WO2021004378A1 - 一种感知测量方法及装置 - Google Patents

一种感知测量方法及装置 Download PDF

Info

Publication number
WO2021004378A1
WO2021004378A1 PCT/CN2020/100019 CN2020100019W WO2021004378A1 WO 2021004378 A1 WO2021004378 A1 WO 2021004378A1 CN 2020100019 W CN2020100019 W CN 2020100019W WO 2021004378 A1 WO2021004378 A1 WO 2021004378A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
station
initiating
frame
responding
Prior art date
Application number
PCT/CN2020/100019
Other languages
English (en)
French (fr)
Inventor
刘辰辰
杜瑞
韩霄
于健
张美红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20836784.7A priority Critical patent/EP3986018A4/en
Publication of WO2021004378A1 publication Critical patent/WO2021004378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • G01S13/781Secondary Surveillance Radar [SSR] in general
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • This application relates to the field of radio frequency technology, and in particular to a sensing measurement method and device.
  • a location measurement method is defined in the Wi-Fi standard, that is, a fine time measurement (FTM).
  • FTM fine time measurement
  • the present application provides a perception measurement method and device to realize accurate perception of the position of a passive target.
  • a sensory measurement method includes: an initiating site acquiring first positioning information, wherein the first positioning information includes one or more of the following information: the location of the initiating site, the responding site The location of the initiating station, the emission direction of the sensing measurement signal sent by the initiating site and the incident direction of the sensing measurement signal arriving at the response site after being reflected by the detected target; or the initiating site acquires second positioning information, wherein the second The positioning information includes one or more of the following information: the location of the originating site, the location of the responding site, and one or more incident directions of the sensing measurement signal to the responding site and the corresponding arrival time; and The initiating station determines the location information of the detected target according to the first positioning information or the second positioning information.
  • the position of the detected target can be accurately obtained, and the position of the passive target can be sensed.
  • the initiating site acquiring the first positioning information includes: the initiating site sending the sensing measurement signal in a directional manner; and the initiating site receiving the first location measurement report from the responding site, where The first position measurement report includes at least the incident direction information of the sensory measurement signal arriving at the response site after being reflected by the detected target.
  • the initiating site can send the sensing measurement signal directionally, and the responding site can receive the sensing and measurement signal that is reflected by the detected target and reach the responding site. Incident direction information, so that the initiating station can accurately determine the position of the detected target based on the above incident direction information.
  • the initiating station acquiring the second positioning information includes: the initiating station sending the perception measurement signal in an omnidirectional manner, wherein the perception measurement signal passes through one or more paths and arrives in different ways. Direction to reach the responding node; and the initiating site receives a second location measurement report from the responding site, wherein the second location measurement report includes at least one or more of the sensory measurement signals reaching the responding site The incident direction and corresponding arrival time information.
  • the initiating site when the initiating site is not equipped with an antenna array with multiple Wi-Fi antennas, the initiating site sends a sensing measurement signal in all directions, and one or more detected targets in the surrounding environment reflect the sensing measurement signal and respond The station obtains one or more incident directions and corresponding arrival time information of the sensing measurement signal arriving at the responding station, and the initiating station can accurately determine the location of one or more detected targets based on the above information.
  • the method further includes: the initiating station sends a request frame to the responding station, the request frame including indication information of whether the request is a sensing measurement request and/or whether the initiating station supports Sensing measurement indication information; and the initiating station receives a response frame from the responding station, the response frame is used to respond to the request frame, the response frame includes the indication information of whether this response is a sensing measurement and/ Or the indication information of whether the responding station supports perception measurement.
  • the initiating station in the negotiation phase, can pass a request frame, and/or the responding station can pass a response frame, which can clearly indicate whether the request is a perception measurement request, and/or whether the initiating station/response station supports perception measurement .
  • the method further includes: the initiating station receives a trigger frame from the responding station, the trigger frame includes a type indication, and the type indication is used to indicate that the type of the trigger frame is perceptual measurement Type, the trigger frame of the sensing measurement type is used to trigger the initiating station to perform sensing measurement.
  • the responding station sends a trigger frame to explicitly instruct the initiating station to perform the sensing measurement.
  • the method further includes: the initiating station sends an announcement frame to the responding station, the announcement frame being used to notify the responding station to perform a perception measurement.
  • the initiating station sends a declaration frame to explicitly notify the responding station to perform the perception measurement.
  • the perception measurement signal includes a first indication value, and the first indication value is used to indicate that the perception measurement signal is sent directionally or sent omnidirectionally.
  • the measurement and calculation methods of the responding station are different. Therefore, it can be clearly indicated in the perception measurement signal that the perception measurement signal is directional transmission or omnidirectional transmission.
  • the response frame further includes an indication of whether to delay the feedback of the first position measurement report or the second position measurement report, or an indication of the required measurement time when the feedback is to be delayed.
  • the responding station fails to report the location measurement report during the first measurement, it can clearly report its own capability in the response frame, that is, whether to delay the feedback of the first location measurement report or the second location measurement report. The indication of the position measurement report, or the indication of the required measurement time when the feedback is to be delayed.
  • the trigger frame is also used to instruct to perform a new perception measurement or report the previous measurement report.
  • the initiating station can use a trigger frame to instruct the responding station to perform a new perception measurement or report the previous measurement report during the second measurement. To improve the accuracy of the report.
  • a perception measurement method comprising: a response station receives a perception measurement signal sent by an initiating station in a directional or omnidirectional manner; the response station measures the perception measurement signal; The responding station generates a first position measurement report according to the sensing measurement signal sent by the initiating site, where the first position measurement report at least includes that the sensing measurement signal reaches the responding station after being reflected by the detected target Or the response station generates a second position measurement report according to the perception measurement signal sent by the initiating station omnidirectionally, wherein the second position measurement report at least includes the arrival of the perception measurement signal in the response One or more incident directions of a station and corresponding arrival time information; the responding station sends the first position measurement report or the second position measurement report to the initiating station.
  • the method further includes: the responding station receives a request frame from the initiating station, the request frame including indication information of whether the request is a sensing measurement request and/or whether the initiating station supports Sensing measurement indication information; and the responding station sends a response frame to the initiating station, the response frame is used to respond to the request frame, and the response frame includes the indication information of whether the response is a sensing measurement and/or The indication information of whether the responding station supports perception measurement.
  • the method further includes: the responding station sends a trigger frame to the initiating station, the trigger frame includes a type indication, and the type indication is used to indicate that the type of the trigger frame is a perception measurement type The trigger frame of the sensing measurement type is used to trigger the initiating station to perform sensing measurement.
  • the method further includes: the responding station receives an announcement frame from the initiating station, where the announcement frame is used to notify the responding station to perform a perception measurement.
  • the perception measurement signal includes a first indication value, and the first indication value is used to indicate that the perception measurement signal is sent directionally or sent omnidirectionally.
  • the response frame further includes an indication of whether to delay the feedback of the first position measurement report or the second position measurement report, or an indication of the required measurement time when the feedback is to be delayed.
  • the trigger frame is also used to instruct to perform a new perception measurement or report the previous measurement report.
  • a perception measurement device in a third aspect, has the function of realizing the behavior of the perception measurement device in the foregoing method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the sensing measurement device includes: an acquiring unit configured to acquire first positioning information, where the first positioning information includes one or more of the following information: the location of the originating site, the response The location of the station, the emission direction of the sensing measurement signal sent by the initiating site, and the incident direction of the sensing measurement signal arriving at the response site after being reflected by the detected target; or the acquisition unit is configured to acquire second positioning information, where: The second positioning information includes one or more of the following information: the location of the originating site, the location of the responding site, and one or more incident directions of the sensing measurement signal to the responding site and the corresponding arrival time ; The determining unit is configured to determine the position information of the detected target according to the first positioning information or the second positioning information.
  • the perception measurement device includes: a transceiver, a memory, and a processor; wherein, the memory stores a set of program codes, and the processor is used to call the programs stored in the memory Code to perform the following operations: obtain first positioning information, where the first positioning information includes one or more of the following information: the location of the initiating site, the location of the responding site, the transmitting direction of the sensing measurement signal sent by the initiating site, and After being reflected by the detected target, the sensing measurement signal reaches the incident direction of the responding site; or acquiring second positioning information, where the second positioning information includes one or more of the following information: the location of the originating site, The location of the response site and the one or more incident directions and corresponding arrival times of the sensory measurement signal arriving at the response site; and determining the location according to the first positioning information or the second positioning information The location information of the detection target.
  • the implementation of the device can refer to the implementation of the method, and the repetition No longer.
  • a perception measurement device which has the function of realizing the behavior of the perception measurement device in the foregoing method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the sensing measurement device includes: a receiving unit for receiving a sensing measurement signal sent by an initiating station in a directional or omnidirectional manner; a measuring unit for measuring the sensing measurement signal Generating unit, configured to generate a first position measurement report according to the sensing measurement signal sent by the initiating site directionally, wherein the first position measurement report includes at least the sensing measurement signal that reaches the detected target after reflection The incident direction information of the responding station; or the generating unit, configured to generate a second position measurement report according to the sensing measurement signal sent by the initiating station omnidirectionally, wherein the second position measurement report includes at least the sensing One or more incident directions and corresponding arrival time information of the measurement signal arriving at the responding station; and a sending unit configured to send the first position measurement report or the second position measurement report to the initiating station.
  • the perception measurement device includes: a transceiver, a memory, and a processor; wherein, the memory stores a set of program codes, and the processor is used to call the programs stored in the memory Code to perform the following operations: receive the sensing measurement signal sent by the initiating site in a directional or omnidirectional manner; measure the sensing measurement signal; generate a first location measurement report based on the sensing measurement signal sent by the initiating site in a directional manner , Wherein the first position measurement report includes at least the incident direction information of the sensing measurement signal arriving at the response site after being reflected by the detected target; or generating the first position measurement signal based on the sensing measurement signal sent omnidirectionally by the initiating site 2.
  • a position measurement report, wherein the second position measurement report includes at least one or more incident directions of the sensory measurement signal arriving at the responding station and corresponding arrival time information; sending the first position to the originating station The position measurement report or the second position measurement report.
  • the implementation of the device can refer to the implementation of the method, and the repetition No longer.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the first aspect, the second aspect, or any one of the implementations described above. The method described.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the method described in the first aspect, the second aspect, or any one of the foregoing.
  • Figure 1 is a schematic diagram of the radar system
  • Figure 2 is a schematic diagram of the FTM workflow based on trigger mode
  • Figure 3 shows the detailed interaction flow of measurement and result feedback of the FTM protocol in TB mode
  • Figure 4 is a schematic diagram of the measurement and result feedback flow in the Non-TB mode
  • Figure 5 is a schematic diagram of the basic principle of FTM ranging in TB mode
  • Figure 6 is a schematic diagram of the basic principle of FTM ranging in Non-TB mode
  • FIG. 7 is a schematic flowchart of a sensing measurement method provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of yet another sensing measurement method provided by an embodiment of this application.
  • Figure 9 is a schematic diagram of a negotiation process between an initiating site and a responding site
  • FIG. 10 is a schematic diagram of a sensing measurement process in TB mode provided by this embodiment.
  • FIG. 11 is a schematic diagram of the sensing measurement process in the Non-TB mode provided by this embodiment.
  • Fig. 12 is a schematic diagram of an initiating station sending a sensing measurement signal directionally
  • FIG. 13 is a schematic flowchart of yet another sensing measurement method provided by an embodiment of this application.
  • Figure 14 is a schematic diagram of an initiating station sending sensing and measurement signals in all directions;
  • Fig. 15 is a schematic diagram of the sensing measurement process in which RSTA triggers multiple ISTAs simultaneously;
  • Figure 16 is a schematic diagram of the delayed feedback process
  • FIG. 17 is a schematic structural diagram of a sensing measurement device provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of yet another sensing measurement device provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of another sensing measurement device provided by an embodiment of the application.
  • Radar technology derived from World War II, is one of the key reconnaissance systems in the war, and the information it provides is the main basis for decision-making. Radar technology has been widely used in civil fields such as automobiles and security in recent years.
  • the basic technical principle of the radar is that the radar transmitting system sends out a specific electromagnetic wave signal.
  • the electromagnetic wave signal will be reflected when it encounters the target obstacle during the propagation process.
  • the radar transmitting system receives the reflected signal.
  • the signal is compared with the transmitted signal to calculate the target's distance, speed, azimuth and other information, and can even be imaged.
  • the distance of the target can be obtained by calculating the round-trip time of the signal; due to the Doppler effect, the frequency of the transmitted signal will change after being reflected by the moving target.
  • This feature can be used to obtain the moving speed of the target; in addition, it can also be based on the transmitted signal
  • the direction of the incident or the receiving direction of the reflected wave is used to determine the orientation information of the target.
  • Wi-Fi equipment has been widely used at present, and the main structure of Wi-Fi equipment is similar to the basic structure of radar equipment. Therefore, radar technology is introduced into the Wi-Fi system to enable Wi-Fi equipment to perform communication functions while also having The ability of radar detection will be a promising research direction.
