CN112346009B - 一种基于智能反射面的定位方法及系统 - Google Patents

一种基于智能反射面的定位方法及系统 Download PDF

Info

Publication number
CN112346009B
CN112346009B CN202110010233.XA CN202110010233A CN112346009B CN 112346009 B CN112346009 B CN 112346009B CN 202110010233 A CN202110010233 A CN 202110010233A CN 112346009 B CN112346009 B CN 112346009B
Authority
CN
China
Prior art keywords
positioning
information
intelligent
signal source
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110010233.XA
Other languages
English (en)
Other versions
CN112346009A (zh
Inventor
刘元
李建强
李永军
杨明林
曾毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Communications and Networks Institute
Original Assignee
Guangdong Communications and Networks Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Communications and Networks Institute filed Critical Guangdong Communications and Networks Institute
Priority to CN202110010233.XA priority Critical patent/CN112346009B/zh
Publication of CN112346009A publication Critical patent/CN112346009A/zh
Application granted granted Critical
Publication of CN112346009B publication Critical patent/CN112346009B/zh
Priority to PCT/CN2021/125086 priority patent/WO2022148093A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination

Abstract

本发明公开了一种基于智能反射面的定位方法,该方法包括获取定位环境数字信息,利用定位传感器对信号源进行第一次定位生成第一定位信息;利用信道仿真器和定位环境数字信息,判断所述信号源第一定位位置是否与智能反射面阵列之间存在视距;若信号源第一定位位置与所述智能反射面阵列存在视距,则调整智能反射面参数至对准所述第一定位位置,并开启智能反射面阵列;根据多个智能反射面传入定位传感器的多径的传播对信号源进行第二次定位生成第二定位信息;判断第一定位信息与所述第二定位信息之间的误差距离是否小于预置的精度值,若误差距离小于所述预置的精度值,则将第二定位信息确定为精确的定位位置信息。根据本发明公开的方法能够提高定位的准确性。

Description

一种基于智能反射面的定位方法及系统
技术领域
本发明涉及无线通信技术领域,尤其涉及一种基于智能反射面的定位方法及系统。
背景技术
在富散射体场景,如建筑密集的城市场景、或人流量密集的商场的定位中,由于环境的阻挡,定位传感器(网络)与待定位的信号源之间会出现非视距(non-line-of-sight,NLoS)的情况,即定位源与传感器之间会被环境所挡住,同时,复杂的环境会产生随机的杂散多径信号,通过两者的影响就会导致定位结果不准确。
现阶段的定位传感网络中,利用IRS(Intelligent reflective surface,智能反射面)对信号源进行定位,但是也存在环境阻挡定位传感器和待定位源之间的视距(line-of-sight, LOS)问题,并且由于环境中的散射体造成不可控的随机多径,造成了定位不准确的现象。
发明内容
本发明所要解决的技术问题在于,提供一种基于智能反射面的定位方法及系统,能够排除智能反射面与定位目标之间的非视距情况带来的误差,提高了定位的准确性。
为了解决上述技术问题,本发明第一方面公开了一种基于智能反射面的定位方法,所述方法应用于定位系统,所述定位系统包括多个定位传感器、多个智能反射面阵列和信道仿真器,所述方法包括:获取定位环境数字信息;利用定位传感器对信号源进行第一次定位生成第一定位信息;利用信道仿真器和所述定位环境数字信息,判断所述信号源第一定位信息的位置是否与智能反射面阵列之间存在视距;若所述信号源位置与所述智能反射面阵列存在视距,则调整智能反射面参数至对准所述信号源第一定位信息的位置,并开启所述智能反射面阵列;根据多个智能反射面传入定位传感器的多径的传播对信号源进行第二次定位生成第二定位信息;判断所述第一定位信息与所述第二定位信息之间的误差距离是否小于预置的精度值,若所述误差距离小于所述预置的精度值,则将第二定位信息确定为精确的定位位置信息,否则,循环迭代所述第一定位信息和所述第二定位信息之间的误差值至小于所述预置的精度值。
在一些实施方式中,所述利用定位传感器对信号源进行第一次定位生成第一定位信息,包括:接收所述信号源的信号时延和信号角度;根据所述信号时延和信号角度对所述信号源进行定位生成第一定位信息。
在一些实施方式中,所述根据多个智能反射面传入定位传感器的多径的传播对信号源进行第二次定位生成第二定位信息,包括:根据智能反射面传入定位传感器的信号的总时延与光速的乘积确定信号传输的总路程值;根据定位传感器与智能反射面的距离与所述总路程值确定信号源的实际距离值;通过三个以上的智能反射面与信号源之间的实际距离值生成第二定位信息。
在一些实施方式中,定位环境数字信息,包括:用于描述环境信息的数字地图、每一个定位传感器的位置和每一个智能反射面阵列的位置。
根据本发明的第二个方面,公开了一种基于智能反射面的定位系统,所述系统包括: 信息获取模块,用于获取定位环境数字信息;第一定位模块,用于根据定位传感器对信号源进行第一次定位生成第一定位信息;信道仿真器,用于根据所述定位环境数字信息,判断所述信号源位置是否与智能反射面阵列之间存在视距;判断模块,用于在所述信号源位置与所述智能反射面阵列存在视距,则调整智能反射面参数至对准所述定位传感器,并开启所述智能反射面阵列;第二定位模块,用于根据多个智能反射面传入定位传感器的多径的传播对信号源进行第二次定位生成第二定位信息;迭代模块,判断所述第一定位信息与所述第二定位信息之间的误差距离是否小于预置的精度值,若所述误差距离小于所述预置的精度值,则将第二定位信息确定为精确的定位位置信息,否则,循环迭代所述第一定位信息和所述第二定位信息之间的误差值至小于所述预置的精度值。
在一些实施方式中,第一定位模块实现为接收所述信号源的信号时延和信号角度,根据所述信号时延和信号角度对所述信号源进行定位生成第一定位信息。
在一些实施方式中,第二定位模块实现为:根据智能反射面传入定位传感器的信号的总时延与光速的乘积确定信号传输的总路程值,根据定位传感器与智能反射面的距离与所述总路程值确定信号源的实际距离值,通过三个以上的智能反射面与信号源之间的实际距离值生成第二定位信息。
在一些实施方式中,定位环境数字信息,包括用于描述环境信息的数字地图、每一个定位传感器的位置和每一个智能反射面阵列的位置。
根据本发明公开的第三个方面,公开了一种基于智能反射面的定位装置,所述装置包括: 存储有可执行程序代码的存储器;与所述存储器耦合的处理器;如上述的基于智能反射面的定位方法。
根据本发明公开的第四个方面,公开了一种计算机存储介质,所述计算机存储介质存储有计算机指令,所述计算机指令被调用时,用于执行如上述的基于智能反射面的定位方法。
