WO2019134555A1 - 用于终端设备的定位方法、装置及系统 - Google Patents

用于终端设备的定位方法、装置及系统 Download PDF

Info

Publication number
WO2019134555A1
WO2019134555A1 PCT/CN2018/123374 CN2018123374W WO2019134555A1 WO 2019134555 A1 WO2019134555 A1 WO 2019134555A1 CN 2018123374 W CN2018123374 W CN 2018123374W WO 2019134555 A1 WO2019134555 A1 WO 2019134555A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
measurement
access node
terminal device
information
Prior art date
Application number
PCT/CN2018/123374
Other languages
English (en)
French (fr)
Inventor
胡滨
王艺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18897983.5A priority Critical patent/EP3726896B1/en
Publication of WO2019134555A1 publication Critical patent/WO2019134555A1/zh
Priority to US16/919,318 priority patent/US11009582B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of positioning technologies, and in particular, to a positioning technology of a terminal device in a communication system.
  • the positioning technology based on mobile communication network has developed rapidly, which plays an important role in people's daily travel, vehicle positioning and navigation, wireless resource allocation and integration, and national information security.
  • user positioning in a wireless communication system is performed by using a wireless signal observation detected by a base station and/or a terminal to perform positioning solution.
  • the main positioning technologies include: (1) distance positioning: using a terminal and two or The distance between multiple base stations (TOA) is used for positioning solution; (2) angular positioning: using the angle between the terminal and two or more base stations (AOA) for positioning solution. Both the TOA and the AOA used in the prior art are observed in the Line of Sight (LOS) environment, and the Not Line of Sight (NLOS) environment is not considered.
  • LOS Line of Sight
  • NLOS Not Line of Sight
  • the existing positioning method is based on the detection of positioning measurement information between multiple base stations and one terminal, which requires high synchronization of the network, and the positioning accuracy depends on the transmission state of the channel, so the positioning accuracy is greatly affected by the environment.
  • multipath reflection components TOA and AOA
  • TOA and AOA multipath reflection components
  • the present application provides a positioning method, device, device, and system for a terminal device, which are used to perform positioning of a terminal device by positioning measurement based on a single access node.
  • a method and apparatus for terminal device location is provided.
  • the method is applied to the terminal device side to implement positioning measurement by a single access node to perform terminal device positioning.
  • the method includes the terminal device obtaining positioning measurement information for the terminal device, wherein the positioning measurement information is a measurement based on a positioning reference signal sent by a single access node based on multipath positioning measurement of the single access node.
  • Result information after obtaining the positioning measurement information, the terminal device sends the positioning measurement information to a positioning service function entity.
  • the positioning service function entity may perform location estimation of the terminal device to locate the terminal device based on the positioning measurement information.
  • the terminal device in order to obtain the positioning measurement information, the terminal device further receives the positioning reference signal sent by the single access node before obtaining the positioning measurement information, and obtains the positioning measurement information based on the positioning reference signal.
  • the terminal device can realize the positioning using the multipath measurement by reporting the measurement result information of the multipath positioning measurement based on the single access node to the positioning service function entity, and avoid the problem that the time and data synchronization requirements of the multiple base stations are strict. .
  • the technical solution can be applied to terminal device positioning in a non-line of sight transmission NLOS environment.
  • the terminal device before obtaining the positioning measurement information for the terminal device, the terminal device further needs to enable the positioning service function entity to learn the measurement capability supported by the terminal device, by using the positioning service function.
  • the entity sends its own device capability indication information to indicate whether the terminal device supports multipath positioning measurement of a single access node.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the terminal device can support, thereby effectively achieving positioning.
  • the terminal device further receives a location information request sent by the location service function entity before obtaining the location measurement information for the terminal device, and the terminal device is requested based on the location information request.
  • the location measurement information is further obtained and reported to the location service function entity.
  • the design enables the terminal device to report the positioning measurement information according to the request of the positioning service function entity, thereby reducing unnecessary reporting overhead.
  • a device for positioning a terminal device which device can implement a corresponding positioning method in the first aspect.
  • the device may be defined in a functional form, and the specific implementation may be a positioning device, for example, a terminal device or a chip or a function module in the terminal device, and the corresponding software may be executed by software, hardware, or by hardware. Implement the above method.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the first aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus may include a sending unit, wherein the sending unit is configured to send the positioning measurement information to the positioning service function entity; the device may further include a processing unit, where the processing unit is configured to obtain The positioning measurement information of the terminal device.
  • a method and apparatus for terminal device location is provided.
  • the method is applied to the terminal device side to implement positioning measurement by a single access node to perform terminal device positioning.
  • the method includes the terminal device transmitting positioning measurement information for the terminal device to the positioning service function entity, where the positioning measurement information is based on the positioning reference signal sent by the single access node, and performing multipath positioning based on the single access node. Measurement measurement information.
  • the positioning service function entity may perform location estimation of the terminal device to locate the terminal device based on the positioning measurement information.
  • the terminal device in order to obtain the positioning measurement information, the terminal device further receives the positioning reference signal sent by the single access node before obtaining the positioning measurement information, and obtains the positioning measurement information based on the positioning reference signal.
  • the terminal device can realize the positioning using the multipath measurement by reporting the measurement result information of the multipath positioning measurement based on the single access node to the positioning service function entity, and avoid the problem that the time and data synchronization requirements of the multiple base stations are strict. .
  • the technical solution can be applied to terminal device positioning in a non-line of sight transmission NLOS environment.
  • the terminal device needs to make the positioning service function entity learn the measurement capability supported by the terminal device before reporting the location measurement information, and send the device capability to the location service function entity.
  • the indication information is used to indicate whether the terminal device supports multipath positioning measurement of a single access node.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the terminal device can support, thereby effectively achieving positioning.
  • the terminal device further receives a location information request sent by the location service function entity before reporting the location measurement information, and the terminal device further obtains the location according to the location information request.
  • the information is measured and reported to the location service functional entity.
  • the design enables the terminal device to report the positioning measurement information according to the request of the positioning service function entity, thereby reducing unnecessary reporting overhead.
  • a device for positioning a terminal device which device can implement a corresponding positioning method in the second aspect.
  • the device is defined in a functional form, and the specific implementation may be a positioning device, specifically a terminal device, or a chip or a function module in the terminal device, which may be implemented by software, hardware, or by executing corresponding software through hardware. method.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the second aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the device may include a sending unit, where the sending unit is configured to send the positioning measurement information to the positioning service function entity; optionally, the device may further include a processing unit, where the processing unit is used And obtaining the positioning measurement information for the terminal device.
  • a method and apparatus for positioning a terminal device is provided.
  • the method can be applied to a base station, an E-UTRAN Node B (eNB), and a New Radio Access Node B (New Radio Access Node B).
  • the access node side such as NR NodeB
  • the access node side implements positioning measurement by a single access node to perform terminal device positioning.
  • the method includes the access node obtaining the positioning measurement information for the terminal device, where the positioning measurement information is measurement result information based on the single access node multipath positioning measurement according to the positioning reference signal sent by the terminal device; After obtaining the positioning measurement information, the access node sends the positioning measurement information to a positioning service function entity. After receiving the positioning measurement information, the positioning service function entity may perform location estimation of the terminal device to locate the terminal device based on the positioning measurement information.
  • the access node in order to obtain the positioning measurement information, the access node further receives the positioning reference signal sent by the terminal device before obtaining the positioning measurement information, and obtains the positioning measurement information based on the positioning reference signal.
  • the access node can realize the positioning using the multipath measurement by reporting the measurement result information of the multipath positioning measurement based on the single access node to the positioning service function entity, and avoiding the strict time and data synchronization requirements of the multiple base stations. problem.
  • the technical solution can be applied to terminal device positioning in a non-line of sight transmission NLOS environment.
  • the access node before obtaining the positioning measurement information for the terminal device, the access node needs to make the positioning service function entity learn the measurement capability supported by the access node by using the positioning capability.
  • the service function entity sends its own device capability indication information to indicate whether the access node supports multipath positioning measurement of a single access node.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the access node can support, thereby effectively achieving positioning.
  • the access node before obtaining the positioning measurement information for the terminal device, the access node further receives a location information request sent by the positioning service function entity, and based on the location information request, the connection The ingress node then obtains the positioning measurement information and reports it to the positioning service function entity.
  • the design enables the access node to report the positioning measurement information according to the request of the positioning service function entity, thereby reducing unnecessary reporting overhead.
  • a device for positioning a terminal device which device can implement a corresponding positioning method in the third aspect.
  • the device is defined in a functional form, and the specific implementation may be a positioning device, specifically an access node, or a chip or a functional module in the access node, and the corresponding software may be executed by software, hardware, or by hardware. Implement the above method.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the third aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus may include a sending unit, wherein the sending unit is configured to send the positioning measurement information to the positioning service function entity; the device may further include a processing unit, where the processing unit is configured to obtain The positioning measurement information of the terminal device.
  • a method and apparatus for terminal device location is provided.
  • the method can be applied to a base station, an E-UTRAN Node B (eNB), and a New Radio Access Node B (New Radio Access Node B).
  • the access node side such as NR NodeB) implements positioning measurement by a single access node to perform terminal device positioning.
  • the method includes: the access node sends the positioning measurement information for the terminal device to the positioning service function entity, where the positioning measurement information is a measurement of the multi-path positioning measurement based on the single access node according to the positioning reference signal sent by the terminal device. Result information.
  • the positioning service function entity may perform location estimation of the terminal device to locate the terminal device based on the positioning measurement information.
  • the access node in order to obtain the positioning measurement information, the access node further receives the positioning reference signal sent by the terminal device before obtaining the positioning measurement information, and obtains the positioning measurement information based on the positioning reference signal.
  • the access node can realize the positioning using the multipath measurement by reporting the measurement result information of the multipath positioning measurement based on the single access node to the positioning service function entity, and avoiding the strict time and data synchronization requirements of the multiple base stations. problem.
  • the technical solution can be applied to terminal device positioning in a non-line of sight transmission NLOS environment.
  • the access node needs to make the positioning service function entity learn the measurement capability supported by the access node before reporting the location measurement information, by sending its own to the location service function entity.
  • the device capability indication information is used to indicate whether the access node supports multipath positioning measurement of a single access node.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the access node can support, thereby effectively achieving positioning.
  • the access node further receives a location information request sent by the location service function entity before reporting the location measurement information, and the access node further obtains the location based on the location information request.
  • the location measurement information is reported and reported to the location service functional entity.
  • the design enables the access node to report the positioning measurement information according to the request of the positioning service function entity, thereby reducing unnecessary reporting overhead.
  • a device for positioning a terminal device which device can implement a corresponding positioning method in the fourth aspect.
  • the device is defined in a functional form, and the specific implementation may be a positioning device, specifically an access node, or a chip or a functional module in the access node, and the corresponding software may be executed by software, hardware, or by hardware. Implement the above method.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the fourth aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the device may include a sending unit, where the sending unit is configured to send the positioning measurement information to the positioning service function entity; optionally, the device may further include a processing unit, where the processing unit is used And obtaining the positioning measurement information for the terminal device.
  • a method and apparatus for positioning a terminal device are provided.
  • the method can be applied to a positioning service function entity such as a positioning service center and an Enhanced Serving Mobile Location Centre (E-SMLC), and implements a single access node based Terminal device positioning.
  • the method includes determining that a device capability of a measurement device supports multipath location measurement of a single access node, the measurement device comprising an access node and/or a terminal device to be located, the access node being located for the terminal device a single access node; receiving positioning measurement information sent by the measurement device for the terminal device, where the positioning measurement information is multipath positioning measurement information based on a single access node.
  • the location service function entity can estimate the location of the terminal device based on the positioning measurement information.
  • the positioning service function entity needs to determine the positioning measurement mode that the measurement device can support, thereby effectively realizing the positioning, and the positioning service function entity can be based on the terminal to be located.
  • the location measurement information reported by the device performs terminal location estimation, and may also perform terminal location estimation according to the positioning measurement information reported by the corresponding access node, and may also perform terminal location estimation according to the positioning measurement information reported by the terminal device and the access node.
  • the positioning service function entity can realize the positioning using the multipath measurement by receiving the measurement result information of the multi-path positioning measurement based on the single access node reported by the measuring device, and avoiding the strict time and data synchronization requirements of the multiple base stations. problem.
  • the technical solution can be applied to terminal device positioning in a non-line of sight transmission NLOS environment.
  • the location service function entity determines that the device capability of the measurement device supports the multipath location measurement of the single access node, and may send the location capability request to the measurement device and/or the device capability registration function entity before receiving the location
  • the device capability indication information of the measurement device returned by the measurement device and/or the device capability registration function entity is determined according to the device capability indication information, where the device capability indication information is used to indicate whether the measurement device supports a single Multipath positioning measurement of the access node.
  • the positioning service function entity sends a first message to the access node, where the first message is used to indicate the access
  • the node sends a positioning reference signal to the terminal device, and the terminal device performs multipath positioning measurement based on the single access node according to the positioning reference signal, so that the positioning service function entity can obtain the positioning measurement information reported by the terminal device.
  • the positioning service function entity sends a second message to the terminal device, where the second message is used to instruct the terminal device to send a location to the access node.
  • a reference signal the access node performs multipath positioning measurement based on the single access node according to the positioning reference signal, whereby the positioning service function entity can obtain the positioning measurement information reported by the access node.
  • the design enables the measurement device to initiate correlation signal transmission of the positioning measurement according to the indication of the positioning service function entity, thereby reducing unnecessary overhead.
  • the location service function entity determines that the device capability of the measurement device supports the multipath location measurement of the single access node
  • the location information request is sent to the measurement device; the measurement device requests based on the location information, and then goes The positioning measurement information is obtained and reported to the positioning service function entity.
  • the design enables the measurement device to report the positioning measurement information according to the request of the positioning service function entity, thereby reducing unnecessary reporting overhead.
  • a device for positioning a terminal device which device can implement a corresponding positioning method in the fifth aspect.
  • the device is defined in a functional form, and the specific implementation may be a positioning device, a positioning service function entity, or a chip or a function module in the positioning device or the positioning service function entity, and may be executed by software, hardware, or by hardware.
  • the corresponding software implements the above method.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the method of the fifth aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the device may comprise a receiving unit, wherein the receiving unit is configured to receive the positioning measurement information sent by the measuring device for the terminal device; the device may further comprise a processing unit, the processing unit The device capability used to determine the measurement device supports multipath positioning measurements for a single access node.
  • a method and apparatus for locating a terminal device are provided.
  • the method can be applied to a positioning service function entity such as a positioning service center and an Enhanced Serving Mobile Location Centre (E-SMLC), and implements a single access node based Terminal device positioning.
  • the method includes receiving positioning measurement information for a terminal device sent by a measurement device, the positioning measurement information being multi-path positioning measurement information based on a single access node; the measuring device comprising an access node and/or the to-be-positioned a terminal device, where the access node is a single access node for positioning the terminal device; and based on the positioning measurement information, the positioning service function entity can estimate the location of the terminal device.
  • a positioning service function entity such as a positioning service center and an Enhanced Serving Mobile Location Centre (E-SMLC)
  • E-SMLC Enhanced Serving Mobile Location Centre
  • the location service function entity can perform terminal location estimation according to the location measurement information reported by the terminal device to be located, and can also perform terminal location estimation according to the location measurement information reported by the corresponding access node, and can also be connected according to the terminal device.
  • the location measurement information reported by the ingress node is used for terminal location estimation.
  • the positioning service function entity can realize the positioning using the multipath measurement by receiving the measurement result information of the multi-path positioning measurement based on the single access node reported by the measuring device, and avoiding the strict time and data synchronization requirements of the multiple base stations. problem.
  • the technical solution can be applied to terminal device positioning in a non-line of sight transmission NLOS environment.
  • the positioning service function entity needs to determine the device capability of the measurement device to support the multipath positioning measurement of the single access node before receiving the positioning measurement information for the terminal device sent by the measurement device.
  • the location service function entity may send the location capability request to the measurement device and/or the device capability registration function entity, and receive the device of the measurement device returned by the measurement device and/or the device capability registration function entity.
  • the capability indication information is determined according to the device capability indication information, where the device capability indication information is used to indicate whether the measurement device supports multipath positioning measurement of a single access node.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the measurement device can support when providing the positioning service, thereby effectively achieving positioning.
  • the positioning service function entity sends a first message to the access node, where the first message is used to indicate the access
  • the node sends a positioning reference signal to the terminal device, and the terminal device performs multipath positioning measurement based on the single access node according to the positioning reference signal, so that the positioning service function entity can obtain the positioning measurement information reported by the terminal device.
  • the positioning service function entity sends a second message to the terminal device, where the second message is used to instruct the terminal device to send a location to the access node.
  • a reference signal the access node performs multipath positioning measurement based on the single access node according to the positioning reference signal, whereby the positioning service function entity can obtain the positioning measurement information reported by the access node.
  • the design enables the measurement device to initiate correlation signal transmission of the positioning measurement according to the indication of the positioning service function entity, thereby reducing unnecessary overhead.
  • the location service function entity determines that the device capability of the measurement device supports the multipath location measurement of the single access node
  • the location information request is sent to the measurement device; the measurement device requests based on the location information, and then goes The positioning measurement information is obtained and reported to the positioning service function entity.
  • the design enables the measurement device to report the positioning measurement information according to the request of the positioning service function entity, thereby reducing unnecessary reporting overhead.
  • a device for positioning a terminal device which device can implement a corresponding positioning method in the sixth aspect.
  • the device is defined in a functional form, and the specific implementation may be a positioning device, a positioning service function entity, or a chip or a function module in the positioning device or the positioning service function entity, and may be executed by software, hardware, or by hardware.
  • the corresponding software implements the above method.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the sixth aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the device may comprise a receiving unit, wherein the receiving unit is configured to receive the positioning measurement information sent by the measuring device for the terminal device; optionally, the device may further comprise a processing unit The processing unit is configured to determine that the device capability of the measurement device supports multipath positioning measurement of a single access node.
  • the multipath positioning measurement includes a positioning measurement for a main path and at least one reflection path, or a positioning measurement for at least two reflection paths; wherein the positioning measurement includes at least one of the following Item: Measurement of arrival time TOA for distance positioning, measurement of angle of arrival AOA for angular positioning.
  • the multipath is also a multipath formed by at least two of the reflected paths, wherein the access node is a single access node and the reflector can be one or more.
  • the application also provides a computer storage medium having stored thereon a computer program (instructions) that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the application also provides a computer program product, when run on a computer, causing the computer to perform the method of any of the above aspects.
  • the present application also provides a chip in which instructions are stored that, when run on a communication device, cause the communication device to perform the corresponding methods described in the various aspects above.
  • the present application also provides an apparatus for terminal location, comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor implementing the computer program to implement the above aspects The corresponding method described.
  • the present application also provides an apparatus for terminal location, comprising a processor for coupling with a memory and reading instructions in the memory, and implementing a corresponding method as described in the above aspects in accordance with the instructions.
  • the memory can be integrated into the process or can be independent of the processor.
  • the present application also provides an apparatus for terminal location, comprising a processor for implementing a corresponding method as described in the above aspects when executing a computer program.
