WO2020259287A1 - 一种定位方法和装置 - Google Patents

一种定位方法和装置 Download PDF

Info

Publication number
WO2020259287A1
WO2020259287A1 PCT/CN2020/095378 CN2020095378W WO2020259287A1 WO 2020259287 A1 WO2020259287 A1 WO 2020259287A1 CN 2020095378 W CN2020095378 W CN 2020095378W WO 2020259287 A1 WO2020259287 A1 WO 2020259287A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
ndp
station
directional
initiating
Prior art date
Application number
PCT/CN2020/095378
Other languages
English (en)
French (fr)
Inventor
刘辰辰
韩霄
杜瑞
张美红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20830931.0A priority Critical patent/EP3972331B1/en
Publication of WO2020259287A1 publication Critical patent/WO2020259287A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/825Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of positioning technology, and in particular to a positioning method and device.
  • the wireless fidelity (Wi-Fi) standard 802.11az defines a fine time measurement (FTM) that can be used to determine location.
  • FTM fine time measurement
  • the principle of using FTM technology to determine location is as follows: When the initiator station (ISTA) to be located has FTM measurement requirements, it exchanges a null data packet (null data packet) with at least three responder stations (RSTA) whose locations are known. , NDP) frame, calculate the round trip time (RTT) of the NDP frame transmission between ISTA and each RTT, calculate the distance between ISTA and each RTT according to the propagation speed of electromagnetic waves and RTT, and then calculate the distance between ISTA and each RTT according to Trilateral measurement technique to determine the location of ISTA.
  • NDP round trip time
  • the existing method of using FTM technology to determine the position is only applicable to the situation where the line of sight (LOS) between ISTA and RSTA is the line of sight (LOS), that is, it is only applicable to the scene where there is no obstacle between ISTA and RSTA.
  • LOS line of sight
  • NLOS line of sight
  • the existing FTM method cannot work. Therefore, in the case of NLOS between ISTA and RSTA, how to determine the location of the ISTA is a technical problem that needs to be solved urgently.
  • the embodiments of the present application provide a positioning method and device, and propose a new accurate time measurement method, which can realize positioning in a LOS scenario or in a NLOS scenario.
  • a positioning method includes: an initiating station obtains first positioning information, the first positioning information includes the sending time of the first NDP frame, the receiving time of the first NDP frame, and the sending time of the second NDP frame , The receiving time of the second NDP frame, the first direction and the second direction, the initiating station obtains the second positioning information, the second positioning information includes the sending time of the third NDP frame, the receiving time of the third NDP frame, and the fourth NDP frame At the sending time of the fourth NDP frame, the fourth direction and the fifth direction, the initiating station determines the location information of the initiating station according to the location information of the responding station, the first positioning information, and the second positioning information.
  • the first NDP frame is a frame that the originating station sends in the first direction and is reflected by the first node to the responding station.
  • the second direction is the incident direction of the first NDP frame reflected by the first node to the responding station.
  • the second NDP frame is The responding station sends the frames reflected by the first node to the initiating station in the third direction, and the third direction is opposite to the second direction; among them, the third NDP frame is sent by the initiating station in the fourth direction and reflected by the second node to the responding station.
  • the fifth direction is the incident direction of the third NDP frame reflected by the second node to the responding station
  • the fourth NDP frame is the responding station sending the frame reflected by the second node to the originating station in the sixth direction.
  • Five directions are opposite.
  • the first node and the second node may be passive targets.
  • the two sites can exchange NDP frames through the reflection of the first node or the second node.
  • the interaction of NDP frames can also be completed, and positioning information can be obtained by exchanging NDP frames to determine the location information of the station to be located.
  • the first node and the second node in this application can be passive targets, that is, the site to be located in this application can only interact with an active site whose location is known to determine location information.
  • the initiating site to obtain the first positioning information includes:
  • the initiating site performs directional precise time measurement to obtain first positioning information, including:
  • the initiating station sends the first NDP frame in the first direction and reflects it to the responding station by the first node to determine the sending moment of the first NDP frame; the initiating station receives the responding station and sends the second NDP frame reflected by the first node in the third direction, Determine the receiving moment of the second NDP frame; the initiating station receives the first location measurement report from the responding station, the first location measurement report including the receiving moment of the first NDP frame, the sending moment of the second NDP frame, and the second direction;
  • the initiating site obtains the second positioning information, including:
  • the initiating site performs directional precise time measurement to obtain second positioning information, including:
  • the originating station sends the third NDP frame in the fourth direction and reflects it to the responding station by the second node to determine the sending moment of the third NDP frame; the originating station receives the responding station and sends the fourth NDP frame reflected by the second node in the sixth direction, Determine the receiving moment of the fourth NDP frame; the initiating station receives the second location measurement report from the responding station, the second location measurement report including the receiving moment of the third NDP frame, the sending moment of the fourth NDP frame, and the fifth direction.
  • the originating site can obtain positioning information in real time, so that the positioning can be more accurate.
  • the initiating station may also receive a trigger frame from the responding station.
  • the trigger frame includes a type indication.
  • the type indication is used to indicate that the type of the trigger frame is a directional measurement type.
  • the type of trigger frame is used to trigger the initiating station to perform directional precise time measurement.
  • the responding station can notify the initiating station to perform the directional precise time measurement through the trigger frame of the directional measurement type in advance, so as to distinguish it from the existing precise time measurement.
  • the initiating station may also send an NDP announcement frame to the responding station.
  • the NDP announcement frame includes a directional indication, and the directional indication is used to instruct nodes participating in precise time measurement to perform directional precise time. measuring.
  • the initiating station can notify the responding station to perform the directional precise time measurement this time through the NDP announcement frame carrying the directional indication, so as to distinguish it from the existing precise time measurement.
  • the initiating station may also send a request frame to the responding station.
  • the request frame includes first information and second information, and the first information is used to indicate that this negotiation is used for execution.
  • the second information is used to indicate that the initiating station supports directional precise time measurement; the initiating station can also receive a response frame from the responding station in response to the request frame.
  • the response frame includes the first information and the third information, and the third information Used to indicate that the responding station supports directional precise time measurement.
  • the initiating site and the responding site can interact with each other's capabilities before performing directional precise time measurement, and notify the other node whether the directional precise time measurement is initiated this time, and whether both nodes support directional precise time measurement. In this way, in order to distinguish from the existing accurate time measurement.
  • the initiating station determines the location information of the initiating station according to the location information of the responding station, the first positioning information, and the second positioning information, including: the initiating station according to the sending time of the first NDP frame, the first Determine the first distance at the receiving time of the NDP frame, the sending time of the second NDP frame, and the receiving time of the second NDP frame.
  • the first distance is the distance between the initiating station and the first node and between the first node and the responding station The sum of the distances; the initiating station determines the second distance according to the sending time of the third NDP frame, the receiving time of the third NDP frame, the sending time of the fourth NDP frame, and the receiving time of the fourth NDP frame.
  • the second distance is the initiating The sum of the distance between the station and the second node and the distance between the second node and the responding station; the initiating station is based on the location information of the responding station, the first distance, the second distance, the first direction, the second direction, and the fourth The direction and the fifth direction determine the location information of the originating site.
  • the initiating station determines the first emission angle AoD corresponding to the first direction and the first arrival angle AoA corresponding to the second direction according to the location information of the responding station, the location information of the initiating station, and the first angle of arrival AoA corresponding to the second direction.
  • the initiating site determines the location information of the second node according to the location information of the responding site, the location information of the initiating site, the second AoD corresponding to the fourth direction, and the second AoA corresponding to the fifth direction.
  • the location information of the first node and/or the second node can be further determined.
  • the first node and the second node can be passive targets Compared with the prior art, the method of this application can not only determine the location information of the initiating site, but also determine the location information of passive targets around the initiating site and the responding site, which solves the problem that the prior art cannot locate passive targets. .
  • the response frame further includes a delay indication, and the delay indication is used to indicate the delay time for the responding station to feedback the position measurement report.
  • the responding station can send a delay indication to the initiating station to indicate the delay time of feedback of the location measurement report.
  • the initiating station can obtain the time when the responding station sends the location measurement report according to the delay indication, and the responding station can pre-determine for itself. Allow enough time to measure the channel state information and determine the position measurement report to make the feedback more accurate.
  • the response station with weak processing capability can also execute the method of this application.
  • the value of the delay indication when the value of the delay indication is 0, it is used to indicate the length of the delay time is 0, and when the value of the delay indication is non-zero, it is used to indicate the length of the delay time.
  • the NDP announcement frame also includes old and new direction indications, which are used to indicate the sending direction of the NDP frame sent after the NDP announcement frame and the sending of the NDP frame sent after the last NDP announcement frame. The same direction.
  • a positioning method includes: a response station receives an initiating station and sends a first null data packet NDP frame reflected by a first node in a first direction, and determines the receiving moment of the first NDP frame; and the response station determines In the second direction, the second direction is the incident direction of the first NDP frame reflected by the first node to the responding station; the responding station sends the second NDP frame in the third direction and reflected by the first node to the initiating station to determine the direction of the second NDP frame At the sending moment, the third direction is opposite to the second direction; the responding station sends a first location measurement report to the initiating station, the first location measurement report includes the receiving moment of the first NDP frame, the sending moment of the second NDP frame, and the second direction; The responding station receives the initiating station and sends the third NDP frame reflected by the second node in the fourth direction to determine the receiving moment of the third NDP frame; the responding station determines the fifth direction, and the fifth
  • the two sites can exchange NDP frames through the reflection of the first node or the second node, so that even if there are obstacles between the two sites, NDP can be completed.
  • the interaction of frames, and then through the interaction of NDP frames, positioning information can be obtained to determine the location information of the station to be located.
  • the first node and the second node in this application can be passive devices, that is, the site to be located in this application can only interact with a site with a known location to determine location information.
  • the responding station may also send a trigger frame to the initiating station.
  • the trigger frame includes a type indication.
  • the type indication is used to indicate that the type of the trigger frame is a directional measurement type, and the trigger frame of the directional measurement type is used to trigger the initiation The site performs directional precise time measurement.
  • the responding station may also receive an NDP announcement frame from the initiating station, the NDP announcement frame includes a directional indication, and the directional indication is used to instruct nodes participating in precise time measurement to perform directional precise time measurement.
  • the responding station may also receive a request frame from the initiating station.
  • the request frame includes first information and second information.
  • the first information is used to indicate that this negotiation is used to perform directional precise time measurement.
  • the second information is used to indicate that the originating site supports directional accurate time measurement;
  • the responding station may also send a response frame in response to the request frame to the initiating station.
  • the response frame includes first information and third information, and the third information is used to indicate that the responding station supports directional precise time measurement.
  • the response frame further includes a delay indication, and the delay indication is used to indicate the delay time for the responding station to feedback the position measurement report.
  • the value of the delay indication when the value of the delay indication is 0, it is used to indicate the length of the delay time is 0, and when the value of the delay indication is non-zero, it is used to indicate the length of the delay time.
  • the NDP announcement frame also includes old and new direction indications, which are used to indicate the sending direction of the NDP frame sent after the NDP announcement frame and the sending of the NDP frame sent after the last NDP announcement frame. The same direction.
  • the present application provides a positioning device, which has the function of realizing any of the foregoing aspects or the implementation method in any aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a positioning device including: a processor and a memory; the memory is used to store computer execution instructions, and when the device is running, the processor executes the computer execution instructions stored in the memory to enable the The device executes any aspect or implementation method in any aspect described above.
  • the present application provides a positioning device including a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and execute any method provided in any of the above aspects.
  • the processor includes one or more.
  • the present application provides a positioning device, including a processor, configured to be connected to a memory, and configured to call a program stored in the memory to execute the method in any implementation manner of any of the foregoing aspects.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the present application also provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a computer, cause a processor to execute the method described in any of the foregoing aspects.
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in any of the foregoing aspects.
  • this application also provides a chip, including a processor, configured to execute the method described in any one of the foregoing aspects.
  • the present application also provides a system, including an initiating site for executing any implementation method of the first aspect or the first aspect, and a device for executing any implementation method of the second aspect or the second aspect Respond to the site.
  • the present application also provides a storage medium, including a program, which is used to execute the method described in any of the foregoing aspects when the program is run by the processor.
  • FIG. 1 is a schematic diagram of a possible network architecture to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic diagram of FTM in TB mode according to an embodiment of the application
  • FIG. 3 is a schematic diagram of an FTM negotiation process provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the format of a ranging parameter element field provided by an embodiment of this application.
  • FIG. 5a is a schematic diagram of a format of sub-elements in TB mode provided by an embodiment of the application.
  • FIG. 5b is a schematic diagram of a sub-element format in Non-TB mode according to an embodiment of this application.
  • FIG. 6 is a schematic diagram of a measurement process and result feedback process in a TB mode provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of a measurement and detection process in TB mode according to an embodiment of this application.
  • FIG. 8a is a schematic structural diagram of a TF measurement declaration frame provided by an embodiment of this application.
  • FIG. 8b is a schematic structural diagram of trigger-related public information provided by an embodiment of this application.
  • FIG. 8c is a schematic structural diagram of trigger-related public information provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of FTM in Non-TB mode according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of a measurement process and result feedback process in Non-TB mode according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of a measurement and detection process in Non-TB mode according to an embodiment of the application.
  • FIG. 12a is a schematic structural diagram of an NDPA frame provided by an embodiment of this application.
  • FIG. 12b is a schematic structural diagram of a site information field provided by an embodiment of this application.
  • FIG. 13 is a schematic flowchart of a positioning method provided by an embodiment of this application.
  • FIG. 14 is a schematic flowchart of a method for determining location information of an originating site according to an embodiment of the application
  • 15 is a schematic flowchart of a measurement method provided by an embodiment of the application.
  • FIG. 16a is a schematic flowchart of another positioning method provided by an embodiment of this application.
  • FIG. 16b is a schematic flowchart of another positioning method provided by an embodiment of this application.
  • Figure 17a is a schematic diagram of a directional FTM negotiation process provided by an embodiment of this application.
  • Figure 17b is a schematic diagram of a directional FTM measurement and feedback process provided by an embodiment of the application.
  • FIG. 17c is a schematic diagram of a directional FTM measurement process provided by an embodiment of this application.
  • Figure 17d is a schematic diagram of another directional FTM measurement and feedback process provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of another directional FTM measurement and feedback process provided by an embodiment of this application.
  • FIG. 19 is a schematic diagram of another directional FTM measurement and feedback process provided by an embodiment of this application.
  • FIG. 20 is a schematic diagram of yet another directional FTM measurement and feedback process provided by an embodiment of this application.
  • FIG. 21 is a schematic structural diagram of a positioning device provided by an embodiment of this application.
  • FIG. 22 is a schematic structural diagram of another positioning device provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of a possible network architecture to which the embodiments of this application are applicable.
  • the network architecture includes an initiating site, a responding site, a first node, and a second node.
  • the initiating site and the responding site can exchange information through the reflection of the signal from the first node, or through the second node. Reflect interactive information, or directly exchange information.
  • the initiating site and the responding site may be in a LOS situation or in a NLOS situation, which is not limited in this application.
  • the number of each node in FIG. 1 is illustrated by taking one as an example. In actual applications, the number of each node in FIG. 1 may be multiple, and the number of each node is not limited in this application.
  • the initiating site involved in the embodiments of the present application may be a Wi-Fi device with an antenna array
  • the Wi-Fi device may include, for example, a station (STA) or an access point (access point) with an antenna array.
  • STA station
  • access point access point
  • the STA may be, for example, an ISTA with an antenna array
  • the initiating site with the antenna array in this application can control the direction of the transmitted signal in the digital domain and the analog domain through beamforming and directional antenna technology. Estimate the incident direction of the incident signal based on the incident signal received by the antenna array.
  • the response station involved in the embodiment of the present application may be a Wi-Fi device with an antenna array.
  • the Wi-Fi device may include, for example, an STA or AP with an antenna array.
  • the STA may be, for example, an RSTA with an antenna array.
  • the responding site with the antenna array in this application can control the direction of the transmitted signal in the digital domain and the analog domain through beamforming and directional antenna technology, and can also estimate the incident direction of the incident signal based on the incident signal received by the antenna array.
  • the first node and the second node involved in the embodiments of the present application may be passive devices, or may be active devices working in a passive mode, and do not have Wi-Fi communication capabilities.
  • Some examples of the first node and the second node may include, for example, people, objects, and the like.
  • the FTM defined in the Wi-Fi standard 802.11az can include FTM in the trigger-based (TB) mode and FTM in the non-trigger-based (Non-TB) mode.
  • TB trigger-based
  • Non-TB non-trigger-based
  • FTM in the TB mode can include three processes, namely a negotiation process, a measurement process, and a result feedback process. Each process will be described in detail below.
  • FIG 3 is an FTM negotiation process.
  • the FTM negotiation process is applicable to both FTM in the TB mode and FTM in the Non-TB mode.
  • ISTA sends an initial FTM request frame (initial FTM request) to RSTA when there is a measurement requirement.
  • RSTA can perform FTM, it can reply to ISTA after the shortest time interval (SIFS) between two frames Acknowledgement (ACK) frame, and send an initial FTM measurement frame to ISTA within 10 milliseconds to respond to the initial FTM request frame, the initial FTM measurement frame may also be called a response frame, and the negotiation process is now complete.
  • SIFS shortest time interval
  • ACK Acknowledgement
  • the initial FTM request frame and the initial FTM measurement frame both carry a ranging parameter element (Ranging Parameters element) field, which is used to carry ranging information such as available time period, capability information, and demand information, as shown in Figure 4.
  • a ranging parameter element Ranging Parameters element
  • FIG. 4 It is a schematic diagram of the format of the ranging parameter element field.
  • the coding table of the measuring subelements (Ranging subelements) shown in Fig. 4 is shown in Table 1.
  • Fig. 5a shows the specific format of the subelement in the TB mode
  • Fig. 5b shows the non-TB mode.
  • For the specific format of the subelement please refer to Figure 5a- Figure 5b.
  • RSTA does not need to assign a range ID (Ranging ID) to ISTA in the negotiation process, and uses the associated ID (Associated ID) interaction in the subsequent measurement process. If ISTA and RSTA are not associated, then The RSTA may assign a Ranging ID to the ISTA in the negotiation process, and the Ranging ID is used to identify the ISTA in the next measurement process.
  • Range ID Ranging ID
  • Associated ID Associated ID
  • the measurement process in TB mode includes a polling phase and a measurement detection phase.
  • RSTA sends a TF measurement trigger (TF ranging poll) frame to ISTA during its idle time window to notify ISTA can start measurement.
  • TF ranging poll TF measurement trigger
  • CTS-to-self clear to send
  • RSTA sends a TF measurement sounding frame to ISTA to notify ISTA to start measurement.
  • ISTA receives the TF measurement sounding frame after SIFS.
  • the direction from ISTA to RSTA is the uplink direction.
  • the direction from RSTA to ISTA is the downlink direction as an example.
  • the NDP frame sent by ISTA to RSTA can be described as an uplink (UL) NDP frame.
  • RSTA After RSTA receives the UL NDP frame, it records the receiving time t2 of the UL NDP frame, and continues to send to ISTA after SIFS.
  • DL downlink
  • RSTA sends the DL Ranging NDPA frame to ISTA after SIFS , Can continue to send a DL NDP frame to the ISTA, and record the sending time t3 of the DL NDP frame.
  • the ISTA receives the DL NDP frame, it records the receiving time t4 of the DL NDP frame, and the measurement and detection process is completed.
  • the result feedback process is performed.
  • RSTA can send a location measurement report (location measurement report, LMR) to ISTA.
  • the LMR can include the transmission time t1 of the UL NDP frame and all The receiving time t4 of the DL NDP frame.
  • the structure of the TF measurement announcement frame in Figure 7 can be as shown in Figure 8a
  • Figure 8b shows the specific structure of the common information (Common info) included in the TF measurement announcement frame in Figure 8a
  • Figure 8c shows the trigger correlation in Figure 8b.
  • the coding of the trigger type (Trigger Type) in Figure 8b is shown in Table 2.
  • FTM in the Non-TB mode can also include three processes, namely a negotiation process, a measurement process, and a result feedback process. It should be noted that, compared with the measurement process in TB mode, the measurement process in Non-TB mode does not include the polling phase. The following is a detailed description of each process of FTM in Non-TB mode.
  • the FTM negotiation process shown in Figure 3 is applicable to both FTM in TB mode and FTM in Non-TB mode, that is, the negotiation process in Non-TB mode and TB mode
  • the next negotiation process is similar, as shown in Figure 3 and related descriptions in Figure 3, and will not be repeated here.
  • the measurement process in Non-TB mode includes the measurement and detection phase. As shown in Figure 11, it is the specific measurement and detection process in Non-TB mode.
  • ISTA In the measurement and detection phase, ISTA first sends NDPA to RSTA Frame to notify RSTA to start measurement. After ISTA sends the NDPA frame to RSTA after SIFS, it can continue to send an NDP frame to RSTA, and record the transmission time t1 of the NDP frame.
  • This application uses ISTA
  • the direction to RSTA is the upstream direction.
  • the direction from RSTA to ISTA is the downstream direction.
  • the NDP frame sent by ISTA to RSTA can be described as a UL NDP frame.
  • RSTA receives the UL NDP frame sent by ISTA Record the receiving time t2 of the UL NDP frame, and reply a DL NDP frame to the ISTA after SIFS, and record the transmission time t3 of the DL NDP frame.
  • the ISTA receives the DL NDP frame, it records the DL At the time t4 when the NDP frame is received, the measurement and detection process is now completed.
  • a result feedback process is performed, in which the RSTA may send an LMR to the ISTA, and the LMR may include the sending time t1 of the UL NDP frame and the receiving time t4 of the DL NDP frame.
  • the structure of the NDPA frame in FIG. 11 may be as shown in FIG. 12a, and FIG. 12b shows the specific structure of the station information (STA info) field included in the NDPA frame in FIG. 12a.
  • STA info station information
  • the frames that are exchanged during the measurement are all frames sent in all directions.
  • RTT [(t4-t1)-(t3-t2)]
  • the propagation distance of the signal between ISTA and RTT can be calculated according to the propagation speed of electromagnetic waves and RTT.
  • the calculated signal propagation distance is the distance between ISTA and RSTA.
  • the following formula can be used to calculate the propagation distance D of the signal between ISTA and RSTA:
  • the c is the speed of light
  • the D can be determined as the distance between ISTA and RSTA.
  • the ISTA needs to perform the above process with at least three RSTAs with known locations to obtain the distance between the ISTA and each RSTA, and then the location of the ISTA can be determined according to the trilateration technique.
  • the distance between the ISTA and at least three RSTAs needs to be determined based on the FTM, and the distance between the ISTA and the RSTA needs to be determined first.
  • the distance between ISTA and RSTA cannot be determined.
  • the above method of determining the location of ISTA based on FTM fails.
  • the embodiments of the present application provide a positioning method, in order to achieve positioning in both LOS scenarios and NLOS scenarios.
  • FIG. 13 is a positioning method provided in an embodiment of this application. This method can be applied to the network architecture shown in Figure 1.
  • the method provided in this application is not limited to be applied to the network architecture shown in FIG. 1, and can also be applied to other network architectures.
  • the method may include the following processing flow.
  • Step 101 Initiate a site to obtain first positioning information.
  • the first positioning information includes the sending time of the first NDP frame, the receiving time of the first NDP frame, the sending time of the second NDP frame, the receiving time of the second NDP frame, the first direction and the second direction.
  • the first NDP frame is a frame that the originating station sends in the first direction and is reflected by the first node to the responding station.
  • the second direction is the incident direction of the first NDP frame reflected by the first node to the responding station.
  • the second NDP frame is The responding station sends the frame reflected by the first node to the originating station in the third direction, and the third direction is opposite to the second direction.
  • the initiating site may determine the first positioning information by itself; it may also receive the first positioning information from the responding site; or it may determine part of the content included in the first positioning information by itself, and receive another part of the content included in the first positioning information from the responding site .
  • Step 102 Initiate a site to obtain second positioning information.
