • the terminal 106 receives and measures the TOA of the first PRS.
  • the network device 102 sends the first PRS to the terminal 106 on the unlicensed spectrum. Accordingly, the terminal 106 also receives and measures the TOA of the first PRS sent by the network device 102 on the unlicensed spectrum.
  • the network device 102 sends a second PRS to the terminal 106.
  • the terminal 106 receives and measures the AOA of the second PRS.
  • the AOA of the second PRS refers to the angle of arrival of the second PRS when it reaches the network device 102 after being sent by the terminal 106. In view of the fact that AOA is the prior art, the embodiments of the present application will not repeat them.
  • S301-S302 may be performed before S303-S304 is performed, or after S303-S304 is performed, or may be performed simultaneously with S303-S304.
  • the network device 102 may send the first PRS and the second PRS to the terminal 106 at the same time on the same symbol. Accordingly, the terminal 106 also receives and measures the TOA of the first PRS and the AOA of the second PRS at the same time on the symbol.
  • the terminal 106 determines the location of the terminal 106 according to the TOA of the first PRS and the AOA of the second PRS.
  • the terminal 106 may use the TOA + AOA joint positioning method shown in FIG. 4A to determine the position of the terminal 106.
  • the method shown in FIG. 2 can also be specifically implemented as S401-S405:
  • the terminal 106 sends a first PRS to the network device 102.
  • the network device 102 receives and measures the TOA of the first PRS.
  • the terminal 106 sends the first PRS to the network device 102 on the unlicensed spectrum. Accordingly, the network device 102 receives and measures the TOA of the first PRS sent by the terminal 106 on the unlicensed spectrum.
  • the terminal 106 sends a second PRS to the network device 102.
  • the network device 102 receives and measures the AOA of the second PRS.
  • the AOA of the second PRS refers to the angle of arrival of the second PRS when it reaches the network device 102 after being sent by the terminal 106. In view of the fact that AOA is the prior art, the embodiments of the present application will not repeat them.
  • S401-S402 may be performed before S403-S404 is performed, or after S403-S404 is performed, or may be performed simultaneously with S403-S404.
  • the terminal 106 may send the first PRS and the second PRS to the network device 102 at the same time on the same symbol. Accordingly, the network device 102 is also on this symbol, and simultaneously receives and measures the TOA of the first PRS and the AOA of the second PRS.
  • the network device 102 determines the location of the terminal 106 according to the TOA of the first PRS and the AOA of the second PRS.
  • the network device 102 may use the TOA + AOA joint positioning method shown in FIG. 4A to determine the location of the terminal 106.
  • the method may further include S406-S407 (indicated by dashed lines in FIG. 6B):
  • the network device 102 delivers the location of the terminal 106 to the terminal 106.
  • the terminal 106 receives the location of the terminal 106 issued by the network device 102.
  • the location of the terminal 106 may be transmitted in a manner similar to S301-S302 and S303-S304, and details are not described herein again.
  • the method shown in FIG. 2 can also be specifically implemented as S501-S511:
  • the network device 102 sends a first PRS to the terminal 106.
  • the terminal 106 receives and measures the TOA of the first PRS.
  • the terminal 106 In view of the fact that S204 in the above method embodiment is performed by the LMF service center 108 connected to the network device 102, the terminal 106 also needs to report the TOA of the first PRS to the network device 102, and the network device 102 forwards the TOA to the LMF service center 108. Therefore, after executing S501-S502, you also need to execute S503-S506:
  • the terminal 106 reports the TOA of the first PRS to the network device 102.
  • the network device 102 receives the TOA of the first PRS reported by the terminal 106.
  • the terminal 106 may report the TOA of the first PRS in the form of uplink signaling such as a measurement report (MR) and a location update report, which is not described in this embodiment of the present application.
  • MR measurement report
  • location update report a location update report
  • the network device 102 forwards the TOA of the first PRS to the LMF service center 108.
  • the LMF service center 108 receives the TOA of the first PRS forwarded by the network device 102.
  • the network device 102 may use a wired or wireless connection between the network device 102 and the LMF service center 108 to send the TOA of the first PRS to the LMF service center 108.
  • the LMF service center 108 may use its wired or wireless connection with the network device 102 to receive the TOA of the first PRS.
  • the terminal 106 sends a second PRS to the network device 102.
  • the network device 102 receives and measures the AOA of the second PRS.
  • S507-S508 is similar to that of S403-S404, which is not described in the embodiment of this application.
  • the network device 102 sends the AOA of the second PRS to the LMF service center 108.
  • the LMF service center 108 receives the AOA of the second PRS sent by the network device 102.
  • S509-S510 is similar to that of S505-S506, and is not repeated here.
  • S501-S506 may be performed before executing S507-S510, or may be performed after executing S507-S510.
  • S501-S506 may be interspersed during the execution of S507-S510, and S507-S510 may also be interspersed during the execution of S501-S506.
  • some steps in S501-S506 can also be performed simultaneously with the steps in S507-S510.
  • S505-S506 and S509-S510 may be combined and executed, that is, the network device 102 sends the TOA of the first PRS and the AOA of the second PRS to the LMF service center at the same time.
  • the LMF service center 108 determines the location of the terminal 106 according to the received TOA of the first PRS and the AOA of the second PRS.
  • the LMF service center 108 may use the TOA + AOA joint positioning method shown in FIG. 4A to determine the location of the terminal 106.
  • the method may further include S512-S515 (indicated by dashed lines in FIG. 6C):
  • the LMF service center 108 sends the location of the terminal 106 to the network device 102.
  • the network device 102 receives the location of the terminal 106 sent by the LMF service center 108.
  • the location of the transmission terminal 106 may be transmitted by using a wired or wireless connection between the LMF service center 108 and the network device 102, and details are not described herein again.
  • the network device 102 forwards the location of the terminal 106 to the terminal 106.
  • the terminal 106 receives the location of the terminal 106 forwarded by the network device 102.
  • the location of the terminal 106 may be transmitted in a similar manner to S406-S407, and details are not described herein again.
  • the method shown in FIG. 2 can also be specifically implemented as S601-S611:
  • the terminal 106 sends a first PRS to the network device 102.
  • the network device 102 receives and measures the TOA of the first PRS.
  • the network device 102 sends the TOA of the first PRS to the LMF service center.
  • the LMF service center receives the TOA of the first PRS sent by the network device 102.
  • the network device 102 sends a second PRS to the terminal 106.
  • the terminal 106 receives and measures the AOA of the second PRS.
  • S204 in the above method embodiment is performed by the LMF service center 108 connected to the network device 102
  • the terminal 106 also needs to report the AOA of the second PRS to the network device 102, and the network device 102 forwards the AOA to the LMF service center 108. Therefore, after performing S605-S606, you also need to perform S607-S610:
  • the terminal 106 reports the AOA of the second PRS to the network device 102.
  • the network device 102 receives the AOA of the second PRS reported by the terminal 106.
  • the terminal 106 may report the AOA of the second PRS in the form of uplink signaling such as a measurement report and a location update report, which is not described in the embodiment of the present application.
  • the network device 102 forwards the AOA of the second PRS to the LMF service center.
  • the LMF service center receives the AOA of the second PRS forwarded by the network device 102.
  • S601-S604 and S605-S610 do not need to limit the execution order of S601-S604 and S605-S610, as long as S601-S604 and S605-S610 are all executed before executing S611 described below.
  • S601-S604 may be performed before executing S605-S610, or may be performed after executing S605-S610.
  • S601-S604 may be interspersed during the execution of S605-S610, and S605-S610 may also be interspersed during the execution of S601-S604.
  • some steps in S601-S604 can also be performed simultaneously with the steps in S605-S610.
  • S603-S604 and S609-S610 can be combined and executed, that is, the network device 102 sends the TOA of the first PRS and the AOA of the second PRS to the LMF service center 108 at the same time.
  • the LMF service center 108 determines the location of the terminal 106 according to the TOA of the first PRS and the AOA of the second PRS.
  • the method may further include S612-S615 (indicated by dashed lines in FIG. 6D):
  • the LMF service center 108 sends the location of the terminal 106 to the network device 102.
  • the network device 102 receives the location of the terminal 106 sent by the LMF service center 108.
  • the network device 102 forwards the location of the terminal 106 to the terminal 106.
  • the terminal 106 receives the location of the terminal 106 forwarded by the network device 102.
  • FIG. 6A to FIG. 6D only show the scenario 2 shown in Table 1, the scenario 7 shown in Table 2, the sub-scenario 2 in the scenario 6, and the scenario 12 shown in Table 3.
  • the positioning method provided in the embodiment of the present application can use an unlicensed spectrum to receive and measure a first PRS with a large spectrum bandwidth required for high-precision positioning, and use an allocated frequency domain resource in the licensed spectrum to receive and measure a second PRS.
  • Without occupying a large amount of frequency domain resources in the authorized spectrum quickly and accurately determine the location of the terminal, and can reserve more frequency domain resources in the authorized spectrum for service data transmission, and improve the resource utilization of the authorized spectrum, Thereby increasing the system capacity and working efficiency of the communication system.
  • the positioning method provided by the embodiment of the present application has been described in detail above with reference to FIGS. 1 to 6D.
  • the positioning device or device provided in the embodiment of the present application is described in detail below with reference to FIGS. 7 to 10.
  • the positioning device or device may be a network device, a terminal, an LMF service center, or another device or device that can perform the positioning method.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal may be applicable to the communication system shown in FIG. 1 or FIG. 5 to perform the functions of the terminal in the foregoing method embodiments.
  • FIG. 7 shows only the main components of the terminal.
  • the terminal 700 includes a processor, a memory, a control circuit, an antenna, and an input / output device.
  • the processor is mainly used to process communication protocols and communication data, and control the entire terminal, execute software programs, and process data of the software programs, for example, to support the terminal to perform actions performed by the terminal 106 in the foregoing method embodiments.
  • the memory is mainly used to store software programs and data, for example, the program code, the first PRS, the second PRS, and the first positioning measurement result and the second positioning measurement result described in the foregoing embodiment.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the terminal receives a positioning instruction input by a user and outputs position information of the terminal, such as latitude and longitude.
  • the processor can read the software program in the storage unit, interpret and execute the software program's instructions, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only shows one memory and one processor. In an actual terminal, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiments of the present application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control the entire terminal and execute software. Programs that process data from software programs.
  • the processor in FIG. 7 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having the transmitting and receiving function may be regarded as the transmitting and receiving unit 701 of the terminal 700, for example, for supporting the terminal to perform the receiving function and transmission as described in at least one of FIG. 2 and FIG. 6D.
  • a processor having a processing function is regarded as a processing unit 702 of the terminal 700.
  • the terminal 700 includes a transceiver unit 701 and a processing unit 702.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a device used to implement the receiving function in the transceiver unit 701 may be regarded as a receiving unit, and a device used to implement the transmitting function in the transceiver unit 701 may be regarded as a transmitting unit, that is, the transceiver unit 701 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit.
  • the processor 702 may be configured to execute instructions stored in the memory to control the transceiver unit 701 to receive signals and / or send signals to complete functions of the terminal in the foregoing method embodiments.
  • the function of the transceiver unit 701 may be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the base station 800 may be applied to the communication system shown in FIG. 1 or FIG. 5 to perform the functions of the network device 102 or the network device 104 in the foregoing method embodiment.
  • the base station 800 may include one or more radio frequency units, such as a remote radio unit (RRU) 801 and one or more baseband units (BBU) 802.
  • RRU 801 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 8011 and a radio frequency unit 8012.
  • the RRU 801 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending a signaling message described in the foregoing embodiment to a terminal.
  • the BBU 802 part is mainly used for baseband processing and controlling base stations.
  • the RRU801 and the BBU 802 may be physically set together or physically separated, that is, a distributed base station.
  • the BBU 802 is a control center of a base station, and may also be referred to as a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spreading, and so on.
  • the BBU (Processing Unit) 802 may be used to control a base station to execute an operation flow on a network device in the foregoing method embodiment.
  • the BBU 802 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (such as an LTE network) of a single access system, or may separately support different access systems. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 802 further includes a memory 8021 and a processor 8022.
  • the memory 8021 is configured to store necessary instructions and data.
  • the memory 8021 is configured to store the first PRS and the second PRS received in the foregoing embodiment, and at least one of the first positioning measurement result and the second positioning measurement result.
  • the processor 8022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure on a network device in the foregoing method embodiment.
  • the memory 8021 and the processor 8022 may serve one or more single boards. That is, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • FIG. 9 is a schematic structural diagram of an LMF service center according to an embodiment of the present application.
  • the LMF service center may be applicable to the communication system shown in FIG. 1 or FIG. 5, and performs the function of the LMF service center in the foregoing method embodiment.
  • FIG. 9 shows only the main components of the LMF service center.
  • the LMF service center 900 includes a processor, a memory, a control circuit, and an input-output device.
  • the processor is mainly used to process the first positioning measurement result and the second positioning measurement result, and control the entire LMF service center, execute a software program, and process the data of the software program, for example, to support the LMF service center to execute FIG.
  • the first positioning measurement result and the second positioning measurement result are received, and various actions described in S204 in the foregoing method embodiment are performed.
  • the memory is mainly used to store software programs and data, for example, the program code, the first positioning measurement result, and the second positioning measurement result described in the foregoing embodiments.
  • the control circuit is mainly used for receiving the first positioning measurement result and the second positioning measurement result, and sending the determined location information of the terminal to the network device or terminal.
  • the control circuit and the communication interface between the LMF service center and the network equipment and / or terminal can also be called a transceiver, which is mainly used to send and receive wired or wireless signals.
  • Input / output devices such as a display screen and a keyboard, are mainly used to receive positioning instructions input by the user and terminal position information output to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the control circuit controls the communication interface to receive the first positioning measurement result and the second positioning measurement result, and sends the received first positioning measurement result and the second positioning measurement result.
  • the positioning measurement result is sent to the processor, and the processor determines the position of the terminal according to the received first positioning measurement result and the second positioning measurement result.
  • the processor outputs the position of the terminal to the communication interface, and the control circuit controls the communication interface to send.
  • FIG. 9 only shows one memory and one processor. In an actual LMF service center, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiments of the present application.
  • the processor may include a central processing unit.
  • the central processing unit is mainly used to control the entire LMF service center, execute software programs, and process data of the software programs.
  • the central processor may also be multiple independent processors, which are interconnected through technologies such as a bus.
  • the LMF service center may include multiple central processors to enhance its processing capabilities, and various components of the LMF service center may be connected through various buses.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • a communication interface and a control circuit having a transmitting and receiving function may be regarded as a transmitting and receiving unit 901 of the LMF service center 900, for example, for supporting the execution of the LMF service center as described in FIG. 5 or FIG. 6C or FIG. 6D Receive and send functions performed by the LMF service center.
  • a processor having a processing function is regarded as a processing unit 902 of the LMF service center 900.
  • the LMF service center 900 includes a transceiver unit 901 and a processing unit 902.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device used to implement the receiving function in the transceiver unit 901 may be regarded as a receiving unit, and the device used to implement the transmitting function in the transceiver unit 901 may be regarded as a transmitting unit, that is, the transceiver unit 901 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit.
  • the processor 902 may be configured to execute an instruction stored in the memory, to control the transceiver unit 901 to receive a signal and / or send a signal to complete a function of the LMF service center in the foregoing method embodiment.
  • the function of the transceiver unit 901 may be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 10 is a schematic structural diagram of a positioning device 1000.
  • the device 1000 may be configured to implement the method described in the foregoing method embodiment, and reference may be made to the description in the foregoing method embodiment.
  • the positioning device 1000 may be a chip, the above-mentioned network equipment (such as a base station), a terminal, an LMF service center, or other network equipment that can execute the positioning method provided in the embodiment of the present application.
  • the positioning device 1000 includes one or more processors 1001.
  • the processor 1001 may be a general-purpose processor or a special-purpose processor. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control positioning devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data.
  • the positioning device may include a transceiving unit for inputting (receiving) and outputting (transmitting) signals.
  • the positioning device may be a chip, and the transceiver unit may be an input and / or output circuit of the chip, or a communication interface.
  • the chip may be used in a terminal or a base station or an LMF service center or other network equipment.
  • the positioning device may be a terminal or a base station or an LMF service center or other network equipment
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the positioning device 1000 includes one or more of the processors 1001.
  • the one or more processors 1001 may implement a network device, a terminal, or an LMF service center in the embodiment shown in at least one of FIG. 2 and FIG. 5.
  • the PRS transmit / receive function and positioning method performed.
  • the positioning device 1000 includes means for performing processing functions performed by a terminal, a network device, and an LMF service center in the foregoing method embodiments.
  • the above functions may be performed by one or more processors, sending or receiving a first PRS, sending or receiving a second PRS, sending or receiving a first positioning measurement result through a transceiver, or an input / output circuit, or an interface of a chip, Send or receive a second positioning measurement result and the like.
  • the first PRS, the second PRS, the first positioning measurement result, and the second positioning measurement result refer to related descriptions in the foregoing method embodiments.
  • the processor 1001 may implement other functions in addition to implementing the methods of the embodiments shown in FIG. 2 and FIG. 5.
  • the processor 1001 may also include an instruction 1003, and the instruction may be executed on the processor, so that the positioning device 1000 executes the method described in the foregoing method embodiment.
  • the positioning device 1000 may also include a circuit, which may implement the functions of the network device, the terminal, or the LMF service center in the foregoing method embodiment.
  • the positioning device 1000 may include one or more memories 1002 on which instructions 1004 are stored, and the instructions may be executed on the processor, so that the positioning device 1000 executes The method described in the above method embodiment.
  • the memory may further store data. Instructions and / or data can also be stored in the optional processor.
  • the one or more memories 1002 may store configuration information described in the above embodiments.
  • the processor and the memory may be set separately or integrated together.
  • the positioning device 1000 may further include a transceiver unit 1005 and an antenna 1006.
  • the processor 1001 may be referred to as a processing unit, and controls operations of a positioning device (a terminal, a network device, or an LMF service center).
  • the transceiver unit 1005 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is configured to implement a transceiver function of the positioning device through the antenna 1006 or other interfaces.
  • the present application also provides a positioning system, which includes one or more of the aforementioned network devices, and, one or more terminals, and one or more LMF service centers.
  • the processor in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration Circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access Access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (such as a circuit), firmware, or any other combination.
  • the above embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center via wired (such as network cable, optical fiber, cable, etc.) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like, including one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more. "At least one or more of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items. For example, at least one (a) of a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish different objects, or to distinguish different processes on the same object, rather than to describe a specific order of the objects.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种定位方法、装置及设备,该方法包括:在第一频域资源上接收第一定位参考信号PRS;其中,所述第一频域资源为非授权频谱中的频域资源;在第二频域资源上接收第二PRS;其中,所述第二频域资源为授权频谱中的频域资源;根据所述第一PRS和第二PRS,确定所述第一PRS对应的第一定位测量结果和第二PRS对应的第二定位测量结果;根据所述第一定位测量结果和所述第二定位测量结果,确定终端的位置。可以适用于在不占用大量授权频谱中的频域资源的情况下,快速、准确地确定终端的位置。

Description

定位方法、装置及设备
本申请要求于2018年07月17日提交国家知识产权局、申请号为201810785061.1、申请名称为“定位方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种定位方法、装置及设备。
背景技术
随着移动互联网的普及,基于无线定位的位置服务在诸如导航及自动驾驶、交通调度、物联网、紧急救助、设备检测、灾害预防、个性化信息服务等诸多领域获得爆发式增长,且要求具备越来越高的定位精度。例如,第三代合作伙伴计划(3rd generation partnership project,3GPP)组织在技术报告(technical report,TR)22.862中提出:第五代(5th generation,5G)移动通信的定位精度需要达到30厘米至1米。
根据采用的测量参数,现有定位方法可以包括:基于定位参考信号(positionging reference signal,PRS)的到达时间(time of arrival,TOA)的定位法、基于PRS的到达时间差(time difference of arrival,TDOA)的定位法、基于PRS的到达角度(angle of arrival,AOA)的定位法,以及基于上述至少两种测量参数的联合定位法。其中,基于TOA/TDOA的定位法的测量精度取决于信号到达时间的测量精度,而信号到达时间的测量精度与PRS连续占用的带宽成正比,即带宽越大,精度越高。例如,若定位精度为0.3米,则要求TOA/TDOA测量精度小于等于1纳秒(nanosecond,ns),即要求传输PRS的带宽至少为1千兆赫兹(giga hertz,GHz)。并且,为了降低对PRS的干扰,通常不会在PRS占用的时频资源上传输业务数据。例如,虽然基于AOA的定位法本身只需要很少的频域资源,但是为了降低业务数据对PRS的干扰,在PRS占用的同一时隙或子帧内只传输PRS,不传输业务数据,从而导致该时隙或子帧内的大量时频资源被闲置。
然而,授权频谱的带宽终究是有限的,而时域资源也是有限的。因此,若为高精度定位预留较多的时频资源,则势必会挤占业务数据所需要的时频资源,从而降低通信系统的系统容量和工作效率。
发明内容
本申请提供一种定位方法、装置和设备,以期适用于在不占用大量授权频谱中的频域资源的情况下,快速、准确地确定终端的位置。
第一方面,提供了一种定位方法,包括:在第一频域资源上接收第一定位参考信号PRS,以及在第二频域资源上接收第二PRS。其中,第一频域资源为非授权频谱中的频域资源;第二频域资源为授权频谱中的频域资源。然后,根据第一PRS和第二PRS, 确定第一PRS对应的第一定位测量结果和第二PRS对应的第二定位测量结果。之后,根据第一定位测量结果和第二定位测量结果,确定终端的位置。
本申请提供的定位方法,能够利用非授权频谱接收并测量高精度定位所需要的较大频谱带宽的第一PRS,利用授权频谱中已分配的频域资源接收并测量第二PRS,并根据第一PRS对应的第一定位测量结果和第二PRS对应的第二定位测量结果确定终端的位置,避免在对终端进行高精度定位的过程中占用授权频谱中的大量频域资源,能够在不占用大量授权频谱中的频域资源的情况下,快速、准确地确定终端的位置,且能够预留授权频谱中更多的频域资源用于业务数据传输,提高授权频谱的资源利用率,从而提高通信系统的系统容量和工作效率。
在一种可能的设计方法中,第一频域资源可以为非授权频谱中第一预设带宽的频域资源,其中第一预设带宽通常为一个较大带宽,以保证第一PRS的测量精度。
相应地,第二频域资源可以为授权频谱中第二预设带宽的频域资源,其中第二预设带宽通常为一个较小带宽,以预留授权频谱中较多的频域资源用于业务数据传输,以提高授权频谱的资源利用率,提高通信系统的系统容量和工作效率。
示例性地,第一预设带宽可以为非授权频谱中的全部带宽,以进一步提高第一PRS的测量精度。相应地,第二预设带宽可以为授权频谱中的部分带宽,以减少高精度定位占用的授权频谱中的频域资源,以便预留更多资源用于业务数据传输,进一步提高授权频谱中的频域资源利用率,提高通信系统的系统容量和工作效率。
在一种可能的设计方法中,第一频域资源为预设时间窗口对应的非授权频谱中的频域资源;其中,预设时间窗口包括第一预设数量的时间单元,时间单元为以下之一:符号和时隙。