  • the present application further provides a system for positioning a terminal device, including the above-mentioned positioning service function entity, and a terminal device and/or an access node, which are respectively configured to implement the corresponding methods described in the above aspects.
  • FIG. 1a is a network system architecture involved in the present application
  • Figure 1b is a schematic view of the angle of arrival AOA of the main path and the reflection path in the present application;
  • Figure 1c is a schematic view of the angle of arrival AOA of at least two reflection paths in the present application
  • FIG. 2 is a flowchart of a first embodiment of a positioning method of a terminal device provided by the present application
  • FIG. 3 is a flowchart of a second embodiment of a positioning method of a terminal device provided by the present application.
  • FIG. 4 is a schematic diagram of an interaction process for determining a positioning measurement capability supported by a terminal device in the present application
  • FIG. 5 is a flowchart of a first embodiment of a positioning method of another terminal device provided by the present application.
  • FIG. 6 is a flowchart of a second embodiment of a positioning method of another terminal device provided by the present application.
  • FIG. 7 is a schematic diagram of an interaction process for determining a positioning measurement capability supported by an access node in the present application
  • FIG. 8 is a flowchart of an embodiment of a positioning method of another terminal device in the present application.
  • FIG. 9 is a schematic structural diagram of a simplified terminal device provided by the present application.
  • FIG. 10 is a schematic structural diagram of a simplified network device provided by the present application.
  • FIG. 11 is a schematic structural diagram of another simplified network device provided by the present application.
  • Multiple in this application means two or more.
  • the term “and/or” in the present application is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist at the same time. There are three cases of B alone.
  • the character “/” in this article generally indicates that the contextual object is an "or” relationship.
  • the terms “first”, “second”, “third”, “fourth” and the like in the present application are intended to distinguish different objects, and do not limit the order of the different objects.
  • terminals may in some cases refer to mobile devices, such as mobile phones, personal digital assistants, handheld or laptop computers, and similar devices with telecommunications capabilities, in some cases.
  • the following may also be a wearable device or an in-vehicle device, and the like, and include a terminal in a future 5G network or a terminal in a future public land mobile network (Public Land Mobile Network, PLMN for short).
  • PLMN Public Land Mobile Network
  • Such a terminal may include a device and its associated removable storage module (such as, but not limited to, a Subscriber Identification Module (SIM) application, a Universal Subscriber Identification Module (USIM). The application or the Universal Integrated Circuit Card (UICC) for the Removable User Identity Module (R-UIM) application).
  • SIM Subscriber Identification Module
  • USIM Universal Subscriber Identification Module
  • UICC Universal Integrated Circuit Card
  • R-UIM Removable User Identity Module
  • a terminal may include the device itself without such a module.
  • the term “terminal” / "terminal device” may refer to a device that has similar capabilities but is not portable, such as a desktop computer, set top box, or network device.
  • the term “terminal” / “terminal device” may also refer to any hardware or software component that can terminate a user's communication session.
  • terminal In addition, "user terminal”, “User Equipment”, “UE”, “site”, “station”, “STA”, “user equipment”, “user agent”, “User Agent”, “UA”, “user equipment” “,” “mobile device” and “device” are all alternative terms synonymous with “terminal” / "terminal device” herein.
  • the devices mentioned above are collectively referred to as user equipments or UEs.
  • An "access node” as referred to in this application is a network device deployed in a radio access network to provide a wireless communication function for a terminal device.
  • the access nodes may include various forms of macro base stations, micro base stations, relay stations, access points, etc., including as systems and devices that improve upon peer devices in conventional wireless telecommunications systems.
  • Such advanced or next generation equipment may be included in a Long Term Evolution (LTE) communication system, a 5G communication system, a future evolution system, or a plurality of communication convergence systems, for example, an evolved universal terrestrial radio access network node B (E- included in an LTE system).
  • LTE Long Term Evolution
  • 5G communication system a 5G communication system
  • future evolution system a future evolution system
  • E- evolved universal terrestrial radio access network node B
  • eNB UTRAN Node B
  • RTB Radio Access Node Node B
  • 5G new Radio Access Node B
  • the device name with the access node function may vary.
  • the above devices for providing wireless communication functions to the UE are collectively referred to as an access node.
  • location service function entity refers to a functional entity that provides a positioning service for a UE, which may be a service function entity or a high-level service function entity that is independent of an access node setting, or may be set on an access node.
  • the service function entity as long as the entity that implements the related function, belongs to the category of "location service function entity".
  • Entity names with location service function entity functions may be different in different systems and in different settings, such as "Location Business Service Center” and "Enhanced Serving Mobile Location Centre (E) -SMLC)" and so on.
  • E Enhanced Serving Mobile Location Centre
  • FIG. 1a shows a network system architecture involved in the present application, which is used for positioning of a UE, including a UE 100, an access node 200, a location service function entity 300, and a reflector 400.
  • the location service function entity 300 and the access node 200 provide a separate setting for facilitating the division of the function description, but this is not a limitation of the relationship, and the access node 200 can be configured with positioning.
  • the service function, the location service function entity 300 can also be set on the access node 200.
  • there are obstacles that affect the propagation of electromagnetic waves such as buildings and natural landscapes.
  • the electromagnetic wave can be divided into two types of paths, one is a main path corresponding to the access node 200 near the UE 100 (the path of the access node 200 directly to the UE 100), and the other is at least one reflection path corresponding to the reflector 400 (connected) The path from the node 200 to the reflector 400 and then from the reflector 400 to the UE 100).
  • the access node 200 in the system for locating the UE 100, is a single access node for the UE 100 to be located, but it should be noted that the access node 200 is not necessarily the access node 200 that the UE 100 has accessed.
  • the positioning measurement of the present application is a multipath positioning measurement for a single access node, including a positioning measurement for a main path and at least one reflection path, or a positioning measurement for at least two reflection paths; wherein the positioning measurement may involve
  • the measurement of the arrival time TOA of the distance location may also relate to the measurement of the angle of arrival AOA for angular positioning.
  • Figure 1b shows the schematic diagram of the angle of arrival AOA involving the major and reflected paths.
  • Figure 1c shows at least two A schematic diagram of the angle of arrival AOA of the strip reflection path, as shown in FIG.
  • the access node transmits a signal and the UE receives the signal.
  • a part of the signal sent by the access node is directly transmitted to the UE in the air.
  • the propagation path is a direct path, that is, a main path.
  • a part of the signal is reflected by the reflector and received by the UE.
  • the path is a reflection path. Taking the UE as the coordinate origin, the received direct path angle is ⁇ 0 , that is, the main path AOA; the received reflection path angle is ⁇ 1 , that is, the reflection path AOA.
  • the circle represents the location of the UE
  • the square represents the location of the access node
  • the triangle is the location of the reflector.
  • the access node transmits a signal and the UE receives the signal.
  • the signal sent by the access node is not directly transmitted to the UE due to some obstacle occlusion.
  • Some signals are reflected by the reflector 1 and then received by the UE.
  • the path is the reflection path 1; part of the signal is reflected by the reflector 2 and received by the UE.
  • the path is the reflection path 2.
  • the received reflection diameter 1 angle is ⁇ 1 , that is, the AOA of the reflection diameter 1;
  • the received reflection diameter angle is ⁇ 2 , that is, the AOA of the reflection diameter 2 .
  • FIG. 1b and FIG. 1c are schematic diagrams showing an AOA corresponding to a signal path of an access node to a UE.
  • the angle of arrival of the UE to the access node is similar to that of the access node, and the
  • FIG. 1a is a schematic diagram of a signal in the downlink direction in which the UE 100 performs positioning measurement, which is not a limitation of the present application. It is only a schematic of a scenario.
  • the positioning measurement may be performed by the UE 100 alone or by the access node 200. It can also be performed jointly by the UE 100 and the access node 200.
  • the UE 100 detects the different angles of arrival (AOA) of the same signal by using the multi-antenna technology by receiving the positioning reference signal based on the single access node 200 in the downlink direction.
  • AOA angles of arrival
  • the measured value of the multipath AOA and / or TOA is obtained; in the scenario where the positioning measurement is performed by the access node 200, the single access node 200 receives the uplink direction.
  • the positioning reference signal sent by the UE 100 to be located is detected by the multi-antenna technology to detect different arrival angles and/or arrival times of the same signal, and the measured values of the multipath AOA and/or TOA are obtained; and are jointly performed by the UE 100 and the access node 200.
  • the UE 100 and the access node 200 respectively obtain the measured values of the multipath AOA and/or TOA measured in the downlink direction and the uplink direction.
  • the UE 100 and/or the access node 200 reports the measurements of the multipath AOA and/or TOA to the location service function entity 300 (the UE 100 is in communication connection with the location service function entity 300 via the access node 200).
  • the location service function entity 300 can estimate the location of the UE 100, thereby implementing the positioning of the UE 100. It should be noted that if the position of the reflector 400 is known, the calculation result of the position estimation will be more accurate.
  • FIG. 1a is only an example of a network system architecture involved in the present application, and the application is not limited thereto.
  • the present application can also be applied in a system of IEEE 802.11 to improve indoor wireless fidelity (WiFi) by utilizing multipath measurement information based on a single access point (AP). Positioning accuracy.
  • WiFi indoor wireless fidelity
  • AP access point
  • FIG. 2 is a flowchart of a first embodiment of a positioning method of a terminal device according to an embodiment of the present application.
  • the present embodiment and the subsequent embodiments are generally described from the perspective of interaction, but the steps of the interaction sides in the system must not be performed together.
  • the technical solution proposed by the present application Improvements are made on each side of the system.
  • the method includes:
  • the UE obtains multipath positioning measurement information based on a single access node.
  • the UE obtains the positioning measurement information, which may be obtained from an entity capable of performing the positioning measurement, or may be obtained by the UE directly performing the positioning measurement. Specifically, the positioning measurement is performed according to the positioning reference signal sent by the single access node.
  • the multipath positioning measurement of the access node, the positioning measurement information is measurement result information based on the multipath positioning measurement of the single access node.
  • the positioning measurement based on the single access node is implemented by combining multipath positioning measurement, and the multipath includes a main path corresponding to the single access node and at least one reflection path corresponding to the reflector; or at least corresponding to the reflector Two reflection paths, the reflector has at least two in the system.
  • the multiple reflection paths include the reflection paths corresponding to the plurality of reflectors, and the multiple reflection paths corresponding to one reflector in multiple measurements;
  • the ingress node is not necessarily the access node that the UE has accessed, and may be an access node in the vicinity of the UE for UE positioning.
  • the UE may use multiple antenna techniques to detect the AOA and/or TOA of the same signal (downlink positioning reference signal) to obtain measurements of the multipath AOA and/or TOA.
  • the TOA, AOA can be determined by:
  • t ms represents the timestamp of the single access node transmitting the positioning reference signal
  • t prop represents the propagation time of the signal
  • ⁇ sync is the time synchronization error of the UE and the single access node.
  • the positioning reference signal to the UE incident angle AOA can be expressed as:
  • [x BS , y BS ] and [x UE , y UE ] are the coordinates of a single access node and the UE, respectively, and ⁇ AOA is measurement noise. Based on the estimation method, the measured value of the multipath AOA is obtained by detecting different arrival angles of the same signal.
  • the obtaining the positioning measurement information by the UE may perform the obtaining operation periodically, or may perform the obtaining operation according to the request sent by the positioning service function entity or the trigger of the positioning node sending the positioning reference signal.
  • the UE sends the multipath positioning measurement information based on the single access node to the positioning service function entity, and the positioning service function entity receives the positioning measurement information.
  • the UE sends a message carrying the positioning measurement information to the positioning service function entity by using the signaling interaction between the UE and the positioning service function entity, so that the positioning service function entity obtains the measurement result information of the multipath positioning measurement based on the single access node.
  • the UE may carry the multi-path positioning measurement information based on the single access node by using different messages, for example, in the LTE system, the LTE Positioning Protocol (LPP) may be implemented.
  • LPP LTE Positioning Protocol
  • the point-to-point two-way delivery between the target device (UE) and the location service function entity, the LPP protocol includes location information delivery, so the location measurement information can be carried in the LPP message.
  • the “Location Information” may represent the actual location estimation of the UE or the measurement data used for the positioning calculation (eg, TOA, AOA measurement); the above is only an example, and may also be
  • the other location information in the LTE system carries the above-mentioned positioning measurement information, or carries the above-mentioned positioning measurement information through other messages in a terminal in a future 5G network or a public land mobile network (Public Land Mobile Network, PLMN for short).
  • PLMN Public Land Mobile Network
  • the sending, by the UE, the positioning measurement information to the positioning service function entity may perform the sending operation periodically, or may be performed according to the request sent by the positioning service function entity or the trigger of the positioning node sending the positioning reference signal.
  • the positioning service function entity estimates the location of the UE based on the received positioning measurement information, and implements positioning.
  • the positioning service function entity is optional, and the position estimation can be performed by:
  • Adding at least one reflection path for the multipath including the main path may include the following processing steps:
  • the body separately performs position estimation of each reflector
  • the above solution is for the case where the position of the reflector is unknown, and the position of the reflector needs to be estimated. If the position of the reflector in the system is known, the positioning accuracy of the UE is further improved. If the position of the reflector is known, the correlation processing of the position estimation of the reflector in the processing flow can be eliminated, and the UE position can be determined by directly estimating the UE position using the known reflector position and the main path TOA and AOA.
  • the step includes: obtaining a time difference of the reflection path according to the at least two reflection paths; Obtaining a time difference, a position of the TOA and the AOA corresponding to the at least two reflection paths, and an access node, and obtaining a position estimate of the UE position and the at least two reflectors;
  • the UE location is determined.
  • the above solution is for the case where the position of the reflector is unknown, and the position of the reflector needs to be estimated. If the position of the reflector in the system is known, the positioning accuracy of the UE is further improved. If at least two reflector positions are known, the correlation processing of the reflector position estimation in the processing flow can be eliminated, and the positions of the at least two reflectors and the reflection paths TOA and AOA corresponding to the at least two reflectors can be directly used. Perform UE location estimation.
  • one reflector corresponds to one reflection path, and during the motion of the UE (of course, the UE can also be stationary), the positioning reference signal is sent multiple times, so that The measurement is performed multiple times, and the position estimation of the multiple reflectors is for each reflector, and for each reflector, the estimation accuracy of the reflector is improved by averaging multiple measurements of the reflector.
  • a method for locating a terminal device by using a multi-path measurement information of a single access node to report an interaction process of a positioning service function entity, to achieve accurate positioning of the UE, and avoiding multi-base station time and Data synchronization requires strict issues.
  • FIG. 3 is a flowchart of a second embodiment of a method for locating a terminal device according to the present application.
  • the difference between this embodiment and the first embodiment is that, in this embodiment, the interaction process between the access node and other objects is added, and the same or similar content as the first embodiment is not described in this embodiment.
  • the method includes:
  • the location service function entity sends a location information request to the UE.
  • the interaction process is optional, because in the process of locating the UE, optionally, the UE may periodically report, or the location service function entity may send a location information request to the UE to trigger, and the location service function entity Sending a location information request to the UE, instructing the UE to send the positioning measurement information, which can be triggered as needed, reducing the overhead caused by the UE frequently reporting the positioning measurement information.
  • the location information request may be carried in different messages in different systems, for example, may be carried in an LPP message in an LTE system, or may be carried in other messages.
  • the positioning service function entity sends indication information indicating that the access node transmits the positioning reference signal to the access node.
  • the positioning service function entity may select an access node in the vicinity of the UE and send an instruction to the access node to send the positioning reference signal for performing UE positioning.
  • the command may be sent in an LTE Positioning Protocol Annex (LPPa) message, which is only an example, and may also be carried in other messages in the LTE system, or In a terminal in a future 5G network or a public land mobile network (Public Land Mobile Network, PLMN for short), the instruction is carried by other messages.
  • LTPa LTE Positioning Protocol Annex
  • the access node sends a positioning reference signal to the UE.
  • the positioning reference signal may be a reference signal dedicated to positioning, or may be an existing signal such as PRS and CRS.
  • the access node sends the location reference signal to the UE, where the entity may send the location measurement to the UE side, and the entity may be separately configured with the UE.
  • the UE obtains multipath positioning measurement information based on a single access node.
  • the UE sends the multipath positioning measurement information based on the single access node to the positioning service function entity, and the positioning service function entity receives the positioning measurement information.
  • the positioning service function entity estimates the location of the UE based on the received positioning measurement information, and implements positioning.
  • the positioning service function entity instructs the access node to transmit the positioning reference signal, so that the UE reports the multipath measurement information based on the single access node to the interaction process of the positioning service function entity.
  • the precise positioning of the UE avoids the problem that the time and data synchronization requirements of multiple base stations are strict.
  • the positioning service function entity may select a default. All UEs have the ability to support multipath positioning measurements based on a single access node. If, in the system, not all UEs have the capability to support multi-path positioning measurements based on a single access node, then the positioning service function entity needs to determine the capability of the positioning measurements supported by the UE to determine whether to adopt a single access node based The multipath positioning measurement method locates the UE.
  • the positioning service function entity determines the capability of the positioning measurement supported by the UE, and the UE can report the capability supported by the UE, and determine whether the UE supports multipath positioning measurement based on the single access node.
  • the UE capability is fixed,
  • the capabilities supported by the UE can also be obtained by a third party (for example, a device capability registration function entity), which is described below through a specific interaction process.
  • FIG. 4 is a schematic diagram of an interaction process for determining a positioning measurement capability supported by a terminal device in the present application. As shown in FIG. 4, determining the positioning measurement capability supported by the UE includes the following steps:
  • the positioning service function entity sends a capability request of the UE to the UE/third party.
  • the step is an optional step. It can be understood that the location service function entity determines the location measurement capability supported by the UE, and may send the capability request to indicate the UE/third party feedback when needed, or may be periodically performed by the UE/third party. Report to determine. By sending a capability request by the location service function entity, the UE/third party feedback can be triggered as needed, which reduces the overhead caused by frequent reporting by the UE/third party.
  • the capability request is sent to the UE, optionally, it may be carried in the LPP message, and the LPP protocol includes a positioning capability (Positioning Capabilities) interaction; here, for example only, it may also be carried in other messages in the LTE system.
  • the request or in a terminal in a future 5G network or a publicly-developed Public Land Mobile Network (PLMN), carries the request through other messages.
  • PLMN Public Land Mobile Network
  • steps S302 and S303 are not sequential steps in the process, and the two are two processing modes in which the UE has the positioning measurement capability in different situations.
  • the UE/third direction location service function entity feeds back the capability supported by the UE, wherein the UE is instructed to support multipath measurement based on a single access node.
  • the UE/third party may indicate whether the UE supports certain capabilities by using a specific field or a certain bit in the message fed back to the positioning service function entity.
  • the indication bits corresponding to the positioning manners indicate whether the UE supports the capability by using value information such as 0 and 1.
  • MPC Identificaiton Multiple Components Identificaiton
  • the UE/third direction location service function entity feeds back the capability supported by the UE, where the UE is indicated to not support multipath measurement based on the single access node.
  • the UE/third party may indicate whether the UE supports certain capabilities by using a specific field or a certain bit in the message fed back to the positioning service function entity.
  • the indication bits corresponding to the positioning manners indicate whether the UE supports the capability by using value information such as 0 and 1.
  • the LPP message carrying is taken as an example, and the LPP related capability information is added.
  • the positioning service function entity determines the capability of the UE according to the received UE capability feedback information.
  • the positioning service function entity can determine whether the UE supports the multi-path positioning measurement based on the single access node according to the UE capability feedback information, and further determines whether the location estimation of the UE is implemented by using the manner. When it is confirmed that the UE supports the mode, the location estimation of the UE may be implemented in the manner of the foregoing Embodiment 1 and Embodiment 2.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the UE can support, thereby effectively achieving positioning.
  • FIG. 5 is a flowchart of a first embodiment of a positioning method of another terminal device according to the present application.
  • the present embodiment and the subsequent embodiments are generally described from the perspective of interaction, but the steps of the interaction sides in the system must not be performed together.
  • the technical solution proposed by the present application Improvements are made on each side of the system.
  • the method includes:
  • the access node obtains multipath positioning measurement information based on a single access node.
  • the access node is a single access node, and the access node obtains positioning measurement information, which may be obtained from an entity capable of performing positioning measurement (for example, a measurement unit that can be separately set from the access node), or may be an access node. Obtaining the positioning measurement directly, specifically, the positioning measurement is based on the multi-path positioning measurement of the single access node according to the positioning reference signal sent by the UE to be located, and the positioning measurement information is based on the single access node. Measurement information of the multipath positioning measurement.
  • the positioning measurement based on a single access node is implemented by combining multipath positioning measurement, where the multipath includes a main path between the UE and the single access node, and at least one reflection path between the access node and the reflector; or At least two reflection paths corresponding to the reflector, the reflector having at least one in the system.
  • the multiple reflection paths include the reflection paths corresponding to the plurality of reflectors, and the multiple reflection paths corresponding to one reflector in multiple measurements;
  • the ingress node is not necessarily the access node that the UE to be located has access to, and may be an access node in the vicinity of the UE for UE positioning.
  • the access node may use multi-antenna technology to detect AOA and/or TOA of the same signal (uplink positioning reference signal) to obtain measured values of multipath AOA and/or TOA.
  • the measurement estimation manners of the TOA and the AOA may be similar to those exemplified in the first embodiment, and details are not described herein again.
  • the obtaining, by the access node, the positioning measurement information may be performed periodically, or may be performed according to a request sent by the positioning service function entity or a trigger sent by the UE to send the positioning reference signal.
  • the access node sends the multipath positioning measurement information based on the single access node to the positioning service function entity, and the positioning service function entity receives the positioning measurement information.
  • the access node sends a message carrying the UE location measurement information to the location service function entity, so that the location service function entity obtains the multipath based on the single access node to the UE.
  • Position measurement measurement information may carry the multi-path positioning measurement information based on the single access node by using different messages.
  • the LTE positioning protocol LTE Positioning Protocol, referred to as The LPPa protocol implements the point-to-point two-way transmission between the access node and the location service function entity.