  • the second positioning information includes the sending time of the third NDP frame, the receiving time of the third NDP frame, the sending time of the fourth NDP frame, the receiving time of the fourth NDP frame, the fourth direction and the fifth direction.
  • the fourth direction and the first direction are different directions.
  • the third NDP frame is the frame sent by the initiating station in the fourth direction and reflected by the second node to the responding station
  • the fifth direction is the incident direction of the third NDP frame reflected by the second node to the responding station
  • the fourth NDP frame is The responding station sends the frame reflected by the second node to the initiating station in the sixth direction, which is opposite to the fifth direction.
  • how the initiating site obtains the second positioning information is also not limited.
  • the originating site may determine the second positioning information by itself; it may also receive the second positioning information from the responding site; or it may determine part of the content included in the second positioning information by itself, and receive another part of the content included in the second positioning information from the responding site .
  • Step 103 The initiating site determines the location information of the initiating site according to the location information of the responding site, the first positioning information, and the second positioning information.
  • the location information of the responding site in step 103 may be obtained by the initiating site in advance from the responding site and stored locally in the initiating site, or may be obtained by the initiating site in real time from the responding site, which is not limited in this application.
  • the measurement frame is an NDP frame as an example for illustration.
  • any measurement frame used for channel detection can be applied to the method of this application.
  • the NDP frame is only used as a name for the measurement frame, and the application does not limit the name of the measurement frame.
  • the initiating site determines its own location information as an example.
  • any node that obtains the first positioning information, the second positioning information, and the location of the responding site can determine the location information of the originating site.
  • the initiating site may also send the first positioning information and the second positioning information to the responding site, and the responding site may determine the location information of the initiating site according to the location information of the responding site, the first positioning information, and the second positioning information.
  • the initiating site can also send the first positioning information and the second positioning information to nodes other than the responding site to determine the location information of the initiating site.
  • the third-party node When a third-party node other than the initiating site determines the location information of the initiating site, the third-party node also needs to obtain the location information of the responding site.
  • the third-party node may receive the location information of the responding site from the responding site, or may receive the location information of the responding site from the initiating site, of course, it may also be obtained in other ways. Not limited.
  • the initiating site determines its own location information in this application, which can avoid the location of the initiating site from leaking, and has higher security and can protect the initiation Site privacy.
  • the initiating site and the responding site can still exchange NDP frames through the reflection of the first node or the second node, and can obtain positioning information through the exchange of NDP frames.
  • the location information of the originating site can be determined according to the location information.
  • the first node and the second node in this application can be passive devices, that is, the initiating site to be located in this application can only interact with a responding site whose location is known to determine the location information. Compared with the prior art The node to be located must interact with at least three response sites whose locations are known to determine its own location. The method of this application is easy to implement.
  • the initiating station and the responding station can exchange NDP frames through the reflection of the first node or the second node, and can obtain positioning information through the exchange of NDP frames. Furthermore, the location information of the originating site can be determined according to the positioning information, that is, the method of this application can be applied to the situation where the LOS between two sites is, and it can also be applied to the situation where the NLOS is between the two sites.
  • the initiating station determines the first distance according to the sending time of the first NDP frame, the receiving time of the first NDP frame, the sending time of the second NDP frame, and the receiving time of the second NDP frame.
  • the first distance is The sum of the distance between the initiating station and the first node and the distance between the first node and the responding station, and the initiating station is based on the sending time of the third NDP frame, the receiving time of the third NDP frame, and the time of the fourth NDP frame.
  • the second distance is determined at the sending time and the receiving time of the fourth NDP frame.
  • the second distance is the sum of the distance between the initiating station and the second node and the distance between the second node and the responding station.
  • the location information, the first distance, the second distance, the first direction, the second direction, the fourth direction, and the fifth direction are determined to determine the location information of the originating site.
  • the sending node can use the following formula to determine the first FTM frame according to the sending time of the first FTM frame, the receiving time of the first FTM frame, the sending time of the second FTM frame, and the receiving time of the second FTM frame.
  • t1 is the transmission time of the first FTM frame
  • t2 is the reception time of the first FTM frame
  • t3 is the transmission time of the second FTM frame
  • t4 is the reception time of the second FTM frame
  • c is the speed of light.
  • the equivalent deformation of the above formula can also be used to calculate the first distance.
  • the sending node can use the following formula to determine the second distance according to the sending time of the third FTM frame, the receiving time of the third FTM frame, the sending time of the fourth FTM frame, and the receiving time of the fourth FTM frame:
  • t5 is the transmission time of the third FTM frame
  • t6 is the reception time of the third FTM frame
  • t7 is the transmission time of the fourth FTM frame
  • t8 is the reception time of the fourth FTM frame.
  • the second distance can also be calculated by using the equivalent deformation of the above formula.
  • this application does not limit how to determine the location information of the initiating site based on the location information, the first distance, the second distance, the first direction, the second direction, the fourth direction, and the fifth direction of the responding site.
  • This application provides a method for determining the location information of the originating site using geometric relationships. This will be described in detail in Figure 14.
  • FIG. 14 is a method for determining the location information of an originating site provided by an embodiment of this application.
  • Figure 14 takes the position information as the coordinate position as an example.
  • all nodes are marked as points in the coordinate system in Figure 14.
  • the originating site is marked as point A
  • the responding site is marked as Point B
  • mark the second node as point D The location of point A is unknown, and the location of point B is known.
  • the principle of using geometric relationships to determine the location information of the originating site will be described below.
  • the first distance is the sum of the length of line segment AC and the length of line segment BC, where the length of line segment AC is the distance between point A and point C, that is, the distance between the originating site and the first node ,
  • the length of line segment BC is the distance between point B and point C, that is, the distance between the response station and the first node.
  • the second distance is the sum of the length of line segment AD and the length of line segment BD, where the length of line segment AD is the distance between point A and point D, that is, the distance between the originating site and the second node, and the length of line segment BD
  • the length is the distance between point B and point D, that is, the distance between the response station and the second node.
  • the line segment BE is equal to the line segment BF
  • the triangle BEF is an isosceles triangle
  • the angle BEF is equal to the angle BFE
  • CA1 is parallel to BF
  • the angle EA1C is equal to the angle BFE, which can be deduced
  • the angle EA1C is equal to the angle BEF is equal to the angle BEA1
  • the triangle CEA1 is an isosceles triangle.
  • the length of the line segment CE is equal to the length of the line segment CA1
  • the length of the line segment BE is equal to the first distance, that is, the length of the line segment BE is equal to the line segment
  • the length of AC plus the length of line segment BC, and the length of line segment BE is also equal to the length of line segment BC plus the length of line segment CE, so the length of line segment AC is equal to the length of line segment CE.
  • the length of line segment CA1 can be derived It is equal to the length of the line segment AC, and because the direction of the line segment CA1 and the line segment AC are the same, it can be proved that the point A and the point A1 coincide, and the point A is on the line segment EF.
  • first distance here is the first distance determined above
  • second distance is the second distance determined above
  • first direction is the first direction above
  • second direction is the second direction above
  • fourth direction is the fourth direction above
  • the fifth direction is the fifth direction above, and the position coordinates of points E, F, G, and H can be obtained according to the following formula:
  • the location coordinates of the originating site A satisfy the following two formulas:
  • the location coordinates of the originating site A can be calculated according to the above two formulas.
  • the originating site can determine the point A (ie originating site) as the intersection of line segment EF and line segment GH according to the first distance, second distance, first direction, second direction, fourth direction, and fifth direction.
  • the location information of the initiating site (for example, the coordinates of the initiating site) can be determined according to the location information of the responding site (for example, the coordinates of the responding site), the first distance, and the second distance.
  • this application mainly takes the use of the first node and the second node to execute the above method as an example.
  • the location information of the originating site can be determined by executing the above method with at least two nodes.
  • the initiating site after the initiating site determines its own location information, it can further determine the location information of the first node and/or the second node.
  • the initiating site can be based on the location information of the responding site, the location information of the initiating site, the first angle of departure (AoD) corresponding to the first direction, and the first angle of arrival (Angle of arrival) corresponding to the second direction. of arrival, AoA), to determine the location information of the first node.
  • the initiating site may determine the location information of the second node according to the location information of the responding site, the location information of the initiating site, the second AoD corresponding to the fourth direction, and the second AoA corresponding to the fifth direction.
  • the first direction can be understood as the transmission direction when the first NDP frame leaves the originating site when the first NDP frame is transmitted.
  • the transmission direction is expressed by an angle, it can be described as the angle of departure (AoD).
  • the first AoD corresponding to the first direction in the application refers to the first direction described in angle.
  • the second direction can be understood as the incident direction of the first NDP frame reflected by the first node to the responding station when the first NDP frame is received.
  • the incident direction is expressed in an angle, it can be described as the angle of arrival (Angle of arrival).
  • AoA the first AoA corresponding to the second direction in this application refers to the second direction described by an angle.
  • the fourth direction can be understood as the transmission direction when the third NDP frame leaves the originating station when the third NDP frame is transmitted.
  • AoD which corresponds to the fourth direction in this application.
  • the second AoD refers to the fourth direction described in angle.
  • the fifth direction can be understood as the incident direction of the third NDP frame reflected by the second node to the responding station when the third NDP frame is received.
  • the incident direction is expressed by an angle, it can be described as AoA.
  • the second AoA corresponding to the fifth direction refers to the fifth direction described by an angle.
  • This application does not limit how to determine the location information of the first node according to the location information of the receiving node, the location information of the sending node, the first AoD and the first AoA.
  • the initiating site can use the following formula to determine the location coordinates of the first node:
  • (x1, y1) are the position coordinates of the sending node
  • (x2, y2) are the position coordinates of the responding station
  • (x, y) are the position coordinates of the first node.
  • This application does not limit how to determine the location information of the second node based on the location information of the receiving node, the location information of the sending node, the second AoD, and the second AoA.
  • the initiating site can use the following formula to determine the location coordinates of the second node:
  • (x1, y1) are the location coordinates of the sending node
  • (x2, y2) are the location coordinates of the responding station
  • (x', y') are the location coordinates of the second node.
  • the initiating site itself determines part of the content included in the first positioning information, and receives another part of the content included in the first positioning information from the responding site, and the initiating site itself determines part of the content included in the second positioning information, and Another part of the content included in receiving the second positioning information from the response site is taken as an example, and the above method for obtaining the first positioning information and the second positioning information is further explained.
  • Fig. 15 for a measurement method provided in this embodiment of the application. This method can but is not limited to be applied to the network architecture shown in FIG. 1. As shown in FIG. 15, the method may include the following processing flow.
  • Step 201 The initiating station sends the first NDP frame in the first direction and is reflected by the first node to the responding station.
  • the initiating station determines the sending moment of the first NDP frame.
  • the first NDP frame reflected by the node, and the responding station determines the receiving moment of the first NDP frame.
  • the location information usually refers to the location information of a point
  • this application marks all nodes as a point in the coordinate system for the convenience of description.
  • the originating site is marked as point A
  • the responding site Mark as point B
  • the location of point A is unknown, and the location of point B is known.
  • the initiating station can adjust the phase and amplitude of the signal transmitted by each antenna in the antenna array, so that the first NDP frame sent out is enhanced in the first direction, and cancels each other out in other directions.
  • the directional antenna directly transmits the first NDP frame in the first direction.
  • this application does not limit how to select the first node.
  • the initiating site Before initiating step 201, the initiating site can detect the target object in different directions until the first node is available in the first direction. Step 201 can be performed. This application does not limit the detection technology for detecting target objects.
  • Step 202 After the responding station receives the first NDP frame reflected by the first node sent by the initiating station in the first direction, it determines the incident direction of the first NDP frame reflected by the first node to the responding station, that is, the second direction.
  • the responding station may calculate the second direction through the antenna array according to the time difference of the arrival of different antenna signals, or use the directional antenna to infer the second direction according to the direction of the strongest received signal, which is not limited.
  • Step 203 The responding station sends the second NDP frame in a third direction opposite to the second direction and reflects it to the initiating station by the first node.
  • the responding station determines the sending time of the second NDP frame, and accordingly, the initiating station receives the responding station with The third direction sends the second NDP frame reflected by the first node, and the initiating station determines the receiving time of the second NDP frame.
  • Step 204 The responding station sends a first location measurement report to the initiating station.
  • the initiating station receives the first location measurement report from the responding station.
  • the first location measurement report includes the receiving time of the first NDP frame and the time of the second NDP frame. Send time and second direction.
  • Steps 201 to 204 perform accurate time measurement. Since the NDP frames that the initiating station interacts with the responding station are all frames sent in a specific direction, step 201 to step 204 in this application can be understood as a directional accurate time measurement process.
  • Step 205 The initiating station sends the third NDP frame in the fourth direction and reflects it to the responding station by the second node.
  • the initiating station determines the sending moment of the third NDP frame.
  • the responding station receives the initiating station and sends it in the fourth direction to the responding station.
  • the third NDP frame reflected by the node, and the responding station determines the receiving moment of the third NDP frame.
  • the initiating station can adjust the phase and amplitude of the signal transmitted by each antenna in the antenna array, so that the third NDP frame sent out is enhanced in the fourth direction, and cancels each other out in other directions.
  • the directional antenna directly transmits the third NDP frame in the fourth direction.
  • this application does not limit how to select the second node.
  • the initiating site can detect the target object in different directions until the available second node is detected in the fourth direction. Step 205 can be performed.
  • This application does not limit the detection technology for detecting the target object, and the fourth direction in this application is a detection direction different from the first direction.
  • Step 206 After the responding station receives the third NDP frame reflected by the second node from the originating station in the fourth direction, it determines the incident direction of the third NDP frame reflected by the second node to the responding station, that is, the fifth direction.
  • the responding station can calculate the fifth direction through the antenna array according to the time difference of the arrival of different antenna signals, or use the directional antenna to infer the fifth direction according to the direction of the strongest received signal, which is not limited.
  • Step 207 The responding station sends the fourth NDP frame in the sixth direction opposite to the fifth direction and reflects it to the initiating station by the second node.
  • the responding station determines the sending time of the fourth NDP frame. Accordingly, the initiating station receives the responding station with the first The fourth NDP frame reflected by the second node is sent in six directions, and the initiating station determines the receiving time of the fourth NDP frame.
  • Step 208 The responding station sends a second location measurement report to the initiating station.
  • the initiating station receives the second location measurement report from the responding station.
  • the second location measurement report includes the receiving time of the third NDP frame and the time of the fourth NDP frame. Send time and the fifth direction.
  • step 205-step 208 also perform accurate time measurement. Since the NDP frames that the initiating station interacts with the responding station are all frames sent in a specific direction, step 205-step 208 in this application can also be understood as a directional precise time. Measurement process. It is worth noting that since the first direction and the fourth direction in the embodiment of the present application are different directions, steps 201 to 204 and steps 205 to 208 in the present application are two different directional precise time measurement processes.
  • the location method provided in this application is explained by taking the location of the initiating site as unknown and the location of the responding site as an example.
  • the location provided by this application The method still applies.
  • the positioning method of the present application is used to determine the location of the responding site.
  • FIG. 16a is another positioning method provided in this embodiment of the present application.
  • determining its own position information by a responding station is taken as an example.
  • This method can but is not limited to be applied to the network architecture shown in FIG. 1.
  • the method may include the following processing flow.
  • Step 301 to step 303 are executed in the same method as step 201 to step 203.
  • step 301 to step 303 please refer to the description of step 201 to step 203, which will not be repeated here.
  • Step 304 The initiating station sends third positioning information to the responding station, where the third positioning information includes the sending moment of the first NDP frame, the receiving moment of the second NDP frame, and the first direction.
  • Step 305-Step 307 perform the same method as Step 205-Step 207.
  • Step 301-Step 303 please refer to the description in Step 201-Step 203, which will not be repeated here.
  • Step 308 The initiating station sends fourth positioning information to the responding station, where the fourth positioning information includes the sending moment of the third NDP frame, the receiving moment of the fourth NDP frame, and the fourth direction.
  • Step 309 The responding station determines the location information of the responding station according to the location information of the initiating station, the third location information, and the fourth location information.
  • the location information of the initiating site in step 309 may be obtained by the responding site in advance from the initiating site and stored locally, or may be obtained by the responding site in real time from the initiating site, which is not limited in this application.
  • the responding site determines the location information of the responding site based on the location information of the initiating site, the third location information, and the fourth location information, please refer to the above based on the location information of the responding site, the first location information, and the second location information
  • the method for determining the location information of the originating site will not be repeated here.
  • the location information of the responding station is determined by the originating station as an example.
  • This method can but is not limited to be applied to the network architecture shown in FIG. 1.
  • the method may include the following processing flow.
  • Step 401 to step 408 are executed in the same method as step 201 to step 208.
  • step 401 to step 408 please refer to the description in step 201 to step 208, and will not be repeated here.
  • Step 409 The initiating site determines the location information of the responding site according to the location information of the initiating site, the first positioning information, and the second positioning information.
  • the initiating site determines the location information of the responding site according to the location information, the first location information and the second location information of the initiating site please refer to the above according to the location information of the responding site, the first location information and the second location information
  • the method for determining the location information of the originating site will not be repeated here.
  • the initiating station may also receive a trigger frame from the responding station before performing the directional precise time measurement.
  • the trigger frame includes a type indication, which is used for Indicate that the type of trigger frame is the directional measurement type, and the trigger frame of the directional measurement type is used to trigger the initiating station to perform the directional precise time measurement, or the type indication is used to indicate that the type of the trigger frame is the directional range measurement type, the directional range measurement type trigger The frame is used to trigger the initiating station to perform directional precise time measurement.
  • the initiating station may also send an NDP announcement frame to the responding station.
  • the NDP announcement frame includes a directional indication and a directional indication Used to instruct the nodes participating in precise time measurement (initiating site and responding station in this application) to perform directional precise time measurement, or directional indication is used to instruct nodes participating in precise time measurement to send directional NDP frames to achieve precise time measurement, or ,
  • the directional indication is used to indicate that the NDP frame sent after the NDPA frame is a directional frame.
  • the initiating station may send a request frame to the responding station.
  • the request frame includes first information and second information.
  • the first information is used to indicate that this negotiation is used to perform directional precise time measurement
  • the second information is used to indicate the initiating station Supporting directional precise time measurement
  • the initiating station receives a response frame from the responding station in response to the request frame
  • the response frame includes the first information and third information
  • the third information is used to indicate that the responding station supports directional precise time measurement.
  • This application considers that some responding stations have limited computing capabilities and may not be able to feed back position measurement reports to the initiating station in time during the process of performing directional precise time measurement, so a delay measurement mechanism is proposed. Under this mechanism, the responding station sends a delay indication to the initiating station, and the delay indication is used to indicate the delay time for the responding station to feedback the position measurement report.
  • the responding station may carry the delay indication in the response frame when sending the response frame.
  • the value of the delay indication is 0, it is used to indicate the length of the delay time is 0, and when the value of the delay indication is non-zero, it is used to indicate the length of the delay time.
  • This application does not limit the unit of the delay time, which can be determined according to the application scenario.
  • the unit of the delay time may be 100 milliseconds or other.
  • the initiating site triggers the first directional precise time measurement.
  • the responding station has limited computing power and cannot feed back the position measurement report to the initiating site in time.
  • Send the delay indication to the initiating station through the response frame so that the initiating station initiates the second directional precise time measurement after the delay time indicated by the delay indication, so that the responding station has enough time to determine the first time
  • the position measurement report of the directional precise time measurement and then the responding station can send the position measurement report determined by the first directional precise time measurement to the initiating station during the second directional precise time measurement.
  • the first The direction of the first directional precise time measurement is the same as the direction of the second directional precise time measurement.
  • the NDP announcement frame sent to the responding station may include the old and new direction indications, which are used to indicate the NDP sent after the NDP announcement frame
  • the sending direction of the frame is the same as the sending direction of the NDP frame sent after the last NDP announcement frame.
  • the old and new direction indications in this application are only used as an indication name, and the name is not limited. For example, it may also be described as a direction indication or a direction consistency indication.
  • the directional accurate time measurement method described in the embodiments of the present application can be implemented based on the existing FTM process.
  • the directional accurate time measurement method is implemented based on the existing FTM process, in order to facilitate the distinction between the existing FTM, it can be implemented based on the existing FTM process.
  • the directional accurate time measurement of TB is described as directional FTM
  • the directional accurate time measurement based on the FTM in the existing TB mode is described as the directional FTM in the TB mode, which will be based on the directional accuracy achieved by the FTM in the existing Non-TB mode
  • the time measurement is described as directional FTM in Non-TB mode.
  • the following four specific examples are used to illustrate the directional FTM.
  • the direction from ISTA to RSTA is the uplink direction
  • the direction from RSTA to ISTA is the downlink direction
  • the NDP frame sent by ISTA to RSTA can be described as UL NDP frame
  • the NDP frame sent by RSTA to ISTA The NDP frame can be described as a DL NDP frame.
  • FIGS. 17a-17c show schematic diagrams of the directional FTM process in the TB mode based on the FTM in the existing TB mode.
  • the directional FTM in the TB mode implemented based on the FTM in the existing TB mode in this application still uses the FTM process in the existing TB mode, including a negotiation process, a measurement process, and a result feedback process, as shown in Figure 2.
  • the initiating site is an ISTA with an antenna array (hereinafter referred to as ISTA) and the responding site is an RSTA with an antenna array (hereinafter referred to as RSTA) as examples.
  • ISTA an ISTA with an antenna array
  • RSTA RSTA with an antenna array
  • the negotiation process of the directional FTM in the TB mode of this application includes the following steps:
  • Step 501 ISTA sends an initial FTM request frame (initial FTM request) to RSTA when there is a need for directional FTM measurement.
  • the initial FTM request frame includes first information and second information, and the first information is used to indicate this negotiation Used to perform directional FTM, and the second information is used to indicate that ISTA supports directional FTM.
  • the first information and the second information may be carried in reserved bits of the initial FTM request frame.
  • the structure of the initial FTM request frame is shown in FIG. 4, and B22, B23, B38, B39, B46, and B47 are reserved bits of the initial FTM request frame.
  • the first information and the second information may be carried in any two bits of B22, B23, B38, B39, B46, or B47 of the initial FTM request frame.
  • the first information may also be referred to as a directed FTM request indication
  • the second information may be referred to as a directed FTM support indication.
  • the first information and the second information may also be carried in a new message, which is not limited in this application.
