WO2021120023A1 - 一种定位方法及装置 - Google Patents

一种定位方法及装置 Download PDF

Info

Publication number
WO2021120023A1
WO2021120023A1 PCT/CN2019/126107 CN2019126107W WO2021120023A1 WO 2021120023 A1 WO2021120023 A1 WO 2021120023A1 CN 2019126107 W CN2019126107 W CN 2019126107W WO 2021120023 A1 WO2021120023 A1 WO 2021120023A1
Authority
WO
WIPO (PCT)
Prior art keywords
time window
time
terminal device
information
prs
Prior art date
Application number
PCT/CN2019/126107
Other languages
English (en)
French (fr)
Inventor
高鑫
张永平
李铁
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980102868.3A priority Critical patent/CN114762402A/zh
Priority to PCT/CN2019/126107 priority patent/WO2021120023A1/zh
Publication of WO2021120023A1 publication Critical patent/WO2021120023A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This application relates to the field of communication technology, and in particular to a positioning method and device.
  • positioning technology is generally divided into: positioning technology dependent on radio access technology (RAT) (RAT-dependent), independent of wireless access Technology (RAT-independent) positioning technology and a combination of RAT-dependent and RAT-independent positioning technology.
  • RAT radio access technology
  • RAT-independent independent of wireless access Technology
  • the general steps of the downlink-based positioning technology in the RAT-dependent positioning technology are as follows: First, multiple base stations send positioning reference signals (positioning reference signals, PRS) to the terminal equipment; The PRS is measured to obtain the measurement results, such as measuring the time of arrival (TOA), time difference of arrival (TDOA) and reference signal receiving power (reference signal receive power, RSRP) of the PRS. Or more; then, the terminal device reports the measurement result to the positioning device; finally, the positioning device can determine the location information of the terminal device according to the measurement result.
  • positioning reference signals positioning reference signals
  • PRS positioning reference signals
  • the PRS is measured to obtain the measurement results, such as measuring the time of arrival (TOA), time difference of arrival (TDOA) and reference signal receiving power (reference signal receive power, RSRP) of the PRS. Or more; then, the terminal device reports the measurement result to the positioning device; finally, the positioning device can determine the location information of the terminal device according to the measurement result.
  • TOA time of arrival
  • TDOA time difference of
  • the embodiments of the present application provide a positioning method and device, which can be used to improve positioning accuracy.
  • this application provides a positioning method, which includes:
  • the terminal device receives information for indicating the time window for measuring the positioning reference signal PRS from the network device; the terminal device measures one or more PRS within the first time window, and obtains one or more measurement results; wherein, the use
  • the information indicating the measurement of the PRS time window indicates the start time of the first time window, and/or the duration of the first time window;
  • the network device is a positioning device or an access network device.
  • the first time window can be understood as a period of time within the reporting period.
  • the terminal device reports the measurement result in the first time window, avoiding the terminal device reporting the measurement result in the entire period, and the measurement result in the entire period is not applicable Or when it is already inaccurate, it causes the positioning accuracy to decrease.
  • implementing the embodiments of the present application can effectively improve the positioning accuracy; at the same time, since the measurement results within the first time window are reported, the reporting overhead of the terminal device can also be effectively reduced.
  • the end time of the first time window is a reporting time at which the terminal device reports the one or more measurement results.
  • the first time window can be understood as a period of time close to the reporting time, thereby enabling the terminal device to report the latest measurement result.
  • the terminal device moves at a high speed, or in the scene where the terminal device and the network device move relatively It can accurately estimate the location of the terminal device.
  • the information used to indicate the time window for measuring the PRS includes the values of N time windows; wherein, each value corresponds to a time window, and each value is used to indicate the corresponding The start time of a time window, or each value is used to indicate the duration of a corresponding time window, and the N time windows include the first time window.
  • the network device may also configure the value of N time windows for the terminal device, so that the terminal device can independently select the value of the first time window.
  • the method further includes: the terminal device receives activation signaling from the access network device, where the activation signaling is used to activate one of the values of the N time windows One or more values, and the one or more values are used to determine the first time window.
  • the access network device may also activate one or more of the values of the N time windows, so that the terminal device knows the first The value of the time window.
  • the unit of the start time is any one of seconds, frames, subframes, time slots, symbols, or milliseconds.
  • the method further includes: the terminal device receives updated time window information from the network device; the terminal device receives information about the updated time window according to the updated time window information.
  • One or more PRSs are measured in the window.
  • the information used to indicate the time window for measuring the PRS is carried in the auxiliary information field of the Long Term Evolution LTE positioning protocol LPP signaling.
  • the method further includes: if the terminal device does not measure the one or more PRSs within the first time window, then the terminal device extends the first time window Until one or more PRS is measured.
  • the method further includes: the terminal device reporting a first measurement result, where the first measurement result is a measurement result obtained by weighting the one or more measurement results.
  • this application provides a positioning method, which includes:
  • the network device determines information for indicating the time window for measuring the positioning reference signal PRS; the network device sends the information for indicating the time window for measuring the PRS to the terminal device; wherein the information indicating the time window for measuring the PRS indicates The start time of the first time window, and/or the duration of the first time window; the network device is a positioning device or an access network device.
  • the end time of the first time window is a reporting time at which the terminal device reports the one or more measurement results.
  • the information used to indicate the time window for measuring the PRS includes the values of N time windows; wherein, each value corresponds to a time window, and each value is used to indicate the corresponding The start time of a time window, or each value is used to indicate the duration of a corresponding time window, and the N time windows include the first time window.
  • the method further includes: the access network device sends activation signaling to the terminal device, where the activation signaling is used to activate one of the values of the N time windows One or more values, and the one or more values are used to determine the first time window.
  • the unit of the start time is any one of seconds, frames, subframes, time slots, symbols, or milliseconds.
  • the method further includes: the network device sends information about the updated time window to the terminal device, where the information about the updated time window is used to instruct to update the first time window .
  • the information used to indicate the time window for measuring the PRS is carried in the auxiliary information field of the Long Term Evolution LTE positioning protocol LPP signaling.
  • the method further includes: the network device receives a first measurement result sent by the terminal device, where the first measurement result is a measurement weighted by the one or more measurement results result.
  • the method further includes: the network device estimates the location information of the terminal device according to the first measurement result.
  • beneficial effects of the second aspect can be referred to the beneficial effects of the first aspect, which will not be repeated here.
  • the present application provides a communication device, which may be a terminal device, a device in a terminal device, or a device that can be used in conjunction with a terminal device.
  • the communication device may also be a chip system.
  • the communication device can execute the methods described in the first aspect and various possible implementation manners of the first aspect.
  • the function of the communication device can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the unit can be software and/or hardware.
  • the present application provides a communication device, which may be a network device, a device in a network device, or a device that can be matched and used with a network device.
  • the communication device may also be a chip system.
  • the communication device can execute the methods described in the second aspect and various possible implementation manners of the second aspect.
  • the function of the communication device can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the unit can be software and/or hardware.
  • the present application provides a communication device that includes a processor and a memory; the memory is used to store computer-executable instructions; the processor is used to execute the computer-executed instructions to enable the communication device Perform the methods described in the first aspect and various possible implementations of the first aspect.
  • the present application provides a communication device that includes a processor and a memory; the memory is used to store computer-executable instructions; the processor is used to execute the computer-executed instructions to enable the communication device Perform the methods described in the second aspect and various possible implementations of the second aspect.
  • the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive signals or send signals;
  • the memory is used to store program codes;
  • the processor is configured to call the program code to execute the method described in the first aspect and various possible implementation manners of the first aspect.
  • the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive or send a signal;
  • the memory is used to store program code;
  • the processor is configured to call the program code to execute the method described in the second aspect and various possible implementation manners of the second aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit; the interface circuit is configured to receive code instructions; the processor is configured to run the code instructions to enable the communication device Perform the methods described in the first aspect and various possible implementations of the first aspect.
  • the present application provides a communication device that includes a processor and an interface circuit; the interface circuit is used to receive code instructions; the processor is used to run the code instructions to enable the communication device Perform the methods described in the second aspect and various possible implementations of the second aspect.
  • the present application provides a computer-readable storage medium, which is used to store instructions.
  • various possibilities such as the first aspect and the first aspect are enabled. Implementation The method described is implemented.
  • the present application provides a computer-readable storage medium, which is used to store instructions.
  • various possibilities such as the second aspect and the second aspect are provided. Implementation The method described is implemented.
  • the present application provides a computer program product including instructions, which when executed, enable the methods described in the first aspect and various possible implementation manners of the first aspect to be implemented.
  • the present application provides a computer program product including instructions, which when executed, enable the methods described in the second aspect and various possible implementation manners of the second aspect to be implemented.
  • this application provides a computer program for executing the first aspect and various possible implementation manners of the first aspect.
  • this application provides a computer program for executing the second aspect and various possible implementation manners of the second aspect.
  • this application provides a positioning method, which includes:
  • the network device sends information indicating the time window for measuring the PRS to the terminal device; wherein the information indicating the time window for measuring the PRS indicates the start time of the first time window, and/or, the time window of the first time window Duration; the network device is a positioning device or an access network device;
  • the terminal device receives from the network device information for indicating a time window for measuring the positioning reference signal PRS; the terminal device measures one or more PRSs within the first time window, and obtains one or more measurement results.
  • FIG. 1 is a schematic diagram of determining the angle of arrival difference provided by an embodiment of the present application
  • Figure 2a is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2b is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a measurement model provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the configuration of a PRS provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of UE measurement data provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • FIG. 7a is a schematic diagram of a configuration of a first time window provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram of a configuration of a first time window provided by an embodiment of the present application.
  • FIG. 7c is a schematic diagram of a configuration of a first time window provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • FIG. 10a is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • FIG. 10b is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • FIG. 11a is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • FIG. 11b is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • At least one (item) refers to one or more
  • multiple refers to two or more than two
  • at least two (item) refers to two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships.
  • a and/or B can mean: there is only A, only B, and both A and B. In this case, A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • Positioning reference signal A reference signal sent from the transmitting end to the receiving end for the positioning function.
  • a network device may periodically send a PRS, and a terminal device may periodically receive the PRS. It can be understood that, in the process of receiving the PRS by the terminal device, the terminal device can measure at least one of the time difference of arrival, the angle of arrival difference, and the received power of the reference signal of the PRS to obtain the measurement result. The network device or terminal device obtains the positioning result based on the measurement result.
  • the terminal equipment receiving PRS will be described as the terminal equipment measuring PRS in the following.
  • Time difference of arrival refers to the difference in the arrival time of reference signals (such as PRS) received by terminal equipment from different network equipment.
  • Angle difference of arrival refers to the difference of the angle of arrival of reference signals (such as PRS) sent by different network devices and received by the terminal device.
  • PRS reference signals
  • base station 1, base station 2, and base station 3 can respectively send PRS to the terminal device, where the arrival angle 1, the arrival angle 2 and the arrival angle 3 can be obtained based on the horizontal line.
  • the difference of the angle of arrival can be the difference between the angle of arrival 1 and the angle of arrival 2; the difference between the angle of arrival 1 and the angle of arrival 3. It can be understood that the angle of arrival shown in FIG. 1 is only an example. In specific implementation, there may be other methods to determine the angle of arrival difference, which is not limited in the embodiment of the present application.
  • Reference signal receive power (RSRP): Defined as the linear average (unit: W) of the power of the resource element that carries the reference signal within the measurement frequency bandwidth.
  • Reporting time The time pre-defined by network device configuration or protocol for reporting measurement results.
  • the network device configures the reporting period as 8 time slots, and the first time slot and the ninth time slot are one reporting time.
  • the methods provided in this application can be applied to various communication systems, such as the Internet of Things (IoT) system, the narrowband Internet of Things (NB-IoT) system, and the long-term evolution (long-term evolution) system.
  • IoT Internet of Things
  • NB-IoT narrowband Internet of Things
  • long-term evolution long-term evolution
  • LTE evolution
  • 5th-generation 5G
  • 6G next-generation communication system
  • FIG. 2a is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • the communication system includes a terminal device and at least one network device.
  • the network device is an access network device, that is, the access network device can determine the location information of the terminal device.
  • the access network device may include an access network device of a serving cell of the terminal device and/or at least one access network device of a neighboring cell.
  • the access network device may be a device that can communicate with terminal devices.
  • the access network device can be any device that has a wireless transceiver function, including but not limited to a base station.
  • the base station may be the next generation Node B (gNB), or the base station may be a base station in a future communication system.
  • the access network device may also be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless fidelity (WiFi) system.
  • the access network device may also be a radio controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the access network device may also be a wearable device or a vehicle-mounted device.
  • the access network device may also be a small station, a transmission reception point (TRP) (or may also be referred to as a transmission reception point), etc. It can be understood that the access network device may also be a base station in a public land mobile network (PLMN) that will evolve in the future.
  • TRP transmission reception point
  • PLMN public land mobile network
  • the network device is a positioning device, that is, the positioning device determines the location information of the terminal device.
  • the positioning device may be a network element that can implement positioning management functions on the core network side.
  • a positioning device may be a location management function (LMF) network element, a location management unit (location management unit, LMU), a location management center (location management center, LMC), or an evolved service mobile location center (evolved serving mobile location center). location center, E-SMLC). It is understandable that the positioning device may also be other devices for determining the location information of the terminal device, etc.
  • the embodiment of the present application does not limit the name of the positioning device.
  • Terminal equipment may also be referred to as user equipment (UE), terminal, and so on.
  • a terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, for example, in the air. Airplanes, balloons, or satellites.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device may also be a terminal device in a future 6G network or a terminal device in a future evolved PLMN, etc.
  • b i is defined as the coordinates of base station i
  • x UE is defined as the coordinates of the UE (ie, UE’s position)
  • [omega] is defined as the product of the time error and the speed of light, if it is assumed each independently a t i obey the Gaussian distribution, and the variance is The mean value is ⁇ + ⁇ b i - UE ⁇ , then the probability distribution function (PDF) formula is as (1):
  • FIG. 2b is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • the communication system includes UE, gNB1, gNB2 and gNB3.
  • gNB1, gNB2, and gNB3 can respectively send PRS periodically, and the UE can receive PRS periodically, measure the positioning information of the PRS, and obtain the measurement result.
  • the UE may measure one or more of TDOA, ADOA, or RSRP of the PRS, and the positioning information of the PRS in this application is not limited to this.