  • the LPPa protocol includes location information (Location Information), so the location measurement information can be carried in the LPPa message.
  • the “Location Information” may represent both the actual location estimation of the UE and the measurement data used for the positioning calculation (eg, TOA and AOA measurement); the above is only an example, and may also be
  • the other location information in the LTE system carries the above-mentioned positioning measurement information, or carries the above-mentioned positioning measurement information through other messages in a terminal in a future 5G network or a public land mobile network (Public Land Mobile Network, PLMN for short).
  • PLMN Public Land Mobile Network
  • the sending, by the access node, the positioning measurement information to the positioning service function entity may perform the sending operation periodically, or may perform the sending operation according to the request sent by the positioning service function entity or the trigger of the positioning reference signal sent by the UE.
  • the positioning service function entity estimates the location of the UE based on the received positioning measurement information, and implements positioning.
  • the manner of performing location estimation on the UE may be similar to that exemplified in the first embodiment, and details are not described herein again.
  • the access node is configured to report the multi-path measurement information of the UE based on the access node to the interaction process of the positioning service function entity, thereby achieving accurate positioning of the UE, and avoiding more
  • the base station has strict requirements on time and data synchronization.
  • FIG. 6 is a flowchart of a second embodiment of a positioning method of another terminal device provided by the present application.
  • the difference between this embodiment and the third embodiment is that, in this embodiment, the interaction process between the UE and other objects is added, and the same or similar content as the third embodiment is not described in this embodiment.
  • the method includes:
  • the location service function entity sends a location information request to the access node.
  • the interaction process is optional, because in the process of locating the UE, the access node may be periodically reported by the access node, or may be triggered by the location service function entity sending a location information request to the access node.
  • the location service function entity sends a location information request to the access node, instructing the access node to send the location measurement information, which can be triggered as needed, which reduces the overhead caused by the access node frequently reporting the location measurement information.
  • the location information request may be carried in the LPPa message; here, for example only, the request may be carried in other messages in the LTE system, or the terminal in the future 5G network or the public land mobile in the future evolution. In the Public Land Mobile Network (PLMN), the request is carried by other messages.
  • PLMN Public Land Mobile Network
  • the positioning service function entity sends indication information indicating that the UE transmits the positioning reference signal to the UE.
  • the positioning service function entity sends an instruction to the UE to be located, instructing the UE to send a positioning reference signal for positioning.
  • the command may be sent in an LTE Positioning Protocol (LPP) message; here, for example, the command may be carried in other messages in the LTE system, or in the future 5G.
  • LTP LTE Positioning Protocol
  • the terminal in the network or the publicly-developed Public Land Mobile Network (PLMN) in the future carries the instruction through other messages.
  • the UE sends a positioning reference signal to the access node.
  • the UE sends a positioning reference signal to the access node in the vicinity thereof.
  • the positioning reference signal may be a reference signal dedicated to positioning, or may be an existing signal, such as PRS and CRS.
  • the UE sends the positioning reference signal to the access node, and may be sent by an entity that completes the positioning measurement to the access node side (for example, a measurement unit that is separately set from the access node).
  • the access node obtains multipath positioning measurement information for the UE based on the single access node.
  • the access node sends the multipath positioning measurement information based on the single access node to the positioning service function entity, and the positioning service function entity receives the positioning measurement information.
  • the positioning service function entity estimates the location of the UE based on the received positioning measurement information, and implements positioning.
  • the positioning service function entity instructs the UE to transmit the positioning reference signal, so that the access node reports the multi-path measurement information of the positioning service function entity based on the multi-path measurement information performed by the single access node for the UE.
  • the process realizes accurate positioning of the UE, and avoids the problem that the time and data synchronization requirements of the multiple base stations are strict.
  • the positioning service function entity may Select Default All access nodes have the ability to support multipath positioning measurements based on a single access node. If, in the system, not all of the access nodes have the ability to support multi-path positioning measurements based on a single access node, the positioning service function entity needs to determine the positioning measurement supported by the access node before the above-mentioned interaction process of the positioning measurement. The ability to determine whether to use the access node to locate the UE using a single access node based multipath positioning measurement.
  • the positioning service function entity determines the capability of the positioning measurement supported by the access node, and the access node report can be used to learn the capability supported by the access node, and determine whether the access node supports multipath positioning measurement based on the single access node.
  • the third party for example, the device capability registration function entity
  • the third party can obtain the capability supported by the access node, and the following describes the specific interaction process.
  • FIG. 7 is a schematic diagram of an interaction process for determining a positioning measurement capability supported by an access node in the present application. As shown in FIG. 7, determining the positioning measurement capability supported by the access node includes the following steps:
  • the location service function entity sends a capability request of the access node to the access node/third party.
  • the step is an optional step. It can be understood that the location service function entity determines the location measurement capability supported by the access node, and may send the capability request to indicate the access node/third party feedback or the access node when needed. / Third party periodically reports to determine. By sending a capability request by the location service function entity, the access node/third party feedback can be triggered as needed, which reduces the overhead caused by frequent reporting by the access node/third party.
  • the capability request is sent to the access node, optionally, it can be carried in the LPPa message, and the LPPa protocol includes a positioning capability (Positioning Capabilities) interaction; here, for example, in other messages in the LTE system.
  • a positioning capability Positioning Capabilities
  • PLMN Public Land Mobile Network
  • steps S602 and S603 are not sequential steps in the process, and the two are two processing modes in which the access node has the positioning measurement capability in different situations.
  • the access node/third direction location service function entity feeds back an capability supported by the access node, wherein the indication access node supports multipath measurement based on a single access node.
  • the access node/third party may indicate whether the UE supports certain capabilities by using a specific field or some bits in the message fed back to the positioning service function entity.
  • the value information of 0, 1, etc. is used to indicate whether the access node supports the capability.
  • the access node/third direction location service function entity feeds back the capability supported by the access node, wherein the indication access node does not support multipath measurement based on the single access node.
  • the access node/third party may indicate whether the access node supports certain capabilities by using a specific field or some bits in the message fed back to the positioning service function entity. Alternatively, if there are multiple positioning measurements in the system, In the manner, the indication bits corresponding to the positioning manners indicate whether the access node supports the capability by using value information such as 0 and 1.
  • the access node has the capability of detecting and distinguishing the multipath measurement information of the single access node, after receiving the request, adding 1 bit information, such as an MPC, to the LPPa related capability information.
  • the positioning service function entity determines the capability of the access node according to the received access node capability feedback information.
  • the positioning service function entity can determine whether the access node supports the multi-path positioning measurement based on the single access node according to the access node capability feedback information, and further determines whether the location estimation of the UE is implemented by the access node in the manner.
  • the location estimation of the UE may be implemented by using the foregoing method in the third embodiment and the fourth embodiment.
  • the design enables the positioning service function entity to determine the positioning measurement mode that the access node for UE positioning can support, thereby effectively implementing UE positioning.
  • the UE location estimation is introduced from the UE side to transmit multipath positioning measurement information based on a single access node and the access node side to transmit multipath positioning measurement information based on a single access node, respectively.
  • the location estimation function of the location service function entity may be based on the measurement information reported by the UE, or may be based on the measurement information reported by the access node, and may also perform UE location estimation according to the measurement information reported by the UE and the access node. .
  • the following is an optional calculation method for location estimation from the location service function entity.
  • FIG. 8 is a flowchart of another embodiment of a method for locating a terminal device in the present application.
  • This embodiment is mainly based on a calculation method for performing location estimation by the positioning service function entity, and only describes the main steps related to transmitting the positioning measurement information, which is not limited to only these steps, and may also include the embodiment 2 and/or the embodiment.
  • the positioning service function entity may also include the embodiment 2 and/or the embodiment.
  • the access node obtains multipath positioning measurement information based on a single access node.
  • the access node sends the multi-path positioning measurement information based on the single access node to the positioning service function entity, and the positioning service function entity receives the positioning measurement information.
  • S701 and S702 are similar to the descriptions of S401 and S402 in the above embodiment, and the descriptions of the above S401 and S402 can be referred to, and details are not described herein again.
  • the UE obtains multipath positioning measurement information based on a single access node.
  • the UE sends the multi-path positioning measurement information based on the single access node to the positioning service function entity, and the positioning service function entity receives the positioning measurement information.
  • S703 and S704 are similar to the descriptions of S101 and S102 in the foregoing embodiment, and reference may be made to the descriptions of S101 and S102, and details are not described herein again.
  • S701 and S702 and S703 and S704 do not have a certain order, which is only for objects that perform different actions. It does not have to exist either. In different scenarios, there may be no S701 and S702, or no S703 and S704.
  • the positioning service function entity estimates the location of the UE based on the received positioning measurement information, and implements positioning.
  • the positioning service function entity may perform location estimation of the UE based on measurement information reported by the UE and/or the access node. For the location estimation of the UE based on the measurement information reported by the UE or the access node, the location estimation of the UE may be performed in the manner described in S103, S206 or S403, S506 in the foregoing embodiment, and the measurement based on the reporting by the UE and the access node. The information is used for location estimation of the UE. The location estimation of the UE may be performed in the manner described in S103, S206, and S403, S506 in the foregoing embodiment. Optionally, the location estimation result of the measurement information according to the UE is reported and the measurement is reported according to the access node. The position estimation results of the information are averaged to determine the final UE position.
  • the UE or the access node provides positioning measurement information, and the multipath positioning measurement value includes the TOA of the main path and the at least one reflection path.
  • AOA measurements The case of AOA measurements:
  • the particle swarm optimization (Particle Swarm Optimization, PSO for short) is used to estimate the position of the reflector.
  • PSO particle Swarm Optimization
  • r (l) [k] is the difference between the measured distance of the reflection path (introduced by the reflector 1) and the distance from the main path at time k, Is the position estimate of the reflector at time k And terminal location estimation The standard deviation of the corresponding difference between the reflection path and the main path distance,
  • the distance measurement value of the reflection path at time k (calculated according to the reflection path arrival time TOA)
  • Estimating the distance of the reflection path obtained from the position estimation of the UE and the position estimation of the reflector at time k (from the position of the access node to the estimated position of the reflector 1 and then from the estimated position of the reflector 1 to the estimated position of the UE) determine)
  • ⁇ TOA is the measurement standard deviation of TOA
  • the AOA measurement value of the reflection path at time k (calculated according to the reflection path arrival angle AOA), For the angle of the estimated position of the reflector 1 relative to the access node at time k, ⁇ AOA
  • the PSO algorithm is used to obtain the second position estimation of the UE.
  • the cost function of the PSO algorithm is:
  • the second position estimation of the UE at time k Is the position estimate of the reflector at time k
  • the second position estimate of the UE The standard deviation of the distance difference between the corresponding reflection diameter and the main diameter, The distance of the main path based on the second position estimation of the UE at time k, with They are the propagation distance of the main path at time k and the measured value of AOA, respectively.
  • the UE or the access node provides positioning measurement information
  • the multipath positioning measurement value includes TOA and AOA measurement of at least two reflection paths.
  • r (m,n) [k] is the reflection path at k (introduced by reflector m) and reflection
  • the difference in the distance measurement of the diameter (introduced by the reflector n) The distance of the reflection path determined by the position of the access node, the position estimation of the reflector m, and the position estimation of the UE at time k, The distance of the reflection path determined by the position of the access node, the position estimate of the reflector n, and the position estimate of the UE at time k, ⁇ Diff, 1 [k] is the position estimate of the UE at time k Estimation of position with reflector with The standard deviation of the distance difference of the corresponding reflection path, The distance measurement value (calculated from the reflection path TOA
  • ⁇ TOA is the measurement standard deviation of the TOA.
  • ⁇ AOA is the standard deviation of the AOA measurement.
  • ⁇ TOA and ⁇ AOA are constants, and their values may be different for different antennas, which may be empirical values.
  • the PSO algorithm is used to obtain the second position estimation of the UE.
  • the cost function of the PSO algorithm is:
  • the distance between the access node position at time k and the position estimate of the UE and the position of the reflector m are determined by the determined reflection path.
  • the technical solution C provides positioning measurement information for the UE and the access node, and the multipath positioning measurement value includes the TOA and AOA measurement values of the main path and the at least one reflection path:
  • the second time position estimation of the k-time UE obtained based on the positioning measurement information provided by the UE is separately calculated by using the foregoing technical solution A of the present application.
  • the second location estimation of the UE obtained based on the positioning measurement information provided by the access node Then averaging the two position estimation results to obtain the final position estimate of the UE:
  • the technical solution D provides positioning measurement information for the UE and the access node, and the multipath positioning measurement value includes the TOA and AOA measurement values of at least two reflection paths:
  • the second time position estimation of the k-time UE obtained based on the positioning measurement information provided by the UE is calculated by using the foregoing technical solution B of the present application.
  • the second location estimation of the UE obtained based on the positioning measurement information provided by the access node Then averaging the two position estimation results to obtain the final position estimate of the UE:
  • the embodiments of the present application may perform functional module division on the UE, the access node, and the location service function entity according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated in the function.
  • a processing module In a processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions.
  • the embodiment of the present application further provides a terminal device.
  • the terminal device can be used to perform the steps performed by the UE in any of the figures in FIG. 2 to FIG. 4, FIG. 6, and FIG. Figure 9 shows a simplified schematic diagram of the structure of a terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device 900 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the terminal device 900, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal equipment 900 may not have input and output devices.
  • the memory and the processor may be integrated or independently.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal device 900, and the processor having the processing function is regarded as the processing unit of the terminal device 900.
  • the terminal device 900 includes a transceiver unit 901 and a processing unit 902.
  • the transceiver unit may also be referred to as a transceiver (including a transmitter and/or receiver), a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 901 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 901 is regarded as a sending unit, that is, the transceiver unit 901 includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the transceiving unit 901 and the processing unit 902 may be integrated or independently.
  • all the functions in the processing unit 902 may be implemented in one chip, or may be partially integrated in one chip to realize another part of the function integration in another one or more chips, which is not limited in this application.
  • the transceiving unit 901 is configured to perform the steps performed by the UE in S102 of FIG. 2, and/or other steps in the application.
  • Processing unit 902 is for performing S101 of Figure 2, and/or other steps in the application.
  • the transceiving unit 901 is configured to perform the steps performed by the UE in S201, S203, and/or S205 of FIG. 3, and/or other steps in the present application.
  • Processing unit 902 is operative to perform S204 of FIG. 3, and/or other steps in the application.
  • the transceiving unit 901 is configured to perform the steps performed by the UE in S301, S302, and/or S303 of FIG. 4, and/or other steps in the application.
  • Processing unit 902 is for performing other steps in this application.
  • the transceiving unit 901 is configured to perform the steps performed by the UE in S502 and/or S503 of FIG. 6, and/or other steps in the present application.
  • Processing unit 902 is for performing other steps in this application.
  • the transceiving unit 901 is configured to perform the steps performed by the UE in S704 of FIG. 8, and/or other steps in the present application.
  • Processing unit 902 is operative to perform S703 of FIG. 8, and/or other steps in the application.
  • the embodiment of the present application further provides a network device.
  • the network device can be used as an access node for performing the steps performed by the access node in any of the Figures 3, 5-8.
  • Figure 10 shows a simplified schematic diagram of the structure of a network device.
  • Network device 100 includes a 1001 portion and a 1002 portion.
  • the 1001 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals; the 1002 part is mainly used for baseband processing, and controls the network device 100.
  • the 1001 portion may be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the 1002 portion is typically the control center of the network device 100, and may generally be referred to as a processing unit for controlling the network device 100 to perform the steps performed by the access node in the above-described related embodiments.
  • a processing unit for controlling the network device 100 to perform the steps performed by the access node in the above-described related embodiments.
  • the transceiver unit of the 1001 part which may also be called a transceiver, or a transceiver, etc., includes an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the 1001 portion may be regarded as a receiving unit
  • the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the 1001 portion includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the 1002 portion may include one or more boards, each of which may include one or more processors and one or more memories for reading and executing programs in the memory to implement baseband processing functions and network devices 100 controls. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time. Device.
  • the memory and the processor may be integrated or independently.
  • the 1001 portion and the 1002 portion may be integrated or may be independently arranged.
  • all the functions in the 1002 part may be implemented in one chip, or may be partially integrated in one chip to realize another part of the function integration in one or more other chips, which is not limited in this application.
  • the transceiving unit is operative to perform the steps performed by the access node in S202 and/or S203 of FIG. 3, and/or other steps in the present application.
  • the processing unit is used to perform other steps in this application.
  • the transceiver unit is operative to perform the steps performed by the access node in S402 of FIG. 5, and/or other steps in the application.
  • the processing unit is operative to perform S401 of Figure 5, and/or other steps in the application.
  • the transceiving unit is configured to perform the steps performed by the access node in S501, S503, and/or S505 of FIG. 6, and/or other steps in the application.
  • the processing unit is operative to perform S504 of Figure 6, and/or other steps in the application.
  • the transceiving unit is configured to perform the steps performed by the access node in S601, S602, and/or S603 of FIG. 7, and/or other steps in the present application.
  • the processing unit is used to perform other steps in this application.
  • the transceiving unit is configured to perform the steps performed by the access node in S702 of FIG. 8, and/or other steps in the application.
  • the processing unit is operative to perform S701 of Figure 8, and/or other steps in the application.
  • the embodiment of the present application further provides another network device, which can be used as a location service function entity to perform the steps performed by the location service function entity in any of the Figures 2-8.
  • 11 is a schematic diagram showing another simplified network device structure.
  • the network device 110 includes a processor, a memory, a communication unit including a communication interface, and an optional input/output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the network device 110, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the communication unit is mainly used for transmission processing of network communication.
  • the communication interface performs interface processing on network communication, and is mainly used for transmitting and receiving messages and data.
  • Input and output devices such as indicators, touch screens, display screens, keyboards, etc.
  • Input and output devices are primarily used to receive data input by an operator and output data to an operator. It should be noted that some kinds of network devices may not have input and output devices.
  • the memory and the processor may be integrated or independently.
  • the processor When data needs to be transmitted, the processor processes the data to be sent, and outputs the data to the communication unit. After the communication unit performs the interface processing through the communication interface, the data is sent out.
  • the communication unit receives the data through the communication interface, processes the data and outputs it to the processor, which further processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the communication interface and the communication unit having the transceiving function can be regarded as the transceiving unit of the network device 110, and the processor having the processing function is regarded as the processing unit of the network device 110.
  • the network device 110 includes a transceiver unit 1101 and a processing unit 1102.
  • the transceiver unit may also be referred to as a transceiver (including a transmitter and/or receiver), a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1101 can be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1101 is regarded as a transmitting unit, that is, the transceiver unit 1101 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the transceiving unit 1101 and the processing unit 1102 may be integrated or independently.
  • all the functions in the processing unit 1102 can be implemented in one chip, or can be partially integrated into one chip to realize another part of the function integration in another one or more chips, which is not limited in this application.
  • the transceiving unit 1101 is configured to perform the steps performed by the location service function entity in S102 of FIG. 2, and/or other steps in the application.
  • Processing unit 1102 is for performing S103 of Figure 2, and/or other steps in the application.
  • the transceiving unit 1101 is configured to perform the steps performed by the positioning service function entity in S201, S202, and/or S205 of FIG. 3, and/or other steps in the present application.
  • Processing unit 1102 is operative to perform S206 of FIG. 3, and/or other steps in the application.
  • the transceiving unit 1101 is configured to perform the steps performed by the positioning service function entity in S301, S302, and/or S303 of FIG. 4, and/or other steps in the present application.
  • Processing unit 1102 is operative to perform S304 of FIG. 4, and/or other steps in the application.
  • the transceiver unit 1101 is configured to perform the steps performed by the location service function entity in S402 of FIG. 5, and/or other steps in the application.
  • Processing unit 1102 is operative to perform S403 of FIG. 5, and/or other steps in the application.
  • the transceiving unit 1101 is configured to perform the steps performed by the positioning service function entity in S501, S502, and/or S505 of FIG. 6, and/or other steps in the present application.
  • Processing unit 1102 is operative to perform S506 of FIG. 6, and/or other steps in the application.
  • the transceiving unit 1101 is configured to perform the steps performed by the positioning service function entity in S601, S602, and/or S603 of FIG. 7, and/or other steps in the present application.
  • Processing unit 1102 is for performing S604 of Figure 7, and/or other steps in the application.
  • the transceiving unit 1101 is configured to perform the steps performed by the positioning service function entity in S702 and/or S704 of FIG. 8, and/or other steps in the present application.
  • Processing unit 1102 is operative to perform S705 of FIG. 8, and/or other steps in the application.
  • the present application also provides a terminal positioning system, including the positioning service function entity in the above embodiment, and the UE and/or the access node.
  • the application also provides a computer program product that, when run on a computer, causes the computer to perform any of the methods provided above.
  • the present application also provides a communication chip in which instructions are stored that, when run on entities, cause entities to perform the methods provided above.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例公开了一种用于终端设备的定位方法、装置及系统。其中,通过终端设备侧和/或接入节点侧的测量装置获得针对所述终端设备的定位测量信息,其中,所述定位测量信息为基于单接入节点的多径定位测量信息,包括基于单接入节点的主径和至少一条反射径的定位测量信息,或针对至少两条反射径的定位测量信息。终端设备侧和/或接入节点侧的测量装置向网络中的定位功能实体报告所述定位测量信息,从而定位功能实体能够基于所述定位测量信息对所述终端设备进行位置估计,实现所述终端设备的定位。该技术方案可以应用于非视线传输NLOS环境下的终端设备定位。