  • Wi-Fi radar can be used in areas such as personnel positioning and motion recognition. Compared with traditional camera-based solutions, Wi-Fi radar has irreplaceable advantages in terms of privacy. At the same time, the application of radar technology in Wi-Fi can reuse equipment resources that currently exist widely.
  • the FTM method calculates the round-trip time (RTT) of the signal transmission between the two stations through the interaction between the initiator station (ISTA) and the responder station (RSTA), and then according to the electromagnetic wave In order to calculate the signal propagation distance between ISTA and RSTA.
  • RTT round-trip time
  • IAA initiator station
  • RSTA responder station
  • the FTM method calculates the round-trip time (RTT) of the signal transmission between the two stations through the interaction between the initiator station (ISTA) and the responder station (RSTA), and then according to the electromagnetic wave In order to calculate the signal propagation distance between ISTA and RSTA.
  • LOS line of sight
  • NLOS no line of sight
  • the FTM method mainly includes three processes, namely the negotiation process, the measurement process and the result feedback process.
  • Figure 2 is a schematic diagram of the FTM workflow in trigger-based (TB) mode.
  • ISTA When ISTA has FTM measurement requirements, it can send an FTM request frame to RSTA, and RSTA will reply to ISTA after receiving the FTM request frame.
  • ISTA and RSTA will also interact with each other's capabilities during the negotiation process, and at the same time, RSTA will assign a ranging ID to ISTA (if ISTA and RSTA are already associated, there is no need to allocate, and you can directly use the association Identification (associated ID)).
  • association Identification associated ID
  • RSTA sends a poll frame to ISTA during its idle time window, telling it to start measurement. .
  • the ISTA occupies the channel by sending a clear to send (CTS) frame.
  • CTS clear to send
  • RSTA sends a trigger frame for distance measurement
  • NDP null data packet
  • the RSTA that receives the NDP sends a ranging NDP announcement (NDPA) frame. Send another NDP frame after SIFS. After SIFS time, RSTA feeds back the measurement result to ISTA.
  • NDPA null data packet
  • ISTA will send an NDPA frame first, and then send a UL NDP frame after SIFS.
  • SIFS replies with a DL NDP frame, and after the SIFS time, RSTA sends the measurement result to ISTA.
  • the round-trip time of signal propagation between ISTA and RSTA can be obtained as:
  • the distance between ISTA and RSTA can be obtained as:
  • c is the speed of light. Integrating the FTM measurement results of ISTA and multiple RSTAs, ISTA can infer its own location information.
  • the above-mentioned FTM technology requires that the target to be located is an active device that supports the FTM protocol, and it is unable to locate passive devices and the surrounding environment.
  • whether the RTT measurement results are available depends on whether ISTA and RSTA are LOS. For NLOS conditions, some FTM measurement results cannot be used for positioning.
  • the embodiments of the present application provide a sensing measurement method and device, which can accurately obtain the position of a detected target and realize the detection of the position of a passive target.
  • a passive target refers to a device that does not need to transmit Wi-Fi signals, but reflects the received signal according to its physical characteristics.
  • FIG. 7 is a schematic flowchart of a sensing measurement method provided by an embodiment of this application. Illustratively, the method may include the following steps:
  • the initiating site acquires first positioning information, where the first positioning information includes one or more of the following information: the location of the initiating site, the location of the responding site, the transmitting direction of the sensing measurement signal sent by the initiating site, and the distance The incident direction of the sensing measurement signal arriving at the response site after the detection target is reflected; or
  • the initiating site acquires second positioning information, where the second positioning information includes one or more of the following information: the location of the initiating site, the location of the responding site, and the arrival of the sensing measurement signal to the responding site One or more incident directions and the corresponding arrival time.
  • the initiating site and the responding site are both equipped with antenna arrays of multiple Wi-Fi antennas, it can be determined that the initiating site transmits the sensing measurement signal directionally or omnidirectionally. If both the initiating site and the responding site are equipped with antenna arrays of multiple Wi-Fi antennas, the initiating site can send a sensing measurement signal to the detected target in a directional manner, and the initiating site will receive the sensing sent by the responding site including the sensing after being reflected by the detected target.
  • the measurement report of the incident direction information of the measurement signal arriving at the responding station obtains first positioning information.
  • the first positioning information may further include one or more of the following information: the location of the initiating station and the location of the responding station.
  • the initiating site can send sensing measurement signals omnidirectionally, and the initiating site receives the sensing measurement signal sent by the responding site and reaches one or the other of the responding site.
  • a plurality of incident directions and corresponding arrival times are used to obtain second positioning information.
  • the second positioning information may further include one or more of the following information: the location of the originating site and the location of the responding site.
  • the initiating station determines the location information of the detected target according to the first positioning information or the second positioning information.
  • the initiating station After the initiating station obtains the first positioning information or the second positioning information, it can determine the position information of the detected target.
  • the initiating site directional transmission mode there is a certain relationship between the location information of the initiating site, the location information of the detected target, and the transmission direction AoD of the sensing measurement signal, and the location information of the detected target and the location of the response site There is a certain relationship between the information and the incident direction AoA of the sensory measurement signal arriving at the response node. According to the above two relationships, the position information of the detected target can be determined.
  • the initiating station measures one or more incident directions AoA and the corresponding arrival time of the signal arriving at the responding station, as well as the location information of the initiating station and the responding station, and utilizes the incidence of other NLOS
  • the signal reaching the time difference between the direction and the incident direction of the LOS and the distance between the initiating site and the responding site can be calculated to obtain the transmission distance of the AoA corresponding signal corresponding to any NLOS. According to this distance, it can be known that the passive target reflecting the sensing measurement signal is in the future.
  • the originating site and the responding site are the focal points, and the NLOS transmission distance is the long axis of the ellipse, combined with the incident direction of the sensing measurement signal to the responding site, so as to determine the position of the detected target as the AoA incident direction of the sensing measurement signal.
  • the intersection of the ray and the ellipse is the focal points, and the NLOS transmission distance is the long axis of the ellipse, combined with the incident direction of the sensing measurement signal to the responding site, so as to determine the position of the detected target as the AoA incident direction of the sensing measurement signal.
  • the position of the detected target can be accurately obtained, and the position of the passive target can be sensed.
  • FIG. 8 is a schematic flowchart of yet another sensing measurement method provided by an embodiment of this application.
  • the method may include the following steps:
  • the initiating station sends a request frame to the responding station, where the request frame includes an indication of whether the request is a sensory measurement request and/or an indication of whether the initiating station supports sensory measurement.
  • the responding station receives the request frame.
  • ISTA When ISTA has a passive detection requirement, it can send a request frame to RSTA.
  • FIG. 9 a schematic diagram of the negotiation process between the initiating site and the responding site, the negotiation process can follow the negotiation process of the FTM protocol.
  • ISTA sends a request frame (or called an initial FTM request (initial FTM request)) to RSTA when there is a measurement requirement. If the responding station receives the request frame and can perform measurement, it will reply with an acknowledgement message to the initiating station after a short interface space (SIFS) time.
  • SIFS short interface space
  • the request frame includes an indication of whether this request is a sensory measurement request and an indication of whether the initiating station supports sensory measurement. That is, the initiating site indicates whether this is a perception measurement and whether the initiating site has the ability to support perception measurement.
  • the request frame carries a ranging parameter element field
  • the ranging parameter element field includes information such as available time period, capability, and demand.
  • the specific format of the ranging parameter element field and the ranging parameter field therein is as follows:
  • the ranging parameter element fields include Element ID, Length, Element ID Extension, Ranging Parameters and Ranging suselements fields.
  • the B8 and B9 fields in the ranging parameter field are used to indicate whether this request is an indication of a sensory measurement request.
  • the B8 field is used to initiate the station's indication to indicate whether this request is a perception measurement request
  • the B9 field is used to respond to the station's indication of whether this request is a perception measurement request.
  • the B8 and B9 fields are generally used in combination.
  • any one bit of B22, B23, B38, B39, B46, and B47 in the ranging parameter field can be used to indicate whether the initiating station supports perceptual measurement. For example, when any one of the above bits is "1”, it means that the initiating station supports perception measurement; when any of the above bits is "0”, it means that the initiating station does not support perception measurement; or vice versa, when any of the above bits is "0 ", it means that the initiating site supports sensing measurement; when any of the above bits is "1", it means that the initiating site does not support sensing measurement.
  • the responding station sends a response frame to the initiating station, where the response frame is used to respond to the request frame, and the response frame includes information indicating whether the response is a perception measurement and/or whether the responding station Support the indication information of perception measurement.
  • the initiating station receives the response frame from the responding station.
  • RSTA sends a response frame to ISTA within 10 milliseconds after receiving the request frame. After receiving the response frame, ISTA replies a response message to RSTA.
  • the response frame also carries the ranging parameter element field, and its specific format is the same as the ranging parameter element field carried in the request frame.
  • the element field of the ranging parameter includes information such as available time period, capability, and demand.
  • the field used to indicate whether the request is perceptual measurement and the indication used to indicate whether the perceptual measurement is supported in the response frame may be the same as the request frame, which will not be repeated here.
  • the responding station sends a trigger frame to the initiating station, where the trigger frame includes a type indication, and the type indication is used to indicate that the type of the trigger frame is a sensing measurement type, and the trigger frame of the sensing measurement type is used for Triggering the initiating site to perform sensing measurement.
  • the initiating station receives the trigger frame.
  • the RSTA sends a poll frame to the ISTA during its idle time window to inform the ISTA that the measurement can be started. After ISTA receives the information, it occupies the channel by sending a CTS frame. After that, RSTA sends a trigger frame for sensing measurement.
  • the specific format of the trigger frame is as follows:
  • the trigger frame includes a type indication
  • the type indication is used to indicate that the type of the trigger frame is a perception measurement type
  • the trigger frame of the perception measurement type is used to trigger the initiating station to perform a perception measurement.
  • sensing measurement type (Sensing)
  • S203 is based on the TB mode, and this embodiment may also be based on the Non-TB mode.
  • S203 can be replaced with: the initiating station sends an announcement frame to the responding station, where the announcement frame is used to notify the responding station to perform a perception measurement.
  • the response station receives the announcement frame.
  • FIG. 11 a schematic diagram of the sensing measurement process in the Non-TB mode provided in this embodiment, the ISTA sends an NDPA frame, and the NDPA frame is used to notify the RSTA to perform the sensing measurement.
  • the ISTA indicates whether the next NDP frame is a perceived NDP frame through B26 or B31 in the STA info field of the NDPA frame structure. For example, when the bit is "1", it indicates that the next frame is a perceptual NDP, and perceptual information such as AoA needs to be calculated; when the bit is "0", the NDP is a normal ranging NDP frame. Or conversely, when the bit is "0", it indicates that the next frame is a perceptual NDP, and perceptual information such as AoA needs to be calculated; when the bit is "1", the NDP is a normal ranging NDP frame.
  • the NDPA frame includes n STA info, and the reserved field B26 or B31 of any one of the STA info can be used to indicate whether the next NDP frame is a perceived NDP frame.
  • the initiating station sends the sensing measurement signal in a directional manner.
  • the responding station receives the sensing measurement signal.
  • the sensing measurement signal refers to a signal used to sense passive devices in the surrounding environment. Specifically, it can be to send an NDP frame.
  • the ISTA responds with an NDP frame after receiving the trigger frame.
  • Figure 11 in the process of perception measurement based on the Non-TB mode, ISTA sends an NDP frame after sending an announcement frame.
  • FIG. 12 a schematic diagram of the initiating station sending a sensing measurement signal directionally.
  • both ISTA and RSTA are equipped with antenna arrays of multiple Wi-Fi antennas.
  • the position coordinates of ISTA and RSTA are known, respectively ( x1, y1) and (x2, y2) (here only two-dimensional scenes are taken as examples, this application is also applicable to three-dimensional and higher-dimensional scenes), the dotted line in FIG. 12 represents the horizontal direction.
  • ISTA sends perceptual measurement signals in a specific direction AoD towards the detected target, and the signal is reflected by the detected target and received by RSTA.
  • the perception measurement signal may further include a first indication value, and the first indication value is used to indicate that the perception measurement signal is sent directionally or sent omnidirectionally.
  • the sensing measurement signal may be an NDP frame
  • the SIG-A beamformed field of the NDP frame is used to carry the above-mentioned first indicator value. For example, when the value of the beamformed field is "1", it indicates that ISTA is sent in a directional manner.
  • RSTA can only measure the incident direction of the NDP frame; when the value of the beamformed field is "0”, it indicates that ISTA is sent omnidirectionally, while RSTA requires Perform a joint measurement of the direction of incidence and the time of arrival.
  • the responding station measures the sensory measurement signal to obtain the incident direction of the sensory measurement signal arriving at the responding station after being reflected by the detected target.
  • the RSTA After receiving the above-mentioned sensing measurement signal, the RSTA obtains the incident direction of the sensing measurement signal arriving at the response site after being reflected by the detection target, that is, calculating the arrival angle AoA of the reflected signal.
  • the responding station sends a first position measurement report to the initiating station, where the first position measurement report includes at least the incident direction information of the sensing measurement signal arriving at the responding station after being reflected by the detected target .
  • the initiating station receives the first location measurement report.
  • the RSTA sends a first position measurement report to the ISTA after obtaining the incident direction of the sensing measurement signal after being reflected by the detection target and reaching the response site.
  • the first position measurement report includes the incident direction information of the sensory measurement signal arriving at the response site after being reflected by the detected target, specifically, the AoA of the above-mentioned reflected signal.
  • the format of the first position measurement report is as follows:
  • RSTA feeds back AoA for the perceptual measurement signal sent directionally.
  • S207 The initiating site determines the location information of the detected target according to the first positioning information.
  • ISTA After ISTA receives the above-mentioned first position measurement report, it obtains the AoA of the above-mentioned reflected signal. In addition, ISTA has obtained the position information of ISTA and RSTA, as well as the AoD of the sensing measurement signal sent by ISTA, and the following two etc. can be obtained according to the geometric relationship formula:
  • (x, y) is the position of the detected target.
  • the position of the detected target can be calculated:
  • this embodiment does not require that ISTA and RSTA must be in LOS conditions, as long as the detected target reaches ISTA and RSTA is in LOS conditions.
  • the originating station sends a sensing measurement signal in a directional manner
  • the responding station measures the sensing measurement signal reflected by the detected target, and obtains the incident direction of the reflected signal and reports it to the originating station.
  • the position of the detected target can be accurately obtained based on the location information of the originating site and the responding site, the transmission direction of the sensing measurement signal, and the incident direction of the reflected signal, and the perception of the location of the passive target can be realized.
  • FIG. 13 is a schematic flowchart of yet another sensing measurement method provided by an embodiment of this application.
  • the method may include the following steps:
  • the initiating station sends a request frame to the responding station, where the request frame includes an indication of whether this request is a sensory measurement request and an indication of whether the initiating station supports sensory measurement.
  • the responding station receives the request frame.
  • the responding station sends a response frame to the initiating station, where the response frame is used to respond to the request frame, and the response frame includes information indicating whether the request is a sensing measurement and whether the responding station supports sensing Measurement instructions.
  • the originating station receives the response frame.
  • step S202 For the specific implementation of this step, refer to step S202 in the embodiment shown in FIG. 8.
  • the responding station sends a trigger frame to the initiating station, where the trigger frame includes a type indication, and the type indication is used to indicate that the type of the trigger frame is a sensing measurement type, and the trigger frame of the sensing measurement type is used Triggering the initiating site to perform sensing measurement.
  • the initiating station receives the trigger frame.
  • S303 is based on the TB mode, and this embodiment may also be based on the Non-TB mode.
  • S303 can be replaced with: the initiating station sends an announcement frame to the responding station, and the announcement frame is used to notify the responding station to perform a perception measurement.
  • the response station receives the announcement frame.
  • the initiating station sends the sensing measurement signal in an omnidirectional manner, where the sensing measurement signal passes through one or more paths and arrives at the responding node in different directions of arrival.
  • the response station receives the sensing measurement signal sent by the initiating station and the signal reflected by the detected target.
  • the initiating site does not have an antenna array and does not have the ability to send signals directionally.
  • Figure 14 is a schematic diagram of the initiating site sending sensing and measuring signals omnidirectionally.
  • ISTA site A
  • RSTA site C
  • Figure B After reflection, reach RSTA (Site C).
  • the responding station measures the sensing measurement signal to generate a second position measurement report, where the second position measurement report includes one or more incident directions of the sensing measurement signal reaching the responding station and The corresponding arrival time.
  • RSTA can receive the sensing measurement signal sent by ISTA or reflected by the detection target. Therefore, RSTA can measure the sensing measurement signal sent by ISTA or reflected by the detection target, and obtain one of the sensing measurement signals that reach the responding station. Or multiple incident directions and corresponding arrival times to generate a second position measurement report.
  • the specific format of the second position measurement report is as follows:
  • the second location measurement report includes one or more AoA and corresponding ToF information.
  • A sends a perceptual measurement signal omnidirectionally, a part of the signal directly reaches C along the AC path, the arrival time is ToF0, and the other part of the signal is reflected by the passive target B to reach C, and the arrival time is ToF1.
  • the responding station sends the second location measurement report to the initiating station.
  • the initiating station receives the second location measurement report.
  • the RSTA After generating the above-mentioned second position measurement report, the RSTA sends the second position measurement report to the ISTA.
  • the initiating station determines the location information of the detected target according to the second positioning information.
  • the ISTA receives the second position measurement report sent by ISTA, so as to obtain one or more incident directions of the sensing measurement signal to the responding station and the corresponding arrival time.
  • ISTA can also obtain the position information of the ISTA and the position information of the RSTA .
  • the second positioning information includes the above-mentioned second position measurement report, as well as the position information of the ISTA and the position information of the RSTA.
  • the ISTA can determine the location information of the detected target according to the above-mentioned second positioning information.
  • the transmission distance of the signal corresponding to the i-th AoA can be calculated according to the following calculation formula:
  • ToF i is the time when the i-th AoA corresponding signal arrives at the responding end device
  • ToF 0 is the perception measurement signal reaching the response through the line of sight between the initiator and the responding end device
  • the time of the end device, c is the speed of light
  • the location of the initiating end device is (x1, y1)
  • the location of the responding end device is (x2, y2).
  • the position of the detected target is the intersection of the incident direction ray of the i-th AoA and the ellipse, where the ellipse is focused on the location of the originating end device and the location of the responding end device, And the long axis is equal to the D i .
  • AoA of multiple reflected signals can be obtained, so that multiple passive targets can be detected simultaneously.
  • the propagation speed of the signal is the speed of light c, then the sum of the length of the line segment BA and the length of BC is:
  • point B is on an elliptic curve with points A and C as the focal point and the major axis is equal to BA+BC.
  • the incident direction AoA of BC has been obtained, so that it can start from point C along the AoA direction Draw a straight line, and the intersection of the straight line and the above ellipse is the position of point B of the passive target.
  • the initiating station sends a sensing measurement signal omnidirectionally, and the responding station measures the sensing measurement signal sent by the initiating site and the sensing measurement signal reflected by the detected target to obtain the arrival of the sensing measurement signal
  • One or more incident directions and corresponding arrival times of the responding site are reported to the initiating site.
  • the initiating site can be based on the location information of the initiating site and the responding site, sensing the transmission direction of the measurement signal, and sensing the arrival of the measurement signal to one or the responding site. Multiple incident directions and corresponding arrival times can accurately obtain the position of the detected target and realize the perception of the position of the passive target.
  • the RSTA simultaneously triggers the sensing measurement process of multiple ISTAs.
  • the RSTA can allow multiple ISTA requests, and the RSTA can trigger multiple ISTAs to participate in the sensing measurement process.
  • RSTA triggers ISTA1 and ISTA2 to send directional NDP frames in turn, RSTA receives the signal transmitted by the detected target and measures the reflection The AoA of the signal, and then RSTA sends the measurement results of ISTA1 and ISTA2 together.
  • the RSTA triggers multiple ISTAs to perform a sensing measurement process, and sends the measurement results together, which improves the air interface efficiency.
  • the sensing measurement and result feedback phases allow RSTA to delay the feedback measurement report .
  • RSTA cannot complete the calculation of the measurement result immediately, so RSTA only sends an empty LMR to ISTA, and the next measurement after the minimum required time (Min AoA Ready) for AoA is calculated, RSTA Send the result of the last measurement to ISTA.
  • the response frame in the above embodiment, also includes an indication of whether to delay the feedback of the first position measurement report or the second position measurement report, or when An indication of the required measurement time when the feedback is delayed.
  • the 4 reserved bits in the Ranging subelement field in the aforementioned ranging parameter element field can be used to indicate the time required for AoA calculation, which is recorded as the Min AoA ready field.
  • the value of the reserved bit When the value of the reserved bit is 0, it indicates that the RSTA has the ability to complete the AoA calculation within the SIFS time, and does not need to delay feedback; when the value of the reserved bit is other non-zero values, it indicates that the time required for a RSTA to complete the AoA calculation Length, the unit is 100 milliseconds or other.
  • the trigger frame is also used to instruct to perform a new perception measurement or report the previous measurement report.
  • the B26/B31 bit of the STA Info field of the NDPA frame is used as an indication. When the bit is 0, it indicates that the detection is a new direction to be sensed. RSTA needs to reply with an empty LMR this time; If the bit is 1, it means that the last measurement result should be retrieved for sensing measurement, and RSTA feeds back the last LMR.
  • an embodiment of the present application also provides a perception measurement device 100, which can be applied to the foregoing FIG. 7, FIG. 8 or FIG.
  • the sensing measurement device 100 includes an acquiring unit 11 and a determining unit 12; exemplary:
  • the acquiring unit 11 is configured to acquire first positioning information, where the first positioning information includes one or more of the following information: the location of the initiating site, the location of the responding site, the transmitting direction of the sensing measurement signal sent by the initiating site, and The incident direction where the sensing measurement signal reaches the response site after being reflected by the detected target; or
  • the acquiring unit 11 is configured to acquire second positioning information, where the second positioning information includes one or more of the following information: the location of the originating site, the location of the responding site, and the arrival of the sensing measurement signal One or more incident directions and corresponding arrival times of the response station;
  • the determining unit 12 is configured to determine the position information of the detected target according to the first positioning information or the second positioning information.
  • the acquiring unit 11 includes:
  • the sending unit 111 is configured to send the sensing measurement signal in a directional manner
  • the receiving unit 112 is configured to receive a first position measurement report from the responding site, where the first position measurement report includes at least the incident direction of the sensing measurement signal arriving at the responding site after being reflected by the detected target information.
  • the sending unit 111 is configured to send the perception measurement signal in an omnidirectional manner, wherein the perception measurement signal reaches the responding node in different directions through one or more paths;
  • the receiving unit 112 is configured to receive a second position measurement report from the responding station, where the second position measurement report includes at least one or more incident directions of the sensory measurement signal reaching the responding station and The corresponding arrival time information.
  • the sending unit 111 is further configured to send a request frame to the responding station, the request frame including indication information of whether the request is a sensory measurement request and/or whether the initiating station supports sensory measurement Instruction information;
  • the receiving unit 112 is further configured to receive a response frame from the response station, the response frame is used to respond to the request frame, and the response frame includes the indication information of whether the response is a perception measurement and/or the Indication of whether the responding station supports perception measurement.
  • the receiving unit 112 is further configured to receive a trigger frame from the responding station, the trigger frame includes a type indication, and the type indication is used to indicate that the type of the trigger frame is a perception measurement type, The trigger frame of the sensing measurement type is used to trigger the initiating station to perform sensing measurement.
  • the sending unit 111 is further configured to send an announcement frame to the responding station, where the announcement frame is used to notify the responding station to perform a perception measurement.
  • the perception measurement signal includes a first indication value, and the first indication value is used to indicate that the perception measurement signal is sent directionally or sent omnidirectionally.
  • the response frame further includes an indication of whether to delay the feedback of the first position measurement report or the second position measurement report, or an indication of the required measurement time when the feedback is to be delayed.
  • the trigger frame is also used to instruct to perform a new perception measurement or report the previous measurement report.
  • the position of the detected target can be accurately obtained, and the position of the passive target can be sensed.
  • an embodiment of the present application further provides a perception measurement device 200, which can be applied to the foregoing FIG. 7, FIG. 8 or FIG.
  • the perception measuring device 200 includes: a receiving unit 21, a measuring unit 22, a generating unit 23, and a sending unit 24; for example:
  • the receiving unit 21 is configured to receive the sensing measurement signal sent by the initiating station in a directional or omnidirectional manner;
  • the measuring unit 22 is configured to measure the sensing measurement signal
  • the generating unit 23 is configured to generate a first position measurement report according to the sensing measurement signal sent by the initiating site directionally, where the first position measurement report includes at least the sensing measurement signal arriving at the location after being reflected by the detected target. State the incident direction information of the response site; or
  • the generating unit 23 is configured to generate a second location measurement report according to the perception measurement signal sent by the initiating station omnidirectionally, wherein the second location measurement report includes at least the information of the perception measurement signal reaching the responding station One or more incident directions and corresponding arrival time information;
  • the sending unit 24 is configured to send the first position measurement report or the second position measurement report to the originating station.
  • the receiving unit 21 is further configured to receive a request frame from the initiating site, the request frame including indication information of whether the request is a sensing measurement request and/or whether the initiating site supports sensing Measurement instructions;
  • the sending unit 24 is further configured to send a response frame to the initiating station, the response frame is used to respond to the request frame, and the response frame includes the indication information of whether the response is a perception measurement and/or the Indication of whether the responding station supports perception measurement.
  • the sending unit 24 is further configured to send a trigger frame to the initiating station, the trigger frame includes a type indication, and the type indication is used to indicate that the type of the trigger frame is a sensing measurement type, The trigger frame of the sensing measurement type is used to trigger the initiating station to perform sensing measurement.
  • the receiving unit 21 is further configured to receive an announcement frame from the initiating station, and the announcement frame is used to notify the responding station to perform a perception measurement.
  • the perception measurement signal includes a first indication value, and the first indication value is used to indicate that the perception measurement signal is sent directionally or sent omnidirectionally.
  • the response frame further includes an indication of whether to delay the feedback of the first position measurement report or the second position measurement report, or an indication of the required measurement time when the feedback is to be delayed.
  • the trigger frame is also used to instruct to perform a new perception measurement or report the previous measurement report.
  • the position of the detected target can be accurately obtained, and the position of the passive target can be sensed.
  • FIG. 19 is a schematic structural diagram of another sensing measurement device provided by an embodiment of the application. As shown in FIG. 19, the sensing measurement device 300 may include:
  • Transceiver 31, memory 32, and processor 33 (the number of processors 33 in the device may be one or more, and one processor is taken as an example in FIG. 19).
  • the transceiver 31, the memory 32, and the processor 33 may be connected by a bus or in other ways. In FIG. 19, a bus connection is taken as an example.
  • the processor 33 is configured to perform the function of the originating site in the embodiment shown in FIG. 7, FIG. 8, or FIG.
  • the processor 33 is configured to perform the function of the response station in the embodiment shown in FIG. 7, FIG. 8 or FIG.
  • the foregoing memory may be a physically independent unit, or may be integrated with the processor.
  • the communication device may also only include a processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through a circuit/wire for reading and executing the program stored in the memory.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard disk drive (HDD) or solid-state drive (SSD); the memory may also include a combination of the foregoing types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD Hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the foregoing types of memory.
  • the disclosed system, device, and method may be implemented in other ways.
  • the division of the unit is only a logical function division. In actual implementation, there can be other divisions.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not. carried out.
  • the displayed or discussed mutual coupling, or direct coupling, or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from one website, computer, server, or data center to another via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) A website, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium can be read-only memory (ROM), random access memory (RAM), or magnetic medium, such as floppy disk, hard disk, magnetic tape, magnetic disk, or optical medium, for example, Digital versatile disc (DVD) or semiconductor media, for example, solid state disk (SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种感知测量方法及装置。发起站点获取第一定位信息,其中,所述第一定位信息包括以下一个或多个信息:所述发起站点的位置、响应站点的位置、发起站点发送感知测量信号的发射方向和经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向;或者所述发起站点获取第二定位信息,其中,所述第二定位信息包括以下一个或多个信息:所述发起站点的位置、所述响应站点的位置和所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间;以及所述发起站点根据所述第一定位信息或所述第二定位信息,确定所述被探测目标的位置信息。采用本申请的方案,可以准确地获得被探测目标的位置,实现对无源目标的位置的感知。

Description

一种感知测量方法及装置
本申请要求于2019年7月11日提交中国国家知识产权局、申请号为201910625709.3、发明名称为“一种感知测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频技术领域,尤其涉及一种感知测量方法及装置。
背景技术
Wi-Fi标准中定义了一种位置测量方法,即精确时间测量(fine time measurement,FTM)。然而,该测量方法要求被探测目标是一个支持FTM协议的有源设备,无法对无源设备和周围环境进行定位感知。
发明内容
本申请提供一种感知测量方法及装置,以实现对无源目标的位置的准确感知。
第一方面,提供了一种感知测量方法,所述方法包括:发起站点获取第一定位信息,其中,所述第一定位信息包括以下一个或多个信息:所述发起站点的位置、响应站点的位置、发起站点发送感知测量信号的发射方向和经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向;或者所述发起站点获取第二定位信息,其中,所述第二定位信息包括以下一个或多个信息:所述发起站点的位置、所述响应站点的位置和所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间;以及所述发起站点根据所述第一定位信息或所述第二定位信息,确定所述被探测目标的位置信息。在该方面中,可以准确地获得被探测目标的位置,实现对无源目标的位置的感知。
在一个实现中,所述发起站点获取第一定位信息,包括:所述发起站点以定向方式发送所述感知测量信号;以及所述发起站点接收来自所述响应站点的第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息。在该实现中,当发起站点和响应站点都装备了多个Wi-Fi天线的天线阵列时,发起站点可以定向发送感知测量信号,响应站点可以接收被探测目标反射后感知测量信号到达响应站点的入射方向信息,从而发起站点根据上述入射方向信息,可以准确地确定被探测目标的位置。
在又一个实现中,所述发起站点获取第二定位信息,包括:所述发起站点以全向方式发送所述感知测量信号,其中,所述感知测量信号经过一个或多个路径以不同的到达方向到达所述响应节点;以及所述发起站点接收来自所述响应站点的第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息。在该实现中,当发起站点没有装备了多个Wi-Fi天线的天线阵列时,发起站点全向发送感知测量信号,周围环境中的一个或多个被探测目标对感知测量信号进行反射,响应站点获得感知测量信号到达响应站点的一个或多个入射方向及对应的 到达时间信息,发起站点根据上述信息,可以准确地确定一个或多个被探测目标的位置。
在又一个实现中,所述方法还包括:所述发起站点向所述响应站点发送请求帧,所述请求帧包括本次请求是否为感知测量请求的指示信息和/或所述发起站点是否支持感知测量的指示信息;以及所述发起站点接收来自所述响应站点的响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次响应是否为感知测量的指示信息和/或所述响应站点是否支持感知测量的指示信息。在该实现中,在协商阶段,发起站点可以通过请求帧,和/或响应站点可以通过响应帧,可以明确指示本次请求是否为感知测量请求,和/或发起站点/响应站点是否支持感知测量。
在又一个实现中,所述方法还包括:所述发起站点接收来自所述响应站点的触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。在该实现中,在基于TB模式的感知测量过程中,响应站点通过发送触发帧,明确地指示发起站点执行感知测量。
在又一个实现中,所述方法还包括:所述发起站点向所述响应站点发送声明帧,所述声明帧用于通知所述响应站点进行感知测量。在该实现中,在基于非TB模式的感知测量过程中,发起站点通过发送声明帧,明确地通知响应站点进行感知测量。
在又一个实现中,所述感知测量信号包括第一指示值,所述第一指示值用于指示所述感知测量信号是定向发送的或全向发送的。在该实现中,对于定向发送或全向发送,响应站点的测量和计算方式不同,因此,可以在感知测量信号中明确指示该感知测量信号是定向发送的或全向发送的。
在又一个实现中,所述响应帧还包括是否要延迟反馈所述第一位置测量报告或所述第二位置测量报告的指示,或当要延迟反馈时所需测量时间的指示。在该实现中,当响应站点在第一次测量时,无法上报位置测量报告时,可以在响应帧中明确上报自身的能力,即是否要延迟反馈所述第一位置测量报告或所述第二位置测量报告的指示,或当要延迟反馈时所需测量时间的指示。
在又一个实现中,所述触发帧还用于指示进行新的感知测量或上报前一次的测量报告。在该实现中,当响应站点在第一次测量时上报了空的位置测量报告,发起站点在第二次测量时,可以通过触发帧指示响应站点进行新的感知测量或上报前一次的测量报告,以提高报告上报的准确性。
第二方面,提供了一种感知测量方法,所述方法包括:响应站点接收发起站点以定向方式或以全向方式发送的感知测量信号;所述响应站点对所述感知测量信号进行测量;所述响应站点根据所述发起站点定向发送的感知测量信号,生成第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息;或所述响应站点根据所述发起站点全向发送的感知测量信号,生成第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息;所述响应站点向所述发起站点发送所述第一位置测量报告或所述第二位置测量报告。
在一个实现中,所述方法还包括:所述响应站点接收来自所述发起站点的请求帧,所述请求帧包括本次请求是否是感知测量请求的指示信息和/或所述发起站点是否支持感知 测量的指示信息;以及所述响应站点向所述发起站点发送响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次响应是否为感知测量的指示信息和/或所述响应站点是否支持感知测量的指示信息。
在又一个实现中,所述方法还包括:所述响应站点向所述发起站点发送触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。
在又一个实现中,所述方法还包括:所述响应站点接收来自所述发起站点的声明帧,所述声明帧用于通知所述响应站点进行感知测量。
在又一个实现中,所述感知测量信号包括第一指示值,所述第一指示值用于指示所述感知测量信号是定向发送的或全向发送的。
在又一个实现中,所述响应帧还包括是否要延迟反馈所述第一位置测量报告或所述第二位置测量报告的指示,或当要延迟反馈时所需测量时间的指示。
在又一个实现中,所述触发帧还用于指示进行新的感知测量或上报前一次的测量报告。
第三方面,提供了一种感知测量装置,该感知测量装置具有实现上述方法中感知测量装置行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实现方式中,所述感知测量装置包括:获取单元,用于获取第一定位信息,其中,所述第一定位信息包括以下一个或多个信息:所述发起站点的位置、响应站点的位置、发起站点发送感知测量信号的发射方向和经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向;或者所述获取单元,用于获取第二定位信息,其中,所述第二定位信息包括以下一个或多个信息:所述发起站点的位置、所述响应站点的位置和所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间;确定单元,用于根据所述第一定位信息或所述第二定位信息,确定所述被探测目标的位置信息。
另一种可能的实现方式中,所述感知测量装置包括:收发器、存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:获取第一定位信息,其中,所述第一定位信息包括以下一个或多个信息:所述发起站点的位置、响应站点的位置、发起站点发送感知测量信号的发射方向和经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向;或者获取第二定位信息,其中,所述第二定位信息包括以下一个或多个信息:所述发起站点的位置、所述响应站点的位置和所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间;以及根据所述第一定位信息或所述第二定位信息,确定所述被探测目标的位置信息。
基于同一发明构思,由于该装置解决问题的原理以及有益效果可以参见上述各可能的感知测量装置的方法实施方式以及所带来的有益效果,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
第四方面,提供了一种感知测量装置,该感知测量装置具有实现上述方法中感知测量装置行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实现方式中,所述感知测量装置包括:接收单元,用于接收发起站点以定向方式或以全向方式发送的感知测量信号;测量单元,用于对所述感知测量信号进行测量;生成单元,用于根据所述发起站点定向发送的感知测量信号,生成第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息;或所述生成单元,用于根据所述发起站点全向发送的感知测量信号,生成第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息;以及发送单元,用于向所述发起站点发送所述第一位置测量报告或所述第二位置测量报告。
另一种可能的实现方式中,所述感知测量装置包括:收发器、存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:接收发起站点以定向方式或以全向方式发送的感知测量信号;对所述感知测量信号进行测量;根据所述发起站点定向发送的感知测量信号,生成第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息;或根据所述发起站点全向发送的感知测量信号,生成第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息;向所述发起站点发送所述第一位置测量报告或所述第二位置测量报告。
基于同一发明构思,由于该装置解决问题的原理以及有益效果可以参见上述各可能的感知测量装置的方法实施方式以及所带来的有益效果,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面或任一个实现所述的方法。
第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面或任一个实现所述的方法。
附图说明
下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1为雷达系统示意图;
图2为基于触发模式下的FTM工作流程示意图;
图3为FTM协议在TB模式下的测量和结果反馈的详细交互流程;
图4为在Non-TB模式下的测量和结果反馈流程示意图;
图5为TB模式下的FTM测距的基本原理示意图;
图6为Non-TB模式下的FTM测距的基本原理示意图;
图7为本申请实施例提供的一种感知测量方法的流程示意图;
图8为本申请实施例提供的又一种感知测量方法的流程示意图;
图9为发起站点与响应站点的协商流程示意图;
图10为本实施例提供的TB模式下的感知测量流程示意图;
图11为本实施例提供的Non-TB模式下的感知测量流程示意图;
图12为发起站点定向发送感知测量信号的示意图;
图13为本申请实施例提供的又一种感知测量方法的流程示意图;
图14为发起站点全向发送感知测量信号的示意图;
图15为RSTA同时触发多个ISTA的感知测量流程示意图;
图16为延时反馈流程示意图;
图17为本申请实施例提供的一种感知测量装置的结构示意图;
图18为本申请实施例提供的又一种感知测量装置的结构示意图;
图19为本申请实施例提供的又一种感知测量装置的结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
下面对本申请可能涉及的几个概念进行描述:
(一)雷达技术
雷达技术,源自第二次世界大战,是战争中关键的侦察系统之一,它提供的信息是决策的主要基础。雷达技术近些年被广泛应用在汽车,安防等民用领域。
如图1所示的雷达系统示意图,雷达的基本技术原理是,雷达发射系统发出一个特定的电磁波信号,该电磁波信号在传播过程中遇到目标障碍物会发生反射,雷达发射系统接收反射回来的信号,与发射信号对比处理后计算出目标的距离,速度,方位等信息,甚至可以成像。其中目标的距离可以通过计算信号的往返时间获得;由于多普勒效应,发射信号经移动目标反射后会发生频率的改变,利用该特点可以获得目标的移动速度;此外,还可以根据发射信号的入射方向或反射波的接收方向来判断目标的方位信息。
雷达有多种分类方法,其中按照发射端和接收端是否在一起可以分为单站雷达,双基地雷达和多基地雷达。其中,单站雷达的发射端和接收端距离很近或者是一体化的,其结构简单,复杂度较低。而双基地雷达和多基地雷达的发射端和接收端之间的距离能与其探测距离相比拟,由于发射端和接收端的分离,往往需要解决发射和接收设备间的时间同步和多设备之间数据融合的难题,系统比较复杂,但是由于空间的多样性,双基地雷达和多基地雷达在分辨率和鲁棒性上有一定优势。
Wi-Fi设备目前已经被广泛使用,且Wi-Fi设备的主要结构和雷达设备的基本结构类似,所以在Wi-Fi系统中引入雷达技术,使得Wi-Fi设备在完成通信功能的同时也具有雷达探测的能力,将会是很有前景的研究方向。Wi-Fi雷达可以应用在人员定位,动作识别等领域,相对于传统的基于摄像头的方案,在隐私性等方面有着不可替代的优势。同时雷达技术在Wi-Fi中的应用,可以复用目前广泛存在的设备资源。
(二)、精确时间测量
FTM方法是通过发起站点(initiator station,ISTA)与响应站点(responder station,RSTA)之间的交互,计算出信号在两个站点间传输的往返时间(round-trip time,RTT),再依据电磁波的传播速度,从而计算出ISTA与RSTA之间信号传播距离。当ISTA与RSTA之间存在直视径(line of sight,LOS)时,信号传播距离即为ISTA与RSTA之间的距离,而当ISTA与 RSTA之间是非直视径(none line of sight,NLOS)的情况时,FTM的方法就无法奏效。
FTM的方法主要包括三个流程,分别是协商流程,测量流程和结果反馈流程。如图2所示的基于触发(trigger-based,TB)模式下的FTM工作流程示意图,当ISTA有FTM测量需求时,就可以向RSTA发送FTM请求帧,RSTA收到FTM请求帧之后会回复ISTA自己的可用时间段,协商过程中ISTA与RSTA也会交互双方的能力,同时RSTA会给ISTA分配一个测距标识(ranging ID)(如果ISTA与RSTA是已关联的话,无需分配,可以直接利用关联标识(associated ID))。协商流程完成后,ISTA和RSTA之间可以进行多次测量流程和结果反馈流程,而无需再进行协商流程。
FTM协议在TB模式下的测量和结果反馈的详细交互流程如图3所示,在TB模式下,RSTA在其空闲的时间窗发送轮询帧(poll frame)给ISTA,告诉它可以开始测量了。ISTA收到信息后通过发送允许发送(clear to send,CTS)帧占据信道。之后RSTA发送距离测量的触发(trigger)帧,ISTA收到后回复一个空数据包(null data packet,NDP)帧。收到NDP的RSTA发送一个测距的空数据包预告(NDP announcement,NDPA)帧。过SIFS后再发送一个NDP帧。再过SIFS时间RSTA反馈测量结果给ISTA。在Non-TB模式下的测量和结果反馈流程如图4所示,在Non-TB模式下,ISTA会先发送一个NDPA帧,过SIFS后发送UL NDP帧。RSTA收到NDP帧后过SIFS回复一个DL NDP帧,再过SIFS时间,RSTA发送测量结果给ISTA。
如图5所示的TB模式下的FTM测距的基本原理示意图,以及如图6所示的Non-TB模式下的FTM测距的基本原理,无论在TB模式还是Non-TB模式下,原理基本一样。在进行FTM测距时,ISTA和RSTA都需要记录测量期间所有的NDP帧的发送时间和接收时间。如图5所示的ISTA发送UL NDP帧时,ISTA记录该帧的发射时间t1,RSTA收到该帧后记录其收到该帧的时间t2,RSTA发送DL NDP时需要记录相应的发送时间t3,ISTA收到DL NDP帧后记录相应的接收时间t4,则根据公式(1)可以得到ISTA和RSTA之间信号传播的往返时间为:
RTT=[(t4-t1)-(t3-t2)]        (1)
再在公式(2)中结合电磁波的传播速度可以得到ISTA与RSTA之间的距离为:
Figure PCTCN2020100019-appb-000001
公式(2)中的c为光速。综合ISTA与多个RSTA的FTM测量结果,ISTA可以推断出自己的位置信息。
然而,上述FTM技术要求被定位目标是一个支持FTM协议的有源设备,无法对无源设备和周围环境进行定位感知。其次,RTT测量结果是否可用取决于ISTA与RSTA是否为LOS的情况,对于NLOS条件下,FTM一些测量结果是不能用来定位的。
本申请实施例提供一种感知测量方法及装置,可以准确地获得被探测目标的位置,实现对无源目标的位置的探测。
本实施例中,无源目标是指无需发射Wi-Fi信号的设备,而是根据其物理特性反射接收到的信号。
图7为本申请实施例提供的一种感知测量方法的流程示意图,示例性地,该方法可以包括以下步骤:
S101、发起站点获取第一定位信息,其中,所述第一定位信息包括以下一个或多个信息:所述发起站点的位置、响应站点的位置、发起站点发送感知测量信号的发射方向和经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向;或者
所述发起站点获取第二定位信息,其中,所述第二定位信息包括以下一个或多个信息:所述发起站点的位置、所述响应站点的位置和所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间。
本实施例中,根据发起站点和响应站点是否均装备了多个Wi-Fi天线的天线阵列,可以确定发起站点定向或全向发送感知测量信号。如果发起站点和响应站点均装备了多个Wi-Fi天线的天线阵列,则发起站点可以定向向被探测目标发送感知测量信号,则发起站点接收响应站点发送的包含被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息的测量报告,获取第一定位信息,所述第一定位信息还可以包括以下一个或多个信息:所述发起站点的位置、响应站点的位置。如果发起站点或响应站点未装备多个Wi-Fi天线的天线阵列,则发起站点可以全向发送感知测量信号,则发起站点接收响应站点发送的所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间,获取第二定位信息,所述第二定位信息还可以包括以下一个或多个信息:所述发起站点的位置、所述响应站点的位置。
S102、所述发起站点根据所述第一定位信息或所述第二定位信息,确定所述被探测目标的位置信息。
发起站点获取了上述第一定位信息或第二定位信息后,可以确定被探测目标的位置信息。
具体地,对于发起站点定向发送的方式,发起站点的位置信息、被探测目标的位置信息和感知测量信号的发射方向AoD之间存在一定的关系,且被探测目标的位置信息、响应站点的位置信息和感知测量信号到达响应节点的入射方向AoA之间存在一定的关系,根据上述两个关系,可以确定被探测目标的位置信息。
对于发起站点全向发送的方式,发起站点根据感知测量信号到达响应站点的一个或多个入射方向AoA及对应的到达时间,以及发起站点的位置信息和响应站点的位置信息,利用其它NLOS的入射方向与LOS的入射方向的信号达到时间差和发起站点与响应站点的距离,可以计算得到任一个NLOS对应的AoA对应信号的传输距离,依据该距离可以知道反射该感知测量信号的无源目标在以发起站点和响应站点为焦点,且以该NLOS传输距离为长轴的椭圆上,再结合感知测量信号到达响应站点的入射方向,从而确定被探测目标的位置为上述感知测量信号的AoA的入射方向射线与椭圆的交点。
根据本申请实施例提供的一种感知测量方法,可以准确地获得被探测目标的位置,实现对无源目标的位置的感知。
图8为本申请实施例提供的又一种感知测量方法的流程示意图,示例性地,该方法可以包括以下步骤:
S201、发起站点向响应站点发送请求帧,所述请求帧包括本次请求是否是感知测量请求的指示和/或所述发起站点是否支持感知测量的指示。
相应地,所述响应站点接收所述请求帧。
当ISTA有无源探测需求时,可以发送请求帧给RSTA。如图9所示的发起站点与响应站点的协商流程示意图,该协商流程可以沿用FTM协议的协商流程。如图9所示,ISTA在有测量需求时,发送一个请求帧(或者称为初始FTM请求(initial FTM request))给RSTA。响应站点若接收到该请求帧,并且可以进行测量,则在短帧间间隔(short interface space,SIFS)时间后给发起站点回复一个响应(acknowledgement)消息。
在本实施例中,请求帧包括本次请求是否是感知测量请求的指示和所述发起站点是否支持感知测量的指示。即发起站点指示本次是否是感知测量以及发起站点是否具备支持感知测量的能力。
具体地,请求帧中携带测距参数要素字段,该测距参数要素字段包括可用时间段、能力和需求等信息。该测距参数要素字段以及其中的测距参数(ranging parameters)字段的具体格式如下所示:
Figure PCTCN2020100019-appb-000002
测距参数要素字段包括Element ID、Length、Element ID Extension、Ranging Parameters和Ranging suselements字段。
其中,测距参数字段中的B8和B9字段用于指示本次请求是否是感知测量请求的指示。具体地,B8字段用于发起站点指示本次请求是否是感知测量请求的指示,B9字段用于响应站点指示本次请求是否是感知测量请求的指示。B8和B9字段一般联合使用。
另外,测距参数字段中的B22、B23、B38、B39、B46、B47中的任一个比特,可以用于指示发起站点是否支持感知测量的指示。例如,当上述任一个比特为“1”时,表示发起站点支持感知测量;当上述任一个比特为“0”时,表示发起站点不支持感知测量;或者反之,当上述任一个比特为“0”时,表示发起站点支持感知测量;当上述任一个比特为“1”时,表示发起站点不支持感知测量。
S202、所述响应站点向所述发起站点发送响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次响应是否为感知测量的指示信息和/或所述响应站点是否支持感知测量的指示信息。
相应地,所述发起站点接收来自所述响应站点的响应帧。
仍然参考图9,RSTA在接收到请求帧后的10毫秒内发送响应帧给ISTA。ISTA接收到响应帧后,给RSTA回复一个响应消息。
响应帧也携带测距参数要素字段,其具体格式与请求帧中携带的测距参数要素字段相同。该测距参数要素字段包括可用时间段、能力和需求等信息。且响应帧中用于指示本次请求是否为感知测量的字段和用于指示是否支持感知测量的指示可以与请求帧相同,在此不再赘述。
S203、所述响应站点向所述发起站点发送触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。
相应地,所述发起站点接收所述触发帧。
如图10所示的本实施例提供的TB模式下的感知测量流程示意图,RSTA在其空闲的时间窗发送poll frame给ISTA,告知ISTA可以开始测量了。ISTA收到信息后通过发送CTS帧占据信道。之后RSTA发送感知测量的触发帧(trigger frame)。
其触发帧的具体格式如下所示:
Figure PCTCN2020100019-appb-000003
(a)Trigger Frame format
Figure PCTCN2020100019-appb-000004
(b)Common Info detail in Trigger frame
Figure PCTCN2020100019-appb-000005
(c)Trigger Dependent Common Info detail
在本实施例中,触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。
具体地,在触发帧的触发类型(trigger type)中增加一种新的触发类型:感知测量类型(Sensing),如下表1所示:
表1
Figure PCTCN2020100019-appb-000006
以上S203是基于TB模式的,本实施例也可以基于Non-TB模式。则作为S203的可替换的一种实现方式,S203可以替换为:所述发起站点向所述响应站点发送声明帧,所述声明帧用于通知所述响应站点进行感知测量。相应的,所述响应站点接收所述声明帧。
具体地,如图11所示的本实施例提供的Non-TB模式下的感知测量流程示意图,ISTA发送一个NDPA帧,该NDPA帧用于通知RSTA进行感知测量。
具体地,ISTA通过NDPA帧结构的STA info字段内的B26或B31来指示接下来的NDP帧是否为感知的NDP帧。例如,当该比特为“1”时,指示接下来的帧为感知的NDP,需要计算AoA等感知信息;当该比特为“0”时,该NDP为普通测距的NDP帧。或者反之,当该比特为“0”时,指示接下来的帧为感知的NDP,需要计算AoA等感知信息;当该比特为“1”时,该NDP为普通测距的NDP帧。
NDPA帧及其STA info字段的具体格式如下所示:
Figure PCTCN2020100019-appb-000007
(a)NDPA帧结构
Figure PCTCN2020100019-appb-000008
(b)STA Info字段的结构
其中,NDPA帧包括n个STA info,可以采用其中的任一个STA info的保留字段B26 或B31来指示接下来的NDP帧是否为感知的NDP帧。
S204、发起站点以定向方式发送感知测量信号。
相应地,响应站点接收所述感知测量信号。
ISTA收到触发帧或向RSTA发送声明帧后,朝着感知的方向定向发送感知测量信号。该感知测量信号是指用于感知周围环境中的无源设备的信号。具体可以是发送一个NDP帧。具体地,如图10所示,在基于TB模式的感知测量过程中,ISTA收到触发帧后,回复一个NDP帧。如图11所示,在基于Non-TB模式的感知测量过程中,ISTA在发送声明帧后,发送一个NDP帧。
如图12所示的发起站点定向发送感知测量信号的示意图,在本实施例中,ISTA和RSTA均装备了多个Wi-Fi天线的天线阵列,ISTA和RSTA的位置坐标已知,分别是(x1,y1)和(x2,y2)(此处仅以二维场景作为示例,本申请同样适用于三维等更高维场景),图12中的虚线代表水平线方向。ISTA朝着被探测目标以特定方向AoD定向发送感知测量信号,信号经被探测目标反射后被RSTA接收。
需要说明的是,ISTA发送感知测量信号的方式不同,则RSTA进行测量的方式也不同,因此,需要明确指示ISTA发送感知测量信号的方式。在本实施例中,该感知测量信号还可以包括第一指示值,所述第一指示值用于指示所述感知测量信号是定向发送的或全向发送的。
具体地,该感知测量信号可以是NDP帧,将NDP帧的SIG-A的波束成形(beamformed)域用来携带上述第一指示值。例如,beamformed域的值为“1”时,指示ISTA是定向发送的,RSTA可以只测量NDP帧的入射方向;beamformed域的值为“0”时,指示ISTA是全向发送的,RSTA则需要进行入射方向和到达时间的联合测量。
S205、响应站点对所述感知测量信号进行测量,得到经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向。
RSTA接收到上述感知测量信号后,得到经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向,即计算反射信号的到达角度AoA。
S206、所述响应站点向所述发起站点发送第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息。
相应地,所述发起站点接收所述第一位置测量报告。
仍参考图10和图11,RSTA得到经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向后,向ISTA发送第一位置测量报告。该第一位置测量报告包括所述经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息,具体地,包括上述反射信号的AoA。
在本实施例中,第一位置测量报告的格式如下所示:
Figure PCTCN2020100019-appb-000009
在上述第一位置测量报告中,对于定向发送的感知测量信号,RSTA反馈AoA。
S207、所述发起站点根据第一定位信息,确定所述被探测目标的位置信息。
ISTA接收到上述第一位置测量报告后,获得上述反射信号的AoA,另外,ISTA已经获得了ISTA和RSTA的位置信息,以及ISTA发送感知测量信号的AoD,则可以根据几何关系得到如下两个等式:
Figure PCTCN2020100019-appb-000010
Figure PCTCN2020100019-appb-000011
其中,(x,y)是被探测目标的位置。
则根据上述两个等式,可以计算出被探测目标的位置:
Figure PCTCN2020100019-appb-000012
Figure PCTCN2020100019-appb-000013
需要说明的是,本实施例不要求ISTA和RSTA必须在LOS条件下,只要被探测目标到ISTA、RSTA是LOS条件即可。
根据本申请实施例提供的一种感知测量方法,发起站点通过定向发送感知测量信号,响应站点对被探测目标反射的感知测量信号进行测量,获得反射信号的入射方向并报告给发起站点,发起站点可以基于发起站点和响应站点的位置信息、感知测量信号的发射方向以及反射信号的入射方向,准确地获得被探测目标的位置,实现对无源目标的位置的感知。
图13为本申请实施例提供的又一种感知测量方法的流程示意图,示例性地,该方法可以包括以下步骤:
S301、发起站点向响应站点发送请求帧,所述请求帧包括本次请求是否是感知测量请求的指示和所述发起站点是否支持感知测量的指示。
相应地,所述响应站点接收所述请求帧。
该步骤的具体实现可参考图8所示实施例的步骤S201。
S302、所述响应站点向所述发起站点发送响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次请求是否为感知测量的指示信息和所述响应站点是否支持感知测量的指示信息。
相应地,所述发起站点接收所述响应帧。
该步骤的具体实现可参考图8所示实施例的步骤S202。
S303、所述响应站点向所述发起站点发送触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。
相应地,所述发起站点接收所述触发帧。
该步骤的具体实现可参考图8所示实施例的步骤S203。
以上S303是基于TB模式的,本实施例也可以基于Non-TB模式。则作为S303的可替换的一种实现方式,S303可以替换为:所述发起站点向所述响应站点发送声明帧,所述声明帧用于通知所述响应站点进行感知测量。相应的,所述响应站点接收所述声明帧。
S304、所述发起站点以全向方式发送所述感知测量信号,其中,所述感知测量信号经过一个或多个路径以不同的到达方向到达所述响应节点。
相应地,所述响应站点接收所述发起站点发送的所述感知测量信号,以及经被探测目标反射的信号。
本实施例中,发起站点没有天线阵列,不具备定向发送信号的能力。如图14所示的发起站点全向发送感知测量信号的示意图,ISTA(站点A)全向发送感知测量信号,一部分信号直接打到RSTA(站点C),另一部分信号经被探测目标(图中B)反射后到达RSTA(站点C)。
S305、所述响应站点对所述感知测量信号进行测量,生成第二位置测量报告,其中,所述第二位置测量报告包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间。
RSTA可以接收到ISTA发送的或被探测目标反射的感知测量信号,因此,RSTA可以对ISTA发送的或被探测目标反射的感知测量信号进行测量,获得所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间,从而生成第二位置测量报告。
对于全向探测,第二位置测量报告的具体格式如下:
Figure PCTCN2020100019-appb-000014
该第二位置测量报告中包括一个或多个AoA和相应的ToF信息。
具体地,如图14所示,A全向发送一个感知测量信号,一部分信号沿AC路径直接到达C,到达时间为ToF0,另一部分信号经无源目标B反射后到达C,到达时刻为ToF1。
S306、所述响应站点向所述发起站点发送所述第二位置测量报告。
相应地,发起站点接收所述第二位置测量报告。
RSTA在生成上述第二位置测量报告后,向ISTA发送该第二位置测量报告。
S307、所述发起站点根据第二定位信息,确定所述被探测目标的位置信息。
ISTA接收到ISTA发送的第二位置测量报告,从而获得感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间,另外,ISTA还可以获得ISTA的位置信息和RSTA的位置信息。第二定位信息包括上述第二位置测量报告,以及ISTA的位置信息和RSTA的位置信息。
ISTA根据上述第二定位信息,可以确定被探测目标的位置信息。
具体地,首先可以根据如下计算公式计算得到第i个AoA对应信号的传输距离:
Figure PCTCN2020100019-appb-000015
其中,ToF i为第i个AoA对应信号到达所述响应端设备的时间,ToF 0为所述感知测量信号通过所述发起端设备和所述响应端设备之间的直视径到达所述响应端设备的时间,c为光速,所述发起端设备的位置为(x1,y1),所述响应端设备的位置为(x2,y2)。
然后,确定所述被探测目标的位置为上述第i个AoA的入射方向射线与椭圆的交点,其中,所述椭圆是以所述发起端设备所在位置和所述响应端设备所在位置为焦点,且长轴等于所述D i
需要说明的是,对于全向探测,可以获得多个反射信号的AoA,从而可以实现对多个无源目标同时探测。
仍参考图14,信号的传播速度为光速c,则线段BA的长度与BC的长度之和为:
BA+BC=(ToF1-ToF0)*c+AC
根据该距离,可以知道B点在一个以A点和C点为焦点且长轴等于BA+BC的椭圆曲线上,另外,BC的入射方向AoA已获得,从而可以从C点出发,沿AoA方向画一条直线,直线与上述椭圆的交点即为无源目标B点的位置。
根据本申请实施例提供的一种感知测量方法,发起站点通过全向发送感知测量信号,响应站点对发起站点发送的感知测量信号和被探测目标反射的感知测量信号进行测量,获得感知测量信号到达响应站点的一个或多个入射方向及对应的到达时间,并报告给发起站点,发起站点可以基于发起站点和响应站点的位置信息、感知测量信号的发射方向以及感知测量信号到达响应站点的一个或多个入射方向及对应的到达时间,准确地获得被探测目标的位置,实现对无源目标的位置的感知。
在另外的实施例中,如图15所示的RSTA同时触发多个ISTA的感知测量流程示意图,RSTA在上述协商阶段可以答应多个ISTA的请求,RSTA可以触发多个ISTA参与感知测量过程。如图15所示,以基于TB模式的RSTA同时触发多个ISTA的感知测量流程为例,RSTA依次触发ISTA1和ISTA2发送定向的NDP帧,RSTA接收经被探测目标发射后的信号,并测量反射信号的AoA,之后RSTA将ISTA1和ISTA2的测量结果一起发送出去。
采用本实施例的方案,RSTA触发多个ISTA进行感知测量流程,并一起发送测量结果,提升了空口效率。
在另外的实施例中,如图16所示的延时反馈流程示意图,考虑到部分RSTA可能无法在SIFS时间内完成AoA等测量结果的计算,所以感知测量和结果反馈阶段允许RSTA延迟反馈测量报告。在第一次测量时,RSTA由于无法立即完成测量结果的计算,故RSTA只 发送一个空的LMR给ISTA,再经过计算AoA的最小所需时间(Min AoA Ready)后的下一次测量时,RSTA将上一次测量的结果发送给ISTA。
为支持该延迟反馈,在上述实施例中的响应帧中进行指示,即所述响应帧还包括是否要延迟反馈所述第一位置测量报告或所述第二位置测量报告的指示,或当要延迟反馈时所需测量时间的指示。具体地,可以利用上述测距参数要素字段中的Ranging subelement字段内的4个保留比特用来指示AoA计算所需时间,记为Min AoA ready字段。当该保留比特的值为0时,表明RSTA具有在SIFS时间内完成AoA计算能力,不需要延迟反馈;当该保留比特的值为其他非零值时,表示一个RSTA完成AoA计算所需时间的长度,单位是100毫秒或其他。
基于Non-TB模式的Ranging subelement字段的具体格式如下:
Figure PCTCN2020100019-appb-000016
(a)Non-TB Specific Parameters subelement format
Figure PCTCN2020100019-appb-000017
(b)TB Specific Parameters subelement format
此外,对于定向发送NDP探测信号的情况下,为使RSTA能够区分本次是新的感知探测,可回复空的LMR,还是承接上次测量,需要上报上一次的测量结果,在上述触发帧中可以进行指示,即所述触发帧还用于指示进行新的感知测量或上报前一次的测量报告。具体地,利用NDPA帧的STA Info字段的B26/B31比特作为指示,当该比特为0时,表示该次探测是一个新的要感知的方向,RSTA本次需回复一个空的LMR;若该比特为1,则表示感测测量要取回上次测量结果,RSTA反馈上一次的LMR。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
基于上述实施例中的感知测量方法的同一构思,如图17所示,本申请实施例还提供了一种感知测量装置100,该感知测量装置可应用于上述图7、图8或图13所述的感知测量方法中。该感知测量装置100包括获取单元11、确定单元12;示例性的:
获取单元11,用于获取第一定位信息,其中,所述第一定位信息包括以下一个或多个信息:所述发起站点的位置、响应站点的位置、发起站点发送感知测量信号的发射方向和经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向;或者
所述获取单元11,用于获取第二定位信息,其中,所述第二定位信息包括以下一个或多个信息:所述发起站点的位置、所述响应站点的位置和所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间;
确定单元12,用于根据所述第一定位信息或所述第二定位信息,确定所述被探测目标的位置信息。
在一个实现中,所述获取单元11包括:
发送单元111,用于以定向方式发送所述感知测量信号;
接收单元112,用于接收来自所述响应站点的第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息。
在又一个实现中,所述发送单元111,用于以全向方式发送所述感知测量信号,其中,所述感知测量信号经过一个或多个路径以不同的到达方向到达所述响应节点;
所述接收单元112,用于接收来自所述响应站点的第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息。
在又一个实现中,所述发送单元111还用于向所述响应站点发送请求帧,所述请求帧包括本次请求是否是感知测量请求的指示信息和/或所述发起站点是否支持感知测量的指示信息;
所述接收单元112还用于接收来自所述响应站点的响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次响应是否为感知测量的指示信息和/或所述响应站点是否支持感知测量的指示信息。
在又一个实现中,所述接收单元112还用于接收来自所述响应站点的触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。
在又一个实现中,所述发送单元111,还用于向所述响应站点发送声明帧,所述声明帧用于通知所述响应站点进行感知测量。
在又一个实现中,所述感知测量信号包括第一指示值,所述第一指示值用于指示所述感知测量信号是定向发送的或全向发送的。
在又一个实现中,所述响应帧还包括是否要延迟反馈所述第一位置测量报告或所述第二位置测量报告的指示,或当要延迟反馈时所需测量时间的指示。
在又一个实现中,所述触发帧还用于指示进行新的感知测量或上报前一次的测量报告。
有关上述各单元更详细的描述可以参考上述图7、图8或图13所述的方法实施例中感知测量装置的相关描述得到,这里不加赘述。需要说明的是,上述独立的、分别具有接收功能的接收单元和具有发送功能的发送单元,也可以是集成的、具有收发功能的器件,逻辑上称为“收发单元”。
根据本申请实施例提供的一种感知测量装置,可以准确地获得被探测目标的位置,实现对无源目标的位置的感知。
基于上述实施例中的感知测量方法的同一构思,如图18所示,本申请实施例还提供了一种感知测量装置200,该感知测量装置可应用于上述图7、图8或图13所述的感知测量方法中。该感知测量装置200包括:接收单元21、测量单元22、生成单元23和发送单元24;示例性地:
接收单元21,用于接收发起站点以定向方式或以全向方式发送的感知测量信号;
测量单元22,用于对所述感知测量信号进行测量;
生成单元23,用于根据所述发起站点定向发送的感知测量信号,生成第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息;或
所述生成单元23,用于根据所述发起站点全向发送的感知测量信号,生成第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息;
发送单元24,用于向所述发起站点发送所述第一位置测量报告或所述第二位置测量报告。
在一个实现中,所述接收单元21,还用于接收来自所述发起站点的请求帧,所述请求帧包括本次请求是否是感知测量请求的指示信息和/或所述发起站点是否支持感知测量的指示信息;
所述发送单元24,还用于向所述发起站点发送响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次响应是否为感知测量的指示信息和/或所述响应站点是否支持感知测量的指示信息。
在又一个实现中,所述发送单元24,还用于向所述发起站点发送触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。
在又一个实现中,所述接收单元21,还用于接收来自所述发起站点的声明帧,所述声明帧用于通知所述响应站点进行感知测量。
在又一个实现中,所述感知测量信号包括第一指示值,所述第一指示值用于指示所述感知测量信号是定向发送的或全向发送的。
在又一个实现中,所述响应帧还包括是否要延迟反馈所述第一位置测量报告或所述第二位置测量报告的指示,或当要延迟反馈时所需测量时间的指示。
在又一个实现中,所述触发帧还用于指示进行新的感知测量或上报前一次的测量报告。
有关上述各单元更详细的描述可以参考上述图7、图8或图13所述的方法实施例中感知测量装置的相关描述得到,这里不加赘述。需要说明的是,上述独立的、分别具有接收功能的接收单元和具有发送功能的发送单元,也可以是集成的、具有收发功能的器件,逻辑上称为“收发单元”。
根据本申请实施例提供的一种感知测量装置,可以准确地获得被探测目标的位置,实现对无源目标的位置的感知。
图19为本申请实施例提供的又一种感知测量装置的结构示意图。如图19所示,该感知测量装置300可包括:
收发器31、存储器32和处理器33(装置中的处理器33的数量可以一个或多个,图19中以一个处理器为例)。在本申请的一些实施例中,收发器31、存储器32和处理器33可通过总线或其它方式连接,其中,图19中以通过总线连接为例。
在一些实施例中,处理器33用于执行上述图7、图8或图13所示实施例中发起站点的功能。
在又一些实施例中,处理器33用于执行上述图7、图8或图13所示实施例中响应站点的功能。
可以理解的是,本实施例的感知测量装置300的各功能模块的功能可根据图7、图8或图13所示实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
可选的,处理器可以包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或 数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (29)

  1. 一种感知测量方法,其特征在于,所述方法包括:
    发起站点获取第一定位信息,其中,所述第一定位信息包括以下一个或多个信息:所述发起站点的位置、响应站点的位置、发起站点发送感知测量信号的发射方向和经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向;或者
    所述发起站点获取第二定位信息,其中,所述第二定位信息包括以下一个或多个信息:所述发起站点的位置、所述响应站点的位置和所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间;
    所述发起站点根据所述第一定位信息或所述第二定位信息,确定所述被探测目标的位置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述发起站点获取第一定位信息,包括:
    所述发起站点以定向方式发送所述感知测量信号;
    所述发起站点接收来自所述响应站点的第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息。
  3. 根据权利要求1所述的方法,其特征在于,所述发起站点获取第二定位信息,包括:
    所述发起站点以全向方式发送所述感知测量信号,其中,所述感知测量信号经过一个或多个路径以不同的到达方向到达所述响应节点;
    所述发起站点接收来自所述响应站点的第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息。
  4. 根据权利要求1~3中任一项所述的方法,其特征在于,所述方法还包括:
    所述发起站点向所述响应站点发送请求帧,所述请求帧包括本次请求是否是感知测量请求的指示信息和/或所述发起站点是否支持感知测量的指示信息;
    所述发起站点接收来自所述响应站点的响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次响应是否为感知测量的指示信息和/或所述响应站点是否支持感知测量的指示信息。
  5. 根据权利要求1~3中任一项所述的方法,其特征在于,所述方法还包括:
    所述发起站点接收来自所述响应站点的触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所 述发起站点执行感知测量。
  6. 根据权利要求1~3中任一项所述的方法,其特征在于,所述方法还包括:
    所述发起站点向所述响应站点发送声明帧,所述声明帧用于通知所述响应站点进行感知测量。
  7. 根据权利要求1~6中任一项所述的方法,其特征在于,所述感知测量信号包括第一指示值,所述第一指示值用于指示所述感知测量信号是定向发送的或全向发送的。
  8. 根据权利要求4所述的方法,其特征在于,所述响应帧还包括是否要延迟反馈所述第一位置测量报告或所述第二位置测量报告的指示,或当要延迟反馈时所需测量时间的指示。
  9. 根据权利要求5所述的方法,其特征在于,所述触发帧还用于指示进行新的感知测量或上报前一次的测量报告。
  10. 一种感知测量方法,其特征在于,所述方法包括:
    响应站点接收发起站点以定向方式或以全向方式发送的感知测量信号;
    所述响应站点对所述感知测量信号进行测量;
    所述响应站点根据所述发起站点定向发送的感知测量信号,生成第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息;或
    所述响应站点根据所述发起站点全向发送的感知测量信号,生成第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息;
    所述响应站点向所述发起站点发送所述第一位置测量报告或所述第二位置测量报告。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述响应站点接收来自所述发起站点的请求帧,所述请求帧包括本次请求是否是感知测量请求的指示信息和/或所述发起站点是否支持感知测量的指示信息;
    所述响应站点向所述发起站点发送响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次响应是否为感知测量的指示信息和/或所述响应站点是否支持感知测量的指示信息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述响应站点向所述发起站点发送触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。
  13. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述响应站点接收来自所述发起站点的声明帧,所述声明帧用于通知所述响应站点进行感知测量。
  14. 根据权利要求10~13中任一项所述的方法,其特征在于,所述感知测量信号包括第一指示值,所述第一指示值用于指示所述感知测量信号是定向发送的或全向发送的。
  15. 根据权利要求11所述的方法,其特征在于,所述响应帧还包括是否要延迟反馈所述第一位置测量报告或所述第二位置测量报告的指示,或当要延迟反馈时所需测量时间的指示。
  16. 根据权利要求12所述的方法,其特征在于,所述触发帧还用于指示进行新的感知测量或上报前一次的测量报告。
  17. 一种感知测量装置,其特征在于,包括:
    获取单元,用于获取第一定位信息,其中,所述第一定位信息包括以下一个或多个信息:所述发起站点的位置、响应站点的位置、发起站点发送感知测量信号的发射方向和经被探测目标反射后所述感知测量信号到达所述响应站点的入射方向;或者
    所述获取单元,用于获取第二定位信息,其中,所述第二定位信息包括以下一个或多个信息:所述发起站点的位置、所述响应站点的位置和所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间;
    确定单元,用于根据所述第一定位信息或所述第二定位信息,确定所述被探测目标的位置信息。
  18. 根据权利要求17所述的感知测量装置,其特征在于,所述获取单元包括:
    发送单元,用于以定向方式发送所述感知测量信号;
    接收单元,用于接收来自所述响应站点的第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息。
  19. 根据权利要求17所述的感知测量装置,其特征在于:
    所述发送单元,用于以全向方式发送所述感知测量信号,其中,所述感知测量信号经过一个或多个路径以不同的到达方向到达所述响应节点;
    所述接收单元,用于接收来自所述响应站点的第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息。
  20. 根据权利要求17~19中任一项所述的感知测量装置,其特征在于:
    所述发送单元还用于向所述响应站点发送请求帧,所述请求帧包括本次请求是否是感知测量请求的指示信息和/或所述发起站点是否支持感知测量的指示信息;
    所述接收单元还用于接收来自所述响应站点的响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次响应是否为感知测量的指示信息和/或所述响应站点是否支持感知测量的指示信息。
  21. 根据权利要求17~19中任一项所述的感知测量装置,其特征在于:
    所述接收单元还用于接收来自所述响应站点的触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。
  22. 根据权利要求17~19中任一项所述的感知测量装置,其特征在于:
    所述发送单元,还用于向所述响应站点发送声明帧,所述声明帧用于通知所述响应站点进行感知测量。
  23. 一种感知测量装置,其特征在于,包括:
    接收单元,用于接收发起站点以定向方式或以全向方式发送的感知测量信号;
    测量单元,用于对所述感知测量信号进行测量;
    生成单元,用于根据所述发起站点定向发送的感知测量信号,生成第一位置测量报告,其中,所述第一位置测量报告至少包括所述被探测目标反射后所述感知测量信号到达所述响应站点的入射方向信息;或
    所述生成单元,用于根据所述发起站点全向发送的感知测量信号,生成第二位置测量报告,其中,所述第二位置测量报告至少包括所述感知测量信号到达所述响应站点的一个或多个入射方向及对应的到达时间信息;
    发送单元,用于向所述发起站点发送所述第一位置测量报告或所述第二位置测量报告。
  24. 根据权利要求23所述的感知测量装置,其特征在于:
    所述接收单元,还用于接收来自所述发起站点的请求帧,所述请求帧包括本次请求是否是感知测量请求的指示信息和/或所述发起站点是否支持感知测量的指示信息;
    所述发送单元,还用于向所述发起站点发送响应帧,所述响应帧用于响应所述请求帧,所述响应帧包括本次响应是否为感知测量的指示信息和/或所述响应站点是否支持感知测量的指示信息。
  25. 根据权利要求23或24所述的感知测量装置,其特征在于:
    所述发送单元,还用于向所述发起站点发送触发帧,所述触发帧包括类型指示,所述类型指示用于指示所述触发帧的类型为感知测量类型,所述感知测量类型的触发帧用于触发所述发起站点执行感知测量。
  26. 根据权利要求23或24所述的感知测量装置,其特征在于:
    所述接收单元,还用于接收来自所述发起站点的声明帧,所述声明帧用于通知所述响应站点进行感知测量。
  27. 一种感知测量装置,其特征在于,包括:收发器、存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行如权利要求1~9中任一项所述的感知测量方法、或如权利要求10~16中任一项所述的感知测量方法。
  28. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1~16中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,用于当在计算设备上执行时,执行根据权利要求1~16中任一项所述的方法。
PCT/CN2020/100019 2019-07-11 2020-07-03 一种感知测量方法及装置 WO2021004378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20836784.7A EP3986018A4 (en) 2019-07-11 2020-07-03 DETECTION MEASUREMENT METHOD AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910625709.3A CN112218328B (zh) 2019-07-11 2019-07-11 一种感知测量方法及装置
CN201910625709.3 2019-07-11

Publications (1)

Publication Number Publication Date
WO2021004378A1 true WO2021004378A1 (zh) 2021-01-14

Family

ID=74048202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100019 WO2021004378A1 (zh) 2019-07-11 2020-07-03 一种感知测量方法及装置

Country Status (3)

Country Link
EP (1) EP3986018A4 (zh)
CN (1) CN112218328B (zh)
WO (1) WO2021004378A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022164582A1 (en) * 2021-01-28 2022-08-04 Qualcomm Incorporated Bistatic sensing-tracking reference signal
WO2022186635A1 (ko) * 2021-03-03 2022-09-09 엘지전자 주식회사 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
EP4161135A4 (en) * 2020-07-01 2023-11-29 Huawei Technologies Co., Ltd. DEVICE FOR INTERACTION WITH DETECTION MEASUREMENT INFORMATION
WO2024114460A1 (zh) * 2022-11-28 2024-06-06 维沃移动通信有限公司 测量方法、装置及设备

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022056A1 (en) * 2020-07-14 2022-01-20 Qualcomm Incorporated Using base stations for air-interface-based environment sensing without user equipment assistance
CN115118318A (zh) * 2021-03-22 2022-09-27 华为技术有限公司 基于信道状态信息反馈的方法、设备和介质
CN113132917B (zh) * 2021-04-15 2022-04-01 成都极米科技股份有限公司 感知进程中发送和接收感知信号的方法、装置及存储介质
WO2023272455A1 (zh) * 2021-06-28 2023-01-05 Oppo广东移动通信有限公司 无线通信的方法及设备
CN115623456A (zh) * 2021-07-14 2023-01-17 华为技术有限公司 一种感知会话建立方法及通信装置
CN115696419A (zh) * 2021-07-23 2023-02-03 维沃移动通信有限公司 通信感知方法、装置及设备
EP4383762A1 (en) * 2021-08-20 2024-06-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
CN117480807A (zh) * 2021-08-20 2024-01-30 Oppo广东移动通信有限公司 无线通信的方法及设备
WO2023028791A1 (zh) * 2021-08-30 2023-03-09 Oppo广东移动通信有限公司 无线通信的方法和设备
CN115734198A (zh) * 2021-09-01 2023-03-03 华为技术有限公司 通信方法及装置
CN115734200A (zh) * 2021-09-01 2023-03-03 华为技术有限公司 对终端设备进行感知的方法和通信装置
CN116349283A (zh) * 2021-10-22 2023-06-27 北京小米移动软件有限公司 用于无线局域网感知测量的通信方法和通信装置
CN116636249A (zh) * 2021-11-22 2023-08-22 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质
WO2023092508A1 (zh) * 2021-11-26 2023-06-01 Oppo广东移动通信有限公司 通信方法和设备
CN116193500A (zh) * 2021-11-29 2023-05-30 维沃移动通信有限公司 感知业务实现方法、装置、网络侧设备及终端
WO2023108371A1 (zh) * 2021-12-13 2023-06-22 Oppo广东移动通信有限公司 感知方法和设备
CN114222363B (zh) * 2021-12-17 2023-08-29 京信网络系统股份有限公司 终端位置识别方法、装置及定位系统
CN116724613A (zh) * 2022-01-06 2023-09-08 北京小米移动软件有限公司 通信方法和通信装置
WO2023130388A1 (zh) * 2022-01-07 2023-07-13 Oppo广东移动通信有限公司 无线通信的方法及设备
CN116746204A (zh) * 2022-01-11 2023-09-12 北京小米移动软件有限公司 通信方法和通信装置
WO2023133818A1 (zh) * 2022-01-14 2023-07-20 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质
WO2023137592A1 (zh) * 2022-01-18 2023-07-27 北京小米移动软件有限公司 Wlan感知测量方法及装置、电子设备及存储介质
CN116830790A (zh) * 2022-01-28 2023-09-29 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质
WO2023151081A1 (zh) * 2022-02-14 2023-08-17 北京小米移动软件有限公司 通信方法和通信装置
WO2023155072A1 (zh) * 2022-02-16 2023-08-24 北京小米移动软件有限公司 通信方法和通信装置
CN114731679B (zh) * 2022-02-28 2023-08-18 北京小米移动软件有限公司 用于代理感知的通信方法和通信装置
WO2023164838A1 (zh) * 2022-03-02 2023-09-07 Oppo广东移动通信有限公司 无线通信的方法及设备
CN117015948A (zh) * 2022-03-04 2023-11-07 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质
CN117044282A (zh) * 2022-03-10 2023-11-10 北京小米移动软件有限公司 通信方法和通信装置
WO2023185341A1 (zh) * 2022-03-28 2023-10-05 华为技术有限公司 一种测量方法、装置及设备
WO2023193204A1 (zh) * 2022-04-07 2023-10-12 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质
CN117204017A (zh) * 2022-04-07 2023-12-08 北京小米移动软件有限公司 用于感知测量报告的通信方法和通信装置
CN117242814A (zh) * 2022-04-14 2023-12-15 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质
WO2023212936A1 (zh) * 2022-05-06 2023-11-09 北京小米移动软件有限公司 Wlan感知测量建立终止方法及装置、电子设备及存储介质
CN117119509A (zh) * 2022-05-11 2023-11-24 华为技术有限公司 一种环境成像的方法及相关装置
CN117177289A (zh) * 2022-05-28 2023-12-05 华为技术有限公司 一种用于感知的方法和装置
WO2024007226A1 (zh) * 2022-07-06 2024-01-11 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质
CN117716725A (zh) * 2022-07-11 2024-03-15 北京小米移动软件有限公司 代理感知测量方法及装置
WO2024011644A1 (zh) * 2022-07-15 2024-01-18 Oppo广东移动通信有限公司 设备能力交换方法、测距会话建立方法、装置及设备
WO2024055951A1 (zh) * 2022-09-14 2024-03-21 华为技术有限公司 通信方法及装置
CN117880842A (zh) * 2022-10-10 2024-04-12 华为技术有限公司 一种感知的方法和通信装置
WO2024092707A1 (en) * 2022-11-04 2024-05-10 Qualcomm Incorporated On-demand radio frequency (rf) sensing
WO2024098399A1 (zh) * 2022-11-11 2024-05-16 Oppo广东移动通信有限公司 无线感知的方法及设备
US20240179549A1 (en) * 2022-11-30 2024-05-30 Qualcomm Incorporated Backscatter-based positioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120122470A1 (en) * 2008-12-23 2012-05-17 Thales Method for locating multiple rays of a source with or without aoa by multi-channel estimation of the tdoa and fdoa
CN103308934A (zh) * 2013-06-20 2013-09-18 上海无线电设备研究所 一种利用wifi反射信号实现室内移动人员定位的方法
CN103427905A (zh) * 2013-08-05 2013-12-04 南京航空航天大学 一种光载超宽带无线定位系统
CN110632555A (zh) * 2019-08-26 2019-12-31 中国人民解放军战略支援部队信息工程大学 一种基于矩阵特征值扰动的tdoa直接定位方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252980A (en) * 1992-07-23 1993-10-12 The United States Of America As Represented By The Secretary Of The Air Force Target location system
CN109477886A (zh) * 2016-06-01 2019-03-15 索尼移动通讯有限公司 无线电通信与雷达探测的共存
CN106231670B (zh) * 2016-06-20 2019-04-02 北京大学 一种无接触感知定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120122470A1 (en) * 2008-12-23 2012-05-17 Thales Method for locating multiple rays of a source with or without aoa by multi-channel estimation of the tdoa and fdoa
CN103308934A (zh) * 2013-06-20 2013-09-18 上海无线电设备研究所 一种利用wifi反射信号实现室内移动人员定位的方法
CN103427905A (zh) * 2013-08-05 2013-12-04 南京航空航天大学 一种光载超宽带无线定位系统
CN110632555A (zh) * 2019-08-26 2019-12-31 中国人民解放军战略支援部队信息工程大学 一种基于矩阵特征值扰动的tdoa直接定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIKUR, BEHAILU Y. ET AL.: "TDOA/AOD/AOA LOCALIZATION IN NLOS ENVIRONMENTS", 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTIC, SPEECH AND SIGNAL PROCESSING (ICASSP), 31 December 2014 (2014-12-31), pages 6518 - 6521, XP032616726, DOI: 20200915164900A *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4161135A4 (en) * 2020-07-01 2023-11-29 Huawei Technologies Co., Ltd. DEVICE FOR INTERACTION WITH DETECTION MEASUREMENT INFORMATION
WO2022164582A1 (en) * 2021-01-28 2022-08-04 Qualcomm Incorporated Bistatic sensing-tracking reference signal
US11828831B2 (en) 2021-01-28 2023-11-28 Qualcomm Incorporated Bistatic sensing-tracking reference signal
WO2022186635A1 (ko) * 2021-03-03 2022-09-09 엘지전자 주식회사 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2024114460A1 (zh) * 2022-11-28 2024-06-06 维沃移动通信有限公司 测量方法、装置及设备

Also Published As

Publication number Publication date
EP3986018A1 (en) 2022-04-20
CN112218328A (zh) 2021-01-12
EP3986018A4 (en) 2022-08-03
CN112218328B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2021004378A1 (zh) 一种感知测量方法及装置
WO2022001713A1 (zh) 感知测量信息交互装置
US11178510B2 (en) Network positioning method and related equipment
US10024952B2 (en) Self-organizing hybrid indoor location system
WO2019134555A1 (zh) 用于终端设备的定位方法、装置及系统
WO2017107263A1 (zh) 一种三维空间检测系统、定位方法及系统
KR102025089B1 (ko) Ir―uwb 측위 시스템 및 위치 측정 방법
WO2021098780A1 (zh) 对目标物进行定位的方法及装置
WO2020259287A1 (zh) 一种定位方法和装置
US8869588B2 (en) Ultrasonic positioning system with reverberation and flight time compensation
US9686765B2 (en) Determining an angle of direct path of a signal
US20150312875A1 (en) Method and system for client device localization
WO2021120023A1 (zh) 一种定位方法及装置
JP6380874B2 (ja) アクセス・ポイント、端末、およびワイヤレス・フィデリティwifi屋内位置決め方法
WO2017054673A1 (zh) 基于无线网络的定位方法和定位装置
CN105738905B (zh) 一种减少盲区的室内定位系统及方法
WO2021208662A1 (zh) 一种直达波空中传播时延的估计方法
WO2024000525A1 (zh) 感知方法、装置及系统
WO2023011438A1 (zh) 信息传输方法、通信节点及存储介质
WO2024131757A1 (zh) 感知协作方法、装置及通信设备
WO2023186004A1 (zh) 信息确定方法及装置
WO2024131761A1 (zh) 感知协作方法、装置及通信设备
WO2022218233A1 (zh) 定位方法及装置
US20220361207A1 (en) Positioning Method and Apparatus, WLAN Device, and Storage Medium
WO2023231868A1 (zh) 感知方式切换方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020836784

Country of ref document: EP

Effective date: 20220117