与现有技术相比,本发明的有益效果在于:
实施本发明能够在通过引入智能反射面,从而增加定位传感器与定位目标之间的确定多径传输路线,并利用该多径提供的时延、角度、功率强度等信息来辅助、校准原有的定位精度。而且,为了排除IRS与定位目标之间可能存在阻挡,即实际传播情况为:定位目标—阻挡物—IRS,所引起的定位误差,借用信道仿真器先对IRS与定位目标之间是否存在视距进行判断,从而排除IRS与定位目标之间的非视距情况带来的误差,大大的提高了定位的准确性。
附图说明
图1为本发明实施例公开的一种基于智能反射面的定位的流程示意图;
图2为本发明实施例公开的又一种基于智能反射面的定位的流程示意图;
图3为本发明实施例公开的又一种基于智能反射面的定位的流程示意图;
图4为本发明实施例公开的一种基于智能反射面的定位的系统示意图;
图5为本发明实施例公开的一种基于智能反射面的定位的交互装置结构示意图。
具体实施方式
为了更好地理解和实施,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
本发明实施例公开了一种基于智能反射面的定位方法及系统,能够在通过引入智能反射面,从而增加定位传感器与定位目标之间的确定多径传输路线,并利用该多径提供的时延、角度、功率强度等信息来辅助、校准原有的定位精度。而且,为了排除IRS与定位目标之间可能存在阻挡,即实际传播情况为:定位目标—阻挡物—IRS,所引起的定位误差,借用信道仿真器先对IRS与定位目标之间是否存在视距进行判断,从而排除IRS与定位目标之间的非视距情况带来的误差,大大的提高了定位的准确性。
实施例一
请参阅图1,图1为本发明实施例公开的一种基于智能反射面的定位方法的流程示意图。其中,该基于智能反射面的定位可 以应用在定位系统,该系统包括多个定位传感器、多个智能反射面阵列和信道仿真器,对于该基于智能反射面的定位方法的应用系统本发明实施例不做限制。如图1所示,该基于智能反射面的定位方法可以包括以下操作:
101、获取定位环境数字信息。
其中,该定位环境数字信息包括:用于描述环境信息的数字地图、每一个定位传感器的位置和每一个智能反射面阵列的位置。获取数字地图的方式可以具体实现为,采用激光雷达扫描实际环境建筑获得点云数据,并对该点云数据进行处理后得到数字地图。在其他实施方式中,还可以从开源地图或开源数据库中下载所需求的相关实际环境信息。在其他实施方式中,还可以通过人为测量后,采用3D绘图软件,例如SketchUp进行绘制生成。
102、利用定位传感器对信号源进行第一次定位生成第一定位信息。
该步骤可根据定位传感器所接收到的信号的时延、信号角度等信息,应用定位算法,例如现有技术的TOA/TDOA/AOA,及其扩展的一系列算法对信号源进行定位,得到第一定位信息,如图3所示意的P1位置,结合图2和图3可以看出,由于定位传感器可能与信号源之间存在阻挡,因此P1位置,与实际的手机位置是存在误差的。
103、利用信道仿真器和定位环境数字信息,判断信号源位置是否与智能反射面阵列之间存在视距。
在使用现有的智能反射面技术时,在寻找信号源进行波束对准之时,存在遍历搜索时间消耗大的缺点。而本发明所利用的定位传感器得到的初步定位结果作为先验信息,在此区域进行搜索和波束对准,进而减小搜索时间。同时,利用信道仿真器判断信号源位置是否与智能反射面阵列之间存在视距,从而排除掉与信号源处于NLOS状态的智能反射面,进而提高了智能反射面辅助定位的精度。其中,判断智能反射面与第一定位信息P1之间为LOS 或NLOS,可以使用镜像法,射线跟踪法或传播图论算法。
104、若信号源位置与智能反射面阵列存在视距,则调整智能反射面参数至对准信号源第一定位信息的位置,并开启智能反射面阵列。
通过判断IRS 与 上一次定位结果Pn-1 之间是否存在视距来作为是否开启该IRS的依据,由此可以避免 NLOS的IRS的信号影响定位误差。由于,定位传感器初步定位所得的P1 位置的信号与信号源之间的误差距离较小,因此从P1位置开始发射波束扫描,可以节约能耗与时间。对于被开启的智能反射面,开始在P1位置发射波束,寻找信号源,并接收信号。
105、根据多个智能反射面传入定位传感器的多径的传播对信号源进行第二次定位生成第二定位信息。
智能反射面接收到信号源的信号后,将之传回定位传感器。根据智能反射面传入定位传感器的信号的总时延与光速的乘积确定信号传输的总路程值,再根据定位传感器与智能反射面的距离与总路程值确定信号源的实际距离值;通过三个以上的智能反射面与信号源之间的实际距离值生成第二定位信息。具体实现为,通过计算智能反射面传回的信号的总时延与光速的乘积,可得到信号传输的总路程d_1,由于传感器与IRS的距离已知,表示为d_2,将路程d_1 减去 d_2 的差值则为智能反射面与信号源的实际距离d_i。通过三个以上的智能反射面与信号源之间的距离,(相当于三维坐标)则可利用TDOA定位算法计算IRS对信号源的第二定位信息P2。
106、判断第一定位信息与第二定位信息之间的误差距离是否小于预置的精度值。
在得到第二定位信息P2之后,就可以计算第二定位信息P2位置与第一定位信息P1位置的距离差,可以利用空间几何的距离公式进行计算。根据需求自行设置一个定位精度阈值,示例性地,该精度值为1米、0.5米等。
107、若误差距离小于预置的精度值,则将第二定位信息确定为精确的定位位置信息。
108、否则,循环迭代第一定位信息和所述第二定位信息之间的误差值至小于预置的精度值。
具体实现为:若该误差值大于预置的精度值,则将第二定位信息P2当作预设的定位结果,重复上述步骤操作,迭代信息直至得到的第n 次定位结果 Pn 与 Pn-1的距离误差在预置的精度值内,则输出精确的结果。同时为避免实际环境恶劣,导致循环计算多次依然得不到符合阈值误差的结果,我以设定最多迭代此处n为某一定值,超过这个次数,也输出结果。本发明将迭代过程在初始时,首先建立实际待定位环境的数字地图。在外场定位中,通过多个传感器(或者基站),利用到达时间差等方法进行初始位置 P0 的估计,再通过信道仿真技术,判断 P0 与IRS之间是否存在可视,之后开启可视的IRS,并将之当作虚拟的传感器,对信号源进行定位,得到第一次迭代的定位 P1; 再次判断所有IRS与P1之间是否可视,将视的 IRS 当作新的虚拟传感器,进行信号源定位。
根据本实施例提供的方法,能够在通过引入智能反射面,从而增加定位传感器与定位目标之间的确定多径传输路线,并利用该多径提供的时延、角度、功率强度等信息来辅助、校准原有的定位精度。而且,为了排除IRS与定位目标之间可能存在阻挡,即实际传播情况为:定位目标—阻挡物—IRS,所引起的定位误差,借用信道仿真器先对IRS与定位目标之间是否存在视距进行判断,从而排除IRS与定位目标之间的非视距情况带来的误差,大大的提高了定位的准确性。
实施例二
请参阅图4,图4为本发明实施例公开的一种基于智能反射面的定位系统的示意图。如图4所示,该基于智能反射面的定位系统可以包括:
信息获取模块1,用于获取定位环境数字信息。其中,该定位环境数字信息包括:用于描述环境信息的数字地图、每一个定位传感器的位置和每一个智能反射面阵列的位置。获取数字地图的方式可以具体实现为,采用激光雷达扫描实际环境建筑获得点云数据,并对该点云数据进行处理后得到数字地图。在其他实施方式中,还可以从开源地图或开源数据库中下载所需求的相关实际环境信息。在其他实施方式中,还可以通过人为测量后,采用3D绘图软件,例如SketchUp进行绘制生成。
第一定位模块2,用于根据定位传感器对信号源进行第一次定位生成第一定位信息。可根据定位传感器所接收到的信号的时延、信号角度等信息,应用定位算法,例如现有技术的TOA/TDOA/AOA,及其扩展的一系列算法对信号源进行定位,得到第一定位信息,如图3所示意的P1位置,结合图2和图3可以看出,由于定位传感器可能与信号源之间存在阻挡,因此P1位置,与实际的手机位置是存在误差的。
信道仿真器3,用于根据定位环境数字信息,判断信号源位置是否与智能反射面阵列之间存在视距。在使用现有的智能反射面技术时,在寻找信号源进行波束对准之时,存在遍历搜索时间消耗大的缺点。而本发明所利用的定位传感器得到的初步定位结果作为先验信息,在此区域进行搜索和波束对准,进而减小搜索时间。同时,利用信道仿真器判断信号源位置是否与智能反射面阵列之间存在视距,从而排除掉与信号源处于NLOS状态的智能反射面,进而提高了智能反射面辅助定位的精度。其中,判断智能反射面与第一定位信息P1之间为LOS 或NLOS,可以使用镜像法,射线跟踪法或传播图论算法。
判断模块4,用于在信号源位置与所述智能反射面阵列存在视距,则调整智能反射面参数至对准所述定位传感器,并开启智能反射面阵列。通过判断IRS 与 上一次定位结果Pn-1 之间是否存在视距来作为是否开启该IRS的依据,由此可以避免 NLOS的IRS的信号影响定位误差。由于,定位传感器初步定位所得的P1 位置的信号与信号源之间的误差距离较小,因此从P1位置开始发射波束扫描,可以节约能耗与时间。对于被开启的智能反射面,开始在P1位置发射波束,寻找信号源,并接收信号。
第二定位模块5,用于根据多个智能反射面传入定位传感器的多径的传播对信号源进行第二次定位生成第二定位信息。智能反射面接收到信号源的信号后,将之传回定位传感器。根据智能反射面传入定位传感器的信号的总时延与光速的乘积确定信号传输的总路程值,再根据定位传感器与智能反射面的距离与总路程值确定信号源的实际距离值;通过三个以上的智能反射面与信号源之间的实际距离值生成第二定位信息。具体实现为,通过计算智能反射面传回的信号的总时延与光速的乘积,可得到信号传输的总路程d_1,由于传感器与IRS的距离已知,表示为d_2,将路程d_1 减去 d_2 的差值则为智能反射面与信号源的实际距离d_i。通过三个以上的智能反射面与信号源之间的距离,(相当于三维坐标)则可利用TDOA定位算法计算IRS对信号源的第二定位信息P2。
迭代模块6,判断第一定位信息与所述第二定位信息之间的误差距离是否小于预置的精度值,若误差距离小于所述预置的精度值,则将第二定位信息确定为精确的定位位置信息,否则,循环迭代第一定位信息和第二定位信息之间的误差值至小于所述预置的精度值。若该误差值大于预置的精度值,则将第二定位信息P2当作预设的定位结果,重复上述步骤操作,迭代信息直至得到的第n 次定位结果 Pn 与 Pn-1的距离误差在预置的精度值内,则输出精确的结果。同时为避免实际环境恶劣,导致循环计算多次依然得不到符合阈值误差的结果,我以设定最多迭代此处n为某一定值,超过这个次数,也输出结果。本发明将迭代过程在初始时,首先建立实际待定位环境的数字地图。在外场定位中,通过多个传感器(或者基站),利用到达时间差等方法进行初始位置 P0 的估计,再通过信道仿真技术,判断P0 与IRS之间是否存在可视,之后开启可视的IRS,并将之当作虚拟的传感器,对信号源进行定位,得到第一次迭代的定位 P1; 再次判断所有IRS与P1之间是否可视,将视的 IRS 当作新的虚拟传感器,进行信号源定位。
根据本实施例提供的系统,能够在通过引入智能反射面,从而增加定位传感器与定位目标之间的确定多径传输路线,并利用该多径提供的时延、角度、功率强度等信息来辅助、校准原有的定位精度。而且,为了排除IRS与定位目标之间可能存在阻挡,即实际传播情况为:定位目标—阻挡物—IRS,所引起的定位误差,借用信道仿真器先对IRS与定位目标之间是否存在视距进行判断,从而排除IRS与定位目标之间的非视距情况带来的误差,大大的提高了定位的准确性。
实施例三
请参阅图5,图5是本发明实施例公开的一种基于智能反射面的定位交互装置的结构示意图。其中,图5所描述的基于智能反射面的定位装置可以应用在定位系统,对于该基于智能反射面的定位交互装置的应用系统本发明实施例不做限制。如图5所示,该装置可以包括:
存储有可执行程序代码的存储器601;
与存储器601耦合的处理器602;
处理器602调用存储器601中存储的可执行程序代码,用于执行实施例一所描述的基于智能反射面的定位方法。
实施例四
本发明实施例公开了一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,该计算机程序使得计算机执行实施例一所描述的基于智能反射面的定位方法。
实施例五
本发明实施例公开了一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,且该计算机程序可操作来使计算机执行实施例一所描述的基于智能反射面的定位方法。
以上所描述的实施例仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施例的具体描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(ErasableProgrammable Read Only Memory,EPROM)、一次可编程只读存储器(One-timeProgrammable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(CompactDisc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
最后应说明的是:本发明实施例公开的一种基于智能反射面的定位方法及装置所揭露的仅为本发明较佳实施例而已,仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各项实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应的技术方案的本质脱离本发明各项实施例技术方案的精神和范围。

Claims (7)

1.一种基于智能反射面的定位方法,其特征在于,所述方法应用于定位系统,所述定位系统包括多个定位传感器、多个智能反射面阵列和信道仿真器,所述方法包括:
步骤1,获取定位环境数字信息;
步骤2,利用定位传感器对信号源进行第一次定位生成第一定位信息;
步骤3,利用信道仿真器和所述定位环境数字信息,判断所述信号源第一定位信息的位置是否与智能反射面阵列之间存在视距;
步骤4,若所述信号源第一定位信息的位置与所述智能反射面阵列存在视距,则调整智能反射面参数至对准所述信号源第一定位信息的位置,并开启所述智能反射面阵列;
步骤5,根据多个智能反射面传入定位传感器的多径的传播对信号源进行第二次定位生成第二定位信息,包括:
使用开启的智能反射面将波束对准第一定位信息区域,并接收信号源发出的信号;
根据智能反射面传入定位传感器的信号的总时延与光速的乘积确定信号传输的总路程值;
根据定位传感器与智能反射面的距离与所述总路程值确定信号源到智能反射面的实际距离值;
通过三个以上的智能反射面与信号源之间的实际距离值生成第二定位信息;
步骤6,判断所述第一定位信息与所述第二定位信息之间的误差距离是否小于预置的精度值,若所述误差距离小于所述预置的精度值,则将第二定位信息确定为精确的定位位置信息,否则,将第二定位信息设置为下一次定位的第一定位信息,重复步骤3-6,循环迭代所述第一定位信息和所述第二定位信息之间的误差距离至小于所述预置的精度值。
2.根据权利要求1所述的基于智能反射面的定位方法,其特征在于,所述定位环境数字信息,包括:
用于描述环境信息的数字地图、每一个定位传感器的位置和每一个智能反射面阵列的位置。
3.一种基于智能反射面的定位系统,其特征在于,所述系统包括:
信息获取模块,用于获取定位环境数字信息;
第一定位模块,用于根据定位传感器对信号源进行第一次定位生成第一定位信息;
信道仿真器,用于根据所述定位环境数字信息,判断所述信号源第一定位信息的位置是否与智能反射面阵列之间存在视距;
判断模块,用于在所述信号源第一定位信息的位置与所述智能反射面阵列存在视距,则调整智能反射面参数至对准所述信号源第一定位信息的位置,并开启所述智能反射面阵列;
第二定位模块,用于根据多个智能反射面传入定位传感器的多径的传播对信号源进行第二次定位生成第二定位信息,包括:
使用开启的智能反射面将波束对准第一定位信息区域,并接收信号源发出的信号;
根据智能反射面传入定位传感器的信号的总时延与光速的乘积确定信号传输的总路程值;
根据定位传感器与智能反射面的距离与所述总路程值确定信号源到智能反射面的实际距离值;
通过三个以上的智能反射面与信号源之间的实际距离值生成第二定位信息;
迭代模块,判断所述第一定位信息与所述第二定位信息之间的误差距离是否小于预置的精度值,若所述误差距离小于所述预置的精度值,则将第二定位信息确定为精确的定位位置信息,否则,将第二定位信息设置为下一次定位的第一定位信息,循环迭代所述信号源第一定位信息和所述第二定位信息之间的误差距离至小于所述预置的精度值。
4.根据权利要求3所述的基于智能反射面的定位系统,其特征在于,所述第一定位模块实现为:接收所述信号源的信号时延和信号角度,根据所述信号时延和信号角度对所述信号源进行定位生成第一定位信息。
5.根据权利要求3或4所述的基于智能反射面的定位系统,其特征在于,所述定位环境数字信息,包括用于描述环境信息的数字地图、每一个定位传感器的位置和每一个智能反射面阵列的位置。
6.基于智能反射面的定位装置,其特征在于,所述装置包括:
存储有可执行程序代码的存储器;
与所述存储器耦合的处理器;
如权利要求1或2所述的基于智能反射面的定位方法。
7.一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机指令,所述计算机指令被调用时,用于执行如权利要求1或2所述的基于智能反射面的定位方法。
CN202110010233.XA 2021-01-06 2021-01-06 一种基于智能反射面的定位方法及系统 Active CN112346009B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110010233.XA CN112346009B (zh) 2021-01-06 2021-01-06 一种基于智能反射面的定位方法及系统
PCT/CN2021/125086 WO2022148093A1 (zh) 2021-01-06 2021-10-20 一种基于智能反射面的定位方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110010233.XA CN112346009B (zh) 2021-01-06 2021-01-06 一种基于智能反射面的定位方法及系统

Publications (2)

Publication Number Publication Date
CN112346009A CN112346009A (zh) 2021-02-09
CN112346009B true CN112346009B (zh) 2021-04-16

Family

ID=74427785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110010233.XA Active CN112346009B (zh) 2021-01-06 2021-01-06 一种基于智能反射面的定位方法及系统

Country Status (2)

Country Link
CN (1) CN112346009B (zh)
WO (1) WO2022148093A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112346009B (zh) * 2021-01-06 2021-04-16 广东省新一代通信与网络创新研究院 一种基于智能反射面的定位方法及系统
CN116940858A (zh) * 2021-03-03 2023-10-24 高通股份有限公司 可重配置智能表面的探通参考信号反射的测量
CN112986903B (zh) * 2021-04-29 2021-10-15 香港中文大学(深圳) 一种智能反射平面辅助的无线感知方法及装置
CN113472402B (zh) * 2021-06-30 2022-08-02 东南大学 一种mimo智能反射面传输系统中的参数调整方法
CN116193568A (zh) * 2021-11-29 2023-05-30 华为技术有限公司 室内定位方法、通信系统、相关设备
US20230319507A1 (en) * 2022-03-31 2023-10-05 Qualcomm Incorporated Ue positioning in the presence of an intelligent reflecting surface (irs)
CN115002900B (zh) * 2022-06-02 2023-11-07 中国电信股份有限公司 终端定位方法、装置、计算机存储介质及电子设备
CN116008906B (zh) * 2023-03-24 2023-08-04 厦门大学 一种基于tdoa的室内多径辅助定位系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394672A (zh) * 2008-10-30 2009-03-25 上海大学 基于多径散射信息的高精度无线定位方法及系统
WO2013106636A2 (en) * 2012-01-13 2013-07-18 Ziva Corporation Geolocation
CN103997780A (zh) * 2013-02-19 2014-08-20 北京三星通信技术研究有限公司 定位移动终端的方法及基站
CN107205226A (zh) * 2017-04-18 2017-09-26 上海交通大学 基于信道分类的室内定位跟踪方法及系统
CN110007273A (zh) * 2019-04-19 2019-07-12 中国矿业大学(北京) 一种抑制矿井非视距误差的定位方法
CN110658492A (zh) * 2019-10-10 2020-01-07 重庆邮电大学 一种室内目标与散射体位置优化的迭代方法
CN111417188A (zh) * 2019-01-04 2020-07-14 中兴通讯股份有限公司 终端定位方法及装置、存储介质
WO2020150173A1 (en) * 2019-01-16 2020-07-23 Qualcomm Incorporated Physical layer non-line-of-sight path discrimination based on polarization
CN111912409A (zh) * 2020-07-08 2020-11-10 北京大学 可编程智能反射面辅助的多移动设备定位方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451706B1 (en) * 2013-03-15 2019-10-22 Wiser Systems, Inc. Methods and systems for selecting the shortest path in a multi-path environment
CN110012536B (zh) * 2018-01-05 2021-10-01 华为技术有限公司 用于终端设备的定位方法、装置及系统
US20200267681A1 (en) * 2019-02-19 2020-08-20 Qualcomm Incorporated Systems and methods for positioning with channel measurements
CN111245494B (zh) * 2020-01-13 2022-06-10 东南大学 基于智能反射面的定位信息辅助波束控制方法
CN112346009B (zh) * 2021-01-06 2021-04-16 广东省新一代通信与网络创新研究院 一种基于智能反射面的定位方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394672A (zh) * 2008-10-30 2009-03-25 上海大学 基于多径散射信息的高精度无线定位方法及系统
WO2013106636A2 (en) * 2012-01-13 2013-07-18 Ziva Corporation Geolocation
CN103997780A (zh) * 2013-02-19 2014-08-20 北京三星通信技术研究有限公司 定位移动终端的方法及基站
CN107205226A (zh) * 2017-04-18 2017-09-26 上海交通大学 基于信道分类的室内定位跟踪方法及系统
CN111417188A (zh) * 2019-01-04 2020-07-14 中兴通讯股份有限公司 终端定位方法及装置、存储介质
WO2020150173A1 (en) * 2019-01-16 2020-07-23 Qualcomm Incorporated Physical layer non-line-of-sight path discrimination based on polarization
CN110007273A (zh) * 2019-04-19 2019-07-12 中国矿业大学(北京) 一种抑制矿井非视距误差的定位方法
CN110658492A (zh) * 2019-10-10 2020-01-07 重庆邮电大学 一种室内目标与散射体位置优化的迭代方法
CN111912409A (zh) * 2020-07-08 2020-11-10 北京大学 可编程智能反射面辅助的多移动设备定位方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
严重遮挡非视距环境下的三维定位方法;肖竹等;《通信学报》;20150831;第36卷(第8期);68-75 *

