WO2021098780A1 - 对目标物进行定位的方法及装置 - Google Patents

对目标物进行定位的方法及装置 Download PDF

Info

Publication number
WO2021098780A1
WO2021098780A1 PCT/CN2020/130119 CN2020130119W WO2021098780A1 WO 2021098780 A1 WO2021098780 A1 WO 2021098780A1 CN 2020130119 W CN2020130119 W CN 2020130119W WO 2021098780 A1 WO2021098780 A1 WO 2021098780A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
radar
wireless sensor
information
radar measurement
Prior art date
Application number
PCT/CN2020/130119
Other languages
English (en)
French (fr)
Inventor
张美红
郭相文
张佳汇
韩霄
杜瑞
刘辰辰
闫莉
方旭明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021098780A1 publication Critical patent/WO2021098780A1/zh
Priority to US17/740,487 priority Critical patent/US20220268912A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/825Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/42Diversity systems specially adapted for radar
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4454Monopulse radar, i.e. simultaneous lobing phase comparisons monopulse, i.e. comparing the echo signals received by an interferometric antenna arrangement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the radar can be used to detect the target, such as detecting one or more of the distance, speed, and direction angle (including the azimuth angle and the pitch angle) of the target object relative to the radar.
  • a radar usually includes a transmitting antenna and a receiving antenna.
  • the radar can use its transmitting antenna to transmit radar signals (transmitted waves for short), and use its receiving antennas to receive radar signals (reflected waves for short) formed by the reflection of the target object on the transmitted waves; ,
  • the radar measurement results can be obtained according to the change of the reflected wave relative to the transmitted wave, such as the distance, movement speed and direction angle of the target relative to the radar, or the calculation of the distance, movement speed and direction angle of the target relative to the radar. Other information about any one of the direction angles.
  • STAs in WLAN are usually mobile, that is, after the location information of the target STA is determined, the target STA may move, causing the target STA's location information to not accurately reflect the true location of the target STA during radar measurement, thereby affecting The positioning result of the target.
  • the embodiments of the present application provide a method for assisting target positioning, a method and device for positioning a target, which can position the target more accurately.
  • a method for assisting target positioning is provided, which is applied to an STA, and the method includes:
  • the performing radar measurement on a target object according to the radar measurement indication information to obtain a radar measurement result includes:
  • the trigger-dependent common information field of the wireless sensor detection frame includes a radar information flag subfield
  • the radar information flag subfield includes the radar measurement indication information
  • the radar information indicator subfield includes a radar duration subfield and a resource control subfield
  • a method for locating a target is provided, which is applied to an AP.
  • the method is for each STA among multiple STAs, and the method includes:
  • the first sending time is the time corresponding to when the STA sends the uplink data packet
  • the first receiving time is all The corresponding time when the STA receives the downlink data packet
  • the radar measurement result is a radar measurement result obtained when the STA performs radar measurement on a target according to the radar measurement indication information
  • the target is located according to the first distance and the radar measurement result respectively corresponding to the multiple STAs.
  • the sending the wireless sensor detection frame to the STA includes: sending the wireless sensor detection frame to the multiple STAs in a multicast or broadcast manner, wherein the The multiple user information fields of the wireless sensor detection frame correspond to the multiple STAs one-to-one, and the user information field contains the identification of the corresponding STA and the radar measurement indication information used to instruct the corresponding STA to perform radar measurement.
  • the radar measurement indication information contained in the plurality of user information domains respectively contain different frequency band information.
  • the user information field further includes channel information for instructing its corresponding STA to send the uplink data packet, and the channel information contained in the multiple user information fields is different.
  • the receiving the uplink data packet from the STA includes: receiving the uplink data packet from the multiple STAs according to the channel information respectively contained in each of the user information fields.
  • the sending a downlink data packet to the STA includes: sending the downlink data packet to the multiple STAs in a multicast or broadcast manner.
  • a device for assisting target positioning which is applied to an STA, and the device includes:
  • the transceiver unit is configured to receive a wireless sensor detection frame from an AP, the wireless sensor detection frame contains radar measurement indication information; send an uplink data packet to the AP; receive a downlink data packet from the AP;
  • a processing unit configured to record the first transmission time of the uplink data packet; record the first reception time of the downlink data packet; and perform radar measurement on a target according to the radar measurement instruction information to obtain a radar measurement result;
  • the transceiver unit is further configured to send the first sending time, the first receiving time, and the radar measurement result to the AP.
  • the processing unit is specifically configured to trigger the transceiver unit to send a first radar signal according to the radar measurement instruction information; and trigger the transceiver unit to receive a second radar signal according to the radar measurement instruction information,
  • the second radar signal is formed by reflecting the target object on the first radar signal;
  • the processing unit is specifically configured to respond according to the first starting time corresponding to when the transceiver unit sends the first radar signal, the second starting time corresponding to when the transceiver unit receives the second radar signal, and all The first radar signal and the second radar signal determine the radar measurement result.