  • Step 502 If RSTA can perform directional FTM, it can reply with an ACK frame to ISTA after SIFS.
  • Step 503 If RSTA can perform directional FTM, after receiving the initial FTM request frame, send an initial FTM measurement frame to ISTA in response to the initial FTM request frame.
  • the initial FTM measurement frame includes the first information and the first information. Three information, the third information is used to indicate that RSTA supports directional FTM.
  • the RSTA after receiving the initial FTM request frame 10 milliseconds, the RSTA sends an initial FTM measurement frame to the ISTA in response to the initial FTM request frame.
  • the third information may also be referred to as a directional FTM support indication.
  • the first information and the third information may be carried in reserved bits of the initial FTM measurement frame.
  • the structure of the initial FTM measurement frame is shown in FIG. 4, and B22, B23, B38, B39, B46, and B47 are reserved bits of the initial FTM measurement frame.
  • the first information and the third information may be carried in any two bits of B22, B23, B38, B39, B46, or B47 of the initial FTM measurement frame.
  • the first information and the third information may also be carried in a new message, which is not limited in this application.
  • Step 504 After the ISTA receives the initial FTM measurement frame, it may reply to the RSTA after the SIFS with an ACK frame, and the negotiation process is now complete.
  • the above-mentioned directional FTM negotiation process follows the existing FTM negotiation process as an example.
  • this application can also redefine the FTM negotiation process.
  • the redefined FTM negotiation process can be initiated by RSTA. There is no restriction on the initiative to initiate the negotiation process.
  • ISTA is the site.
  • RSTA is an access point
  • NDP frames sent by ISTA are called uplink NDP (UL NDP) frames
  • DL NDP downlink NDP
  • the polling phase includes:
  • Step 1 RSTA sends a TF directional ranging poll frame to the ISTA during its idle time window to notify the ISTA that the measurement can be started.
  • Step 2 After receiving the TF directional measurement trigger frame sent by the RSTA, the ISTA sends a clear to send (CTS-to-self) frame to the RSTA to occupy the channel.
  • CTS-to-self clear to send
  • the measurement and detection phase includes:
  • Step 1 RSTA receives the CTS-to-self frame, and sends a TF directional measuring sounding frame to ISTA after the SIFS time.
  • the TF directional measuring sounding frame carries a type indication, and the type The indication is used to indicate that the type of the TF directional measurement announcement frame is a directional measurement type or a direction la ranging measurement type, and the TF directional measurement announcement frame is used to trigger the ISTA to perform a directional FTM measurement.
  • the type indication may be carried in a trigger type (Trigger Type) field in a TF directional measurement announcement frame, where the structure of the TF directional measurement announcement frame can be seen in FIG. 8a-8c.
  • the type indication may be a reserved value of the Trigger Type.
  • the reserved values of Trigger Type include 9-15, and the type indication can be any value among the reserved values 9-15 of Trigger Type to indicate that the type of the TF directional measurement declaration frame is directional Measurement type or directional range measurement type. Refer to Table 3, taking the type indication as the reserved value 9 of Trigger Type as an example.
  • the type indication may also be carried in a new message, which is not limited in this application.
  • Step 2 After the ISTA receives the directional measurement declaration frame and passes the SIFS, it sends a directional UL NDP frame in the first direction, the directional UL NDP frame is reflected by the first node to RSTA, and the RSTA receives the directional UL NDP frame, and ISTA records the sending moment of the directional UL NDP frame; RSTA records the receiving moment of the directional UL NDP frame.
  • RSTA determines the incident direction when the directional UL NDP frame is reflected by the first node to the RSTA, and this direction is The second direction above can also be understood as determining the AoA corresponding to the direction.
  • Step 3 After receiving the directional UL NDP frame for the SIFS time, the RSTA sends a directional measuring NDPA (directional ranging NDPA) frame to the ISTA to notify the ISTA to continue the directional measurement.
  • a directional measuring NDPA directional ranging NDPA
  • Step 4 RSTA sends the directional measurement NDPA frame to ISTA after SIFS, and then sends a directional DL NDP frame to the first node along the opposite direction of the second direction, and the directional DL NDP frame passes through the first node.
  • a node reflects to the ISTA, and the RSTA records the sending time of the directional DL NDP frame.
  • the ISTA receives the directional DL NDP frame, it records the receiving moment of the directional DL NDP frame, and thus completes the directional FTM measurement process.
  • the measurement report feedback phase includes:
  • Step 1 After RSTA sends the directional DL NDP frame to ISTA after the SIFS time, RSTA sends an LMR to ISTA.
  • the LMR includes the receiving moment of the directional UL NDP frame, the sending moment of the directional DL NDP frame, and the second direction or AoA corresponding to the second direction.
  • the above is a complete directional FTM. If you want to use the positioning method of this application to achieve positioning, you need to perform directional FTM in different directions at least twice. It should be noted that when the next directional FTM measurement is performed, the negotiation may not be performed Process, and directly execute the FTM measurement and result feedback process.
  • ISTA can obtain multiple LMRs, and then determine its own location information based on multiple LMRs and the location information of RSTA. Furthermore, after determining the location information of ISTA, it can also determine its own location information. The location information and the location information of the RSTA, the AoD corresponding to the first direction, and the AoA corresponding to the second direction determine the location information of the first node. The specific determination method is described in the above description, and will not be repeated here.
  • FIG. 17d shows a schematic diagram of the directional FTM measurement process and result feedback process in the Non-TB mode based on the existing FTM measurement process and result feedback process in the Non-TB mode.
  • the directional FTM negotiation process in the Non-TB mode is similar to the above-mentioned Figure 17a, and will not be repeated.
  • the initiating site is an ISTA with an antenna array (hereinafter referred to as ISTA)
  • the responding site is an RSTA with an antenna array (hereinafter referred to as RSTA) as an example.
  • Fig. 17d is the directional FTM measurement process and result feedback process in the Non-TB mode of this application, including the following steps:
  • the measurement and detection phase includes:
  • Step 1 ISTA sends an NDPA frame to RSTA.
  • the NDPA frame includes a directional indication for instructing nodes participating in directional measurement to perform directional FTM measurement or indicating that the NDP frame sent after the NDPA frame is directional to notify RSTA Start the directional FTM measurement.
  • the directional indication may be carried in a reserved bit of a station information (STA info) field of the NDPA frame structure.
  • STA info station information
  • the structure of the STA info field can be seen in Figure 12b.
  • the orientation indication may be the B26 bit or the B31 bit in the STA info field.
  • the value of the directional indication when the value of the directional indication is 1, instruct the nodes participating in directional measurement to perform directional FTM measurement or indicate that the NDP frame sent after the NDPA frame is directional.
  • the value of the orientation indication when the value of the orientation indication is 0, it instructs the nodes participating in the measurement to perform the existing FTM measurement or instructs the NDP frame sent after the NDPA frame to be omnidirectional.
  • the directional indication may also be carried in a new message, which is not limited in this application.
  • Step 2 After the ISTA sends the NDPA frame to RSTA after SIFS, it can send a directional UL NDP frame in the first direction to the first node that it senses, and the directional UL NDP frame is reflected by the first node to RSTA, ISTA The sending time of the directional UL NDP frame can be recorded.
  • Step 3 After RSTA receives the directional UL NDP frame sent by ISTA, it can record the receiving time of the directional UL NDP frame, and determine the incident direction when the directional UL NDP frame is reflected by the first node to the RSTA , This direction is the second direction mentioned above, and can also be understood as determining the AoA corresponding to this direction, and after SIFS, in the opposite direction of the second direction, send a directional DL NDP to the first node Frame, the directional DL NDP frame is reflected by the first node to the ISTA, and RSTA records the sending moment of the directional DL NDP frame; after the ISTA receives the directional DL NDP frame, it records the directional DL NDP frame At this moment, the directional FTM measurement process is completed.
  • the measurement report feedback phase includes:
  • Step 1 After RSTA sends the directional DL NDP frame to ISTA after the SIFS time, RSTA sends an LMR to ISTA.
  • the LMR includes the receiving moment of the directional UL NDP frame, the sending moment of the directional DL NDP frame, and the second direction or AoA corresponding to the second direction.
  • the above is a complete directional FTM. If you want to use the positioning method of this application to achieve positioning, you need to perform directional FTM in different directions at least twice. It should be noted that when the next directional FTM measurement is performed, the negotiation may not be performed Process, and directly execute the FTM measurement and result feedback process.
  • ISTA can obtain multiple LMRs, and then determine its own location information based on multiple LMRs and the location information of RSTA. Furthermore, after determining the location information of ISTA, it can also determine its own location information. The location information and the location information of the RSTA, the AoD corresponding to the first direction, and the AoA corresponding to the second direction determine the location information of the first node. The specific determination method is described in the above description, and will not be repeated here.
  • one RTA and ISTA interacting to realize directional FTM is taken as an example.
  • one RTA and multiple ISTAs realize directional FTM in TB mode as an example.
  • the directional FTM negotiation process of this example is the same as that of Example 1, except that the RSTA in this example allows multiple ISTA directional measurement requests in the negotiation process.
  • the following mainly describes the directional FTM measurement and result feedback process of one RSTA and multiple ISTAs in TB mode.
  • FIG. 18 is a schematic diagram of a directional FTM measurement and result feedback process of one RSTA and multiple ISTAs in TB mode.
  • the multiple ISTAs are respectively ISTA1, ISTA2...ISTAn, where n is an integer greater than or equal to 2.
  • the polling phase includes:
  • Step 1 RSTA sends a TF directional ranging poll frame to multiple ISTAs from ISTA1 to ISTAN during its idle time window to trigger multiple ISTAs to participate in directional FTM measurement.
  • RSTA can simultaneously trigger multiple ISTAs to participate in directional FTM measurement in a broadcast manner.
  • Step 2 After multiple ISTAs receive the TF directional measurement trigger frame sent by RSTA, they respectively send a clear to send (CTS-to-self) frame to RSTA to occupy the channel, for example, ISTA1 can send CTS-to-ISTA1 frames to RSTA, ISTA2 can send CTS-to-ISTA2 frames to RSTA,..., ISTAN can send CTS-to-ISTAn frames to RSTA, and so on, all ISTAs included in multiple ISTAs are Send CTS-to-self frame to RSTA.
  • CTS-to-self clear to send
  • the measurement and detection phase includes:
  • Step 1 After the RSTA receives the CTS-to-self frame sent by each ISTA, it sends a TF directional measurement declaration frame to each ISTA of the multiple ISTAs in turn, and the TF directional measurement declaration frame carries a type indication.
  • the related description of the type indication can be found in Example 1.
  • Step 2 After each ISTA receives the directional measurement declaration frame and passes the SIFS, it sends directional UL NDP frames in a specific direction to the third-party passive node that it senses, and each directional UL NDP frame is reflected by the third-party passive node
  • RSTA receives the directional UL NDP frame sent by each ISTA, and each ISTA records the transmission time of the directional UL NDP frame;
  • RSTA records the reception time of the directional UL NDP frame sent by each ISTA, and RSTA determines the and The incident direction or AoA when the directional UL NDP frame corresponding to the ISTA is reflected to the RSTA by a third-party passive node.
  • RSTA can have more time to determine the incident direction, and for the ISTA whose directional UL NDP frame time is earlier, the RSTA has more time for the ISTA. More time to determine the incident direction.
  • Step 3 After the RSTA receives the last directional UL NDP frame that arrives after the SIFS time, it sends directional measuring NDPA (directional ranging NDPA) frames to multiple ISTAs to allocate resources for multiple ISTAs.
  • the resource can be a frequency Domain resources can also be time-frequency resources.
  • the RSTA may send directional measurement NDPA frames to multiple ISTAs in a broadcast manner.
  • Step 4 RSTA sends the directional measurement NDPA frame to multiple ISTAs after the SIFS, for each ISTA, sends a directional DL NDP frame to the third-party passive node along the direction opposite to the incident direction determined for the ISTA,
  • the directional DL NDP frame is reflected to the ISTA by a third-party passive node, and the RSTA records the sending moment of each directional DL NDP frame, and each ISTA records the receiving moment of the directional DL NDP frame after receiving the directional DL NDP frame.
  • the measurement report feedback phase includes:
  • Step 1 RSTA sends directional DL NDP frames to multiple ISTAs.
  • RSTA sends LMRs to multiple ISTAs.
  • the LMR includes at least the incident direction of the directional UL NDP frame determined for each ISTA from ISTA1 to ISTAN, and for each ISTA.
  • RSTA can send measurement results to multiple ISTAs through one LMR, which can improve air interface efficiency.
  • one RSTA and multiple ISTAs are used to implement directional FTM in TB mode as an example.
  • the directional FTM negotiation process of this example is the same as that of Example 1, except that the RSTA in this example allows multiple ISTA directional measurement requests in the negotiation process.
  • the following mainly describes the directional FTM measurement and result feedback process of one RSTA and multiple ISTAs in TB mode.
  • Figure 19 is another directional FTM measurement and result feedback flow diagram of one RTA and multiple ISTAs in TB mode.
  • the RSTA triggers each of the multiple ISTAs in turn.
  • One ISTA sends directional NDP frames.
  • RSTA triggers multiple ISTAs to send directional NDP frames at the same time.
  • the multiple ISTAs are ISTA1, ISTA2...ISTAn, where n is an integer greater than or equal to 2.
  • the polling phase in the third example is the same as that in the second example, please refer to the description of the second example.
  • the measurement and detection phase includes:
  • Step 1 After RSTA receives the CTS-to-self frame sent by each ISTA, it sends a TF directional measurement declaration frame to each ISTA of multiple ISTAs at the same time, to allocate resources for each ISTA and trigger multiple ISTAs to send the directional simultaneously
  • the type indication is carried in the TF directional measurement announcement frame.
  • the type indication please refer to Example 1.
  • Step 2 After multiple ISTAs receive the directional measurement declaration frame and pass the SIFS, they simultaneously send directional UL NDP frames in a specific direction to the third-party passive node that they sensed, and each directional UL NDP frame is reflected by the third-party passive node
  • RSTA receives the directional UL NDP frame sent by each ISTA, and each ISTA records the transmission time of the directional UL NDP frame;
  • RSTA records the reception time of the directional UL NDP frame sent by each ISTA, and RSTA determines the and The incident direction or AoA when the directional UL NDP frame corresponding to the ISTA is reflected to the RSTA by a third-party passive node.
  • Step 3 After the SIFS time of each directional UL NDP frame is received by the RSTA, it sends a directional measuring NDPA (directional ranging NDPA) frame to multiple ISTAs to allocate resources for the multiple ISTAs.
  • the RSTA may send directional measurement NDPA frames to multiple ISTAs in a broadcast manner.
  • Step 4 RSTA sends the directional measurement NDPA frame to multiple ISTAs after the SIFS, for each ISTA, sends a directional DL NDP frame to the third-party passive node along the direction opposite to the incident direction determined for the ISTA,
  • the directional DL NDP frame is reflected to the ISTA by a third-party passive node, and the RSTA records the sending moment of each directional DL NDP frame, and each ISTA records the receiving moment of the directional DL NDP frame after receiving the directional DL NDP frame.
  • the measurement report feedback phase is the same as in Example 2.
  • RSTA will combine and send the LMRs determined by each ISTA.
  • the combined LMR includes at least the incident direction of the directional UL NDP frame determined for each ISTA from ISTA1 to ISTAN, and for each ISTA.
  • the receiving time of the directional UL NDP frame and the sending time of the directional DL NDP frame for each ISTA In this way, the efficiency of the air interface can be improved.
  • Example 3 The process of performing the directional FTM measurement for each ISTA in Example 3 can be referred to in Example 1, and the method for determining the location information of each ISTA can be referred to the above description, which will not be repeated here.
  • Example 4 of this application Provide a solution to delay the directional FTM measurement.
  • a RSTA and an ISTA interacting to realize directional FTM are taken as an example. The following mainly describes the difference between this example and the first example.
  • Fig. 20 is a schematic diagram of a directional FTM measurement and result feedback flow of RSTA and ISTA in Non-TB mode.
  • the RSTA may send a delay indication to the ISTA, where the delay indication is used to indicate the delay time for the RSTA to feedback the position measurement report.
  • the delay indication is used to instruct the RSTA to determine the shortest duration required for AoA.
  • the value of the delay indicator is 0, it is used to instruct RSTA to determine that the shortest duration required for AoA is less than SIFS, and when the value of the delay indicator is non-zero, it is used to instruct RSTA to determine the required AoA.
  • the delay indication may be carried in measurement subelements (Ranging subelements) of the initial FTM measurement frame.
  • the delay indication may be one or more reserved bits of a measuring subelement field.
  • the delay indication may also be carried in a new message.
  • the 4 reserved bits in the non-TB Ranging subelement field of the FTM measurement frame are used to indicate the time required for AoA calculation, which is recorded as the minimum AOA ready (Min AoA ready) field.
  • Min AoA ready When the value of Min AoA ready is 0 , Which indicates that RSTA has the ability to complete AoA calculation within SIFS time and does not require delayed feedback.
  • Min AoA ready is other non-zero value, it means the length of time required for a RSTA to complete AoA calculation, and the unit is 100 milliseconds or others.
  • the fourth example is mainly for the case where a delay is required. Therefore, in the fourth example, a non-zero value of the delay indication is used as an example.
  • Step 1 ISTA sends an NDPA frame to RSTA to trigger RSTA to start performing directional FTM measurement.
  • the NDPA frame includes a directional indication.
  • the directional indication please refer to Example 1.
  • Step 2 After the ISTA sends the NDPA frame to RSTA after SIFS, it can send a directional UL NDP frame in the first direction to the first node that it senses, and the directional UL NDP frame is reflected by the first node to RSTA, ISTA The sending time of the directional UL NDP frame can be recorded.
  • Step 3 After RSTA receives the directional UL NDP frame sent by ISTA, it can record the receiving time of the directional UL NDP frame, and start to determine the incidence of the directional UL NDP frame when reflected by the first node to the RSTA
  • the direction which is the second direction mentioned above, can also be understood as determining the AoA corresponding to the direction.
  • RSTA sends a delay indication to ISTA during the negotiation process, indicating that RSTA cannot complete the calculation and preparation of AoA and other information within the SIFS time, RSTA determines that it needs to delay feedback LMR.
  • Step 4 As RSTA cannot complete the AoA calculation within the SIFS time, the directional FTM measurement process in Example 1 cannot be executed normally. At this time, RSTA can send an omnidirectional DL NDP (that is, the DL NDP of the existing FTM) to ISTA ) To buy time for RSTA to determine AoA.
  • omnidirectional DL NDP that is, the DL NDP of the existing FTM
  • Step 5 Further, RSTA can also send an empty LMR to ISTA after the SIFS time after sending the omnidirectional DL NDP, the purpose is still to buy time for RSTA to determine AoA. It should be noted that this step is optional. If RSTA can determine AoA after performing step 4, there is no need to perform this step again.
  • step 5 can initiate a new directional FTM measurement after the delay time.
  • the new directional FTM measurement process is the same as that of example 1, except that the new In the directional FTM measurement, the LMR fed back by RSTA to ISTA is determined based on the information of the last directional FTM measurement interaction.
  • the direction of the new directional FTM measurement and the direction of the last directional FTM measurement may be the same or different.
  • ISTA can determine its own position information based on the LMR feedback from the new directional FTM measurement.
  • RSTA can calculate the AoA of the directional FTM measurement for the next time. Used in the directional FTM measurement process in the same direction as this time.
  • ISTA can notify RSTA whether the direction of the directional FTM measurement initiated this time is the same as the direction of the directional FTM measurement initiated last time through the old and new direction indications.
  • ISTA may carry an old and new direction indicator in each NDPA frame sent, and the old and new direction indicator is used to indicate the sending direction of the NDP frame sent after the NDPA frame and the NDP sent after the last NDPA frame. Whether the sending direction of the frame is the same.
  • the old and new direction indications may be carried in reserved bits of a station information (STA info) field of the NDPA frame structure. Among them, the structure of the STA info field can be seen in Figure 12b.
  • the old and new direction indication may be the B26 bit or the B31 bit in the STA info field.
  • the value of the old and new direction indication when the value of the old and new direction indication is 0, it indicates that the sending direction of the NDP frame sent after the NDPA frame is different from the sending direction of the NDP frame sent after the last NDPA frame.
  • the value of the old and new direction indication is 1, it indicates that the sending direction of the NDP frame sent after the NDPA frame is the same as the sending direction of the NDP frame sent after the last NDPA frame.
  • the old and new direction indication may also be carried in a new message.
  • This application does not limit whether the new and old direction indications are carried in new messages or existing messages.
  • FIG. 21 shows a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • the device 2100 may exist in the form of software, or may be an initiating site or a responding site. , It can also be the chip in the originating site or the chip in the responding site. If the device 2100 is an initiating site, it can be used to perform any method and function related to the initiating site in the foregoing embodiment, and if the device 2100 is a responding site, it can be used to perform any method and function related to the responding site in the foregoing embodiment.
  • the device 2100 includes a processing unit 2102 and a communication unit 2103, and the communication unit 2103 may include a receiving unit and a sending unit.
  • the processing unit 2102 is used to control and manage the actions of the device 2100.
  • the communication unit 2103 is used to support communication between the device 2100 and other network entities (for example, response sites).
  • the device 2100 may further include a storage unit 2101 for storing program codes and data of the device 2100.
  • the processing unit 2102 may be a processor or a controller, for example, a CPU, a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 2103 may be a communication interface, a transceiver, or a transceiver circuit, etc., where the communication interface is a general term. In a specific implementation, the communication interface may include multiple interfaces, for example, may include: an interface between an initiating station and a responding station , And/or other interfaces.
  • the storage unit 2101 may be a memory.
  • the device 2100 exists in the form of software, and may also be an initiating site, or a chip in an initiating site.
  • the processing unit 2102 can support the device 2100 to perform the actions of the site initiation in the above method examples.
  • the support device 2100 can perform step 101 to step 103 in FIG. 13.
  • the communication unit 2103 can support the communication between the device 2100 and the response site.
  • the communication unit 2103 can support the device 2100 to perform any of steps 201, 203, 204, 205, 207, or 208 in FIG.
  • step 301 Any step in step 301, step 303, step 304, step 305, step 307, step 308 or step 309 in Figure 16a, step 401, step 403, step 404, step 405, step 407, step 408 or step in Figure 16b Any step in 409.
  • the communication unit 2103 is further configured to: receive a trigger frame from the responding station, the trigger frame includes a type indicator, and the type indicator is used to indicate the trigger frame
  • the type of is a directional measurement type, and the trigger frame of the directional measurement type is used to trigger the initiating station to perform directional precise time measurement.
  • the communication unit 2103 is further configured to: send an NDP announcement frame to the responding station, where the NDP announcement frame includes a directional indication, and the directional indication is used to indicate the precise time of participation The measured node performs directional precise time measurement.
  • the communication unit 2103 is further configured to: send a request frame to the responding station, the request frame including first information and second information, and the first information is used for Indicate that this negotiation is used to perform directional precise time measurement, and the second information is used to indicate that the initiating station supports directional precise time measurement; receiving a response frame from the responding station in response to the request frame, the response The frame includes the first information and third information, and the third information is used to indicate that the responding station supports directional precise time measurement.
  • the device 2100 exists in the form of software, and may also be a response site, or a chip in the response site.
  • the processing unit 2102 can support the device 2100 to perform the actions of the response site in the above method examples.
  • the support device 2100 can perform step 202 or step 206 in FIG. 15, step 302 or step 306 in FIG. Step 402 or step 406 in 16b.
  • the communication unit 2103 can support the communication between the device 2100 and the originating site.
  • the communication unit 2103 can support the device 2100 to perform any of steps 201, 203, 204, step 205, step 207, or step 208 in FIG.
  • step 301 Any step in step 301, step 303, step 304, step 305, step 307, step 308 or step 309 in Figure 16a, step 401, step 403, step 404, step 405, step 407, step 408 or step in Figure 16b Any step in 409.
  • the communication unit 2103 is further configured to: send a trigger frame to the initiating station, the trigger frame includes a type indicator, and the type indicator is used to indicate the trigger frame
  • the type is a directional measurement type, and the trigger frame of the directional measurement type is used to trigger the initiating station to perform directional precise time measurement.
  • the communication unit 2103 is further configured to: receive an NDP announcement frame from the initiating site, where the NDP announcement frame includes a directional indication, and the directional indication is used to indicate accurate participation.
  • the time measurement node performs directional precise time measurement.
  • the communication unit 2103 is further configured to: receive a request frame from the initiating station, the request frame including first information and second information, and the first information is used for To indicate that this negotiation is used to perform directional precise time measurement, the second information is used to indicate that the initiating station supports directional precise time measurement; a response frame in response to the request frame is sent to the initiating station, the response The frame includes the first information and third information, and the third information is used to indicate that the responding station supports directional precise time measurement.
  • the processing unit 2102 is a processor
  • the communication unit 2103 is a communication interface
  • the storage unit 2101 is a memory
  • the device 2100 involved in this embodiment of the application may be the positioning device 2200 shown in FIG. 22.
  • the positioning device 2200 includes: one or more processors 2202, a communication interface 2203, and a memory 2201.
  • the positioning apparatus 2200 may further include a bus 2204.
  • the communication interface 2203, the processor 2202, and the memory 2201 may be connected to each other through a bus 2204;
  • the bus 2204 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (abbreviated as PCI). EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus 2204 can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 22, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application also provides a computer-readable storage medium on which some instructions are stored. When these instructions are called and executed by a computer, the computer can complete the above method embodiments and method implementations. Examples of methods involved in any possible design.
  • the computer-readable storage medium is not limited. For example, it may be RAM (random-access memory, random access memory), ROM (read-only memory, read-only memory), etc.
  • the present application also provides a computer program product, which can complete the method embodiment and the method involved in any possible design of the above method embodiment when the computer program product is invoked and executed by a computer.
  • the present application further provides a chip, which is coupled with a transceiver, and is used to complete the foregoing method embodiment and the method involved in any one of the possible implementations of the method embodiment, wherein "Coupling” means that two components are directly or indirectly combined with each other. This combination can be fixed or movable. This combination can allow fluid, electricity, electrical signals or other types of signals to be connected between the two components. Communicate between.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the field.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be arranged in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种定位方法和装置,包括:发起站点获取包括第一NDP帧的发送和接收时刻、第二NDP帧的发送和接收时刻、第一方向和第二方向的第一定位信息,以及包括第三NDP帧的发送和接收时刻、第四NDP帧的发送和接收时刻、第四方向和第五方向的第二定位信息,第一NDP帧以第一方向发送经第一节点反射至响应站点,第二方向为第一NDP帧的入射方向,第二NDP帧以与第二方向相反的方向发送经第一节点反射至发起站点,第三NDP帧以第四方向发送经第二节点反射至响应站点,第五方向为第三NDP帧的入射方向,第四NDP帧以与第五方向相反的方向发送经第二节点反射至发起站点,进而可根据获取到的信息确定发起站点的位置信息。

Description

一种定位方法和装置
相关申请的交叉引用
本申请要求在2019年06月24日提交中国专利局、申请号为201910550567.9、申请名称为“一种定位方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及一种定位方法和装置。
背景技术
无线保真(wireless fidelity,Wi-Fi)标准802.11az中定义了一种可用于确定位置的精确时间测量(fine time measurement,FTM)。
使用FTM技术确定位置的原理如下:待定位的发起站点(initiator station,ISTA)有FTM测量需求时,与至少三个位置已知的响应站点(responder station,RSTA)交互空数据包(null data packet,NDP)帧,计算NDP帧在ISTA与每个RSTA之间传输的往返时间(round trip time,RTT),根据电磁波的传播速度以及RTT计算出ISTA与每个RSTA之间的距离,进而可根据三边测量技术来确定ISTA的位置。
现有使用FTM技术确定位置的方法,仅适用于ISTA与RSTA之间为直视径(line of sight,LOS)的情况,即,仅适用于ISTA与RSTA之间无障碍物的场景,当ISTA与RSTA之间为非直视径(none line of sight,NLOS)的情况时,也就是当ISTA与RSTA之间存在障碍物时,现有的FTM方法无法奏效。因此,在ISTA与RSTA之间为NLOS的情况时,如何确定ISTA的位置是亟需解决的一个技术问题。
发明内容
本申请实施例提供一种定位方法和装置,提出一种新的精确时间测量方法,既可以在LOS场景下实现定位,也可以在NLOS场景下实现定位。
第一方面,提供一种定位方法,该方法包括:发起站点获取第一定位信息,第一定位信息包括第一NDP帧的发送时刻、第一NDP帧的接收时刻、第二NDP帧的发送时刻、第二NDP帧的接收时刻、第一方向以及第二方向,发起站点获取第二定位信息,第二定位信息包括第三NDP帧的发送时刻、第三NDP帧的接收时刻、第四NDP帧的发送时刻、第四NDP帧的接收时刻、第四方向以及第五方向,发起站点根据响应站点的位置信息、第一定位信息以及第二定位信息,确定发起站点的位置信息。
其中,第一NDP帧为发起站点以第一方向发送经第一节点反射至响应站点的帧,第二方向为第一NDP帧经第一节点反射到达响应站点的入射方向,第二NDP帧为响应站点以第三方向发送经第一节点反射至发起站点的帧,第三方向与第二方向相反;其中,第三NDP帧为发起站点以第四方向发送经第二节点反射至响应站点的帧,第五方向为第三NDP帧经第二节点反射到达响应站点的入射方向,第四NDP帧为响应站点以第六方向发送经 第二节点反射至发起站点的帧,第六方向与第五方向相反。可选的,第一节点和第二节点可以为无源目标。
通过本申请提供的上述方法,即使两个站点之间为NLOS的情况,两个站点也可以通过第一节点或第二节点的反射交互NDP帧,这样,即使两个站点之间存在障碍物,也可以完成NDP帧的交互,进而通过交互NDP帧可获得定位信息以确定待定位站点的位置信息。此外,本申请中第一节点和第二节点可以是无源目标,也就是本申请中待定位站点可以仅与一个位置已知的有源站点交互即可确定位置信息。
在一种可能的实施方式中,发起站点获取第一定位信息,包括:
发起站点执行定向精确时间测量以获取第一定位信息,包括:
发起站点以第一方向发送第一NDP帧经第一节点反射至响应站点,确定第一NDP帧的发送时刻;发起站点接收响应站点以第三方向发送经第一节点反射的第二NDP帧,确定第二NDP帧的接收时刻;发起站点接收来自响应站点的第一位置测量报告,第一位置测量报告包括第一NDP帧的接收时刻、第二NDP帧的发送时刻以及第二方向;
发起站点获取第二定位信息,包括:
发起站点执行定向精确时间测量以获取第二定位信息,包括:
发起站点以第四方向发送第三NDP帧经第二节点反射至响应站点,确定第三NDP帧的发送时刻;发起站点接收响应站点以第六方向发送经第二节点反射的第四NDP帧,确定第四NDP帧的接收时刻;发起站点接收来自响应站点的第二位置测量报告,第二位置测量报告包括第三NDP帧的接收时刻、第四NDP帧的发送时刻以及第五方向。
通过上述方法,发起站点可以实时获取定位信息,以便定位更准确。
在一种可能的实施方式中,发起站点获取第一定位信息之前,还可以接收来自响应站点的触发帧,触发帧包括类型指示,类型指示用于指示触发帧的类型为定向测量类型,定向测量类型的触发帧用于触发发起站点执行定向精确时间测量。
通过上述方法,响应站点可以预先通过定向测量类型的触发帧,通知发起站点执行定向精确时间测量,以便与现有的精确时间测量做区分。
在一种可能的实施方式中,发起站点获取第一定位信息之前,还可以向响应站点发送NDP声明帧,NDP声明帧包括定向指示,定向指示用于指示参与精确时间测量的节点执行定向精确时间测量。
通过上述方法,发起站点可以预先通过携带所述定向指示的NDP声明帧,通知响应站点本次执行定向精确时间测量,以便与现有的精确时间测量做区分。
在一种可能的实施方式中,发起站点获取第一定位信息之前,还可以向响应站点发送请求帧,请求帧包括第一信息和第二信息,第一信息用于指示本次协商用于执行定向精确时间测量,第二信息用于指示发起站点支持定向精确时间测量;发起站点还可以接收来自响应站点的响应于请求帧的响应帧,响应帧包括第一信息和第三信息,第三信息用于指示响应站点支持定向精确时间测量。
通过上述方法,发起站点与响应站点可以在执行定向精确时间测量之前,交互彼此的能力,通知对方节点本次发起的是否是定向精确时间测量,以及双方节点是否支持定向精确时间测量。这样,以便与现有的精确时间测量做区分。
在一种可能的实施方式中,发起站点根据响应站点的位置信息、第一定位信息以及第二定位信息,确定发起站点的位置信息,包括:发起站点根据第一NDP帧的发送时刻、 第一NDP帧的接收时刻、第二NDP帧的发送时刻以及第二NDP帧的接收时刻,确定第一距离,第一距离为发起站点与第一节点之间的距离以及第一节点与响应站点之间的距离之和;发起站点根据第三NDP帧的发送时刻、第三NDP帧的接收时刻、第四NDP帧的发送时刻以及第四NDP帧的接收时刻,确定第二距离,第二距离为发起站点与第二节点之间的距离以及第二节点与响应站点之间的距离之和;发起站点根据响应站点的位置信息、第一距离、第二距离、第一方向、第二方向、第四方向以及第五方向,确定发起站点的位置信息。
在一种可能的实施方式中,发起站点根据响应站点的位置信息、发起站点的位置信息、与第一方向对应的第一发射角AoD以及与第二方向对应的第一到达角AoA,确定第一节点的位置信息;
和/或,
发起站点根据响应站点的位置信息、发起站点的位置信息、与第四方向对应的第二AoD以及与第五方向对应的第二AoA,确定第二节点的位置信息。
采用上述方法,在执行定向精确时间测量确定出发起站点的位置信息后,可进一步确定第一节点和/或第二节点的位置信息,本申请中第一节点和第二节点可以为无源目标,相比现有技术,采用本申请方法不仅可确定发起站点的位置信息,还可确定发起站点与响应站点周围的无源目标的位置信息,解决了现有技术无法对无源目标定位的问题。
在一种可能的实施方式中,响应帧还包括延迟指示,延迟指示用于指示响应站点反馈位置测量报告的延时时长。
采用上述延迟测量机制,响应站点可向发起站点发送用于指示反馈位置测量报告的延时时长的延迟指示,发起站点可根据延迟指示获取响应站点发送位置测量报告的时间,响应站点可为自己预留足够的时间测得信道状态信息并确定位置测量报告,以使反馈更准确,且,通过设置该延迟测量机制使得处理能力较弱的响应站点也可执行本申请方法。
在一种可能的实施方式中,当延迟指示的取值为0时用于指示延时时长为0,当延迟指示的取值为非零值时用于指示延时时长的长度。
在一种可能的实施方式中,NDP声明帧还包括新旧方向指示,新旧方向指示用于指示在NDP声明帧之后发送的NDP帧的发送方向与在上次NDP声明帧之后发送的NDP帧的发送方向相同。
通过上述方法,可确保响应站点更准确的确定出NDP帧的入射方向。
第二方面,提供一种定位方法,该方法包括:响应站点接收发起站点以第一方向发送经第一节点反射的第一空数据包NDP帧,确定第一NDP帧的接收时刻;响应站点确定第二方向,第二方向为第一NDP帧经第一节点反射到达响应站点的入射方向;响应站点以第三方向发送第二NDP帧经第一节点反射至发起站点,确定第二NDP帧的发送时刻,第三方向与第二方向相反;响应站点向发起站点发送第一位置测量报告,第一位置测量报告包括第一NDP帧的接收时刻、第二NDP帧的发送时刻以及第二方向;响应站点接收发起站点以第四方向发送经第二节点反射的第三NDP帧,确定第三NDP帧的接收时刻;响应站点确定第五方向,第五方向为第三NDP帧经第二节点反射到达响应站点的入射方向;响应站点以第六方向发送第四NDP帧经第二节点反射至发起站点,确定第四NDP帧的发送时刻,第六方向与第五方向相反;响应站点向发起站点发送第二位置测量报告,第二位置测量报告包括第三NDP帧的接收时刻、第四NDP帧的发送时刻以及第五方向。
通过上述方法,即使两个站点之间为NLOS的情况,两个站点也可以通过第一节点或第二节点的反射交互NDP帧,这样,即使两个站点之间存在障碍物,也可以完成NDP帧的交互,进而通过交互NDP帧可获得定位信息以确定待定位站点的位置信息。此外,本申请中第一节点和第二节点可以是无源设备,也就是本申请中待定位站点可以仅与一个位置已知的站点交互即可确定位置信息。
在一种可能的实施方式中,响应站点还可以向发起站点发送触发帧,触发帧包括类型指示,类型指示用于指示触发帧的类型为定向测量类型,定向测量类型的触发帧用于触发发起站点执行定向精确时间测量。
在一种可能的实施方式中,响应站点还可以接收来自发起站点的NDP声明帧,NDP声明帧包括定向指示,定向指示用于指示参与精确时间测量的节点执行定向精确时间测量。
在一种可能的实施方式中,响应站点还可以接收来自发起站点的请求帧,请求帧包括第一信息和第二信息,第一信息用于指示本次协商用于执行定向精确时间测量,第二信息用于指示发起站点支持定向精确时间测量;
响应站点还可以向发起站点发送响应于请求帧的响应帧,响应帧包括第一信息和第三信息,第三信息用于指示响应站点支持定向精确时间测量。
在一种可能的实施方式中,响应帧还包括延迟指示,延迟指示用于指示响应站点反馈位置测量报告的延时时长。
在一种可能的实施方式中,当延迟指示的取值为0时用于指示延时时长为0,当延迟指示的取值为非零值时用于指示延时时长的长度。
在一种可能的实施方式中,NDP声明帧还包括新旧方向指示,新旧方向指示用于指示在NDP声明帧之后发送的NDP帧的发送方向与在上次NDP声明帧之后发送的NDP帧的发送方向相同。
第三方面,本申请提供一种定位装置,该装置具有实现上述任意方面或任意方面中的实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请提供一种定位装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述任意方面或任意方面中的实现方法。
第五方面,本申请提供一种定位装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上任意方面提供的任意方法。该处理器包括一个或多个。
第六方面,本申请提供一种定位装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述任意方面的任意实现方式中的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第七方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行上述任意方面所述的方法。
第八方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任意方面所述的方法。
第九方面,本申请还提供一种芯片,包括:处理器,用于执行上述各方面中任一方面所述的方法。
第十方面,本申请还提供一种系统,包括用于执行上述第一方面或第一方面任一实现方法的发起站点,以及,用于执行上述第二方面或第二方面任一实现方法的响应站点。
第十一方面,本申请还提供一种存储介质,包括程序,当所述程序被处理器运行时,用于执行上述任意方面所述的方法。
附图说明
图1为本申请实施例适用的一种可能的网络架构示意图;
图2为本申请实施例提供的一种TB模式下的FTM示意图;
图3为本申请实施例提供的一种FTM的协商流程示意图;
图4为本申请实施例提供的一种测距参数元素字段的格式示意图;
图5a为本申请实施例提供的一种TB模式下的子元素的格式示意图;
图5b为本申请实施例提供的一种Non-TB模式下的子元素格式示意图;
图6为本申请实施例提供的一种TB模式下的测量流程和结果反馈流程示意图;
图7为本申请实施例提供的一种TB模式下测量探测过程示意图;
图8a为本申请实施例提供的一种TF测量声明帧的结构示意图;
图8b为本申请实施例提供的一种触发相关的公共信息的结构示意图;
图8c为本申请实施例提供的一种触发相关的公共信息的结构示意图;
图9为本申请实施例提供的一种Non-TB模式下的FTM示意图;
图10为本申请实施例提供的一种Non-TB模式下的测量流程和结果反馈流程示意图;
图11为本申请实施例提供的一种Non-TB模式下的测量探测过程示意图;
图12a为本申请实施例提供的一种NDPA帧的结构示意图;
图12b为本申请实施例提供的一种站点信息字段的结构示意图;
图13为本申请实施例提供的一种定位方法流程示意图;
图14为本申请实施例提供的一种确定发起站点位置信息的方法流程示意图;
图15为本申请实施例提供的一种测量方法流程示意图;
图16a为本申请实施例提供的又一种定位方法流程示意图;
图16b为本申请实施例提供的又一种定位方法流程示意图;
图17a为本申请实施例提供的一种定向FTM协商流程示意图;
图17b为本申请实施例提供的一种定向FTM测量和反馈流程示意图;
图17c为本申请实施例提供的一种定向FTM测量流程示意图;
图17d为本申请实施例提供的另一种定向FTM测量和反馈流程示意图;
图18为本申请实施例提供的又一种定向FTM测量和反馈流程示意图;
图19为本申请实施例提供的又一种定向FTM测量和反馈流程示意图;
图20为本申请实施例提供的又一种定向FTM测量和反馈流程示意图;
图21为本申请实施例提供的一种定位装置结构示意图;
图22为本申请实施例提供的另一种定位装置结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步 地详细描述。方法实施例中的具体操作也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是指两个或两个以上。另外,需要理解的是,在本申请实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,为本申请实施例适用的一种可能的网络架构示意图。如图1所示,该网络架构包括发起站点、响应站点、第一节点以及第二节点,发起站点与响应站点可通过第一节点对信号的反射交互信息,也可以通过第二节点对信号的反射交互信息,也可以直接交互信息。其中,图1所示的网络架构中,发起站点与响应站点之间可以为LOS的情形,也可以为NLOS的情形,本申请不做限定。需要说明的是,图1中各个节点的数量均以一个为例示意,实际应用中图1中各个节点的数量均可以为多个,本申请对各个节点的数量不做限定。
应理解,本申请实施例中所涉及的发起站点可以为具有天线阵列的Wi-Fi设备,所述Wi-Fi设备例如可包括具有天线阵列的站点(station,STA)或接入点(access point,AP),所述STA例如可以为具有天线阵列的ISTA,其中,本申请中具备天线阵列的发起站点可以通过波束成型和定向天线技术在数字域和模拟域控制发射信号的方向,同时也可以根据天线阵列收到的入射信号估计入射信号的入射方向。
本申请实施例中所涉及的响应站点可以为具有天线阵列的Wi-Fi设备,所述Wi-Fi设备例如可包括具有天线阵列的STA或AP,所述STA例如可以为具有天线阵列的RSTA,其中,本申请中具备天线阵列的响应站点可以通过波束成型和定向天线技术在数字域和模拟域控制发射信号的方向,同时也可以根据天线阵列收到的入射信号估计入射信号的入射方向。
本申请实施例中所涉及的第一节点和第二节点可以是无源设备,也可以是工作在无源模式下的有源设备,不具备Wi-Fi通信能力。第一节点和第二节点的一些举例例如可包括人、物体等。
为便于理解本申请内容,下面首先对Wi-Fi标准802.11az中定义的FTM进行详细说明。
Wi-Fi标准802.11az中定义的FTM可包括基于调度(trigger-based,TB)模式下的FTM以及非调度(non-trigger-based,Non-TB)模式下的FTM,下面分别描述TB模式下的FTM流程以及Non-TB模式下的FTM流程。
第一,请参见图2所示,其为TB模式下的FTM。
如图2所示,TB模式下的FTM可包括三个流程,分别为协商流程、测量流程和结果反馈流程。下面分别对每个流程进行详细说明。
请参见图3所示,其为FTM的协商流程,需要说明的是,该FTM的协商流程既适用于TB模式下的FTM,也适用于Non-TB模式下的FTM。在协商流程中,ISTA在有测量需求时,向RSTA发送初始FTM请求帧(initial FTM request),若RSTA可以执行FTM,则可在两个帧之间的最短时间间隔(SIFS)后向ISTA回复确认(ACK)帧,并在10毫秒 内向ISTA发送初始FTM测量帧以响应所述初始FTM请求帧,初始FTM测量帧也可以称为响应帧,至此协商过程完成。其中,初始FTM请求帧以及初始FTM测量帧均携带测距参数元素(Ranging Parameters element)字段,该字段用于携带可用时间段、能力信息以及需求信息等测距信息,请参见图4所示,其为所述测距参数元素字段的格式示意图。其中,图4所示的测量子元素(Ranging subelements)的编码表如表1所示,其中图5a示出TB模式下的子元素(subelement)的具体格式,图5b示出Non-TB模式下的子元素(subelement)的具体格式,请参见图5a-图5b。
表1
Figure PCTCN2020095378-appb-000001
需要说明的是,若ISTA与RSTA已关联,则RSTA无需在协商流程中为ISTA分配范围标识(Ranging ID),后续测量过程中使用关联标识(Associated ID)交互,若ISTA与RSTA未关联,则RSTA可在协商流程中为ISTA分配Ranging ID,所述Ranging ID用于在接下来的测量过程中标识ISTA。
进一步需要说明的是,协商流程完成后,ISTA和RSTA之间可以进行多次测量流程和结果反馈流程,也就是说,ISTA和RSTA无需每次在执行测量流程和结果反馈流程之前都执行协商流程。
请参见图6所示,其为TB模式下的测量流程和结果反馈流程。如图6所示,TB模式下的测量流程又包括轮询阶段和测量探测阶段,其中,在轮询阶段,RSTA在其空闲的时间窗向ISTA发送TF测量触发(TF ranging poll)帧,通知ISTA可以开始测量,ISTA接收到RSTA发送的所述TF ranging poll帧后,向RSTA发送同意接受数据(clear to send,CTS)至自身(CTS-to-self)帧以占据信道;请参见图7所示,其为具体的测量探测过程,在测量探测阶段,RSTA向ISTA发送TF测量声明帧(TF ranging sounding),以通知ISTA开始测量,ISTA接收到所述TF测量声明帧过SIFS后,可向RSTA回复一个NDP帧,并记录该NDP帧的发送时刻t1,需要说明的是,本申请中以ISTA到RSTA的方向为上行方向,相应的,RSTA到ISTA的方向为下行方向为例说明,则ISTA向RSTA发送的NDP帧可描述为上行链路(uplink,UL)NDP帧,RSTA接收到所述UL NDP帧后记录所述UL NDP帧的接收时刻t2,并在过SIFS后继续向ISTA发送下行链路(downlink,DL)测距的NDP声明(NDP announcement,NDPA)帧,也可以称为DL Ranging NDPA帧,以通知ISTA继续测量,RSTA向ISTA发送所述DL Ranging NDPA帧过SIFS后,可继续向ISTA发送一个DL NDP帧,并记录所述DL NDP帧的发送时刻t3,ISTA接收到所述DL NDP帧后,记录所述DL NDP帧的接收时刻t4,至此完成测量探测过程。在执行完成测量探测过程后,执行结果反馈流程,在该流程中RSTA可以向ISTA发送位置测量报告(location  measurement report,LMR),所述LMR中可包括所述UL NDP帧的发送时刻t1以及所述DL NDP帧的接收时刻t4。
其中,图7中TF测量声明帧的结构可以如图8a所示,图8b示出图8a中TF测量声明帧包括的常规信息(Common info)的具体结构,图8c示出图8b中触发相关的公共信息(Trigger Dependent Common info)的具体结构。图8b中触发类型(Trigger Type)的编码如表2所示。
表2
Figure PCTCN2020095378-appb-000002
第二,请参见图9所示,其为Non-TB模式下的FTM。
如图9所示,Non-TB模式下的FTM也可包括三个流程,分别为协商流程、测量流程和结果反馈流程。需要说明的是,与TB模式下的测量流程相比,Non-TB模式下的测量流程不包括轮询阶段。下面分别对Non-TB模式下的FTM每个流程进行详细说明。
上文中已提到,图3所示的FTM的协商流程既适用于TB模式下的FTM,也适用于Non-TB模式下的FTM,也就是说,Non-TB模式下的协商流程与TB模式下协商流程类似,详见图3以及图3中相关描述,此处不再赘述。
请参见图10所示,其为Non-TB模式下的测量流程和结果反馈流程。如图10所示,Non-TB模式下的测量流程包括测量探测阶段,请参见图11所示,其为Non-TB模式下具体的测量探测过程,在测量探测阶段,ISTA先向RSTA发送NDPA帧,以通知RSTA开始测量,ISTA向RSTA发送所述NDPA帧过SIFS后,可继续向RSTA发送一个NDP帧,并记录所述NDP帧的发送时刻t1,需要说明的是,本申请中以ISTA到RSTA的方向为上行方向,相应的,RSTA到ISTA的方向为下行方向为例说明,则ISTA向RSTA发送的NDP帧可描述为UL NDP帧,RSTA接收到ISTA发送的所述UL NDP帧后记录所述UL NDP帧的接收时刻t2,并在过SIFS后向ISTA回复一个DL NDP帧,并记录所述DL NDP帧的发送时刻t3,ISTA接收到所述DL NDP帧后,记录所述DL NDP帧的接收时刻t4,至此完成测量探测过程。在执行完成测量探测过程后,执行结果反馈流程,在该流程中RSTA 可以向ISTA发送LMR,所述LMR中可包括所述UL NDP帧的发送时刻t1以及所述DL NDP帧的接收时刻t4。
其中,图11中NDPA帧的结构可以如图12a所示,图12b示出图12a中NDPA帧包括的站点信息(STA info)字段的具体结构。
需要说明的是,无论是TB模式下的FTM还是Non-TB模式下的FTM,在执行测量的过程中交互的帧均为全向发送的帧。
基于图1所示的网络架构,以发起站点为位置未知的ISTA、响应站点为位置已知的RSTA为例,对现有技术中基于FTM确定ISTA的位置的原理进行说明。无论是采用TB模式下的FTM确定ISTA的位置,还是采用Non-TB模式下的FTM确定ISTA的位置,在执行FTM的过程中均可得到四个时间,如图7和图11中的t1、t2、t3以及t4,然后可根据这四个时间确定ISTA和RSTA之间信号传播的RTT,具体可采用如下公式确定:
RTT=[(t4-t1)-(t3-t2)];
进而可根据电磁波的传播速度以及RTT,计算出信号在ISTA与RSTA之间的传播距离,当ISTA与RSTA之间为LOS时,计算出的信号传播距离即为ISTA与RSTA之间的距离。具体可采用如下公式计算信号在ISTA与RSTA之间的传播距离D:
Figure PCTCN2020095378-appb-000003
其中,所述c为光速;
若ISTA与RSTA之间为LOS,则可将所述D确定为ISTA与RSTA之间的距离。在基于FTM确定ISTA的位置时,需要ISTA与至少三个位置已知的RSTA执行上述过程,得到ISTA与每个RSTA之间的距离,进而可根据三边测量技术来确定ISTA的位置。
由上述介绍可知,现有技术中基于FTM确定ISTA的位置时,首先需要基于FTM确定ISTA与至少三个RSTA之间的距离,而确定ISTA与RSTA之间的距离需要先确定信号在ISTA与RSTA之间的往返时间,而若ISTA与RSTA之间为NLOS,也就是ISTA与RSTA之间存在障碍物时,ISTA与RSTA之间无法直接交互NDP帧,也就无法得到信号在ISTA与RSTA之间的往返时间,导致无法确定ISTA与RSTA之间的距离,此时上述基于FTM确定ISTA的位置的方法失效。
鉴于上述存在的问题,本申请实施例提供一种定位方法,以期既可以在LOS场景下实现定位,也可以在NLOS场景下实现定位。
请参见图13,为本申请实施例提供的一种定位方法。该方法可应用于图1所示的网络架构。当然本申请提供的方法并不限定应用于图1所示的网络架构,也可以应用于其它网络架构。参见图13所示,该方法可包括如下处理流程。
步骤101:发起站点获取第一定位信息。第一定位信息包括第一NDP帧的发送时刻、第一NDP帧的接收时刻、第二NDP帧的发送时刻、第二NDP帧的接收时刻、第一方向以及第二方向。
其中,第一NDP帧为发起站点以第一方向发送经第一节点反射至响应站点的帧,第二方向为第一NDP帧经第一节点反射到达响应站点的入射方向,第二NDP帧为响应站点以第三方向发送经第一节点反射至发起站点的帧,第三方向与第二方向相反。
本申请实施例中对发起站点如何获取第一定位信息不做限定。例如,发起站点可以自身确定第一定位信息;也可以从响应站点接收第一定位信息;也可以自身确定第一定位信息包括的部分内容,并从响应站点接收第一定位信息包括的另一部分内容。
步骤102:发起站点获取第二定位信息。第二定位信息包括第三NDP帧的发送时刻、第三NDP帧的接收时刻、第四NDP帧的发送时刻、第四NDP帧的接收时刻、第四方向以及第五方向。本申请实施例中第四方向与第一方向为不同的方向。
其中,第三NDP帧为发起站点以第四方向发送经第二节点反射至响应站点的帧,第五方向为第三NDP帧经第二节点反射到达响应站点的入射方向,第四NDP帧为响应站点以第六方向发送经第二节点反射至发起站点的帧,第六方向与第五方向相反。
本申请实施例中对发起站点如何获取第二定位信息也不做限定。例如,发起站点可以自身确定第二定位信息;也可以从响应站点接收第二定位信息;也可以自身确定第二定位信息包括的部分内容,并从响应站点接收第二定位信息包括的另一部分内容。
步骤103:发起站点根据响应站点的位置信息、第一定位信息以及第二定位信息,确定发起站点的位置信息。其中,步骤103中响应站点的位置信息可以由发起站点预先从响应站点获取存储于发起站点本地,也可以由发起站点实时从响应站点获取,本申请不做限定。
需要说明的是,本申请中以测量帧为NDP帧为例示意说明,实际中任意用于信道探测的测量帧均可适用本申请的方法。本领域技术人员可知,NDP帧仅作为测量帧的一种名称,本申请对测量帧的名称不做限定。
本申请实施例以由发起站点确定自身的位置信息为例说明。实际中任何一个获取到第一定位信息,第二定位信息以及响应站点的位置的节点都可以确定发起站点的位置信息。例如,还可以由发起站点将第一定位信息和第二定位信息发送至响应站点,由响应站点根据响应站点的位置信息、第一定位信息以及第二定位信息,确定发起站点的位置信息。当然,发起站点也可以将所述第一定位信息和第二定位信息发送至除所述响应站点以外的节点来确定发起站点的位置信息,值得注意的是,当由除所述响应站点和所述发起站点以外的第三方节点来确定发起站点的位置信息时,所述第三方节点还需要获取所述响应站点的位置信息。示例性地,所述第三方节点可以从所述响应站点接收所述响应站点的位置信息,也可以从所述发起站点接收所述响应站点的位置信息,当然也可以以其它方式获取,本申请不做限定。相比由其它节点(例如响应站点或第三方节点)确定发起站点的位置信息,本申请中由发起站点确定自身的位置信息,这样可避免发起站点的位置泄露,安全性更高,可保护发起站点的隐私。
采用上述方法,即使发起站点与响应站点之间为NLOS的情况,发起站点与响应站点之间仍然可通过第一节点或第二节点的反射交互NDP帧,并可通过交互NDP帧获得定位信息,进而可根据定位信息确定出发起站点的位置信息。此外,本申请中第一节点和第二节点可以是无源设备,也就是本申请中待定位的发起站点可以仅与一个位置已知的响应站点交互即可确定位置信息,相比现有技术中待定位节点必须与至少三个位置已知的响应站点交互才可确定自身位置,本申请的方法易于实现。显然,即使在发起站点与响应站点之间为LOS的情况下,发起站点与响应站点之间也可通过第一节点或第二节点的反射交互NDP帧,并可通过交互NDP帧获得定位信息,进而可根据定位信息确定出发起站点的位置信息,也就是本申请的方法即可适用于两个站点之间为LOS的情况,也可适用于两个站点之间为NLOS的情况。
本申请对如何确定发起站点的位置信息不做限定。一个可能的示例中,发起站点根据第一NDP帧的发送时刻、第一NDP帧的接收时刻、第二NDP帧的发送时刻以及第二NDP 帧的接收时刻,确定第一距离,第一距离为发起站点与第一节点之间的距离以及第一节点与响应站点之间的距离之和,且,发起站点根据第三NDP帧的发送时刻、第三NDP帧的接收时刻、第四NDP帧的发送时刻以及第四NDP帧的接收时刻,确定第二距离,第二距离为发起站点与第二节点之间的距离以及第二节点与响应站点之间的距离之和,进而发起站点根据响应站点的位置信息、第一距离、第二距离、第一方向、第二方向、第四方向以及第五方向,确定发起站点的位置信息。
一种可能的实现方式中,发送节点可以采用如下公式,根据第一FTM帧的发送时刻、第一FTM帧的接收时刻、第二FTM帧的发送时刻以及第二FTM帧的接收时刻,确定第一距离:
Figure PCTCN2020095378-appb-000004
其中,t1为第一FTM帧的发送时刻,t2为第一FTM帧的接收时刻,t3为第二FTM帧的发送时刻,t4为第二FTM帧的接收时刻,c为光速。可选的,还可以采用如上公式的等效变形计算得到第一距离。
发送节点可以采用如下公式,根据第三FTM帧的发送时刻、第三FTM帧的接收时刻、第四FTM帧的发送时刻以及第四FTM帧的接收时刻,确定第二距离:
Figure PCTCN2020095378-appb-000005
其中,t5为第三FTM帧的发送时刻,t6为第三FTM帧的接收时刻,t7为第四FTM帧的发送时刻,t8为第四FTM帧的接收时刻。可选的,还可以采用如上公式的等效变形计算得到第二距离。
进一步的,本申请对如何根据响应站点的位置信息、第一距离、第二距离、第一方向、第二方向、第四方向以及第五方向,确定发起站点的位置信息,不做限定。本申请给出一种利用几何关系确定发起站点的位置信息的方法。图14中会详细介绍。
请参见图14,其为本申请实施例提供的一种确定发起站点的位置信息的方法。图14中以位置信息为坐标位置为例示意,为便于说明,图14中将全部节点标记为坐标系中的点,如图14所示,将发起站点标记为点A,将响应站点标记为点B,将第一节点标记为点C,将第二节点标记为点D。A点位置未知,B点位置已知。以下对利用几何关系确定发起站点的位置信息的原理进行说明。
由图14可知,第一距离为线段AC的长度与线段BC的长度之和,其中,线段AC的长度为点A与点C之间的距离,也就是发起站点与第一节点之间的距离,线段BC的长度为点B与点C之间的距离,也就是响应站点与第一节点之间的距离。第二距离为线段AD的长度与线段BD的长度之和,其中,线段AD的长度为点A与点D之间的距离,也就是,发起站点与第二节点之间的距离,线段BD的长度为点B与点D之间的距离,也就是响应站点与第二节点之间的距离。
以B点为起点沿着BC方向(即第二方向的相反方向)作线段BE,使线段BE的长度等于第一距离,并以B点为起点沿着第一方向的相反方向作平行于AC的线段BF,使线段BF的长度等于第一距离,连接点E和点F,进而可确定点A在线段EF上。下面根据几何关系证明点A在线段EF上。假设线段AC与线段EF相交于点A1,显然若可证明点A与点A1重合,则可确定点A在线段EF上。下面证明点A在线段EF上。
由上述内容可知,线段BE等于线段BF,故三角形BEF为等腰三角形,故可推导得 知角BEF等于角BFE,又因为CA1平行于BF,故可推得角EA1C等于角BFE,进而可推得角EA1C等于角BEF等于角BEA1,故三角形CEA1为等腰三角形,即可推得线段CE的长度等于线段CA1的长度,又因为线段BE的长度等于第一距离,即线段BE的长度等于线段AC的长度加线段BC的长度,且线段BE的长度还等于线段BC的长度加线段CE的长度,故可推得线段AC的长度等于线段CE的长度,综上,可推得线段CA1的长度等于线段AC的长度,又因为线段CA1与线段AC的方向相同,故可证明点A与点A1重合,证明点A在线段EF上。
类似的,以B点为起点沿着BD方向(即第五方向的相反方向)作线段BG,使线段BG的长度等于第二距离,并以B点为起点沿着第四方向的相反方向作平行于AD的线段BH,使线段BH的长度等于第二距离,连接点G和点H,可确定点A在线段GH上。假设线段AD与线段GH相交于点A2,显然若可证明点A与点A2重合,则可确定点A在线段GH上。可采用与上述证明点A在线段EF上相同的方法证明点A在线段GH上,此处不再赘述。
以位置信息为二维坐标位置为例,假设发起站点A的位置记为(x A,y A),响应站点B的位置记为(x B,y B),点E的位置记为(x E,y E),点F的位置记为(x F,y F),点G的位置记为(x G,y G),点H的位置记为(x H,y H),第k距离记为L k(k=1,2),第k方向记为θ k(k=1,2,4,5),需要说明的是,这里第1距离即为上文中确定的第一距离,第2距离即为上文中确定的第二距离,第1方向即为上文中的第一方向,第2方向即为上文中的第二方向,第4方向即为上文中的第四方向,第5方向即为上文中的第五方向,则点E、F、G、H的位置坐标可以依据下列公式获得:
(x E,y E)=(x B-L 1*cosθ 2,y B-L 1*sinθ 2);
(x F,y F)=(x B-L 1*cosθ 1,y B-L 1*sinθ 1);
(x G,y G)=(x B-L 2*cosθ 5,y B-L 2*sinθ 5);
(x H,y H)=(x B-L 2*cosθ 4,y B-L 2*sinθ 4);
由于发起站点A的位置是线段EF和GH的交点,故发起站点A的位置坐标满足如下两个公式:
Figure PCTCN2020095378-appb-000006
Figure PCTCN2020095378-appb-000007
故根据上面两个公式即可计算出发起站点A的位置坐标。
综上,发起站点可根据第一距离、第二距离、第一方向、第二方向、第四方向以及第五方向,确定出点A(即发起站点)为线段EF与线段GH的交点,进一步可根据响应站点的位置信息(例如响应站点的坐标)、第一距离以及第二距离,确定发起站点的位置信息(例如发起站点的坐标)。
需要说明的是,本申请主要以借助第一节点和第二节点两个节点执行上述方法为例说明,实际中借助至少两个节点执行上述方法均可确定出发起站点的位置信息。
本申请实施例中,发起站点确定出自身位置信息后,进一步还可以确定第一节点和/或第二节点的位置信息。示例性地,发起站点可根据响应站点的位置信息、发起站点的位置信息、与第一方向对应的第一发射角(angle of departure,AoD)以及与第二方向对应的 第一到达角(Angle of arrival,AoA),确定第一节点的位置信息。示例性地,发起站点可根据响应站点的位置信息、发起站点的位置信息、与第四方向对应的第二AoD以及与第五方向对应的第二AoA,确定第二节点的位置信息。通过本申请提供的方法,不仅可对发起站点进行定位,还可实现对无源节点或工作在无源模式下的节点,例如第一节点和第二节点进行定位。而现有技术目前无法实现对无源节点或工作在无源模式下的节点的定位,而采用本申请的方法该问题也得到解决。
其中,第一方向可以理解为发射第一NDP帧时,第一NDP帧离开发起站点时的发射方向,当以角度表示所述发射方向时可以描述为发射角(angle of departure,AoD),本申请中与第一方向对应的第一AoD,是指以角度描述的第一方向。类似的,第二方向可以理解为接收第一NDP帧时,第一NDP帧经第一节点反射至响应站点的入射方向,当以角度表示所述入射方向时可以描述为到达角(Angle of arrival,AoA),本申请中与第二方向对应的第一AoA,是指以角度描述的第二方向。类似的,第四方向可以理解为发射第三NDP帧时,第三NDP帧离开发起站点时的发射方向,当以角度表示所述发射方向时可以描述为AoD,本申请中与第四方向对应的第二AoD,是指以角度描述的第四方向。类似的,第五方向可以理解为接收第三NDP帧时,第三NDP帧经第二节点反射至响应站点的入射方向,当以角度表示所述入射方向时可以描述为AoA,本申请中与第五方向对应的第二AoA,是指以角度描述的第五方向。
本申请对如何根据接收节点的位置信息、发送节点的位置信息、第一AoD以及第一AoA,确定第一节点的位置信息不做限定。一种可能的实现方式中,以位置信息为位置坐标为例,发起站点可采用如下公式确定第一节点的位置坐标:
Figure PCTCN2020095378-appb-000008
其中,(x1,y1)为发送节点的位置坐标,(x2,y2)为响应站点的位置坐标,(x,y)为第一节点的位置坐标。
本申请对如何根据接收节点的位置信息、发送节点的位置信息、第二AoD以及第二AoA,确定第二节点的位置信息不做限定。一种可能的实现方式中,以位置信息为位置坐标为例,发起站点可采用如下公式确定第二节点的位置坐标:
Figure PCTCN2020095378-appb-000009
其中,(x1,y1)为发送节点的位置坐标,(x2,y2)为响应站点的位置坐标,(x',y')为第二节点的位置坐标。
本申请实施例下面以发起站点自身确定第一定位信息包括的部分内容,并从响应站点接收第一定位信息包括的另一部分内容,以及,发起站点自身确定第二定位信息包括的部分内容,并从响应站点接收第二定位信息包括的另一部分内容为例,对上述获取第一定位信息和第二定位信息的方法进一步说明。请参见图15,为本申请实施例提供的一种测量方 法。该方法可以但不限于应用于图1所示的网络架构。参见图15所示,该方法可包括如下处理流程。
步骤201:发起站点以第一方向发送第一NDP帧经第一节点反射至响应站点,发起站点确定第一NDP帧的发送时刻,相应的,响应站点接收发起站点以第一方向发送经第一节点反射的第一NDP帧,响应站点确定第一NDP帧的接收时刻。
其中,由于位置信息通常是指一个点的位置信息,因此本申请为便于说明,将全部节点标记为坐标系中的一个点,如图15所示,将发起站点标记为点A,将响应站点标记为点B,将第一节点标记为点C,并将第二节点标记为点D。A点位置未知,B点位置已知。
本申请实施例中,发起站点可通过调整天线阵列的中每个天线发射信号的相位和幅度,使得发出的第一NDP帧在第一方向上增强,而在其他方向上相互抵消,也可以通过定向天线,直接以第一方向定向发射第一NDP帧。
需要说明的是,本申请中对如何选取第一节点不做限定,发起站点在发起步骤201之前,可以以不同的方向探测目标物体,直至在第一方向上探测到可用的第一节点,便可执行步骤201。本申请对探测目标物体的探测技术不做限定。
步骤202:响应站点接收到发起站点以第一方向发送经第一节点反射的第一NDP帧后,确定第一NDP帧经第一节点反射到达响应站点的入射方向,也就是第二方向。
本申请实施例中,响应站点可通过天线阵列根据不同天线信号到达的时间差计算得到第二方向,或者通过定向天线根据接收信号最强的方向推断得到第二方向,不做限定。
步骤203:响应站点以与第二方向相反的第三方向,发送第二NDP帧经第一节点反射至发起站点,响应站点确定第二NDP帧的发送时刻,相应的,发起站点接收响应站点以第三方向发送经第一节点反射的第二NDP帧,发起站点确定第二NDP帧的接收时刻。
步骤204:响应站点向发起站点发送第一位置测量报告,相应的,发起站点接收来自响应站点的第一位置测量报告,第一位置测量报告包括第一NDP帧的接收时刻、第二NDP帧的发送时刻以及第二方向。
其中,步骤201-步骤204执行精确时间测量,由于发起站点与响应站点交互的NDP帧均为以特定方向发送的帧,因此本申请中步骤201-步骤204可以理解为一次定向精确时间测量过程。
步骤205:发起站点以第四方向发送第三NDP帧经第二节点反射至响应站点,发起站点确定第三NDP帧的发送时刻,相应的,响应站点接收发起站点以第四方向发送经第二节点反射的第三NDP帧,响应站点确定第三NDP帧的接收时刻。
本申请实施例中,发起站点可通过调整天线阵列的中每个天线发射信号的相位和幅度,使得发出的第三NDP帧在第四方向上增强,而在其他方向上相互抵消,也可以通过定向天线,直接以第四方向定向发射第三NDP帧。
需要说明的是,本申请中对如何选取第二节点不做限定,发起站点在发起步骤205之前,可以以不同的方向探测目标物体,直至在第四方向上探测到可用的第二节点,便可执行步骤205。本申请对探测目标物体的探测技术不做限定,且,本申请中第四方向为不同于第一方向的探测方向。
步骤206:响应站点接收到发起站点以第四方向发送经第二节点反射的第三NDP帧后,确定第三NDP帧经第二节点反射到达响应站点的入射方向,也就是第五方向。
本申请实施例中,响应站点可通过天线阵列根据不同天线信号到达的时间差计算得到 第五方向,或者通过定向天线根据接收信号最强的方向推断得到第五方向,不做限定。
步骤207:响应站点以与第五方向相反的第六方向发送第四NDP帧经第二节点反射至发起站点,响应站点确定第四NDP帧的发送时刻,相应的,发起站点接收响应站点以第六方向发送经第二节点反射的第四NDP帧,发起站点确定第四NDP帧的接收时刻。
步骤208:响应站点向发起站点发送第二位置测量报告,相应的,发起站点接收来自响应站点的第二位置测量报告,第二位置测量报告包括第三NDP帧的接收时刻、第四NDP帧的发送时刻以及第五方向。
相应的,步骤205-步骤208也执行精确时间测量,由于发起站点与响应站点交互的NDP帧均为以特定方向发送的帧,因此本申请中步骤205-步骤208也可以理解为一次定向精确时间测量过程。值得注意,由于本申请实施例中第一方向与第四方向为不同的方向,因此本申请中步骤201-步骤204与步骤205-步骤208为两次不同的定向精确时间测量过程。
需要说明的是,上述以发起站点的位置未知,响应站点的位置已知为例对本申请提供的定位方法进行说明,当发起站点的位置已知,响应站点的位置未知时,本申请提供的定位方法仍然适用。下面以发起站点的位置已知,响应站点的位置未知为例,对采用本申请的定位方法确定响应站点的位置进行说明。
请参见图16a,为本申请实施例提供的又一种定位方法,该方法中以由响应站点确定自身的位置信息为例示意。该方法可以但不限于应用于图1所示的网络架构。参见图16a所示,该方法可包括如下处理流程。
步骤301-步骤303与步骤201-步骤203执行相同的方法,步骤301-步骤303执行流程可参见步骤201-步骤203中描述,此处不再赘述。
步骤304:发起站点向响应站点发送第三定位信息,所述第三定位信息包括第一NDP帧的发送时刻、第二NDP帧的接收时刻以及第一方向。
步骤305-步骤307与步骤205-步骤207执行相同的方法,步骤301-步骤303执行流程可参见步骤201-步骤203中描述,此处不再赘述。
步骤308:发起站点向响应站点发送第四定位信息,所述第四定位信息包括第三NDP帧的发送时刻、第四NDP帧的接收时刻以及第四方向。
步骤309:响应站点根据发起站点的位置信息、第三定位信息以及第四定位信息,确定响应站点的位置信息。其中,步骤309中发起站点的位置信息可以由响应站点预先从发起站点获取存储于本地,也可以由响应站点实时从发起站点获取,本申请不做限定。
本申请中响应站点如何根据发起站点的位置信息、第三定位信息以及第四定位信息,确定响应站点的位置信息,可参见上文中根据响应站点的位置信息、第一定位信息以及第二定位信息确定发起站点的位置信息的方法,此处不再赘述。
请参见图16b,为本申请实施例提供的又一种定位方法,该方法中以由发起站点确定响应站点的位置信息为例示意。该方法可以但不限于应用于图1所示的网络架构。参见图16b所示,该方法可包括如下处理流程。
步骤401-步骤408与步骤201-步骤208执行相同的方法,步骤401-步骤408执行流程可参见步骤201-步骤208中描述,此处不再赘述。
步骤409:发起站点根据发起站点的位置信息、第一定位信息以及第二定位信息,确定响应站点的位置信息。本申请中发起站点如何根据发起站点的位置信息、第一定位信息以及第二定位信息,确定响应站点的位置信息,可参见上文中根据响应站点的位置信息、 第一定位信息以及第二定位信息确定发起站点的位置信息的方法,此处不再赘述。
一个可能的示例中,若由响应站点触发所述定向精确时间测量,则在执行上述定向精确时间测量之前,发起站点还可以接收来自响应站点的触发帧,触发帧包括类型指示,类型指示用于指示触发帧的类型为定向测量类型,定向测量类型的触发帧用于触发发起站点执行定向精确时间测量,或者,类型指示用于指示触发帧的类型为定向范围测量类型,定向范围测量类型的触发帧用于触发发起站点执行定向精确时间测量。
另一个可能的示例中,若由发起站点触发所述定向精确时间测量,则在执行上述定向精确时间测量之前,发起站点还可以向响应站点发送NDP声明帧,NDP声明帧包括定向指示,定向指示用于指示参与精确时间测量的节点(本申请中的发起站点以及响应站点)执行定向精确时间测量,或者,定向指示用于指示参与精确时间测量的节点发送定向NDP帧来实现精确时间测量,或者,定向指示用于指示NDPA帧之后发送的NDP帧为定向帧。
本申请实施例中,发起站点与响应站点执行定向精确时间测量之前,还可以交互彼此是否支持定向精确时间测量的能力信息以及本次精确时间测量是否为定向精确时间测量的信息。示例性地,发起站点可以向响应站点发送请求帧,请求帧包括第一信息和第二信息,第一信息用于指示本次协商用于执行定向精确时间测量,第二信息用于指示发起站点支持定向精确时间测量,发起站点接收来自响应站点的响应于请求帧的响应帧,响应帧包括所述第一信息和第三信息,第三信息用于指示响应站点支持定向精确时间测量。需要说明的是,本申请以发起站点主动发起能力交互为例示意,当然也可以由响应站点主动发起能力交互,不做限定。
本申请考虑到一些响应站点的计算能力有限,在执行定向精确时间测量的过程中可能不能及时向发起站点反馈位置测量报告,故提出一种延迟测量机制。在该机制下,响应站点向发起站点发送延迟指示,延迟指示用于指示响应站点反馈位置测量报告的延时时长。可选的,响应站点可在发送所述响应帧时,在响应帧中携带所述延迟指示。一个可能的示例中,当延迟指示的取值为0时用于指示延时时长为0,当延迟指示的取值为非零值时用于指示延时时长的长度。本申请对于延时时长的单位不做限定,可根据应用场景适应确定。可选的,所述延时时长的单位可以为100毫秒或其他。
一种可能的实现方式中,由发起站点触发第一次定向精确时间测量,响应站点的计算能力有限,不能及时向发起站点反馈位置测量报告,响应站点在执行第一次定向精确时间测量之前,通过所述响应帧向发起站点发送所述延迟指示,以使发起站点在所述延迟指示指示的延迟时间后发起第二次定向精确时间测量,这样,响应站点便有足够的时间确定第一次定向精确时间测量的位置测量报告,进而响应站点可在所述第二次定向精确时间测量过程中,向发起站点发送第一次定向精确时间测量确定出的位置测量报告,值得注意,所述第一次定向精确时间测量与所述第二次定向精确时间测量的方向相同。基于该种实现,可选的,在发起站点执行第二次定向精确时间测量之前,向响应站点发送的NDP声明帧可以包括新旧方向指示,新旧方向指示用于指示在NDP声明帧之后发送的NDP帧的发送方向与在上次NDP声明帧之后发送的NDP帧的发送方向相同。可以理解,本申请中新旧方向指示仅作为一种指示的名称,对该名称不做限定,例如也可以描述为方向指示或方向一致性指示等。
本申请实施例上述定向精确时间测量方法可基于现有的FTM流程实现,当上述定向精确时间测量方法基于现有FTM流程实现时,为便于区分现有的FTM,可将基于现有FTM 流程实现的定向精确时间测量描述为定向FTM,其中将基于现有TB模式下的FTM实现的定向精确时间测量描述为TB模式下的定向FTM,将基于现有Non-TB模式下的FTM实现的定向精确时间测量描述为Non-TB模式下的定向FTM。下面以四个具体的实例,对定向FTM进行说明。本申请以下实施例均以ISTA到RSTA的方向为上行方向,RSTA到ISTA的方向为下行方向为例说明,相应的,ISTA向RSTA发送的NDP帧可以描述为UL NDP帧,RSTA向ISTA发送的NDP帧可以描述为DL NDP帧。
实例一
请参见图17a-图17c,图17a-图17c示出基于现有TB模式下的FTM实现的TB模式下的定向FTM流程示意图。其中,本申请中基于现有TB模式下的FTM实现的TB模式下的定向FTM,仍然沿用现有TB模式下的FTM流程,包括协商流程、测量流程和结果反馈流程,详见图2。图17a-图17c中以发起站点为具有天线阵列的ISTA(以下简称为ISTA)、响应站点为具有天线阵列的RSTA(以下简称为RSTA)为例示意。
以TB模式下的定向FTM的协商流程沿用现有FTM的协商流程为例,对本申请TB模式下的定向FTM的协商流程进行说明,其中现有FTM的协商流程详见图3中描述,图17a为本申请TB模式下的定向FTM的协商流程,包括如下步骤:
步骤501:ISTA在有定向FTM测量需求时,向RSTA发送初始FTM请求帧(initial FTM request),所述初始FTM请求帧中包括第一信息和第二信息,第一信息用于指示本次协商用于执行定向FTM,第二信息用于指示ISTA支持定向FTM。
可选的,所述第一信息和所述第二信息可以携带在所述初始FTM请求帧的预留比特。其中,所述初始FTM请求帧的结构如图4所示,B22、B23、B38、B39、B46以及B47为所述初始FTM请求帧的预留比特。示例性地,所述第一信息和所述第二信息可以携带在所述初始FTM请求帧的B22、B23、B38、B39、B46或B47中的任意两个比特。可选的,第一信息还可称为定向FTM请求指示,第二信息可以称为定向FTM支持指示。
可选的,所述第一信息和所述第二信息也可以通过新的消息携带,本申请不做限定。
步骤502:若RSTA可以执行定向FTM,则可在SIFS后向ISTA回复ACK帧。
步骤503:若RSTA可以执行定向FTM,在收到初始FTM请求帧后,向ISTA发送初始FTM测量帧以响应所述初始FTM请求帧,所述初始FTM测量帧中包括所述第一信息和第三信息,第三信息用于指示RSTA支持定向FTM。可选的,RSTA在收到初始FTM请求帧10毫秒后,向ISTA发送初始FTM测量帧以响应所述初始FTM请求帧。可选的,第三信息也可称为定向FTM支持指示。
可选的,所述第一信息和所述第三信息可以携带在所述初始FTM测量帧的预留比特。其中,所述初始FTM测量帧的结构如图4所示,B22、B23、B38、B39、B46以及B47为所述初始FTM测量帧的预留比特。示例性地,所述第一信息和所述第三信息可以携带在所述初始FTM测量帧的B22、B23、B38、B39、B46或B47中的任意两个比特。
可选的,所述第一信息和所述第三信息也可以通过新的消息携带,本申请不做限定。
步骤504:ISTA接收到所述初始FTM测量帧后,可在SIFS后向RSTA回复ACK帧,至此协商过程完成。
需要说明的是,上述以定向FTM协商流程沿用现有的FTM协商流程为例示意,当然本申请也可以重新定义FTM协商流程,重新定义的FTM协商流程可由RSTA主动发起,本申请对由哪个设备主动发起协商流程不做限定。
以TB模式下的定向FTM测量流程和结果反馈流程沿用现有TB模式下的FTM的测量流程和结果反馈流程为例,对本申请TB模式下的定向FTM测量流程和结果反馈流程进行说明,其中现有TB模式下的FTM的测量流程和结果反馈流程详见图6以及图7中相关描述,图17b为本申请TB模式下的定向FTM测量流程和结果反馈流程,可选的,ISTA为站点,RSTA为接入点,ISTA发送的NDP帧称为上行NDP(UL NDP)帧,RSTA发送的NDP帧称为下行NDP(DL NDP)帧。包括如下步骤:
轮询阶段包括:
步骤1:RSTA在其空闲的时间窗向ISTA发送TF定向测量触发(TF directional ranging poll)帧,通知ISTA可以开始测量。
步骤2:ISTA接收到RSTA发送的所述TF定向测量触发帧后,向RSTA发送同意接受数据(clear to send,CTS)至自身(CTS-to-self)帧以占据信道。
测量探测阶段包括:
步骤1:RSTA接收到所述CTS-to-self帧,过SIFS时间后向ISTA发送TF定向测量声明帧(TF directional ranging sounding),在所述TF定向测量声明帧中携带类型指示,所述类型指示用于指示所述TF定向测量声明帧的类型为定向测量类型或定向范围(directionla ranging)测量类型,所述TF定向测量声明帧用于触发所述ISTA执行定向FTM测量。
可选的,所述类型指示可以携带于TF定向测量声明帧中的触发类型(Trigger Type)字段,其中,所述TF定向测量声明帧的结构可参见图8a-图8c。示例性地,所述类型指示可以为所述Trigger Type的预留值。如表2所示,Trigger Type的预留值包括9-15,所述类型指示可以为Trigger Type的预留值9-15中的任意值,以指示所述TF定向测量声明帧的类型为定向测量类型或定向范围测量类型。参见表3所示,以类型指示为Trigger Type的预留值9为例示意。
表3
Figure PCTCN2020095378-appb-000010
Figure PCTCN2020095378-appb-000011
可选的,所述类型指示也可以通过新的消息携带,本申请不做限定。
步骤2:ISTA接收到所述定向测量声明帧过SIFS后,以第一方向发送定向UL NDP帧,所述定向UL NDP帧经第一节点反射至RSTA,RSTA接收所述定向UL NDP帧,且ISTA记录所述定向UL NDP帧的发送时刻;RSTA记录所述定向UL NDP帧的接收时刻,RSTA确定所述定向UL NDP帧经所述第一节点反射至RSTA时的入射方向,该方向即为上文中的第二方向,也可以理解为确定该方向对应的AoA。
步骤3:RSTA接收到所述定向UL NDP帧过SIFS时间后,向ISTA发送定向测量NDPA(directional ranging NDPA)帧,以通知ISTA继续定向测量。
步骤4:RSTA向ISTA发送所述定向测量NDPA帧过SIFS后,沿着所述第二方向的相反方向,向所述第一节点发送定向DL NDP帧,所述定向DL NDP帧经所述第一节点反射至所述ISTA,RSTA记录所述定向DL NDP帧的发送时刻。ISTA接收到所述定向DL NDP帧后,记录所述定向DL NDP帧的接收时刻,至此完成定向FTM测量过程。
上述具体的测量探测流程可参见图17c。
测量报告反馈阶段包括:
步骤1:RSTA向ISTA发送所述定向DL NDP帧过SIFS时间后,RSTA向ISTA发送LMR,LMR包含所述定向UL NDP帧的接收时刻、所述定向DL NDP帧的发送时刻以及第二方向或与第二方向对应的AoA。
上述为一次完整的定向FTM,若要采用本申请的定位方法实现定位,则需要至少执行两次不同方向的定向FTM,需要说明的是,在执行下一次定向FTM测量时,可以不再执行协商流程,而直接执行FTM测量和结果反馈流程。通过多次执行不同方向的定向FTM,ISTA可获得多个LMR,进而可根据多个LMR以及RSTA的位置信息确定自身位置信息,进一步的,在确定出ISTA的位置信息后,还可根据ISTA的位置信息以及RSTA的位置信息、第一方向对应的AoD以及第二方向对应的AoA确定第一节点的位置信息,具体的确定方法详见上文中描述,此处不再赘述。
请参见图17d,图17d示出基于现有Non-TB模式下FTM测量流程和结果反馈流程实现的Non-TB模式下的定向FTM测量流程和结果反馈流程示意图。其中,Non-TB模式下的定向FTM协商流程与上述图17a类似,不再赘述。图17d中以发起站点为具有天线阵列的ISTA(以下简称为ISTA)、响应站点为具有天线阵列的RSTA(以下简称为RSTA)为例示意。
以Non-TB模式下的定向FTM测量流程和结果反馈流程沿用现有Non-TB模式下的定向FTM测量流程和结果反馈流程为例进行说明,其中现有Non-TB模式下的定向FTM测量流程和结果反馈流程详见图10中描述,图17d为本申请Non-TB模式下的定向FTM测量流程和结果反馈流程,包括如下步骤:
测量探测阶段包括:
步骤1:ISTA向RSTA发送NDPA帧,所述NDPA帧包括定向指示,所述定向指示用于指示参与定向测量的节点执行定向FTM测量或指示NDPA帧之后发送的NDP帧为定向的,以通知RSTA开始执行定向FTM测量。
可选的,所述定向指示可以携带在所述NDPA帧结构的站点信息(STA info)字段的预留比特。其中,站点信息(STA info)字段结构可参见图12b。示例性地,所述定向指示 可以为STA info字段中的B26比特或B31比特。一种可能的实现中,当所述定向指示取值为1时指示参与定向测量的节点执行定向FTM测量或指示NDPA帧之后发送的NDP帧为定向的。另一种可能的实现中,当所述定向指示取值为0时指示参与测量的节点执行现有FTM测量或指示NDPA帧之后发送的NDP帧为全向的。
可选的,所述定向指示也可以通过新的消息携带,本申请不做限定。
步骤2:ISTA向RSTA发送所述NDPA帧过SIFS后,可向感知到的第一节点以第一方向发送定向UL NDP帧,所述定向UL NDP帧经所述第一节点反射至RSTA,ISTA可以记录所述定向UL NDP帧的发送时刻。
步骤3:RSTA接收到ISTA发送的所述定向UL NDP帧后,可记录所述定向UL NDP帧的接收时刻,并确定所述定向UL NDP帧经所述第一节点反射至RSTA时的入射方向,该方向即为上文中的第二方向,也可以理解为确定该方向对应的AoA,并在过SIFS后,沿着所述第二方向的相反方向,向所述第一节点发送定向DL NDP帧,所述定向DL NDP帧经所述第一节点反射至所述ISTA,RSTA记录所述定向DL NDP帧的发送时刻;ISTA接收到所述定向DL NDP帧后,记录所述定向DL NDP帧的接收时刻,至此完成定向FTM测量过程。
测量报告反馈阶段包括:
步骤1:RSTA向ISTA发送所述定向DL NDP帧过SIFS时间后,RSTA向ISTA发送LMR,LMR包含所述定向UL NDP帧的接收时刻、所述定向DL NDP帧的发送时刻以及第二方向或与第二方向对应的AoA。
上述为一次完整的定向FTM,若要采用本申请的定位方法实现定位,则需要至少执行两次不同方向的定向FTM,需要说明的是,在执行下一次定向FTM测量时,可以不再执行协商流程,而直接执行FTM测量和结果反馈流程。通过多次执行不同方向的定向FTM,ISTA可获得多个LMR,进而可根据多个LMR以及RSTA的位置信息确定自身位置信息,进一步的,在确定出ISTA的位置信息后,还可根据ISTA的位置信息以及RSTA的位置信息、第一方向对应的AoD以及第二方向对应的AoA确定第一节点的位置信息,具体的确定方法详见上文中描述,此处不再赘述。
实例二
上述实例一中以一个RSTA与ISTA交互实现定向FTM为例说明,本实例中以一个RSTA与多个ISTA实现TB模式下的定向FTM为例说明。其中,本实例的定向FTM协商流程与实例一相同,区别在于本实例中RSTA在协商流程中答应多个ISTA的定向测量请求。下面主要描述TB模式下,一个RSTA与多个ISTA的定向FTM测量和结果反馈流程。
请参见图18,其为TB模式下一种一个RSTA与多个ISTA的定向FTM测量和结果反馈流程示意图。如图18所示,多个ISTA分别为ISTA1、ISTA2……ISTAn,其中,n为大于等于2的整数。
轮询阶段包括:
步骤1:RSTA在其空闲的时间窗,向ISTA1至ISTAn多个ISTA发送TF定向测量触发(TF directional ranging poll)帧,触发多个ISTA参与定向FTM测量。可选的,RSTA可以以广播的方式同时触发多个ISTA参与定向FTM测量。
步骤2:多个ISTA接收到RSTA发送的所述TF定向测量触发帧后,分别向RSTA发送同意接受数据(clear to send,CTS)至自身(CTS-to-self)帧以占据信道,例如,ISTA1 可向RSTA发送CTS-to-ISTA1帧,ISTA2可向RSTA发送CTS-to-ISTA2帧,……,ISTAn可向RSTA发送CTS-to-ISTAn帧,依次类推,多个ISTA包括的全部ISTA均向RSTA发送CTS-to-self帧。
测量探测阶段包括:
步骤1:RSTA接收到每个ISTA发送的CTS-to-self帧后,依次向多个ISTA中的每个ISTA发送TF定向测量声明帧,在所述TF定向测量声明帧中携带类型指示,关于类型指示的相关描述可参见实例一。
步骤2:每个ISTA接收到所述定向测量声明帧过SIFS后,依次向感知到的第三方无源节点以特定方向发送定向UL NDP帧,每个定向UL NDP帧经第三方无源节点反射至RSTA,RSTA接收每个ISTA发送的定向UL NDP帧,且每个ISTA记录定向UL NDP帧的发送时刻;RSTA记录每个ISTA发送的定向UL NDP帧的接收时刻,RSTA针对每个ISTA确定与该ISTA对应的定向UL NDP帧经第三方无源节点反射至RSTA时的入射方向或者AoA。
实例二中,由于每个ISTA依次发送定向UL NDP帧,故RSTA可有更多的时间确定所述入射方向,且,针对发送定向UL NDP帧时间越靠前的ISTA,RSTA针对该ISTA有越多的时间确定所述入射方向。
步骤3:RSTA接收到最后一个到达的定向UL NDP帧过SIFS时间后,向多个ISTA发送定向测量NDPA(directional ranging NDPA)帧,为多个ISTA分配资源,可选的,该资源可以为频域资源,还可以为时频资源。可选的,RSTA可以以广播的方式向多个ISTA发送定向测量NDPA帧。
步骤4:RSTA向多个ISTA发送所述定向测量NDPA帧过SIFS后,针对每个ISTA沿着针对该ISTA确定的所述入射方向的相反方向,向第三方无源节点发送定向DL NDP帧,所述定向DL NDP帧经第三方无源节点反射至所述ISTA,RSTA记录每个定向DL NDP帧的发送时刻,每个ISTA接收到定向DL NDP帧后记录定向DL NDP帧的接收时刻。
测量报告反馈阶段包括:
步骤1:RSTA向多个ISTA发送定向DL NDP帧过SIFS时间后,RSTA向多个ISTA发送LMR,LMR至少包含针对ISTA1至ISTAn每个ISTA确定的所述定向UL NDP帧的入射方向、针对每个ISTA的定向UL NDP帧的接收时刻以及针对每个ISTA的定向DL NDP帧的发送时刻。通过该方法,RSTA可以通过一个LMR向多个ISTA发送测量结果,可提升空口效率。
实例二中针对每个ISTA执行定向FTM测量的过程可参见实例一,以及,针对每个ISTA的位置信息的确定方法可参见上文中描述,此处不再赘述。
实例三
本实例中仍以一个RSTA与多个ISTA实现TB模式下的定向FTM为例说明。其中,本实例的定向FTM协商流程与实例一相同,区别在于本实例中RSTA在协商流程中答应多个ISTA的定向测量请求。下面主要描述TB模式下,一个RSTA与多个ISTA的定向FTM测量和结果反馈流程。
请参见图19,其为TB模式下另一种一个RSTA与多个ISTA的定向FTM测量和结果反馈流程示意图,该实例与实例二的区别在于,实例二中RSTA依次触发多个ISTA中的每个ISTA发送定向NDP帧,该实例中RSTA触发多个ISTA同时发送定向NDP帧。如图 19所示,多个ISTA分别为ISTA1、ISTA2……ISTAn,其中,n为大于等于2的整数。
实例三中轮询阶段与实例二相同,可参见实例二描述。
测量探测阶段包括:
步骤1:RSTA接收到每个ISTA发送的CTS-to-self帧后,同时向多个ISTA中的每个ISTA发送TF定向测量声明帧,以为每个ISTA分配资源并触发多个ISTA同时发送定向UL NDP帧,在所述TF定向测量声明帧中携带类型指示,关于类型指示的相关描述可参见实例一。
步骤2:多个ISTA接收到所述定向测量声明帧过SIFS后,同时向感知到的第三方无源节点以特定方向发送定向UL NDP帧,每个定向UL NDP帧经第三方无源节点反射至RSTA,RSTA接收每个ISTA发送的定向UL NDP帧,且每个ISTA记录定向UL NDP帧的发送时刻;RSTA记录每个ISTA发送的定向UL NDP帧的接收时刻,RSTA针对每个ISTA确定与该ISTA对应的定向UL NDP帧经第三方无源节点反射至RSTA时的入射方向或者AoA。
步骤3:RSTA接收到每个定向UL NDP帧过SIFS时间后,向多个ISTA发送定向测量NDPA(directional ranging NDPA)帧,为多个ISTA分配资源。可选的,RSTA可以以广播的方式向多个ISTA发送定向测量NDPA帧。
步骤4:RSTA向多个ISTA发送所述定向测量NDPA帧过SIFS后,针对每个ISTA沿着针对该ISTA确定的所述入射方向的相反方向,向第三方无源节点发送定向DL NDP帧,所述定向DL NDP帧经第三方无源节点反射至所述ISTA,RSTA记录每个定向DL NDP帧的发送时刻,每个ISTA接收到定向DL NDP帧后记录定向DL NDP帧的接收时刻。
测量报告反馈阶段与实例二相同,RSTA将为每个ISTA确定的LMR合并发送,合并后的LMR至少包括针对ISTA1至ISTAn每个ISTA确定的所述定向UL NDP帧的入射方向、针对每个ISTA的定向UL NDP帧的接收时刻以及针对每个ISTA的定向DL NDP帧的发送时刻。这样,可提升空口效率。
实例三中针对每个ISTA执行定向FTM测量的过程可参见实例一,以及,针对每个ISTA的位置信息的确定方法可参见上文中描述,此处不再赘述。
实例四
在Non-TB模式下执行本申请的定向FTM测量方法时,可能存在一些计算能力有限的RSTA,这些RSTA无法不能及时向ISTA反馈位置测量报告,基于此,提供本申请实例四的方法,实例四提供一种延迟进行定向FTM测量的方案。实例四中以一个RSTA与一个ISTA交互实现定向FTM为例说明,下面主要描述本实例与实例一不同之处。
请参见图20,其为Non-TB模式下一种RSTA与ISTA的定向FTM测量和结果反馈流程示意图。
在协商流程中,RSTA可以向ISTA发送延迟指示,所述延迟指示用于指示RSTA反馈位置测量报告的延时时长。示例性地,当所述延迟指示的取值为0时用于指示所述延时时长为0,当所述延迟指示的取值为非零值时用于指示所述延时时长的长度。或者,所述延迟指示用于指示RSTA确定AoA所需的最短时长。示例性地,当所述延迟指示的取值为0时用于指示RSTA确定AoA所需的最短时长小于SIFS,当所述延迟指示的取值为非零值时用于指示RSTA确定AoA所需的最短时长。可选的,所述延迟指示可以携带于初始FTM测量帧的测量子元素(Ranging subelements)。例如,所述延迟指示可以为测量子元素 (ranging subelement)字段的一个或多个预留比特。可选的,所述延迟指示也可以携带于新的消息。一个示例中,FTM测量帧的non-TB Ranging subelement字段内的4个保留比特用来指示AoA计算所需时间,记为最小AOA准备(Min AoA ready)字段,当Min AoA ready的值为0时,表明RSTA具有在SIFS时间内完成AoA计算能力,不需要延迟反馈,当Min AoA ready的值为其他非零值时,表示一个RSTA完成AoA计算所需时间的长度,单位是100毫秒或其他。
可以理解,当延迟指示的取值为0时说明无需延时,本实例四主要针对需要延时的情况,因此实例四中以延迟指示为非零值为例说明。
步骤1:ISTA向RSTA发送NDPA帧,以触发RSTA开始执行定向FTM测量,所述NDPA帧包括定向指示,关于定向指示的描述可参见实例一。
步骤2:ISTA向RSTA发送所述NDPA帧过SIFS后,可向感知到的第一节点以第一方向发送定向UL NDP帧,所述定向UL NDP帧经所述第一节点反射至RSTA,ISTA可以记录所述定向UL NDP帧的发送时刻。
步骤3:RSTA接收到ISTA发送的所述定向UL NDP帧后,可记录所述定向UL NDP帧的接收时刻,并开始确定所述定向UL NDP帧经所述第一节点反射至RSTA时的入射方向,该方向即为上文中的第二方向,也可以理解为确定该方向对应的AoA。由于RSTA在协商过程向ISTA发送了延迟指示,表明RSTA无法在SIFS时间内完成AoA等信息的计算和准备,RSTA确定需要延迟反馈LMR。
步骤4:由于RSTA无法在SIFS时间内完成AoA的计算,故无法正常执行实例一中的定向FTM测量流程,此时,RSTA可向ISTA发送一个全向DL NDP(也就是现有FTM的DL NDP)来为RSTA确定AoA争取时间。
步骤5:进一步的,RSTA还可在发送全向DL NDP后过SIFS时间,向ISTA发送一个空的LMR,目的仍然是为RSTA确定AoA争取时间。需要说明的是,该步骤为可选执行步骤。若RSTA可在执行步骤4后确定出AoA,则无需再执行该步骤。
其中,若步骤5未执行,则在执行步骤4后,经过所述延时时长后ISTA可发起一次新的定向FTM测量,新的定向FTM测量流程与实例一相同,不同之处在于该新的定向FTM测量中,RSTA向ISTA反馈的LMR为根据上一次定向FTM测量交互的信息确定得到的。
需要说明的是,该新的定向FTM测量的方向与上一次定向FTM测量的方向可以相同,也可以不同。当两次测量的方向相同时,ISTA可根据本次新的定向FTM测量反馈的LMR确定自身位置信息,当两次测量的方向不同时,RSTA可计算本次定向FTM测量的AoA,以便在下次与本次方向相同的定向FTM测量流程中使用。
在该实例中,为便于RSTA做出相应的决策,例如,RSTA是将上次定向FTM测量确定的AoA在本次定向FTM测量流程反馈,还是确定本次定向FTM测量的AoA,在下次定向FTM测量流程中使用,ISTA可通过新旧方向指示通知RSTA本次发起的定向FTM测量的方向与上次发起的定向FTM测量的方向是否相同。
可选的,ISTA可以在每次发送的NDPA帧中携带新旧方向指示,所述新旧方向指示用于指示在所述NDPA帧之后发送的NDP帧的发送方向与在上次NDPA帧之后发送的NDP帧的发送方向是否相同。示例性地,所述新旧方向指示可以携带在所述NDPA帧结构的站点信息(STA info)字段的预留比特。其中,站点信息(STA info)字段结构可参见图12b。例如,所述新旧方向指示可以为STA info字段中的B26比特或B31比特。一种可能 的实现中,当所述新旧方向指示的取值为0时指示在所述NDPA帧之后发送的NDP帧的发送方向与在上次NDPA帧之后发送的NDP帧的发送方向不同,当所述新旧方向指示的取值为1时指示在所述NDPA帧之后发送的NDP帧的发送方向与在上次NDPA帧之后发送的NDP帧的发送方向相同。
可选的,所述新旧方向指示还可以携带在新的消息中。本申请对于将所述新旧方向指示携带于新的消息还是现有消息不做限定。
在采用集成的单元的情况下,图21示出了本申请实施例中所涉及的一种装置的可能的示例性框图,该装置2100可以以软件的形式存在,也可以为发起站点或响应站点,还可以为发起站点中的芯片或响应站点中的芯片。装置2100若为发起站点,可以用于执行上述实施例中涉及发起站点的任意方法和功能,装置2100若为响应站点,可以用于执行上述实施例中涉及响应站点的任意方法和功能。
装置2100包括:处理单元2102和通信单元2103,通信单元2103可以包括接收单元和发送单元。处理单元2102用于对装置2100的动作进行控制管理。通信单元2103用于支持装置2100与其他网络实体(例如响应站点)的通信。装置2100还可以包括存储单元2101,用于存储装置2100的程序代码和数据。
其中,处理单元2102可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元2103可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,例如可以包括:发起站点和响应站点之间的接口,和/或其他接口。存储单元2101可以是存储器。
一种可能的实现方式中,装置2100以软件的形式存在,也可以为发起站点,还可以为发起站点中的芯片。基于该实现方式,处理单元2102可以支持装置2100执行上文中各方法示例中发起站点的动作,例如支持装置2100执行图13中的步骤101至步骤103。通信单元2103可以支持装置2100与响应站点之间的通信,例如,通信单元2103可以支持装置2100执行图15中步骤201、步骤203、步骤204、步骤205、步骤207或步骤208中的任意步骤,图16a中步骤301、步骤303、步骤304、步骤305、步骤307、步骤308或步骤309中的任意步骤,图16b中步骤401、步骤403、步骤404、步骤405、步骤407、步骤408或步骤409中的任意步骤。
基于上述可能的实现方式,一种可能的设计中,通信单元2103还用于:接收来自所述响应站点的触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为定向测量类型,所述定向测量类型的触发帧用于触发所述发起站点执行定向精确时间测量。
基于上述可能的实现方式,一种可能的设计中,通信单元2103还用于:向所述响应站点发送NDP声明帧,所述NDP声明帧包括定向指示,所述定向指示用于指示参与精确时间测量的节点执行定向精确时间测量。
基于上述可能的实现方式,一种可能的设计中,通信单元2103还用于:向所述响应站点发送请求帧,所述请求帧包括第一信息和第二信息,所述第一信息用于指示本次协商用于执行定向精确时间测量,所述第二信息用于指示所述发起站点支持定向精确时间测量; 接收来自所述响应站点的响应于所述请求帧的响应帧,所述响应帧包括所述第一信息和第三信息,所述第三信息用于指示所述响应站点支持定向精确时间测量。
另一种可能的实现方式中,装置2100以软件的形式存在,也可以为响应站点,还可以为响应站点中的芯片。基于该实现方式,处理单元2102可以支持装置2100执行上文中各方法示例中响应站点的动作,例如支持装置2100执行图15中的步骤202或步骤206,图16a中的步骤302或步骤306,图16b中的步骤402或步骤406。通信单元2103可以支持装置2100与发起站点之间的通信,例如,通信单元2103可以支持装置2100执行图15中步骤201、步骤203、步骤204、步骤205、步骤207或步骤208中的任意步骤,图16a中步骤301、步骤303、步骤304、步骤305、步骤307、步骤308或步骤309中的任意步骤,图16b中步骤401、步骤403、步骤404、步骤405、步骤407、步骤408或步骤409中的任意步骤。
基于上述可能的实现方式,一种可能的设计中,通信单元2103还用于:向所述发起站点发送触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为定向测量类型,所述定向测量类型的触发帧用于触发所述发起站点执行定向精确时间测量。
基于上述可能的实现方式,一种可能的设计中,通信单元2103还用于:接收来自所述发起站点的NDP声明帧,所述NDP声明帧包括定向指示,所述定向指示用于指示参与精确时间测量的节点执行定向精确时间测量。
基于上述可能的实现方式,一种可能的设计中,通信单元2103还用于:接收来自所述发起站点的请求帧,所述请求帧包括第一信息和第二信息,所述第一信息用于指示本次协商用于执行定向精确时间测量,所述第二信息用于指示所述发起站点支持定向精确时间测量;向所述发起站点发送响应于所述请求帧的响应帧,所述响应帧包括所述第一信息和第三信息,所述第三信息用于指示所述响应站点支持定向精确时间测量。
当处理单元2102为处理器,通信单元2103为通信接口,存储单元2101为存储器时,本申请实施例所涉及的装置2100可以为图22所示的定位装置2200。
参阅图22所示,定位装置2200包括:一个或多个处理器2202、通信接口2203、存储器2201。可选的,定位装置2200还可以包括总线2204。其中,通信接口2203、处理器2202以及存储器2201可以通过总线2204相互连接;总线2204可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述总线2204可以分为地址总线、数据总线、控制总线等。为便于表示,图22中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于与上述方法实施例相同构思,本申请实施例还提供了一种计算机可读存储介质,其上存储有一些指令,这些指令被计算机调用执行时,可以使得计算机完成上述方法实施例、方法实施例的任意一种可能的设计中所涉及的方法。本申请实施例中,对计算机可读存储介质不做限定,例如,可以是RAM(random-access memory,随机存取存储器)、ROM(read-only memory,只读存储器)等。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,该计算机程序产品在被计算机调用执行时可以完成方法实施例以及上述方法实施例任意可能的设计中所涉及的方法。
基于与上述方法实施例相同构思,本申请还提供一种芯片,该芯片与收发器耦合,用 于完成上述方法实施例、方法实施例的任意一种可能的实现方式中所涉及的方法,其中,“耦合”是指两个部件彼此直接或间接地结合,这种结合可以是固定的或可移动性的,这种结合可以允许流动液、电、电信号或其它类型信号在两个部件之间进行通信。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (32)

  1. 一种定位方法,其特征在于,包括:
    发起站点获取第一定位信息,所述第一定位信息包括第一空数据包NDP帧的发送时刻、所述第一NDP帧的接收时刻、第二NDP帧的发送时刻、所述第二NDP帧的接收时刻、第一方向以及第二方向,其中,所述第一NDP帧为所述发起站点以所述第一方向发送经第一节点反射至响应站点的帧,所述第二方向为所述第一NDP帧经所述第一节点反射到达所述响应站点的入射方向,所述第二NDP帧为所述响应站点以第三方向发送经所述第一节点反射至所述发起站点的帧,所述第三方向与所述第二方向相反;
    所述发起站点获取第二定位信息,所述第二定位信息包括第三NDP帧的发送时刻、所述第三NDP帧的接收时刻、第四NDP帧的发送时刻、所述第四NDP帧的接收时刻、第四方向以及第五方向,其中,所述第三NDP帧为所述发起站点以所述第四方向发送经第二节点反射至所述响应站点的帧,所述第五方向为所述第三NDP帧经所述第二节点反射到达所述响应站点的入射方向,所述第四NDP帧为所述响应站点以第六方向发送经所述第二节点反射至所述发起站点的帧,所述第六方向与所述第五方向相反;
    所述发起站点根据所述响应站点的位置信息、所述第一定位信息以及所述第二定位信息,确定所述发起站点的位置信息。
  2. 如权利要求1所述的方法,其特征在于,所述发起站点获取第一定位信息,包括:
    所述发起站点执行定向精确时间测量以获取所述第一定位信息,包括:
    所述发起站点以所述第一方向发送所述第一NDP帧经所述第一节点反射至所述响应站点,确定所述第一NDP帧的发送时刻;
    所述发起站点接收所述响应站点以所述第三方向发送经所述第一节点反射的所述第二NDP帧,确定所述第二NDP帧的接收时刻;
    所述发起站点接收来自所述响应站点的第一位置测量报告,所述第一位置测量报告包括所述第一NDP帧的接收时刻、所述第二NDP帧的发送时刻以及所述第二方向;
    所述发起站点获取第二定位信息,包括:
    所述发起站点执行定向精确时间测量以获取所述第二定位信息,包括:
    所述发起站点以所述第四方向发送所述第三NDP帧经所述第二节点反射至所述响应站点,确定所述第三NDP帧的发送时刻;
    所述发起站点接收所述响应站点以所述第六方向发送经所述第二节点反射的所述第四NDP帧,确定所述第四NDP帧的接收时刻;
    所述发起站点接收来自所述响应站点的第二位置测量报告,所述第二位置测量报告包括所述第三NDP帧的接收时刻、所述第四NDP帧的发送时刻以及所述第五方向。
  3. 如权利要求1或2所述的方法,其特征在于,所述发起站点获取第一定位信息之前,还包括:
    所述发起站点接收来自所述响应站点的触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为定向测量类型,所述定向测量类型的触发帧用于触发所述发起站点执行定向精确时间测量。
  4. 如权利要求1或2所述的方法,其特征在于,所述发起站点获取第一定位信息之前,还包括:
    所述发起站点向所述响应站点发送NDP声明帧,所述NDP声明帧包括定向指示,所述定向指示用于指示参与精确时间测量的节点执行定向精确时间测量。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述发起站点获取第一定位信息之前,还包括:
    所述发起站点向所述响应站点发送请求帧,所述请求帧包括第一信息和第二信息,所述第一信息用于指示本次协商用于执行定向精确时间测量,所述第二信息用于指示所述发起站点支持定向精确时间测量;
    所述发起站点接收来自所述响应站点的响应于所述请求帧的响应帧,所述响应帧包括所述第一信息和第三信息,所述第三信息用于指示所述响应站点支持定向精确时间测量。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述发起站点根据所述响应站点的位置信息、所述第一定位信息以及所述第二定位信息,确定所述发起站点的位置信息,包括:
    所述发起站点根据所述第一NDP帧的发送时刻、所述第一NDP帧的接收时刻、所述第二NDP帧的发送时刻以及所述第二NDP帧的接收时刻,确定第一距离,所述第一距离为所述发起站点与所述第一节点之间的距离以及所述第一节点与所述响应站点之间的距离之和;
    所述发起站点根据所述第三NDP帧的发送时刻、所述第三NDP帧的接收时刻、所述第四NDP帧的发送时刻以及所述第四NDP帧的接收时刻,确定第二距离,所述第二距离为所述发起站点与所述第二节点之间的距离以及所述第二节点与所述响应站点之间的距离之和;
    所述发起站点根据所述响应站点的位置信息、所述第一距离、所述第二距离、所述第一方向、所述第二方向、所述第四方向以及所述第五方向,确定所述发起站点的位置信息。
  7. 如权利要求1至6任一项所述的方法,其特征在于,还包括:
    所述发起站点根据所述响应站点的位置信息、所述发起站点的位置信息、与所述第一方向对应的第一发射角AoD以及与所述第二方向对应的第一到达角AoA,确定所述第一节点的位置信息;
    和/或,
    所述发起站点根据所述响应站点的位置信息、所述发起站点的位置信息、与所述第四方向对应的第二AoD以及与所述第五方向对应的第二AoA,确定所述第二节点的位置信息。
  8. 如权利要求5所述的方法,其特征在于,所述响应帧还包括延迟指示,所述延迟指示用于指示所述响应站点反馈位置测量报告的延时时长。
  9. 如权利要求8所述的方法,其特征在于,当所述延迟指示的取值为0时用于指示所述延时时长为0,当所述延迟指示的取值为非零值时用于指示所述延时时长的长度。
  10. 如权利要求4所述的方法,其特征在于,所述NDP声明帧还包括新旧方向指示,所述新旧方向指示用于指示在所述NDP声明帧之后发送的NDP帧的发送方向与在上次NDP声明帧之后发送的NDP帧的发送方向相同。
  11. 一种定位方法,其特征在于,包括:
    响应站点接收发起站点以第一方向发送经第一节点反射的第一空数据包NDP帧,确定所述第一NDP帧的接收时刻;
    所述响应站点确定第二方向,所述第二方向为所述第一NDP帧经所述第一节点反射到达所述响应站点的入射方向;
    所述响应站点以第三方向发送第二NDP帧经所述第一节点反射至所述发起站点,确定所述第二NDP帧的发送时刻,所述第三方向与所述第二方向相反;
    所述响应站点向所述发起站点发送第一位置测量报告,所述第一位置测量报告包括所述第一NDP帧的接收时刻、所述第二NDP帧的发送时刻以及所述第二方向;
    所述响应站点接收所述发起站点以第四方向发送经第二节点反射的第三NDP帧,确定所述第三NDP帧的接收时刻;
    所述响应站点确定第五方向,所述第五方向为所述第三NDP帧经所述第二节点反射到达所述响应站点的入射方向;
    所述响应站点以第六方向发送第四NDP帧经所述第二节点反射至所述发起站点,确定所述第四NDP帧的发送时刻,所述第六方向与所述第五方向相反;
    所述响应站点向所述发起站点发送第二位置测量报告,所述第二位置测量报告包括所述第三NDP帧的接收时刻、所述第四NDP帧的发送时刻以及所述第五方向。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    所述响应站点向所述发起站点发送触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为定向测量类型,所述定向测量类型的触发帧用于触发所述发起站点执行定向精确时间测量。
  13. 如权利要求11所述的方法,其特征在于,还包括:
    所述响应站点接收来自所述发起站点的NDP声明帧,所述NDP声明帧包括定向指示,所述定向指示用于指示参与精确时间测量的节点执行定向精确时间测量。
  14. 如权利要求11至13任一项所述的方法,其特征在于,还包括:
    所述响应站点接收来自所述发起站点的请求帧,所述请求帧包括第一信息和第二信息,所述第一信息用于指示本次协商用于执行定向精确时间测量,所述第二信息用于指示所述发起站点支持定向精确时间测量;
    所述响应站点向所述发起站点发送响应于所述请求帧的响应帧,所述响应帧包括所述第一信息和第三信息,所述第三信息用于指示所述响应站点支持定向精确时间测量。
  15. 如权利要求14所述的方法,其特征在于,所述响应帧还包括延迟指示,所述延迟指示用于指示所述响应站点反馈位置测量报告的延时时长。
  16. 如权利要求15所述的方法,其特征在于,当所述延迟指示的取值为0时用于指示所述延时时长为0,当所述延迟指示的取值为非零值时用于指示所述延时时长的长度。
  17. 如权利要求13所述的方法,其特征在于,所述NDP声明帧还包括新旧方向指示,所述新旧方向指示用于指示在所述NDP声明帧之后发送的NDP帧的发送方向与在上次NDP声明帧之后发送的NDP帧的发送方向相同。
  18. 一种定位装置,应用于发起站点,其特征在于,包括处理单元;
    所述处理单元,用于获取第一定位信息,所述第一定位信息包括第一空数据包NDP帧的发送时刻、所述第一NDP帧的接收时刻、第二NDP帧的发送时刻、所述第二NDP帧的接收时刻、第一方向以及第二方向,其中,所述第一NDP帧为所述发起站点以所述第一方向发送经第一节点反射至响应站点的帧,所述第二方向为所述第一NDP帧经所述第一节点反射到达所述响应站点的入射方向,所述第二NDP帧为所述响应站点以第三方 向发送经所述第一节点反射至所述发起站点的帧,所述第三方向与所述第二方向相反;
    所述处理单元,还用于获取第二定位信息,所述第二定位信息包括第三NDP帧的发送时刻、所述第三NDP帧的接收时刻、第四NDP帧的发送时刻、所述第四NDP帧的接收时刻、第四方向以及第五方向,其中,所述第三NDP帧为所述发起站点以所述第四方向发送经第二节点反射至所述响应站点的帧,所述第五方向为所述第三NDP帧经所述第二节点反射到达所述响应站点的入射方向,所述第四NDP帧为所述响应站点以第六方向发送经所述第二节点反射至所述发起站点的帧,所述第六方向与所述第五方向相反;
    所述处理单元,还用于根据所述响应站点的位置信息、所述第一定位信息以及所述第二定位信息,确定所述发起站点的位置信息。
  19. 如权利要求18所述的装置,其特征在于,所述装置还包括发送单元和接收单元;
    所述处理单元采用如下方式获取第一定位信息:
    所述处理单元执行定向精确时间测量以获取所述第一定位信息:
    所述发送单元,用于以所述第一方向发送所述第一NDP帧经所述第一节点反射至所述响应站点,所述处理单元还用于确定所述第一NDP帧的发送时刻;
    所述接收单元,用于接收所述响应站点以所述第三方向发送经所述第一节点反射的所述第二NDP帧,所述处理单元还用于确定所述第二NDP帧的接收时刻;
    所述接收单元,还用于接收来自所述响应站点的第一位置测量报告,所述第一位置测量报告包括所述第一NDP帧的接收时刻、所述第二NDP帧的发送时刻以及所述第二方向;
    所述处理单元采用如下方式获取第二定位信息:
    所述处理单元执行定向精确时间测量以获取所述第二定位信息:
    所述发送单元,还用于以所述第四方向发送所述第三NDP帧经所述第二节点反射至所述响应站点,所述处理单元还用于确定所述第三NDP帧的发送时刻;
    所述接收单元,还用于接收所述响应站点以所述第六方向发送经所述第二节点反射的所述第四NDP帧,所述处理单元还用于确定所述第四NDP帧的接收时刻;
    所述接收单元,还用于接收来自所述响应站点的第二位置测量报告,所述第二位置测量报告包括所述第三NDP帧的接收时刻、所述第四NDP帧的发送时刻以及所述第五方向。
  20. 如权利要求19所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述响应站点的触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为定向测量类型,所述定向测量类型的触发帧用于触发所述发起站点执行定向精确时间测量。
  21. 如权利要求19所述的装置,其特征在于,所述发送单元还用于:
    向所述响应站点发送NDP声明帧,所述NDP声明帧包括定向指示,所述定向指示用于指示参与精确时间测量的节点执行定向精确时间测量。
  22. 如权利要求19至21任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述响应站点发送请求帧,所述请求帧包括第一信息和第二信息,所述第一信息用于指示本次协商用于执行定向精确时间测量,所述第二信息用于指示所述发起站点支持定向精确时间测量;
    所述接收单元还用于:
    接收来自所述响应站点的响应于所述请求帧的响应帧,所述响应帧包括所述第一信息和第三信息,所述第三信息用于指示所述响应站点支持定向精确时间测量。
  23. 如权利要求22所述的装置,其特征在于,所述响应帧还包括延迟指示,所述延迟指示用于指示所述响应站点反馈位置测量报告的延时时长。
  24. 如权利要求23所述的装置,其特征在于,当所述延迟指示的取值为0时用于指示所述延时时长为0,当所述延迟指示的取值为非零值时用于指示所述延时时长的长度。
  25. 如权利要求21所述的装置,其特征在于,所述NDP声明帧还包括新旧方向指示,所述新旧方向指示用于指示在所述NDP声明帧之后发送的NDP帧的发送方向与在上次NDP声明帧之后发送的NDP帧的发送方向相同。
  26. 一种定位装置,应用于响应站点,其特征在于,包括接收单元、处理单元和发送单元;
    所述接收单元,用于接收发起站点以第一方向发送经第一节点反射的第一空数据包NDP帧,确定所述第一NDP帧的接收时刻;
    所述处理单元,用于确定第二方向,所述第二方向为所述第一NDP帧经所述第一节点反射到达所述响应站点的入射方向;
    所述发送单元,用于以第三方向发送第二NDP帧经所述第一节点反射至所述发起站点,确定所述第二NDP帧的发送时刻,所述第三方向与所述第二方向相反;
    所述发送单元,还用于向所述发起站点发送第一位置测量报告,所述第一位置测量报告包括所述第一NDP帧的接收时刻、所述第二NDP帧的发送时刻以及所述第二方向;
    所述接收单元,还用于接收所述发起站点以第四方向发送经第二节点反射的第三NDP帧,确定所述第三NDP帧的接收时刻;
    所述处理单元,还用于确定第五方向,所述第五方向为所述第三NDP帧经所述第二节点反射到达所述响应站点的入射方向;
    所述发送单元,还用于以第六方向发送第四NDP帧经所述第二节点反射至所述发起站点,确定所述第四NDP帧的发送时刻,所述第六方向与所述第五方向相反;
    所述发送单元,还用于向所述发起站点发送第二位置测量报告,所述第二位置测量报告包括所述第三NDP帧的接收时刻、所述第四NDP帧的发送时刻以及所述第五方向。
  27. 如权利要求26所述的装置,其特征在于,所述发送单元还用于:
    向所述发起站点发送触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为定向测量类型,所述定向测量类型的触发帧用于触发所述发起站点执行定向精确时间测量。
  28. 如权利要求26所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述发起站点的NDP声明帧,所述NDP声明帧包括定向指示,所述定向指示用于指示参与精确时间测量的节点执行定向精确时间测量。
  29. 如权利要求26至28任一项所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述发起站点的请求帧,所述请求帧包括第一信息和第二信息,所述第一信息用于指示本次协商用于执行定向精确时间测量,所述第二信息用于指示所述发起站点支持定向精确时间测量;
    所述发送单元还用于:
    向所述发起站点发送响应于所述请求帧的响应帧,所述响应帧包括所述第一信息和第三信息,所述第三信息用于指示所述响应站点支持定向精确时间测量。
  30. 如权利要求29所述的装置,其特征在于,所述响应帧还包括延迟指示,所述延 迟指示用于指示所述响应站点反馈位置测量报告的延时时长。
  31. 如权利要求30所述的装置,其特征在于,当所述延迟指示的取值为0时用于指示所述延时时长为0,当所述延迟指示的取值为非零值时用于指示所述延时时长的长度。
  32. 如权利要求28所述的装置,其特征在于,所述NDP声明帧还包括新旧方向指示,所述新旧方向指示用于指示在所述NDP声明帧之后发送的NDP帧的发送方向与在上次NDP声明帧之后发送的NDP帧的发送方向相同。
PCT/CN2020/095378 2019-06-24 2020-06-10 一种定位方法和装置 WO2020259287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20830931.0A EP3972331B1 (en) 2019-06-24 2020-06-10 Positioning method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910550567.9 2019-06-24
CN201910550567.9A CN112135316B (zh) 2019-06-24 2019-06-24 一种定位方法和装置

Publications (1)

Publication Number Publication Date
WO2020259287A1 true WO2020259287A1 (zh) 2020-12-30

Family

ID=73849073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095378 WO2020259287A1 (zh) 2019-06-24 2020-06-10 一种定位方法和装置

Country Status (3)

Country Link
EP (1) EP3972331B1 (zh)
CN (1) CN112135316B (zh)
WO (1) WO2020259287A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113064414A (zh) * 2019-12-31 2021-07-02 青岛海高设计制造有限公司 一种用于送货装置的控制方法、装置及送货装置
WO2023077515A1 (en) * 2021-11-08 2023-05-11 Nokia Shanghai Bell Co., Ltd. Method and apparatus for positioning a terminal device
WO2023164936A1 (zh) * 2022-03-04 2023-09-07 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148081A (zh) * 2017-06-02 2017-09-08 重庆邮电大学 基于非线性约束最小二乘的单站定位方法
CN108064056A (zh) * 2016-11-08 2018-05-22 上海朗帛通信技术有限公司 一种ue、基站和服务中心的用于定位的方法和设备
EP3419325A1 (en) * 2016-03-16 2018-12-26 Huawei Technologies Co., Ltd. Distance measurement method using wireless fidelity (wi-fi), related device, and system
CN109844558A (zh) * 2016-10-10 2019-06-04 弗劳恩霍夫应用研究促进协会 移动通信网络中的用户设备定位

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10091616B2 (en) * 2005-12-15 2018-10-02 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
KR102004104B1 (ko) * 2013-03-06 2019-07-25 인텔 코포레이션 전파 시간 범위 결정을 위한 채널 정보 교환 시스템 및 방법
US10379196B2 (en) * 2016-02-28 2019-08-13 Qualcomm Incorporated Unicast and broadcast protocol for wireless local area network ranging and direction finding
EP3491866B1 (en) * 2016-08-01 2020-10-07 Telefonaktiebolaget LM Ericsson (PUBL) Communication nodes and methods therein for positioning in a wireless communications network
US10694499B2 (en) * 2016-08-08 2020-06-23 Intel IP Corporation Location estimation using multi-user multiple input multiple output in a wireless local area network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419325A1 (en) * 2016-03-16 2018-12-26 Huawei Technologies Co., Ltd. Distance measurement method using wireless fidelity (wi-fi), related device, and system
CN109844558A (zh) * 2016-10-10 2019-06-04 弗劳恩霍夫应用研究促进协会 移动通信网络中的用户设备定位
CN108064056A (zh) * 2016-11-08 2018-05-22 上海朗帛通信技术有限公司 一种ue、基站和服务中心的用于定位的方法和设备
CN107148081A (zh) * 2017-06-02 2017-09-08 重庆邮电大学 基于非线性约束最小二乘的单站定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3972331A4 *

Also Published As

Publication number Publication date
EP3972331B1 (en) 2023-11-22
EP3972331A4 (en) 2022-08-03
EP3972331A1 (en) 2022-03-23
CN112135316A (zh) 2020-12-25
CN112135316B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2022001713A1 (zh) 感知测量信息交互装置
WO2021004378A1 (zh) 一种感知测量方法及装置
WO2020259287A1 (zh) 一种定位方法和装置
RU2632475C1 (ru) Инициированное точкой доступа позиционирование по времени распространения
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
US9226260B2 (en) Initiator-conditioned fine timing measurement service request
US20220268912A1 (en) Method and apparatus for locating target object
US20130010617A1 (en) Relative position determination of wireless network devices
KR20170117057A (ko) 도달 각도 및 출발 각도를 갖는 ftm 프로토콜
CN107105498B (zh) 定位方法和装置
JP2004350088A (ja) 無線局の位置推定システム
JP2019507874A (ja) ワイヤレスローカルエリアネットワークの測距および方向検出のためのユニキャストおよびブロードキャストプロトコル
EP2948788A1 (en) Polled time-of-flight response
US10386451B2 (en) Method for an enhanced time of arrival positioning system
WO2021120023A1 (zh) 一种定位方法及装置
TWI736909B (zh) 定位系統及方法
WO2021195889A1 (zh) 一种关于定位置信度的控制方法及装置
WO2024000525A1 (zh) 感知方法、装置及系统
WO2023245664A1 (zh) 无线通信的方法和设备
WO2024016365A1 (zh) 协作感知测量方法、装置、设备及存储介质
WO2022206777A1 (zh) 一种通信方法及装置
WO2024027343A1 (zh) 定位方法及装置
WO2021134730A1 (zh) 一种定位方法、装置及系统
TW202339530A (zh) 一種測量方法、裝置及設備
CN116980823A (zh) 一种设备定位的方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020830931

Country of ref document: EP

Effective date: 20211216