Description

用于终端设备的定位方法、装置及系统
本申请要求于2018年1月5日提交中国国家知识产权局、申请号为201810011364.8、发明名称为“用于终端设备的定位方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及通信系统中终端设备的定位技术。
背景技术
随着通信技术的发展和移动设备越来越高的普及,人们对自身位置的定位服务需求日益激增。基于移动通信网络的定位技术得到飞速发展,无论是在人们的日常出行、交通工具定位导航,还是无线资源分配和整合、国家信息安全等方面都有着举足轻重的地位。当前3GPP协议中,无线通信系统中的用户定位是利用基站和/或终端检测到的无线信号观测量来进行定位解算,主要的定位技术包括:(1)距离定位:利用终端与两个或多个基站之间的距离(TOA)进行定位解算;(2)角度定位:利用终端和两个或多个基站之间的角度(AOA)进行定位解算。现有的技术采用的TOA和AOA均为在视线传输(Line of Sight,简称为LOS)环境下的观测量,并未考虑非视线传输(Not Line of Sight,简称为NLOS)环境。
现有的定位方法是基于多个基站和一个终端之间的定位测量信息检测,对网络同步性要求较高,定位精度依赖于信道的传输状态,因此定位精度受到环境影响较大。随着大带宽通信和Massive MIMO技术在未来5G系统中的使用,NLOS环境下的多径反射分量(TOA和AOA)可以被检测和区分出来。但目前对于避免多基站对时间和数据同步要求严格的问题,如何具体实现基于单基站的定位测量,在实现时网络中的设备将发生怎样的动作,仍无具体定义和方案。因此,需要有一种定位所需交互流程方案,实现终端设备的定位。
发明内容
本申请提供一种用于终端设备的定位方法、装置、设备及系统,用以实现通过基于单接入节点的定位测量,从而进行终端设备定位。
第一方面,提供一种用于终端设备定位的方法和装置。
在一种可能的设计中,该方法应用于终端设备侧,实现通过单接入节点的定位测量从而进行终端设备定位。该方法包括终端设备获得针对所述终端设备的定位测量信息,其中,所述定位测量信息为根据单接入节点发来的定位参考信号进行基于所述单接入节点的多径定位测量的测量结果信息;所述终端设备获得所述定位测量信息后,向定位服务功能实体发送所述定位测量信息。所述定位服务功能实体收到所述定位测量信息后,基于该定位测量信息可以进行所述终端设备的位置估计来对所述终端设备进行定位。
可以理解的,为获得定位测量信息,可选的,所述终端设备在获得定位测量信息之前,还接收所述单接入节点发来的定位参考信号,基于该定位参考信号获 得定位测量信息。
在该设计中,终端设备能够通过向定位服务功能实体报告基于单接入节点的多径定位测量的测量结果信息,实现利用多径测量的定位,避免多基站对时间和数据同步要求严格的问题。该技术方案可以应用于非视线传输NLOS环境下的终端设备定位。
在一种可能的设计中,所述终端设备在获得针对所述终端设备的定位测量信息之前,还需使所述定位服务功能实体获知终端设备所支持的测量能力,通过向所述定位服务功能实体发送自身的设备能力指示信息,用以指示所述终端设备是否支持单接入节点的多径定位测量。在系统中支持多种定位测量的环境下,该设计能够使得定位服务功能实体确定终端设备所能支持的定位测量方式,从而有效实现定位。
在一种可能的设计中,所述终端设备在获得针对所述终端设备的定位测量信息之前,还接收所述定位服务功能实体发来的位置信息请求,基于该位置信息请求,所述终端设备进而去获得所述定位测量信息并报告给定位服务功能实体。该设计能够使得终端设备根据定位服务功能实体的请求进行定位测量信息的上报,从而减少不必要的上报开销。
相应的,提供一种用于终端设备定位的装置,该装置可以实现第一方面中的对应的定位方法。例如,该装置以功能形式限定,其具体实现形式可以是定位设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括发送单元,其中,发送单元,用于向定位服务功能实体发送所述定位测量信息;该装置还可以包括处理单元,该处理单元用于获得针对所述终端设备的所述定位测量信息。
第二方面,提供一种用于终端设备定位的方法和装置。
在一种可能的设计中,该方法应用于终端设备侧,实现通过单接入节点的定位测量从而进行终端设备定位。该方法包括终端设备向定位服务功能实体发送针对所述终端设备的定位测量信息,所述定位测量信息为根据单接入节点发来的定位参考信号进行基于所述单接入节点的多径定位测量的测量结果信息。所述定位服务功能实体收到所述定位测量信息后,基于该定位测量信息可以进行所述终端设备的位置估计来对所述终端设备进行定位。
可以理解的,为获得定位测量信息,可选的,所述终端设备在获得定位测量信息之前,还接收所述单接入节点发来的定位参考信号,基于该定位参考信号获得定位测量信息。
在该设计中,终端设备能够通过向定位服务功能实体报告基于单接入节点的多径定位测量的测量结果信息,实现利用多径测量的定位,避免多基站对时间和数据同步要求严格的问题。该技术方案可以应用于非视线传输NLOS环境下的终端设备定位。
在一种可能的设计中,所述终端设备在报告定位测量信息之前,还需使所述定位服务功能实体获知终端设备所支持的测量能力,通过向所述定位服务功能实体发送自身的设备能力指示信息,用以指示所述终端设备是否支持单接入节点的多径定位测量。在系统中支持多种定位测量的环境下,该设计能够使得定位服务功能实体确定终端设备所能支持的定位测量方式,从而有效实现定位。
在一种可能的设计中,所述终端设备在报告定位测量信息之前,还接收所述定位服务功能实体发来的位置信息请求,基于该位置信息请求,所述终端设备进而去获得所述定位测量信息并报告给定位服务功能实体。该设计能够使得终端设备根据定位服务功能实体的请求进行定位测量信息的上报,从而减少不必要的上报开销。
相应的,提供一种用于终端设备定位的装置,该装置可以实现第二方面中的对应的定位方法。例如,该装置以功能形式限定,其具体实现形式可以是定位设备,具体为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第二方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括发送单元,其中,发送单元,用于向定位服务功能实体发送所述定位测量信息;可选的,该装置还可以包括处理单元,该处理单元用于获得针对所述终端设备的所述定位测量信息。
第三方面,提供用于一种终端设备定位的方法和装置。
在一种可能的设计中,该方法可应用于基站、演进通用陆地无线接入网节点B(E-UTRAN Node B,简称为eNB)、新无线接入网节点B(New Radio Access NodeB,简称为NR NodeB)等接入节点侧,实现通过单接入节点的定位测量从而进行终端设备定位。该方法包括接入节点获得针对所述终端设备的定位测量信息,其中,所述定位测量信息为根据终端设备发来的定位参考信号进行基于单接入节点的多径定位测量的测量结果信息;所述接入节点获得所述定位测量信息后,向定位服务功能实体发送所述定位测量信息。所述定位服务功能实体收到所述定位测量信息后,基于该定位测量信息可以进行所述终端设备的位置估计来对所述终端设备进行定位。
可以理解的,为获得定位测量信息,可选的,所述接入节点在获得定位测量信息之前,还接收所述终端设备发来的定位参考信号,基于该定位参考信号获得定位测量信息。
在该设计中,接入节点能够通过向定位服务功能实体报告基于单接入节点的多径定位测量的测量结果信息,实现利用多径测量的定位,避免多基站对时间和数据同步要求严格的问题。该技术方案可以应用于非视线传输NLOS环境下的终端设备定位。
在一种可能的设计中,所述接入节点在获得针对所述终端设备的定位测量信息之前,还需使所述定位服务功能实体获知接入节点所支持的测量能力,通过向所 述定位服务功能实体发送自身的设备能力指示信息,用以指示所述接入节点是否支持单接入节点的多径定位测量。在系统中支持多种定位测量的环境下,该设计能够使得定位服务功能实体确定接入节点所能支持的定位测量方式,从而有效实现定位。
在一种可能的设计中,所述接入节点在获得针对所述终端设备的定位测量信息之前,还接收所述定位服务功能实体发来的位置信息请求,基于该位置信息请求,所述接入节点进而去获得所述定位测量信息并报告给定位服务功能实体。该设计能够使得接入节点根据定位服务功能实体的请求进行定位测量信息的上报,从而减少不必要的上报开销。
相应的,提供一种用于终端设备定位的装置,该装置可以实现第三方面中的对应的定位方法。例如,该装置以功能形式限定,其具体实现形式可以是定位设备,具体为接入节点,也可以为接入节点中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第三方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括发送单元,其中,发送单元,用于向定位服务功能实体发送所述定位测量信息;该装置还可以包括处理单元,该处理单元用于获得针对所述终端设备的所述定位测量信息。
第四方面,提供一种用于终端设备定位的方法和装置。
在一种可能的设计中,该方法可应用于基站、演进通用陆地无线接入网节点B(E-UTRAN Node B,简称为eNB)、新无线接入网节点B(New Radio Access NodeB,简称为NR NodeB)等接入节点侧,实现通过单接入节点的定位测量从而进行终端设备定位。该方法包括接入节点向定位服务功能实体发送针对终端设备的定位测量信息,所述定位测量信息为根据所述终端设备发来的定位参考信号进行基于单接入节点的多径定位测量的测量结果信息。所述定位服务功能实体收到所述定位测量信息后,基于该定位测量信息可以进行所述终端设备的位置估计来对所述终端设备进行定位。
可以理解的,为获得定位测量信息,可选的,所述接入节点在获得定位测量信息之前,还接收所述终端设备发来的定位参考信号,基于该定位参考信号获得定位测量信息。
在该设计中,接入节点能够通过向定位服务功能实体报告基于单接入节点的多径定位测量的测量结果信息,实现利用多径测量的定位,避免多基站对时间和数据同步要求严格的问题。该技术方案可以应用于非视线传输NLOS环境下的终端设备定位。
在一种可能的设计中,所述接入节点在报告定位测量信息之前,还需使所述定位服务功能实体获知接入节点所支持的测量能力,通过向所述定位服务功能实体发送自身的设备能力指示信息,用以指示所述接入节点是否支持单接入节点的多径定位测量。在系统中支持多种定位测量的环境下,该设计能够使得定位服务功 能实体确定接入节点所能支持的定位测量方式,从而有效实现定位。
在一种可能的设计中,所述接入节点在报告定位测量信息之前,还接收所述定位服务功能实体发来的位置信息请求,基于该位置信息请求,所述接入节点进而去获得所述定位测量信息并报告给定位服务功能实体。该设计能够使得接入节点根据定位服务功能实体的请求进行定位测量信息的上报,从而减少不必要的上报开销。
相应的,提供一种用于终端设备定位的装置,该装置可以实现第四方面中的对应的定位方法。例如,该装置以功能形式限定,其具体实现形式可以是定位设备,具体为接入节点,也可以为接入节点中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第四方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括发送单元,其中,发送单元,用于向定位服务功能实体发送所述定位测量信息;可选的,该装置还可以包括处理单元,该处理单元用于获得针对所述终端设备的所述定位测量信息。
第五方面,提供一种用于终端设备定位的方法和装置。
在一种可能的设计中,该方法可应用于如定位服务中心、增强服务移动定位中心(Enhanced Serving Mobile Location Centre,简称为E-SMLC)等定位服务功能实体上,实现基于单接入节点的终端设备定位。该方法包括确定测量设备的设备能力支持单接入节点的多径定位测量,所述测量设备包括接入节点和/或待定位的终端设备,所述接入节点为用于所述终端设备定位的单接入节点;接收所述测量设备发送的针对所述终端设备的定位测量信息,所述定位测量信息为基于单接入节点的多径定位测量信息。基于所述定位测量信息定位服务功能实体能够对所述终端设备的位置进行估计。可以理解的,在系统中支持多种定位测量的环境下,定位服务功能实体提供定位服务需确定测量设备所能支持的定位测量方式,从而有效实现定位,定位服务功能实体可以根据待定位的终端设备报告的定位测量信息进行终端位置估计,也可以根据对应的接入节点报告的定位测量信息进行终端位置估计,还可以根据终端设备和接入节点都报告的定位测量信息进行终端位置估计。
在该设计中,定位服务功能实体能够通过接收测量设备报告的基于单接入节点的多径定位测量的测量结果信息,实现利用多径测量的定位,避免多基站对时间和数据同步要求严格的问题。该技术方案可以应用于非视线传输NLOS环境下的终端设备定位。
在一种可能的设计中,定位服务功能实体确定测量设备的设备能力支持单接入节点的多径定位测量,可以通过之前向测量设备和/或设备能力寄存功能实体发送定位能力请求,接收所述测量设备和/或所述设备能力寄存功能实体返回的所述测量设备的设备能力指示信息,根据该设备能力指示信息来确定,所述设备能力指示信息用于指示所述测量设备是否支持单接入节点的多径定位测量。
在一种可能的设计中,若所述测量设备包括所述终端设备,为实现定位,定位服务功能实体向所述接入节点发送第一消息,所述第一消息用于指示所述接入节点向所述终端设备发送定位参考信号;终端设备根据所述定位参考信号进行基于单接入节点的多径定位测量,由此定位服务功能实体进而可获得终端设备报告的定位测量信息。
若所述测量设备包括所述接入节点,为实现定位,定位服务功能实体向所述终端设备发送第二消息,所述第二消息用于指示所述终端设备向所述接入节点发送定位参考信号;接入节点根据所述定位参考信号进行基于单接入节点的多径定位测量,由此定位服务功能实体进而可获得接入节点报告的定位测量信息。
该设计能够使得测量设备根据定位服务功能实体的指示启动定位测量的相关信号发送,从而减少不必要的开销。
在一种可能的设计中,定位服务功能实体确定测量设备的设备能力支持单接入节点的多径定位测量之后,向所述测量设备发送位置信息请求;测量设备基于该位置信息请求,进而去获得所述定位测量信息并报告给定位服务功能实体。该设计能够使得测量设备根据定位服务功能实体的请求进行定位测量信息的上报,从而减少不必要的上报开销。
相应的,提供一种用于终端设备定位的装置,该装置可以实现第五方面中的对应的定位方法。例如,该装置以功能形式限定,其具体实现形式可以是定位设备、定位服务功能实体,也可以为定位设备或定位服务功能实体中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第五方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括接收单元,其中,接收单元,用于接收测量设备发送的针对所述终端设备的所述定位测量信息;该装置还可以包括处理单元,该处理单元用于确定测量设备的设备能力支持单接入节点的多径定位测量。
第六方面,提供一种终端设备的定位方法和装置。
在一种可能的设计中,该方法可应用于如定位服务中心、增强服务移动定位中心(Enhanced Serving Mobile Location Centre,简称为E-SMLC)等定位服务功能实体上,实现基于单接入节点的终端设备定位。该方法包括接收测量设备发送的针对终端设备的定位测量信息,所述定位测量信息为基于单接入节点的多径定位测量信息;所述测量设备包括接入节点和/或待定位的所述终端设备,所述接入节点为用于所述终端设备定位的单接入节点;基于所述定位测量信息定位服务功能实体能够对所述终端设备的位置进行估计。可以理解的,定位服务功能实体可以根据待定位的终端设备报告的定位测量信息进行终端位置估计,也可以根据对应的接入节点报告的定位测量信息进行终端位置估计,还可以根据终端设备和接入节点都报告的定位测量信息进行终端位置估计。
在该设计中,定位服务功能实体能够通过接收测量设备报告的基于单接入节点 的多径定位测量的测量结果信息,实现利用多径测量的定位,避免多基站对时间和数据同步要求严格的问题。该技术方案可以应用于非视线传输NLOS环境下的终端设备定位。
在一种可能的设计中,定位服务功能实体在接收测量设备发送的针对终端设备的定位测量信息之前,还需在先确定测量设备的设备能力支持单接入节点的多径定位测量。可选的,定位服务功能实体可以通过之前向测量设备和/或设备能力寄存功能实体发送定位能力请求,接收所述测量设备和/或所述设备能力寄存功能实体返回的所述测量设备的设备能力指示信息,根据该设备能力指示信息来确定,所述设备能力指示信息用于指示所述测量设备是否支持单接入节点的多径定位测量。在系统中支持多种定位测量的环境下,该设计能够使得定位服务功能实体在提供定位服务时确定测量设备所能支持的定位测量方式,从而有效实现定位
在一种可能的设计中,若所述测量设备包括所述终端设备,为实现定位,定位服务功能实体向所述接入节点发送第一消息,所述第一消息用于指示所述接入节点向所述终端设备发送定位参考信号;终端设备根据所述定位参考信号进行基于单接入节点的多径定位测量,由此定位服务功能实体进而可获得终端设备报告的定位测量信息。
若所述测量设备包括所述接入节点,为实现定位,定位服务功能实体向所述终端设备发送第二消息,所述第二消息用于指示所述终端设备向所述接入节点发送定位参考信号;接入节点根据所述定位参考信号进行基于单接入节点的多径定位测量,由此定位服务功能实体进而可获得接入节点报告的定位测量信息。
该设计能够使得测量设备根据定位服务功能实体的指示启动定位测量的相关信号发送,从而减少不必要的开销。
在一种可能的设计中,定位服务功能实体确定测量设备的设备能力支持单接入节点的多径定位测量之后,向所述测量设备发送位置信息请求;测量设备基于该位置信息请求,进而去获得所述定位测量信息并报告给定位服务功能实体。该设计能够使得测量设备根据定位服务功能实体的请求进行定位测量信息的上报,从而减少不必要的上报开销。
相应的,提供一种用于终端设备定位的装置,该装置可以实现第六方面中的对应的定位方法。例如,该装置以功能形式限定,其具体实现形式可以是定位设备、定位服务功能实体,也可以为定位设备或定位服务功能实体中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第六方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括接收单元,其中,接收单元,用于接收测量设备发送的针对所述终端设备的所述定位测量信息;可选的,该装置还可以包括处理单元,该处理单元用于确定测量设备的设备能力支持单接入节点的多径定位测量。
基于第一方面、第二方面、第三方面、第四方面、第五方面或第六方面提供的任一 种技术方案:
在一种可能的设计中,所述多径定位测量包括针对主径和至少一条反射径的定位测量,或,针对至少两条反射径的定位测量;其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。可以理解的,多径有两种情况,一种是作为接入节点与终端设备间直接路径的主径,加上至少一条作为接入节点与终端设备间经过反射体的路径的反射径所形成的多径,还有一种就是至少两条所述反射径所形成的多径,其中,接入节点是单一接入节点,而反射体可以是一个或多个。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种芯片,其中存储有指令,当其在通信设备上运行时,使得通信设备执行上述各方面所述的对应方法。
本申请还提供了一种用于终端定位的装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述各方面所述的对应方法。
本申请还提供了一种用于终端定位的装置,包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述各方面所述的对应方法。可以理解的,该存储器可以集成在处理中,也可以独立于处理器之外。
本申请还提供了一种用于终端定位的装置,包括处理器,该处理器用于执行计算机程序时实现如上述各方面所述的对应方法。
本申请还提供了一种用于终端设备定位的系统,包括上述定位服务功能实体,以及终端设备和/或接入节点,这些系统组成分别实现上述各方面所述的对应方法。
可以理解地,上述提供的任一种装置、计算机存储介质、计算机程序产品、芯片、用于终端定位的系统均用于实现上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本申请实施例的内容和这些附图获得其他的附图。
图1a是本申请涉及的一种网络系统架构;
图1b是本申请中涉及主径和反射径的到达角度AOA的示意图;
图1c是本申请中涉及至少两条反射径的到达角度AOA的示意图,
图2是本申请提供的一种终端设备的定位方法的第一个实施例的流程图;
图3是本申请提供的一种终端设备的定位方法的第二个实施例的流程图;
图4是本申请中确定终端设备支持的定位测量能力的交互流程示意图;
图5是本申请提供的另一种终端设备的定位方法的第一个实施例的流程图;
图6是本申请提供的另一种终端设备的定位方法的第二个实施例的流程图;
图7是本申请中确定接入节点支持的定位测量能力的交互流程示意图;
图8是本申请中另一种终端设备的定位方法的实施例的流程图;
图9是本申请提供的一种简化的终端设备结构示意图;
图10是本申请提供的一种简化的网络设备结构示意图;
图11是本申请提供的另一种简化的网络设备结构示意图。
具体实施方式
为使本申请解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将以实施例的形式结合附图对本申请的技术方案作进一步详细的描述。所述详细的描述通过使用方框图、流程图、示例中的一种或多种提出了设备和过程的各种实施例。由于这些方框图、流程图或示例包含一个或多个功能和/或操作,所以本领域技术人员将理解可以通过许多硬件、软件、固件或它们的任意组合单独或共同实施这些方框图、流程图或示例内的每个功能和/或操作。
本申请中“多个”是指两个或两个以上。本申请中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中的术语“第一”、“第二”、“第三”、“第四”等是为了区分不同的对象,并不限定该不同对象的顺序。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本申请所提及的所有“终端”/“终端设备”,在一些情况下可以是指移动设备,例如移动电话、个人数字助理、手持或膝上型计算机以及具有电信能力的类似设备,有些情况下还可以是穿戴设备或车载设备等,并包括未来5G网络中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为PLMN)中的终端等。这种终端可以包括设备及其相关联的可移除存储模块(例如但不限于:包括订户标识模块(Subscriber Identification Module,简称为SIM)应用、通用订户标识模块(Universal Subscriber Identification Module,简称为USIM)应用或可移除用户标识模块(Removable User Identity Module,简称为R-UIM)应用的通用集成电路卡(Universal Integrated Circuit Card,简称为UICC)))。备选地,这种终端可以包括没有这种模块的设备本身。在其它情况下,术语“终端”/“终端设备”可以是指具有类似能力但是不可携带的设备,例如,台式计算机、机顶盒或网络设备。术语“终端”/“终端设备”还可以是指可端接用户的通信会话的任何硬件或软件组件。此外,“用户终端”、“User Equipment”、“UE”、“站点”、“station”、“STA”、“用户设备”、“用户代理”、“User Agent”、“UA”、“用户装备”、“移动设备”和“设备”等皆是与本文中“终端”/“终端设备”同义的替代术语。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。
本申请中提及的“接入节点”,是一种网络设备,部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述接入节点可以包括各种形式的宏基站、微基站、中继站、接入点等等,包括作为对传统无线电信系统中的对等设备改进的系统和设备。这 种高级或下一代设备可以包含在长期演进LTE通信系统、5G通信系统、未来演进系统或者多种通信融合系统中,例如,LTE系统中包括的演进通用陆地无线接入网节点B(E-UTRAN Node B,简称为eNB)、5G包括的新无线接入网节点B(New Radio Access NodeB,简称为NR NodeB)、其他无线接入点或类似组件,在采用不同的无线接入技术的系统中,具备接入节点功能的设备名称可能会有所不同。为方便描述,本申请中,上述为UE提供无线通信功能的装置统称为接入节点。
本申请中,术语“定位服务功能实体”是指为UE提供定位服务的功能实体,其可以是独立于接入节点设置的服务功能实体或高层服务功能实体,也可以是设置于接入节点上的服务功能实体,只要实现相关功能的实体,皆属于“定位服务功能实体”的范畴。在不同系统中、不同的设置位置上,具备定位服务功能实体功能的实体名称可能会有所不同,例如“定位业务服务中心”、“增强服务移动定位中心(Enhanced Serving Mobile Location Centre,简称为E-SMLC)”等。为方便描述,本申请中,上述为UE提供定位服务的实体统称为定位服务功能实体。
图1a给出了本申请涉及的一种网络系统架构,该系统用于UE的定位,其包括UE100、接入节点200、定位服务功能实体300和反射体400。图1a所示的系统中,为方便功能描述的划分,定位服务功能实体300与接入节点200给出了分离设置的示意,但这并非对其关系的限制,接入节点200上可以配置定位服务功能,定位服务功能实体300也可以设置于接入节点200上。在电磁波传播的环境中,有建筑物、自然景观等对电磁波传播产生影响的障碍物,这些障碍物统称为反射体400,其也可以成为散射体,因此如图1a所示,UE100收到的电磁波可以分为两类路径,一类是与UE100附近接入节点200对应的主径(接入节点200直接到UE100的路径),另一类是与反射体400对应的至少一条反射径(接入节点200到反射体400,再由反射体400到UE100的路径)。本申请中,对UE100定位的系统中,接入节点200为用于UE100定位的单接入节点,但需说明的是,接入节点200不一定是UE100已经接入的接入节点200。本申请的定位测量是针对单接入节点的多径定位测量,包括针对主径和至少一条反射径的定位测量,或,针对至少两条反射径的定位测量;其中,定位测量,可以涉及用于距离定位的到达时间TOA的测量,也可以涉及用于角度定位的到达角度AOA的测量。对于达到角度AOA,可参见图1b和图1c给出的不同定位测量场景下的AOA示意图,图1b给出了涉及主径和反射径的到达角度AOA的示意图,图1c给出了涉及至少两条反射径的到达角度AOA的示意图,如图1b所示,圆圈代表UE位置,方块代表接入节点位置,三角形为反射体位置。接入节点发射信号,UE接收信号。接入节点发出的部分信号在空中直接传递至UE,该传播路径为直射径,即主径;部分信号经过反射体反射后被UE接收,此路径为反射径。以UE为坐标原点,接收到的直射径角度为θ 0,即主径AOA;接收到的反射径角度为θ 1,即反射径AOA。图1c中,圆圈代表UE位置,方块代表接入节点位置,三角形为反射体位置。接入节点发射信号,UE接收信号。接入节点发出的信号由于某些障碍物遮挡没有直接传递至UE,部分信号经过反射体1反射后被UE接收,此路径为反射径1;部分信号经过反射体2反射后被UE接收,此路径为反射径2。以UE为坐标原点,接收到的反射径1角度为θ 1,即反射径1的AOA;接收到的反射径角度为θ 2,即反射径2的AOA。图1b和图1c给出的是接入节点到UE的信号路径对应的AOA的示意图,UE到接入节点的达到角度与此类似,不再重复解释。
图1a中给出了UE100执行定位测量的下行方向上的信号示意图,其并非对本申请的限制,仅是一种场景的示意,定位测量可以单由UE100执行,也可以单由接入节点200执行,还可以由UE100和接入节点200共同执行。在由UE100执行定位测量的场景下,UE100通过接收下行方向上的基于单接入节点200的定位参考信号,采用多天线技术,检测同一信号的不同到达角度(Angle of Arrival,简称为AOA)和/或达到时间(Time of Arrival,简称为TOA),得到多径AOA和/或TOA的测量值;在由接入节点200执行定位测量的场景下,单接入节点200通过接收上行方向上的待定位UE100发来的定位参考信号,采用多天线技术,检测同一信号的不同到达角度和/或达到时间,得到多径AOA和/或TOA的测量值;在由UE100和接入节点200共同执行定位测量的场景下,UE100和接入节点200分别获得下行方向和上行方向上测量的多径AOA和/或TOA的测量值。
UE100和/或接入节点200向定位服务功能实体300报告多径AOA和/或TOA的测量值(UE100与定位服务功能实体300之间通过接入节点200进行通信连接)。定位服务功能实体300获得UE100和/或接入节点200报告的多径AOA和/或TOA的测量值后,能够对UE100的位置进行估计,从而对实现UE100的定位。需要说明的是,如果反射体400的位置已知,那么位置估计的计算结果会更精确。
需要说明的是,图1a所示的仅是本申请所涉及的一种网络系统架构的示例,本申请并不局限于此。类似的,本申请还可以在IEEE802.11的系统中应用,通过利用基于单接入点(Access Point,简称为AP)的多径测量信息,提高室内无线保真(Wireless Fidelity,简称为WiFi)的定位精度。
实施例一
根据本申请的实施例,图2为本申请提供的一种终端设备的定位方法的第一个实施例的流程图。为了便于方案理解,在描述时,本实施例及后续实施例皆从交互多方的角度进行整体描述,但绝非限定系统中交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
该方法包括:
S101.UE获得基于单接入节点的多径定位测量信息。
UE获得定位测量信息,可以是从能够进行定位测量的实体获得,也可以是UE直接进行定位测量获得,具体的,定位测量为根据单接入节点发来的定位参考信号进行的基于所述单接入节点的多径定位测量,定位测量信息即为基于所述单接入节点的多径定位测量的测量结果信息。
基于单接入节点的定位测量中,需结合多径定位测量来实现,多径包括与单接入节点对应的主径,和与反射体对应的至少一条反射径;或者与反射体对应的至少两条反射径,反射体在系统中有至少两个。但需说明的是,其中,如果涉及多反射径的情况,多反射径包括多个反射体分别对应的反射径,也包括多次测量中,一个反射体对应的多次反射径;另外单接入节点不一定是UE已经接入的接入节点,其可以是UE附近的接入节点,用于UE定位。UE可采用多天线技术,检测同一信号(下行定位参考信号)的AOA和/或TOA,得到多径AOA和/或TOA的测量值。
可选的,可以通过以下方式确定TOA、AOA:
(a)、对于TOA测量值估计,假设定位参考信号在单接入节点和UE之间的传播时间为t prop,那么信号的传播距离L=c*t prop,其中c表示光速。UE接收时间戳可以表示为:
t=t ms+t propsync
其中t ms表示单接入节点发送定位参考信号的时间戳,t prop表示所述信号的传播时间,ε sync为UE和单接入节点的时间同步误差。基于该估计方式,通过检测同一所述信号的不同到达时间得到多径TOA的测量值。
(b)、对于AOA测量值估计,定位参考信号到UE入射角度AOA可以表示为:
Figure PCTCN2018123374-appb-000001
其中,[x BS,y BS]和[x UE,y UE]分别为单接入节点和UE的坐标,ε AOA为测量噪声。基于该估计方式,通过检测同一所述信号的不同到达角度得到多径AOA的测量值。
可选的,UE获得定位测量信息可以周期性进行获得操作,也可以根据定位服务功能实体发来的请求或接入节点发送定位参考信号的触发来进行获得操作。
S102.UE发送基于单接入节点的多径定位测量信息给定位服务功能实体,定位服务功能实体接收该定位测量信息。
通过UE与定位服务功能实体之间的信令交互,UE向定位服务功能实体发送携带定位测量信息的消息,使得定位服务功能实体获得基于单接入节点的多径定位测量的测量结果信息。可选的,在不同系统中,UE可通过不同消息携带该基于单接入节点的多径定位测量信息,如,在LTE系统中,可以通过LTE定位协议(LTE Positioning Protocol,简称为LPP)实现目标设备(UE)与定位服务功能实体之间的点到点的双向传递,LPP协议包括定位信息(Location Information)传递,因此可以在LPP消息中携带所述定位测量信息。需要说明的是,这里“定位信息(Location Information)”既可以表示UE的实际位置估计,也可以表示用于定位计算的测量数据(如,TOA、AOA测量);以上仅为举例,也可以在LTE系统中的其他消息中携带上述定位测量信息,或者在未来5G网络中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为PLMN)中,通过其他消息携带上述定位测量信息。
可选的,UE向定位服务功能实体发送定位测量信息可以周期性进行发送操作,也可以根据定位服务功能实体发来的请求或接入节点发送定位参考信号的触发来进行发送操作。
S103.定位服务功能实体基于收到的定位测量信息,对UE的位置进行估计,实现定位。
在上述多径定位测量针对不同多径情况的考虑,定位服务功能实体可选的,可通过以下方式进行位置估计:
(方案a).针对多径包括主径加至少一条反射径,可以包括以下处理步骤:
根据主径TOA和AOA测量值及已知单接入节点的位置初步估计UE位置,获得第一UE位置;
根据所述第一UE位置、接入节点位置和反射径TOA和AOA测量值估计反射体位置;其中,考虑的反射体有至少一个,当针对多于一个反射体的情况,则针对多个反射体分别进行各反射体的位置估计;
重复进行反射体位置估计,得到预定次数反射体位置估计,将预定次数反射体位置估计取平均值确定最终反射体估计位置,这样提高了反射体位置估计的精度;其中,针对多于一个反射体的情况,分别进行各反射体的位置重复估计,获得各反射体的最终估计位置。
根据所述最终反射体估计位置、接入节点位置、主径TOA和AOA进行UE位置第二次估计,确定UE位置;其中,如果反射体多于一个,则针对多个反射体分别进行UE位置的第二次估计,最后根据这些估计结果,最终确定UE的位置。
以上方案是针对反射体位置是未知的情况,需要进行反射体位置的估计,如果系统中反射体位置已知,则UE定位精度会更加提高。如果反射体位置已知,那么处理流程中反射体位置估计的相关处理可以免去,可直接利用已知的反射体位置和主径TOA和AOA进行UE位置的估计,确定UE位置。
(方案b).针对多径包括至少两条反射径(至少两个反射体的反射径),可以包括以下处理步骤:
根据至少两个反射体对应的反射径TOA和AOA测量值初步估计UE位置和反射体位置;其中,具体地,该步骤包括:根据至少两条反射径,获得反射径的时间差值;基于所述时间差值、至少两条反射径对应的TOA和AOA和接入节点的位置,获得UE位置和至少两个反射体的位置估计值;
针对所述至少两个反射体,重复进行反射体位置估计,得到预定次数反射体位置估计值,将预定次数反射体位置估计值取平均值确定最终反射体估计位置;其中,这样多次估计取平均的做法提高了反射体位置估计的精度;
根据接入节点位置、至少两个反射体的所述最终反射体估计位置和至少两个反射体对应的反射径TOA和AOA测量值进行UE位置第二次估计,确定UE位置。
以上方案是针对反射体位置是未知的情况,需要进行反射体位置的估计,如果系统中反射体位置已知,则UE定位精度会更加提高。如果至少两个反射体位置已知,那么处理流程中反射体位置估计的相关处理可以免去,可直接利用至少两个反射体的位置和至少两个反射体对应的反射径TOA和AOA测量值进行UE位置估计。
需要说明的是,以上方案a和b中,一次测量过程中,一个反射体对应一个反射径,UE在运动过程中(当然UE也可以是静止的),定位参考信号会多次发送,从而可以进行多次测量,多次反射体的位置估计是针对每个反射体的,对各反射体而言,利用针对该反射体的多次测量值取平均提高该反射体的估计精度。
本申请实施例的一种终端设备的定位方法,通过UE把基于单接入节点的多径测量信息报告定位服务功能实体的交互流程,实现了对UE的精确定位,避免了多基站对时间和数据同步要求严格的问题。
实施例二
图3为本申请提供的一种终端设备的定位方法的第二个实施例的流程图。本实施例与实施例一的区别在于,该实施例中,增加了接入节点与其他对象之间的交互流程,与 实施例一相同或类似的内容在本实施例中不再赘述。
该方法包括:
S201.定位服务功能实体向UE发送位置信息请求。
该交互流程为可选的,因为在对UE进行定位的流程中,可选的,可以由UE周期性上报进行,也可以由定位服务功能实体向UE发送位置信息请求进行触发,定位服务功能实体向UE发送位置信息请求,指示UE发送定位测量信息,可以按需触发,减少了UE频繁报告定位测量信息带来的开销。其中,该位置信息请求,在不同系统中可以携带在不同的消息中,例如,在LTE系统中可以携带在LPP消息中发送,也可以携带在其他消息中发送。
S202.定位服务功能实体向接入节点发送指示接入节点传输定位参考信号的指示信息。
定位服务功能实体可以选择UE附近的一接入节点,向其发送指令,指示该接入节点发送定位参考信号用来进行UE定位。可选的,所述指令可以携带在LTE定位协议附件(LTE Positioning Protocol Annex,简称为LPPa)消息中发送,此处仅为举例,也可以在LTE系统中的其他消息中携带所述指令,或者在未来5G网络中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为PLMN)中,通过其他消息携带所述指令。
S203.接入节点向UE发送定位参考信号。
可选的,定位参考信号可以是专门用于定位的参考信号,也可以是现有的信号,如PRS和CRS。可选的,接入节点向UE发送定位参考信号,可以是向UE侧完成定位测量的实体发送,该实体可与UE分体设置。
S204.UE获得基于单接入节点的多径定位测量信息。
可以参考实施例一步骤S101,在此不再赘述,当然不申请不限于此。
S205.UE发送基于单接入节点的多径定位测量信息给定位服务功能实体,定位服务功能实体接收该定位测量信息。
可以参考实施例一步骤S102,在此不再赘述,当然不申请不限于此。
S206.定位服务功能实体基于收到的定位测量信息,对UE的位置进行估计,实现定位。
可以参考实施例一步骤S103,在此不再赘述,当然不申请不限于此。
本申请实施例的一种终端设备的定位方法,通过定位服务功能实体指示接入节点传输定位参考信号,使得UE把基于单接入节点的多径测量信息报告定位服务功能实体的交互流程,实现了对UE的精确定位,避免了多基站对时间和数据同步要求严格的问题。
对于以上进行终端设备定位的实施例,如果在系统中,UE均支持基于单接入节点的多径定位测量,能够识别基于单接入节点的多径测量信息,那么定位服务功能实体可以选择默认所有UE具有支持基于单接入节点的多径定位测量的能力。如果在系统中,并非默认所有UE具有支持基于单接入节点的多径定位测量的能力,那么定位服务功能实体需确定UE所支持的定位测量的能力,以确定是否采用基于单接入节点的多径定位测量方式对UE进行定位。定位服务功能实体确定UE所支持的定位测量的能力,可以通过UE报告来获知UE所支持的能力,确定UE是否支持基于单接入节点的多径定位测量,可 选的,如果UE能力固定,还可以通过第三方(如,设备能力寄存功能实体)获得UE所支持的能力,下面通过具体交互流程进行描述。
图4为本申请中确定终端设备支持的定位测量能力的交互流程示意图。如图4所示,确定UE所支持的定位测量能力,包括以下步骤:
S301.定位服务功能实体向UE/第三方发送UE的能力请求。
该步骤为可选步骤,可以理解的,定位服务功能实体确定UE所支持的定位测量能力,可以在需要时通过发送能力请求,指示UE/第三方反馈,也可以由UE/第三方周期性地报告来确定。通过定位服务功能实体发送能力请求,可以按需触发UE/第三方反馈,减少了UE/第三方频繁报告带来的开销。
如果该能力请求是发给UE,可选的,可以携带在LPP消息中发送,LPP协议包含定位能力(Positioning Capabilities)交互;此处仅为举例,也可以在LTE系统中的其他消息中携带该请求,或者在未来5G网络中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为PLMN)中,通过其他消息携带该请求。
需要说明的是,以下步骤S302和S303并非流程中的先后步骤,其二者是UE具备定位测量能力在不同情况下的两种处理方式。
S302.UE/第三方向定位服务功能实体反馈UE所支持的能力,其中指示UE支持基于单接入节点的多径测量。
UE/第三方可以通过在向定位服务功能实体反馈的消息中特定的字段或者某些比特位等方式来指示UE是否支持某些能力,可选的,如系统存在多种定位测量方式,则在这些定位方式对应的指示位,通过0、1等取值信息来指示UE是否支持这种能力。
可选的,对于UE而言,如果具备检测并区分单接入节点的多径测量信息的能力,则在接收到上述请求后,以LPP消息携带为例,在LPP相关的能力信息中增加1比特信息,如多组件标识(Multiple Components Identificaiton,简称为MPC Identificaiton),MPC Identificaiton=ON(=1)表示UE能够识别单接入节点的多径测量信息。此举例,并非对本申请的限制,也可通过MPC Identificaiton=ON(=0)或其他方式来指示UE支持该能力,也可通过其他消息携带该指示信息。
S303.UE/第三方向定位服务功能实体反馈UE所支持的能力,其中指示UE不支持基于单接入节点的多径测量。
UE/第三方可以通过在向定位服务功能实体反馈的消息中特定的字段或者某些比特位等方式来指示UE是否支持某些能力,可选的,如系统存在多种定位测量方式,则在这些定位方式对应的指示位,通过0、1等取值信息来指示UE是否支持这种能力。
可选的,对于UE而言,如果不具备检测并区分单接入节点的多径测量信息的能力,则在接收到上述请求后,以LPP消息携带为例,在LPP相关的能力信息中增加1比特信息,如MPC Identificaiton=OFF(=0)表示UE不能够识别单接入节点的多径测量信息。此举例,并非对本申请的限制,也可通过MPC Identificaiton=ON(=1)或其他方式来指示UE不支持该能力,也可通过其他消息携带该指示信息。
S304.定位服务功能实体根据接收到的UE能力反馈信息,确定UE的能力。
定位服务功能实体能够根据UE能力反馈信息,确定UE是否支持基于单接入节点的多径定位测量,进而确定是否采用该方式实现UE的位置估计。在确认UE支持该方式时,则可以结合上述实施例一和实施例二的方式实现UE的位置估计。
该设计能够使得定位服务功能实体确定UE所能支持的定位测量方式,从而有效实现定位。
实施例三
根据本申请的实施例,图5为本申请提供的另一种终端设备的定位方法的第一个实施例的流程图。为了便于方案理解,在描述时,本实施例及后续实施例皆从交互多方的角度进行整体描述,但绝非限定系统中交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
该方法包括:
S401.接入节点获得基于单接入节点的多径定位测量信息。
该接入节点为单一接入节点,该接入节点获得定位测量信息,可以是从能够进行定位测量的实体(如,可与接入节点分离设置的测量单元)获得,也可以是接入节点直接进行定位测量获得,具体的,定位测量为根据待定位的UE发来的定位参考信号进行的基于所述单接入节点的多径定位测量,定位测量信息即为基于所述单接入节点的多径定位测量的测量结果信息。
基于单接入节点的定位测量中,需结合多径定位测量来实现,多径包括UE与单接入节点之间的主径,和接入节点与反射体之间的至少一条反射径;或者与反射体对应的至少两条反射径,反射体在系统中有至少一个。但需说明的是,其中,如果涉及多反射径的情况,多反射径包括多个反射体分别对应的反射径,也包括多次测量中,一个反射体对应的多次反射径;另外该接入节点不一定是待定位UE已经接入的接入节点,其可以是UE附近的接入节点,用于UE定位。该接入节点可采用多天线技术,检测同一信号(上行定位参考信号)的AOA和/或TOA,得到多径AOA和/或TOA的测量值。其中,TOA、AOA的测量估计方式可选用与实施例一中例举的类似方式,在此不再赘述。
可选的,接入节点获得定位测量信息可以周期性进行获得操作,也可以根据定位服务功能实体发来的请求或UE发送定位参考信号的触发来进行获得操作。
S402.接入节点发送基于单接入节点的多径定位测量信息给定位服务功能实体,定位服务功能实体接收该定位测量信息。
通过接入节点与定位服务功能实体之间的信令交互,接入节点向定位服务功能实体发送携带UE定位测量信息的消息,使得定位服务功能实体获得基于单接入节点对UE进行的多径定位测量的测量结果信息。可选的,在不同系统中,接入节点可通过不同消息携带该基于单接入节点的多径定位测量信息,如,在LTE系统中,可以通过LTE定位协议附件(LTE Positioning Protocol,简称为LPPa)实现接入节点与定位服务功能实体之间的点到点的双向传递,LPPa协议包括定位信息(Location Information)传递,因此可以在LPPa消息中携带所述定位测量信息。需要说明的是,这里“定位信息(Location Information)”既可以表示UE的实际位置估计,也可以表示用于定位计算的测量数据(如,TOA和AOA测量);以上仅为举例,也可以在LTE系统中的其他消息中携带上述定位测量信息,或者在未来5G网络中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为PLMN)中,通过其他消息携带上述定位测量信息。
可选的,接入节点向定位服务功能实体发送定位测量信息可以周期性进行发送操作,也可以根据定位服务功能实体发来的请求或UE发送定位参考信号的触发来进行发送操作。
S403.定位服务功能实体基于收到的定位测量信息,对UE的位置进行估计,实现定位。
其中,对UE进行位置估计的方式可选用与实施例一中例举的类似方式,在此不再赘述。
本申请实施例的一种终端设备的定位方法,通过接入节点把基于该接入节点对UE的多径测量信息报告定位服务功能实体的交互流程,实现了对UE的精确定位,避免了多基站对时间和数据同步要求严格的问题。
实施例四
图6为本申请提供的另一种终端设备的定位方法的第二个实施例的流程图。本实施例与实施例三的区别在于,该实施例中,增加了UE与其他对象之间的交互流程,与实施例三相同或类似的内容在本实施例中不再赘述。
该方法包括:
S501.定位服务功能实体向接入节点发送位置信息请求。
该交互流程为可选的,因为在对UE进行定位的流程中,可选的,可以由接入节点周期性上报进行,也可以由定位服务功能实体向接入节点发送位置信息请求进行触发,定位服务功能实体向接入节点发送位置信息请求,指示接入节点发送定位测量信息,可以按需触发,减少了接入节点频繁报告定位测量信息带来的开销。其中,该位置信息请求,可以携带在LPPa消息中发送;此处仅为举例,也可以在LTE系统中的其他消息中携带该请求,或者在未来5G网络中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为PLMN)中,通过其他消息携带该请求。
S502.定位服务功能实体向UE发送指示UE传输定位参考信号的指示信息。
定位服务功能实体向待定位的UE发送指令,指示该UE发送定位参考信号用来进行定位。可选的,所述指令可以携带在LTE定位协议(LTE Positioning Protocol,简称为LPP)消息中发送;此处仅为举例,也可以在LTE系统中的其他消息中携带该指令,或者在未来5G网络中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为PLMN)中,通过其他消息携带该指令。
S503.UE向接入节点发送定位参考信号。
UE向其附近的接入节点发送定位参考信号,可选的,定位参考信号可以是专门用于定位的参考信号,也可以是现有的信号,如PRS和CRS。可选的,UE向接入节点发送定位参考信号,可以是向接入节点侧完成定位测量的实体(如,与接入节点分离设置的测量单元)发送。
S504.接入节点获得针对UE基于单接入节点的多径定位测量信息。
可以参考实施例三步骤S401,在此不再赘述,当然不申请不限于此。
S505.接入节点发送基于单接入节点的多径定位测量信息给定位服务功能实体,定位服务功能实体接收该定位测量信息。
可以参考实施例三步骤S402,在此不再赘述,当然不申请不限于此。
S506.定位服务功能实体基于收到的定位测量信息,对UE的位置进行估计,实现定位。
可以参考实施例三步骤S403,在此不再赘述,当然不申请不限于此。
本申请实施例的一种终端设备的定位方法,通过定位服务功能实体指示UE传输定位参考信号,使得接入节点把基于单接入节点针对UE进行的多径测量信息报告定位服务功能实体的交互流程,实现了对UE的精确定位,避免了多基站对时间和数据同步要求严格的问题。
对于以上进行终端设备定位的实施例,如果在系统中,接入节点均支持基于单接入节点的多径定位测量,能够识别基于单接入节点的多径测量信息,那么定位服务功能实体可以选择默认所有接入节点具有支持基于单接入节点的多径定位测量的能力。如果在系统中,并非默认所有接入节点具有支持基于单接入节点的多径定位测量的能力,那么在上述定位测量的交互流程之前,定位服务功能实体需确定接入节点所支持的定位测量的能力,以确定是否使用该接入节点采用基于单接入节点的多径定位测量方式对UE进行定位。定位服务功能实体确定接入节点所支持的定位测量的能力,可以通过接入节点报告来获知接入节点所支持的能力,确定接入节点是否支持基于单接入节点的多径定位测量,可选的,如果接入节点能力固定,还可以通过第三方(如,设备能力寄存功能实体)获得接入节点所支持的能力,下面通过具体交互流程进行描述。
图7为本申请中确定接入节点支持的定位测量能力的交互流程示意图。如图7所示,确定接入节点所支持的定位测量能力,包括以下步骤:
S601.定位服务功能实体向接入节点/第三方发送接入节点的能力请求。
该步骤为可选步骤,可以理解的,定位服务功能实体确定接入节点所支持的定位测量能力,可以在需要时通过发送能力请求,指示接入节点/第三方反馈,也可以由接入节点/第三方周期性地报告来确定。通过定位服务功能实体发送能力请求,可以按需触发接入节点/第三方反馈,减少了接入节点/第三方频繁报告带来的开销。
如果该能力请求是发给接入节点,可选的,可以携带在LPPa消息中发送,LPPa协议包含定位能力(Positioning Capabilities)交互;此处仅为举例,也可以在LTE系统中的其他消息中携带该请求,或者在未来5G网络中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为PLMN)中,通过其他消息携带该请求。
需要说明的是,以下步骤S602和S603并非流程中的先后步骤,其二者是接入节点具备定位测量能力在不同情况下的两种处理方式。
S602.接入节点/第三方向定位服务功能实体反馈接入节点所支持的能力,其中指示接入节点支持基于单接入节点的多径测量。
接入节点/第三方可以通过在向定位服务功能实体反馈的消息中特定的字段或者某些比特位等方式来指示UE是否支持某些能力,可选的,如系统存在多种定位测量方式,则在这些定位方式对应的指示位,通过0、1等取值信息来指示接入节点是否支持这种能力。