  • the trigger-dependent common information field of the wireless sensor detection frame includes a radar information flag subfield
  • the radar information flag subfield includes the radar measurement indication information
  • a user information field of the wireless sensor detection frame contains an application identification field and a trigger-dependent user information field, wherein the application identification field contains the identification of the STA ,
  • the trigger-dependent user information field includes a radar information indicator subfield, and the radar information indicator subfield includes the radar measurement indication information.
  • the radar information indicator subfield includes a radar duration subfield and a resource control subfield
  • the radar measurement indication information includes radar duration and frequency band information, wherein the radar duration subfield includes the radar duration, and the resource control subfield includes the frequency band information.
  • the processing unit is specifically configured to, in response to the wireless sensor report frame sent by the AP to the STA, trigger the transceiver unit to send the wireless sensor data frame to the AP,
  • the wireless sensor data frame includes the first sending time, the first receiving time, and the radar measurement result.
  • the trigger-dependent common information field of the wireless sensor report frame includes a feedback control subfield
  • the feedback control subfield includes at least a precise time measurement FTM feedback control subfield, and the FTM feedback control subfield includes first indication information, and the first indication information is used to instruct the STA to send all data to the AP.
  • the wireless sensor data frame includes
  • the wireless sensor data action field of the wireless sensor data frame includes an FTM result element field
  • the first receiving time and the first sending time are included in the FTM result element field.
  • the wireless sensor data action field of the wireless sensor data frame further includes a wireless sensor data control field
  • the wireless sensor data control field includes an FTM control subfield
  • the FTM control subfield includes second indication information
  • the second indication information is used to instruct the AP to obtain the first receiving time and the first sending time from the FTM result element field.
  • a device for locating a target which is applied to an AP, and the device includes:
  • the transceiver unit is configured to send a wireless sensor detection frame to each of the multiple STAs, where the wireless sensor detection frame contains radar measurement indication information; receive uplink data packets from the STA; Sending a downlink data packet by the STA; receiving a first sending time, a first receiving time, and a radar measurement result from the STA, where the first sending time is the corresponding time when the STA sends the uplink data packet, The first receiving time is a time corresponding to when the STA receives the downlink data packet, and the radar measurement result is a radar measurement result obtained when the STA performs radar measurement on a target according to the radar measurement indication information;
  • the processing unit is configured to record the second receiving moment of the uplink data packet; record the second sending moment of the downlink data packet; and, according to the first sending moment, the first receiving moment, and the second At the sending time and the second receiving time, the first distance between the STA and the AP is calculated; and the target is located according to the first distance and the radar measurement result respectively corresponding to the multiple STAs.
  • the processing unit is specifically configured to trigger the transceiver unit to send the wireless sensor detection frame to the multiple STAs in a multicast or broadcast manner, wherein the wireless transmission
  • the user information field contains the identification of the corresponding STA, and radar measurement indication information for instructing the corresponding STA to perform radar measurement.
  • the radar measurement indication information contained in each of the user information domains each contain different frequency band information.
  • the user information field also contains channel information used to instruct its corresponding STA to send the uplink data packet, and the channel information contained in the multiple user information fields is different;
  • the processing unit is specifically configured to trigger the transceiver unit to receive the uplink data packets from the multiple STAs according to the channel information respectively contained in each of the user information fields.
  • the processing unit is specifically configured to trigger the transceiver unit to send the downlink data packet to the multiple STAs in a multicast or broadcast manner.
  • a computer-readable storage medium for storing instructions, which when executed by a processor of an STA, enable the STA to implement the method described in any one of the first aspects.
  • a computer-readable storage medium for storing instructions, and when the instructions are executed by a processor of an AP, the AP implements the method described in any one of the second aspects.
  • an STA including a memory and a processor, the memory stores executable code, and when the processor executes the executable code, the method according to any one of the first aspects is implemented .
  • an AP including a memory and a processor, the memory stores executable code, and when the processor executes the executable code, the method according to any one of the second aspects is implemented .
  • a computer program product includes computer program code, which when the computer program code runs on a computer, causes the computer to execute the method described in any one of the above-mentioned first aspects.
  • a computer program product includes computer program code, and when the computer program code runs on a computer, the computer executes the method described in any one of the above second aspects.
  • a communication device has the functions of the STA in the above aspects.
  • the function of the STA can be realized by hardware, or can be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • a communication device in a twelfth aspect, has the function of the AP in each of the above-mentioned aspects.
  • the function of the AP may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • a communication device may be the STA described in the foregoing aspects, or a chip set in the STA.
  • the communication device includes a memory, a communication interface, and a processor.