可选地,第一预设数量的时间单元可以为一个时间单元,例如一个符号,以便集中传输第一PRS,以简化时频资源分配。
可选地,第一预设数量的时间单元也可以为至少两个时间单元,可以利用不同时间单元传输的第一PRS的时间分集增益,进一步提高第一PRS的测量精度,也可以为传输第一PRS设置多个备选时间单元,以提高第一PRS传输成功的概率,从而提高测量第一PRS的可靠性,还可以采用先听后说(litsen before talk,LBT)的方式,确定在非授权频谱上不存在其他信号,例如另一无线系统的信令和/或数据,可以避免其他信号对非授权频谱上传输的第一PRS造成的干扰,从而可以进一步提高第一PRS和第二PRS的测量精度。
可以理解,上述至少两个时间单元可以不连续、部分连续或全部连续,只要确保上述至少两个时间单元均位于同一预设时间窗口内,即可利用不同时间单元之间的时间相关性,进一步提高第一PRS的测量精度。
在一种可能的设计方法中,第二频域资源也可以为预设时间窗口对应的授权频谱中的频域资源,即第二频域资源和第一频域资源均为预设时间窗口对应的频域资源,可以视为第一PRS和第二PRS存在较强的时间相关性,可以进一步提高定位精度。
可选地,预设时间窗口位于预设周期内,预设周期包括第二预设数量的连续时间单元,第二预设数量大于第一预设数量。可以理解,设置预设周期的目的,在于可以周期性地传输第一PRS和第二PRS,以便及时刷新终端的位置。
在一种可能的设计方法中,第一定位测量结果包括第一PRS的到达时间TOA;第二定位测量结果包括第二PRS的到达角度AOA。相应地,根据第一定位测量结果和第二定位测量结果,确定终端的位置,可以包括:根据TOA和AOA,确定终端的位置,即根据第一PRS的TOA确定以基站为圆心的圆周半径,根据第二PRS到达基站或终端的AOA确定,并根据上述一个以基站为圆心的圆周和一个AOA即可确定终端位置,不涉及以多个基站为圆心的圆周的计算过程,能够简化确定终端位置的计算量,从而提高定位效率。
在另一种可能的设计方法中,第一PRS的测量结果包括到达时间差TDOA,TDOA为终端发送的第一PRS到达不同网络设备的到达时间TOA的差值,或者不同网络设备发送的第一PRS到达终端的到达时间TOA的差值;第二PRS的测量结果为第二PRS的到达角度AOA。相应地,根据第一定位测量结果和第二定位测量结果,确定终端的位置,包括:根据TDOA和AOA,确定终端的位置,基站并根据第二PRS到达上述两个基站和/或终端的AOA确定终端位置,即只需要涉及第一PRS到达和/或离开两个基站的TDOA,即可确定以上述两个基站为焦点的一个双曲线,而不涉及以至少3个基站中的至少2个两两组合为焦点的至少3条双曲线才能确定终端位置的情况,可以减少定位终端位置的计算量,从而提高定位效率。
第二方面,提供了一种定位装置。该装置包括:接收模块和确定模块。其中,接收模块,用于在第一频域资源上接收第一定位参考信号PRS,以及在第二频域资源上接收第二PRS。其中,第一频域资源为非授权频谱中的频域资源,第二频域资源为授权频谱中的频域资源。确定模块,用于根据第一PRS和第二PRS,确定第一PRS对应的第一定位测量结果和第二PRS对应的第二定位测量结果,以及根据第一定位测量结果和第二定位测量结果,确定终端的位置。
本申请提供的定位装置,能够利用非授权频谱接收并测量高精度定位所需要的较大频谱带宽的第一PRS,利用授权频谱中已分配的频域资源接收并测量第二PRS,并根据第一PRS对应的第一定位测量结果和第二PRS对应的第二定位测量结果确定终端的位置,避免在对终端进行高精度定位的过程中占用授权频谱中的大量频域资源,能够在不占用大量授权频谱中的频域资源的情况下,快速、准确地确定终端的位置,且能够预留授权频谱中更多的频域资源用于业务数据传输,提高授权频谱的资源利用率,从而提高通信系统的系统容量和工作效率。
在一种可能的设计中,第一频域资源可以为非授权频谱中第一预设带宽的频域资源,其中第一预设带宽为一个较大带宽,以保证第一PRS的测量精度。相应地,第二频域资源可以为授权频谱中第二预设带宽的频域资源,其中第二预设带宽为一个较小带宽,以预留授权频谱中较多的频域资源用于业务数据传输,以提高授权频谱的资源利用率,提高通信系统的系统容量和工作效率。
进一步地,第一预设带宽可以为非授权频谱中的全部带宽,以进一步提高第一PRS的测量精度。相应地,第二预设带宽可以为授权频谱中的部分带宽,以减少高精度定位占用的授权频谱中的频域资源,以便预留更多资源用于业务数据传输,进一步提高授权频谱中的频域资源利用率,提高通信系统的系统容量和工作效率。
在一种可能的设计中,第一频域资源为预设时间窗口对应的非授权频谱中的频域 资源;其中,预设时间窗口包括第一预设数量的时间单元,时间单元为以下之一:符号和时隙。
可选地,第一预设数量的时间单元可以为一个时间单元,例如一个符号,以便集中传输第一PRS,以简化时频资源分配。
可选地,第一预设数量的时间单元也可以为至少两个时间单元,可以利用不同时间单元传输的第一PRS的时间分集增益,进一步提高第一PRS的测量精度,也可以为传输第一PRS设置多个备选时间单元,以提高第一PRS传输成功的概率,从而提高测量第一PRS的可靠性,还可以采用LBT的方式,确定在非授权频谱上不存在其他信号,例如另一无线系统的信令和/或数据,可以避免其他信号对非授权频谱上传输的第一PRS造成的干扰,从而可以进一步提高第一PRS和第二PRS的测量精度。
可以理解,上述至少两个时间单元可以不连续、部分连续或全部连续,只要确保上述至少两个时间单元均位于同一预设时间窗口内,即可利用不同时间单元之间的时间相关性,进一步提高第一PRS的测量精度。
在一种可能的设计中,第二频域资源也可以为预设时间窗口对应的授权频谱中的频域资源,即第二频域资源和第一频域资源均为预设时间窗口对应的频域资源,可以视为第一PRS和第二PRS存在较强的时间相关性,可以进一步提高定位精度。
可选地,预设时间窗口位于预设周期内,预设周期包括第二预设数量的连续时间单元,第二预设数量大于第一预设数量。可以理解,设置预设周期的目的,在于可以周期性地传输第一PRS和第二PRS,以便及时刷新终端的位置。
在一种可能的设计中,第一PRS的测量结果包括到达时间差TDOA,TDOA为终端发送的第一PRS到达不同网络设备的到达时间TOA的差值,或者不同网络设备发送的第一PRS到达终端的到达时间TOA的差值;第二PRS的测量结果为第二PRS的到达角度AOA。相应地,确定模块,还用于根据TDOA和AOA,确定终端的位置。
示例性地,上述装置可以为终端、基站,也可以为与上述终端和/或基站存在信号连接、且用于执行第一方面提供的定位方法的网络设备,例如定位管理功能(location management function,LMF)设备,还可以是安装于上述终端、基站、LMF服务中心上的软件系统,本申请对此不作限制。
第三方面,提供了一种定位设备。该定位设备包括:处理器,以及与处理器耦合的存储器。存储器用于存储计算机程序。处理器用于执行存储器中存储的计算机程序,以使得该定位设备执行如第一方面及其各种可选实现方式中任一项所述的方法。
在一种可能的设计中,所述定位设备包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中所述定位设备相应的功能。例如,确定TDOA、TOA、AOA和终端位置。所述通信单元用于支持所述设备与其他设备通信,实现接收和/或发送功能。例如,接收或发送第一PRS、接收或发送第二PRS。
可选的,所述定位设备还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存所述定位设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
示例性地,上述定位设备可以为网络设备,例如新空口(new radio,NR)系统中的基站gNB或长期演进(long term evolution,LTE)系统中的演进型节点(evolved node  B,eNB)等,也可以为终端,例如手机和平板电脑,还可以为LMF服务中心。其中,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出(input/output,I/O)电路或者接口。
所述定位设备还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
在另一个可能的设计中,上述定位设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该定位设备执行第一方面及其任一种可能实现方式中定位设备所执行的定位方法。
第四方面,提供了一种定位系统,该系统包括上述终端和网络设备,以及可执行第一方面及其各种可选的实现方式中任一项所述的定位方法的定位设备。其中,定位设备可以为终端、网络设备以及与终端和/或网络设备相连的LMF服务中心中的任意一项。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面中任一种可能实现方式中所述的方法的指令。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种可能实现方式中所述的方法。
通过本申请实施例提供的方法,可以提供一种适用于多波束场景下功率和/或功率余量确定方法,适用于多波束场景下的功率控制或功率余量上报,比如,适用于NR系统的功率控制或功率余量上报。
附图说明
图1为本申请实施例提供的定位方法所适用的通信系统的架构示意图一;
图2为本申请实施例提供的定位方法的示意性流程图一;
图3A为本申请实施例提供的定位方法中为第一PRS分配非授权频谱中的频域资源的示意图一;
图3B为本申请实施例提供的定位方法中为第一PRS分配非授权频谱中的频域资源的示意图二;
图3C为本申请实施例提供的定位方法中为第一PRS分配非授权频谱中的频域资源的示意图三;
图3D为本申请实施例提供的定位方法中为第一PRS分配非授权频谱中的频域资源的示意图四;
图3E为本申请实施例提供的定位方法中第一PRS的一种传输图样的示意图;
图3F为本申请实施例提供的定位方法中为第二PRS分配授权频谱中的频域资源的示意图;
图4A为本申请实施例提供的TOA+AOA联合定位方法的场景示意图;
图4B为本申请实施例提供的TDOA+AOA联合定位方法的场景示意图;
图5为本申请实施例提供的定位方法所适用的通信系统的架构示意图二;
图6A为本申请实施例提供的定位方法的示意性流程图二;
图6B为本申请实施例提供的定位方法的示意性流程图三;
图6C为本申请实施例提供的定位方法的示意性流程图四;
图6D为本申请实施例提供的定位方法的示意性流程图五;
图7为本申请实施例提供的终端的结构示意图;
图8为本申请实施例提供的网络设备的结构示意图;
图9为本申请实施例提供的LMF服务中心的结构示意图;
图10为本申请实施例提供的定位装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:LTE系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代(5th generation,5G)系统,如NR系统,及未来的通信系统,如第六代(6th generation,6G)系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”、“消息(message)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例既可以应用于时分双工(time division duplexing,TDD)的场景,也可以适用于频分双工(frequency division duplexing,FDD)的场景。
本申请实施例既可以应用在传统的典型网络中,也可以应用在未来的以UE为中心(UE-centric)的网络中。UE-centric网络引入无小区(non-cell)的网络架构,即在某个特定的区域内部署大量小站,构成一个超级小区(hyper cell),每个小站为超级小区的一个传输点(transmission and reception point,TRP或者transmission point,TP),并与一个集中控制器(controller)相连。当UE在超级小区内移动时,网络侧设备时时为UE选择新的子簇(sub-cluster)为其服务,从而避免真正的小区切换,实现UE 业务的连续性。其中,网络侧设备包括通信系统设备,如基站。
本申请实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信方法的通信系统的示意图。如图1所示,该通信系统包括网络设备102、网络设备104和终端106,可以通过测量在网络设备102和网络设备104中的至少一项与终端106之间传输的定位参考信号(positioning reference signal,PRS)的方式,确定终端106的位置。
应理解,网络设备102或网络设备104还可包括与信号发送和接收相关的多个部件(例如,处理器、调制器、复用器、解调器或解复用器等)。
其中,网络设备为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:eNB、通信系统控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点等,还可以为5G,如NR系统中的gNB,或,传输点(TRP或TP)。
终端也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端设备、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端及可设置于前述终端的芯片统称为终端。
在该通信系统中,网络设备102和网络设备104均可以与多个终端(例如图中示出的终端106)通信。网络设备102和网络设备104可以与类似于终端106的任意数目的终端通信。但应理解,与网络设备102通信的终端和与网络设备104通信的终端可以是相同的,也可以是不同的。图1中示出的终端106可同时与网络设备102和网络设备104通信,但这仅示出了一种可能的场景,在某些场景中,终端可能仅与网络设备102或网络设备104通信,本申请对此不做限定。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端,图1中未予以画出。
在通信网络中,一个节点可以向其他至少一个节点发送信号。当然,一个节点也可以接收其他至少一个节点发送的信号。这里的节点,可以是指基站、用户设备等。例如,图1中的终端106可以向网络设备102和网络设备106发送PRS。图1中的终 端106也可以接收网络设备102和网络设备106发送的定位参考信号。
需要说明的是,上述PRS可以在授权频谱上传输(包括发送和接收),也可以在非授权频谱上传输,还可以在授权频谱和非授权频谱上同时传输。
如图2所示,本申请实施例提供一种定位方法,以适用于如图1所示的通信系统中终端106的定位。在本申请中,上行可以指终端为发送端,网络设备为接收端,下行可以指网络设备为发送端,终端为接收端。本申请应用于发送端与接收端之间的通信时,上行可以指一个传输方向,下行可以指与上行相对的另一传输方向。
如图2所示,该定位方法包括S201-S204:
S201、在第一频域资源上接收第一定位参考信号PRS。
其中,第一频域资源为非授权频谱中的频域资源。
在一种可能的设计方法中,第一频域资源可以为非授权频谱中第一预设带宽的频域资源。其中,第一预设带宽通常为一个较大带宽,以保证第一PRS的测量精度。
示例性地,第一预设带宽为非授权频谱中的全部带宽,以进一步提高第一PRS的测量精度。
在一种可能的设计方法中,第一频域资源为预设时间窗口对应的非授权频谱中的频域资源。其中,预设时间窗口包括第一预设数量的时间单元,时间单元为以下之一:符号(symbol)和时隙(slot)。该第一预设数量可以大于或者等于1。
可选地,第一预设数量的时间单元可以为一个时间单元,以便集中传输第一PRS。例如,可以将一个时间单元内的子载波全部用于传输第一PRS。鉴于该时间单元不再用于传输数据或其他控制信号,因此不需要考虑为第一PRS分配的子载波是否与用于传输数据或其他控制信号的子载波是否冲突,从而可以降低为第一PRS分配时频资源的操作复杂度。
以时间单元为时隙为例,图3A和图3B分别示出了在一个时隙上传输第一PRS的示意图。
如图3A所示,在该时隙的符号6的非授权频谱的全部带宽上传输第一PRS。当然,除符号6外,也可以在该时隙的其他符号的非授权频谱的全部带宽上传输第一PRS,本申请实施例对此不作限定。
为了避免同一个符号上相邻子载波(subcarrier)之间的干扰对第一PRS的接收造成不良影响,也可以在该时隙的多个符号上传输第一PRS。例如,如图3B所示,可以在该时隙符号3至符号6、以及符号9至符号13上各分配一个子载波,用于第一PRS的传输。
需要说明的是,图3A和图3B仅示出了非授权频谱上1个资源块(resource block,RB),即12个子载波上的频域资源分配情况。本领域技术人员应当理解,在图3A或图3B的基础上,在频域方向上扩展至非授权频谱所包含的全部子载波,即可获得在非授权频谱的全部带宽上的频域资源的分配方案。
可选地,第一预设数量的时间单元也可以为至少两个时间单元,以便利用不同时间单元传输的第一PRS的时间分集增益,进一步提高第一PRS的测量精度。例如,将在上述至少两个时间单元接收的第一PRS合并后进行解调和信道译码,可以获得更为精确的测量结果。
可选地,也可以为传输第一PRS设置多个备选时间单元,以便在上述多个备选时间单元的任意一个时间单元对应的非授权频谱的全部带宽上传输第一PRS,从而提高第一PRS传输成功的概率,从而提高测量第一PRS的可靠性。
示例性地,如图3E所示,第一预设数量的时间单元包括如下4个备选时隙:时隙1-4。因此,可以在时隙1-4中选择任意一个或多个时隙,用于传输第一PRS。例如,若选择在时隙1上传输第一PRS,则可以不必在时隙2-4上传输第一PRS。若不选择在时隙1上传输第一PRS,则可以在时隙2上传输第一PRS。可以理解,当位置靠前的时隙没有被选择用于传输第一PRS时,可以选择该时隙之后的时隙用于传输第一PRS,本身前述实施例不再赘述。
可以理解,当存在多个备选时间单元时,接收方可能并不知道第一PRS究竟在哪些时间单元上传输,因此,为了确保接收方可靠地接收到第一PRS,在上述多个备选时间单元中的每个时间单元上,接收方均需要进行第一PRS的盲检。当然,若接收方获知发送方仅会在多个时间单元中的一个时间单元上发送第一PRS,则接收方可以在某个时间单元上成功接收到第一PRS后,立即停止在该时间单元之后的备选时间单元上接收第一PRS,以降低接收第一PRS的工作量,节省功耗。例如,如图3E所示,若接收方已获知发送方仅在时隙1-4中的一个时隙上发送第一PRS,且接收方已在时隙1上接收到第一PRS,则接收方会立即停止接收第一PRS,即不在时隙2-4上接收第一PRS。
可选地,还可以采用LBT的方式,确定在非授权频谱上不存在其他信号时,例如另一无线系统的信令和/或数据,才会在非授权频谱上传输第一PRS,以降低第一PRS被非授权频谱上传输的其他信号干扰的概率,从而可以进一步提高第一PRS和第二PRS的测量精度。
需要说明的是,上述至少两个时间单元中每个时间单元对应的非授权频谱中的频域资源,可以采用在时域方向上扩展图3A或图3B所示的频域资源的方式获得。例如,如图3C所示,在时隙1的符号6和时隙2的符号6各自对应的非授权频谱的全部带宽中的频域资源上传输第一PRS。又例如,如图3D所示,在时隙2和时隙3各自的符号3至符号6、以及符号9至符号13上各分配一个用于传输第一PRS的子载波。
可以理解,上述至少两个时间单元可以不连续、部分连续或全部连续,只要确保上述至少两个时间单元均位于同一预设时间窗口内,即可利用不同时间单元之间的时间相关性,降低无线信道的时变特性对测量结果的不良影响,从而可以进一步提高第一PRS的测量精度。示例性地,以上述至少两个时间单元为3个时隙为例进行说明。例如,预设时间窗口包括时隙1至时隙5,上述至少两个时间单元包括时隙1、时隙3和时隙5,即所有时间单元两两之间互不连续。又例如,预设时间窗口包括时隙1至时隙4,上述至少两个时间单元包括时隙1、时隙2和时隙4,或者包括时隙1、时隙3和时隙4,即只有部分时间单元是连续的。再例如,预设时间窗口包括时隙1至时隙3,上述至少两个时间单元也包括时隙1至时隙3,即为全部连续。
需要说明的是,除第一PRS外,上述非授权频谱上还可能传输其他信号,如业务数据、解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、物理下行控制信道(physical  downlink control channel,PDCCH)和物理上行控制信道(physical uplink control channel,PUCCH)等。鉴于定位业务的优先级通常较低,为第一PRS分配时频资源时,需要避开为用户数据和/或控制信号分配的时频资源。例如,如图3A所示,PDCCH在该时隙的符号0至符号2上传输,则不在该时隙的符号0至符号2上传输第一PRS,以避开PDCCH。同理,DMRS/CSI-RS在该时隙的符号8的子载波6上传输,则不在符号8的子载波6上传输第一PRS,以避开DMRS/CSI-RS。
可选地,预设时间窗口位于预设周期内,预设周期包括第二预设数量的连续时间单元,第二预设数量大于第一预设数量。可以理解,设置预设周期的目的,在于可以周期性地传输第一PRS,从而可以及时更新第一定位测量结果,进而及时刷新终端的位置。
示例性地,如图3E所示,时间单元为时隙,预设周期为一个无线帧(subframe),预设时间窗口为时隙1至时隙4,即预设时间窗口与预设周期的起始时间单元之间的偏移量为1个时隙。实际应用中,预设周期可以由网络设备,如基站,或LMT灵活配置:每个预设周期可以只包含一个预设时间窗口,也可以包含有多个预设时间窗口,本申请实施例对此不作限定。
鉴于图3E所示的预设时间窗口包含有4个时隙,在每个时隙都会存在传输机会,即第一PRS存在多个传输机会,可以采用LBT的方式,在确定该时隙对应的非授权频谱上存在空闲信道时,选择预设时间窗口中的一个或多个空闲时隙传输第一PRS,以降低第一PRS被干扰的概率,从而提高第一PRS的测量精度。
具体地,如图3E所示,且以无线帧n为例,可以采用如下步骤发送第一PRS:
步骤1:在无线帧n的时隙0上进行LBT,以确定非授权频谱上是否存在空闲信道。例如,在时隙0对应的非授权频谱中的频域资源上接收到的信号强度小于强度阈值,视为非授权频谱上存在空闲信道。
步骤2:根据步骤1的执行结果,确定是否在无线帧n的预设时间窗口对应的非授权频谱中的频域资源上发送第一PRS,以及如何发送第一PRS。具体地,可以采用如下任一方式执行步骤2:
方式一:若无线帧n的时隙0对应的非授权频谱上存在空闲信道,则在无线帧n的时隙1至时隙4中的每个时隙上均发送第一PRS。
方式二:若无线帧n的时隙0对应的非授权频谱上存在空闲信道,则在无线帧n的时隙1上发送第一PRS,不在时隙2至时隙4发送第一PRS。
方式三:若无线帧n的时隙0对应的非授权频谱上不存在空闲信道,则在无线帧n的时隙1上继续执行步骤1,然后视在无线帧n的时隙1上执行的步骤1的结果再次执行步骤2。
方式四:若无线帧n的时隙0对应的非授权频谱上不存在空闲信道,则不在无线帧n的时隙1至时隙4上发送第一PRS,而是在无线帧n+1的时隙0上继续执行步骤1,然后视在无线帧n+1的时隙0上步骤1的执行结果再次执行步骤2中的方式四,直到侦听到空闲信道,即可执行步骤2中的方式一至三。
实际应用中,可以一直采用上述4种方式中的一种执行步骤2,也可以将上述4种方式结合起来执行步骤2,本申请实施例对此不作限定。例如,可以在无线帧n中 执行步骤2中的方式一,在无线帧n+1中执行步骤2中的方式二。
需要说明的是,上述预设周期与无线帧同步,且上述偏移量也可以为0,还可以为多个时隙,本申请实施例对此不作限定。当然,预设周期也可以不是10个时隙,例如,还可以为20个、80个、160个时隙,本申请实施例对此不作限定。
可以理解,当上述时间单元为符号时,预设周期可以设置为一个时隙,预设时间窗口可以设置为至少一个符号。若预设时间窗口包含至少两个符号时,对于至少两个符号中的每个符号,也可以采用上述LBT的方式发送第一PRS,本申请实施例不再赘述。
需要说明的是,第一PRS可以在下行方向上传输,即网络设备为发送方,终端为接收方,也可以在上行方向上传输,即终端为发送方,网络设备为接收方,本申请实施例对此不作限定。可以理解,在本申请实施例中,第一PRS的测量主体应该为接收方。
S202、在第二频域资源上接收第二PRS。
其中,第二频域资源为授权频谱中的频域资源。
第二频域资源可以为授权频谱中第二预设带宽的频域资源,其中第二预设带宽通常为一个较小带宽,以预留授权频谱中较多的频域资源用于业务数据传输,以提高授权频谱的资源利用率,提高通信系统的系统容量和工作效率。例如,第二预设带宽可以为授权频谱中的部分带宽。
示例性地,图3F示出了在一个时隙对应的授权频谱中的频域资源上传输第二PRS的示例。如图3F所示,可以在该时隙最后一个符号(符号13)对应的授权频谱中的子载波0、4、8上传输第二PRS。当然,第二PRS也可以在上述最后一个符号对应的授权频谱中的其他子载波上传输,还可以在该时隙其他符号对应的授权频谱中的部分子载波上传输,本申请实施例对此不作限定。
可以理解,当第二PRS与第一PRS的传输时间相同或比较接近时,第二PRS和第一PRS之间存在较强的时间相关性,可以提高终端的定位精度。因此,进一步地,第二PRS和第一PRS可以在相同或相邻的时间单元上传输。例如,如图3E所示,第二PRS在上述4个时隙中的最后一个时隙上传输。当然,第二PRS也可以在上述4个时隙中的其他一个或多个时隙上传输,本申请实施例对此不作限定。
在一种可能的设计方法中,第二频域资源也可以为预设时间窗口对应的授权频谱中的频域资源,即第二频域资源和第一频域资源均为同一预设时间窗口对应的频域资源,可以视为第一PRS和第二PRS存在较强的时间相关性,能够进一步提高定位精度。
可选地,与第一PRS类似,第二PRS也可以采用周期性的方式传输,以便及时更新第二定位测量结果,完成终端的位置刷新。
与第一PRS类似,第二PRS可以在下行方向上传输,即网络设备为发送方,终端为接收方,也可以在上行方向上传输,即终端为发送方,网络设备为接收方,本申请实施例对此不作限定。
此外,第二PRS的传输方向和第一PRS的传输方向可以相同,也可以不同,本申请实施例对此不作限定。例如,第一PRS和第二PRS均在下行方向上传输。又例如,第一PRS在下行方向上传输,而第二PRS在上行方向上传输。
需要说明的是,本申请实施例不需要限定S202与S201的执行顺序。例如,可以先执行S201,再执行S202,也可以先执行S202,再执行S201,还可以在执行S201的过程中执行S202。
S203、根据第一PRS和第二PRS,确定第一PRS对应的第一定位测量结果和第二PRS对应的第二定位测量结果。
其中,第一PRS的测量主体和第二PRS的测量主体均为各自的接收方。
示例性地,若第一PRS在上行方向上传输,则第一PRS的测量主体为网络设备,若第一PRS在下行方向上传输,则第一PRS的测量主体为终端。同理,可以确定第二PRS的测量主体,本申请实施例不再赘述。
S204、根据第一定位测量结果和第二定位测量结果,确定终端的位置。
可选地,第一定位测量结果可以包括第一PRS的到达时间TOA,第二定位测量结果可以包括第二PRS的到达角度AOA。相应地,S204根据第一定位测量结果和第二定位测量结果,确定终端的位置,可以包括如下步骤:
根据TOA和AOA,确定终端的位置,即采用TOA+AOA联合定位的方法确定终端的位置。
示例性地,图4A示出了一种确定终端位置的场景示意图。如图4A所示,根据第一PRS的发送时间和到达时间,可以计算第一PRS在终端与网络设备之间的传播时间(到达时间-发送时间),即可确定终端与网络设备之间的距离R(传播时间与电磁波传播速度之积),进而可以确定以网络设备所在位置为圆心、以R为半径的圆,而终端即位于该圆圆周上。其中,网络设备所在位置可以为该网络设备所在经纬度,或者该网络设备所在坐标系中的坐标值,本申请实施例对此不作限定。然后,根据接收到的第二PRS,可以确定第二定位测量结果,即第二PRS的AOA为α。
以直角坐标系为例。假定终端的直角坐标为(x,y),则可以根据网络设备的直角坐标(x 0,y 0)、R和α得到由如下两个公式组成的方程组,求解上述方程组,即可确定终端的直角坐标(x,y):
(x-x 0) 2+(y-y 0) 2=R 2
Figure PCTCN2019096018-appb-000001
需要说明的是,在图4A所示的示例中,α是以第二PRS的传播路径与x坐标轴的正向的夹角来定义的,其取值范围为:0≤α<2π。当然,也可以采用其他方式定义α,例如将α定义为第二PRS的传播路径与y轴正向的夹角,本申请实施例对此不作限定。
可选地,第一PRS的测量结果可以包括到达时间差TDOA,TDOA为终端发送的第一PRS到达不同网络设备的到达时间TOA的差值,或者不同网络设备发送的第一PRS到达终端的到达时间TOA的差值;第二PRS的测量结果为第二PRS的到达角度AOA。相应地,S204根据第一定位测量结果和第二定位测量结果,确定终端的位置,可以包括如下步骤:
根据TDOA和AOA,确定终端的位置。
图4B示出了另一种确定终端的位置的场景示意图。如图4B所示,终端106分别与网络设备102和网络设备106之间传输第一PRS和第二PRS。假定网络设备102的 直角坐标为(-c,0),网络设备104的直角坐标为(c,0),第一PRS的TDOA、第二PRS的两个AOA(即图4B中的β和θ)可以通过测量得到,则终端的直角坐标为(x,y),可以通过求解由如下公式组成的方程组得到:
Figure PCTCN2019096018-appb-000002
a 2+b 2=c 2
2*a=TDOA*V,
Figure PCTCN2019096018-appb-000003
Figure PCTCN2019096018-appb-000004
其中,V为电磁波传播速度,即光速。需要说明的是,在图4B所示的示例中,β和θ可以采用与α相同的方式定义,也可以采用不同的方式定义,本申请实施例不作限定。
需要说明的是,上述第二PRS的传输方向可以与第一PRS相同,也可以不同。并且,本申请实施例提供的定位方法中的S204可以由网络设备执行,也可以由终端执行,还可以由与网络设备和/或终端存在信号连接的第三方执行主体,例如LMF服务中心执行。鉴于LMF服务中心为现有技术,本申请实施例不再赘述。
示例性地,表1-表3示出了本申请实施例提供的定位方法所适用的几种场景的汇总信息。
表1
Figure PCTCN2019096018-appb-000005
表2
Figure PCTCN2019096018-appb-000006
表3
Figure PCTCN2019096018-appb-000007
图5示出了本申请实施例提供的定位方法所适用的另一种通信网络的架构示意图。如图5所示,第一PRS在网络设备102与终端106之间的下行链路的非授权频谱上传 输,第二PRS在网络设备102与终端106之间的上行链路的授权频谱上传输,且网络设备102与LMF服务中心108之间存在有线或无线相连。当然,上述方法实施例中的S204可以由网络设备102执行,也可以由支队106执行,还可以由LMF服务中心执行,本申请实施例对此不作限定。
图6A-图6D分别示出了本申请实施例表1中所示的场景2、表2中所示的场景7、场景6中的子场景2,以及表3中所示的场景12中的子场景2所涉及的定位方法的流程示意图。
示例性地,如图6A所示,基于场景2,图2所示方法可以具体实现为S301-S305:
S301、网络设备102向终端106发送第一PRS。
S302、终端106接收并测量第一PRS的TOA。
示例性地,网络设备102在非授权频谱上,向终端106发送第一PRS。相应地,终端106也在非授权频谱上接收并测量网络设备102发送的第一PRS的TOA。
具体的,可以参考上述图3A至图3D所示的方法,为第一PRS分配非授权频谱中的频域资源,此处不再赘述。
S303、网络设备102向终端106发送第二PRS。
S304、终端106接收并测量第二PRS的AOA。
具体的,可以参考上述图3E和图3F所示的方法,为第二PRS分配授权频谱中的频域资源,此处不再赘述。
其中,第二PRS的AOA,是指第二PRS在由终端106发送之后,到达网络设备102时的到达角度。鉴于AOA为现有技术,本申请实施例不再赘述。
需要说明的是,本申请实施例不需要限定S301-S302和S303-S304的执行顺序,只要S301-S302和S303-S304均在执行下述S305之前执行完毕即可。
可选地,S301-S302可以在执行S303-S304之前进行,也可以在执行S303-S304之后进行,还可以与S303-S304同时执行。例如,网络设备102可以在同一个符号上,同时向终端106发送第一PRS和第二PRS。相应地,终端106也在该符号上,同时接收并测量第一PRS的TOA和第二PRS的AOA。
S305、终端106根据第一PRS的TOA和第二PRS的AOA,确定终端106的位置。
示例性地,终端106可以采用图4A所示的TOA+AOA联合定位法,确定终端106的位置。
示例性地,如图6B所示,基于场景7,图2所示方法也可以具体实现为S401-S405:
S401、终端106向网络设备102发送第一PRS。
S402、网络设备102接收并测量第一PRS的TOA。
示例性地,终端106在非授权频谱上,向网络设备102发送第一PRS。相应地,网络设备102在非授权频谱上接收并测量终端106发送的第一PRS的TOA。
具体的,可以参考上述图3A至图3D所示的方法,为第一PRS分配非授权频谱中的频域资源,此处不再赘述。
S403、终端106向网络设备102发送第二PRS。
S404、网络设备102接收并测量第二PRS的AOA。
具体的,可以参考上述图3E和图3F所示的方法,为第二PRS分配授权频谱中的 频域资源,此处不再赘述。
其中,第二PRS的AOA,是指第二PRS在由终端106发送之后,到达网络设备102时的到达角度。鉴于AOA为现有技术,本申请实施例不再赘述。
需要说明的是,本申请实施例不需要限定S401-S402和S403-S404的执行顺序,只要S401-S402和S403-S404均在执行下述S405之前执行完毕即可。
可选地,S401-S402可以在执行S403-S404之前进行,也可以在执行S403-S404之后进行,还可以与S403-S404同时执行。例如,终端106可以在同一个符号上,同时向网络设备102发送第一PRS和第二PRS。相应地,网络设备102也在该符号上,同时接收并测量第一PRS的TOA和第二PRS的AOA。
S405、网络设备102根据第一PRS的TOA和第二PRS的AOA,确定终端106的位置。
示例性地,网络设备102可以采用图4A所示的TOA+AOA联合定位法,确定终端106的位置。
然后,若终端106需要获知自身位置信息,例如终端106正在运行地图、导航、自动驾驶等应用,则该方法还可以包括S406-S407(图6B中以虚线表示):
S406、网络设备102向终端106下发终端106的位置。
S407、终端106接收网络设备102下发的终端106的位置。
示例性地,可以采用与S301-S302和S303-S304类似的方式传输终端106的位置,此处不再赘述。
示例性地,如图6C所示,基于场景6中的子场景2,图2所示方法还可以具体实现为S501-S511:
S501、网络设备102向终端106发送第一PRS。
S502、终端106接收并测量第一PRS的TOA。
需要说明的是,S501-S502的执行方法与S301-S302类似,此处不再赘述。
鉴于上述方法实施例中的S204由与网络设备102相连的LMF服务中心108执行,终端106还需要将第一PRS的TOA上报给网络设备102,并由网络设备102转发给LMF服务中心108。因此,在执行S501-S502之后,还需要执行S503-S506:
S503、终端106向网络设备102上报第一PRS的TOA。
S504、网络设备102接收终端106上报的第一PRS的TOA。
示例性地,终端106可以采用测量报告(measurement report,MR)、位置更新报告等上行信令的形式上报第一PRS的TOA,本申请实施例不再赘述。
S505、网络设备102向LMF服务中心108转发第一PRS的TOA。
S506、LMF服务中心108接收网络设备102转发的第一PRS的TOA。
具体地,网络设备102可以采用其与LMF服务中心108之间的有线或无线连接,向LMF服务中心108发送第一PRS的TOA。相应地,LMF服务中心108可以利用其与网络设备102之间的有线或无线连接,接收第一PRS的TOA。
S507、终端106向网络设备102发送第二PRS。
S508、网络设备102接收并测量第二PRS的AOA。
其中,S507-S508的执行方法与S403-S404类似,本申请实施例不再赘述。
鉴于上述方法实施例中的S204由与网络设备102相连的LMF服务中心108执行,网络设备102还需要将第二PRS的AOA发送给LMF服务中心108。因此,在执行S507-S508之后,还需要执行S509-S510:
S509、网络设备102向LMF服务中心108发送第二PRS的AOA。
S510、LMF服务中心108接收网络设备102发送的第二PRS的AOA。
其中,S509-S510的执行方法与S505-S506类似,此处不再赘述。
需要说明的是,本申请实施例不需要限定S501-S506和S507-S510的执行顺序,只要S501-S506和S507-S510均在执行下述S511之前执行完毕即可。可选地,S501-S506可以在执行S507-S510之前进行,也可以在执行S507-S510之后进行。可选地,S501-S506可以在执行S507-S510的过程中穿插执行,以及S507-S510也可以在执行S501-S506的过程中穿插执行。可选地,S501-S506中的部分步骤,也可以与S507-S510中的步骤,同时执行。例如,可以将S505-S506和S509-S510合并执行,即网络设备102将第一PRS的TOA和第二PRS的AOA同时向LMF服务中心发送。
S511、LMF服务中心108根据接收到的第一PRS的TOA和第二PRS的AOA,确定终端106的位置。
示例性地,LMF服务中心108可以采用图4A所示的TOA+AOA联合定位法,确定终端106的位置。
然后,若终端106需要获知自身位置信息,例如终端106正在运行地图、导航、自动驾驶等应用,则该方法还可以包括S512-S515(图6C中以虚线表示):
S512、LMF服务中心108向网络设备102发送终端106的位置。
S513、网络设备102接收LMF服务中心108发送的终端106的位置。
示例性地,可以利用LMF服务中心108与网络设备102之间的有线或无线连接,传输终端106的位置,此处不再赘述。
S514、网络设备102向终端106转发终端106的位置。
S515、终端106接收网络设备102转发的终端106的位置。
示例性地,可以采用与S406-S407类似的方式传输终端106的位置,此处不再赘述。
示例性地,如图6D所示,基于场景12中的子场景2,图2所示方法还可以具体实现为S601-S611:
S601、终端106向网络设备102发送第一PRS。
S602、网络设备102接收并测量第一PRS的TOA。
需要说的是,S601-S602的执行方法与S401-S402类似,此处不再赘述。
鉴于上述方法实施例中的S204由与网络设备102相连的LMF服务中心108执行,网络设备102还需要将第一PRS的TOA发送给LMF服务中心108。因此,在执行S601-S602之后,还需要执行S603-S604:
S603、网络设备102向LMF服务中心发送第一PRS的TOA。
S604、LMF服务中心接收网络设备102发送的第一PRS的TOA。
需要说的是,S603-S604的执行方法与S505-S506类似,此处不再赘述。
S605、网络设备102向终端106发送第二PRS。
S606、终端106接收并测量第二PRS的AOA。
需要说的是,S605-S606的执行方法与S303-S304类似,此处不再赘述。
鉴于上述方法实施例中的S204由与网络设备102相连的LMF服务中心108执行,终端106还需要将第二PRS的AOA上报给网络设备102,并由网络设备102转发给LMF服务中心108。因此,在执行S605-S606之后,还需要执行S607-S610:
S607、终端106向网络设备102上报第二PRS的AOA。
S608、网络设备102接收终端106上报的第二PRS的AOA。
示例性地,终端106可以采用测量报告、位置更新报告等上行信令的形式上报第二PRS的AOA,本申请实施例不再赘述。
S609、网络设备102向LMF服务中心转发第二PRS的AOA。
S610、LMF服务中心接收网络设备102转发的第二PRS的AOA。
需要说的是,S609-S610的执行方法依次与S509-S510类似,此处不再赘述。
此外,本申请实施例不需要限定S601-S604和S605-S610的执行顺序,只要S601-S604和S605-S610均在执行下述S611之前执行完毕即可。可选地,S601-S604可以在执行S605-S610之前进行,也可以在执行S605-S610之后进行。可选地,S601-S604可以在执行S605-S610的过程中穿插执行,以及S605-S610也可以在执行S601-S604的过程中穿插执行。可选地,S601-S604中的部分步骤,也可以与S605-S610中的步骤,同时执行。例如,可以将S603-S604和S609-S610合并执行,即网络设备102将第一PRS的TOA和第二PRS的AOA同时向LMF服务中心108发送。
S611、LMF服务中心108根据第一PRS的TOA和第二PRS的AOA,确定终端106的位置。
鉴于S611与S511类似,此处不再赘述。
然后,若终端106需要获知自身位置信息,例如终端106正在运行地图、导航、自动驾驶等应用,则该方法还可以包括S612-S615(图6D中以虚线表示):
S612、LMF服务中心108向网络设备102发送终端106的位置。
S613、网络设备102接收LMF服务中心108发送的终端106的位置。
S614、网络设备102向终端106转发终端106的位置。
S615、终端106接收网络设备102转发的终端106的位置。
鉴于S612-S615与S512-S515类似,此处不再赘述。需要说明的是,上述图6A-图6D仅仅给出了表1中所示的场景2、表2中所示的场景7、场景6中的子场景2,以及表3中所示的场景12中的子场景2共计4种场景所涉及的定位方法的执行流程。可以理解,表1-表3所示的除上述4种子场景之外的其他场景和/或子场景,可以参考图6A-图6D,以及相应的文字描述,并作适应性调整即可,本申请实施例不再赘述。
本申请实施例提供的定位方法,能够利用非授权频谱接收并测量高精度定位所需要的较大频谱带宽的第一PRS,利用授权频谱中已分配的频域资源接收并测量第二PRS,并根据第一PRS对应的第一定位测量结果和第二PRS对应的第二定位测量结果确定终端的位置,避免在对终端进行高精度定位的过程中占用授权频谱中的大量频域资源,能够在不占用大量授权频谱中的频域资源的情况下,快速、准确地确定终端的位置,且能够预留授权频谱中更多的频域资源用于业务数据传输,提高授权频谱的资 源利用率,从而提高通信系统的系统容量和工作效率。
以上结合图1至图6D详细说明了本申请实施例提供的定位方法。以下结合图7至图10详细说明本申请实施例提供的定位装置或设备。其中,上述定位装置或设备可以为网络设备、终端、LMF服务中心,或者其他可执行上述定位方法的装置或设备。
图7是本申请实施例提供的一种终端的结构示意图。该终端可适用于图1或图5所示出的通信系统中,执行上述方法实施例中终端的功能。为了便于说明,图7仅示出了终端的主要部件。如图7所示,终端700包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端执行上述方法实施例中终端106所执行的动作。例如,接收或发送第一PRS,接收或发送第二PRS,以及执行上述方法实施例中S204所描述的各种动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的程序代码、第一PRS、第二PRS,以及第一定位测量结果、第二定位测量结果等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。例如,接收用户输入终端的定位指令,输出终端的位置信息,如经纬度等。
当终端开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线方式发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和一个处理器。在实际的终端中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图7中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端700的收发单元701,例如,用于支持终端执行如图2和图6D中至少一项所述的接收功能和发送功能。将具有处理功能的处理器视为终端700的处理单元702。如图7所示,终端700 包括收发单元701和处理单元702。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元701中用于实现接收功能的器件视为接收单元,将收发单元701中用于实现发送功能的器件视为发送单元,即收发单元701包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器702可用于执行该存储器存储的指令,以控制收发单元701接收信号和/或发送信号,完成上述方法实施例中终端的功能。作为一种实现方式,收发单元701的功能可以考虑通过收发电路或者收发的专用芯片实现。
图8是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图8所示,基站800可应用于如图1或图5所示的通信系统中,执行上述方法实施例中网络设备102或网络设备104的功能。基站800可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)801和一个或多个基带单元(baseband unit,BBU)802。所述RRU 801可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线8011和射频单元8012。所述RRU 801部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端发送上述实施例中所述的信令消息。所述BBU 802部分主要用于进行基带处理,对基站进行控制等。所述RRU801与BBU 802可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 802为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)802可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,所述BBU 802可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 802还包括存储器8021和处理器8022,所述存储器8021用于存储必要的指令和数据。例如存储器8021用于存储上述实施例中接收到的第一PRS、第二PRS,以及第一定位测量结果、第二定位测量结果中的至少一个等。所述处理器8022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器8021和处理器8022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图9是本申请实施例提供的一种LMF服务中心的结构示意图。该LMF服务中心可适用于图1或图5所示出的通信系统中,执行上述方法实施例中LMF服务中心的功能。为了便于说明,图9仅示出了LMF服务中心的主要部件。如图9所示,LMF服务中心900包括处理器、存储器、控制电路以及输入输出装置。处理器主要用于对第一定位测量结果和第二定位测量结果进行处理,以及对整个LMF服务中心进行控制,执行软件程序,处理软件程序的数据,例如用于支持LMF服务中心执行图5或图6C或图6D所示的方法实施例中LMF服务中心108所执行的动作。例如,接收第一定位测量结果和第二定位测量结果,以及执行上述方法实施例中S204所描述的各种动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的程序代码、第一定位测量结果、第二定位测量结果等。控制电路主要用于第一定位测量结果和第二 定位测量结果的接收,以及向网络设备或终端发送已确定的终端的位置信息等。控制电路,以及LMF服务中心与网络设备和/或终端之间通信接口一起也可以叫做收发器,主要用于收发有线信号或无线信号。输入输出装置,例如显示屏,键盘等主要用于接收用户输入的定位指令以及对用户输出的终端的位置信息。
当LMF服务中心开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当有第一定位测量结果和第二定位测量结果发送到LMF服务中心时,控制电路控制通信接口接收第一定位测量结果和第二定位测量结果,将接收到的第一定位测量结果和第二定位测量结果发送至处理器,处理器根据接收到的第一定位测量结果和第二定位测量结果确定终端的位置。当需要发送终端的位置时,处理器将终端的位置输出至通信接口,并由控制电路控制通信接口发送。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和一个处理器。在实际的LMF服务中心中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括中央处理器,中央处理器主要用于对整个LMF服务中心进行控制,执行软件程序,处理软件程序的数据。本领域技术人员可以理解,中央处理器也可以是多个各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,LMF服务中心可以包括多个中央处理器以增强其处理能力,LMF服务中心的各个部件可以通过各种总线连接。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。
在本申请实施例中,可以将具有收发功能的通信接口和控制电路视为LMF服务中心900的收发单元901,例如,用于支持LMF服务中心执行如图5或图6C或图6D中所述LMF服务中心所执行的接收功能和发送功能。将具有处理功能的处理器视为LMF服务中心900的处理单元902。如图9所示,LMF服务中心900包括收发单元901和处理单元902。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元901中用于实现接收功能的器件视为接收单元,将收发单元901中用于实现发送功能的器件视为发送单元,即收发单元901包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器902可用于执行该存储器存储的指令,以控制收发单元901接收信号和/或发送信号,完成上述方法实施例中LMF服务中心的功能。作为一种实现方式,收发单元901的功能可以考虑通过收发电路或者收发的专用芯片实现。
图10给出了一种定位装置1000的结构示意图。如图10所示,装置1000可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述定位装置1000可以是芯片,上述网络设备(如基站),终端、LMF服务中心或者其他可以执行本申请实施例提供的定位方法的网络设备。
所述定位装置1000包括一个或多个处理器1001。所述处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对定位装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述定位装置可以 包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,定位装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端或基站或LMF服务中心或其他网络设备。又如,定位装置可以为终端或基站或LMF服务中心或其他网络设备,所述收发单元可以为收发器,射频芯片等。
所述定位装置1000包括一个或多个所述处理器1001,所述一个或多个处理器1001可实现图2和图5中至少一项所示的实施例中网络设备、终端或者LMF服务中心所执行的PRS收发功能和定位方法。
在一种可能的设计中,所述定位装置1000包括用于执行前述方法实施例中终端、网络设备、LMF服务中心所执行的各处理功能的部件(means)。例如可以通过一个或多个处理器执行上述功能,通过收发器、或输入/输出电路、或芯片的接口发送或接收第一PRS、发送或接收第二PRS、发送或接收第一定位测量结果、发送或接收第二定位测量结果等。所述第一PRS、第二PRS、第一定位测量结果、第二定位测量结果可以参见上述方法实施例中的相关描述。
可选的,处理器1001除了实现图2和图5中所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1001也可以包括指令1003,所述指令可以在所述处理器上被运行,使得所述定位装置1000执行上述方法实施例中描述的方法。
在又一种可能的设计中,定位装置1000也可以包括电路,所述电路可以实现前述方法实施例中网络设备、终端或LMF服务中心的功能。
在又一种可能的设计中所述定位装置1000中可以包括一个或多个存储器1002,其上存有指令1004,所述指令可在所述处理器上被运行,使得所述定位装置1000执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1002可以存储上述实施例中所描述的各配置信息。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述定位装置1000还可以包括收发单元1005以及天线1006。所述处理器1001可以称为处理单元,对定位装置(终端、网络设备或LMF服务中心)的动作进行控制。所述收发单元1005可以称为收发机、收发电路、或者收发器等,用于通过天线1006或其他接口实现定位装置的收发功能。
本申请还提供一种定位系统,其包括前述的一个或多个网络设备,和,一个或多个终端,和,一个或多个LMF服务中心。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器 (read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如网线、光纤、电缆等)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请中,“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功 能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种定位方法,其特征在于,包括:
    在第一频域资源上接收第一定位参考信号PRS;其中,所述第一频域资源为非授权频谱中的频域资源;
    在第二频域资源上接收第二PRS;其中,所述第二频域资源为授权频谱中的频域资源;
    根据所述第一PRS和所述第二PRS,确定所述第一PRS对应的第一定位测量结果和所述第二PRS对应的第二定位测量结果;
    根据所述第一定位测量结果和所述第二定位测量结果,确定终端的位置。
  2. 根据权利要求1所述的定位方法,其特征在于,所述第一频域资源为所述非授权频谱中第一预设带宽的频域资源;所述第二频域资源为所述授权频谱中第二预设带宽的频域资源。
  3. 根据权利要求2所述的定位方法,其特征在于,所述第一预设带宽为所述非授权频谱中的全部带宽,所述第二预设带宽为所述授权频谱中的部分带宽,且所述第一预设带宽大于所述第二预设带宽。
  4. 根据权利要求1-3任一项所述的定位方法,其特征在于,所述第一频域资源为预设时间窗口对应的所述非授权频谱中的频域资源;其中,所述预设时间窗口包括第一预设数量的时间单元,所述时间单元为以下之一:符号和时隙,所述第一预设数量大于或者等于1。
  5. 根据权利要求4所述的定位方法,其特征在于,大于1的所述第一预设数量的时间单元全部连续。
  6. 根据权利要求4或5所述的定位方法,其特征在于,所述第二频域资源为所述预设时间窗口对应的所述授权频谱中的频域资源。
  7. 根据权利要求4-6任一项所述的定位方法,其特征在于,所述预设时间窗口位于预设周期内,所述预设周期包括第二预设数量的连续的所述时间单元,所述第二预设数量大于所述第一预设数量。
  8. 根据权利要求1-7任一项所述的定位方法,其特征在于,所述第一定位测量结果包括所述第一PRS的到达时间TOA;所述第二定位测量结果包括所述第二PRS的到达角度AOA;
    所述根据所述第一定位测量结果和所述第二定位测量结果,确定终端的位置,包括:
    根据所述TOA和所述AOA,确定所述终端的位置。
  9. 根据权利要求1-7任一项所述的定位方法,其特征在于,所述第一PRS的测量结果包括到达时间差TDOA,所述TDOA为所述终端发送的第一PRS到达不同网络设备的到达时间TOA的差值,或者不同网络设备发送的第一PRS到达所述终端的到达时间TOA的差值;所述第二PRS的测量结果为所述第二PRS的到达角度AOA;
    所述根据所述第一定位测量结果和所述第二定位测量结果,确定终端的位置,包括:
    根据所述TDOA和所述AOA,确定所述终端的位置。
  10. 一种定位装置,其特征在于,包括:接收模块和确定模块;其中,
    所述接收模块,用于在第一频域资源上接收第一定位参考信号PRS;其中,所述第一频域资源为非授权频谱中的频域资源;
    所述接收模块,用于在第二频域资源上接收第二PRS;其中,所述第二频域资源为授权频谱中的频域资源;
    所述确定模块,用于根据所述第一PRS和所述第二PRS,确定所述第一PRS对应的第一定位测量结果和所述第二PRS对应的第二定位测量结果;
    所述确定模块,用于根据所述第一定位测量结果和所述第二定位测量结果,确定终端的位置。
  11. 根据权利要求10所述的定位装置,其特征在于,所述第一频域资源为所述非授权频谱中第一预设带宽的频域资源;所述第二频域资源为所述授权频谱中第二预设带宽的频域资源。
  12. 根据权利要求11所述的定位装置,其特征在于,所述第一预设带宽为所述非授权频谱中的全部带宽,所述第二预设带宽为所述授权频谱中的部分带宽。
  13. 根据权利要求10-12任一项所述的定位装置,其特征在于,所述第一频域资源为预设时间窗口对应的所述非授权频谱中的频域资源;其中,所述预设时间窗口包括第一预设数量的时间单元,所述时间单元为以下之一:符号和时隙,所述第一预设数量大于或者等于1。
  14. 根据权利要求13所述的定位装置,其特征在于,大于1的所述第一预设数量的时间单元全部连续。
  15. 根据权利要求13或14所述的定位装置,其特征在于,所述第二频域资源为所述预设时间窗口对应的所述授权频谱中的频域资源。
  16. 根据权利要求13-15任一项所述的定位装置,其特征在于,所述预设时间窗口位于预设周期内,所述预设周期包括第二预设数量的连续时间单元,所述第二预设数量大于所述第一预设数量。
  17. 根据权利要求10-16任一项所述的定位装置,其特征在于,所述第一定位测量结果包括所述第一PRS的到达时间TOA;所述第二定位测量结果包括所述第二PRS的到达角度AOA;
    所述确定模块,还用于根据所述TOA和所述AOA,确定所述终端的位置。
  18. 根据权利要求10-16任一项所述的定位装置,其特征在于,所述第一PRS的测量结果包括到达时间差TDOA,所述TDOA为所述终端发送的第一PRS到达不同网络设备的到达时间TOA的差值,或者不同网络设备发送的第一PRS到达所述终端的到达时间TOA的差值;所述第二PRS的测量结果为所述第二PRS的到达角度AOA;
    所述确定模块,还用于根据所述TDOA和所述AOA,确定所述终端的位置。
  19. 一种定位设备,其特征在于,包括:处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述设备执行如权利要求1-9中任一项所述的定位方法。
  20. 一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述 计算机程序代码在计算机上运行时,使得所述计算机执行如权利要求1-9任一项所述的定位方法。
  21. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-9中任一项所述的定位方法被执行。
  22. 一种定位装置,用于执行如权利要求1-9中任一项所述的定位方法。
  23. 一种定位设备,其特征在于,包括:处理器和接收器;其中,
    所述接收器,用于在第一频域资源上接收第一定位参考信号PRS;其中,所述第一频域资源为非授权频谱中的频域资源;
    所述接收器,用于在第二频域资源上接收第二PRS;其中,所述第二频域资源为授权频谱中的频域资源;
    所述处理器,用于根据所述第一PRS和所述第二PRS,确定所述第一PRS对应的第一定位测量结果和所述第二PRS对应的第二定位测量结果;
    所述处理器,用于根据所述第一定位测量结果和所述第二定位测量结果,确定终端的位置。
  24. 根据权利要求23所述的定位设备,其特征在于,所述第一频域资源为所述非授权频谱中第一预设带宽的频域资源;所述第二频域资源为所述授权频谱中第二预设带宽的频域资源。
  25. 根据权利要求24所述的定位设备,其特征在于,所述第一预设带宽为所述非授权频谱中的全部带宽,所述第二预设带宽为所述授权频谱中的部分带宽。
  26. 根据权利要求23-25任一项所述的定位设备,其特征在于,所述第一频域资源为预设时间窗口对应的所述非授权频谱中的频域资源;其中,所述预设时间窗口包括第一预设数量的时间单元,所述时间单元为以下之一:符号和时隙,所述第一预设数量大于或者等于1。
  27. 根据权利要求26所述的定位设备,其特征在于,大于1的所述第一预设数量的时间单元全部连续。
  28. 根据权利要求26或27所述的定位设备,其特征在于,所述第二频域资源为所述预设时间窗口对应的所述授权频谱中的频域资源。
  29. 根据权利要求26-28任一项所述的定位设备,其特征在于,所述预设时间窗口位于预设周期内,所述预设周期包括第二预设数量的连续时间单元,所述第二预设数量大于所述第一预设数量。
  30. 根据权利要求23-29任一项所述的定位设备,其特征在于,所述第一定位测量结果包括所述第一PRS的到达时间TOA;所述第二定位测量结果包括所述第二PRS的到达角度AOA;
    所述处理器,还用于根据所述TOA和所述AOA,确定所述终端的位置。
  31. 根据权利要求23-29任一项所述的定位设备,其特征在于,所述第一PRS的测量结果包括到达时间差TDOA,所述TDOA为所述终端发送的第一PRS到达不同网络设备的到达时间TOA的差值,或者不同网络设备发送的第一PRS到达所述终端的到达时间TOA的差值;所述第二PRS的测量结果为所述第二PRS的到达角度AOA;
    所述处理器,还用于根据所述TDOA和所述AOA,确定所述终端的位置。
PCT/CN2019/096018 2018-07-17 2019-07-15 定位方法、装置及设备 WO2020015610A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19837737.6A EP3783974B1 (en) 2018-07-17 2019-07-15 Determining the location of a terminal
US17/102,120 US11914060B2 (en) 2018-07-17 2020-11-23 Positioning method, apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810785061.1A CN110730501B (zh) 2018-07-17 2018-07-17 定位方法、装置及设备
CN201810785061.1 2018-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/102,120 Continuation US11914060B2 (en) 2018-07-17 2020-11-23 Positioning method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2020015610A1 true WO2020015610A1 (zh) 2020-01-23

Family

ID=69164991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096018 WO2020015610A1 (zh) 2018-07-17 2019-07-15 定位方法、装置及设备

Country Status (4)

Country Link
US (1) US11914060B2 (zh)
EP (1) EP3783974B1 (zh)
CN (2) CN114245457A (zh)
WO (1) WO2020015610A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056660A1 (zh) * 2018-09-20 2020-03-26 Oppo广东移动通信有限公司 一种信号传输方法及装置、终端
US11956168B2 (en) * 2018-09-28 2024-04-09 Telefonaktiebolaget Lm Ericsson (Publ) PRS design by extending the basic signal
US11903026B2 (en) * 2019-08-29 2024-02-13 Lg Electronics Inc. Positioning method by user device in wireless communication system
US11765682B2 (en) * 2020-01-31 2023-09-19 Samsung Electronics Co., Ltd. Method and apparatus for NR UE-based relative positioning scheme
CN115176501A (zh) * 2020-04-09 2022-10-11 Oppo广东移动通信有限公司 位置确定方法及装置
US11678279B2 (en) * 2020-06-04 2023-06-13 Qualcomm Incorporated Timing accuracy for reference signal transmission during user equipment (UE) power saving state
CN113939012B (zh) * 2020-06-29 2023-06-23 大唐移动通信设备有限公司 定位方法及装置
US11856591B2 (en) * 2020-07-30 2023-12-26 Qualcomm Incorporated Inter-frequency sounding reference signal for positioning during a measurement period
US11582584B2 (en) * 2020-08-12 2023-02-14 Shanghai Langbo Communication Technology Company Limiied Method and device in communication nodes for wireless communication
US20220069962A1 (en) * 2020-08-27 2022-03-03 Qualcomm Incorporated Dynamic bandwidth configuration for positioning reference signal (prs) operation
US11960019B2 (en) * 2020-09-25 2024-04-16 Qualcomm Incorporated Techniques for ranging and positioning of distributed devices
US20230269059A1 (en) * 2020-09-30 2023-08-24 Nokia Technologies Oy Priority adaptation of positioning reference signal
CN115885525A (zh) * 2020-11-24 2023-03-31 华为技术有限公司 一种用于定位的方法和装置
US20240155545A1 (en) * 2021-04-09 2024-05-09 Qualcomm Incorporated Position estimation procedures involving base station and reference device
CN115706914A (zh) * 2021-08-04 2023-02-17 维沃移动通信有限公司 定位参考信号处理方法、终端及网络侧设备
WO2023051935A1 (en) * 2021-10-01 2023-04-06 Nokia Technologies Oy Positioning in new radio, nr, spectra and nr-unlicensed, nr-u, spectra
WO2023231034A1 (en) * 2022-06-02 2023-12-07 Nokia Shanghai Bell Co., Ltd. Adaptive positioning measurement
WO2024016135A1 (en) * 2022-07-18 2024-01-25 Nokia Shanghai Bell Co., Ltd. Methods, devices and computer readable media for communications
WO2024031377A1 (zh) * 2022-08-09 2024-02-15 Oppo广东移动通信有限公司 通信方法以及终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273506A1 (en) * 2009-04-27 2010-10-28 Interdigital Patent Holdings, Inc. Reference signals for positioning measurements
WO2014029242A1 (zh) * 2012-08-20 2014-02-27 华为技术有限公司 终端定位方法、基站及用户设备
WO2014066262A1 (en) * 2012-10-23 2014-05-01 Qualcomm Incorporated Enhanced positioning reference signal transmission in wireless communication networks
CN104469931A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711242A (zh) * 2012-06-08 2012-10-03 华为技术有限公司 测量定位邻居小区参考信号到达时间的方法及终端
US9774429B2 (en) * 2014-03-12 2017-09-26 Qualcomm Incorporated Techniques for transmitting positioning reference signals in an unlicensed radio frequency spectrum band
US9668099B2 (en) * 2014-07-31 2017-05-30 Intel Corporation Apparatus, computer-readable medium, and method to determine a user equipment location in a cellular network using signals from a wireless local area network (WLAN)
CN105934963B (zh) * 2014-12-31 2019-10-18 华为技术有限公司 在使用非授权频段的小区中传输参考信号的方法及设备
WO2016129908A1 (ko) * 2015-02-13 2016-08-18 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
US9961559B2 (en) * 2015-12-14 2018-05-01 Nestwave Sas Accurate short range positioning with wireless signals
US11102779B2 (en) * 2016-07-15 2021-08-24 Qualcomm Incorporated Methods and apparatus for IOT operation in unlicensed spectrum
PL3282783T3 (pl) * 2016-08-12 2020-04-30 Nokia Technologies Oy Wykrywanie położenia urządzenia użytkownika w bezprzewodowej sieci telekomunikacyjnej
US11483793B2 (en) * 2018-04-23 2022-10-25 Qualcomm Incorporated Optimized observed time difference of arrival (OTDOA) in licensed-assisted access (LAA)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273506A1 (en) * 2009-04-27 2010-10-28 Interdigital Patent Holdings, Inc. Reference signals for positioning measurements
WO2014029242A1 (zh) * 2012-08-20 2014-02-27 华为技术有限公司 终端定位方法、基站及用户设备
WO2014066262A1 (en) * 2012-10-23 2014-05-01 Qualcomm Incorporated Enhanced positioning reference signal transmission in wireless communication networks
CN104469931A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT ET AL.: "Text Proposal on Support of PRS and PRS-like Signals Operation on Unlicensed Band", 3GPP TSG RAN WG1 MEETING #81 R1-152673, 29 May 2015 (2015-05-29), XP050972752 *

Also Published As

Publication number Publication date
EP3783974B1 (en) 2023-10-11
CN114245457A (zh) 2022-03-25
US20210072340A1 (en) 2021-03-11
CN110730501B (zh) 2021-12-28
US11914060B2 (en) 2024-02-27
EP3783974A1 (en) 2021-02-24
CN110730501A (zh) 2020-01-24
EP3783974A4 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2020015610A1 (zh) 定位方法、装置及设备
US20220321293A1 (en) Signal communication method and device
WO2020164345A1 (zh) 信号传输方法与装置
WO2020164334A1 (zh) 信号传输的方法与装置
US11412400B2 (en) Method for positioning reference design
WO2021097598A1 (zh) 侧行定位方法和装置
JP7044886B2 (ja) Msg3送信のための時間リソース割り当てシグナリングメカニズム
US10440500B2 (en) System and method for configuring and managing on-demand positioning reference signals
TWI731395B (zh) 定位方法、裝置、電腦設備及電腦存儲介質
WO2019223659A1 (zh) 一种信号传输方法及装置
US11452065B2 (en) Positioning method and apparatus
TWI696366B (zh) 傳輸控制通道的方法、網路設備和終端設備
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
WO2021087889A1 (zh) 一种配置cli测量的方法及通信装置
KR101762553B1 (ko) 모바일 디바이스의 위치를 추정하는 장치, 시스템 및 방법
WO2022001973A1 (en) Apparatus and method of wireless communication
WO2022147735A1 (zh) 确定发送功率的方法及装置
US10823829B2 (en) Determining distances
US20240023058A1 (en) Communication method and apparatus
US20240129089A1 (en) Positioning method and apparatus, and related device
US20240163829A1 (en) Aperiodic and Semi-Persistent Positioning Reference Signal and Measurement Gaps
WO2022198591A1 (zh) 一种非周期定位参考信号的测量上报方法和装置
US20230021510A1 (en) Apparatus and method of wireless communication
WO2024000586A1 (zh) 无线通信方法、装置、设备、存储介质、芯片及程序产品
WO2023125656A1 (zh) 多端口定位参考信号配置方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019837737

Country of ref document: EP

Effective date: 20201120

NENP Non-entry into the national phase

Ref country code: DE