可选的,对于接入节点而言,如果具备检测并区分单接入节点的多径测量信息的能力,则在接收到上述请求后,在LPPa相关的能力信息中增加1比特信息,如多组件标识 (Multiple Components Identificaiton,简称为MPC Identificaiton),MPC Identificaiton=ON(=1)表示接入节点能够识别单接入节点的多径测量信息。此举例,并非对本申请的限制,也可通过MPC Identificaiton=ON(=0)来指示接入节点支持该能力,也可通过其他消息携带该指示信息。
S303.接入节点/第三方向定位服务功能实体反馈接入节点所支持的能力,其中指示接入节点不支持基于单接入节点的多径测量。
接入节点/第三方可以通过在向定位服务功能实体反馈的消息中特定的字段或者某些比特位等方式来指示接入节点是否支持某些能力,可选的,如系统存在多种定位测量方式,则在这些定位方式对应的指示位,通过0、1等取值信息来指示接入节点是否支持这种能力。
可选的,对于接入节点而言,如果具备检测并区分单接入节点的多径测量信息的能力,则在接收到上述请求后,在LPPa相关的能力信息中增加1比特信息,如MPC Identificaiton=OFF(=0)表示接入节点不能够识别单接入节点的多径测量信息。此举例,并非对本申请的限制,也可通过MPC Identificaiton=ON(=1)来指示接入节点不支持该能力,也可通过其他消息携带该指示信息。
S304.定位服务功能实体根据接收到的接入节点能力反馈信息,确定接入节点的能力。
定位服务功能实体能够根据接入节点能力反馈信息,确定接入节点是否支持基于单接入节点的多径定位测量,进而确定是否通过该接入节点采用该方式实现UE的位置估计。在确认接入节点支持该方式时,则可以采用上述实施例三和实施例四的方式实现UE的位置估计。
该设计能够使得定位服务功能实体确定用于UE定位的接入节点所能支持的定位测量方式,从而有效实现UE定位。
以上实施例中UE位置估计是分别从UE侧发送基于单接入节点的多径定位测量信息和接入节点侧发送基于单接入节点的多径定位测量信息的角度进行介绍。可以理解的是,定位服务功能实体对UE的位置估计可以根据UE报告的测量信息,也可以根据接入节点报告的测量信息,还可以根据UE和接入节点都报告的测量信息进行UE位置估计。下面从定位服务功能实体进行位置估计的可选用计算方法进行介绍。
实施例五
图8为本申请中另一种终端设备的定位方法的实施例的流程图。该实施例以介绍定位服务功能实体进行位置估计的计算方法为主,仅描述与发送定位测量信息相关的主要步骤,其并非限定只涉及这些步骤,其还可以包括实施例二和/或实施例三中的其他相关步骤,具体可参考上述实施例,在此不再赘述。
S701.接入节点获得基于单接入节点的多径定位测量信息。
S702.接入节点发送基于单接入节点的多径定位测量信息给定位服务功能实体,定位服务功能实体接收该定位测量信息。
S701和S702分别与上述实施例中S401和S402类似,可参考上述S401和S402的描述,在此不再赘述。
S703.UE获得基于单接入节点的多径定位测量信息。
S704.UE发送基于单接入节点的多径定位测量信息给定位服务功能实体,定位服务功能实体接收该定位测量信息。
S703和S704分别与上述实施例中S101和S102类似,可参考上述S101和S102的描述,在此不再赘述。
需要说明的是,S701和S702与S703和S704并非存在必然的先后顺序,其仅是针对不同执行动作的对象而言。其也不是必须都存在,在不同场景下,可以不存在S701和S702,或者不存在S703和S704。
S705.定位服务功能实体基于收到的定位测量信息,对UE的位置进行估计,实现定位。
定位服务功能实体,可以基于UE和/或接入节点报告的测量信息进行UE的位置估计。针对基于UE或接入节点报告的测量信息进行UE的位置估计,可分别参考上述实施例中S103、S206或S403、S506介绍的方式进行UE的位置估计;针对基于UE和接入节点报告的测量信息进行UE的位置估计,可参考上述实施例中S103、S206和S403、S506介绍的方式进行UE的位置估计,可选的,将根据UE报告测量信息的位置估计结果和根据接入节点报告测量信息的位置估计结果取平均值,确定最终的UE位置。
针对不同情况,具体可以选用以下介绍的详细计算方法进行UE位置估计,此仅为计算方法的示例性说明,本申请不限于此:
技术方案A、针对以上实施例中定位服务功能实体进行位置估计的“(方案a)”,UE或接入节点提供定位测量信息,多径定位测量值包括主径和至少一条反射径的TOA和AOA测量值的情况:
S1,根据主径的TOA和AOA测量值计算k时刻UE相对接入节点的位置
Figure PCTCN2018123374-appb-000002
Figure PCTCN2018123374-appb-000003
这里,
Figure PCTCN2018123374-appb-000004
Figure PCTCN2018123374-appb-000005
分别是k时刻主径的传播距离和AOA的测量值。再利用接入节点位置x BS和UE与接入节点的相对位置
Figure PCTCN2018123374-appb-000006
求和得到k时刻UE的位置估计:
Figure PCTCN2018123374-appb-000007
S2,利用粒子群算法(Particle Swarm Optimization,简称为PSO)估计反射体位置。假设场景中有M个反射体,反射体在测量过程中位置固定不变。应用PSO算法对反射体l(l=1,...,M)进行位置估计的代价函数为:
Figure PCTCN2018123374-appb-000008
这里,
Figure PCTCN2018123374-appb-000009
为k时刻反射体l的估计位置,r (l)[k]为k时刻反射径(由反射体l引入)与 主径的距离测量值的差值,
Figure PCTCN2018123374-appb-000010
是k时刻反射体位置估计
Figure PCTCN2018123374-appb-000011
和终端位置估计
Figure PCTCN2018123374-appb-000012
所对应的反射径和主径距离差值的标准差,
Figure PCTCN2018123374-appb-000013
为k时刻反射径的距离测量值(根据反射径到达时间TOA计算获得),
Figure PCTCN2018123374-appb-000014
为k时刻根据UE的位置估计和反射体的位置估计获得的反射径距离的估计值(由接入节点位置到反射体l的估计位置,再由反射体l的估计位置到UE的估计位置所确定),
Figure PCTCN2018123374-appb-000015
σ TOA为TOA的测量标准差,
Figure PCTCN2018123374-appb-000016
为k时刻反射径的AOA测量值(根据反射径到达角度AOA计算获得),
Figure PCTCN2018123374-appb-000017
为k时刻反射体l的估计位置相对接入节点的角度,σ AOA为AOA测量标准差。其中,σ TOA、σ AOA为常数,针对不同的天线其取值可能不同,可为经验值。
在得到k时刻的反射体位置估计后,对反射体的历史估计值取平均值得到更精确的位置估计:
Figure PCTCN2018123374-appb-000018
S3,利用接入节点位置、k时刻主径TOA和AOA测量值、步骤2中得出的反射体的估计结果
Figure PCTCN2018123374-appb-000019
采用PSO算法得到UE的第二次位置估计,这里PSO算法的代价函数为:
Figure PCTCN2018123374-appb-000020
式中
Figure PCTCN2018123374-appb-000021
为k时刻UE的第二次位置估计,
Figure PCTCN2018123374-appb-000022
是k时刻反射体位置估计
Figure PCTCN2018123374-appb-000023
和UE的第二次位置估计
Figure PCTCN2018123374-appb-000024
所对应的反射径和主径的距离差值的标准差,
Figure PCTCN2018123374-appb-000025
为k时刻基于UE的第二次位置估计的主径的距离,
Figure PCTCN2018123374-appb-000026
Figure PCTCN2018123374-appb-000027
分别是k时刻主径的传播距离和AOA的测量值,
Figure PCTCN2018123374-appb-000028
为k时刻基于UE的第二次估计位置相对接入节点的角度。
技术方案B、针对以上实施例中定位服务功能实体进行位置估计的“(方案b)”,UE或接入节点提供定位测量信息,多径定位测量值包括至少两条反射径的TOA和AOA测 量值的情况:
S1,利用PSO算法估计反射体的位置。假设场景中有M个反射体,反射体在测量过程中位置固定不变。应用PSO算法对UE和M个反射体进行位置估计的代价函数为:
Figure PCTCN2018123374-appb-000029
这里,
Figure PCTCN2018123374-appb-000030
为k时刻UE的位置估计,
Figure PCTCN2018123374-appb-000031
为k时刻反射体m(m=1,...,M-1)的位置估计,
Figure PCTCN2018123374-appb-000032
为k时刻反射体n(n=m+1,m+2,...,M)的位置估计,r (m,n)[k]为k时刻反射径(由反射体m引入)与反射径(由反射体n引入)的距离测量值差值,
Figure PCTCN2018123374-appb-000033
为k时刻根据接入节点位置、反射体m的位置估计和UE的位置估计所确定的反射径的距离,
Figure PCTCN2018123374-appb-000034
Figure PCTCN2018123374-appb-000035
为k时刻根据接入节点位置、反射体n的位置估计和UE的位置估计所确定的反射径的距离,σ Diff,1[k]是k时刻UE位置估计
Figure PCTCN2018123374-appb-000036
与反射体位置估计
Figure PCTCN2018123374-appb-000037
Figure PCTCN2018123374-appb-000038
所对应的反射径的距离差值的标准差,
Figure PCTCN2018123374-appb-000039
为k时刻反射径(由反射体l(l=1,...,M))引入的距离测量值(根据反射径TOA计算获得),
Figure PCTCN2018123374-appb-000040
Figure PCTCN2018123374-appb-000041
为k时刻根据接入节点位置、UE的位置估计和反射体l(l=1,...,M)的位置估计获得的反射径的距离,σ TOA为TOA的测量标准差,
Figure PCTCN2018123374-appb-000042
为k时刻反射径(由反射体l(l=1,...,M)引入)的AOA测量值,
Figure PCTCN2018123374-appb-000043
为k时刻反射体l(l=1,...,M)的估计位置相对接入节点的角度,σ AOA为AOA测量标准差。其中,σ TOA、σ AOA为常数,针对不同的天线其取值可能不同,可为经验值。
在得到k时刻的M个反射体位置估计后,对每一个反射体的历史估计值取平均值得到更精确的位置估计:
Figure PCTCN2018123374-appb-000044
S2,利用接入节点位置、k时刻反射径TOA和AOA观测量、S1中得出的反射体的估计结果
Figure PCTCN2018123374-appb-000045
采用PSO算法得到UE的第二次位置估计,这里PSO算法的代价函数为:
Figure PCTCN2018123374-appb-000046
式中
Figure PCTCN2018123374-appb-000047
为k时刻UE的第二次位置估计,
Figure PCTCN2018123374-appb-000048
为k时刻接入节点位置与UE的位置估计和反射体m(m=1,...,M-1)的位置估计所确定的反射径的距离,
Figure PCTCN2018123374-appb-000049
k时刻接入节点位置与UE的位置估计和反射体n(n=m+1,m+2,...,M)的位置估计所确定的反射径的距离,σ Diff,2[k]是k时刻反射体位置估计
Figure PCTCN2018123374-appb-000050
和UE的第二次位置估计
Figure PCTCN2018123374-appb-000051
所对应的反射径的距离差值的标准差,
Figure PCTCN2018123374-appb-000052
时刻根据接入节点位置x BS、反射体l(l=1,...,M)的位置估计和UE的第二次位置估计所确定的反射径的距离。
技术方案C、针对UE和接入节点提供定位测量信息,多径定位测量值包括主径和至少一条反射径的TOA和AOA测量值的情况:
利用本申请上述技术方案A分别计算基于UE提供的定位测量信息得到的k时刻UE第二次位置估计
Figure PCTCN2018123374-appb-000053
和基于接入节点提供的定位测量信息得到的UE第二次位置估计
Figure PCTCN2018123374-appb-000054
再对2个位置估计结果取平均值得到UE的最终位置估计:
Figure PCTCN2018123374-appb-000055
技术方案D、针对UE和接入节点提供定位测量信息,多径定位测量值包括至少两条反射径的TOA和AOA测量值的情况:
利用本申请上述技术方案B分别计算基于UE提供的定位测量信息得到的k时刻UE第二次位置估计
Figure PCTCN2018123374-appb-000056
和基于接入节点提供的定位测量信息得到的UE第二次位置估计
Figure PCTCN2018123374-appb-000057
再对2个位置估计结果取平均值得到UE的最终位置估计:
Figure PCTCN2018123374-appb-000058
上述主要从系统各实体之间交互进行终端设备定位的流程角度对本申请实施例提供的方案进行了介绍。可以理解的是,各实体,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对UE、接入节点、定位服务功能实体进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
本申请实施例还提供了一种终端设备。该终端设备可以用于执行图2-图4、图6、图8任一附图中UE所执行的步骤。图9示出了一种简化的终端设备结构示意图。便于理解和图示方便,图9中,终端设备以手机作为例子。如图9所示,终端设备900包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备900进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备设备900可以不具有输入输出装置。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备900时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备900的收发单元,将具有处理功能的处理器视为终端设备900的处理单元。如图9所示,终端设备900包括收发单元901和处理单元902。收发单元也可以称为收发器(包括发射机和/或接收器)、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元901中用于实现接收功能的器件视为接收单元,将收发单元901中用于实现发送功能的器件视为发送单元,即收发单元901包括接收单 元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。在一些实施例中,收发单元901和处理单元902可以是集成在一起的,也可以是独立设置的。另外,处理单元902中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。
例如,在一种实现方式中,收发单元901用于执行图2的S102中UE所执行的步骤,和/或本申请中的其他步骤。处理单元902用于执行图2的S101,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元901用于执行图3的S201、S203和/或S205中UE所执行的步骤,和/或本申请中的其他步骤。处理单元902用于执行图3的S204,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元901用于执行图4的S301、S302和/或S303中UE所执行的步骤,和/或本申请中的其他步骤。处理单元902用于执行本申请中的其他步骤。
例如,在另一种实现方式中,收发单元901用于执行图6的S502和/或S503中UE所执行的步骤,和/或本申请中的其他步骤。处理单元902用于执行本申请中的其他步骤。
例如,在另一种实现方式中,收发单元901用于执行图8的S704中UE所执行的步骤,和/或本申请中的其他步骤。处理单元902用于执行图8的S703,和/或本申请中的其他步骤。
本申请实施例还提供了一种网络设备。该网络设备可以作为接入节点用于执行图3、图5-图8任一附图中接入节点所执行的步骤。图10示出了一种简化的网络设备结构示意图。网络设备100包括1001部分以及1002部分。1001部分主要用于射频信号的收发以及射频信号与基带信号的转换;1002部分主要用于基带处理,对网络设备100进行控制等。1001部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1002部分通常是网络设备100的控制中心,通常可以称为处理单元,用于控制网络设备100执行上述相关实施例中关于接入节点所执行的步骤。具体可参见上述相关部分的描述。
1001部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将1001部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1001部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1002部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备100的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的。在一些实施例中,1001部分和1002部分可以是集成在一起的,也可以是独立设置的。另外,1002部分中的全部功能可以集成在一个芯 片中实现,也可以部分功能集成在一个芯片中实现另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。
例如,在一种实现方式中,收发单元用于执行图3的S202和/或S203中接入节点所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行本申请中的其他步骤。
例如,在另一种实现方式中,收发单元用于执行图5的S402中接入节点所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图5的S401,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元用于执行图6的S501、S503和/或S505中接入节点所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图6的S504,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元用于执行图7的S601、S602和/或S603中接入节点所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行本申请中的其他步骤。
例如,在另一种实现方式中,收发单元用于执行图8的S702中接入节点所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图8的S701,和/或本申请中的其他步骤。
本申请实施例还提供了另一种网络设备,该网络设备可以作为定位服务功能实体用于执行图2-图8任一附图中定位服务功能实体所执行的步骤。图11示出了另一种简化的网络设备结构示意图,图11中,网络设备110,包括处理器、存储器、包括通信接口的通信单元、以及可选的输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对网络设备110进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。通信单元主要用于网络通信的传输处理。通信接口执行关于网络通信的接口处理,主要用于收发消息和数据。输入输出装置,例如指示器、触摸屏、显示屏,键盘等主要用于接收操作者输入的数据以及对操作者输出数据。需要说明的是,有些种类的网络设备可以不具有输入输出装置。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的。
当需要发送数据时,处理器对待发送的数据进行处理后,输出至通信单元,通信单元通过通信接口进行接口处理后将数据向外发送。当有数据发送到网络设备110时,通信单元通过通信接口接收到数据,将数据进行处理并输出至处理器,处理器将数据进一步处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的设备中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的通信接口和通信单元视为网络设备110的收发单元,将具有处理功能的处理器视为网络设备110的处理单元。如图11所示,网络设备110包括收发单元1101和处理单元1102。收发单元也可以称为收发器(包括发射机和/或接收器)、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1101中用于实现接收功能的器件视为接收单元,将收发单元1101中用于实现发送功能的器件视为发送单元,即收发单元1101包 括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。在一些实施例中,收发单元1101和处理单元1102可以是集成在一起的,也可以是独立设置的。另外,处理单元1102中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。
例如,在一种实现方式中,收发单元1101用于执行图2的S102中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1102用于执行图2的S103,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1101用于执行图3的S201、S202和/或S205中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1102用于执行图3的S206,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1101用于执行图4的S301、S302和/或S303中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1102用于执行图4的S304,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1101用于执行图5的S402中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1102用于执行图5的S403,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1101用于执行图6的S501、S502和/或S505中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1102用于执行图6的S506,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1101用于执行图7的S601、S602和/或S603中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1102用于执行图7的S604,和/或本申请中的其他步骤。
例如,在另一种实现方式中,收发单元1101用于执行图8的S702和/或S704中定位服务功能实体所执行的步骤,和/或本申请中的其他步骤。处理单元1102用于执行图8的S705,和/或本申请中的其他步骤。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请还提供了一种终端定位系统,包括上述实施方式中定位服务功能实体,以及UE和/或接入节点。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述提供的任一种方法。本申请还提供了一种通信芯片,其中存储有指令,当其在各实体上运行时,使得各实体执行上述提供的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如, 所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器/控制器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (45)