  • the memory is used to store a computer program or instruction.
  • the processor is coupled with the memory and the communication interface. When the processor executes the computer program or instruction, the communication device executes the foregoing The method of any one of the first aspect.
  • a communication device in a fourteenth aspect, is provided, and the communication device may be the AP described in the foregoing aspects, or a chip set in the AP.
  • the communication device includes a memory, a communication interface, and a processor.
  • the memory is used to store a computer program or instruction.
  • the processor is coupled with the memory and the communication interface. When the processor executes the computer program or instruction, the communication device executes the foregoing The method of any one of the second aspect.
  • a chip system in a fifteenth aspect, includes a processor for implementing the functions of the STA described in the above aspects, for example, receiving or processing the data and data involved in the method of the first aspect. /Or information.
  • the chip system further includes a memory, and the memory is used to store program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a chip system in a sixteenth aspect, includes a processor for implementing the functions of the AP described in the above aspects, for example, receiving or processing the data and data involved in the method of the second aspect above. /Or information.
  • the chip system further includes a memory, and the memory is used to store program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the STA when the AP performs fine time measurement (FTM) for the STA, the STA concurrently executes radar measurement of the target, and the FTM result of the STA can more accurately reflect the STA The true position of the target during radar measurement; accordingly, the AP can combine the respective radar measurement results and FTM results of multiple STAs to locate the target more accurately.
  • FTM fine time measurement
  • FIG. 1 is a schematic diagram of the frequency change relationship between the first radar signal and the second radar signal in an embodiment of the application.
  • FIG. 2 is a schematic diagram of an application scenario to which the technical solution provided in the embodiment of the application is applicable.
  • FIG. 3 is a schematic diagram of a radar coordinate system provided in an embodiment of this application.
  • FIG. 4 is an example of measuring the angle of arrival of electromagnetic waves by the phase angle measurement method provided in the embodiment of the application.
  • Fig. 5 is a flowchart of a method for assisting target positioning provided in an embodiment of the application.
  • Fig. 6 is a schematic structural diagram of a wireless sensing detection frame provided in an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of another wireless sensing detection frame provided in an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a wireless sensor report frame provided in an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a wireless sensor data frame provided in an embodiment of the application.
  • FIG. 10 is a flowchart of a method for positioning a target provided in an embodiment of the application.
  • FIG. 11 is one of the schematic diagrams of the information exchange process between the AP and multiple STAs provided in an embodiment of this application.
  • FIG. 12 is the second schematic diagram of the information exchange process between the AP and multiple STAs provided in an embodiment of this application.
  • FIG. 13 is the third schematic diagram of the information exchange process between the AP and multiple STAs provided in an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a device for assisting target positioning provided in an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a device for positioning a target provided in an embodiment of the application.
  • the target object includes but is not limited to a person object, for example, it may also include various forms of physical equipment.
  • AP refers to a network device used to connect a STA to a wired network.
  • the network coverage of a single AP can usually reach tens of meters, and the communication between the AP and the STAs within its coverage is usually based on the IEEE802.11 protocol.
  • the STA may be a wireless communication device with a transmitting antenna and a receiving antenna, and the wireless communication device is usually mobile.
  • Wireless communication equipment may also be called mobile equipment (MD, mobile device), user equipment (UE, user equipment), terminal (terminal), mobile station (MS, mobile station), and mobile terminal (MT, mobile terminal).
  • STA includes, but is not limited to, various forms of mobile phones (or “cellular” phones), notebook computers, tablet computers, and desktop computers with wireless communication modules. For example, it can also include various forms of Internet of Things terminals. , And a variety of portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile devices.
  • radars can be classified into single-station radar and multi-station radar according to whether their transmitting antenna and receiving antenna have the same address information.
  • a radar has both a transmitting antenna and a receiving antenna, it can be used not only as a single-station radar, but also with other radars, as the radar signal transmitting end of a multi-station radar or as the radar signal receiving end of a multi-station radar .
  • the wireless communication device as the STA usually has both a transmitting antenna and a receiving antenna. Therefore, a STA can act as a single-station radar under the coordination of the AP, or as the radar signal transmitter or radar signal receiver of a multi-station radar under the coordination of the AP.
  • the STA When the STA is a single-station radar, the STA can first send the first radar signal according to the radar measurement indication information it acquires, and receive the second radar signal according to the radar measurement indication information.
  • the second radar signal is transmitted from the target to the first radar signal. Reflect to form; and then determine the radar measurement result according to the first starting time when the first radar signal is sent, the second starting time when the second radar signal is received, and the first radar signal and the second radar signal .
  • the first radar signal sent by the STA may be a normal continuous wave sent by the STA according to the radar duration and frequency band information, or a frequency modulated continuous wave sent by the STA according to the radar duration and frequency band information, or it may also be the The pulse signal sent by the STA based on the radar duration and frequency band information.