Also Published As

Publication number Publication date
WO2022148093A1 (zh) 2022-07-14
CN112346009A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN112346009B (zh) 一种基于智能反射面的定位方法及系统
RU2467343C2 (ru) Способ и устройство для определения местоположения устройства связи
CN111912409B (zh) 可编程智能反射面辅助的多移动设备定位方法及装置
CA2450810C (en) Method and system for calibrating location systems
RU2329521C2 (ru) Контроль целостности данных в системе определения местоположения с использованием информации о местной топографии
US11435432B2 (en) Terminal positioning method and apparatus, and storage medium
CN105510876B (zh) 一种基于电磁波传播特性的室内测距定位方法
WO2006088599A1 (en) Systems and methods for positioning using multipath signals
JP2007502414A (ja) Tdoa分散アンテナを使用したターゲットの位置特定方法及び装置
RU2624457C1 (ru) Способ определения координат объекта
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
CN105005039A (zh) 基于3d建模场景动态指纹的卫星信号定位方法及系统
JP2011214920A (ja) 位置推定装置、位置推定方法及びプログラム
US10514467B2 (en) Up sampling reference station data
CN105513132A (zh) 一种实时地图构建系统、方法及其装置
Cho Localization of the arbitrary deployed APs for indoor wireless location-based applications
CN110823211A (zh) 基于视觉slam的多传感器地图构建的方法、装置及芯片
CN109558471A (zh) 栅格地图的更新方法、装置、存储介质和系统
CN116033339A (zh) 一种信息上报方法、装置、设备及可读存储介质
RU2673877C2 (ru) Способ обзора пространства и сопровождения трассы цели (варианты) и радиолокационный комплекс для его осуществления (варианты)
CN115866517A (zh) 基于经验模态分解和空间自回归神经网络的室内定位系统
US20220394653A1 (en) Method and apparatus of positioning for accomodating wireless-environment change
KR102577520B1 (ko) 무선 환경 변화 수용을 위한 위치 측위 방법 및 장치
KR101570061B1 (ko) 모바일 노드의 위치 측정 장치 및 방법
CN117804448B (zh) 一种自主系统定位方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant