CN107148081A - 基于非线性约束最小二乘的单站定位方法 - Google Patents
基于非线性约束最小二乘的单站定位方法 Download PDFInfo
- Publication number
- CN107148081A CN107148081A CN201710407462.9A CN201710407462A CN107148081A CN 107148081 A CN107148081 A CN 107148081A CN 201710407462 A CN201710407462 A CN 201710407462A CN 107148081 A CN107148081 A CN 107148081A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- mtd
- mtr
- mfrac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0257—Hybrid positioning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种基于非线性约束最小二乘的单站定位方法,首先根据宏蜂窝信号传播特性构造宏蜂窝单基站的NLOS信号传播模型;然后利用多径信号参数及基站、目标和散射体间位置关系将定位问题转化为非线性约束最小二乘问题;利用LM(Levenberg‑Marquardt)算法求解最小二乘问题;当残差较大时,引入拟牛顿算法,改进LM算法,得到目标估计位置。该方法解决了传统定位算法对基站个数的依赖性问题,利用单基站进行定位,不需要时钟同步,降低了算法的复杂度;同时利用NLOS环境下,多径信号作为定位路径,而非抑制多径,解决了NLOS环境下定位误差大的问题;利用圆环模型增加变量约束条件,提高了最小二乘算法有效性,实现了宏蜂窝单站定位20‑30米的定位精度。
Description
技术领域
本发明涉及定位技术领域,具体涉及到一种宏蜂窝NLOS环境下的单站定位技术。
背景技术
1996年美国联邦通信委员会公布了E911定位需求,其要求在2001年10月前,各种无线蜂窝网络必须能对发出E911紧急呼叫的移动台提供精度在125m内的定位服务,且满足此定位精度的概率应不低于67%;并要求在2001年以后,提供更高的定位精度及三维位置信息。E911技术规范的公布激发了人们对无线定位技术的研究热情,并且随着通信技术的发展和移动设备越来越高的普及,人们对自身位置的定位服务需求日益激增,基于移动通信网络的定位技术得到飞速发展,无论是在人们的日常出行、交通工具定位导航,还是无线资源分配和整合、国家信息安全等方面都有着举足轻重的地位。当前主流的定位技术包括:广泛应用于室外的卫星定位技术、蜂窝网定位技术、声波定位技术、雷达定位技术等,以及基于WiFi、RFID、蓝牙、毫米波等室内定位技术,其中蜂窝定位技术,以其定位速度快、成本低(不需要移动终端上添加额外的硬件)、耗电少等优势,作为一种轻量级的定位方法,越来越常用。
非视距传播是影响蜂窝网定位精度的主要因素,目前对蜂窝网非视距的定位研究主要包括:非直达波鉴别算法;基于散射体信息的非直达波定位算法;基于不等式约束和统计的非直达波定位方法;学习型定位方法和非直达波跟踪算法。其中基于散射体信息的定位是近年来发展起来抑制非直达波误差的新思路,主要包括基于散射体信道模型和基于散射体几何位置关系两个分支。基于散射体信道模型根据散射模型(如圆环,高斯等模型)对测量参数AOA,TOA等进行重构,然后利用传统的LOS定位算法实现目标定位;基于散射体几何位置关系这类算法往往通过先获取散射体的相关几何位置信息,以此来构建出基站、散射体、目标三者之间的几何关系,构造出对应的线性定位方程,一般可同时定位出散射体和目标的位置。
但目前蜂窝网定位的主要存在以下两个问题:NLOS传播问题和多基站定位问题。蜂窝网在城区或者郊区等环境下几乎不存在LOS路径,而NLOS传播引起定位参数的测量误差,降低定位精度,同时现有的定位技术多偏向多站定位,其对时间和数据同步要求严格,系统的复杂度高,且存在可测性问题。
因此,有必要开发一种基于非线性约束最小二乘的单站定位方法。
发明内容
本发明的目的是提出一种基于非线性约束最小二乘的单站定位方法,它能解决传统定位算法对基站个数的依赖性问题,利用单基站进行定位,不需要时钟同步,降低算法复杂度;且定位精度高。
本发明所述的基于非线性约束最小二乘的单站定位方法,包括以下步骤:
步骤一:根据宏蜂窝信号传播特性构造宏蜂窝单站的NLOS(Non-Line-of-Sight,非视距)信号传播模型;
步骤二:计算基站端每条反射径信号的到达角(Angle of Arrival,AOA)θi和到达时间(Time of Arrival,TOA)τi,其中i=1,...,m,m表示反射径条数;
步骤三:利用多径信号参数AOA,TOA及基站、目标和散射体间的位置关系建立定位方程组,此定位方程组为非线性欠定方程组;
步骤四:引入宏蜂窝的圆环模型,假设散射体均匀分布在以移动台(MobileStation,MS)为圆心、半径为R的圆上,移动台和基站(Base Station,BS)间距离为D;
步骤五:根据圆环模型增加关于目标位置和散射体位置的非线性方程组,将非线性欠定方程组转化为超定方程组;
步骤六:实际测量时,考虑测量误差,将定位问题转化为非线性约束最小二乘问题;
步骤七:利用LM(Levenberg-Marquardt,列文伯格-马夸尔特法)算法求解非线性约束最小二乘问题;
步骤八:当残差较大时,引入拟牛顿BFGS(以其发明者Broyden,Fletcher,Goldfarb和Shanno的姓氏首字母命名)算法,对Hesse(海赛)矩阵进行逼近,再利用LM算法求解,本发明称此改进算法为“LM+BFGS”算法;;
步骤九:算法迭代结束,输出估计的目标位置
进一步,所述步骤三具体为:
设信号经第i个散射体反射后到达基站,经反射后的路径长度为ri,则散射体坐标(xi,yi)为:
建立关于目标位置(xMS,yMS)和ri的非线性欠定方程组,如公式(2)所示:
其中:c表示光速,方程组中共有m个方程,m+2个未知变量;
将公式(2)简写为:
进一步,所述步骤五具体为:
圆半径R表示为:因此有:
cτ1-r1=cτj+1-rj+1,j=1,...,m-1 (4);
联合公式(3),得到宏蜂窝的圆环模型下求解目标位置和散射体位置的超定方程组,如下式所示:
上式方程组共2m-1个方程,m+2个未知变量,当m>3时,式(5)即为超定方程组。
进一步,所述步骤六具体为:
由于AOA和TOA测量误差,公式(5)中等号不总是成立,因此将公式(5)写为:
其中:x=(xMS,yMS,ri)T,χ=(r1,rj+1)T,εi(x)和ξj(χ)为残差;
故对目标位置的估计,通过最小化如下目标函数得到:
其中:
同时待估的目标位置(xMS,yMS)应处于以最小传播距离lmin=cτmin为半径,BS为圆心的圆内,同时最大最小到达角将MS限制在圆心角为α的扇形区域,扇形的两条半径用向量表示为和长为lmin,α1为与BS和MS所在直线的夹角,α2为与BS和MS所在直线的夹角,α1,α2可以用方向矢量表示为:
其中:
其中:α1(xMS,yMS)表示α1是关于xMS,yMS的函数;α2(xMS,yMS)表示α2是关于xMS,yMS的函数;
因此,(xMS,yMS)应处在下列不等式的交集内,即可行域Z内:
其中:xBS为基站的横坐标,yBS为基站的纵坐标,同时ri≤cτmax;
综上,式(5)的位置解算转换为求解如下的非线性约束最小二乘问题:
进一步,所述步骤八具体为:
步骤八-一:选取可行域内初始点X∈intZ,给定LM算法初始化参数:尺度因子μ>0,增长因子β>0;给定BFGS算法参数:初始对称正定阵Β1=I,其中,Ι为单位矩阵;给定终止误差0≤ε<<1,令k=1;
步骤八-二:计算公式(7)的一阶导将J(Xk),f(Xk)简写为Jk,fk,Jk为雅克比矩阵,fk=(f1,f2,...,f2m-1)T,Jk表示为如下形式:
步骤八-三:计算搜索方向dk=-(Bk+μI)-1gk,其中,Bk为对F(X)进行泰勒展开的二阶项的近似矩阵,其初始值为Β1;
步骤八-四:由Armijio搜索求步长λk,令Xk+1=Xk+λkdk;
步骤八-五:计算下一时刻一阶导数计算pk=Xk+1-Xk和qk=gk+1-gk;
步骤八-六:根据BFGS算法更新Βk+1,Βk+1的更新表达式如下:
其中:Βk+1为Bk更新后的值;
步骤八-七:计算F(Xk+1),如果F(Xk+1)<F(Xk),转入步骤八-八,否则转入步骤八-九;
步骤八-八:如果||dk||2≤ε,得到停止迭代,否则令μ:=μ/β,同时k:=k+1,并转入步骤八-二;
步骤八-九:如果||dk||2≤ε,得到停止迭代,否则令μ:=μβ,同时k:=k+1,并转入步骤八-二。
进一步,所述步骤八-四具体为:
步骤八-四-一:给定Armijio算法的参数ρ∈(0,1),σ∈(0,0.5),最大迭代次数mmax,令m=0;
步骤八-四-二:计算F(Xk+ρmdk)和F(Xk)+σρmgk Tdk,若F(Xk+ρmdk)≤F(Xk)+σρmgk Tdk,转入步骤八-四-四,否则转入步骤八-四-三;
步骤八-四-三:令m:=m+1,并判断m是否达到最大迭代次数mmax,如否,则转入步骤八-四-二,若是,则停止迭代,并执行步骤八-四-四;
步骤八-四-四:输出搜索步长λk=ρm。
本发明的有益效果:它解决了传统定位算法对基站个数的依赖性问题,利用单基站进行定位,不需要时钟同步,降低了算法的复杂度;同时利用NLOS环境下,多径信号作为定位路径,而非抑制多径,解决了NLOS环境下定位误差大的问题;利用散射模型增加变量约束条件,提高了最小二乘算法的有效性,实现了宏蜂窝单站定位20-30米的定位精度。
附图说明
图1为本发明整体流程图;
图2为本发明宏蜂窝NLOS环境下的散射圆环模型;
图3为目标可能出现的区域(扇形区域),即迭代算法的可行域;
图4为LM算法流程图;
图5为“LM+BFGS”算法流程图;
图6为Armijio算法流程图。
具体实施方式
下面结合具体实施例及附图对本发明作进一步详细说明:
如图1所示,本发明所述的基于非线性约束最小二乘的单站定位方法,包括以下步骤:
步骤一:根据宏蜂窝信号传播特性构造宏蜂窝单站的NLOS信号传播模型,如图2所示。假设信号经历单次反射从移动台到达基站,基站位于坐标原点,MS位于以BS为坐标原点的X轴上,散射体S分布在MS周围,宏蜂窝环境下基站天线一般处于较高位置,因此周围不存在散射体。本发明仅考虑LOS(Line-of-sight,视距)不存在的情况。
步骤二:计算基站端每条反射径信号的到达角(AOA)θi和到达时间(TOA)τi,其中i=1,...,m,m表示反射径条数,本发明中m≥3。
步骤三:利用多径信号参数AOA,TOA及基站、目标和散射体间的位置关系建立定位方程组,此定位方程组为非线性欠定方程组。
设信号经第i个散射体反射后到达基站,经反射后的路径(即散射体和基站间的反射路径)长度为ri,则散射体坐标(xi,yi)为:
建立关于目标位置(xMS,yMS)和ri的非线性欠定方程组,如公式(2)所示:
其中:c表示光速,取c=3×108m/s。方程组中共有m个方程,m+2个变量。
公式(2)可简写为:
步骤四:引入宏蜂窝的圆环模型。假设散射体均匀分布在以MS为圆心的圆上,圆半径为R,MS、BS距离为D,如图2所示。本发明中取R=100米,D=1000米。
步骤五:根据圆环模型增加关于目标位置和散射体位置的非线性方程,将欠定方程组转化为超定方程组。
圆半径R可表示为:因此有:
cτ1-r1=cτj+1-rj+1,j=1,...,m-1 (4);
联合公式(3),可以得到宏蜂窝的圆环模型下求解目标位置和散射体位置的超定方程组,如下式所示:
方程组共2m-1个方程,m+2个变量,当m>3时,式(5)即为超定方程组。
步骤六:实际测量时,由于AOA,TOA测试误差,公式(5)中等号不总是成立,因此公式(5)可以写为:
其中x=(xMS,yMS,ri)T,χ=(r1,rj+1)T,εi(x)和ξj(χ)为残差。
故对目标的位置估计可以通过最小化如下目标函数得到:
其中
同时待估目标位置(xMS,yMS)应处于以最小传播距离lmin=cτmin为半径,BS为圆心的圆内,同时最大最小到达角将MS限制在圆心角为α的扇形区域(即图3所示的扇形区域
内),α为扇形圆心角,扇形的两条半径用向量表示为和长为lmin=cτmin,α1为与BS和MS所在直线的夹角,α2为与BS和MS所在直线的夹角,α1,α2可以用方向矢量表示为:
其中:
α1(xMS,yMS)表示α1是关于xMS,yMS的函数,α2(xMS,yMS)表示α2是关于xMS,yMS的函数。
因此,(xMS,yMS)应处在下列不等式的交集内,即可行域Z内,(xMS,yMS)所在扇形区域可以表示为下列不等式的交集:
其中xBS为基站的横坐标,yBS为基站的纵坐标,同时ri≤cτmax。
综上,式(5)的位置解算可以转换为求解如下的非线性约束最小二乘问题
步骤七:本发明选择经典的LM算法求解上述非线性约束最小二乘问题。公式(11)中的约束条件所述区域即是变量的可行域,记为Z,如下式所示:
LM算法流程如图4所示:
步骤七-一:选取可行域内初始点X∈intZ,给定初始的尺度因子参数μ>0,增长因子β>0,终止误差0≤ε<<1,令k=1。
步骤七-二:计算雅克比矩阵J(Xk)和Hesse矩阵Hk=Jk TJk(这里为方便表达将H(Xk),J(Xk)简写为Hk,Jk);其中Jk可以表示为如下形式:
步骤七-三:计算搜索方向dk=-(Hk+μI)-1Jk Tfk,其中Ι为单位矩阵,fk=(f1,f2,...,f2m-1)T。
步骤七-四:由Armijio线搜索算法求步长λk,使之满足
并令Xk+1=Xk+λkdk得到下一时刻变量值。
步骤七-五:计算F(Xk+1),如果F(Xk+1)<F(Xk),转入步骤七-六,否则转步入骤七-七。
步骤七-六:如果||dk||2≤ε,得到停止迭代,否则令μ:=μ/β,同时k:=k+1,重复步骤七-二至步骤七-五。
步骤七-七:如果||dk||2≤ε,得到停止迭代,否则令μ:=μβ,同时k:=k+1,重复步骤七-二至步骤七-五。
至此,完成了步骤七的全部操作。
步骤八:当残差较大时,最小二乘解算结果误差较大,主要原因是令Hesse矩阵H=JTJ时,忽略了其二阶项但是二阶偏导的计算比较复杂,因此引入拟牛顿BFGS算法,用不包含二阶偏导的矩阵对Hesse矩阵进行更准确的逼近,再利用LM算法求解,此算法可以有效的减小算法误差,提高定位精度。本发明称此改进算法为“LM+BFGS”算法,其流程如图5所示。
步骤八-一:选取可行域内初始点X∈intZ,给定LM算法参数:尺度因子μ>0,增长因子β>0;给定BFGS算法参数:初始对称正定阵Β1=I,Ι为单位矩阵;给定终止误差0≤ε<<1,令k=1,本发明中μ=0.01,β=10,ε=10-3。
步骤八-二:计算公式(7)的一阶导将J(Xk),f(Xk)简写为Jk,fk,Jk为雅克比矩阵,fk=(f1,f2,...,f2m-1)T,Jk表示为如下形式:
步骤八-三:计算搜索方向dk=-(Bk+μI)-1gk,其中,Bk为对F(X)进行泰勒展开的二阶项的近似矩阵,其初始值为Β1。
步骤八-四:由Armijio搜索求步长λk,令Xk+1=Xk+λkdk,Armijio搜索求步长流程如图6所示。
步骤八-四-一:给定Armijio算法的参数ρ∈(0,1),σ∈(0,0.5),最大迭代次数mmax,令m=0,本发明中ρ=0.5,σ=0.24,mmax=20。
步骤八-四-二:计算F(Xk+ρmdk)和F(Xk)+σρmgk Tdk,若F(Xk+ρmdk)≤F(Xk)+σρmgk Tdk,转步骤八-四-四,否则转步骤八-四-三。
步骤八-四-三:令m:=m+1,并判断m是否达到最大迭代次数mmax,如否,则转入步骤八-四-二,若是,则停止迭代,并执行步骤八-四-四。
步骤八-四-四:输出搜索步长λk=ρm。
至此,完成了步骤八-四的全部操作。
步骤八-五:计算下一时刻一阶导数计算pk=Xk+1-Xk和qk=gk+1-gk。
步骤八-六:根据BFGS算法更新Βk+1,Βk+1的更新表达式如下:
其中:Bk为对F(X)进行泰勒展开的二阶项的近似矩阵,Βk+1为Bk更新后的值。
步骤八-七:计算F(Xk+1),如果F(Xk+1)<F(Xk),转入步骤八-八,否则转入步骤八-九。
步骤八-八:如果||dk||2≤ε,得到停止迭代,否则令μ:=μ/β,同时k:=k+1,重复步骤八-二至步骤八-七。
步骤八-九:如果||dk||2≤ε,得到停止迭代,否则令μ:=μβ,同时k:=k+1,重复步骤八-二至步骤八-七。
至此,完成了步骤八的全部操作。
步骤九:算法迭代结束后,得到估计参数最后输出估计的目标位置
Claims (6)
1.基于非线性约束最小二乘的单站定位方法,其特征在于,包括以下步骤:
步骤一:根据宏蜂窝信号传播特性构造宏蜂窝单站的NLOS信号传播模型;
步骤二:计算基站端每条反射径信号的到达角θi和到达时间τi,其中i=1,...,m,m表示反射径条数;
步骤三:利用多径信号参数AOA,TOA及基站、目标和散射体间的位置关系建立定位方程组,此定位方程组为非线性欠定方程组;
步骤四:引入宏蜂窝的圆环模型,假设散射体均匀分布在以移动台为圆心、半径为R的圆上,移动台和基站间距离为D;
步骤五:根据圆环模型增加关于目标位置和散射体位置的非线性方程组,将非线性欠定方程组转化为超定方程组;
步骤六:实际测量时,考虑测量误差,将定位问题转化为非线性约束最小二乘问题;
步骤七:利用LM算法求解非线性约束最小二乘问题;
步骤八:当残差较大时,引入拟牛顿BFGS算法,对Hesse矩阵进行逼近,再利用LM算法求解;
步骤九:算法迭代结束,输出估计的目标位置
2.根据权利要求1所述的基于非线性约束最小二乘的单站定位方法,其特征在于:所述步骤三具体为:
设信号经第i个散射体反射后到达基站,经反射后的路径长度为ri,则散射体坐标(xi,yi)为:
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>x</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>&times;</mo>
<msub>
<mi>cos&theta;</mi>
<mi>i</mi>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>y</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>&times;</mo>
<msub>
<mi>sin&theta;</mi>
<mi>i</mi>
</msub>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
建立关于目标位置(xMS,yMS)和ri的非线性欠定方程组,如公式(2)所示:
其中:c表示光速,方程组中共有m个方程,m+2个未知变量;
将公式(2)简写为:
<mrow>
<msqrt>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>cos&theta;</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>sin&theta;</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>+</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mi>c&tau;</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<mi>m</mi>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
<mo>.</mo>
</mrow>
3.根据权利要求2所述的基于非线性约束最小二乘的单站定位方法,其特征在于:所述步骤五具体为:
圆半径R表示为:因此有:
cτ1-r1=cτj+1-rj+1,j=1,...,m-1 (4);
联合公式(3),得到宏蜂窝的圆环模型下求解目标位置和散射体位置的超定方程组,如下式所示:
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msqrt>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>cos&theta;</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>sin&theta;</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>+</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mi>c&tau;</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mn>...</mn>
<mo>,</mo>
<mi>m</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>c&tau;</mi>
<mn>1</mn>
</msub>
<mo>-</mo>
<msub>
<mi>r</mi>
<mn>1</mn>
</msub>
<mo>=</mo>
<msub>
<mi>c&tau;</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>r</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>j</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mn>...</mn>
<mo>,</mo>
<mi>m</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
上式方程组共2m-1个方程,m+2个未知变量,当m>3时,式(5)即为超定方程组。
4.根据权利要求3所述的基于非线性约束最小二乘的单站定位方法,其特征在于:所述步骤六具体为:
由于AOA和TOA测量误差,公式(5)中等号不总是成立,因此将公式(5)写为:
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>&epsiv;</mi>
<mi>i</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>cos&theta;</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>sin&theta;</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>+</mo>
<msub>
<mi>r</mi>
<mi>i</mi>
</msub>
<mo>-</mo>
<msub>
<mi>c&tau;</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mn>...</mn>
<mo>,</mo>
<mi>m</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>&xi;</mi>
<mi>j</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>&chi;</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>r</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>r</mi>
<mn>1</mn>
</msub>
<mo>-</mo>
<msub>
<mi>c&tau;</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>c&tau;</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>j</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mn>...</mn>
<mo>,</mo>
<mi>m</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
其中:x=(xMS,yMS,ri)T,χ=(r1,rj+1)T,εi(x)和ξj(χ)为残差;
故对目标位置的估计,通过最小化如下目标函数得到:
<mrow>
<mi>F</mi>
<mrow>
<mo>(</mo>
<mi>X</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>p</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>2</mn>
<mi>m</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</munderover>
<msup>
<msub>
<mi>f</mi>
<mi>p</mi>
</msub>
<mn>2</mn>
</msup>
<mrow>
<mo>(</mo>
<mi>X</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>7</mn>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
其中:
同时待估的目标位置(xMS,yMS)应处于以最小传播距离lmin=cτmin为半径,BS为圆心的圆内,同时最大最小到达角将MS限制在圆心角为α的扇形区域,扇形的两条半径用向量表示为和长为lmin,α1为与BS和MS所在直线的夹角,α2为与BS和MS所在直线的夹角,α1,α2可以用方向矢量表示为:
其中:
其中:α1(xMS,yMS)表示α1是关于xMS,yMS的函数;α2(xMS,yMS)表示α2是关于xMS,yMS的函数;
因此,(xMS,yMS)应处在下列不等式的交集内,即可行域Z内:
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<msqrt>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>B</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>B</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>&le;</mo>
<msub>
<mi>c&tau;</mi>
<mrow>
<mi>m</mi>
<mi>i</mi>
<mi>n</mi>
</mrow>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>&alpha;</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>&le;</mo>
<mi>&alpha;</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>&alpha;</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>&le;</mo>
<mi>&alpha;</mi>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>10</mn>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
其中:xBS为基站的横坐标,yBS为基站的纵坐标,同时ri≤cτmax;
综上,式(5)的位置解算转换为求解如下的非线性约束最小二乘问题:
5.根据权利要求4所述的基于非线性约束最小二乘的单站定位方法,其特征在于:所述步骤八具体为:
步骤八-一:选取可行域内初始点X∈intZ,给定LM算法初始化参数:尺度因子μ>0,增长因子β>0;给定BFGS算法参数:初始对称正定阵Β1=I,其中,Ι为单位矩阵;给定终止误差0≤ε<<1,令k=1;
步骤八-二:计算公式(7)的一阶导将J(Xk),f(Xk)简写为Jk,fk,Jk为雅克比矩阵,fk=(f1,f2,...,f2m-1)T,Jk表示为如下形式:
<mrow>
<msub>
<mi>J</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<mfenced open = "[" close = "]">
<mtable>
<mtr>
<mtd>
<mrow>
<mo>&dtri;</mo>
<msub>
<mi>f</mi>
<mn>1</mn>
</msub>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mi>k</mi>
</msub>
<mo>)</mo>
</mrow>
<mi>T</mi>
</msup>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>&dtri;</mo>
<msub>
<mi>f</mi>
<mn>2</mn>
</msub>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mi>k</mi>
</msub>
<mo>)</mo>
</mrow>
<mi>T</mi>
</msup>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>.</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>.</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>.</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>&dtri;</mo>
<msub>
<mi>f</mi>
<mrow>
<mn>2</mn>
<mi>m</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>X</mi>
<mi>k</mi>
</msub>
<mo>)</mo>
</mrow>
<mi>T</mi>
</msup>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>=</mo>
<mfenced open = "[" close = "]">
<mtable>
<mtr>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mtd>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mtd>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>r</mi>
<mn>1</mn>
</msub>
</mrow>
</mfrac>
</mtd>
<mtd>
<mn>...</mn>
</mtd>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>r</mi>
<mi>m</mi>
</msub>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mtd>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mtd>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>r</mi>
<mn>1</mn>
</msub>
</mrow>
</mfrac>
</mtd>
<mtd>
<mn>...</mn>
</mtd>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>r</mi>
<mi>m</mi>
</msub>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
<mtd>
<mo>.</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mrow>
<mn>2</mn>
<mi>m</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>x</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mtd>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mrow>
<mn>2</mn>
<mi>m</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>y</mi>
<mrow>
<mi>M</mi>
<mi>S</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mtd>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mrow>
<mn>2</mn>
<mi>m</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>r</mi>
<mn>1</mn>
</msub>
</mrow>
</mfrac>
</mtd>
<mtd>
<mn>...</mn>
</mtd>
<mtd>
<mfrac>
<mrow>
<mo>&part;</mo>
<msub>
<mi>f</mi>
<mrow>
<mn>2</mn>
<mi>m</mi>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mrow>
<mo>&part;</mo>
<msub>
<mi>r</mi>
<mi>m</mi>
</msub>
</mrow>
</mfrac>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>12</mn>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
步骤八-三:计算搜索方向dk=-(Bk+μI)-1gk,其中,Bk为对F(X)进行泰勒展开的二阶项的近似矩阵,其初始值为Β1;
步骤八-四:由Armijio搜索求步长λk,令Xk+1=Xk+λkdk;
步骤八-五:计算下一时刻一阶导数计算pk=Xk+1-Xk和qk=gk+1-gk;
步骤八-六:根据BFGS算法更新Βk+1,Βk+1的更新表达式如下:
<mrow>
<msub>
<mi>B</mi>
<mrow>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>B</mi>
<mi>k</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<msub>
<mi>q</mi>
<mi>k</mi>
</msub>
<msubsup>
<mi>q</mi>
<mi>k</mi>
<mi>T</mi>
</msubsup>
</mrow>
<mrow>
<msubsup>
<mi>q</mi>
<mi>k</mi>
<mi>T</mi>
</msubsup>
<msub>
<mi>p</mi>
<mi>k</mi>
</msub>
</mrow>
</mfrac>
<mo>-</mo>
<mfrac>
<mrow>
<msub>
<mi>B</mi>
<mi>k</mi>
</msub>
<msub>
<mi>p</mi>
<mi>k</mi>
</msub>
<msubsup>
<mi>p</mi>
<mi>k</mi>
<mi>T</mi>
</msubsup>
<msub>
<mi>B</mi>
<mi>k</mi>
</msub>
</mrow>
<mrow>
<msubsup>
<mi>p</mi>
<mi>k</mi>
<mi>T</mi>
</msubsup>
<msub>
<mi>B</mi>
<mi>k</mi>
</msub>
<msub>
<mi>p</mi>
<mi>k</mi>
</msub>
</mrow>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>13</mn>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
其中:Βk+1为Bk更新后的值;
步骤八-七:计算F(Xk+1),如果F(Xk+1)<F(Xk),转入步骤八-八,否则转入步骤八-九;
步骤八-八:如果||dk||2≤ε,得到停止迭代,否则令μ:=μ/β,同时k:=k+1,并转入步骤八-二;
步骤八-九:如果||dk||2≤ε,得到停止迭代,否则令μ:=μβ,同时k:=k+1,并转入步骤八-二。
6.根据权利要求5所述的基于非线性约束最小二乘的单站定位方法,其特征在于:所述步骤八-四具体为:
步骤八-四-一:给定Armijio算法的参数ρ∈(0,1),σ∈(0,0.5),最大迭代次数mmax,令m=0;
步骤八-四-二:计算F(Xk+ρmdk)和F(Xk)+σρmgk Tdk,若F(Xk+ρmdk)≤F(Xk)+σρmgk Tdk,转入步骤八-四-四,否则转入步骤八-四-三;
步骤八-四-三:令m:=m+1,并判断m是否达到最大迭代次数mmax,如否,则转入步骤八-四-二,若是,则停止迭代,并执行步骤八-四-四;
步骤八-四-四:输出搜索步长λk=ρm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710407462.9A CN107148081B (zh) | 2017-06-02 | 2017-06-02 | 基于非线性约束最小二乘的单站定位方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710407462.9A CN107148081B (zh) | 2017-06-02 | 2017-06-02 | 基于非线性约束最小二乘的单站定位方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107148081A true CN107148081A (zh) | 2017-09-08 |
CN107148081B CN107148081B (zh) | 2020-02-21 |
Family
ID=59780023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710407462.9A Active CN107148081B (zh) | 2017-06-02 | 2017-06-02 | 基于非线性约束最小二乘的单站定位方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107148081B (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107797091A (zh) * | 2017-10-17 | 2018-03-13 | 杭州电子科技大学 | 一种基于子空间的新型纯方位目标定位方法 |
CN109884582A (zh) * | 2019-03-26 | 2019-06-14 | 电子科技大学 | 利用一维测向快速确定目标三维坐标的方法 |
WO2019134555A1 (zh) * | 2018-01-05 | 2019-07-11 | 华为技术有限公司 | 用于终端设备的定位方法、装置及系统 |
CN110658492A (zh) * | 2019-10-10 | 2020-01-07 | 重庆邮电大学 | 一种室内目标与散射体位置优化的迭代方法 |
CN111148217A (zh) * | 2019-12-17 | 2020-05-12 | 北京邮电大学 | 一种定位方法、装置及电子设备 |
CN111385743A (zh) * | 2020-03-11 | 2020-07-07 | 北京邮电大学 | 一种位置估计方法、装置及电子设备 |
WO2020259287A1 (zh) * | 2019-06-24 | 2020-12-30 | 华为技术有限公司 | 一种定位方法和装置 |
CN112526523A (zh) * | 2020-10-30 | 2021-03-19 | 中国航空工业集团公司洛阳电光设备研究所 | 改进的多基地声纳定位的方法 |
CN112833876A (zh) * | 2020-12-30 | 2021-05-25 | 西南科技大学 | 一种融合里程计与uwb的多机器人协作定位方法 |
CN113627651A (zh) * | 2021-07-09 | 2021-11-09 | 广东烟草惠州市有限责任公司 | 一种烟草企业物流仓储设备平均寿命的预测方法 |
CN114114276A (zh) * | 2021-11-01 | 2022-03-01 | 江苏科技大学 | Nlos环境下基于两次散射的水下目标定位方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100559785C (zh) * | 2007-03-19 | 2009-11-11 | 重庆邮电大学 | 一种用于WiMAX系统的接收符号同步方法 |
CN102170658A (zh) * | 2011-04-28 | 2011-08-31 | 北京交通大学 | 一种nlos环境下的几何定位改进方法 |
CN102395196A (zh) * | 2011-11-01 | 2012-03-28 | 北京邮电大学 | 一种基于标校点的定位方法和装置 |
US20160091601A1 (en) * | 2014-09-30 | 2016-03-31 | Lawrence J. Karr | Holonomically constrained (tethered) spin-around locator |
CN105848102A (zh) * | 2016-03-18 | 2016-08-10 | 上海酷远物联网科技有限公司 | 移动终端定位方法、声波定位收发器、移动终端及系统 |
-
2017
- 2017-06-02 CN CN201710407462.9A patent/CN107148081B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100559785C (zh) * | 2007-03-19 | 2009-11-11 | 重庆邮电大学 | 一种用于WiMAX系统的接收符号同步方法 |
CN102170658A (zh) * | 2011-04-28 | 2011-08-31 | 北京交通大学 | 一种nlos环境下的几何定位改进方法 |
CN102395196A (zh) * | 2011-11-01 | 2012-03-28 | 北京邮电大学 | 一种基于标校点的定位方法和装置 |
US20160091601A1 (en) * | 2014-09-30 | 2016-03-31 | Lawrence J. Karr | Holonomically constrained (tethered) spin-around locator |
CN105848102A (zh) * | 2016-03-18 | 2016-08-10 | 上海酷远物联网科技有限公司 | 移动终端定位方法、声波定位收发器、移动终端及系统 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107797091B (zh) * | 2017-10-17 | 2020-12-08 | 杭州电子科技大学 | 一种基于子空间的新型纯方位目标定位方法 |
CN107797091A (zh) * | 2017-10-17 | 2018-03-13 | 杭州电子科技大学 | 一种基于子空间的新型纯方位目标定位方法 |
WO2019134555A1 (zh) * | 2018-01-05 | 2019-07-11 | 华为技术有限公司 | 用于终端设备的定位方法、装置及系统 |
CN110012536A (zh) * | 2018-01-05 | 2019-07-12 | 华为技术有限公司 | 用于终端设备的定位方法、装置及系统 |
US11009582B2 (en) | 2018-01-05 | 2021-05-18 | Huawei Technologies Co., Ltd. | Method, apparatus, and system for positioning terminal device |
CN109884582A (zh) * | 2019-03-26 | 2019-06-14 | 电子科技大学 | 利用一维测向快速确定目标三维坐标的方法 |
WO2020259287A1 (zh) * | 2019-06-24 | 2020-12-30 | 华为技术有限公司 | 一种定位方法和装置 |
CN110658492A (zh) * | 2019-10-10 | 2020-01-07 | 重庆邮电大学 | 一种室内目标与散射体位置优化的迭代方法 |
CN111148217A (zh) * | 2019-12-17 | 2020-05-12 | 北京邮电大学 | 一种定位方法、装置及电子设备 |
CN111148217B (zh) * | 2019-12-17 | 2021-04-06 | 北京邮电大学 | 一种定位方法、装置及电子设备 |
CN111385743A (zh) * | 2020-03-11 | 2020-07-07 | 北京邮电大学 | 一种位置估计方法、装置及电子设备 |
CN111385743B (zh) * | 2020-03-11 | 2021-03-19 | 北京邮电大学 | 一种位置估计方法、装置及电子设备 |
CN112526523A (zh) * | 2020-10-30 | 2021-03-19 | 中国航空工业集团公司洛阳电光设备研究所 | 改进的多基地声纳定位的方法 |
CN112526523B (zh) * | 2020-10-30 | 2023-09-19 | 中国航空工业集团公司洛阳电光设备研究所 | 改进的多基地声纳定位的方法 |
CN112833876A (zh) * | 2020-12-30 | 2021-05-25 | 西南科技大学 | 一种融合里程计与uwb的多机器人协作定位方法 |
CN112833876B (zh) * | 2020-12-30 | 2022-02-11 | 西南科技大学 | 一种融合里程计与uwb的多机器人协作定位方法 |
CN113627651A (zh) * | 2021-07-09 | 2021-11-09 | 广东烟草惠州市有限责任公司 | 一种烟草企业物流仓储设备平均寿命的预测方法 |
CN114114276A (zh) * | 2021-11-01 | 2022-03-01 | 江苏科技大学 | Nlos环境下基于两次散射的水下目标定位方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107148081B (zh) | 2020-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107148081A (zh) | 基于非线性约束最小二乘的单站定位方法 | |
CN102395196B (zh) | 一种基于标校点的定位方法和装置 | |
Ye et al. | A method of indoor positioning by signal fitting and PDDA algorithm using BLE AOA device | |
WO2017097054A1 (zh) | 一种预定空间内的定位系统和方法 | |
CN108226860B (zh) | 基于rss的超宽带混合维定位方法及定位系统 | |
CN109342993B (zh) | 基于RSS-AoA混合测量的无线传感器网络目标定位方法 | |
CN103929807A (zh) | 基于低功耗蓝牙技术精确定位设备坐标的方法及其应用 | |
CN102970749B (zh) | 多基站逐次逼近定位方法 | |
CN105526934A (zh) | 一种室内外一体化高精度定位导航系统及其定位方法 | |
CN101860384B (zh) | 一种短波射线追踪技术中的电离层混合建模方法 | |
CN204166130U (zh) | 射频定位装置和系统 | |
CN102879762B (zh) | 基于射频接收信号强度值的隧道内车辆的动态定位方法 | |
CN112689235A (zh) | 一种基于蓝牙信号的定位方法及装置 | |
CN104197930A (zh) | 一种基于惯性制导和射频识别的室内定位装置及方法 | |
CN101472330A (zh) | 基于时间差定位的传输同步方法 | |
Lovell | Accuracy of speed measurements from cellular phone vehicle location systems | |
CN105425206A (zh) | 一种非同步无线网络中的稳健最小二乘定位方法 | |
CN101707805B (zh) | 移动终端多基站频移综合定位方法 | |
CN104683949A (zh) | 一种应用于无线Mesh网中基于天线阵列的混合自定位方法 | |
Liu et al. | Performance Analysis of GNSS+ 5G Hybrid Positioning Algorithms for Smartphones in Urban Environments | |
CN105979581B (zh) | 一种基于功率差的室内定位方法 | |
CN104459620A (zh) | 一种无线定位装置及方法 | |
CN103517412B (zh) | 一种认知网内的基站及其双终端协作定位授权网内终端的方法 | |
Zhao et al. | Uwb-rtk positioning system based on tdoa | |
CN110333481A (zh) | 一种基于距离比圆算法与Taylor级数展开法的联合定位方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |