WO2021087889A1 - 一种配置cli测量的方法及通信装置 - Google Patents

一种配置cli测量的方法及通信装置 Download PDF

Info

Publication number
WO2021087889A1
WO2021087889A1 PCT/CN2019/116348 CN2019116348W WO2021087889A1 WO 2021087889 A1 WO2021087889 A1 WO 2021087889A1 CN 2019116348 W CN2019116348 W CN 2019116348W WO 2021087889 A1 WO2021087889 A1 WO 2021087889A1
Authority
WO
WIPO (PCT)
Prior art keywords
cli
network device
terminal device
message
measured
Prior art date
Application number
PCT/CN2019/116348
Other languages
English (en)
French (fr)
Inventor
谢曦
魏冬冬
常俊仁
张向东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19951724.4A priority Critical patent/EP4044651A4/en
Priority to PCT/CN2019/116348 priority patent/WO2021087889A1/zh
Priority to CN201980101907.8A priority patent/CN114616854A/zh
Priority to BR112022008712A priority patent/BR112022008712A2/pt
Publication of WO2021087889A1 publication Critical patent/WO2021087889A1/zh
Priority to US17/737,740 priority patent/US20220263641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application relates to the field of communication technology, and in particular to a method and communication device for configuring CLI measurements.
  • Time division duplexing is a duplex mode that realizes uplink and downlink transmission through time division.
  • TDD communication mode the reception and transmission in the communication system are carried out at different times on the same frequency.
  • TDD uplink/downlink ratio TDD UL/DL pattern
  • the transmitted data in one cell may interfere with the received data in another cell. This interference is called cross-link interference (cross link interference, CLI).
  • UE 1 user equipment (UE) 1 is sending uplink (UL) data
  • UE2 is receiving downlink (DL) data
  • the serving cell of UE1 is cell1, which corresponds to serving base station 1
  • the serving cell of UE2 is cell2, which corresponds to serving base station 2
  • cell 1 and cell 2 are two adjacent cells, and UE 1 and UE 2 are located at the edge of their respective serving cells.
  • the distance between UE1 and UE2 is small.
  • the UL data transmission of UE 1 and the DL data reception of UE 2 are performed at the same time
  • the UL data transmission of UE 1 may generate CLI for the DL data reception of UE 2.
  • the transmission of the base station 2 may generate a CLI for the reception of the base station 1.
  • This application provides a method and communication device for configuring CLI measurement, which are used to optimize CLI measurement.
  • the present application provides a method for configuring CLI measurement.
  • the method includes a first network device receiving a first message from a second network device, and the first network device configures the CLI measurement for the terminal device according to the first message.
  • a message is used to indicate the information of the cross-link interference CLI measurement.
  • the method may be executed by a communication device, and the communication device may be a first network device, or a module in the first network device, such as a chip.
  • the first network device and the second network device negotiate the CLI measurement information of the CLI configured for the terminal device, so that the first network device and the second network device can reasonably configure the CLI measurement of the terminal device.
  • the measured information can help prevent the first network device and the second network device to configure CLI measurements for the same terminal device at the same time, exceeding the limit of the CLI measurement that the terminal device needs to measure, so that the terminal device can be connected to the first network device at the same time.
  • the CLI measurement can still be performed normally.
  • the information that can be measured by CLI can be divided into the following two situations.
  • Case 1 The information measured by the CLI includes the number of resources measured by the CLI.
  • the first message is used to indicate the number of CLI-measured resources configured by the second network device for the terminal device; or, the first message is used to indicate that the first network device is allowed to configure the CLI-measured resource for the terminal device.
  • the maximum number or, the first message is used to indicate the number of resources measured by the CLI configured by the second network device for the terminal device in each unit time; or, the first message is used to indicate that the first network device is allowed to Configure the maximum number of resources measured by CLI for the terminal device within a unit time.
  • the first network device if it is determined that the number of resources measured by the CLI indicated by the first message does not meet the first threshold, the first network device sends a second message to the second network device; where the second message is used for Notifying the second network device to adjust the number of CLI-measured resources configured for the terminal device, or for notifying the second network device to adjust the number of resources that allow the first network device to configure the CLI measurement for the terminal device.
  • Sending the second message to the second network device through the first network device helps prevent the number of resources measured by the CLI indicated by the first message sent by the second network device to the first network device from being unreasonable, causing the first network device You cannot configure CLI measurements for end devices.
  • Case 2 The information measured by the CLI includes the configuration information of the resource measured by the CLI.
  • the first message is used to indicate the configuration information of the resource measured by the CLI that the second network device plans to configure for the terminal device.
  • the first network device may determine that the first network device and the second network device are terminal devices according to the first message and the configuration information of the resources measured by the CLI that the first network device plans to configure for the terminal device The total number of resources measured by the configured CLI; if the total number is greater than the second threshold, the first network device may adjust the configuration information of the resources that the first network device plans to configure for the terminal device.
  • the second threshold may be the maximum number of resources measured by the CLI; it may also be the maximum number of resources measured by the CLI supported by the terminal device; it may also be the maximum number of resources measured by the CLI in each unit time. Number; it can also be the maximum number of resources measured by the CLI in each unit time supported by the terminal device.
  • Adjusting the configuration information of the resource configured by the first network device for the terminal device through the first network device helps to prevent the configuration information of the resource measured by the CLI of the two network devices from exceeding the limit of the CLI measurement of the terminal device when the configuration information of the resource measured by the CLI is configured by the two network devices at the same time .
  • the first message may also be used to instruct the second network device to configure CLI measurements for the terminal device; or, the first message may be used to indicate that the first network device is allowed to configure CLI measurements for the terminal device; or, the first message indicates that the first network device is allowed to configure CLI measurements for the terminal device.
  • the network device configures the CLI measurement for the terminal device. That is, only one of the first network device and the second network device configures the CLI measurement for the terminal device.
  • the terminal device Through the negotiation between the first network device and the second network device, it can be realized that only one network device configures the CLI measurement for the terminal device. That is, the terminal device will only receive a network device to configure CLI measurement for it. In this way, it helps to avoid the CLI measurement limit that the terminal device needs to be measured when the first network device and the second network device configure the CLI measurement for the terminal device at the same time, so that the terminal device can be connected to the first network device and the second network device at the same time. In the scenario where the network device is connected, the terminal device can still perform the CLI measurement normally.
  • only one network device configures the CLI measurement for the terminal device within the preset time period.
  • the first network device sends a third message to the second network device, and the third message is used to query whether the first network device is allowed to configure CLI measurements for the terminal device.
  • the first network device When the first network device needs to configure CLI measurement for the terminal device, the first network device actively sends the third message to the second network device through the first network device, without waiting for the second network device to send the first message.
  • the resource includes a sounding reference signal (SRS) resource or a received signal strength indicator (RSSI) resource.
  • SRS sounding reference signal
  • RSSI received signal strength indicator
  • the present application provides a method for configuring CLI measurement.
  • the method includes a second network device determining a first message, the second network device sending a first message to the first network device, and the first message is used to indicate the CLI measurement information.
  • the method may be executed by a communication device, and the communication device may be a second network device, or a module in the second network device, such as a chip.
  • the information measured by the CLI includes the number of resources measured by the CLI.
  • the first message is used to indicate the number of CLI-measured resources configured by the second network device for the terminal device; alternatively, the first message is used to indicate the maximum number of resources that the first network device is allowed to configure CLI-measured for the terminal device.
  • the first message is used to indicate the number of resources measured by the CLI configured for the terminal device by the second network device in each unit time; or, the first message is used to indicate that the first network device is allowed to work in each unit Configure the maximum number of resources measured by CLI for the terminal device within a time.
  • the second network device may receive a second message from the first network device, and adjust the number of resources measured by the CLI configured by the second network device for the terminal device according to the second message; or Second, the network device adjusts the number of resources that the first network device is allowed to configure CLI measurement for the terminal device according to the second message.
  • Adjusting the number of resources measured by the CLI configured by the first network device for the terminal device through the second network device, or adjusting the number of resources measured by the CLI configured by the second network device for the terminal device helps avoid the second network device
  • the number of resources measured by the CLI indicated by the first message sent to the first network device is unreasonable, resulting in that the first network device cannot configure the CLI measurement for the terminal device.
  • the information measured by the CLI includes configuration information of the resource measured by the CLI, and here, the first message is used to indicate the configuration information of the resource measured by the CLI that the second network device plans to configure for the terminal device.
  • the second network device receives a third message from the first network device, and the third message is used to query whether the first network device is allowed to configure CLI measurements for the terminal device. In this way, the first network device can actively inquire whether the terminal device can be configured for CLI measurement.
  • the present application provides a method for configuring CLI measurement.
  • the method includes a first network device sending a fourth message to a second network device, where the fourth message is used to notify the second network device that the first network device starts Configure CLI measurement, or notify the second network device that the terminal device is configured for CLI measurement by the first network device, or notify the second network device that it is prohibited to configure CLI measurement for the terminal device, and the first network device configures CLI measurement for the terminal device ,
  • the first network device sends a fifth message to the second network device, and the fifth message is used to instruct the first network device to complete the configured CLI measurement.
  • the first network device sends the fourth message to the second network device, so that only one first network device can configure the CLI measurement for the terminal device.
  • the terminal device will only receive a network device to configure CLI measurements for it. In this way, it helps to avoid the CLI measurement limit that the terminal device needs to be measured when the first network device and the second network device configure the CLI measurement for the terminal device at the same time, so that the terminal device can be connected to the first network device and the second network device at the same time. In the scenario where the network device is connected, the terminal device can still perform the CLI measurement normally. Further, in this solution, there is no need to negotiate CLI measurements between the first network device and the second network device, thereby helping to reduce the interaction between the first network device and the second network device.
  • this application provides a method for configuring CLI measurements.
  • the method includes a terminal device sending first capability information to a first network device, and sending second capability information to a second network device, where the first capability information indicates that the terminal device is The second capability information is determined by the first network device, and the second capability information is determined by the terminal device for the second network device.
  • the first network device can configure CLI measurements for the terminal device according to the first capability information.
  • the second network device may configure CLI measurements for the terminal device according to the second capability information.
  • the first network device and the second network device may respectively configure the number of resources measured by the CLI for the terminal device, or configure the configuration information measured by the CLI for the terminal device respectively.
  • the sum of the first capability information and the second capability information does not exceed the total capability information supported by the terminal device.
  • the first capability information includes the first number of CLI-measured resources determined for the first network device
  • the second capability information includes the second number of CLI-measured resources determined for the second network device. The number, where the sum of the first number and the second number is less than or equal to the maximum number of CLI-measured resources supported by the terminal device.
  • the first capability information includes the third number of resources measured by the CLI in each unit time determined for the first network device, and the second capability information includes the third number determined for the second network device.
  • the fourth number of resources measured by the CLI in each unit time; the sum of the third number and the fourth number is less than or equal to the maximum number of resources measured by the CLI in each unit time supported by the terminal device.
  • the resources include sounding reference signal SRS resources or received signal strength indicator RSSI resources.
  • the present application provides a communication device that implements the first network device in the first aspect or the second network device in the second aspect, or the first network device in the third aspect, or The function of the terminal equipment in the fourth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the communication device may be a network device, or a component that can be used in a network device, such as a chip or a chip system or a circuit
  • the communication device may include a transceiver and a processor.
  • the processor may be configured to support the communication device to perform corresponding functions of the network device shown above, and the transceiver is used to support communication between the communication device and other network devices, terminal devices, and the like.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may further include a memory, and the memory may be coupled with the processor, which stores the necessary program instructions and data of the communication device.
  • the communication device may be a terminal device, or a component that can be used in a terminal device, such as a chip or a chip system or a circuit
  • the communication device may include a transceiver and a processor, and further.
  • the processor may be configured to support the communication device to perform the corresponding functions of the terminal device shown above, and the transceiver is used to support the communication between the communication device and the network device and other terminal devices.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may further include a memory, and the memory may be coupled with the processor, which stores the necessary program instructions and data of the communication device.
  • the present application provides a communication device for implementing any one of the above-mentioned first aspect or the first aspect, or for implementing any one of the above-mentioned second aspect or the second aspect, or Used to implement any one of the above-mentioned third aspect or the third aspect, or used to implement any one of the above-mentioned fourth aspect or the fourth aspect, including corresponding functional modules, respectively used to implement the above methods A step of.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device may be a network device, and the communication device may include a processing unit and a transceiving unit. These units can perform the corresponding functions of the first network device or the second network device in the foregoing method example. Please refer to the detailed description in the method example, which will not be repeated here.
  • the communication device may be a terminal device, and the communication device may include a processing unit and a transceiving unit. These units can perform the corresponding functions of the terminal device in the above method example. For details, please refer to the detailed description in the method example. Description, I won’t repeat it here.
  • the present application provides a communication system, which includes a terminal device, a first network device, and a second network device.
  • the first network device may be used to execute any method in the first aspect or the first aspect
  • the second network device may be used to execute any method in the second aspect or the second aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program or instruction.
  • the communication device executes the first aspect or the first aspect described above.
  • the method in any possible implementation manner of the first aspect, or the communication device is caused to execute the method in the second aspect or any possible implementation manner of the second aspect, or the communication device is caused to execute the third aspect or any of the third aspects
  • the method in a possible implementation manner, or the communication device is caused to execute the fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • this application provides a computer program product, the computer program product comprising a computer program or instruction, when the computer program or instruction is executed by a communication device, the first aspect or any possible implementation manner of the first aspect is implemented
  • the method in the above-mentioned second aspect or any possible implementation of the second aspect or causes the communication device to execute the third aspect or the method in any possible implementation of the third aspect, or causes the The communication device executes the fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • Figure 1 is a schematic diagram of a network architecture that may cause CLI interference in the prior art
  • FIG. 2 is a schematic diagram of a communication system architecture provided by this application.
  • FIG. 3 is a schematic diagram of a communication system architecture in an application scenario provided by this application.
  • FIG. 4a is a schematic diagram of an EN-DC architecture provided by this application.
  • Figure 4b is a schematic diagram of an NGEN-DC architecture provided by this application.
  • Figure 4c is a schematic diagram of an NE-DC architecture provided by this application.
  • Figure 4d is a schematic diagram of an NR-DC architecture provided by this application.
  • FIG. 5 is a schematic flowchart of a method for configuring CLI measurement provided by this application.
  • FIG. 6 is a schematic flowchart of another method for configuring CLI measurement provided by this application.
  • FIG. 7 is a schematic flowchart of another method for configuring CLI measurement provided by this application.
  • FIG. 8 is a schematic flowchart of another method for configuring CLI measurement provided by this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 11 is a schematic structural diagram of a network device provided by this application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 2 is a schematic diagram of the architecture of the applicable communication system of the present application.
  • the communication system may include a network device 201, a terminal device 202, and a core network device 203.
  • the terminal equipment communicates with the network equipment in a wireless manner
  • the network equipment communicates with the core network equipment in a wireless or wired manner
  • the terminal equipment communicates with each other in a wireless manner, for example, using a sidelink (SL) air interface Communication.
  • the core network equipment and the network equipment can be separate and different physical equipment, or they can integrate the functions of the core network equipment and the logical functions of the network equipment on the same physical device, or it can be a physical device that integrates part of the core network.
  • the terminal device can be a fixed location, or it can be movable.
  • Fig. 2 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 2. This application does not limit the number of core network equipment, network equipment, and terminal equipment included in the communication system.
  • Network equipment is the access equipment that terminal equipment accesses to the communication system through wireless means, which can be base station (base station), evolved base station (evolved NodeB, eNodeB), transmission reception point (TRP), 5G
  • base station base station
  • evolved base station evolved NodeB, eNodeB
  • TRP transmission reception point
  • gNB next generation NodeB
  • the unit for example, may be a centralized unit (CU) or a distributed unit (DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the terminal device may also be referred to as a terminal, user equipment (UE), mobile station, mobile terminal, and so on.
  • Terminal equipment can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and smart grids Wireless terminals in the Internet, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on. This application does not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites. This application does not limit the application scenarios of network equipment and terminal equipment.
  • Network equipment and terminal equipment can communicate through licensed spectrum, or communicate through unlicensed spectrum, or communicate through licensed spectrum and unlicensed spectrum at the same time.
  • Network equipment and terminal equipment can communicate through a frequency spectrum below 6 GHz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, and communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time. This application does not limit the spectrum resources used between the network equipment and the terminal equipment.
  • MR-DC multi-radio dual connectivity
  • MR-DC refers to a multiple-transmit/multi-receive terminal device simultaneously using resources (such as time-frequency resources) provided by two nodes (such as network equipment).
  • resources such as time-frequency resources
  • a terminal device is connected to two nodes (such as network devices) at the same time.
  • MN master node
  • SN secondary node
  • MN and SN are connected through a network interface.
  • MR-DC Based on the type of MN, the type of SN, and the core network to which the MN is connected, MR-DC can be divided into the following four types.
  • E-UTRA-NR dual connectivity (EN-DC) (or called E-UTRA-NR DC) between the evolved universal terrestrial radio access network and NR.
  • LTE eNB and NR en-gNB can be connected to the mobility management network element (mobility management entity, MME) or service gateway (service gateway) in the core network of the fourth generation mobile communication technology (the 4th Generation mobile communication technology, 4G) through the S1 interface.
  • MME mobility management entity
  • service gateway service gateway
  • SGW fourth generation mobile communication technology
  • LTE eNB and NR gNB can be connected through the X2 interface.
  • Type 2 Next generation-radio access network E-UTRA-NR dual connectivity (NGEN-DC).
  • the primary node is the ng-eNB
  • the secondary node is NR gNB.
  • the ng-eNB can also be called an anchor base station.
  • the ng-eNB and NR gNB are connected to the mobility management function (access and mobility management function, AMF) network element or user plane function (UPF) of the fifth generation (5rd-Generation, 5G) core network through the NG interface
  • AMF access and mobility management function
  • UPF user plane function
  • 5G fifth generation
  • Network elements, NR gNB and ng-eNB can be connected through the Xn interface.
  • Type three, NE-DC (or called NR-E-UTRA DC).
  • FIG. 4c a schematic diagram of an NE-DC architecture provided by this application.
  • the primary node in this architecture is NR gNB, and the secondary node is ng-eNB.
  • the NR gNB and the ng-eNB are connected to the AMF network element or the UPF network element of the 5G core network through the NG interface, and the NR gNB and the ng-eNB can be connected through the Xn interface.
  • Type four, NR-DC (or called NR-NR DC).
  • FIG. 4d it is a schematic diagram of an NR-DC architecture provided in this application.
  • the primary node is NR gNB
  • the secondary node is NR gNB.
  • NR gNB is connected to the AMF network element or UPF network element of the 5G core network through the NG interface, and the NR gNB and NR gNB can be connected through the Xn interface.
  • RSRP Reference signal received power
  • RSRP refers to the power value of the reference signal received on all resource elements (resource elements, RE) carrying the reference signal in a unit time (for example, a certain symbol).
  • RSSI refers to the total power value of the received signal, including not only the power value of the useful signal or reference signal, but also the power value of interference and thermal noise.
  • cross link interference cross link interference
  • the network device configures the CLI measurement for the terminal device, the terminal device measures the configured reference signal (such as an interference source), and then reports the CLI measurement result (such as the intensity of the interference) to the network device.
  • the network equipment can coordinate the scheduling based on the CLI measurement results reported by the terminal equipment to avoid or reduce the CLI as much as possible.
  • CLI measurements can be divided into the following two types.
  • CLI SRS-RSRP measurement In this type of CLI measurement, the reference signal is the SRS resource.
  • the terminal device measures the SRS resources sent by one or more interfering terminal devices (ie, aggressor terminal devices), and obtains the RSRP results of each SRS resource, that is, the terminal device can separately measure the interference intensity of each interference source.
  • CLI RSSI measurement In this type of CLI measurement, the reference signal is the RSSI resource.
  • the terminal device measures the total received power value on the configured RSSI resource.
  • the network equipment judges the overall interference situation of the terminal equipment through the total received power value measured by the terminal equipment.
  • the CLI measurement In order to ensure that the CLI measurement itself does not bring a greater burden to the terminal device, some restrictions are defined for the CLI measurement, which can be divided into the following two aspects: a) The total number of CLI measurement resources that the terminal device needs to measure. For example, the total number of CLI SRS resources that the terminal device needs to measure is 32, that is, the maximum number of CLI SRS resources that the terminal device needs to measure is 32. For another example, the total number of CLI RSSI resources that the terminal device needs to measure is 64, that is, the maximum number of CLI RSSI resources that the terminal device needs to measure is 64. b) The number of CLI-measured resources that the terminal device needs to measure in a slot. For example, the maximum number of CLI SRS resources that a terminal device needs to measure in a time slot is 8.
  • one terminal device is connected to two network devices at the same time, that is, one terminal device is connected to the MN and the SN.
  • the MN and SN configure the CLI measurement for the terminal device at the same time, it may happen that the CLI measurement configured by the MN and SN for the terminal device exceeds the specified CLI measurement limit.
  • the total number of SRS resources that the terminal device needs to measure is 32
  • the CLI measurement configured by the MN for the terminal device includes 20 SRS resources
  • the SN also configures the CLI measurement for the terminal device at the same time
  • the configured CLI measurement includes 15 SRS resources.
  • the method for configuring CLI measurement can be applied to the network architecture shown in any one of the above-mentioned figures 2 to 4d.
  • the first network device may be the MN in FIG. 3 above, and the second network device may be the SN in FIG. 3 above.
  • the first network device may be the LTE eNB in FIG. 4a
  • the second network device may be the NR gNB in FIG. 4a; or the first network device may be the ng-eNB in FIG. 4b.
  • the second network device can be the NR gNB in Fig. 4b; or the first network device is the NR gNB in Fig.
  • the second network device is the ng-eNB in Fig. 4c; or the first network device is the ng-eNB in Fig. 4d.
  • the NR gNB in Figure 4d, and the second network device is another NR gNB in Figure 4d above.
  • the first network device may be the SN in FIG. 3 above, and the second network device may be the MN in FIG. 3 above.
  • the first network device may be the NR gNB in FIG. 4a, and the second network device may be the LTE eNB in FIG. 4a; or the first network device may be the NR gNB in FIG. 4b, and the second network device may be the NR gNB in FIG. 4b.
  • the network device may be the ng-eNB in Fig. 4b; or the first network device is the ng-eNB in Fig. 4c, and the second network device is the NR gNB in Fig. 4c; or the first network device is the ng-eNB in Fig. 4d.
  • the NR gNB in Figure 4d, and the second network device is another NR gNB in Figure 4d above.
  • the terminal device may be the terminal device 201 shown in FIG. 2 described above, or the terminal device shown in FIG. 3 described above.
  • FIG. 5 is a schematic flowchart of a method for configuring CLI measurement provided by this application. The method includes the following steps:
  • Step 501 The second network device sends a first message to the first network device, where the first message is used to indicate CLI measurement information.
  • the first network device receives the first message from the second network device.
  • the information that can be measured according to the CLI includes the number of resources measured by the CLI and configuration information for the CLI measurement.
  • the following is an example in which the information measured by the CLI is the number of resources measured by the CLI and the information measured by the CLI is the configuration information measured by the CLI.
  • Case 1 The information measured by the CLI includes the number of resources measured by the CLI.
  • the resources measured by the CLI include time-frequency resources.
  • the resources measured by CLI are CLI SRS resources or CLI-RSSI resources.
  • the first message may be used to indicate the number of resources measured by the CLI configured by the second network device for the terminal device.
  • the second network device can notify the first network device of the number of CLI-measured resources configured by the second network device for the terminal device.
  • the first message may be used to indicate the maximum number of resources that the first network device is allowed to configure CLI measurement for the terminal device. That is, the second network device may notify the first network device of the number of resources that the first network device is allowed to configure the CLI measurement for the terminal device.
  • the first message may be used to indicate the number of resources measured by the CLI configured for the terminal device by the second network device in a unit time. That is, the second network device may notify the first network device of the number of CLI-measured resources configured for the terminal device by the second network device in each unit time.
  • the unit time may be a slot, a symbol, a subframe, a half frame, or a frame.
  • the first message may be used to indicate the maximum number of resources that the first network device is allowed to configure CLI measurement for the terminal device within a unit time. That is, the second network device may notify the first network device of the maximum number of resources that the first network device is allowed to configure for the terminal device in the CLI measurement per unit time.
  • the unit time can be a time slot.
  • the information measured by the CLI includes configuration information (information element, IE) of the resource measured by the CLI.
  • the configuration information of the resource measured by the CLI includes the time domain configuration information of the resource, the frequency domain configuration information of the resource, the period, the identifier of the resource, and the like.
  • the first message is used to indicate the configuration information of the resource measured by the CLI that the second network device plans to configure for the terminal device.
  • the type of the first message sent by the second network device to the first network device may be an X2/Xn message.
  • the X2/Xn message may be a CG-ConfigInfo message; when the second network device is SN and the first network device is MN, X2 The /Xn message may be a CG-Config message.
  • the first network device may configure CLI measurement for the terminal device according to the first message.
  • the first network device may send the message to the second network device.
  • Send a second message (see step 503 in FIG. 2), where the second message is used to notify the second network device to adjust the number of CLI-measured resources configured for the terminal device, or the second message is used to notify the second
  • the network device adjustment allows the first network device to configure the number of resources measured by the CLI for the terminal device.
  • the first message is used to indicate the number of resources measured by the CLI configured by the second network device for the terminal device.
  • the first network device may configure the terminal device with the number of CLI-measured resources based on the first message and the total number of CLI-measured resources that the terminal device needs to measure.
  • the first network device may send a second message to the second network device, and the second message is used to notify the second network device to adjust the number of resources measured by the CLI configured for the terminal device.
  • the second network device adjusts the number of resources measured by the CLI configured by the second network device for the terminal device.
  • the second network device may resend the first message to the first network device.
  • the first message is used to indicate the second network
  • the number of resources measured by the CLI configured by the device for the terminal device is adjusted by the second network device.
  • the first message is used to indicate that the first network device is allowed to configure the maximum number of resources measured by the CLI for the terminal device.
  • the first network device may determine the maximum number of CLI-measured resources configured for the terminal device according to the first message.
  • the first message is used to indicate that the number of CLI SRS resources that the first network device is allowed to configure for the terminal device is 10, and the number of CLI SRS resources that the first network device can configure for the terminal device is less than or equal to 10.
  • the first message is used to indicate that the number of CLI RSSI resources that the first network device is allowed to configure for the terminal device is 15, and the number of CLI RSSI resources that the first network device can configure for the terminal device is less than or equal to 15.
  • the terminal device is normally configured with the resources measured by the CLI.
  • the first network device sends a second message to the second network device.
  • the second message is used to notify the second network device to adjust the CLI measurement that allows the first network device to configure the resource for the terminal device.
  • Maximum number In a possible implementation manner, the second network device may adjust the maximum number of resources measured by the CLI that the first network device is allowed to configure for the terminal device based on the second message.
  • the second network device may resend the first message to the first network device.
  • the first message is used The maximum number of resources measured by the CLI that the first network device is allowed to configure for the terminal device as instructed is adjusted by the second network device.
  • the first message may be used to indicate the number of CLI-measured resources configured by the second network device for the terminal device in each unit time.
  • a time slot is taken as an example for the unit time.
  • the first network device may configure the terminal device with the number of CLI-measured resources based on the first message and the maximum number of CLI-measured resources that the terminal device needs to measure in a slot. number.
  • the first message is used to indicate that the number of CLI SRS resources that the second network device configures for the terminal device in a time slot is 6, and the first network device can be based on the CLI SRS resources that the terminal device needs to measure in a time slot
  • the first network device can send a second message to the second network device.
  • the second message is used to notify the second network device to adjust to the terminal device in each unit of time.
  • the number of resources measured by the configured CLI is measured by the configured CLI.
  • the second network device adjusts the number of CLI-measured resources configured for the terminal device by the second network device in each unit time.
  • the second network device may resend the first message to the first network device.
  • the first message is used The number of resources measured by the CLI configured for the terminal device by the indicated second network device in each unit time is adjusted by the second network device.
  • the first message may be used to indicate the maximum number of resources that the first network device is allowed to configure CLI measurement for the terminal device in each unit time.
  • a time slot is taken as an example for the unit time.
  • the first network device may configure the number of CLI-measured resources for the terminal device according to the first message and the maximum number of CLI-measured resources that the terminal device needs to measure in a time slot.
  • the first message is used to indicate that the number of CLI SRS resources that the first network device is allowed to configure for the terminal device in a time slot is 6, and the first network device determines that the configuration of the terminal device in a time slot is less than or equal to 6 CLI SRS resources.
  • the first network device sends a second message to the second network device.
  • the second message is used to notify the second network device to adjust to allow the first The maximum number of resources measured by the CLI configured by the network device for the terminal device.
  • the second network device may adjust the maximum number of resources measured by the CLI that the first network device is allowed to configure for the terminal device in each unit time based on the second message.
  • the second network device may resend the first message to the first network device.
  • the first message is used to indicate that the maximum number of resources that the first network device is allowed to configure for the terminal device to be measured by the CLI in each unit time is adjusted by the second network device.
  • the first network device determines the CLI measurement resources that the second network device plans to configure for the terminal device according to the configuration information of the CLI-measured resources that the second network device plans to configure for the terminal device After that, the first network device determines the sum of the number of resources measured by the CLI that the first network device plans to configure for the terminal device and the number of resources measured by the CLI that the second network device plans to configure for the terminal device. If this If the sum is greater than the second threshold, the first network device needs to adjust the configuration information of the resource measured by the CLI that the first network device plans to configure for the terminal device.
  • the second threshold may be the maximum number of resources measured by the CLI.
  • the total number of CLI SRS resources that the terminal device needs to measure is 32.
  • the total number of CLI RSSI resources that the terminal device needs to measure is 64.
  • the second threshold may also be the maximum number of resources measured by the CLI in a unit time.
  • the maximum number of CLI SRS resources that a terminal device needs to measure in a time slot is 8; the second threshold may also be supported by the terminal device.
  • the maximum number of resources measured by the CLI; the second threshold may also be the maximum number of resources measured by the CLI in a unit time supported by the terminal device.
  • the first network device and the second network device negotiate the CLI measurement information configured for the terminal device respectively, so that the first network device and the second network device are both reasonably
  • the terminal device is configured with the CLI measurement information measured by the CLI, which helps to prevent the first network device and the second network device from configuring the CLI measurement for the terminal device at the same time, exceeding the limit of the CLI measurement that the terminal device needs to measure.
  • the terminal device can still perform CLI measurements normally.
  • FIG. 6 it is a schematic flowchart of another method for configuring CLI measurement provided by this application. The method includes the following steps:
  • Step 601 The second network device sends a first message to the first network device.
  • the first network device receives the first message from the second network device.
  • the first message is used to instruct the second network device to configure CLI measurements for the terminal device. That is, the first message is used to instruct the second network device to configure CLI measurement for the terminal device, and the first network device cannot configure CLI measurement for the terminal device.
  • the first message is used to indicate that the first network device is allowed to configure CLI measurements for the terminal device. It can also be understood that the first message is used to indicate that the first network device is allowed to configure CLI measurements for the terminal device, and the second network device is not allowed to configure CLI measurements for the terminal device.
  • the first message is used to instruct the first network device to configure CLI measurement for the terminal device. That is, the first message is used to instruct the first network device to configure CLI measurement for the terminal device, and the second network device does not configure CLI measurement for the terminal device.
  • Step 602 The first network device determines whether to configure CLI measurement for the terminal device according to the first message.
  • the first message is used to instruct the second network device to configure CLI measurements for the terminal device.
  • the first network device can determine that the second network device configures CLI measurements for the terminal device according to the first message, and the first network device determines that the first network device cannot configure CLI measurements for the terminal device.
  • the first message is used to indicate that the first network device is allowed to configure CLI measurements for the terminal device.
  • the first network device may determine to allow the first network device to configure CLI measurements for the terminal device according to the first message.
  • the first network device may configure CLI measurement for the terminal device, or it may not configure CLI measurement for the terminal device. That is to say, in this case 2, whether the first network device configures CLI measurement for the terminal device can be determined by the first network device itself.
  • Case 3 The first message is used to instruct the first network device to configure CLI measurement for the terminal device.
  • the second network device can directly instruct the first network device to configure CLI measurements for the terminal device, that is, instruct the first network device to configure CLI measurements for the terminal device.
  • the first message may also indicate that only one network device configures the terminal device for CLI measurement within a preset time period corresponding to the CLI measurement. That is, the first message may indicate that the first network device or the second network device configures the CLI measurement for the terminal device within the preset time period.
  • the first network device may also actively send a third message to the second network device (see step 603 in FIG. 6), and the third message is used to query whether the first network device is allowed to configure CLI measurements for the terminal device.
  • the second network device After receiving the third message, the second network device sends a first message to the first network device to notify the first network device whether it is allowed to configure CLI measurements for the terminal device.
  • the first network device actively sends the third message to the second network device without waiting for the second network device to send the first message.
  • configuring CLI measurement for a terminal device includes configuring the measurement object configuration information for the CLI measurement (for example, the configuration information of the resource measured by the CLI), the reporting configuration information for the CLI measurement, and the configuration of the measurement quantity for the CLI measurement.
  • Information ie filtering configuration
  • step 601 and step 602 it can be realized that only one network device configures the CLI measurement for the terminal device.
  • the terminal device will only receive a network device to configure CLI measurements for it. In this way, it helps to avoid the CLI measurement limit that the terminal device needs to be measured when the first network device and the second network device configure the CLI measurement for the terminal device at the same time, so that the terminal device can be connected to the first network device and the second network device at the same time. In the scenario where the network device is connected, the terminal device can still perform the CLI measurement normally.
  • the terminal device changes from only one network device (second network device) serving it to two network devices (first network device and second network device) serving it, you can change
  • the second network device in FIG. 6 is used as the MN, and the first network device is used as the SN.
  • FIG. 7 it is a schematic flowchart of another method for configuring CLI measurement provided by this application.
  • the method includes the following steps:
  • Step 701 The first network device sends a fourth message to the second network device.
  • the second network device receives the fourth message from the first network device.
  • the fourth message is used to notify the second network device that the first network device starts to configure CLI measurement; or the fourth message is used to notify the second network device that the terminal device is configured by the first network device to configure CLI measurement; or the fourth message It is used to notify the second network device that it is prohibited to configure CLI measurements for the terminal device.
  • Step 702 The first network device configures the CLI measurement for the terminal device.
  • the first network device may configure the terminal device with CLI measurement object configuration information (for example, the configuration information of the resource measured by the CLI), the report configuration information of the CLI measurement, and the configuration information of the measurement quantity measured by the CLI (that is, filter configuration information). Configuration).
  • CLI measurement object configuration information for example, the configuration information of the resource measured by the CLI
  • report configuration information of the CLI measurement for example, the report configuration information of the CLI measurement
  • configuration information of the measurement quantity measured by the CLI that is, filter configuration information. Configuration
  • Step 703 After completing the configured CLI measurement, the first network device sends a fifth message to the second network device. Correspondingly, the second network device receives the fifth message from the first network device.
  • the fifth message is used to instruct the first network device to complete the configured CLI measurement, or it can also be understood that the fifth message is used to notify the second network device of the CLI measurement that the terminal device is not currently configured. It should be understood that the CLI measurement that the first network device completes the configuration refers to after the first network device removes the CLI measurement configured for the terminal device.
  • the second network device may determine that the first network device is configuring CLI measurement for the terminal device. At this time, the second network device does not configure CLI measurement for the terminal device. After the second network device receives the fifth message, it can be determined that the first network device has completed the configured CLI measurement. At this time, the second network device can configure the CLI measurement for the terminal device.
  • step 701 and step 703 by sending the fourth message to the second network device by the first network device, it can be realized that only one first network device configures the CLI measurement for the terminal device.
  • the terminal device will only receive a network device to configure CLI measurements for it. In this way, it helps to avoid the CLI measurement limit that the terminal device needs to be measured when the first network device and the second network device configure the CLI measurement for the terminal device at the same time, so that the terminal device can be connected to the first network device and the second network device at the same time. In the scenario where the network device is connected, the terminal device can still perform the CLI measurement normally. Further, in this solution, there is no need to negotiate CLI measurements between the first network device and the second network device, thereby helping to reduce the interaction between the first network device and the second network device.
  • the terminal device can report the capability information of the terminal device to the network device.
  • the terminal device can be reasonably planned to be the capability information reported by the first network device and the second network device. Therefore, the CLI measurement configured by the first network device and the second network device for the terminal device will not exceed the total capacity of the terminal device.
  • FIG. 8 it is a schematic flowchart of another method for configuring CLI measurement provided by this application. The method includes the following steps:
  • Step 801 The terminal device sends first capability information to the first network device, where the first capability information is determined by the terminal device for the first network device. Correspondingly, the first network device receives the first capability information of the terminal device.
  • Step 802 The terminal device sends second capability information to the second network device, where the second capability information is determined by the terminal device for the second network device.
  • the second network device receives the second capability information from the terminal device.
  • the sum of the first capability information and the second capability information does not exceed the total capability information supported by the terminal device.
  • the first network device can configure CLI measurements for the terminal device according to the first capability information.
  • the second network device may configure CLI measurements for the terminal device according to the second capability information.
  • the first network device and the second network device may respectively configure the number of resources measured by the CLI for the terminal device, or configure the configuration information measured by the CLI for the terminal device respectively.
  • the first capability information includes the first number of CLI-measured resources determined for the first network device
  • the second capability information includes the second number of CLI-measured resources determined for the second network device. Number; where the sum of the first number and the second number is less than or equal to the maximum number of resources measured by the CLI supported by the terminal device.
  • the first capability information includes the first number of CLI SRS resources supported by the terminal device, and the second capability information includes the second number of CLI SRS resources supported by the terminal device.
  • the first capability information includes the first number of CLI RSSI resources supported by the terminal device, and the second capability information includes the second number of CLI SRS resources supported by the terminal device.
  • the first capability information reported by the terminal device to the MN is: the first number K1 of CLI SRS resources supported by the terminal device;
  • the second capability information reported by the terminal device to the SN is: CLI SRS resources supported by the terminal device The second number of K2; the total number of CLI SRS resources supported by the terminal device is K, where K1+K2 ⁇ K.
  • the first capability information reported by the terminal device to the MN is: the first number L1 of CLI RSSI resources supported by the terminal device;
  • the second capability information reported by the terminal device to the SN is: the second number of CLI RSSI resources supported by the terminal device The number is L2; the total number of CLI RSSI resources supported by the terminal device is L, where L1+L2 ⁇ L.
  • the first capability information includes the third number of resources measured by the CLI in each unit time determined for the first network device, and the second capability information includes the third number determined for the second network device.
  • the fourth number of resources measured by the CLI in each unit time; the sum of the third number and the fourth number is less than or equal to the maximum number of resources measured by the CLI in each unit time supported by the terminal device.
  • the first capability information includes the third number of CLI SRS resources supported by the terminal device in each unit time
  • the second capability information includes the fourth number of CLI SRS resources supported by the terminal device in each unit time. number.
  • the first capability information includes the third number of CLI RSSI resources supported by the terminal device in each unit time
  • the second capability information includes the fourth number of CLI RSSI resources supported by the terminal device in each unit time.
  • the first capability information reported by the terminal device to the MN is: the third number M1 of CLI SRS resources supported by the terminal device in each unit time; the second capability information reported by the terminal device to the SN is: terminal The fourth number of CLI SRS resources supported by the device in each unit time M2; the total number of CLI SRS resources supported by the terminal device in each unit time is M, where M1+M2 ⁇ M.
  • the first capability information reported by the terminal device to the MN is: the first number N1 of CLI RSSI resources supported by the terminal device in each unit time;
  • the second capability information reported by the terminal device to the SN is: the terminal device supports The second number of CLI RSSI resources N2 in each unit time; the total number of CLI RSSI resources supported by the terminal device is N, where N1+N2 ⁇ N.
  • step 801 can be performed first, and then step 802; or step 802 can be performed first, then step 801; or step 801 and step 801 can be performed at the same time. 802.
  • the terminal device reasonably allocates capability information to the first network device and the second network device according to the total capability information supported, and the sum of the first capability information and the second capability information does not exceed the terminal device The total capability information supported, so that the CLI measurement configured by the first network device for the terminal device based on the first capability information and the CLI measurement configured by the second network device for the terminal device based on the second capability information does not exceed that supported by the terminal device Total capability information. Furthermore, in a scenario where the terminal device is simultaneously connected to the first network device and the second network device, the terminal device can still perform CLI measurements normally. Further, in this solution, there is no need to negotiate CLI measurements between the first network device and the second network device, thereby helping to reduce the interaction between the first network device and the second network device.
  • the resources measured by CLI include SRS resources measured by CLI or RSSI resources measured by CLI.
  • the content indicated by the first message, the second message, the third message, the fourth message, and the fifth message in this application may be pre-appointed by the first network device and the second network device, or may be an agreement. Pre-defined, this application does not limit it.
  • these messages can be identified by an index, or can be identified by one or more bits of information, or they can be in any other possible form, which is not limited in this application.
  • the content indicated by the first message, the second message, the third message, the third message, the fourth message, and the fifth message may also be indicated by a certain field in the message.
  • the network device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 9 and 10 are schematic structural diagrams of possible communication devices provided by this application. These communication devices can be used to implement the functions of the first network device or the second network device or the terminal device in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
  • the communication device may be the network device 201 shown in FIG. 2, may also be a module (such as a chip) that applies the network device, or may also be the terminal device 202 shown in FIG. 2 described above.
  • the communication device 900 includes a processing unit 901 and a transceiver unit 902.
  • the communication device 900 is configured to implement the function of the first network device or the second network device in the method embodiment shown in FIG. 5, FIG. 6, FIG. 7 or FIG. 8.
  • the transceiving unit 902 is used to receive a first message from the second network device, and the first message is used to indicate cross-link interference CLI measurement information; the processing unit 901 is configured to configure CLI measurement for the terminal device according to the first message.
  • the processing unit 901 is used to determine the first message, and the first message is used to indicate cross-link interference CLI measurement information;
  • the unit 902 is configured to send a first message to the first network device.
  • processing unit 901 and the transceiver unit 902 can be obtained directly with reference to the relevant description in the method embodiment shown in FIG. 5, and will not be repeated here.
  • the transceiving unit 902 is used to send first capability information to the first network device and second capability information to the second network device,
  • the first capability information is determined by the processing unit 901 for the first network device
  • the second capability information is determined by the processing unit 901 for the second network device.
  • processing unit 901 and the transceiver unit 902 can be obtained directly with reference to the relevant description in the method embodiment shown in FIG. 5, and will not be repeated here.
  • processing unit 901 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiving unit 902 may be implemented by a transceiver or transceiver-related circuit components.
  • the present application also provides a communication device 1000.
  • the communication device 1000 may include a processor 1001 and a transceiver 1002.
  • the processor 1001 and the transceiver 1002 are coupled with each other.
  • the transceiver 1002 may be an interface circuit or an input/output interface.
  • the communication device 1000 may further include a memory 1003 for storing instructions executed by the processor 1001 or storing input data required by the processor 1001 to run the instructions or storing data generated after the processor 1001 runs the instructions.
  • the processor 1001 is used to perform the function of the above-mentioned processing unit 901
  • the transceiver 1002 is used to perform the function of the above-mentioned transceiving unit 902.
  • the first network device chip When the foregoing communication device is a chip applied to a first network device, the first network device chip implements the function of the first network device in the foregoing method embodiment.
  • the first network device chip receives a message from other modules (such as a radio frequency module or an antenna) in the first network device, and the message is sent by the second network device to the first network device; or, the first network device chip sends a message to the first network device.
  • Other modules such as radio frequency modules or antennas
  • a network device send a message, and the message is sent by the first network device to the second network device.
  • the second network device chip implements the function of the second network device in the foregoing method embodiment.
  • the second network device chip receives a message from another module (such as a radio frequency module or antenna) in the second network device, and the message is sent by the first network device to the second network device; or, the second network device chip sends a message to the second network device.
  • Other modules such as radio frequency modules or antennas
  • the network device send a message, and the message is sent by the second network device to the first network device.
  • FIG. 11 exemplarily shows a schematic structural diagram of a network device provided in this application.
  • the network device 1100 may include one or more radio frequency units, such as a remote radio unit (RRU) 1102 and one or more baseband units (BBU) 1101.
  • the RRU 1102 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 11021 and a radio frequency unit 11022.
  • the RRU1102 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the BBU1101 part can be called a processing unit, a processor, etc.
  • RRU1102 and BBU1101 can be physically set together; they can also be physically separated, that is, distributed network equipment.
  • the BBU 1101 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 901 in FIG. 9, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the above method embodiment, for example, configure the CLI measurement for the terminal device.
  • the BBU1101 can be composed of one or more single boards, and multiple single boards can jointly support a single access standard radio access network (such as LTE network), or can support different access standards separately Wireless access network (such as LTE network, 5G network or other network).
  • the BBU1101 also includes a memory 11012 and a processor 11011.
  • the memory 11012 is used to store necessary instructions and data.
  • the processor 11011 is configured to control the network device to perform necessary actions, for example, to control the network device to execute the method executed by the network device in any of the foregoing embodiments.
  • the memory 11012 and the processor 11011 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, there are necessary circuits on each board.
  • the antenna 11021 receives the uplink signal (including data, etc.) sent by the terminal device, and on the downlink, the antenna 11021 sends the downlink signal (including data and/or control information) to the terminal device.
  • the processor 11011 service data and signaling messages are processed, and these units are processed according to the radio access technology adopted by the radio access network (for example, LTE, NR, and access technologies of other evolved systems).
  • the processor 11011 is also used to control and manage the actions of the network device, and is used to execute the processing performed by the network device in the foregoing embodiment.
  • the processor 11011 is also used to support the first network device to perform the method performed by the first network device in FIG. 5, or is used to support the second network device to perform the method performed by the second network device in FIG. 5.
  • FIG. 11 only shows a simplified design of the network device.
  • the network equipment may include any number of antennas, memories, processors, radio frequency units, RRUs, BBUs, etc., and all network equipment that can implement the application are within the protection scope of the application.
  • the transceiving unit 1102 is configured to perform the sending and receiving operations on the first network device side in the method embodiment shown in FIG. 5, and the processing unit 1101 is configured to perform the first network device in the method embodiment shown in FIG. Other operations on the device side except for sending and receiving operations.
  • the transceiving unit 1102 is configured to perform the transceiving steps on the first network device side in the embodiment shown in FIG. 5, such as step 501.
  • the processing unit 1101 is configured to perform other operations on the side of the first network device in the embodiment shown in FIG. 5 except for the receiving and sending operations, such as step 502.
  • the present application also provides a communication device, which may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 12 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1210 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1210 as the sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1210 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1220 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 1210 is used to perform the sending operations on the terminal device side in step 801 and step 802 in FIG. 8, and/or the transceiving unit 1210 is also used to perform other terminal device side operations in this application.
  • the processing unit 1220 is configured to perform the determination of the first capability information for the first network device and the second capability information for the second network device in FIG. 8, and/or the processing unit 1220 is also configured to perform the terminal device side of this application Other processing steps.
  • the processor in this application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), and programmable read-only memory (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known Any other form of storage medium.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • Electrically Erasable Programmable Read-Only Memory Electrically Erasable Programmable Read-Only Memory
  • register hard disk
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer program or instruction is loaded and executed on the computer, the process or function of the embodiment of the present application is executed in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • Computer programs or instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • a computer program or instruction can be downloaded from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
  • the usable medium can be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it can also be an optical medium, such as a digital video disc (DVD); it can also be a semiconductor medium, such as a solid state drive (SSD). ).
  • “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated object before and after is an “or” relationship; in the formula of this application, the character “/” indicates that the associated object before and after is a kind of "division” Relationship.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Selective Calling Equipment (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种配置CLI测量的方法及通信装置,用于解决现有技术中两个网络设备同时为一个终端设备配置CLI测量时,可能会造成超过终端设备的CLI测量的限制。本申请中,第一网络设备接收来自第二网络设备的用于指示CLI测量的信息的第一消息,第一网络设备再根据该第一消息,为所述终端设备配置所述CLI测量。即通过第一网络设备和第二网络设备协商为终端设备配置的CLI测量的信息,有助于避免两个网络设备为该终端设备配置的CLI测量超过终端设备的CLI测量的限制。

Description

一种配置CLI测量的方法及通信装置 技术领域
本申请涉及通信技术领域,尤其涉及一种配置CLI测量的方法及通信装置。
背景技术
时分双工(time division duplexing,TDD)是通过时分来实现上行和下行传输的双工方式。在TDD通信模式下,通信系统中的接收和发送是在同一频率的不同时间内进行的。当相邻小区之间的TDD上下行配比(TDD UL/DL pattern)不同时,一个小区内的发送数据可能会对另一个小区内的接收数据产生干扰,这种干扰称为跨链路干扰(cross link interference,CLI)。
如图1所示,用户设备(user equipment,UE)1正在进行上行(uplink,UL)数据发送,UE2正在进行下行(downlink,DL)数据接收。假设UE1的服务小区为cell1,对应服务基站1;UE2的服务小区为cell2,对应服务基站2;cell 1和cell 2为相邻的两个小区,UE 1和UE 2分别位于各自的服务小区边缘处,且UE1和UE2之间的距离较小。从UE的角度来看:当UE 1的UL数据发送和UE 2的DL数据接收同时进行时,UE 1的UL数据发送可能会对UE 2的DL数据接收产生CLI。从基站的角度来看:当基站2的DL数据发送和基站1的UL数据接收同时进行时,基站2的发送可能会对基站1的接收产生CLI。
综上,如何减轻CLI对通信的影响,是目前需要解决的技术问题。
发明内容
本申请提供一种配置CLI测量的方法及通信装置,用于优化CLI测量。
第一方面,本申请提供一种配置CLI测量的方法,该方法包括第一网络设备接收来自第二网络设备的第一消息,第一网络设备根据第一消息,为终端设备配置CLI测量,第一消息用于指示跨链路干扰CLI测量的信息。
该方法可由通信装置执行,该通信装置可以是第一网络设备,或第一网络设备中的模块,例如芯片。
基于该方案,通过第一网络设备和第二网络设备协商各自为终端设备配置的CLI测量的CLI测量的信息,可使得第一网络设备和第二网络设备合理地为终端设备配置CLI测量的CLI测量的信息,从而有助于避免第一网络设备和第二网络设备同时为同一个终端设备配置CLI测量时,超过该终端设备需要测量的CLI测量的限制,进而可使得终端设备同时与第一网络设备和第二网络设备连接的场景中,仍可正常进行CLI测量。
本申请中,可根据CLI测量的信息的可分如下两种情形。
情形一,CLI测量的信息包括CLI测量的资源的个数。
基于该情形一,第一消息用于指示第二网络设备为终端设备配置的CLI测量的资源的个数;或者,第一消息用于指示允许第一网络设备为终端设备配置CLI测量的资源的最大个数;或者,第一消息用于指示第二网络设备在每个单位时间内为终端设备配置的CLI测量的资源的个数;或者,第一消息用于指示允许第一网络设备在每个单位时间内为终端设备配置CLI测量的资源的最大个数。
在一种可能的实现方式中,若确定第一消息指示的CLI测量的资源的个数不满足第一阈值,第一网络设备向第二网络设备发送第二消息;其中,第二消息用于通知第二网络设备调整为终端设备配置的CLI测量的资源的个数,或者用于通知第二网络设备调整允许第一网络设备为终端设备配置CLI测量的资源的个数。
通过第一网络设备向第二网络设备发送第二消息,有助于避免第二网络设备向第一网络设备发送的第一消息指示的CLI测量的资源的个数不合理,造成第一网络设备不能为终端设备配置CLI测量。
情形二,CLI测量的信息包括CLI测量的资源的配置信息。
基于该情形二,第一消息用于指示第二网络设备计划为终端设备配置的CLI测量的资源的配置信息。
在一种可能的实现方式中,第一网络设备可根据第一消息和第一网络设备计划为终端设备配置的CLI测量的资源的配置信息,确定第一网络设备和第二网络设备为终端设备配置的CLI测量的资源的总个数;若总个数大于第二阈值,第一网络设备可调整第一网络设备计划为终端设备配置的资源的配置信息。此处,第二阈值可为CLI测量的资源的最大个数;也可为终端设备支持的CLI测量的资源的最大个数;也可为在每个单位时间内的CLI测量的资源的最大个数;也可为终端设备支持的在每个单位时间内的CLI测量的资源的最大个数。
通过第一网络设备调整第一网络设备为终端设备配置的资源的配置信息,有助于避免两个网络设备同时一个终端设备配置CLI测量的资源的配置信息时,超过终端设备的CLI测量的限制。
本申请中,第一消息也可用于指示第二网络设备为终端设备配置CLI测量;或者,第一消息用于指示允许第一网络设备为终端设备配置CLI测量;或者,第一消息指示第一网络设备为终端设备配置CLI测量。即第一网络设备和第二网络设备中仅有一个网络设备为终端设备配置CLI测量。
通过第一网络设备和第二网络设备进行协商,可实现仅有一个网络设备为终端设备配置CLI测量。即终端设备仅会收到一个网络设备为其配置CLI测量。如此,有助于避免第一网络设备和第二网络设备同时为终端设备配置CLI测量时,超过终端设备需要测量的CLI测量的限制,进而可使得在终端设备同时与第一网络设备和第二网络设备连接的场景中,终端设备仍可正常进行CLI测量。
进一步,可选地,可以是预设时长内,仅有一个网络设备为终端设备配置CLI测量。
在一种可能的实现方式中,第一网络设备向第二网络设备发送第三消息,第三消息用于查询是否允许第一网络设备为终端设备配置CLI测量。
当第一网络设备要为终端设备配置CLI测量时,通过第一网络设备主动向第二网络设备发送第三消息,不需要等待第二网络设备发第一消息。
在一种可能的实现方式中,资源包括探测参考信号(sounding reference signal,SRS)资源或者接收信号强度指示(received signal strength indicator,RSSI)资源。
第二方面,本申请提供一种配置CLI测量的方法,该方法包括第二网络设备确定第一消息,第二网络设备向第一网络设备发送第一消息,第一消息用于指示CLI测量的信息。
该方法可由通信装置执行,通信装置可以是第二网络设备,或第二网络设备中的模块,例如芯片。
该方案的有益效果可参见上述第一方面的有益效果的描述,此处不再赘述。
在一种可能的实现方式中,CLI测量的信息包括CLI测量的资源的个数。此处,第一消息用于指示第二网络设备为终端设备配置的CLI测量的资源的个数;或者,第一消息用于指示允许第一网络设备为终端设备配置CLI测量的资源的最大个数;或者,第一消息用于指示第二网络设备在每个单位时间内为终端设备配置的CLI测量的资源的个数;或者,第一消息用于指示允许第一网络设备在每个单位时间内为终端设备配置CLI测量的资源的最大个数。
在一种可能的实现方式中,第二网络设备可接收来自第一网络设备的第二消息,根据第二消息调整第二网络设备为终端设备配置的CLI测量的资源的个数;或者,第二网络设备根据第二消息调整允许第一网络设备为终端设备配置CLI测量的资源的个数。
通过第二网络设备调整允许第一网络设备为终端设备配置的CLI测量的资源个数,或者调整第二网络设备为终端设备配置的CLI测量的资源的个数,有助于避免第二网络设备向第一网络设备发送的第一消息指示的CLI测量的资源的个数不合理,造成第一网络设备不能为终端设备配置CLI测量。
在一种可能的实现方式中,CLI测量的信息包括CLI测量的资源的配置信息,此处,第一消息用于指示第二网络设备计划为终端设备配置的CLI测量的资源的配置信息。
在一种可能的实现方式中,第二网络设备接收来自第一网络设备的第三消息,第三消息用于查询是否允许第一网络设备为终端设备配置CLI测量。如此,可使得第一网络设备主动查询是否可以为终端设备配置CLI测量。
第三方面,本申请提供一种配置CLI测量的方法,该方法包括第一网络设备向第二网络设备发送第四消息,其中,第四消息用于向第二网络设备通知第一网络设备开始配置CLI测量、或者用于向第二网络设备通知终端设备被第一网络设备配置CLI测量、或者用于通知第二网络设备禁止为终端设备配置CLI测量,第一网络设备为终端设备配置CLI测量,第一网络设备向第二网络设备发送第五消息,第五消息用于指示第一网络设备完成配置的CLI测量。
基于该方案,通过第一网络设备向第二网络设备发第四消息,可实现仅有一个第一网络设备为终端设备配置CLI测量。也就是说,基于该方案,终端设备仅会收到一个网络设备为其配置CLI测量。如此,有助于避免第一网络设备和第二网络设备同时为终端设备配置CLI测量时,超过终端设备需要测量的CLI测量的限制,进而可使得在终端设备同时与第一网络设备和第二网络设备连接的场景中,终端设备仍可正常进行CLI测量。进一步,在该方案中,第一网络设备和第二网络设备之间不需要协商CLI测量,从而有助于减少第一网络设备和第二网络设备之间的交互。
第四方面,本申请提供一种配置CLI测量的方法,该方法包括终端设备向第一网络设备发送第一能力信息,向第二网络设备发送第二能力信息,第一能力信息是终端设备为第一网络设备确定的,第二能力信息是终端设备为第二网络设备确定的。
基于该方案,第一网络设备可根据第一能力信息为终端设备配置CLI测量。第二网络设备可根据第二能力信息为终端设备配置CLI测量。示例性地,第一网络设备和第二网络设备可分别为终端设备配置CLI测量的资源的个数,或者分别为终端设备配置CLI测量的配置信息。
其中,第一能力信息和第二能力信息的总和不超过终端设备支持的总的能力信息。
在一种可能的实现方式中,第一能力信息包括为第一网络设备确定的CLI测量的资源的第一个数,第二能力信息包括为第二网络设备确定的CLI测量的资源的第二个数,其中,第一个数与第二个数之和小于或等于终端设备支持的CLI测量的资源的最大个数。
在另一种可能的实现方式中,第一能力信息包括为第一网络设备确定的在每个单位时间内CLI测量的资源的第三个数,第二能力信息包括为第二网络设备确定的在每个单位时间内CLI测量的资源的第四个数;第三个数与第四个数之和小于或等于终端设备支持的在每个单位时间内的CLI测量的资源的最大个数。
在一种可能的实现方式中,资源包括探测参考信号SRS资源或者接收信号强度指示RSSI资源。
第五方面,本申请提供一种通信装置,该通信装置具有实现上述第一方面中的第一网络设备或第二方面中的第二网络设备、或第三方面中的第一网络设备、或第四方面中终端设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置可以是网络设备,或者是可用于网络设备的部件,例如芯片或芯片系统或者电路,则该通信装置可以包括:收发器和处理器。该处理器可被配置为支持该通信装置执行以上所示网络设备的相应功能,该收发器用于支持该通信装置与其它网络设备和终端设备等之间的通信。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。可选地,该通信装置还可以包括存储器,该存储器可以与处理器耦合,其保存该通信装置必要的程序指令和数据。
在另一种可能的实现方式中,该通信装置可以是终端设备,或者是可用于终端设备的部件,例如芯片或芯片系统或者电路,则该通信装置可以包括:收发器和处理器,进一步。该处理器可被配置为支持该通信装置执行以上所示终端设备的相应功能,该收发器用于支持该通信装置与网络设备和其它终端设备等之间的通信。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。可选地,该通信装置还可以包括存储器,该存储器可以与处理器耦合,其保存该通信装置必要的程序指令和数据。
第六方面,本申请提供一种通信装置,用于实现上述第一方面或第一方面中的任意一种方法,或者用于实现上述第二方面或第二方面中的任意一种方法,或者用于实现上述第三方面或第三方面中的任意一种方法,或者用于实现上述第四方面或第四方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,该通信装置可为网络设备,该通信装置可以括处理单元和收发单元,这些单元可以执行上述方法示例中第一网络设备或第二网络设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的实施方式中,该通信装置可为终端设备,该通信装置可以括处理单元和收发单元,这些单元可以执行上述方法示例中终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第七方面,本申请提供一种通信系统,该通信系统包括终端设备、第一网络设备和第二网络设备。其中,第一网络设备可以用于执行上述第一方面或第一方面中的任意一种方法,第二网络设备用于执行上述第二方面或第二方面中的任意一种方法。
第八方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被通信装置执行时,使得该通信装置执行上述第一方面或第一方面的任意可能的实现方式中的方法、或者使得该通信装置执行第二方面或第二方面的任意可能的实现方式中的方法、或者使得该通信装置执行第三方面或第三方面的任意可能的实现方式中的方法、或者使得该通信装置执行第四方面或第四方面的任意可能的实现方式中的方法。
第九方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当该计算机程序或指令被通信装置执行时,实现上述第一方面或第一方面的任意可能的实现方式中的方法、或者实现上述第二方面或第二方面的任意可能的实现方式中的方法、或者使得该通信装置执行第三方面或第三方面的任意可能的实现方式中的方法、或者使得该通信装置执行第四方面或第四方面的任意可能的实现方式中的方法。
附图说明
图1为现有技术中可能会产生CLI干扰的网络架构示意图;
图2为本申请提供的一种通信系统架构示意图;
图3为本申请提供的一种应用场景中的通信系统架构示意图;
图4a为本申请提供的一种EN-DC架构示意图;
图4b为本申请提供的一种NGEN-DC架构示意图;
图4c为本申请提供的一种NE-DC架构示意图;
图4d为本申请提供的一种NR-DC架构示意图;
图5为本申请提供的一种配置CLI测量的方法流程示意图;
图6为本申请提供的另一种配置CLI测量的方法流程示意图;
图7为本申请提供的又一种配置CLI测量的方法流程示意图;
图8为本申请提供的再一种配置CLI测量的方法流程示意图;
图9为本申请提供的一种通信装置的结构示意图;
图10为本申请提供的一种通信装置的结构示意图;
图11为本申请提供的一种网络设备的结构示意图;
图12为本申请提供的一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请进行详细描述。
图2是本申请的可应用的通信系统的架构示意图。如图2所示,该通信系统可包括网络设备201、终端设备202和核心网设备203。终端设备通过无线的方式与网络设备相互通信,网络设备通过无线或有线方式与核心网设备相互通信,终端设备之间通过无线的方式相互进行通信,例如利用侧行链路(sidelink,SL)空口通信。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。终端设备可以是固定位置的,也可以是可移动的。图2仅是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图2中 未画出。本申请的对该通信系统中包括的核心网设备、网络设备和终端设备的数量不做限定。
网络设备是终端设备通过无线方式接入到该通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G通信系统中的下一代基站(next generation NodeB,gNB)、未来通信系统中的基站或无线保真(wireless-fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请对网络设备和终端设备之间所使用的频谱资源不做限定。
基于上述图2所示的通信系统架构,如下为本申请提供的一种可能的应用场景。即多无线双连接(multi-radio dual connectivity,MR-DC)应用场景。MR-DC是指一个多发/多收的终端设备同时使用两个节点(例如网络设备)提供的资源(例如时频资源)。也就是说,一个终端设备同时和两个节点(例如网络设备)进行连接,可参考图3,其中一个节点作为主节点(master node,MN),另一个节点作为辅节点(secondary node,SN),MN与SN之间通过网络接口连接。
基于MN的类型,SN的类型,以及MN所连接的核心网的不同,MR-DC可以分为如下四种类型。
类型一,演进的通用地面无线接入网和NR的双连接(E-UTRA-NR dual connectivity,EN-DC)(或称为E-UTRA-NR DC)。
如图4a所示,为本申请提供的一种EN-DC架构示意图。该架构中的主节点可为长期演进(long term evolution,LTE)eNB,辅节点为新空口(new radio,NR)en-gNB。LTE eNB和NR en-gNB可通过S1接口连接到第四代移动通信技术(the 4th Generation mobile communication technology,4G)核心网中的移动性管理网元(mobility management entity,MME)或服务网关(service gateway,SGW),LTE eNB和NR gNB之间可通过X2接口连接。
类型二、下一代无线接入网演进的通用地面无线接入网和NR的双连接(next generation-radio access network E-UTRA-NR dual connectivity,NGEN-DC)。
如图4b所示,为本申请提供的一种NGEN-DC架构示意图。该架构中的主节点为 ng-eNB,辅节点为NR gNB,ng-eNB也可称为锚基站。ng-eNB和NR gNB通过NG接口连接到第五代(5rd-Generation,5G)核心网的移动性管理功能(access and mobility management function,AMF)网元或用户面功能(user plane function,UPF)网元,NR gNB和ng-eNB之间可通过Xn接口连接。
类型三、NE-DC(或称为NR-E-UTRA DC)。
如图4c所示,为本申请提供的一种NE-DC架构示意图。该架构中的主节点为NR gNB,辅节点为ng-eNB。NR gNB和ng-eNB通过NG接口连接到5G核心网的AMF网元或UPF网元,NR gNB和ng-eNB之间可通过Xn接口连接。
类型四、NR-DC(或称为NR-NR DC)。
如图4d所示,为本申请提供的一种NR-DC架构示意图。该架构中的主节点为NR gNB,辅节点为NR gNB。NR gNB通过NG接口连接到5G核心网的AMF网元或UPF网元,NR gNB和NR gNB之间可通过Xn接口连接。
需要说明的是,本申请所描述的网络架构以及应用场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
一、参考信号接收功率(reference signal received power,RSRP)
RSRP,指在单位时间(例如某个符号)内承载参考信号的所有资源元素(resource element,RE)上接收到的参考信号的功率值。
二、接收信号强度指示(received signal strength indicator,RSSI)
RSSI,指接收到的信号的总功率值,不仅包括有用信号或参考信号的功率值,还包括干扰和热噪声等的功率值。
三、跨链路干扰
当相邻小区之间的TDD上下行配比(TDD UL/DL pattern)不同时,一个小区内的发送数据可能会对另一个小区内的接收数据产生干扰,这种干扰称为跨链路干扰(cross link interference,CLI)。
四、跨链路干扰测量(CLI measurement)
网络设备为终端设备配置CLI测量,终端设备对配置的参考信号(例如干扰源)进行测量,之后向网络设备上报CLI测量结果(例如干扰的强度)。网络设备可基于终端设备上报的CLI测量结果来协调调度,以尽可能避免或减轻CLI。
五、CLI测量的类型
根据CLI测量的参考信号(即资源)种类的不同,CLI测量可分如下两种类型。1)CLI SRS-RSRP测量,在该类型的CLI测量中,参考信号为SRS资源。终端设备测量一个或多个产生干扰的终端设备(即aggressor终端设备)发送的SRS资源,获得各个SRS资源的RSRP结果,即终端设备可分别测量获得各个干扰源的干扰强度。2)CLI RSSI测量,在该类型的CLI测量中,参考信号为RSSI资源。终端设备在配置的RSSI资源上测量总的接收功率值。网络设备通过终端设备测量得到的总的接收功率值来判断终端设备总体的受干扰情况如何。
为了保证CLI测量本身不会对终端设备带来较大的负担,对CLI测量定义了一些限制,可分以下两个方面:a)终端设备需要测量的CLI测量的资源的总个数。例如,终端设备需要测量的CLI SRS资源的总个数为32,即终端设备需要测量的CLI SRS资源的最大个数为32。再比如,终端设备需要测量的CLI RSSI资源的总个数为64,即终端设备需要测量的CLI RSSI资源的最大个数为64。b)一个时隙(slot)内终端设备需要测量的CLI测量的资源的个数。例如,终端设备在一个时隙内需要测量的CLI SRS资源的最大个数为8。
结合上述MR-DC场景,一个终端设备同时与两个网络设备连接,即一个终端设备与MN和SN连接。在MN和SN同时为终端设备配置CLI测量的情况,可能会出现MN和SN为终端设备配置的CLI测量超过规定的CLI测量的限制。例如,终端设备需要测量的SRS资源的总个数为32,MN为终端设备配置的CLI测量中包括20个SRS资源,SN也同时给终端设备配置了CLI测量,且配置的CLI测量中包括15个SRS资源,此时,终端设备收到两个CLI测量的资源的个数,这两个资源的个数的和为15+20=35个,超过了终端设备需要测量的SRS资源的总个数32,终端设备无法正常进行CLI测量。
鉴于此,提出了本申请提供的配置CLI测量的方法。在下文的介绍中,该配置CLI测量的方法可应用于上述图2~图4d任一个附图所示的网络架构。在一种可能的情况下,第一网络设备可以为上述图3中的MN,第二网络设备为上述图3中的SN。在该情形下,第一网络设备可为上述图4a中的LTE eNB,第二网络设备可为上述图4a中的NR gNB;或者第一网络设备可为上述图4b中的ng-eNB,第二网络设备可为上述图4b中的NR gNB;或者第一网络设备为上述图4c中的NR gNB,第二网络设备为上述图4c中的ng-eNB;或者第一网络设备为上述图4d中的NR gNB,第二网络设备为上述图4d中的另一个NR gNB。在另一种可能的情况下,第一网络设备可为上述图3中的SN,第二网络设备为上述图3中的MN。在该情况下,第一网络设备可为上述图4a中的NR gNB,第二网络设备可为上述图4a中的LTE eNB;或者第一网络设备可为上述图4b中的NR gNB,第二网络设备可为上述图4b中的ng-eNB;或者第一网络设备为上述图4c中的ng-eNB,第二网络设备为上述图4c中的NR gNB;或者第一网络设备为上述图4d中的NR gNB,第二网络设备为上述图4d中的另一个NR gNB。终端设备可为上述图2所示的终端设备201,也可为上述图3所示的终端设备。
参见下述图5,为本申请提供的一种配置CLI测量的方法流程示意图。该方法包括以下步骤:
步骤501,第二网络设备向第一网络设备发送第一消息,第一消息用于指示CLI测量的信息。相应地,第一网络设备接收来自第二网络设备的第一消息。
本申请中,可根据CLI测量的信息包括CLI测量的资源个数和CLI测量的配置信息。如下以CLI测量的信息为CLI测量的资源个数,以及CLI测量的信息为CLI测量的配置信息为例进行介绍。
情形一,CLI测量的信息包括CLI测量的资源的个数。
此处,CLI测量的资源包括时频资源。CLI测量的资源如CLI SRS资源或CLI-RSSI资源。
第一消息可用于指示第二网络设备为终端设备配置的CLI测量的资源的个数。也就是说,第二网络设备可向第一网络设备通知第二网络设备为终端设备配置的CLI测量的资源 的个数。
或者,第一消息可用于指示允许第一网络设备为终端设备配置CLI测量的资源的最大个数。也就是说,第二网络设备可向第一网络设备通知允许第一网络设备为终端设备配置CLI测量的资源的个数。
或者,第一消息可用于指示第二网络设备在单位时间内为终端设备配置的CLI测量的资源的个数。也就是说,第二网络设备可向第一网络设备通知第二网络设备在每个单位时间内为终端设备配置的CLI测量的资源的个数。其中,单位时间可以为时隙(slot)、符号(symbol),子帧(subframe)、半帧(half frame)或帧(frame)等。
或者,第一消息可用于指示允许第一网络设备在单位时间内为终端设备配置CLI测量的资源的最大个数。也就是说,第二网络设备可向第一网络设备通知允许第一网络设备在每个单位时间内为终端设备配置的CLI测量的资源的最大个数。其中,单位时间可以为时隙。
情形二,CLI测量的信息包括CLI测量的资源的配置信息(information element,IE)。
示例性地,CLI测量的资源的配置信息包括资源的时域配置信息、资源的频域配置信息、周期、资源的标识等。
此处,第一消息用于指示第二网络设备计划为终端设备配置的CLI测量的资源的配置信息。
在一种可能的实现方式中,第二网络设备向第一网络设备发送的第一消息的类型可以为X2/Xn消息。进一步,可选地,当第二网络设备为MN,第一网络设备为SN时,X2/Xn消息可以是CG-ConfigInfo消息;当第二网络设备为SN,第一网络设备为MN时,X2/Xn消息可以是CG-Config消息。
步骤502,第一网络设备可根据第一消息,为终端设备配置CLI测量。
在一种可能的实现方式中,第一网络设备接收到第一消息后,若确定第一消息指示的CLI测量的资源的个数不满足第一阈值,第一网络设备可向第二网络设备发送第二消息(可参见图2中的步骤503),其中,第二消息用于通知第二网络设备调整为终端设备配置的CLI测量的资源的个数,或者第二消息用于通知第二网络设备调整允许第一网络设备为终端设备配置CLI测量的资源的个数。
此处,基于第一消息指示的内容,分如下四种情形进行详细介绍。
情形A,第一消息用于指示第二网络设备为终端设备配置的CLI测量的资源的个数。
在一种可能的实现方式中,第一网络设备可根据第一消息和终端设备需要测量的CLI测量的资源的总个数,为终端设备配置CLI测量的资源的个数。例如,第一消息用于指示第二网络设备为终端设备配置的CLI SRS资源的个数为10个,第一网络设备根据终端设备需要测量的CLI SRS资源的总个数32和第一消息,可确定为终端设备配置的CLI SRS资源的个数为32-10=22个,第一网络设备可为终端设备配置小于或等于22个CLI SRS资源。再比如,第一消息用于指示第二网络设备为终端设备配置的CLI RSSI资源的个数为15个,第一网络设备可根据终端设备需要测量的CLI RSSI资源的总个数64和第一消息,确定为终端设备配置的CLI RSSI资源的个数为64-15=49,第一网络设备可为终端设备配置小于或等于49个CLI RSSI资源。
基于该情形A,若确定第一消息指示的资源的个数大于第一阈值,说明第二网络设备为终端设备配置的CLI测量的资源的个数较大,可能会导致第一网络设备无法正常为终端 设备配置CLI测量的资源,第一网络设备可向第二网络设备发送第二消息,第二消息用于通知第二网络设备调整为终端设备配置的CLI测量的资源的个数。在一种可能的实现方式中,第二网络设备接收到第二消息后,调整第二网络设备为终端设备配置的CLI测量的资源的个数。进一步,可选地,第二网络设备调整为终端设备配置的CLI测量的资源的个数后,可重新向第一网络设备发送第一消息,此时,第一消息用于指示的第二网络设备为终端设备配置的CLI测量的资源的个数是第二网络设备调整后的。
情形B,第一消息用于指示允许第一网络设备为终端设备配置CLI测量的资源的最大个数。
在一种可能的实现方式中,第一网络设备可根据第一消息确定为终端设备配置的CLI测量的资源的最大个数。例如,第一消息用于指示允许第一网络设备为终端设备配置的CLI SRS资源的个数为10个,第一网络设备可为终端设备配置CLI SRS资源的个数小于或等于10个。再比如,第一消息用于指示允许第一网络设备为终端设备配置的CLI RSSI资源的个数为15个,第一网络设备可为终端设备配置CLI RSSI资源的个数小于或等于15个。
基于该情形B,若确定第一消息指示的CLI测量的资源的个数小于第一阈值,说明允许第一网络设备配置的CLI测量的资源的个数较小,可能会导致第一网络设备无法正常为终端设备配置CLI测量的资源,第一网络设备向第二网络设备发送第二消息,第二消息用于通知第二网络设备调整允许第一网络设备为终端设备配置的CLI测量的资源的最大个数。在一种可能的实现方式中,第二网络设备可基于第二消息,调整允许第一网络设备为终端设备配置的CLI测量的资源的最大个数。进一步,可选地,第二网络设备调整允许第一网络设备为终端设备配置的CLI测量的资源的最大个数后,可重新向第一网络设备发送第一消息,此时,第一消息用于指示的允许第一网络设备为终端设备配置的CLI测量的资源的最大个数是第二网络设备调整后的。
情形C,第一消息可用于指示第二网络设备在每个单位时间内为终端设备配置的CLI测量的资源的个数。在该情形C中,单位时间以一个时隙为例说明。
在一种可能的实现方式中,第一网络设备可根据第一消息和一个时隙(slot)内终端设备需要测量的CLI测量的资源的最大个数,为终端设备配置CLI测量的资源的个数。例如,第一消息用于指示第二网络设备在一个时隙内为终端设备配置的CLI SRS资源的个数为6个,第一网络设备可根据一个时隙内终端设备需要测量的CLI SRS资源的最大个数8和第一消息,第一网络设备在一个时隙内可为终端设备配置小于或等于8-6=2个CLI SRS资源。
基于该情形C,若确定第一消息指示的资源的个数大于第三阈值,说明第二网络设备在每个单位时间内为终端设备配置的CLI测量的资源的个数较大,可能会导致第一网络设备无法正常为终端设备配置CLI测量的资源,第一网络设备可向第二网络设备发送第二消息,第二消息用于通知第二网络设备调整在每个单位时间内为终端设备配置的CLI测量的资源的个数。在一种可能的实现方式中,第二网络设备接收到第二消息后,调整第二网络设备在每个单位时间内为终端设备配置的CLI测量的资源的个数。进一步,可选地,第二网络设备调整在每个单位时间内为终端设备配置的CLI测量的资源的个数后,可重新向第一网络设备发送第一消息,此时,第一消息用于指示的第二网络设备在每个单位时间内为终端设备配置的CLI测量的资源的个数是第二网络设备调整后的。
情形D,第一消息可用于指示允许第一网络设备在每个单位时间内为终端设备配置CLI测量的资源的最大个数。在该情形D中,单位时间以一个时隙为例说明。
在一种可能的实现方式中,第一网络设备可根据第一消息和一个时隙内终端设备需要测量的CLI测量的资源的最大个数,为终端设备配置CLI测量的资源的个数。例如,第一消息用于指示允许第一网络设备在一个时隙内为终端设备配置的CLI SRS资源的个数为6个,第一网络设备确定一个时隙内可为终端设备配置小于或等于6个CLI SRS资源。
基于该情形D,若确定第一消息指示的CLI测量的资源的个数小于第四阈值,说明允许第一网络设备在每个单位时间内配置的CLI测量的资源的个数较小,可能会导致第一网络设备无法正常为终端设备配置CLI测量的资源,第一网络设备向第二网络设备发送第二消息,第二消息用于通知第二网络设备调整在每个单位时间内允许第一网络设备为终端设备配置的CLI测量的资源的最大个数。在一种可能的实现方式中,第二网络设备可基于第二消息,调整在每个单位时间内允许第一网络设备为终端设备配置的CLI测量的资源的最大个数。进一步,可选地,第二网络设备调整在每个单位时间内允许第一网络设备为终端设备配置的CLI测量的资源的最大个数后,可重新向第一网络设备发送第一消息,此时,第一消息用于指示的允许第一网络设备在每个单位时间内为终端设备配置的CLI测量的资源的最大个数是第二网络设备调整后的。
基于上述情形二,第一网络设备接收到第一消息后,根据第二网络设备计划为终端设备配置的CLI测量的资源的配置信息,确定第二网络设备计划为终端设备配置的CLI测量的资源的个数;之后第一网络设备确定第一网络设备计划为终端设备配置的CLI测量的资源的个数与第二网络设备计划为终端设备配置的CLI测量的资源的个数之和,若该和大于第二阈值,则第一网络设备需要调整第一网络设备计划为终端设备配置的CLI测量的资源的配置信息。其中,第二阈值可能为CLI测量的资源的最大个数,例如,终端设备需要测量的CLI SRS资源的总个数为32,再比如,终端设备需要测量的CLI RSSI资源的总个数为64;第二阈值也可为单位时间内CLI测量的资源的最大个数,例如,终端设备在一个时隙内需要测量的CLI SRS资源的最大个数为8;第二阈值也可为终端设备支持的CLI测量的资源的最大个数;第二阈值也可为终端设备在支持的在单位时间内CLI测量的资源的最大个数。
从上述步骤501和步骤502可以看出,通过第一网络设备和第二网络设备协商各自为终端设备配置的CLI测量的CLI测量的信息,可使得第一网络设备和第二网络设备均合理为终端设备配置CLI测量的CLI测量的信息,从而有助于避免第一网络设备和第二网络设备同时为终端设备配置CLI测量时,超过终端设备需要测量的CLI测量的限制,进而可使得在终端设备同时与第一网络设备和第二网络设备连接的场景中,终端设备仍可正常进行CLI测量。
本申请中,一个终端设备与两个网络设备连接时,也可以通过两个网络设备协商,使得仅一个网络设备为终端设备配置CLI测量。如图6所示,为本申请提供的另一种配置CLI测量的方法流程示意图。该方法包括以下步骤:
步骤601,第二网络设备向第一网络设备发送第一消息。相应地,第一网络设备接收来自第二网络设备的第一消息。
此处,第一消息用于指示第二网络设备为终端设备配置CLI测量。也就是说,第一消息用于指示第二网络设备为终端设备配置CLI测量,且第一网络设备不能为终端设备配置CLI测量。
或者,第一消息用于指示允许第一网络设备为终端设备配置CLI测量。也可以理解为,第一消息用于指示允许第一网络设备为终端设备配置CLI测量、且不允许第二网络设备为终端设备配置CLI测量。
或者,第一消息用于指示第一网络设备为终端设备配置CLI测量。也就是说,第一消息用于指示第一网络设备为终端设备配置CLI测量,且第二网络设备不为该终端设备配置CLI测量。
步骤602,第一网络设备根据第一消息,确定是否为终端设备配置CLI测量。
此处,可根据第一消息指示的内容,分如下三种情形。
情形1,第一消息用于指示第二网络设备为终端设备配置CLI测量。
基于该情形1,第一网络设备可根据第一消息,确定第二网络设备为终端设备配置CLI测量,第一网络设备确定第一网络设备不能为终端设备配置CLI测量。
情形2,第一消息用于指示允许第一网络设备为终端设备配置CLI测量。
基于该情形2,第一网络设备根据第一消息,可确定允许第一网络设备为终端设备配置CLI测量。在该情形2下,第一网络设备可为终端设备配置CLI测量,也可以不为终端设备配置CLI测量。也就是说,在该情形2下,第一网络设备是否为终端设备配置CLI测量,可由第一网络设备自行决定。
情形3,第一消息用于指示第一网络设备为终端设备配置CLI测量。
也就是说,第二网络设备可直接指示第一网络设备为终端设备配置CLI测量,即指示第一网络设备要为终端设备配置CLI测量。
进一步,可选地,第一消息还可以指示出仅有一个网络设备为终端设备配置CLI测量对应的预设时长内。也就是说,第一消息可指示预设时长内,第一网络设备或第二网络设备为终端设备配置CLI测量。
本申请中,第一网络设备也可主动向第二网络设备发送第三消息(可参见图6中的步骤603),第三消息用于查询是否允许第一网络设备为终端设备配置CLI测量。第二网络设备在接收该第三消息后,向第一网络设备发送第一消息,以通知第一网络设备是否允许为终端设备配置CLI测量。当第一网络设备要为终端设备配置CLI测量时,第一网络设备通过主动向第二网络设备发送第三消息,不需要等待第二网络设备发第一消息。
需要说明的是,为终端设备配置CLI测量包括为终端设备配置CLI测量的测量对象配置信息(例如,CLI测量的资源的配置信息)、CLI测量的上报配置信息、为CLI测量的测量量的配置信息(即滤波配置)。
从上述步骤601和步骤602可以看出,通过第一网络设备和第二网络设备进行协商,可实现仅有一个网络设备为终端设备配置CLI测量。也就是说,基于该方案,终端设备在仅会收到一个网络设备为其配置CLI测量。如此,有助于避免第一网络设备和第二网络设备同时为终端设备配置CLI测量时,超过终端设备需要测量的CLI测量的限制,进而可使得在终端设备同时与第一网络设备和第二网络设备连接的场景中,终端设备仍可正常进行CLI测量。
需要说明的是,当终端设备从仅有一个为其服务的网络设备(第二网络设备)变成有两个为其服务的网络设备(第一网络设备和第二网络设备)后,可将上述图6中的第二网络设备作为MN,将第一网络设备作为SN。
如图7所示,为本申请提供的又一种配置CLI测量的方法流程示意图。该方法包括以下步骤:
步骤701,第一网络设备向第二网络设备发送第四消息。相应地,第二网络设备接收来自第一网络设备的第四消息。
此处,第四消息用于向第二网络设备通知第一网络设备开始配置CLI测量;或者第四消息用于向第二网络设备通知终端设备被第一网络设备配置CLI测量;或者第四消息用于通知第二网络设备禁止为终端设备配置CLI测量。
步骤702,第一网络设备为终端设备配置CLI测量。
此处,第一网络设备可为终端设备配置CLI测量的测量对象配置信息(例如,CLI测量的资源的配置信息)、CLI测量的上报配置信息、为CLI测量的测量量的配置信息(即滤波配置)。
步骤703,第一网络设备在完成配置的CLI测量后,向第二网络设备发送第五消息。相应地,第二网络设备接收来自第一网络设备的第五消息。
此处,第五消息用于指示第一网络设备完成配置的CLI测量,或者也可以理解为,第五消息用于向第二网络设备通知终端设备当前没有配置的CLI测量。应理解,第一网络设备完成配置的CLI测量指第一网络设备移除了给终端设备配置的CLI测量后。
在一种可能的实现方式中,第二网络设备接收到第四消息后,可确定第一网络设备在为终端设备配置CLI测量,此时,第二网络设备不为终端设备配置CLI测量。当第二网络设备接收到第五消息后,可确定第一网络设备为完成了配置的CLI测量,此时,第二网络设备可为终端设备配置CLI测量。
从上述步骤701和步骤703可以看出,通过第一网络设备向第二网络设备发第四消息,可实现仅有一个第一网络设备为终端设备配置CLI测量。也就是说,基于该方案,终端设备仅会收到一个网络设备为其配置CLI测量。如此,有助于避免第一网络设备和第二网络设备同时为终端设备配置CLI测量时,超过终端设备需要测量的CLI测量的限制,进而可使得在终端设备同时与第一网络设备和第二网络设备连接的场景中,终端设备仍可正常进行CLI测量。进一步,在该方案中,第一网络设备和第二网络设备之间不需要协商CLI测量,从而有助于减少第一网络设备和第二网络设备之间的交互。
本申请中,终端设备可以向网络设备上报终端设备的能力信息,当一个终端设备与两个网络设备连接时,终端设备可合理规划为第一网络设备和第二网络设备上报的能力信息,以使得第一网络设备和第二网络设备为终端设备配置的CLI测量不会超过终端设备的总能力。如图8所示,为本申请提供的再一种配置CLI测量的方法流程示意图。该方法包括以下步骤:
步骤801,终端设备向第一网络设备发送第一能力信息,第一能力信息是终端设备为第一网络设备确定的。相应地,第一网络设备接收来终端设备的第一能力信息。
步骤802,终端设备向第二网络设备发送第二能力信息,第二能力信息是终端设备为第二网络设备确定的。相应地,第二网络设备接收来自终端设备的第二能力信息。
此处,第一能力信息和第二能力信息总和不超过终端设备支持的总的能力信息。
基于该方案,第一网络设备可根据第一能力信息为终端设备配置CLI测量。第二网络设备可根据第二能力信息为终端设备配置CLI测量。示例性地,第一网络设备和第二网络 设备可分别为终端设备配置CLI测量的资源的个数,或者分别为终端设备配置CLI测量的配置信息。
在一种可能的实现方式中,第一能力信息包括为第一网络设备确定的CLI测量的资源的第一个数,第二能力信息包括为第二网络设备确定的CLI测量的资源的第二个数;其中,第一个数与第二个数之和小于或等于终端设备支持的CLI测量的资源的最大个数。
示例性地,第一能力信息包括终端设备支持的CLI SRS资源的第一个数,第二能力信息包括终端设备支持的CLI SRS资源的第二个数。或者第一能力信息包括终端设备支持的CLI RSSI资源第一个数,第二能力信息包括终端设备支持的CLI SRS资源的第二个数。
结合上述图3,终端设备向MN上报的第一能力信息为:终端设备支持的CLI SRS资源的第一个数K1;终端设备向SN上报的第二能力信息为:终端设备支持的CLI SRS资源的第二个数K2;终端设备支持的CLI SRS资源的总个数为K,其中,K1+K2≤K。
或者,终端设备向MN上报的第一能力信息为:终端设备支持的CLI RSSI资源的第一个数L1;终端设备向SN上报的第二能力信息为:终端设备支持的CLI RSSI资源的第二个数L2;终端设备支持的CLI RSSI资源的总个数为L,其中,L1+L2≤L。
在另一种可能的实现方式中,第一能力信息包括为第一网络设备确定的在每个单位时间内CLI测量的资源的第三个数,第二能力信息包括为第二网络设备确定的在每个单位时间内CLI测量的资源的第四个数;第三个数与第四个数之和小于或等于终端设备支持的在每个单位时间内的CLI测量的资源的最大个数。
示例性地,第一能力信息包括终端设备支持的在每个单位时间内CLI SRS资源的第三个数,第二能力信息包括终端设备支持的在每个单位时间内CLI SRS资源的第四个数。或者第一能力信息包括终端设备支持的在每个单位时间内CLI RSSI资源的第三个数,第二能力信息包括终端设备支持的在每个单位时间内CLI RSSI资源的第四个数。
结合上述图3,终端设备向MN上报的第一能力信息为:终端设备支持的在每个单位时间内CLI SRS资源的第三个数M1;终端设备向SN上报的第二能力信息为:终端设备支持的在每个单位时间内CLI SRS资源的第四个数M2;终端设备支持的在每个单位时间内CLI SRS资源的总个数为M,其中,M1+M2≤M。
或者,终端设备向MN上报的第一能力信息为:终端设备支持的在每个单位时间内CLI RSSI资源的第一个数N1;终端设备向SN上报的第二能力信息为:终端设备支持的在每个单位时间内CLI RSSI资源的第二个数N2;终端设备支持的CLI RSSI资源的总个数为N,其中,N1+N2≤N。
需要说明的是,上述步骤801和步骤802之间没有先后顺序,可以先执行步骤801,再执行步骤802;或者也可先执行步骤802,再执行步骤801;或者也可同时执行步骤801和步骤802。
从上述步骤801和步骤802可以看出,终端设备根据支持的总的能力信息合理为第一网络设备和第二网络设备分配能力信息,第一能力信息和第二能力信息的总和不超过终端设备支持的总的能力信息,如此,可以使得第一网络设备基于第一能力信息为终端设备配置的CLI测量和第二网络设备基于第二能力信息为终端设备配置的CLI测量不超过终端设备支持的总的能力信息。进而可使得在终端设备同时与第一网络设备和第二网络设备连接的场景中,终端设备仍可正常进行CLI测量。进一步,在该方案中,第一网络设备和第二网络设备之间不需要协商CLI测量,从而有助于减少第一网络设备和第二网络设备之间的 交互。
本申请中,CLI测量的资源包括CLI测量的SRS资源或者CLI测量的RSSI资源。
需要说明的是,本申请中第一消息、第二消息、第三消息、第四消息和第五消息所指示的内容可以是第一网络设备与第二网络设备预先约定的,也可以是协议预定义的,本申请对此不做限定。此处,这些消息可以用一个索引标识,或者也可以用一个或多个比特信息来标识,或者也可能是其它任意可能的形式,本申请对此不做限定。另外,第一消息、第二消息、第三消息、第三消息、第四消息和第五消息所指示的内容也可以是消息中的某一个字段指示的。
可以理解的是,为了实现上述实施例中功能,网络设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图9和图10为本申请的提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一网络设备或第二网络设备或终端设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请中,该通信装置可以是如图2所示的网络设备201,还可以是应用网络设备的模块(如芯片),或者也可以是上述图2所示的终端设备202。
如图9所示,该通信装置900包括处理单元901和收发单元902。通信装置900用于实现上述图5、图6、图7或图8中所示的方法实施例中第一网络设备或第二网络设备的功能。
当通信装置900用于实现图5所示的方法实施例的第一网络设备的功能时:收发单元902用于接收来自第二网络设备的第一消息,第一消息用于指示跨链路干扰CLI测量的信息;处理单元901用于根据第一消息,为终端设备配置CLI测量。
当通信装置900用于实现图5所示的方法实施例的第二网络设备的功能时:处理单元901用于确定第一消息,第一消息用于指示跨链路干扰CLI测量的信息;收发单元902用于向第一网络设备发送第一消息。
有关上述处理单元901和收发单元902更详细的描述可以参考图5所示的方法实施例中相关描述直接得到,此处不再一一赘述。
当通信装置900用于实现上述图8所示的方法实施例的终端设备的功能时:收发单元902用于向第一网络设备发送第一能力信息,向第二网络设备发送第二能力信息,所述第一能力信息是处理单元901为所述第一网络设备确定的,所述第二能力信息是处理单元901为所述第二网络设备确定的。
有关上述处理单元901和收发单元902更详细的描述可以参考图5所示的方法实施例中相关描述直接得到,此处不再一一赘述。
应理解,本申请实施例中的处理单元901可以由处理器或处理器相关电路组件实现,收发单元902可以由收发器或收发器相关电路组件实现。
基于上述内容和相同构思,如图10所示,本申请还提供一种通信装置1000。该通信装置1000可包括处理器1001和收发器1002。处理器1001和收发器1002之间相互耦合。 可以理解的是,收发器1002可以为接口电路或输入输出接口。可选地,通信装置1000还可包括存储器1003,用于存储处理器1001执行的指令或存储处理器1001运行指令所需要的输入数据或存储处理器1001运行指令后产生的数据。
当通信装置1000用于实现图5所示的方法时,处理器1001用于执行上述处理单元901的功能,收发器1002用于执行上述收发单元902的功能。
当上述通信装置为应用于第一网络设备的芯片时,该第一网络设备芯片实现上述方法实施例中第一网络设备的功能。该第一网络设备芯片从第一网络设备中的其它模块(如射频模块或天线)接收消息,该消息是第二网络设备发送给第一网络设备的;或者,该第一网络设备芯片向第一网络设备中的其它模块(如射频模块或天线)发送消息,该消息是第一网络设备发送给第二网络设备的。
当上述通信装置为应用于第二网络设备的芯片时,该第二网络设备芯片实现上述方法实施例中第二网络设备的功能。该第二网络设备芯片从第二网络设备中的其它模块(如射频模块或天线)接收消息,该消息是第一网络设备发送给第二网络设备的;或者,该第二网络设备芯片向第二网络设备中的其它模块(如射频模块或天线)发送消息,该消息是第二网络设备发送给第一网络设备的。
当该通信装置为网络设备时,图11示例性示出了本申请提供的一种网络设备的结构示意图。如图11所示,该网络设备1100可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1102和一个或多个基带单元(baseband unit,BBU)1101。RRU1102可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线11021和射频单元11022。RRU1102部分主要用于射频信号的收发以及射频信号与基带信号的转换。BBU1101部分可以称为处理单元,处理器等,主要用于进行基带处理,如信道编码,复用,调制,扩频等,也用于对网络设备进行控制等。RRU1102与BBU1101可以是物理上设置在一起;也可以物理上分离设置的,即分布式网络设备。
BBU 1101为基站的控制中心,也可以称为处理模块,可以与图9中的处理模块901对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,为终端设备配置CLI测量等。
作为一种可选的实现方式,BBU1101可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。BBU1101还包括存储器11012和处理器11011。存储器11012用以存储必要的指令和数据。处理器11011用于控制网络设备进行必要的动作,例如用于控制网络设备执行上述任一实施例中网络设备执行的方法。存储器11012和处理器11011可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。
在上行链路上,通过天线11021接收终端设备发送的上行链路信号(包括数据等),在下行链路上,通过天线11021向终端设备发送下行链路信号(包括数据和/或控制信息),在处理器11011中,对业务数据和信令消息进行处理,这些单元根据无线接入网采用的无线接入技术(例如,LTE、NR及其他演进系统的接入技术)来进行处理。处理器11011还用于对网络设备的动作进行控制管理,用于执行上述实施例中由网络设备进行的处理。处 理器11011还用于支持第一网络设备执行图5中第一网络设备执行的方法,或者用于还用于支持第二网络设备执行图5中第二网络设备执行的方法。
需要说明的是,图11仅仅示出了网络设备的简化设计。在实际应用中,网络设备可以包含任意数量的天线,存储器,处理器,射频单元,RRU,BBU等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
应理解,收发单元1102用于执行上述图5所示的方法实施例中第一网络设备侧的发送操作和接收操作,处理单元1101用于执行上述图5所示的方法实施例中第一网络设备侧除了收发操作之外的其他操作。例如,收发单元1102用于执行图5所示的实施例中的第一网络设备侧的收发步骤,例如步骤501。处理单元1101,用于执行图5所示的实施例中的第一网络设备侧除了收发操作之外的其他操作,例如步骤502。
本申请还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图12示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图12中,终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图12所示,终端设备包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1220用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1210用于执行图8中的步骤801和步骤802中 终端设备侧的发送操作,和/或收发单元1210还用于执行本申请中终端设备侧的其他收发步骤。处理单元1220,用于执行图8中为第一网络设备确定第一能力信息,以及为第二网络设备确定第二能力信息,和/或处理单元1220还用于执行本申请中终端设备侧的其他处理步骤。
可以理解的是,本申请中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行计算机程序或指令时,全部或部分地执行本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分, 并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种配置跨链路干扰CLI测量的方法,其特征在于,包括:
    第一网络设备接收来自第二网络设备的第一消息,所述第一消息用于指示跨链路干扰CLI测量的信息;
    所述第一网络设备根据所述第一消息,为所述终端设备配置所述CLI测量。
  2. 如权利要求1所述的方法,其特征在于,所述CLI测量的信息包括所述CLI测量的资源的个数;
    所述第一消息用于指示以下内容中任一项:
    所述第二网络设备为所述终端设备配置的所述CLI测量的资源的个数;或者,
    允许所述第一网络设备为所述终端设备配置所述CLI测量的资源的最大个数;或者,
    所述第二网络设备在每个单位时间内为所述终端设备配置的所述CLI测量的资源的个数;或者,
    允许所述第一网络设备在每个单位时间内为所述终端设备配置所述CLI测量的资源的最大个数。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    若确定所述第一消息指示的所述CLI测量的资源的个数不满足第一阈值,所述第一网络设备向所述第二网络设备发送第二消息;
    其中,所述第二消息用于通知所述第二网络设备调整为所述终端设备配置的所述CLI测量的资源的个数,或者用于通知所述第二网络设备调整允许所述第一网络设备为所述终端设备配置所述CLI测量的资源的个数。
  4. 如权利要求1所述的方法,其特征在于,所述CLI测量的信息包括所述CLI测量的资源的配置信息;
    所述第一消息用于指示:所述第二网络设备计划为所述终端设备配置的所述CLI测量的资源的配置信息。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备根据所述第一消息和所述第一网络设备计划为所述终端设备配置的所述CLI测量的资源的配置信息,确定所述第一网络设备和所述第二网络设备为所述终端设备配置的所述CLI测量的资源的总个数;
    若所述总个数大于第二阈值,所述第一网络设备调整所述第一网络设备计划为所述终端设备配置的资源的配置信息;
    所述第二阈值为以下内容中任一项:
    所述CLI测量的资源的最大个数;
    所述终端设备支持的所述CLI测量的资源的最大个数;
    在每个单位时间内的所述CLI测量的资源的最大个数;
    所述终端设备支持的在每个单位时间内的所述CLI测量的资源的最大个数。
  6. 如权利要求1所述的方法,其特征在于,所述第一消息用于指示以下内容中的任一项:
    所述第二网络设备为所述终端设备配置所述CLI测量;或者,
    允许所述第一网络设备为所述终端设备配置所述CLI测量;或者,
    指示所述第一网络设备为所述终端设备配置所述CLI测量。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送第三消息,所述第三消息用于查询是否允许所述第一网络设备为所述终端设备配置所述CLI测量。
  8. 如权利要求1至7任一项所述的方法,其特征在于,所述资源包括探测参考信号SRS资源或者接收信号强度指示RSSI资源。
  9. 一种配置跨链路干扰CLI测量的方法,其特征在于,包括:
    第二网络设备确定第一消息,所述第一消息用于指示跨链路干扰CLI测量的信息;
    所述第二网络设备向第一网络设备发送所述第一消息。
  10. 如权利要求9所述的方法,其特征在于,所述CLI测量的信息包括所述CLI测量的资源的个数;
    所述第一消息用于指示以下内容中任一项:
    所述第二网络设备为所述终端设备配置的所述CLI测量的资源的个数;或者,
    允许所述第一网络设备为所述终端设备配置所述CLI测量的资源的最大个数;或者,
    所述第二网络设备在每个单位时间内为所述终端设备配置的所述CLI测量的资源的个数;或者,
    允许所述第一网络设备在每个单位时间内为所述终端设备配置所述CLI测量的资源的最大个数。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备接收来自所述第一网络设备的第二消息;
    所述第二网络设备根据所述第二消息调整为终端设备配置的所述CLI测量的资源的个数;或者,
    所述第二网络设备根据所述第二消息调整允许所述第一网络设备为所述终端设备配置所述CLI测量的资源的个数。
  12. 如权利要求9所述的方法,其特征在于,所述CLI测量的信息包括所述CLI测量的资源的配置信息;
    所述第一消息用于指示:所述第二网络设备计划为所述终端设备配置的所述CLI测量的资源的配置信息。
  13. 如权利要求9至12任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备接收来自所述第一网络设备的第三消息,所述第三消息用于查询是否允许所述第一网络设备为所述终端设备配置所述CLI测量。
  14. 一种配置跨链路干扰CLI测量的方法,其特征在于,包括:
    第一网络设备向第二网络设备发送第四消息,所述第四消息用于向所述第二网络设备通知所述第一网络设备开始配置CLI测量、或者用于向所述第二网络设备通知终端设备被所述第一网络设备配置所述CLI测量、或者用于通知所述第二网络设备禁止为所述终端设备配置所述CLI测量;
    所述第一网络设备为所述终端设备配置所述CLI测量;
    所述第一网络设备向所述第二网络设备发送第五消息,所述第五消息用于指示所述第一网络设备完成配置的所述CLI测量。
  15. 一种配置跨链路干扰CLI测量的方法,其特征在于,包括:
    终端设备向第一网络设备发送第一能力信息,所述第一能力信息是所述终端设备为所述第一网络设备确定的;
    所述终端设备向第二网络设备发送第二能力信息,所述第二能力信息是所述终端设备为所述第二网络设备确定的。
  16. 如权利要求15所述的方法,其特征在于,所述第一能力信息和所述第二能力信息的总和不超过所述终端设备支持的总的能力信息。
  17. 如权利要求15或16所述的方法,其特征在于,所述第一能力信息包括为所述第一网络设备确定的所述CLI测量的资源的第一个数,所述第二能力信息包括为所述第二网络设备确定的所述CLI测量的资源的第二个数;和/或,
    所述第一能力信息包括为所述第一网络设备确定的在每个单位时间内所述CLI测量的资源的第三个数,所述第二能力信息包括为所述第二网络设备确定的在每个单位时间内所述CLI测量的资源的第四个数;
    其中,所述第一个数与所述第二个数之和小于或等于所述终端设备支持的所述CLI测量的资源的最大个数;所述第三个数与所述第四个数之和小于或等于所述终端设备支持的在每个单位时间内的所述CLI测量的资源的最大个数。
  18. 如权利要求15至17任一项所述的方法,其特征在于,所述资源包括探测参考信号SRS资源或者接收信号强度指示RSSI资源。
  19. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自第二网络设备的第一消息,所述第一消息用于指示跨链路干扰CLI测量的信息;
    处理单元,用于根据所述第一消息,为所述终端设备配置所述CLI测量。
  20. 如权利要求19所述的通信装置,其特征在于,所述CLI测量的信息包括所述CLI测量的资源的个数;
    所述第一消息用于指示以下内容中任一项:
    所述第二网络设备为所述终端设备配置的所述CLI测量的资源的个数;或者,
    允许所述通信装置为所述终端设备配置所述CLI测量的资源的最大个数;或者,
    所述第二网络设备在每个单位时间内为所述终端设备配置的所述CLI测量的资源的个数;或者,
    允许所述通信装置在每个单位时间内为所述终端设备配置所述CLI测量的资源的最大个数。
  21. 如权利要求20所述的通信装置,其特征在于,所述方法还包括:
    若确定所述第一消息指示的所述CLI测量的资源的个数不满足第一阈值,所述收发单元,还用于向所述第二网络设备发送第二消息;
    其中,所述第二消息用于通知所述第二网络设备调整为所述终端设备配置的所述CLI测量的资源的个数,或者用于通知所述第二网络设备调整允许所述第一网络设备为所述终端设备配置所述CLI测量的资源的个数。
  22. 如权利要求19所述的通信装置,其特征在于,所述CLI测量的信息包括所述CLI测量的资源的配置信息;
    所述第一消息用于指示:所述第二网络设备计划为所述终端设备配置的所述CLI测量的资源的配置信息。
  23. 如权利要求22所述的通信装置,其特征在于,所述处理单元,还用于:
    根据所述第一消息和所述通信装置计划为所述终端设备配置的所述CLI测量的资源的配置信息,确定所述通信装置和所述第二网络设备为所述终端设备配置的所述CLI测量的资源的总个数;
    若所述总个数大于第二阈值,调整所述通信装置计划为所述终端设备配置的资源的配置信息;
    所述第二阈值为以下内容中任一项:
    所述CLI测量的资源的最大个数;
    所述终端设备支持的所述CLI测量的资源的最大个数;
    在每个单位时间内的所述CLI测量的资源的最大个数;
    所述终端设备支持的在每个单位时间内的所述CLI测量的资源的最大个数。
  24. 如权利要求19所述的通信装置,其特征在于,所述第一消息用于指示以下内容中的任一项:
    所述第二网络设备为所述终端设备配置所述CLI测量;或者,
    允许所述通信装置为所述终端设备配置所述CLI测量;或者,
    指示所述通信装置为所述终端设备配置所述CLI测量。
  25. 如权利要求24所述的通信装置,其特征在于,所述收发单元,还用于:
    向所述第二网络设备发送第三消息,所述第三消息用于查询是否允许所述通信装置为所述终端设备配置所述CLI测量。
  26. 如权利要求19至25任一项所述的通信装置,其特征在于,所述资源包括探测参考信号SRS资源或者接收信号强度指示RSSI资源。
  27. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一消息,所述第一消息用于指示跨链路干扰CLI测量的信息;
    收发单元,用于向第一网络设备发送所述第一消息。
  28. 如权利要求27所述的通信装置,其特征在于,所述CLI测量的信息包括所述CLI测量的资源的个数;
    所述第一消息用于指示以下内容中任一项:
    所述通信装置为所述终端设备配置的所述CLI测量的资源的个数;或者,
    允许所述第一网络设备为所述终端设备配置所述CLI测量的资源的最大个数;或者,
    所述通信装置在每个单位时间内为所述终端设备配置的所述CLI测量的资源的个数;或者,
    允许所述第一网络设备在每个单位时间内为所述终端设备配置所述CLI测量的资源的最大个数。
  29. 如权利要求28所述的通信装置,其特征在于,所述收发单元,还用于:
    接收来自所述第一网络设备的第二消息;
    所述处理单元,还用于:
    根据所述第二消息调整为终端设备配置的所述CLI测量的资源的个数;或者,
    根据所述第二消息调整允许所述第一网络设备为所述终端设备配置所述CLI测量的资源的个数。
  30. 如权利要求27所述的通信装置,其特征在于,所述CLI测量的信息包括所述CLI 测量的资源的配置信息;
    所述第一消息用于指示:所述通信装置计划为所述终端设备配置的所述CLI测量的资源的配置信息。
  31. 如权利要求27至30任一项所述的通信装置,其特征在于,所述收发单元,还用于:
    接收来自所述第一网络设备的第三消息,所述第三消息用于查询是否允许所述第一网络设备为所述终端设备配置所述CLI测量。
  32. 一种通信装置,其特征在于,包括:
    收发单元,用于向第二网络设备发送第四消息,所述第四消息用于向所述第二网络设备通知所述通信装置开始配置CLI测量、或者用于向所述第二网络设备通知终端设备被所述通信装置配置所述CLI测量、或者用于通知所述第二网络设备禁止为所述终端设备配置所述CLI测量;
    处理单元,用于为所述终端设备配置所述CLI测量;
    所述收发单元,还用于向所述第二网络设备发送第五消息,所述第五消息用于指示所述通信装置完成配置的所述CLI测量。
  33. 一种通信装置,其特征在于,包括:
    收发单元,用于向第一网络设备发送第一能力信息,向第二网络设备发送第二能力信息,所述第一能力信息是处理单元为所述第一网络设备确定的,所述第二能力信息是处理单元为所述第二网络设备确定的。
  34. 如权利要求33所述的通信装置,其特征在于,所述第一能力信息和所述第二能力信息的总和不超过所述终端设备支持的总的能力信息。
  35. 如权利要求33或34所述的通信装置,其特征在于,所述第一能力信息包括为所述第一网络设备确定的所述CLI测量的资源的第一个数,所述第二能力信息包括为所述第二网络设备确定的所述CLI测量的资源的第二个数;和/或,
    所述第一能力信息包括为所述第一网络设备确定的在每个单位时间内所述CLI测量的资源的第三个数,所述第二能力信息包括为所述第二网络设备确定的在每个单位时间内所述CLI测量的资源的第四个数;
    其中,所述第一个数与所述第二个数之和小于或等于所述终端设备支持的所述CLI测量的资源的最大个数;所述第三个数与所述第四个数之和小于或等于所述终端设备支持的在每个单位时间内的所述CLI测量的资源的最大个数。
  36. 如权利要求33至35任一项所述的通信装置,其特征在于,所述资源包括探测参考信号SRS资源或者接收信号强度指示RSSI资源。
  37. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至8中任一项、或9至13中任一项、或14、或15至18中任一项所述的方法。
  38. 一种通信系统,其特征在于,包括权利要求19至26之一的通信装置,和权利要求27至31之一的通信装置。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至8中任 一项、或9至13中任一项、或14、或15至18中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至8中任一项、或9至13中任一项、或14、或15至18中任一项所述的方法。
PCT/CN2019/116348 2019-11-07 2019-11-07 一种配置cli测量的方法及通信装置 WO2021087889A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19951724.4A EP4044651A4 (en) 2019-11-07 2019-11-07 CLI MEASUREMENT CONFIGURATION METHOD AND COMMUNICATION DEVICE
PCT/CN2019/116348 WO2021087889A1 (zh) 2019-11-07 2019-11-07 一种配置cli测量的方法及通信装置
CN201980101907.8A CN114616854A (zh) 2019-11-07 2019-11-07 一种配置cli测量的方法及通信装置
BR112022008712A BR112022008712A2 (pt) 2019-11-07 2019-11-07 Método para configurar medição de cli e aparelho de comunicações
US17/737,740 US20220263641A1 (en) 2019-11-07 2022-05-05 Method For Configuring CLI Measurement And Communications Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116348 WO2021087889A1 (zh) 2019-11-07 2019-11-07 一种配置cli测量的方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/737,740 Continuation US20220263641A1 (en) 2019-11-07 2022-05-05 Method For Configuring CLI Measurement And Communications Apparatus

Publications (1)

Publication Number Publication Date
WO2021087889A1 true WO2021087889A1 (zh) 2021-05-14

Family

ID=75848731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116348 WO2021087889A1 (zh) 2019-11-07 2019-11-07 一种配置cli测量的方法及通信装置

Country Status (5)

Country Link
US (1) US20220263641A1 (zh)
EP (1) EP4044651A4 (zh)
CN (1) CN114616854A (zh)
BR (1) BR112022008712A2 (zh)
WO (1) WO2021087889A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178695A1 (en) * 2022-03-25 2023-09-28 Nec Corporation Method, device and computer readable medium for communications
WO2024027701A1 (zh) * 2022-08-03 2024-02-08 夏普株式会社 由用户设备执行的发送cli测量报告的方法及用户设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4022965A4 (en) * 2019-11-08 2022-11-02 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR DYNAMIC INTERLINK INTERFERENCE MEASUREMENT AND REPORTING IN A NEXT GENERATION MOBILE COMMUNICATION SYSTEM
US20230156497A1 (en) * 2021-11-18 2023-05-18 Qualcomm Incorporated Techniques for layer 1 cross-link interference measurement reporting
US20230328564A1 (en) * 2022-04-07 2023-10-12 Qualcomm Incorporated User equipment processing capability aspects for cross-link interference measurement
US20240107351A1 (en) * 2022-09-22 2024-03-28 Qualcomm Incorporated Cross-link interference information exchange

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219970A (zh) * 2017-05-05 2019-01-15 联发科技股份有限公司 移动通信中跨链路干扰测量方法及设备
CN109392005A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种信号强度测量的方法、相关装置以及系统
CN109391995A (zh) * 2017-08-07 2019-02-26 华为技术有限公司 一种干扰测量方法、终端设备及网络设备
US20190223078A1 (en) * 2018-03-28 2019-07-18 Alexander Sirotkin Next generation node-b (gnb) for integrated access and backhaul (iab) relay in new radio (nr) networks

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3592024B1 (en) * 2017-03-24 2023-04-26 Huawei Technologies Co., Ltd. Transmission power control based on interference measurement signals and interference measurement resources
CN108964856B (zh) * 2017-05-27 2022-10-04 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置
EP3636020A4 (en) * 2017-06-09 2020-12-30 ZTE Corporation SYSTEM AND PROCEDURE FOR MEASURING AND CONTROLLING CROSS CONNECTION FAULTS IN WIRELESS COMMUNICATION
EP3665928B1 (en) * 2017-08-11 2023-11-15 Telefonaktiebolaget LM Ericsson (publ) Measurement and report for cross-link interference management based on reference signals
US11071133B2 (en) * 2018-03-05 2021-07-20 Qualcomm Incorporated Cross-link interference detection and mitigation
EP3900234A1 (en) * 2018-12-17 2021-10-27 Nokia Technologies Oy Apparatuses and methods for discovery process for cross link interference measurements
KR102630579B1 (ko) * 2019-01-11 2024-01-29 애플 인크. Ue 대 ue 크로스링크 간섭 측정 및 리포팅

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219970A (zh) * 2017-05-05 2019-01-15 联发科技股份有限公司 移动通信中跨链路干扰测量方法及设备
CN109391995A (zh) * 2017-08-07 2019-02-26 华为技术有限公司 一种干扰测量方法、终端设备及网络设备
CN109392005A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种信号强度测量的方法、相关装置以及系统
US20190223078A1 (en) * 2018-03-28 2019-07-18 Alexander Sirotkin Next generation node-b (gnb) for integrated access and backhaul (iab) relay in new radio (nr) networks

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "UE CLI measurement configuration, reporting, and NW signaling", 3GPP DRAFT; R2-1912408_UE_CLI_MEASUREMENT-CONFIGURATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 7 October 2019 (2019-10-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051790453 *
RAN1: "LS on UE-UE CLI measurement/reporting and Network coordination mechanism for CLI", 3GPP DRAFT; R1-1903677 LS ON UE-UE CLI MEASUREMENT REPORTING AND NETWORK COORDINATION MECHANISM FOR CLI, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 3 March 2019 (2019-03-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051690929 *
See also references of EP4044651A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178695A1 (en) * 2022-03-25 2023-09-28 Nec Corporation Method, device and computer readable medium for communications
WO2024027701A1 (zh) * 2022-08-03 2024-02-08 夏普株式会社 由用户设备执行的发送cli测量报告的方法及用户设备

Also Published As

Publication number Publication date
CN114616854A (zh) 2022-06-10
BR112022008712A2 (pt) 2022-07-19
US20220263641A1 (en) 2022-08-18
EP4044651A4 (en) 2022-09-14
EP4044651A1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
WO2021087889A1 (zh) 一种配置cli测量的方法及通信装置
WO2021057473A1 (zh) 一种共生网络中载波的调度方法、装置及存储介质
CN110999477B (zh) 信息指示方法及相关设备
CN110278563B (zh) 确定频谱资源的方法及装置
WO2020164517A1 (zh) 用于测量信号的方法和通信装置
JP2021529474A (ja) 通信方法及び機器
WO2018196529A1 (zh) 一种资源信息确定方法及终端设备、网络设备
US20210377916A1 (en) Wireless Communications Method and Apparatus
CN109462425B (zh) 一种波束扫描指示方法及其装置
WO2018127141A1 (zh) 一种参考信号传输方法及装置
WO2021027919A9 (zh) 传输参考信号的方法及设备
EP2826191A1 (en) Wireless multi-flow communications in the uplink
WO2020199790A1 (zh) 一种信息指示方法及通信装置
WO2018202168A1 (zh) 信息传输方法及装置
CN109803283B (zh) 一种无线通信方法以及通信设备
WO2021047485A1 (zh) 一种传输方法、终端设备以及网络设备
WO2021134682A1 (zh) 一种定向测量方法及设备
WO2016061824A1 (zh) 用于数据传输的方法和基站
WO2022206660A1 (zh) 一种干扰处理的方法,相关装置以及设备
WO2022140996A1 (zh) 一种信道接入方法及通信装置
WO2019129164A1 (zh) 一种传输时间处理方法及相关设备
CN113543323A (zh) 数据传输的方法和装置
WO2024093939A1 (zh) 信号配置方法、系统以及通信装置
WO2024017298A1 (zh) 干扰测量的方法、装置、芯片、芯片模组及存储介质
JP7534030B2 (ja) 免許不要スペクトルの使用方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951724

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008712

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019951724

Country of ref document: EP

Effective date: 20220513

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022008712

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220505