  1. 一种用于终端设备定位的测量装置,其特征在于,所述测量装置应用于终端设备侧,包括:
    处理单元,用于获得针对终端设备的定位测量信息,其中,所述定位测量信息为根据单接入节点发来的定位参考信号进行基于所述单接入节点的多径定位测量的测量结果信息;
    收发单元,用于向定位服务功能实体发送所述定位测量信息;
    其中,所述定位测量信息用于所述定位服务功能实体进行所述终端设备的位置估计。
  2. 根据权利要求1所述的测量装置,其特征在于,
    所述收发单元,还用于在所述处理单元获得针对终端设备的定位测量信息之前,向所述定位服务功能实体发送所述终端设备的设备能力指示信息,所述设备能力指示信息用于指示所述终端设备是否支持单接入节点的多径定位测量。
  3. 根据权利要求1所述的测量装置,其特征在于,
    所述收发单元,还用于在所述处理单元获得针对终端设备的定位测量信息之前,接收所述单接入节点发来的定位参考信号。
  4. 根据权利要求1-3任一项所述的测量装置,其特征在于,所述多径定位测量包括:
    针对主径和至少一条反射径的定位测量,或,针对至少两条反射径的定位测量;
    其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。
  5. 一种用于终端设备定位的测量装置,其特征在于,所述测量装置应用于接入节点侧,包括:
    处理单元,用于获得针对终端设备的定位测量信息,其中,所述定位测量信息为根据终端设备发来的定位参考信号进行基于单接入节点的多径定位测量的测量结果信息;
    收发单元,用于向定位服务功能实体发送所述定位测量信息;
    其中,所述定位测量信息用于所述定位服务功能实体进行所述终端设备的位置估计。
  6. 根据权利要求5所述的测量装置,其特征在于,
    所述收发单元,还用于在所述处理单元获得针对终端设备的定位测量信息之前,向所述定位服务功能实体发送自身的设备能力指示信息,所述设备能力指示信息用于指示所述接入节点是否支持单接入节点的多径定位测量。
  7. 根据权利要求5所述的测量装置,其特征在于,
    所述收发单元,还用于在所述处理单元获得针对终端设备的定位测量信息之前,接收所述终端设备发来的定位参考信号。
  8. 根据权利要求5-7任一项所述的测量装置,其特征在于,所述多径定位测量包括:
    针对主径和至少一条反射径的定位测量,或,针对至少两条反射径的定位测 量;
    其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。
  9. 一种用于终端设备定位的定位装置,其特征在于,所述定位装置包括:
    处理单元,用于确定测量设备的设备能力支持单接入节点的多径定位测量,所述测量设备包括接入节点和/或待定位的终端设备,所述接入节点为用于所述终端设备定位的单接入节点;
    收发单元,用于接收所述测量设备发送的针对所述终端设备的定位测量信息,所述定位测量信息为基于单接入节点的多径定位测量信息;
    其中,所述定位测量信息用于所述终端设备的位置估计。
  10. 根据权利要求9所述的定位装置,其特征在于,
    所述收发单元,还用于:
    在所述处理单元确定测量设备的设备能力支持单接入节点的多径定位测量之前,向测量设备和/或设备能力寄存功能实体发送定位能力请求;
    接收所述测量设备和/或所述设备能力寄存功能实体返回的所述测量设备的设备能力指示信息,所述设备能力指示信息用于指示所述测量设备是否支持单接入节点的多径定位测量。
  11. 根据权利要求9所述的定位装置,其特征在于,
    所述收发单元,还用于:
    若所述测量设备包括所述终端设备,在接收所述测量设备发送的针对所述终端设备的定位测量信息之前,向所述接入节点发送第一消息,所述第一消息用于指示所述接入节点向所述终端设备发送定位参考信号;
    若所述测量设备包括所述接入节点,在接收所述测量设备发送的针对所述终端设备的定位测量信息之前,则向所述终端设备发送第二消息,所述第二消息用于指示所述终端设备向所述接入节点发送定位参考信号。
  12. 根据权利要求9所述的定位装置,其特征在于,
    所述收发单元,用于在所述处理单元确定所述测量设备的设备能力支持单接入节点的多径定位测量之后,向所述测量设备发送位置信息请求。
  13. 根据权利要求9-12任一项所述的定位装置,其特征在于,所述多径定位测量包括:
    针对主径和至少一条反射径的定位测量;或,
    针对至少两条反射径的定位测量;
    其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。
  14. 一种用于终端设备定位的方法,其特征在于,所述方法包括:
    终端设备获得针对所述终端设备的定位测量信息,其中,所述定位测量信息为根据单接入节点发来的定位参考信号进行基于所述单接入节点的多径定位测量的测量结果信息;
    所述终端设备向定位服务功能实体发送所述定位测量信息;
    其中,所述定位测量信息用于所述定位服务功能实体进行所述终端设备的位 置估计。
  15. 根据权利要求14所述的方法,其特征在于,所述终端设备获得针对所述终端设备的定位测量信息之前,还包括:
    所述终端设备向所述定位服务功能实体发送自身的设备能力指示信息,所述设备能力指示信息用于指示所述终端设备是否支持单接入节点的多径定位测量。
  16. 根据权利要求14所述的方法,其特征在于,所述终端设备获得针对所述终端设备的定位测量信息之前,还包括:
    所述终端设备接收所述单接入节点发来的定位参考信号。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述多径定位测量包括:
    针对主径和至少一条反射径的定位测量,或,针对至少两条反射径的定位测量;
    其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。
  18. 一种用于终端设备定位的方法,其特征在于,所述方法包括:
    接入节点获得针对所述终端设备的定位测量信息,其中,所述定位测量信息为根据终端设备发来的定位参考信号进行基于单接入节点的多径定位测量的测量结果信息;
    所述接入节点向定位服务功能实体发送所述定位测量信息;
    其中,所述定位测量信息用于所述定位服务功能实体进行所述终端设备的位置估计。
  19. 根据权利要求18所述的方法,其特征在于,所述接入节点获得针对所述终端设备的定位测量信息之前,还包括:
    所述接入节点向所述定位服务功能实体发送自身的设备能力指示信息,所述设备能力指示信息用于指示所述接入节点是否支持单接入节点的多径定位测量。
  20. 根据权利要求18所述的方法,其特征在于,所述接入节点获得针对所述终端设备的定位测量信息之前,还包括:
    所述接入节点接收所述终端设备发来的定位参考信号。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述多径定位测量包括:
    针对主径和至少一条反射径的定位测量,或,针对至少两条反射径的定位测量;
    其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。
  22. 一种用于终端设备定位的方法,其特征在于,所述方法包括:
    确定测量设备的设备能力支持单接入节点的多径定位测量,所述测量设备包括接入节点和/或待定位的终端设备,所述接入节点为用于所述终端设备定位的单接入节点;
    接收所述测量设备发送的针对所述终端设备的定位测量信息,所述定位测量信息为基于单接入节点的多径定位测量信息;
    其中,所述定位测量信息用于所述终端设备的位置估计。
  23. 根据权利要求22所述的方法,其特征在于,所述确定测量设备的设备能力支持单接入节点的多径定位测量之前,还包括:
    向测量设备和/或设备能力寄存功能实体发送定位能力请求;
    接收所述测量设备和/或所述设备能力寄存功能实体返回的所述测量设备的设备能力指示信息,所述设备能力指示信息用于指示所述测量设备是否支持单接入节点的多径定位测量。
  24. 根据权利要求22所述的方法,其特征在于,所述接收所述测量设备发送的针对所述终端设备的定位测量信息之前,还包括:
    若所述测量设备包括所述终端设备,则向所述接入节点发送第一消息,所述第一消息用于指示所述接入节点向所述终端设备发送定位参考信号;
    若所述测量设备包括所述接入节点,则向所述终端设备发送第二消息,所述第二消息用于指示所述终端设备向所述接入节点发送定位参考信号。
  25. 根据权利要求22所述的方法,其特征在于,
    所述确定测量设备的设备能力支持单接入节点的多径定位测量之后,还包括:向所述测量设备发送位置信息请求;
    所述方法还包括:根据所述定位测量信息进行终端设备的位置估计。
  26. 根据权利要求22-25任一项所述的方法,其特征在于,所述多径定位测量包括:
    针对主径和至少一条反射径的定位测量;或,
    针对至少两条反射径的定位测量;
    其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。
  27. 一种用于终端设备定位的测量装置,其特征在于,所述测量装置应用于终端设备侧,包括:
    处理器,用于获得针对终端设备的定位测量信息,其中,所述定位测量信息为根据单接入节点发来的定位参考信号进行基于所述单接入节点的多径定位测量的测量结果信息;
    收发器,用于向定位服务功能实体发送所述定位测量信息;
    其中,所述定位测量信息用于所述定位服务功能实体进行所述终端设备的位置估计。
  28. 根据权利要求27所述的测量装置,其特征在于,
    所述收发器,还用于在所述处理器获得针对终端设备的定位测量信息之前,向所述定位服务功能实体发送所述终端设备的设备能力指示信息,所述设备能力指示信息用于指示所述终端设备是否支持单接入节点的多径定位测量。
  29. 根据权利要求27所述的测量装置,其特征在于,
    所述收发器,还用于在所述处理器获得针对终端设备的定位测量信息之前,接收所述单接入节点发来的定位参考信号。
  30. 根据权利要求27-29任一项所述的测量装置,其特征在于,所述多径定位测量包括:
    针对主径和至少一条反射径的定位测量,或,针对至少两条反射径的定位测量;
    其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。
  31. 一种用于终端设备定位的测量装置,其特征在于,所述测量装置应用于接入节点侧,包括:
    处理器,用于获得针对终端设备的定位测量信息,其中,所述定位测量信息为根据终端设备发来的定位参考信号进行基于单接入节点的多径定位测量的测量结果信息;
    收发器,用于向定位服务功能实体发送所述定位测量信息;
    其中,所述定位测量信息用于所述定位服务功能实体进行所述终端设备的位置估计。
  32. 根据权利要求31所述的测量装置,其特征在于,
    所述收发器,还用于在所述处理器获得针对终端设备的定位测量信息之前,向所述定位服务功能实体发送自身的设备能力指示信息,所述设备能力指示信息用于指示所述接入节点是否支持单接入节点的多径定位测量。
  33. 根据权利要求31所述的测量装置,其特征在于,
    所述收发器,还用于在所述处理器获得针对终端设备的定位测量信息之前,接收所述终端设备发来的定位参考信号。
  34. 根据权利要求31-33任一项所述的测量装置,其特征在于,所述多径定位测量包括:
    针对主径和至少一条反射径的定位测量,或,针对至少两条反射径的定位测量;
    其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。
  35. 一种用于终端设备定位的定位装置,其特征在于,所述定位装置包括:
    处理器,用于确定测量设备的设备能力支持单接入节点的多径定位测量,所述测量设备包括接入节点和/或待定位的终端设备,所述接入节点为用于所述终端设备定位的单接入节点;
    收发器,用于接收所述测量设备发送的针对所述终端设备的定位测量信息,所述定位测量信息为基于单接入节点的多径定位测量信息;
    其中,所述定位测量信息用于所述终端设备的位置估计。
  36. 根据权利要求35所述的定位装置,其特征在于,
    所述收发器,还用于:
    在所述处理器确定测量设备的设备能力支持单接入节点的多径定位测量之前,向测量设备和/或设备能力寄存功能实体发送定位能力请求;
    接收所述测量设备和/或所述设备能力寄存功能实体返回的所述测量设备的设备能力指示信息,所述设备能力指示信息用于指示所述测量设备是否支持单接入节点的多径定位测量。
  37. 根据权利要求35所述的定位装置,其特征在于,
    所述收发器,还用于:
    若所述测量设备包括所述终端设备,在接收所述测量设备发送的针对所述终端设备的定位测量信息之前,向所述接入节点发送第一消息,所述第一消息用于指示所述接入节点向所述终端设备发送定位参考信号;
    若所述测量设备包括所述接入节点,在接收所述测量设备发送的针对所述终端设备的定位测量信息之前,则向所述终端设备发送第二消息,所述第二消息用于指示所述终端设备向所述接入节点发送定位参考信号。
  38. 根据权利要求35所述的定位装置,其特征在于,
    所述收发器,用于在所述处理器确定所述测量设备的设备能力支持单接入节点的多径定位测量之后,向所述测量设备发送位置信息请求。
  39. 根据权利要求35-38任一项所述的定位装置,其特征在于,所述多径定位测量包括:
    针对主径和至少一条反射径的定位测量;或,
    针对至少两条反射径的定位测量;
    其中,所述定位测量,包括以下至少一项:用于距离定位的到达时间TOA的测量、用于角度定位的到达角度AOA的测量。
  40. 一种用于终端设备定位的系统,其特征在于,所述系统包括:
    如权利要求9至13任一项所述的定位装置,以及如权利要求1至4任一项所述的测量装置和/或如权利要求5至8任一项所述的测量装置;或者
    如权利要求35至39任一项所述的定位装置,以及如权利要求27至30任一项所述的测量装置和/或如权利要求31至34任一项所述的测量装置。
  41. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求14至26中任一项所述的方法。
  42. 一种用于终端定位的装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求14至26中任一项所述的方法。
  43. 一种用于终端定位的装置,其特征在于,包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求14至26中任一项所述的方法。
  44. 一种用于终端定位的装置,包括处理器,其特征在于,所述处理器用于执行如权利要求14至26中任一项所述的方法。
  45. 一种计算机程序产品,包括计算机程序,其特征在于,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求14至26中任一项所述的方法。
PCT/CN2018/123374 2018-01-05 2018-12-25 用于终端设备的定位方法、装置及系统 WO2019134555A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18897983.5A EP3726896B1 (en) 2018-01-05 2018-12-25 Methods and apparatus for positioning a terminal device
US16/919,318 US11009582B2 (en) 2018-01-05 2020-07-02 Method, apparatus, and system for positioning terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810011364.8A CN110012536B (zh) 2018-01-05 2018-01-05 用于终端设备的定位方法、装置及系统
CN201810011364.8 2018-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/919,318 Continuation US11009582B2 (en) 2018-01-05 2020-07-02 Method, apparatus, and system for positioning terminal device

Publications (1)

Publication Number Publication Date
WO2019134555A1 true WO2019134555A1 (zh) 2019-07-11

Family

ID=67143823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123374 WO2019134555A1 (zh) 2018-01-05 2018-12-25 用于终端设备的定位方法、装置及系统

Country Status (4)

Country Link
US (1) US11009582B2 (zh)
EP (1) EP3726896B1 (zh)
CN (1) CN110012536B (zh)
WO (1) WO2019134555A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057646A4 (en) * 2019-11-30 2022-11-02 Huawei Technologies Co., Ltd. METHOD FOR DETERMINING POSITIONING INFORMATION, AND COMMUNICATION APPARATUS
CN115336295A (zh) * 2020-03-31 2022-11-11 华为技术有限公司 用于在无线网络中定位用户设备的系统和方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523364B2 (en) 2019-08-13 2022-12-06 Qualcomm Incorporated Computation complexity framework for positioning reference signal processing
CN114467266B (zh) * 2019-09-29 2023-11-17 华为技术有限公司 发送角度测量结果的方法和装置
CN112866897B (zh) * 2019-11-08 2022-11-11 大唐移动通信设备有限公司 一种定位测量方法、终端和网络节点
US11690042B2 (en) * 2020-05-15 2023-06-27 Qualcomm Incorporated Reducing the overhead of timestamps in positioning state information (PSI) reports
CN113747344B (zh) * 2020-05-29 2023-06-16 大唐移动通信设备有限公司 一种终端定位方法及设备
US20230180175A1 (en) * 2020-07-23 2023-06-08 Beijing Xiaomi Mobile Software Co., Ltd. Positioning measurement method, positioning measurement apparatus and storage medium
CN113973262B (zh) * 2020-07-24 2023-05-02 华为技术有限公司 多径下单锚点定位的方法及通信装置
CN116685860A (zh) * 2021-01-05 2023-09-01 高通股份有限公司 每个参考信号的多个测量报告
CN112346009B (zh) * 2021-01-06 2021-04-16 广东省新一代通信与网络创新研究院 一种基于智能反射面的定位方法及系统
EP4314890A1 (en) * 2021-04-01 2024-02-07 Telefonaktiebolaget LM Ericsson (publ) Mapping of scatterer locations in a radio environment
CN115175230A (zh) * 2021-04-02 2022-10-11 华为技术有限公司 定位信息的上报方法及装置
JP2024514504A (ja) * 2021-04-02 2024-04-02 華為技術有限公司 測位情報報告方法及び装置
US11630181B2 (en) 2021-04-05 2023-04-18 Qualcomm Incorporated Systems and methods for storage of UE positioning capabilities in a network
US20240205877A1 (en) * 2021-04-12 2024-06-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods, access node and network node for addressing ambiguities in angle of arrival estimation
WO2022264113A1 (en) * 2021-06-17 2022-12-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatuses of measuring downlink positioning reference signal
CN115567866A (zh) * 2021-07-02 2023-01-03 华为技术有限公司 一种定位方法及装置
US12041512B2 (en) * 2021-09-27 2024-07-16 Electronics And Telecommunications Research Institute Method and apparatus for positioning using image and radio signals
CN116017680A (zh) * 2021-10-22 2023-04-25 华为技术有限公司 通信方法及装置
CN116321408A (zh) * 2021-12-21 2023-06-23 大唐移动通信设备有限公司 一种定位方法及装置
WO2023130876A1 (zh) * 2022-01-07 2023-07-13 华为技术有限公司 一种定位方法和装置
CN116614876A (zh) * 2022-02-08 2023-08-18 维沃移动通信有限公司 定位方法、装置、用户设备及存储介质
CN116939480A (zh) * 2022-04-08 2023-10-24 中国移动通信有限公司研究院 定位方法、装置、相关设备及存储介质
US20240230870A1 (en) * 2023-01-10 2024-07-11 Qualcomm Incorporated Enhanced multipath component reporting in new radio
JP2024134044A (ja) * 2023-03-20 2024-10-03 株式会社Kddi総合研究所 反射板の反射パターンを制御する基地局装置、制御装置、制御方法、およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489180A (zh) * 2008-01-15 2009-07-22 大唐移动通信设备有限公司 定位移动终端的方法和装置
CN102045840A (zh) * 2009-10-26 2011-05-04 中国移动通信集团广东有限公司 一种移动定位方法及无线网络控制器
CN102098778A (zh) * 2009-12-09 2011-06-15 电信科学技术研究院 基站能力确定方法、系统和设备
US20160277898A1 (en) * 2015-03-18 2016-09-22 Sony Corporation Determining location of a device in a mimo network using multipath component evaluation
CN107148081A (zh) * 2017-06-02 2017-09-08 重庆邮电大学 基于非线性约束最小二乘的单站定位方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744763A (zh) * 2005-09-30 2006-03-08 上海贝豪通讯电子有限公司 在td-scdma和wifi系统下的联合定位方法
US20120014412A1 (en) * 2009-03-17 2012-01-19 Panasonic Corporation Positioning system and positioning method
CN102045838B (zh) * 2009-10-14 2013-06-12 电信科学技术研究院 一种观察到达时间差测量定位方法及设备
US8478291B2 (en) * 2010-08-27 2013-07-02 Trueposition, Inc. Location accuracy improvement using a priori probabilities
CN202110642U (zh) * 2011-07-06 2012-01-11 江苏省莱科信息技术有限公司 紧急救助系统
EP2772111A1 (en) * 2011-10-28 2014-09-03 Telefonaktiebolaget LM Ericsson (Publ) Mobile positioning using radio fingerprints comprising speed or delay spread
US9084217B2 (en) * 2012-01-03 2015-07-14 Wavion Ltd. Single-site localization via multipath fingerprinting
US9453905B2 (en) * 2012-01-13 2016-09-27 Ziva Corporation Geolocation
KR101853138B1 (ko) * 2012-04-04 2018-04-30 한국전자통신연구원 무선 측위 방법 및 장치
CN105264920B (zh) * 2012-12-12 2020-01-14 波尔特公司 使用减少的衰减rf技术对对象进行测距和跟踪时的多径抑制
CN103096464B (zh) * 2013-01-09 2015-11-18 上海大唐移动通信设备有限公司 单基站用户终端定位方法及系统
KR101785953B1 (ko) * 2013-03-28 2017-11-15 노키아 솔루션스 앤드 네트웍스 오와이 무선 통신들에서 채널 추정
CN106162865A (zh) * 2015-01-15 2016-11-23 中兴通讯股份有限公司 终端的定位方法及装置
US9482742B1 (en) * 2015-05-12 2016-11-01 Qualcomm Incorporated Positioning reference signal (PRS) generation for multiple transmit antenna systems
MX2019005183A (es) * 2016-11-04 2019-08-05 Telefonaktiebolaget Lm Ericcsson Publ Posicionamiento de informacion de soporte para la estimacion de tiempo de llegada (toa) en posibles condiciones de propagacion de trayectorias multiples.
CN106658713B (zh) * 2017-01-18 2020-03-24 南京理工大学 基于多参数估计的单基站移动用户定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489180A (zh) * 2008-01-15 2009-07-22 大唐移动通信设备有限公司 定位移动终端的方法和装置
CN102045840A (zh) * 2009-10-26 2011-05-04 中国移动通信集团广东有限公司 一种移动定位方法及无线网络控制器
CN102098778A (zh) * 2009-12-09 2011-06-15 电信科学技术研究院 基站能力确定方法、系统和设备
US20160277898A1 (en) * 2015-03-18 2016-09-22 Sony Corporation Determining location of a device in a mimo network using multipath component evaluation
CN107148081A (zh) * 2017-06-02 2017-09-08 重庆邮电大学 基于非线性约束最小二乘的单站定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057646A4 (en) * 2019-11-30 2022-11-02 Huawei Technologies Co., Ltd. METHOD FOR DETERMINING POSITIONING INFORMATION, AND COMMUNICATION APPARATUS
CN115336295A (zh) * 2020-03-31 2022-11-11 华为技术有限公司 用于在无线网络中定位用户设备的系统和方法

Also Published As

Publication number Publication date
EP3726896A1 (en) 2020-10-21
US20200333427A1 (en) 2020-10-22
US11009582B2 (en) 2021-05-18
CN110012536A (zh) 2019-07-12
EP3726896B1 (en) 2023-10-04
EP3726896A4 (en) 2021-02-24
CN110012536B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2019134555A1 (zh) 用于终端设备的定位方法、装置及系统
WO2020164339A1 (zh) 定向发送定位参考信号的方法及装置
US12041572B2 (en) Method and device for user equipment positioning
US12057918B2 (en) Non-line-of-sight path detection for user equipment positioning in wireless networks
WO2021008581A1 (zh) 用于定位的方法和通信装置
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
US11782121B2 (en) Method and device for positioning utilizing beam information
TW202038639A (zh) Rsrp 報告方法以及使用者設備
US20140235273A1 (en) Method for determining position of terminal in cellular mobile communication system
CN114007183B (zh) 定位方式的触发方法及通信装置
US20230012726A1 (en) Facilitating Network Assisted Overhead Reduction in D2D Discovery Procedure
US20180310127A1 (en) System and Method for Collaborative Position Determination
US20220123817A1 (en) Apparatus, method and computer program for beam management
US9781566B1 (en) Apparatus, system and method of estimating a distance between a first station and a second station
WO2022194203A1 (zh) 定位方法、装置、通信设备及网络侧设备
WO2022063319A1 (zh) 定位测量的方法、装置、设备及可读存储介质
WO2022206777A1 (zh) 一种通信方法及装置
WO2023193710A1 (zh) 信号极化处理方法、设备及可读存储介质
WO2024012509A1 (zh) 定位方法及装置、计算机可读存储介质
WO2022242548A1 (zh) 用于定位的通信方法以及通信装置
US20240114481A1 (en) Method for determining positioning integrity based on speed of location estimation
WO2021134730A1 (zh) 一种定位方法、装置及系统
WO2021056355A1 (zh) 定位方法、设备、系统、芯片及存储介质
CN118435677A (zh) 通信方法及通信装置
CN115315996A (zh) 无线通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897983

Country of ref document: EP

Effective date: 20200716