  • the UE can also report the measurement result.
  • FIG. 3 It can be understood that the embodiment of the present application does not limit how the UE measures the TDOA, ADOA, or RSRP of the PRS.
  • FIG. 3 is a schematic diagram of a measurement model provided by an embodiment of the present application.
  • point A is the input measurement data (ie PRS positioning information)
  • point B is the data after layer 1 filtering
  • point C is the data after layer 3 filtering
  • point D is the final report to the network device data.
  • the layer 3 filtering formula is shown in formula (3):
  • M n represents the n-th measurement result from the physical layer (it can also be understood as the weighted result of the measurement data in the n-th reporting period), which corresponds to point B in FIG. 3.
  • M n may be the average of the measurement data.
  • F n is the result of the nth measurement, that is, the output result of point C in Fig. 3;
  • F n-1 is the result of the n-1th measurement.
  • F 0 is set to M 1 .
  • the UE when it performs a measurement, it does not only measure the PRS once and then reports it, but performs multiple measurements on the PRS signals from different base stations, and then reports it at a fixed reporting time.
  • PRS can be sent periodically, and there are many options for the size of the period.
  • the period of the PRS in the new radio (NR) can be configured as 2 ⁇ * ⁇ 4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240 ,20480 ⁇ time slots, the value range of ⁇ is ⁇ 0,1,2,3,4 ⁇ .
  • the PRS can also be configured to be repeatedly transmitted, that is, there will be PRS transmission during the configured periodic interval.
  • the period of the PRS is configured as 8 time slots (slot)
  • the base station may also repeatedly transmit the PRS within the 8 time slots.
  • the base station can also repeatedly send PRS within 8 time slots. It is understandable that the repeated transmission here means that one PRS resource can be repeatedly transmitted using the same beam.
  • Figure 4 shows the PRS sent by one base station, but in fact, the UE needs to receive the PRS of multiple base stations (such as at least three base stations) in the same time period to be able to effectively locate. In other words, the UE needs to measure many PRSs in the same time period. As shown in Figure 5, for example, the measurement of multiple PRSs in the same time period is regarded as an occasion (such as receiving the PRS sent by gNB1, the PRS sent by gNB2, and the PRS sent by gNB3). Then, between the reporting time n and the reporting time n+1, the UE has measured multiple sets of data.
  • the measurement of multiple PRSs in the same time period is regarded as an occasion (such as receiving the PRS sent by gNB1, the PRS sent by gNB2, and the PRS sent by gNB3).
  • the content of the data includes the arrival time of the PRS, the time difference between the arrival of different PRSs, and the received power of different PRSs.
  • the UE needs to measure all PRSs before reporting, and then perform layer 1 filtering, and the method of layer 1 filtering is to take the average value.
  • the UE is in a high-speed scene or a relative positioning scene (both the sender and receiver are moving), the positions of the receiver and the sender are changing all the time, so some previous measurement results may not be applicable or invalid.
  • the UE of the receiving party still reports all previous measurement results at the reporting time, not only measurement resources will be wasted, but also due to the addition of inapplicable measurement values, the final positioning accuracy will also decrease.
  • the present application provides a positioning method, which can avoid waste of measurement resources and improve positioning accuracy.
  • the positioning method provided by this application will be described in detail below.
  • FIG. 6 is a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • the positioning method may be applicable to the communication system shown in FIG. 2a and/or FIG. 2b.
  • the positioning method can also be applied to the related background models introduced in Figs. 3 to 5.
  • the network device in the embodiment of the present application may be an access network device or a positioning device.
  • FIG. 2a For a specific description of the access network device and the positioning device, refer to FIG. 2a, which will not be described in detail here.
  • the positioning method includes:
  • the network device sends information indicating the time window for measuring the PRS to the terminal device; wherein the information indicating the time window for measuring the PRS indicates the start time of the first time window, and/or the duration of the first time window time.
  • the terminal device receives the information used to indicate the time window for measuring the PRS.
  • the first time window can be understood as a period of time between two reporting moments. It can be understood that the reporting time is related to the reporting cycle. For example, if the reporting cycle is 4 time slots, then every 4 time slots from the initial reporting time are the reporting time.
  • the information used to indicate the measurement of the PRS time window may include the start time of the first time window.
  • the end time of the first time window may be pre-configured; or, the information used to indicate the measurement of the PRS time window
  • the information may also include the end time of the first time window; or, the end time of the first time window is the reporting time when the terminal device reports one or more measurement results.
  • the termination time can be pre-configured by the terminal device; alternatively, the termination time can also be pre-configured by the network device, etc., which is not limited in the embodiment of the present application.
  • the terminal device can report the latest measurement results to ensure the timeliness of the reported measurement results.
  • the information used to indicate the time window for measuring the PRS may include the duration of the first time window.
  • the end time and/or the start time of the first time window may be pre-configured; or, used to indicate the measurement
  • the information of the PRS time window may also include the start time or the end time of the first time window; or, the start time or the end time of the first time window is the reporting time at which the terminal device reports one or more measurement results.
  • the information for indicating the time window for measuring the PRS may include the start time and the duration of the first time window. In this way, the terminal device can clearly know the measurement result within which period of time to report.
  • the first time window can be understood as a period of time between the reporting time n and the reporting time n+1.
  • the terminal device can effectively reduce the size of the reported data, thereby reducing signaling overhead.
  • the end time of the first time window is the same as the next reporting time.
  • the terminal device can report the latest measurement result in a high-speed moving scenario, thereby ensuring the validity of the reported data.
  • the information used to indicate the time window for measuring the PRS includes the values of N time windows; where each value corresponds to a time window, and each value is used to indicate a corresponding time The start time of the window, or each value is used to indicate the duration of a corresponding time window, and the N time windows include the first time window.
  • the N time windows include a first time window, a second time window, a third time window, and so on. That is, the information used to indicate the time window for measuring the PRS includes the value of the first time window, the value of the second time window, the value of the third time window, and so on.
  • the value of the first time window can be used to indicate the start time or duration of the first time window
  • the value of the second time window can be used to indicate the start time or duration of the second time window
  • the value of the third time window The value can be used to indicate the start time or duration of the third time window, and so on.
  • the value of the first time window may also be an index of the start time of the first time window.
  • the values of N time windows such as ⁇ T 1 , T 2 , T 3 ,..., T n ⁇ can be as follows:
  • Example 1 ⁇ 4,8,12,16,20,24,28,32,36,40,44,48 ⁇ ;
  • Example 2 ⁇ 5,10,15,20,25,30,35,40,45,50,55,60 ⁇ ;
  • Example 3 ⁇ 8,16,24,32,40,48,56,64,72,80,88,96 ⁇ ;
  • Example 4 ⁇ 4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240,20480 ⁇ .
  • the value in each of the foregoing examples may be the start time or the duration. It can be understood that the value in each of the above examples may also be the index of the start time or the index of the duration.
  • the index 4 of the start time may correspond to the start time slot 4; for another example, the index 8 of the start time may correspond to the start time slot 5, etc.
  • the embodiment of the present application does not limit the index relationship.
  • the unit of the foregoing start time is any one of seconds, frames, subframes, time slots, symbols, or milliseconds.
  • the unit of the foregoing termination time is any one of seconds, frames, subframes, time slots, symbols, or milliseconds. It is understandable that the value of the above start time may also be any one of the index of seconds, the index of the frame, the index of the subframe, the index of the time slot, the index of the symbol, or the index of milliseconds.
  • the information used to indicate the time window for measuring the PRS may be carried in an auxiliary information field, the auxiliary information field may be carried in signaling, and the auxiliary information field is used to indicate a request for positioning auxiliary information.
  • the information used to indicate the time window for measuring the PRS may be carried in the auxiliary information field of the long term evolution (LTE) positioning protocol (LTE positioning protocol, LPP) signaling.
  • LTE long term evolution
  • the method shown in FIG. 6 further includes:
  • the access network device sends activation signaling to the terminal device, and correspondingly, the terminal device receives the activation signaling from the access network device, and the activation signaling is used to activate one or more of the values of the N time windows , One or more values are used to determine the first time window.
  • the terminal device can clearly know which time window to report the measurement result. It can be understood that for the specific implementation of the activation signaling, reference may be made to the corresponding descriptions in the following embodiments, which will not be described in detail here.
  • the method shown in FIG. 6 further includes:
  • the network device determines the information used to indicate the time window for measuring the PRS.
  • the network device may carry the information for indicating the time window for measuring the PRS according to the format of the LPP signaling.
  • the terminal device measures one or more PRSs within the first time window, and obtains one or more measurement results.
  • the method shown in FIG. 6 may further include:
  • the terminal device does not measure one or more PRSs within the first time window, the first time window is extended until one or more PRSs are measured.
  • the terminal device in Figure 7c does not measure one or more PRSs in the first time window, the terminal device can extend the duration of the first time window (the extended duration is shown by the dashed line in Figure 7c) ) Until one or more PRSs are measured. It is understandable that the specific time period extended by the terminal device is not limited in the embodiment of the present application.
  • the terminal device can delay by a multiple of the first time window, thereby increasing the implementation efficiency, so that when the terminal device does not measure one or more PRS within the first time window, it can quickly determine the length of the extended time window. duration.
  • the method shown in FIG. 6 may further include:
  • the terminal device reports the first measurement result, and the first measurement result is a measurement result obtained by weighting one or more measurement results.
  • the network device receives the first measurement result.
  • the first measurement result may be an average value obtained by weighting one or more measurement results, and the embodiment of the present application does not limit how to weight. That is, the first measurement result may be a weighted result of the measurement result obtained by the terminal device in the first time window.
  • the terminal device may periodically measure the location information of the PRS to obtain the measurement result.
  • the network device may also repeatedly send the PRS.
  • the terminal device may also obtain measurement results based on the model shown in FIG. 3, or the terminal device may obtain measurement results based on other models, etc., which is not limited in the embodiment of the present application. It can be understood that, for the relevant description of the PRS, the following embodiments are also applicable.
  • the method shown in FIG. 6 may further include:
  • the network device estimates the location information of the terminal device according to the first measurement result.
  • the network device estimates the location information of the terminal device according to the first measurement result reported by the terminal device.
  • the location information of the terminal device refer to the aforementioned formula (1) and formula (2), or it can also be estimated according to other methods, etc., which is not limited in the embodiment of the present application.
  • the method shown in FIG. 6 may further include:
  • the network device sends the updated time window information to the terminal device, and the terminal device receives the updated time window information from the network device;
  • the terminal device measures one or more PRSs in the updated time window according to the information of the updated time window.
  • the network device can update the time window according to the motion state of the terminal device, or the network device can update the time window regularly, and so on.
  • the network device can update the time window according to the motion state of the terminal device, or the network device can update the time window regularly, and so on.
  • the terminal device may not measure the PRS at the other time, thereby reducing the measurement overhead of the terminal device and saving power consumption.
  • the terminal device can avoid the waste of measurement resources and reduce the signaling overhead by reporting the measurement result in the first time window. Especially for scenes where the terminal device moves at a high speed, or for the scene where the relative positioning of the terminal device and the network device changes, by reporting the measurement results in the first time window, it is possible to avoid reporting measurement results that are no longer applicable, and to ensure data integrity Timeliness improves positioning accuracy.
  • the size of the first time window (such as T) in Figure 6 can be configured to the UE by the LMF or the base station through high-level signaling, and the size of T can be dynamically changed, for example, the current UE
  • T can be configured to a larger value to ensure the robustness of multiple measurements
  • T can be configured to a smaller value to ensure reporting Timeliness of data.
  • the UE only needs to measure and report the PRS included in the first time window, thereby reducing the measurement overhead of the UE and avoiding positioning performance caused by inaccurate reporting of measurement results loss.
  • FIG. 8 is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application. As shown in Figure 8, the positioning method includes:
  • the UE sends LPP signaling for requesting positioning assistance information to the LMF.
  • the LMF receives the LPP signaling for requesting positioning assistance information.
  • the LMF sends the LPP signaling including the values ⁇ T1, T2, T3, T4,..., Tn ⁇ of N time windows to the UE.
  • the UE receives the LPP signaling including the values of N time windows.
  • the values of the N time windows are carried in the auxiliary information field in the LPP signaling (or, it may also be referred to as the positioning auxiliary information field).
  • the LPP signaling may also include one or more of the configuration information field of the PRS, the information field of the reference cell, and the information field of the neighboring cell.
  • the specific format of the LPP signaling is not limited in the embodiment of the present application.
  • the LMF sends NRPPa signaling including the values of N time windows to the base station.
  • the base station receives the NRPPa signaling including the values of N time windows.
  • the LMF configures N time windows for the UE, and the LMF can also notify the base station of the configuration of the N time windows, so that the base station can activate one time window as the first among the values of the N time windows. Time Window.
  • the value of the N time windows includes the start time of the N time windows or the duration of the N time windows, and the specific description can refer to FIG. 6, which will not be described in detail here.
  • the base station sends media access control-control element (medium access control-control element, MAC-CE) signaling including the start time or duration of the first time window to the UE.
  • media access control-control element medium access control-control element, MAC-CE
  • the UE receives the MAC-CE signaling.
  • the MAC-CE signaling including the first time window can also be understood as the signaling used to activate the first time window.
  • the LMF is configured with N time windows, and the base station can select a time window from the N time windows to activate.
  • the base station can determine which time window to activate according to the approximate moving speed of the UE. For example, if the UE moves faster, it can activate a time window with a shorter duration; for another example, if the UE moves slowly, it can be activated. Long time window.
  • the base station can also determine which time window to activate according to the approximate relative speed of the UE and the base station. If there is no obvious relative movement between the UE and the base station, the base station can activate a longer time window; for example, the UE and the base station If there is obvious relative movement between them, a shorter time window can be activated.
  • the MAC-CE signaling in 804 can also be replaced with downlink control information (DCI) signaling. That is, the DCI signaling may include the start time or the duration of the first time window.
  • DCI downlink control information
  • the UE measures one or more PRSs within the first time window, and obtains one or more measurement results.
  • the UE reports the first measurement result to the LMF, and the first measurement result may be included in the LPP signaling; that is, the UE reports the measurement result within the first time window.
  • the LMF receives the first measurement result.
  • the LMF estimates the location of the UE according to the first measurement result.
  • the LPP signaling shown in Figure 8 can be understood as a communication protocol between the LMF and the UE, and the NRPPa signaling can be understood as a communication protocol between the LMF and the base station.
  • the LPP signaling and NRPPa signaling are only examples.
  • the base station may also periodically update the value of the first time window; or, the base station may also update the value of the first time window according to some specific conditions. For example, the base station may update the value of the first time window when the UE switches cells; or, the base station may also update the value of the first time window when the UE reconnects to the network, etc.
  • the base station updates the value of the first time window is not limited. In other words, the above-mentioned 804-807 can be repeatedly executed as the base station updates the first time window.
  • FIG. 9 is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • the positioning method includes:
  • the UE sends LPP signaling for requesting positioning assistance information to the LMF.
  • the LMF receives the LPP signaling for requesting positioning assistance information.
  • the LMF sends LPP signaling including the values ⁇ T1, T2, T3, T4,..., Tn ⁇ of N time windows to the UE.
  • the UE receives the LPP signaling including the values of N time windows.
  • the values of the N time windows are carried in the auxiliary information field in the LPP signaling.
  • the LMF sends NRPPa signaling including the values of N time windows to the base station.
  • the base station receives the NRPPa signaling including the values of N time windows.
  • the base station sends MAC-CE signaling including values of multiple time windows to the UE.
  • the UE receives the MAC-CE signaling including the values of multiple time windows.
  • the values of the multiple time windows may be the values of multiple time windows selected by the base station from the values of the N time windows configured by the LMF.
  • the base station selects the values of the multiple time windows, reference may be made to the description of the foregoing embodiment, which is not described in detail here.
  • the base station sends DCI signaling including the start time or duration of the first time window to the UE.
  • the UE receives the DCI signaling.
  • the base station can also select a time window value from the multiple time window values to activate, so that the UE can clearly know the need Report the measurement results within which period of time.
  • the UE may also randomly select a time window from the values of the multiple time windows.
  • the value is used as the start time or duration of the first time window; or, the UE may also select a value of a time window as the start time or duration of the first time window according to its own motion state.
  • the UE measures one or more PRSs within the first time window, and obtains one or more measurement results.
  • the UE reports the first measurement result to the LMF.
  • the first measurement result may be included in the LPP signaling; that is, the UE reports the measurement result within the first time window.
  • the LMF receives the first measurement result.
  • the LMF estimates the location of the UE according to the first measurement result.
  • the above 905-908 can be repeatedly executed as the base station updates the first time window.
  • the above-mentioned 904-908 can be repeatedly executed as the base station updates multiple time windows.
  • the embodiment shown in FIG. 9 can be applied to that the LMF configures a large number of time window values for the UE, that is, the LMF configures a large number of candidate values for the UE as the value of the first time window. Therefore, multiple suitable time window values can be selected through MAC-CE signaling, and one of the multiple time window values can be activated through DCI signaling.
  • FIG. 10a is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • the positioning method includes:
  • the UE sends a radio resource control (radiore source control, RRC) signaling used to request positioning assistance information to a base station.
  • RRC radio resource control
  • the base station receives the RRC signaling for requesting positioning assistance information.
  • the base station sends RRC signaling including the values ⁇ T1, T2, T3, T4,..., Tn ⁇ of N time windows to the UE.
  • the UE receives the RRC signaling including the values of N time windows.
  • the base station sends MAC-CE signaling including values of multiple time windows to the UE.
  • the UE receives the MAC-CE signaling including the values of multiple time windows.
  • the base station sends DCI signaling including the start time or duration of the first time window to the UE.
  • the UE receives the DCI signaling.
  • the UE measures one or more PRSs within the first time window, and obtains one or more measurement results.
  • the UE reports the first measurement result to the base station, and the first measurement result may be included in RRC signaling; that is, the UE reports the measurement result within the first time window.
  • the base station receives the first measurement result.
  • the base station estimates the location of the UE according to the first measurement result.
  • the above 1004-1007 can be repeatedly executed as the base station updates the first time window.
  • the above 1003-1007 may be repeatedly executed as the base station updates multiple time windows.
  • the above 1003 and the above 1004 can also be replaced with:
  • the base station sends the MAC-CE signaling including the start time or duration of the first time window to the UE;
  • the base station sends DCI signaling including the start time or duration of the first time window to the UE.
  • the base station can also select a value of a time window from the values of the N time windows as the value of the first time window (ie As the start time or duration of the first time window).
  • the above 1002-1004 can also be replaced with:
  • the base station sends RRC signaling including the start time or duration of the first time window to the UE;
  • the base station sends the MAC-CE signaling including the start time or the duration of the first time window to the UE;
  • the base station sends DCI signaling including the start time or duration of the first time window to the UE.
  • the base station can directly configure the value of a time window for the UE as the value of the first time window. It can be understood that in this case, the base station may also update the value of the first time window regularly; or, the base station may also update the value of the first time window according to some specific conditions. For example, the base station may update the value of the first time window when the UE switches cells; or, the base station may also update the value of the first time window when the UE reconnects to the network, etc.
  • the base station updates the value of the first time window is not limited. As an example, please refer to Fig. 10b, taking 1002-1004 in Fig. 10a as an example where the base station sends RRC signaling including the start time or duration of the first time window to the UE.
  • the positioning method provided in the embodiment of the present application can also be applied to FIG. 10b. It is understandable that for the specific implementation of FIG. 10b, reference may be made to the description of the foregoing embodiment, which will not be detailed here.
  • the value of the N time windows can be configured through RRC signaling, and the combination of MAC-CE signaling and DCI signaling is used to configure the value of the first time window for the UE.
  • the dynamic switching of the size of the first time window can be realized without RRC reconfiguration.
  • FIG. 11a is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • Figure 11a is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application.
  • the positioning method includes:
  • the UE sends LPP signaling for requesting positioning assistance information to the LMF.
  • the LMF receives the LPP signaling for requesting positioning assistance information.
  • the LMF sends the LPP signaling including the values ⁇ T1, T2, T3, T4,..., Tn ⁇ of N time windows to the UE.
  • the UE receives the LPP signaling including the values of N time windows.
  • the LMF sends LPP signaling including the values of multiple time windows to the UE.
  • the UE receives the LPP signaling including the values of multiple time windows.
  • the LMF sends LPP signaling including the start time or duration of the first time window to the UE.
  • the UE receives the LPP signaling.
  • the UE measures one or more PRSs within the first time window, and obtains one or more measurement results.
  • the UE reports the first measurement result to the LMF.
  • the first measurement result may be included in the LPP signaling; that is, the UE reports the measurement result within the first time window.
  • the LMF receives the first measurement result.
  • the LMF estimates the location of the UE according to the first measurement result.
  • the above 1103 and the above 1104 can also be replaced with:
  • the LMF sends the LPP signaling including the start time or duration of the first time window to the UE.
  • the above 1102-1104 can also be replaced with:
  • the LMF sends the LPP signaling including the start time or duration of the first time window to the UE.
  • Fig. 11b taking 1102-1104 in Fig. 11a replaced with LMF sending LPP signaling including the start time or duration of the first time window to the UE as an example.
  • the positioning method provided in the embodiment of the present application can also be applied to FIG. 11b. It is understandable that for the specific implementation of FIG. 11b, reference may be made to the description of the foregoing embodiment, which will not be detailed here.
  • the UE is notified of the value of the first time window through LPP signaling, and the UE is notified of the update of the value of the first time window through LPP signaling. Therefore, the embodiment of this application is applicable to the UE relative In a scenario where the base station or the UE is stationary relative to the LMF, or, the embodiments of the present application may also be applicable to a scenario where the UE moves relatively slowly relative to the base station or the UE relative to the LMF.
  • an embodiment of the present application also provides a positioning method, please refer to FIG. 12, which is a schematic diagram of a scene of a positioning method provided by an embodiment of the present application. As shown in Figure 12, the positioning method includes:
  • the UE sends LPP signaling for requesting positioning assistance information to the LMF.
  • the LMF receives the LPP signaling for requesting positioning assistance information.
  • the LMF sends LPP signaling including positioning assistance information to the UE.
  • the UE receives the LPP signaling.
  • the UE measures one or more PRSs within a predefined time window, and obtains one or more measurement results.
  • the time window may be predefined by the base station or standard or the UE itself. For example, it can be defined by the UE itself, or, after the protocol is defined, it can be set in the UE when the UE leaves the factory, and so on.
  • the UE reports the measurement result within the predefined time window.
  • the LMF estimates the location of the UE according to the reported measurement result in the predefined window.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device can be a terminal device or a chip.
  • the communication device can be used to execute the positioning method provided in the embodiment of the present application.
  • the communication device may include:
  • the receiving unit 1301 is configured to receive information used to indicate a time window for measuring a positioning reference signal PRS from a network device;
  • the processing unit 1302 is configured to measure one or more PRSs within the first time window, and obtain one or more measurement results;
  • the information for indicating the measurement of the PRS time window indicates the start time of the first time window, and/or the duration of the first time window;
  • the network device is a positioning device or an access network device.
  • the end time of the first time window is a reporting time at which the communication device reports the one or more measurement results.
  • the information used to indicate the time window for measuring the PRS includes the values of N time windows; where each value corresponds to a time window, and each value is used to indicate a corresponding one The start time of the time window, or each value is used to indicate the duration of a corresponding time window, and the N time windows include the first time window.
  • the receiving unit 1301 is further configured to receive activation signaling from the access network device, and the activation signaling is used to activate one or more of the values of the N time windows. Value, the one or more values are used to determine the first time window.
  • the unit of the start time is any one of seconds, frames, subframes, time slots, symbols, or milliseconds.
  • the receiving unit 1301 is further configured to receive updated time window information from the network device;
  • the processing unit 1302 is further configured to measure one or more PRSs in the updated time window according to the information of the updated time window.
  • the information used to indicate the time window for measuring the PRS is carried in the auxiliary information field of the Long Term Evolution LTE positioning protocol LPP signaling.
  • the processing unit 1302 is further configured to extend the first time window until the one or more PRSs are not measured within the first time window.
  • the device further includes:
  • the sending unit 1303 is configured to report a first measurement result, where the first measurement result is a measurement result obtained by weighting the one or more measurement results.
  • the processing unit 1302 can be one or more processors
  • the sending unit 1303 can be a transmitter
  • the receiving unit 1301 can be a receiver.
  • the transmitter, or the sending unit 1303 and the receiving unit 1301 are integrated into one device, such as a transceiver.
  • the processing unit 1302 can be one or more processors, the sending unit 1303 can be an output interface, and the receiving unit 1301 can be an input interface, or the sending unit 1303 and the receiving unit 1301 are integrated into one unit, for example Input and output interface.
  • FIG. 14 is a schematic structural diagram of a communication device 140 provided by an embodiment of the present application, which can be used to implement the function of the terminal device in the above method.
  • the apparatus 140 includes at least one processor 1420, configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
  • the processor 1420 can implement the functions of the processing unit shown in FIG. 13.
  • the device 140 may also include a transceiver 1410.
  • the transceiver is used to communicate with other devices through the transmission medium.
  • the processor 1420 uses the transceiver 1410 to send and receive data, and is used to implement the method described in the foregoing method embodiment.
  • the transceiver 1410 may also implement the functions of the receiving unit and the sending unit shown in FIG. 13.
  • the device 140 may also include at least one memory 1430 for storing program instructions and/or data.
  • the memory 1430 and the processor 1420 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1420 may operate in cooperation with the memory 1430.
  • the processor 1420 may execute program instructions stored in the memory 1430. At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium between the transceiver 1410, the processor 1420, and the memory 1430.
  • the memory 1430, the processor 1420, and the transceiver 1410 are connected by a bus 1440.
  • the bus is represented by a thick line in FIG. 14.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 14, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • FIG. 14 is a schematic structural diagram of a terminal device 1500 provided in an embodiment of the application.
  • the terminal device can perform the operations of the terminal device in the methods shown in FIGS. 6 and 8-12, or the terminal device can also perform the operations of the communication device shown in FIG. 13.
  • FIG. 15 only shows the main components of the terminal device.
  • the terminal device 1500 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program. For example, it is used to support the terminal device to execute the description of Figure 6, Figure 8-12.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the terminal device 1500 may also include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 15 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
  • the equipment controls, executes the software program, and processes the data of the software program.
  • the processor may also be a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , A hard disk drive (HDD) or a solid-state drive (solid-state drive, SSD); the memory may also include a combination of the foregoing types of memory.
  • the antenna and radio frequency circuit with transceiving function can be regarded as the transceiving unit 1501 of the terminal device 1500
  • the processor with processing function can be regarded as the processing unit 1502 of the terminal device 1500.
  • the terminal device 1500 may include a transceiving unit 1501 and a processing unit 1502.
  • the transceiving unit may also be referred to as a transceiver, transceiver, transceiving device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1501 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiving unit 1501 can be regarded as the sending unit, that is, the transceiving unit 1501 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 1501 and the processing unit 1502 may be integrated into one device or separated into different devices.
  • the processor and the memory may also be integrated into one device or separate into different devices.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device can be a network device or a chip.
  • the communication device can be used to execute the positioning method provided in the embodiment of the present application.
  • the communication device may include:
  • the processing unit 1601 is configured to determine information used to indicate the time window of the measurement positioning reference signal PRS;
  • the sending unit 1602 is configured to output the information for indicating the time window for measuring the PRS; wherein the information for indicating the time window for measuring the PRS indicates the start time of the first time window, and/or the information for the first time window Duration:
  • the communication device is a positioning device or an access network device.
  • the sending unit 1602 may be used to send information indicating the time window for measuring the PRS to the terminal device.
  • the end time of the first time window is the reporting time at which the terminal device reports the one or more measurement results.
  • the information used to indicate the time window for measuring the PRS includes the values of N time windows; where each value corresponds to a time window, and each value is used to indicate a corresponding one The start time of the time window, or each value is used to indicate the duration of a corresponding time window, and the N time windows include the first time window.
  • the sending unit 1602 is also used to output activation signaling, the activation signaling is used to activate one or more of the values of the N time windows, the one or more A value is used to determine the first time window.
  • the sending unit 1602 can be used to send activation signaling to the terminal device.
  • the unit of the start time is any one of subframes, time slots, symbols, or milliseconds.
  • the sending unit 1602 is further configured to output information of the updated time window, and the information of the updated time window is used to instruct to update the first time window.
  • the sending unit 1602 can be used to send the updated time window information to the terminal device.
  • the information used to indicate the time window for measuring the PRS is carried in the auxiliary information field of the Long Term Evolution LTE positioning protocol LPP signaling.
  • the device further includes:
  • the receiving unit 1603 is configured to receive a first measurement result sent by the terminal device, where the first measurement result is a measurement result obtained by weighting the one or more measurement results.
  • the processing unit 1601 is further configured to estimate the location information of the terminal device according to the first measurement result.
  • the processing unit 1601 can be one or more processors
  • the sending unit 1602 can be a transmitter
  • the receiving unit 1603 can be a receiver.
  • the transmitter, or the sending unit 1602 and the receiving unit 1603 are integrated into one device, such as a transceiver.
  • the processing unit 1601 can be one or more processors
  • the sending unit 1602 can be an output interface
  • the receiving unit 1603 can be an input interface
  • the sending unit 1602 and the receiving unit 1603 are integrated into one unit, for example Input and output interface.
  • FIG. 14 is a schematic structural diagram of a communication device 140 provided by an embodiment of the present application, which may be used to implement the function of the network device in the foregoing method.
  • the apparatus 140 includes at least one processor 1420, which is configured to implement the function of the network device in the method provided in the embodiment of the present application. Specifically, the processor 1420 can implement the functions of the processing unit shown in FIG. 16.
  • the device 140 may also include a transceiver 1410.
  • the transceiver is used to communicate with other devices through the transmission medium.
  • the processor 1420 uses the transceiver 1410 to send and receive data, and is used to implement the method described in the foregoing method embodiment.
  • the transceiver 1410 may also implement the functions of the receiving unit and the sending unit shown in FIG. 16.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes FIG. 6, Any method in the embodiments shown in Figs. 8-12.
  • the present application also provides a computer-readable storage medium that stores program code, and when the program code runs on a computer, the computer executes FIG. 6, FIG. 8- Any method in the embodiment shown in Figure 12.
  • the present application also provides a system, which includes the aforementioned terminal device and network device.
  • the terminal device can be used to execute any of the methods of the terminal device or UE shown in FIG. 6 and FIG. 8 to FIG. 12 provided in the embodiments of the present application, and the network device may be used to execute the method corresponding to the terminal device.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, SSD).
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种定位方法及装置,该方法包括:终端设备从网络设备接收用于指示测量定位参考信号PRS时间窗的信息;然后该终端设备在第一时间窗内测量一个或多个PRS,得到一个或多个测量结果。其中,该用于指示测量PRS时间窗的信息指示该第一时间窗的起始时间,和/或,该第一时间窗的持续时间。通过测量该第一时间窗内的PRS,得到测量结果,既避免了终端设备上报不适用或不准确的测量结果,提高了定位精度,又减少终端设备的信令开销。

Description

一种定位方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种定位方法及装置。
背景技术
在第三代合作伙伴计划(3rd generation partnership project,3GPP)标准中定位技术一般分为:依赖于无线接入技术(radio access technology,RAT)(RAT-dependent)的定位技术、独立于无线接入技术(RAT-independent)的定位技术以及RAT-dependent和RAT-independent相结合的定位技术。
其中,RAT-dependent的定位技术中基于下行链路的定位技术的一般步骤如:首先,多个基站向终端设备发送定位参考信号(positioning reference signal,PRS);接着,该终端设备对接收到的PRS进行测量,得到测量结果,例如测量该PRS的到达时间(time of arrive,TOA)、到达时间差(time difference of arrival,TDOA)和参考信号接收功率(reference signal receive power,RSRP)中的一项或多项;然后,该终端设备将该测量结果上报给定位设备;最后,该定位设备可根据该测量结果确定该终端设备的位置信息。
然而,采用上述方法并不能满足第五代通信(5th generation mobile networks,5G)系统对定位的高精度要求。因此,如何提高定位精度是5G及其下一代移动通信系统亟待解决的问题。
发明内容
本申请实施例提供了一种定位方法及装置,可用于提高定位精度。
第一方面,本申请提供一种定位方法,该方法包括:
终端设备从网络设备接收用于指示测量定位参考信号PRS时间窗的信息;所述终端设备在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果;其中,所述用于指示测量PRS时间窗的信息指示所述第一时间窗的起始时间,和/或,所述第一时间窗的持续时间;所述网络设备为定位设备或者接入网设备。
本申请实施例中,第一时间窗可理解为上报周期之内的一段时长。通过向终端设备发送第一时间窗,使得该终端设备上报该第一时间窗内的测量结果,避免了终端设备上报整个周期内的测量结果,而该整个周期内的测量结果出现不适用的情况或已不准确的情况时,而造成定位精度下降的情况。进而实施本申请实施例,可有效提高定位精度;同时,由于上报的是第一时间窗内的测量结果,因此,还可有效降低终端设备的上报开销。
在一种可能的实现方式中,所述第一时间窗的终止时间为所述终端设备上报所述一个或多个测量结果的上报时刻。
本申请实施例中,第一时间窗可理解为靠近上报时刻的一段时长,由此,可使得终端设备上报最新的测量结果。同时,在终端设备高速运动的场景,或者在终端设备与网络设备相对运动的场景,通过上报最新的测量结果,可保证上报的测量结果的时效性,提高终端设备的定位精度,从而使得网络设备能够准确的估算终端设备的位置。
在一种可能的实现方式中,所述用于指示测量PRS时间窗的信息包括N个时间窗的 取值;其中,每个取值对应一个时间窗,且每个取值用于指示对应的一个时间窗的起始时间,或者,每个取值用于指示对应的一个时间窗的持续时间,所述N个时间窗包括所述第一时间窗。
本申请实施例中,网络设备还可为终端设备配置N个时间窗的取值,从而使得该终端设备可自主选择第一时间窗的取值。
在一种可能的实现方式中,所述方法还包括:所述终端设备从所述接入网设备接收激活信令,所述激活信令用于激活所述N个时间窗的取值中的一个或多个取值,所述一个或多个取值用于确定所述第一时间窗。
本申请实施例中,在为终端设备配置N个时间窗的取值后,接入网设备还可激活该N个时间窗的取值中的一个或多个,从而使得该终端设备明确第一时间窗的取值。
在一种可能的实现方式中,所述起始时间的单位是秒、帧、子帧、时隙、符号、或者毫秒中的任一项。
在一种可能的实现方式中,所述方法还包括:所述终端设备从所述网络设备接收更新的时间窗的信息;所述终端设备根据所述更新的时间窗的信息在更新后的时间窗内测量一个或多个PRS。
在一种可能的实现方式中,所述用于指示测量PRS时间窗的信息承载于长期演进LTE定位协议LPP信令的辅助信息字段。
在一种可能的实现方式中,所述方法还包括:所述终端设备在所述第一时间窗内未测量到所述一个或多个PRS,则所述终端设备延长所述第一时间窗直至测量到一个或多个PRS。
在一种可能的实现方式中,所述方法还包括:所述终端设备上报第一测量结果,所述第一测量结果为所述一个或多个测量结果加权得到的测量结果。
第二方面,本申请提供一种定位方法,该方法包括:
网络设备确定用于指示测量定位参考信号PRS时间窗的信息;所述网络设备向终端设备发送所述用于指示测量PRS时间窗的信息;其中,所述用于指示测量PRS时间窗的信息指示第一时间窗的起始时间,和/或,所述第一时间窗的持续时间;所述网络设备为定位设备或者接入网设备。
在一种可能的实现方式中,所述第一时间窗的终止时间为所述终端设备上报所述一个或多个测量结果的上报时刻。
在一种可能的实现方式中,所述用于指示测量PRS时间窗的信息包括N个时间窗的取值;其中,每个取值对应一个时间窗,且每个取值用于指示对应的一个时间窗的起始时间,或者,每个取值用于指示对应的一个时间窗的持续时间,所述N个时间窗包括所述第一时间窗。
在一种可能的实现方式中,所述方法还包括:所述接入网设备向所述终端设备发送激活信令,所述激活信令用于激活所述N个时间窗的取值中的一个或多个取值,所述一个或多个取值用于确定所述第一时间窗。
在一种可能的实现方式中,所述起始时间的单位是秒、帧、子帧、时隙、符号、或者毫秒中的任一项。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送更新的时间窗的信息,所述更新的时间窗的信息用于指示更新所述第一时间窗。
在一种可能的实现方式中,所述用于指示测量PRS时间窗的信息承载于长期演进LTE定位协议LPP信令的辅助信息字段。
在一种可能的实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的第一测量结果,所述第一测量结果为所述一个或多个测量结果加权得到的测量结果。
在一种可能的实现方式中,所述方法还包括:所述网络设备根据所述第一测量结果估算所述终端设备的位置信息。
第二方面的有益效果可参见第一方面的有益效果,在此不赘述。
第三方面,本申请提供了一种通信装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面及第一方面的各种可能的实现方式所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。
第四方面,本申请提供了一种通信装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第二方面及第二方面的各种可能的实现方式所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。
第五方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器;所述存储器用于存储计算机执行指令;所述处理器用于执行所述计算机执行指令,以使所述通信装置执行如第一方面及第一方面的各种可能的实现方式所述的方法。
第六方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器;所述存储器用于存储计算机执行指令;所述处理器用于执行所述计算机执行指令,以使所述通信装置执行如第二方面及第二方面的各种可能的实现方式所述的方法。
第七方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于调用所述程序代码执行如第一方面及第一方面的各种可能的实现方式所述的方法。
第八方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于调用所述程序代码执行如第二方面及第二方面的各种可能的实现方式所述的方法。
第九方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路;所述接口电路,用于接收代码指令;所述处理器用于运行所述代码指令以使所述通信装置执行如第一方面及第一方面的各种可能的实现方式所述的方法。
第十方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路;所述接口电路,用于接收代码指令;所述处理器用于运行所述代码指令以使所述通信装置执行如第二方面及第二方面的各种可能的实现方式所述的方法。
第十一方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使如第一方面及第一方面的各种可能的实现方式所述的方法被实现。
第十二方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使如第二方面及第二方面的各种可能的实现方式所述的方 法被实现。
第十三方面,本申请提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第一方面及第一方面的各种可能的实现方式所述的方法被实现。
第十四方面,本申请提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第二方面及第二方面的各种可能的实现方式所述的方法被实现。
第十五方面,本申请提供一种计算机程序,所述计算机程序用于执行第一方面及第一方面的各种可能的实现方式。
第十六方面,本申请提供一种计算机程序,所述计算机程序用于执行第二方面及第二方面的各种可能的实现方式。
第十七方面,本申请提供一种定位方法,该方法包括:
网络设备向终端设备发送用于指示测量PRS时间窗的信息;其中,所述用于指示测量PRS时间窗的信息指示第一时间窗的起始时间,和/或,所述第一时间窗的持续时间;所述网络设备为定位设备或者接入网设备;
以及所述终端设备从所述网络设备接收用于指示测量定位参考信号PRS时间窗的信息;所述终端设备在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果。
可理解,对于本申请所提供的方法还可参考第一方面及第一方面的各种可能的实现方式,以及第二方面及第二方面的各种可能的实现方式,这里不再一一详述。
附图说明
图1是本申请实施例提供的一种确定到达角度差的示意图;
图2a是本申请实施例提供的一种通信系统的架构示意图;
图2b是本申请实施例提供的一种通信系统的架构示意图;
图3是本申请实施例提供的一种测量模型示意图;
图4是本申请实施例提供的一种PRS的配置示意图;
图5是本申请实施例提供的一种UE测量数据的示意图;
图6是本申请实施例提供的一种定位方法的流程示意图;
图7a是本申请实施例提供的一种第一时间窗的配置示意图;
图7b是本申请实施例提供的一种第一时间窗的配置示意图;
图7c是本申请实施例提供的一种第一时间窗的配置示意图;
图8是本申请实施例提供的一种定位方法的场景示意图;
图9是本申请实施例提供的一种定位方法的场景示意图;
图10a是本申请实施例提供的一种定位方法的场景示意图;
图10b是本申请实施例提供的一种定位方法的场景示意图;
图11a是本申请实施例提供的一种定位方法的场景示意图;
图11b是本申请实施例提供的一种定位方法的场景示意图;
图12是本申请实施例提供的一种定位方法的场景示意图;
图13是本申请实施例提供的一种通信装置的结构示意图;
图14是本申请实施例提供的一种通信装置的结构示意图;
图15是本申请实施例提供的一种终端设备的结构示意图;
图16是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了更好地理解本申请提供的方案,下面先对本申请涉及的相关术语进行介绍:
定位参考信号(positioning reference signal,PRS):由发射端发送给接收端,用于定位功能的一种参考信号。例如,网络设备可周期性地发送PRS,终端设备可周期性地接收该PRS。可理解,在终端设备接收该PRS的过程中,该终端设备可以测量该PRS的到达时间差、到达角度差和参考信号接收功率中的至少一项,获得测量结果。网络设备或者终端设备基于测量结果得到定位结果。以下为保持一致,以下将终端设备接收PRS统一描述为终端设备测量PRS。
到达时间差(time difference of arrival,TDOA):指终端设备接收到的来自不同网络设备发送的参考信号(如PRS)的到达时间的差值。
到达角度差(angle difference of arrival,ADOA):指终端设备接收到的来自不同网络设备发送的参考信号(如PRS)的到达角度的差值。作为示例,如图1所示,基站1、基站2和基站3可分别向终端设备发送PRS,其中,以水平线为基准可得到到达角1、到达角2和到达角3。如以到达角1为参考角度,则到达角度差可为到达角1和到达角2的差值;到达角1和到达角3的差值。可理解,图1所示的到达角仅为一种示例,在具体实现中,可能还有其他方法来确定到达角度差,本申请实施例不作限定。
参考信号接收功率(reference signal receive power,RSRP):定义为在测量频率带宽内,承载参考信号的资源单元(resource element)的功率的线性平均值(单位:W)。
上报时刻:网络设备配置或者协议预定义的、用于上报测量结果的时刻。例如,网络设备配置上报周期为8个时隙,第1时隙、第9时隙为一个上报时刻。
以下将详细介绍本申请所涉及的网络架构。
本申请提供的各方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,第五代(5th-generation,5G)通信系统,还可以是LTE与5G混合架构,以及下一代通信系统(如6G)等。只要通信系统中需要通过测量一段时间内的参考信号的定位信息,均可以采用本申请实施例提供的方法。
请参见图2a,图2a是本申请实施例提供的一种通信系统的架构示意图。如图2a所示,该通信系统包括终端设备和至少一个网络设备。
在一种可能的实现方式中,网络设备为接入网设备,即可由接入网设备确定终端设备的位置信息。例如,接入网设备可包括终端设备的服务小区的接入网设备和/或邻小区的至少一个接入网设备。
接入网设备可以是能和终端设备通信的设备。接入网设备可以是任意一种具有无线收发功能的设备,包括但不限于基站。例如,该基站可以为下一代节点B(the next generation Node B,gNB),又或者该基站为未来通信系统中的基站。可选的,该接入网设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该接入网设备还可以是可穿戴设备或车载设备等。可选的,该接入网设备还可以是小站,传输节点(transmission reception point,TRP)(或也可以称为传输接收点)等。可理解,该接入网设备还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站等等。
在一种可能的实现方式中,网络设备为定位设备,即由定位设备确定终端设备的位置信息。定位设备可为核心网侧能够实现定位管理功能的网元。例如,定位设备可为定位管理功能(location management function,LMF)网元、定位管理单元(location management unit,LMU)、定位管理中心(location management center,LMC)或演进服务移动位置中心(evolved serving mobile location center,E-SMLC)。可理解,定位设备还可以是其他用于确定终端设备的位置信息的设备等等,本申请实施例对于该定位设备的名称不作限定。
终端设备,也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。可理解,该终端设备还可以是未来6G网络中的终端设备或者未来演进的PLMN中的终端设备等。
作为示例,常用的估算位置信息的算法包括三边定位法或三角定位法,即通过计算以不同基站为圆心的几个圆的交点来估计目标的位置。假设t i(i=1,…N)定义为参考信号从基站i与UE之间的传输时间与光速的乘积,b i定义为基站i的坐标,x UE定义为UE的坐标(即UE的位置),ω定义为时间误差与光速的乘积,如果假设每一个t i都服从独立高斯分 布,并且方差为
Figure PCTCN2019126107-appb-000001
均值为ω+‖b i- UE‖,则其概率分布函数(PDF)公式如(1):
Figure PCTCN2019126107-appb-000002
对于上式采用最小二乘法估计的结果如公式(2):
Figure PCTCN2019126107-appb-000003
可理解,以上仅为本申请实施例提供的一种估算终端设备的位置信息的方法,在具体实现中,可能还包括其他方法,例如双曲线定位法、指纹定位法或粒子滤波定位法等等,对于这些方法的具体实现,本申请实施例不作详述。
请参见图2b,图2b是本申请实施例提供的一种通信系统的架构示意图。该通信系统包括UE、gNB1、gNB2和gNB3。其中,gNB1、gNB2和gNB3可分别周期性地发送PRS,UE可周期性的接收PRS,测量PRS的定位信息,得到测量结果。例如,UE可测量PRS的TDOA、ADOA或RSRP中的一项或多项,本申请对于PRS的定位信息不限于此。进一步的,UE还可上报该测量结果。作为示例,对于UE如何得到测量结果,可参考图3。可理解,本申请实施例对于UE如何测量PRS的TDOA、ADOA或RSRP等等,不作限定。
请参见图3,图3是本申请实施例提供的一种测量模型示意图。图3中的A点为输入的测量数据(即PRS的定位信息),B点为经过层1滤波之后的数据,C点为经过层3滤波后的数据,D点为最终上报给网络设备的数据。层3滤波公式如公式(3)所示:
F n=(1-a)·F n-1+a·M n  (3)
其中,M n表示来自物理层的第n次的测量结果(也可理解为第n个上报周期内的测量数据的加权结果),对应图3的B点。作为示例,M n可为测量数据的平均。F n为第n次测量的结果,即图3中C点的输出结果;F n-1为第n-1次的测量结果。作为示例,当第一次测量时,F 0设置为M 1。其中,a=1/2 (k/4),k称为滤波系数,如果k=0,则表示没有层3滤波,k的大小对应了第n-1次测量结果在第n次测量结果中所占的比例。可理解,
对于PRS的测量上报过程,如果采用上述模型,即首先对图3中的N个PRS occasion的测量结果进行层1滤波(取平均)得到M n;然后利用公式(3)进行层3滤波,最终上报F n
在实际应用中,UE在进行测量的时候,并不是仅仅测量一次PRS就进行上报,而是对来自不同基站的PRS信号进行多次测量,然后在固定的上报时刻进行上报。PRS可以周期性发送,周期的大小有多种选择。例如,在新无线(new radio,NR)中PRS的周期可以被配置为2 μ*{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240,20480}个时隙,μ的取值范围为{0,1,2,3,4}。除此之外,在下行波束扫描的时候,PRS还可以被配置重复发送,即在配置的周期间隔期间也会有PRS的发送。作为示例,如图4所示,尽管PRS的周期被配置为8个时隙(slot),但是在该8个时隙内,基站也可重复的发送PRS。如图4所示,如重复次数为4次,重复间隔为2个时隙,则在8个时隙内,基站也可重复的发送PRS。可理解,这里的重复发送指的是一个PRS资源可以用同一个波束重复发送。
图4中示出的是一个基站发送的PRS,而实际上在同一时间段UE需要接收多个基站(如至少三个基站)的PRS才能有效定位。也就是说,在同一时间段UE需要对很多个PRS进行测量。如图5所示,如将同一时间段内对多个PRS的测量当作一个occasion(如接收gNB1发送的PRS、gNB2发送的PRS和gNB3发送的PRS)。则在上报时刻n与上报时刻n+1之间,UE已经测量了多组数据。
图5中可以看出在上报时刻之前,UE已经测量了多组数据,数据的内容包括PRS的到达时间、不同PRS到达的时间差以及不同PRS的接收功率等。
UE需要对上报之前的所有PRS进行测量,然后再进行层1滤波,而且层1滤波的方法是取平均值。但是UE在高速场景或者相对定位场景(收发双方都在移动),接收方和发送方的位置时刻在发送变化,那么之前某些测量结果可能不适用或者失效。此时接收方的UE在上报时刻如果仍然上报之前的所有测量结果,不仅会浪费测量资源,而且由于添加了不适用的测量值,也会导致最终的定位精度下降。
由此,本申请提供一种定位方法,可避免测量资源的浪费,提高定位精度。以下将详细介绍本申请所提供的定位方法。
请参见图6,图6是本申请实施例提供的一种定位方法的流程示意图。作为示例,该定位方法可适用于图2a和/或图2b所示的通信系统。作为示例,该定位方法也可适用于图3-图5所介绍的相关背景模型。作为示例,本申请实施例中的网络设备可为接入网设备或定位设备,对于接入网设备和定位设备的具体描述可参考图2a,这里不再详述。
如图6所示,该定位方法包括:
601、网络设备向终端设备发送用于指示测量PRS时间窗的信息;其中,该用于指示测量PRS时间窗的信息指示第一时间窗的起始时间,和/或,第一时间窗的持续时间。相应的,该终端设备接收该用于指示测量PRS时间窗的信息。
本申请实施例中,第一时间窗可理解为两个上报时刻之间的一段时长。可理解,该上报时刻与上报周期相关,例如,上报周期为4个时隙,则从起始上报时刻起,每4个时隙即为上报时刻。
作为示例,用于指示测量PRS时间窗的信息可包括第一时间窗的起始时间,该情况下,该第一时间窗的终止时间可预先配置;或者,该用于指示测量PRS时间窗的信息还可包括第一时间窗的终止时间;或者,该第一时间窗的终止时间为终端设备上报一个或多个测量结果的上报时刻。其中,可由终端设备预先配置终止时间;或者,也可由网络设备预先配置终止时间等等,本申请实施例不作限定。其中,通过将该第一时间窗的终止时间设置为终端设备上报一个或多个测量结果的上报时刻,可使得终端设备上报最新的测量结果,以保证上报的测量结果的时效性。
作为示例,用于指示测量PRS时间窗的信息可包括第一时间窗的持续时间,该情况下,该第一时间窗的终止时间和/或起始时间可预先配置;或者,用于指示测量PRS时间窗的信息还可包括第一时间窗的起始时间或终止时间;或者,该第一时间窗的起始时间或终止时间为终端设备上报一个或多个测量结果的上报时刻。
作为示例,用于指示测量PRS时间窗的信息可包括第一时间窗的起始时间和持续时间。通过该方式,可使得终端设备明确得知上报哪段时间内的测量结果。
作为示例,请参见图7a,如第一时间窗可理解为上报时刻n与上报时刻n+1之内的一段时长。终端设备通过上报该第一时间窗内的测量结果,可有效减少上报的数据量大小,从而减少信令开销。请参见图7b,第一时间窗的终止时间与下一个上报时刻相同。终端设备通过上报该第一时间窗内的测量结果,可使得终端设备在高速移动的场景下,能够上报最新的测量结果,从而保证上报的数据的有效性。
在一种可能的实现方式中,用于指示测量PRS时间窗的信息包括N个时间窗的取值; 其中,每个取值对应一个时间窗,且每个取值用于指示对应的一个时间窗的起始时间,或者,每个取值用于指示对应的一个时间窗的持续时间,所述N个时间窗包括所述第一时间窗。
作为示例,N个时间窗包括第一时间窗、第二时间窗、第三时间窗等等。即用于指示测量PRS时间窗的信息包括第一时间窗的取值、第二时间窗的取值、第三时间窗的取值等等。该第一时间窗的取值可用于指示第一时间窗的起始时间或持续时间,第二时间窗的取值可用于指示第二时间窗的起始时间或持续时间,第三时间窗的取值可用于指示第三时间窗的起始时间或持续时间等等。可理解,第一时间窗的取值也可为第一时间窗的起始时间的索引。例如,N个时间窗的取值如{T 1,T 2,T 3,…,T n}可如下所示:
示例1:{4,8,12,16,20,24,28,32,36,40,44,48};
示例2:{5,10,15,20,25,30,35,40,45,50,55,60};
示例3:{8,16,24,32,40,48,56,64,72,80,88,96};
示例4:{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240,20480}。
可理解,上述各个示例中的取值可为起始时间或持续时间。可理解,以上各个示例中的取值也可为起始时间的索引或持续时间的索引。例如,起始时间的索引4可对应起始时间时隙4;又例如,起始时间的索引8可对应起始时间时隙5等等,本申请实施例对于索引关系不作限定。
本申请实施例中,上述起始时间的单位是秒、帧、子帧、时隙、符号、或者毫秒中的任一项。以及上述终止时间的单位是秒、帧、子帧、时隙、符号、或者毫秒中的任一项。可理解,上述起始时间的取值也可能是秒的索引、帧的索引、子帧的索引、时隙的索引、符号的索引或毫秒的索引中的任一项。
本申请实施例中,用于指示测量PRS时间窗的信息可承载于辅助信息字段,该辅助信息字段可承载于信令中,且该辅助信息字段用于指示请求定位辅助信息。例如,用于指示测量PRS时间窗的信息可承载于长期演进(long term evolution,LTE)定位协议(LTE positioning protocol,LPP)信令的辅助信息字段。
在一种可能的实现方式中,图6所示的方法还包括:
接入网设备向终端设备发送激活信令,相应的,终端设备从接入网设备接收该激活信令,该激活信令用于激活N个时间窗的取值中的一个或多个取值,一个或多个取值用于确定第一时间窗。
通过向终端设备发送激活信令,可使得终端设备明确得知上报哪个时间窗内的测量结果。可理解,对于该激活信令的具体实现,可参考以下各个实施例中的相应描述,这里先不详述。
在一种可能的实现方式中,在网络设备向终端设备发送用于指示测量PRS时间窗的信息之前,图6所示的方法还包括:
网络设备确定用于指示测量PRS时间窗的信息。
可选地,网络设备可以根据LPP信令的格式来承载该用于指示测量PRS时间窗的信息。
602、终端设备在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果。
在一种可能的实现方式中,图6所示的方法还可包括:
若终端设备在第一时间窗内未测量到一个或多个PRS,则延长第一时间窗直至测量到一个或多个PRS。
请参见图7c,图7c中终端设备在第一时间窗内未测量到一个或多个PRS,则该终端设备便可延长该第一时间窗的时长(延长时长如图7c中的虚线所示),直至测量到一个或多个PRS。可理解,对于终端设备延长的具体时长,本申请实施例不作限定。
可选地,终端设备可以第一时间窗的倍数来延时,从而增加实现效率,使得终端设备在第一时间窗内未测量到一个或多个PRS时,能够快速确定延长后的时间窗的时长。
在一种可能的实现方式中,图6所示的方法还可包括:
终端设备上报第一测量结果,第一测量结果为一个或多个测量结果加权得到的测量结果。相应的,网络设备接收第一测量结果。
可理解,第一测量结果可为一个或多个测量结果加权后得出的平均值,本申请实施例对于如何加权不作限定。也就是说,该第一测量结果可为终端设备在第一时间窗内测量得到的测量结果的加权结果。
作为示例,本申请实施例中与PRS的相关描述可参考图3-图5。例如,终端设备可周期性的测量PRS的定位信息,得到测量结果。又例如,网络设备还可重复发送PRS。又例如,终端设备还可基于图3所示的模型得到测量结果,或者终端设备还可基于其他模型得到测量结果等等,本申请实施例不作限定。可理解,对于该PRS的相关描述,以下各个实施例同样适用。
在一种可能的实现方式中,图6所示的方法还可包括:
网络设备根据第一测量结果估算终端设备的位置信息。
本申请实施例中,对于网络设备如何根据终端设备所上报的第一测量结果来估算终端设备的位置信息不作限定。对于如何估算终端设备的位置信息可参考前述公式(1)和公式(2),或者,还可根据其他方法估算等等,本申请实施例不作限定。
在一种可能的实现方式中,图6所示的方法还可包括:
网络设备向终端设备发送更新的时间窗的信息,该终端设备从网络设备接收更新的时间窗的信息;
终端设备根据更新的时间窗的信息在更新后的时间窗内测量一个或多个PRS。
其中,网络设备可根据终端设备的运动状态来更新时间窗,又或者,网络设备可定期更新时间窗等等。关于用于更新时间窗的信息的具体描述,可参考以下各个实施例,这里不作一一详述。
可理解,本申请实施例中,对于终端设备是否测量第一时间窗之外的其他时间的PRS,且该其他时间与第一时间窗属于同一个上报周期,不作限定。作为示例,该终端设备对于该其他时间的PRS可不测量,从而可减少该终端设备的测量开销,以及节省功耗。
实施本申请实施例,终端设备通过上报第一时间窗内的测量结果,可避免了测量资源的浪费,减少了信令开销。尤其是对于终端设备高速运动的场景,或者是对于终端设备与网络设备的相对定位变化的场景,通过上报第一时间窗内的测量结果,可避免上报已不适用的测量结果,保证了数据的时效性,提高了定位精度。
以终端设备为UE作为示例,参考图6,图6中的第一时间窗(如T)的大小可由LMF或者基站通过高层信令配置给UE,并且T的大小可以动态变化,例如,当前UE和基站处于相对静止的状态时,T可以配置为较大的值,以保证多次测量的稳健性;而当UE和基站处于相对运动状态时,T可以配置为较小的值,以保证上报数据的时效性。无论T的 值为多少,UE只需要对包含在该第一时间窗内的PRS进行测量并上报,由此可以降低UE的测量开销,还可以避免由于上报测量结果的不准确而造成的定位性能损失。
为更形象的理解图6所示的方法,以下将以具体实施例为例来介绍上述定位方法。
实施例一、
请参见图8,图8是本申请实施例提供的一种定位方法的场景示意图。如图8所示,该定位方法包括:
801、UE向LMF发送用于请求定位辅助信息的LPP信令。相应的,LMF接收该用于请求定位辅助信息的LPP信令。
802、LMF向UE发送包括N个时间窗的取值{T1,T2,T3,T4,…,Tn}的LPP信令。相应的,该UE接收该包括N个时间窗的取值的LPP信令。
可理解,N个时间窗的取值承载于LPP信令中的辅助信息字段(或者,也可以称为定位辅助信息字段)。
作为示例,该LPP信令还可包括PRS的配置信息字段、参考小区的信息字段和邻小区的信息字段中的一项或多项,本申请实施例对于LPP信令的具体格式不作限定。
803、LMF向基站发送包括N个时间窗的取值的NRPPa信令。相应的,基站接收该包括N个时间窗的取值的NRPPa信令。
也就是说,LMF为UE配置N个时间窗,该LMF也可将该N个时间窗的配置通知给基站,以使得该基站可在N个时间窗的取值中激活一个时间窗作为第一时间窗。
可理解,N个时间窗的取值包括N个时间窗的起始时间或N个时间窗的持续时间,具体描述可参考图6,这里不再一一详述。
804、基站向UE发送包括第一时间窗的起始时间或持续时间的媒体接入层控制-控制单元(medium access control-control element,MAC-CE)信令。相应的,UE接收该MAC-CE信令。
可理解,该包括第一时间窗的MAC-CE信令也可理解为用于激活第一时间窗的信令。也就是说,LMF配置了N个时间窗,基站可从该N个时间窗中选择一个时间窗来激活。至于该基站选择哪个时间窗来激活,本申请实施例不作限定。作为示例,基站可根据UE的大致移动速度来确定激活哪个时间窗,例如,UE的移动速度较快,则可激活时长较短的时间窗;又例如,UE的移动速度较慢,则可激活时长较长的时间窗。作为示例,基站还可根据UE与该基站的大致相对速度来确定激活哪个时间窗,UE与基站之间无明显的相对运动,则基站可激活时长较长的时间窗;又如,UE与基站之间有明显的相对运动,则可激活时长较短的时间窗。
可理解,对于上述804中的MAC-CE信令还可替换为下行控制信息(downlink control information,DCI)信令。也就是说,该DCI信令中可包括第一时间窗的起始时间或持续时间。
805、UE在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果。
806、UE向LMF上报第一测量结果,该第一测量结果可包含于LPP信令中;即UE上报第一时间窗内的测量结果。相应的,LMF接收该第一测量结果。
807、LMF根据第一测量结果估算UE的位置。
可理解,对于LMF如何估算UE的位置可参考前述实施例,这里不作详述。
可理解,图8所示的LPP信令可理解为LMF与UE之间通信的协议,NRPPa信令可 理解为LMF与基站之间通信的协议。该LPP信令和NRPPa信令仅为示例。
在一种可能的实现方式中,基站还可定时更新该第一时间窗的取值;或者,基站还可根据一些特定条件来更新该第一时间窗的取值。例如,基站可在UE切换小区时,更新该第一时间窗的取值;或者,基站还可在UE重新接入网络时,更新该第一时间窗的取值等等,本申请实施例对于基站何时更新该第一时间窗的取值不作限定。也就是说,上述804-807可随着基站更新第一时间窗的步骤,重复被执行。
可理解,对于图8所示的具体实现方式,还可参考前述各个实施例的描述,这里不再一一详述。
实施例二、
请参见图9,图9是本申请实施例提供的一种定位方法的场景示意图。如图9所示,该定位方法包括:
901、UE向LMF发送用于请求定位辅助信息的LPP信令。相应的,LMF接收该用于请求定位辅助信息的LPP信令。
902、LMF向UE发送包括N个时间窗的取值{T1,T2,T3,T4,…,Tn}的LPP信令。相应的,该UE接收该包括N个时间窗的取值的LPP信令。
可理解,N个时间窗的取值承载于LPP信令中的辅助信息字段。
903、LMF向基站发送包括N个时间窗的取值的NRPPa信令。相应的,基站接收该包括N个时间窗的取值的NRPPa信令。
904、基站向UE发送包括多个时间窗的取值的MAC-CE信令。相应的,该UE接收该包括多个时间窗的取值的MAC-CE信令。
可理解,该多个时间窗的取值可为基站从LMF配置的N个时间窗的取值中选择出的多个时间窗的取值。对于基站如何选择该多个时间窗的取值,可参考前述实施例的描述,这里不作详述。
905、基站向UE发送包括第一时间窗的起始时间或持续时间的DCI信令。相应的,UE接收该DCI信令。
可理解,基站在为UE配置了多个时间窗的取值后,该基站还可从该多个时间窗的取值中选择一个时间窗的取值来激活,从而可使得UE明确得知需要上报哪段时长内的测量结果。
在一种可能的实现方式中,UE在接收到包括多个时间窗的取值的MAC-CE信令后,该UE还可随机从该多个时间窗的取值中选择一个时间窗的取值作为第一时间窗的起始时间或持续时间;或者,该UE还可根据自身的运动状态来选择一个时间窗的取值作为第一时间窗的起始时间或持续时间。
906、UE在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果。
907、UE向LMF上报第一测量结果,该第一测量结果可包含于LPP信令中;即UE上报第一时间窗内的测量结果。相应的,LMF接收该第一测量结果。
908、LMF根据第一测量结果估算UE的位置。
可理解,上述905-908可随着基站更新第一时间窗的步骤,重复被执行。或者,上述904-908可随着基站更新多个时间窗的步骤,重复被执行。
图9所示的实施例可应用于,LMF为UE配置大量的时间窗的取值,也就是说,LMF 为UE配置了大量的候选值作为第一时间窗的取值。由此,可通过MAC-CE信令来选择出多个合适的时间窗的取值,以及通过DCI信令激活该多个时间窗的取值中的一个。
可理解,对于图9所示的方法的具体实现方式还可参考前述各个实施例,这里不作详述。
实施例三、
请参见图10a,图10a是本申请实施例提供的一种定位方法的场景示意图。如图10a所示,该定位方法包括:
1001、UE向基站发送用于请求定位辅助信息的无线资源控制(radioresource control,RRC)信令。相应的,该基站接收该用于请求定位辅助信息的RRC信令。
1002、基站向UE发送包括N个时间窗的取值{T1,T2,T3,T4,…,Tn}的RRC信令。相应的,该UE接收该包括N个时间窗的取值的RRC信令。
1003、基站向UE发送包括多个时间窗的取值的MAC-CE信令。相应的,该UE接收该包括多个时间窗的取值的MAC-CE信令。
1004、基站向UE发送包括第一时间窗的起始时间或持续时间的DCI信令。相应的,UE接收该DCI信令。
1005、UE在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果。
1006、UE向基站上报第一测量结果,该第一测量结果可包含于RRC信令中;即UE上报第一时间窗内的测量结果。相应的,基站接收该第一测量结果。
1007、基站根据第一测量结果估算UE的位置。
上述1004-1007可随着基站更新第一时间窗的步骤,重复被执行。或者,上述1003-1007可随着基站更新多个时间窗的步骤,重复被执行。
在一种可能的实现方式中,上述1003和上述1004还可替换为:
基站向UE发送包括第一时间窗的起始时间或持续时间的MAC-CE信令;
或者,基站向UE发送包括第一时间窗的起始时间或持续时间的DCI信令。
也就是说,在基站为UE配置了N个时间窗的取值后,该基站还可从该N个时间窗的取值中选择一个时间窗的取值作为第一时间窗的取值(即作为第一时间窗的起始时间或持续时间)。
在一种可能的实现方式中,上述1002-1004还可替换为:
基站向UE发送包括第一时间窗的起始时间或持续时间的RRC信令;
或者,基站向UE发送包括第一时间窗的起始时间或持续时间的MAC-CE信令;
或者,基站向UE发送包括第一时间窗的起始时间或持续时间的DCI信令。
也就是说,基站可直接为UE配置一个时间窗的取值作为第一时间窗的取值。可理解,该情况下,基站还可定时更新该第一时间窗的取值;或者,基站还可根据一些特定条件来更新该第一时间窗的取值。例如,基站可在UE切换小区时,更新该第一时间窗的取值;或者,基站还可在UE重新接入网络时,更新该第一时间窗的取值等等,本申请实施例对于基站何时更新该第一时间窗的取值不作限定。作为示例,请参见图10b,以图10a中的1002-1004替换为基站向UE发送包括第一时间窗的起始时间或持续时间的RRC信令为例。本申请实施例所提供的定位方法还可应用于图10b,可理解,对于图10b的具体实现方式,可参考前述实施例的描述,这里不再一一详述。
本申请实施例,可通过RRC信令来配置N个时间窗的取值,且利用MAC-CE信令和DCI信令的结合为UE配置第一时间窗的取值。同时可不需要RRC重配置的情况下实现第一时间窗大小的动态切换。
实施例四、
请参见图11a,图11a是本申请实施例提供的一种定位方法的场景示意图。如图11a
所示,该定位方法包括:
1101、UE向LMF发送用于请求定位辅助信息的LPP信令。相应的,LMF接收该用于请求定位辅助信息的LPP信令。
1102、LMF向UE发送包括N个时间窗的取值{T1,T2,T3,T4,…,Tn}的LPP信令。相应的,该UE接收该包括N个时间窗的取值的LPP信令。
1103、LMF向UE发送包括多个时间窗的取值的LPP信令。相应的,该UE接收该包括多个时间窗的取值的LPP信令。
1104、LMF向UE发送包括第一时间窗的起始时间或持续时间的LPP信令。相应的,UE接收该LPP信令。
1105、UE在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果。
1106、UE向LMF上报第一测量结果,该第一测量结果可包含于LPP信令中;即UE上报第一时间窗内的测量结果。相应的,LMF接收该第一测量结果。
1107、LMF根据第一测量结果估算UE的位置。
在一种可能的实现方式中,上述1103和上述1104还可替换为:
LMF向UE发送包括第一时间窗的起始时间或持续时间的LPP信令。
在一种可能的实现方式中,上述1102-1104还可替换为:
LMF向UE发送包括第一时间窗的起始时间或持续时间的LPP信令。
作为示例,请参见图11b,以图11a中的1102-1104替换为LMF向UE发送包括第一时间窗的起始时间或持续时间的LPP信令为例。本申请实施例所提供的定位方法还可应用于图11b,可理解,对于图11b的具体实现方式,可参考前述实施例的描述,这里不再一一详述。
本申请实施例中,通过LPP信令来通知UE第一时间窗的取值,以及通过LPP信令来通知UE第一时间窗的取值的更新,因此,本申请实施例可适用于UE相对于基站或UE相对于LMF静止的场景,或者,本申请实施例也可适用于UE相对于基站或UE相对于LMF运动速度较慢的场景。
在一种可能的实现方式中,本申请实施例还提供了一种定位方法,请参见图12所示,图12是本申请实施例提供的一种定位方法的场景示意图。如图12所示,该定位方法包括:
1201、UE向LMF发送用于请求定位辅助信息的LPP信令。相应的,LMF接收该用于请求定位辅助信息的LPP信令。
1202、LMF向UE发送包括定位辅助信息的LPP信令。相应的,UE接收该LPP信令。
1203、UE在预定义的时间窗内测量一个或多个PRS,得到一个或多个测量结果。
可理解,该时间窗可为基站或标准或UE自己预定义的。例如,可由UE自己定义,或者,也可为协议定义后,在UE出厂时设置到UE中等等。
1204、UE上报该预定义的时间窗内的测量结果。
1205、LMF根据上报的预定义的间窗内的测量结果估算UE的位置。
可理解,对于图12所示的具体描述,也可参考前述实施例,这里不再一一详述。
以上详细描述了本申请所提供的定位方法,以下将详细介绍本申请所涉及的通信装置。
请参见图13,图13是本申请实施例提供的一种通信装置的结构示意图。该通信装置可为终端设备,也可为芯片。且该通信装置可用于执行本申请实施例所提供的定位方法。如图13所示,该通信装置可包括:
接收单元1301,用于从网络设备接收用于指示测量定位参考信号PRS时间窗的信息;
处理单元1302,用于在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果;
其中,该用于指示测量PRS时间窗的信息指示该第一时间窗的起始时间,和/或,该第一时间窗的持续时间;该网络设备为定位设备或者接入网设备。
在一种可能的实现方式中,该第一时间窗的终止时间为该通信装置上报该一个或多个测量结果的上报时刻。
在一种可能的实现方式中,该用于指示测量PRS时间窗的信息包括N个时间窗的取值;其中,每个取值对应一个时间窗,且每个取值用于指示对应的一个时间窗的起始时间,或者,每个取值用于指示对应的一个时间窗的持续时间,该N个时间窗包括该第一时间窗。
在一种可能的实现方式中,该接收单元1301,还用于从该接入网设备接收激活信令,该激活信令用于激活该N个时间窗的取值中的一个或多个取值,该一个或多个取值用于确定该第一时间窗。
在一种可能的实现方式中,该起始时间的单位是秒、帧、子帧、时隙、符号、或者毫秒中的任一项。
在一种可能的实现方式中,该接收单元1301,还用于从该网络设备接收更新的时间窗的信息;
该处理单元1302,还用于根据该更新的时间窗的信息在更新后的时间窗内测量一个或多个PRS。
在一种可能的实现方式中,该用于指示测量PRS时间窗的信息承载于长期演进LTE定位协议LPP信令的辅助信息字段。
在一种可能的实现方式中,该处理单元1302,还用于在该第一时间窗内未测量到该一个或多个PRS,则延长该第一时间窗直至测量到一个或多个PRS。
在一种可能的实现方式中,该装置还包括:
发送单元1303,用于上报第一测量结果,该第一测量结果为该一个或多个测量结果加权得到的测量结果。
本申请实施例中,当上述通信装置是终端设备或终端设备中实现上述功能的部件时,处理单元1302可以是一个或多个处理器,发送单元1303可以是发送器,接收单元1301可以是接收器,或者发送单元1303和接收单元1301集成于一个器件,例如收发器。
当上述通信装置是芯片时,处理单元1302可以是一个或多个处理器,发送单元1303可以是输出接口,接收单元1301可以是输入接口,或者发送单元1303和接收单元1301集成于一个单元,例如输入输出接口。
可理解,对于图13所示的各个单元的实现还可参照图6,以及图8-图12所示的方法实施例的相应描述。
作为示例,当图13所示的通信装置的处理单元用处理器实现,接收单元和发送单元集成于一个单元,用收发器实现时,如图14所示。图14是本申请实施例提供的一种通信装置140的结构示意图,可用于实现上述方法中终端设备的功能。装置140包括至少一个处理器1420,用于实现本申请实施例提供的方法中终端设备的功能。具体的,该处理器1420可实现图13所示的处理单元的功能。装置140还可以包括收发器1410。收发器用于通过传输介质和其它设备进行通信。处理器1420利用收发器1410收发数据,并用于实现上述方法实施例所述的方法。具体的,收发器1410还可实现图13所示的接收单元和发送单元的功能。
装置140还可以包括至少一个存储器1430,用于存储程序指令和/或数据。存储器1430和处理器1420耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1420可能和存储器1430协同操作。处理器1420可能执行存储器1430中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1410、处理器1420以及存储器1430之间的具体连接介质。本申请实施例在图14中以存储器1430、处理器1420以及收发器1410之间通过总线1440连接,总线在图14中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
作为示例,图14所示的通信装置的一种示例可如图15所示,图15为本申请实施例提供的一种终端设备1500的结构示意图。该终端设备可执行如图6、图8-图12所示出的方法中的终端设备的操作,或者,该终端设备也可执行如图13所示的通信装置的操作。
为了便于说明,图15仅示出了终端设备的主要部件。如图15所示,终端设备1500包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图6、图8-图12所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备1500还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理 后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图15仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
示例性的,在申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备1500的收发单元1501,将具有处理功能的处理器视为终端设备1500的处理单元1502。
如图15所示,终端设备1500可以包括收发单元1501和处理单元1502。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1501中用于实现接收功能的器件视为接收单元,将收发单元1501中用于实现发送功能的器件视为发送单元,即收发单元1501包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,收发单元1501、处理单元1502可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。
可理解的是,本申请实施例中的终端设备的实现方式,具体可参考前述各个实施例,这里不再详述。
请参见图16,图16是本申请实施例提供的一种通信装置的结构示意图。该通信装置可为网络设备,也可为芯片。且该通信装置可用于执行本申请实施例所提供的定位方法。如图16所示,该通信装置可包括:
处理单元1601,用于确定用于指示测量定位参考信号PRS时间窗的信息;
发送单元1602,用于输出该用于指示测量PRS时间窗的信息;其中,该用于指示测量PRS时间窗的信息指示第一时间窗的起始时间,和/或,该第一时间窗的持续时间;该通信装置为定位设备或者接入网设备。
例如,发送单元1602,可用于向终端设备发送用于指示测量PRS时间窗的信息。
在一种可能的实现方式中,该第一时间窗的终止时间为该终端设备上报该一个或多个 测量结果的上报时刻。
在一种可能的实现方式中,该用于指示测量PRS时间窗的信息包括N个时间窗的取值;其中,每个取值对应一个时间窗,且每个取值用于指示对应的一个时间窗的起始时间,或者,每个取值用于指示对应的一个时间窗的持续时间,该N个时间窗包括该第一时间窗。
在一种可能的实现方式中,该发送单元1602,还用于输出激活信令,该激活信令用于激活该N个时间窗的取值中的一个或多个取值,该一个或多个取值用于确定该第一时间窗。
例如,发送单元1602,可用于向终端设备发送激活信令。
在一种可能的实现方式中,该起始时间的单位是子帧、时隙、符号、或者毫秒中的任一项。
在一种可能的实现方式中,该发送单元1602,还用于输出更新的时间窗的信息,该更新的时间窗的信息用于指示更新该第一时间窗。
例如,发送单元1602,可用于向该终端设备发送更新的时间窗的信息。
在一种可能的实现方式中,该用于指示测量PRS时间窗的信息承载于长期演进LTE定位协议LPP信令的辅助信息字段。
在一种可能的实现方式中,该装置还包括:
接收单元1603,用于接收该终端设备发送的第一测量结果,该第一测量结果为该一个或多个测量结果加权得到的测量结果。
在一种可能的实现方式中,该处理单元1601,还用于根据该第一测量结果估算该终端设备的位置信息。
本申请实施例中,当上述通信装置是网络设备或网络设备中实现上述功能的部件时,处理单元1601可以是一个或多个处理器,发送单元1602可以是发送器,接收单元1603可以是接收器,或者发送单元1602和接收单元1603集成于一个器件,例如收发器。
当上述通信装置是芯片时,处理单元1601可以是一个或多个处理器,发送单元1602可以是输出接口,接收单元1603可以是输入接口,或者发送单元1602和接收单元1603集成于一个单元,例如输入输出接口。
可理解,对于图16所示的各个单元的实现还可参照图6,以及图8-图12所示的方法实施例的相应描述。
作为示例,当图16所示的通信装置的处理单元用处理器实现,接收单元和发送单元集成于一个单元,用收发器实现时,如图14所示。图14是本申请实施例提供的一种通信装置140的结构示意图,可用于实现上述方法中网络设备的功能。装置140包括至少一个处理器1420,用于实现本申请实施例提供的方法中网络设备的功能。具体的,该处理器1420可实现图16所示的处理单元的功能。装置140还可以包括收发器1410。收发器用于通过传输介质和其它设备进行通信。处理器1420利用收发器1410收发数据,并用于实现上述方法实施例所述的方法。具体的,收发器1410还可实现图16所示的接收单元和发送单元的功能。
可理解,对于网络设备的具体描述可参考图14,这里不作详述。
可理解,根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图6,图8-图12所示实施例中的任一方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可 读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图6,图8-图12所示实施例中的任一方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的终端设备以及网络设备。其中,终端设备可用于执行本申请实施例提供的图6,图8-图12所示的终端设备或UE中的任一方法,网络设备可用于执行与终端设备对应的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如SSD)等。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种定位方法,其特征在于,所述方法包括:
    终端设备从网络设备接收用于指示测量定位参考信号PRS时间窗的信息;
    所述终端设备在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果;
    其中,所述用于指示测量PRS时间窗的信息指示所述第一时间窗的起始时间,和/或,所述第一时间窗的持续时间;所述网络设备为定位设备或者接入网设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时间窗的终止时间为所述终端设备上报所述一个或多个测量结果的上报时刻。
  3. 根据权利要求1或2所述的方法,其特征在于,所述用于指示测量PRS时间窗的信息包括N个时间窗的取值;其中,每个取值对应一个时间窗,且每个取值用于指示对应的一个时间窗的起始时间,或者,每个取值用于指示对应的一个时间窗的持续时间,所述N个时间窗包括所述第一时间窗。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述接入网设备接收激活信令,所述激活信令用于激活所述N个时间窗的取值中的一个或多个取值,所述一个或多个取值用于确定所述第一时间窗。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述起始时间的单位是秒、帧、子帧、时隙、符号、或者毫秒中的任一项。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收更新的时间窗的信息;
    所述终端设备根据所述更新的时间窗的信息在更新后的时间窗内测量一个或多个PRS。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述用于指示测量PRS时间窗的信息承载于长期演进LTE定位协议LPP信令的辅助信息字段。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一时间窗内未测量到所述一个或多个PRS,则所述终端设备延长所述第一时间窗直至测量到一个或多个PRS。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备上报第一测量结果,所述第一测量结果为所述一个或多个测量结果加权得到的测量结果。
  10. 一种定位方法,其特征在于,所述方法包括:
    网络设备确定用于指示测量定位参考信号PRS时间窗的信息;
    所述网络设备向终端设备发送所述用于指示测量PRS时间窗的信息;其中,所述用于指示测量PRS时间窗的信息指示第一时间窗的起始时间,和/或,所述第一时间窗的持续时间;所述网络设备为定位设备或者接入网设备。
  11. 根据权利要求10所述的方法,其特征在于,所述第一时间窗的终止时间为所述终端设备上报所述一个或多个测量结果的上报时刻。
  12. 根据权利要求10或11所述的方法,其特征在于,所述用于指示测量PRS时间窗的信息包括N个时间窗的取值;其中,每个取值对应一个时间窗,且每个取值用于指示对应的一个时间窗的起始时间,或者,每个取值用于指示对应的一个时间窗的持续时间,所述N个时间窗包括所述第一时间窗。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述终端设备发送激活信令,所述激活信令用于激活所述N个时间窗的取值中的一个或多个取值,所述一个或多个取值用于确定所述第一时间窗。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述起始时间的单位是秒、帧、子帧、时隙、符号、或者毫秒中的任一项。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送更新的时间窗的信息,所述更新的时间窗的信息用于指示更新所述第一时间窗。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述用于指示测量PRS时间窗的信息承载于长期演进LTE定位协议LPP信令的辅助信息字段。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第一测量结果,所述第一测量结果为所述一个或多个测量结果加权得到的测量结果。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第一测量结果估算所述终端设备的位置信息。
  19. 一种通信装置,其特征在于,所述装置包括:
    接收单元,用于从网络设备接收用于指示测量定位参考信号PRS时间窗的信息;
    处理单元,用于在第一时间窗内测量到一个或多个PRS,得到一个或多个测量结果;
    其中,所述用于指示测量PRS时间窗的信息指示所述第一时间窗的起始时间,和/或,所述第一时间窗的持续时间;所述网络设备为定位设备或者接入网设备。
  20. 根据权利要求19所述的装置,其特征在于,所述第一时间窗的终止时间为所述通信装置上报所述一个或多个测量结果的上报时刻。
  21. 根据权利要求19或20所述的装置,其特征在于,所述用于指示测量PRS时间窗的信息包括N个时间窗的取值;其中,每个取值对应一个时间窗,且每个取值用于指示对应的一个时间窗的起始时间,或者,每个取值用于指示对应的一个时间窗的持续时间,所述N个时间窗包括所述第一时间窗。
  22. 根据权利要求21所述的装置,其特征在于,
    所述接收单元,还用于从所述接入网设备接收激活信令,所述激活信令用于激活所述N个时间窗的取值中的一个或多个取值,所述一个或多个取值用于确定所述第一时间窗。
  23. 根据权利要求19-22任一项所述的装置,其特征在于,所述起始时间的单位是秒、帧、子帧、时隙、符号、或者毫秒中的任一项。
  24. 根据权利要求19-23任一项所述的装置,其特征在于,
    所述接收单元,还用于从所述网络设备接收更新的时间窗的信息;
    所述处理单元,还用于根据所述更新的时间窗的信息在更新后的时间窗内测量一个或多个PRS。
  25. 根据权利要求19-24任一项所述的装置,其特征在于,所述用于指示测量PRS时间窗的信息承载于长期演进LTE定位协议LPP信令的辅助信息字段。
  26. 根据权利要求19-25任一项所述的装置,其特征在于,
    所述处理单元,还用于在所述第一时间窗内未测量到所述一个或多个PRS,则延长所述第一时间窗直至测量到一个或多个PRS。
  27. 根据权利要求19-26任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于上报第一测量结果,所述第一测量结果为所述一个或多个测量结果加权得到的测量结果。
  28. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于确定用于指示测量定位参考信号PRS时间窗的信息;
    发送单元,用于向终端设备发送所述用于指示测量PRS时间窗的信息;其中,所述用于指示测量PRS时间窗的信息指示第一时间窗的起始时间,和/或,所述第一时间窗的持续时间;所述通信装置为定位设备或者接入网设备。
  29. 根据权利要求28所述的装置,其特征在于,所述第一时间窗的终止时间为所述终端设备上报所述一个或多个测量结果的上报时刻。
  30. 根据权利要求28或29所述的装置,其特征在于,所述用于指示测量PRS时间窗的信息包括N个时间窗的取值;其中,每个取值对应一个时间窗,且每个取值用于指示对应的一个时间窗的起始时间,或者,每个取值用于指示对应的一个时间窗的持续时间,所述N个时间窗包括所述第一时间窗。
  31. 根据权利要求30所述的装置,其特征在于,
    所述发送单元,还用于向所述终端设备发送激活信令,所述激活信令用于激活所述N个时间窗的取值中的一个或多个取值,所述一个或多个取值用于确定所述第一时间窗。
  32. 根据权利要求28-31任一项所述的装置,其特征在于,所述起始时间的单位是秒、帧、子帧、时隙、符号、或者毫秒中的任一项。
  33. 根据权利要求28-32任一项所述的装置,其特征在于,
    所述发送单元,还用于向所述终端设备发送更新的时间窗的信息,所述更新的时间窗的信息用于指示更新所述第一时间窗。
  34. 根据权利要求28-33任一项所述的装置,其特征在于,所述用于指示测量PRS时间窗的信息承载于长期演进LTE定位协议LPP信令的辅助信息字段。
  35. 根据权利要求28-34任一项所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收所述终端设备发送的第一测量结果,所述第一测量结果为所述一个或多个测量结果加权得到的测量结果。
  36. 根据权利要求35所述的装置,其特征在于,
    所述处理单元,还用于根据所述第一测量结果估算所述终端设备的位置信息。
  37. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1-9或10-18任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1-9或10-18任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1-9或10-18任一项所述的方法被实现。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被执行时,使如权利要求1-9或10-18任一项所述的方法被实现。
PCT/CN2019/126107 2019-12-17 2019-12-17 一种定位方法及装置 WO2021120023A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980102868.3A CN114762402A (zh) 2019-12-17 2019-12-17 一种定位方法及装置
PCT/CN2019/126107 WO2021120023A1 (zh) 2019-12-17 2019-12-17 一种定位方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126107 WO2021120023A1 (zh) 2019-12-17 2019-12-17 一种定位方法及装置

Publications (1)

Publication Number Publication Date
WO2021120023A1 true WO2021120023A1 (zh) 2021-06-24

Family

ID=76476945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126107 WO2021120023A1 (zh) 2019-12-17 2019-12-17 一种定位方法及装置

Country Status (2)

Country Link
CN (1) CN114762402A (zh)
WO (1) WO2021120023A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853023A (zh) * 2021-10-28 2021-12-28 上海移远通信技术股份有限公司 无线通信的方法及装置
WO2023011196A1 (zh) * 2021-08-06 2023-02-09 华为技术有限公司 一种时间误差信息的更新方法以及相关装置
WO2023151144A1 (zh) * 2022-02-14 2023-08-17 北京小米移动软件有限公司 信号测量方法、装置、设备、介质及程序产品
WO2024020748A1 (zh) * 2022-07-25 2024-02-01 北京小米移动软件有限公司 定位方法、装置、存储介质及芯片
WO2024032186A1 (zh) * 2022-08-09 2024-02-15 华为技术有限公司 通信方法和通信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117641372A (zh) * 2022-08-09 2024-03-01 华为技术有限公司 一种通信方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110275385A1 (en) * 2010-05-10 2011-11-10 Nokia Corporation System and Methods for Observed Time Difference of Arrival Measurements for Location Services in Cellular Devices
WO2013075274A1 (en) * 2011-11-21 2013-05-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for relative timing measurements
EP3264838A1 (en) * 2015-02-27 2018-01-03 LG Electronics Inc. Method for performing otdoa-related operations in wireless communication system
CN107925496A (zh) * 2015-08-25 2018-04-17 Lg 电子株式会社 在无线通信系统中接收或发送用于位置确定的参考信号的方法及其设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110275385A1 (en) * 2010-05-10 2011-11-10 Nokia Corporation System and Methods for Observed Time Difference of Arrival Measurements for Location Services in Cellular Devices
WO2013075274A1 (en) * 2011-11-21 2013-05-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for relative timing measurements
EP3264838A1 (en) * 2015-02-27 2018-01-03 LG Electronics Inc. Method for performing otdoa-related operations in wireless communication system
CN107925496A (zh) * 2015-08-25 2018-04-17 Lg 电子株式会社 在无线通信系统中接收或发送用于位置确定的参考信号的方法及其设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Summary of RAN1 Agreements on NR Positioning", 3GPP DRAFT; R1-1909919_98-SUMMARY-NR-POS, vol. RAN WG1, 27 September 2019 (2019-09-27), Prague, CZ, pages 1 - 29, XP051782878 *
WI RAPPORTEUR (INTEL CORPORATION): "RAN1 Agreements on NR Positioning", 3GPP DRAFT; R1-1913606, vol. RAN WG1, 28 November 2019 (2019-11-28), Reno, US, pages 1 - 47, XP051831733 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023011196A1 (zh) * 2021-08-06 2023-02-09 华为技术有限公司 一种时间误差信息的更新方法以及相关装置
CN113853023A (zh) * 2021-10-28 2021-12-28 上海移远通信技术股份有限公司 无线通信的方法及装置
WO2023151144A1 (zh) * 2022-02-14 2023-08-17 北京小米移动软件有限公司 信号测量方法、装置、设备、介质及程序产品
WO2024020748A1 (zh) * 2022-07-25 2024-02-01 北京小米移动软件有限公司 定位方法、装置、存储介质及芯片
WO2024032186A1 (zh) * 2022-08-09 2024-02-15 华为技术有限公司 通信方法和通信装置

Also Published As

Publication number Publication date
CN114762402A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2021120023A1 (zh) 一种定位方法及装置
JP7331091B2 (ja) 測定方法と装置
RU2632475C1 (ru) Инициированное точкой доступа позиционирование по времени распространения
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
WO2019134555A1 (zh) 用于终端设备的定位方法、装置及系统
TWI760931B (zh) 資訊傳輸方法、裝置及電腦存儲介質
JP7241865B2 (ja) 情報処理方法、通信デバイス、システム、および記憶媒体
WO2021063397A1 (zh) 一种参考信号配置的确定方法及装置
US20220330198A1 (en) Signal transmission method and apparatus
US9781566B1 (en) Apparatus, system and method of estimating a distance between a first station and a second station
WO2019228425A1 (zh) 一种定位方法及装置
RU2628012C1 (ru) Устройство, система и способ оценки расположения мобильного устройства
WO2022141219A1 (zh) 一种定位方法及相关装置
WO2022222772A1 (zh) 一种定位信息上报方法、设备及通信系统
WO2022237423A1 (zh) 参考设备确定方法及装置、网络侧设备
WO2024027643A1 (zh) 一种信息传输方法、装置及设备
WO2022198591A1 (zh) 一种非周期定位参考信号的测量上报方法和装置
WO2022218235A1 (zh) 时间同步方法及装置
WO2023226749A1 (zh) 资源配置方法及通信装置
WO2023226746A1 (zh) 资源配置方法及通信装置
WO2022242548A1 (zh) 用于定位的通信方法以及通信装置
WO2022077399A1 (zh) 一种下行定位方法及通信装置
WO2022206306A1 (zh) 一种通信方法和装置
WO2023151469A1 (zh) 定位方法及装置
WO2021134730A1 (zh) 一种定位方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956968

Country of ref document: EP

Kind code of ref document: A1