  • the radar duration is 2T
  • the frequency band information defines the frequency band of the first radar signal S1 sent by the STA Should be located in the frequency band f3 ⁇ f4.
  • the STA can send the first radar signal S1 with a period of T and a modulation bandwidth B of (f2-f1) on the frequency modulation frequency band f1 ⁇ f2 at the first starting time T1, and stop sending the first radar signal S1 at T3;
  • the time difference between T3 and T1 is the radar duration 2T, and the frequency modulation frequency bands f1 to f2 are located in the frequency bands f3 to f4.
  • the STA may start receiving the second radar signal S2 or S3 on the frequency bands f3 to f4 at the second starting time T2, and stop receiving the second radar signal S2 or S3 on the frequency bands f3 to f4 after T4; where, The time difference between T4 and T2 is the radar duration 2T.
  • the STA can receive the second radar signal S2 with the same waveform as the first radar signal S1 in the frequency modulation frequency band f1 to f2;
  • the STA and the target are not relatively stationary during the time period T1 to T4, that is, if the STA and/or the target object moves during the time period T1 to T4, the second radar signal received by the STA may contain the result of the STA and the target. /Or the Doppler frequency fd generated by the movement of the target, the STA may receive the second radar signal S3 containing the Doppler frequency fd.
  • the STA can obtain the STA according to the first starting time T1 when it sends the first radar signal, the second starting time T2 when it receives the second radar signal, the first radar signal S1, and the second radar signal S2/S3. Radar measurement results.
  • the STA can usually perform sampling processing on S1, S2/S3 according to T1, T2, and then the STA or AP performs fast Fourier processing on the first radar signal S1 and the second radar signal S2 after sampling processing.
  • Leaf transform FFT, fast flourier transformation
  • the radar measurement results obtained by the STA include but are not limited to the following three forms:
  • the STA can mix the first radar signal S1 and the second radar signal S2/S3 according to the first start time T1 when it sends the first radar signal and the second start time T2 when it receives the second radar signal.
  • Obtain the intermediate frequency signal convert the intermediate frequency signal into a digital signal through an analog-to-digital converter (ADC), and sample the digital signal to obtain the sampled digital signal.
  • ADC analog-to-digital converter
  • the sampled digital signal can specifically include the sampling frequency, The number of sampling points and the corresponding sampling value of each sampling point.
  • the STA may feed back the sampled digital signal as the radar measurement result of the STA to the AP.
  • the STA can further perform N-point FFT on the sampled digital signal to obtain the frequency domain graph corresponding to the sampled digital signal.
  • each point horizontal axis
  • the modulus value (vertical axis) of a point is the amplitude characteristic at that frequency point.
  • the STA may feed back the frequency domain graph as the radar measurement result of the STA to the AP.
  • the STA may further perform range-FFT on the frequency domain graph to obtain the distance between the target and the STA.
  • the STA may feed back the distance between the target and the STA as the radar measurement result of the STA to the AP.
  • the STA may also perform a doppler-FFT on the frequency domain graph to obtain the radial movement speed of the target relative to the STA, and add the radial movement speed to the radar measurement result of the STA and feed it back to the AP.
  • the STA may also perform an angle-FFT on the frequency domain graph to obtain the direction angle of the target relative to the STA, add the direction angle to the radar measurement result of the STA and feed it back to the AP.
  • the STA or AP may calculate the distance between the target and the STA according to the following formula 1 or formula 2:
  • R represents the distance between the target and the STA
  • T2 represents the second starting time
  • T1 represents the first starting time
  • c represents the speed of light
  • T represents the frequency modulation period of the first radar signal sent by the STA
  • B represents the frequency modulation period of the first radar signal sent by the STA.
  • the modulation bandwidth of the first radar signal sent by the STA, f0 represents the frequency of the intermediate frequency signal.
  • the frequency f0 of the intermediate frequency signal can be calculated according to the following formula 3:
  • fa represents the difference frequency of the second radar signal relative to the first radar signal in the positive frequency modulation phase
  • fb represents the difference frequency of the second radar signal relative to the first radar signal in the negative frequency modulation phase
  • the STA or AP may calculate the radial movement speed of the target and the STA according to the following formula 4:
  • V R characterizing the target object and the radial velocity of the STA
  • f x characterizing the center frequency of the first radar signal sent by the STA.
  • the STA or AP can first calculate the distance between the target object and the STA through the above formula 1, and calculate the distance between the target object and the STA through the following formula 5.
  • the radial velocity of the STA V R is a normal continuous wave
  • f m represents the frequency of the second radar signal received by the STA
  • f n represents the frequency of the first radar signal sent by the STA
  • V R calculated by the foregoing various methods, when the value of V R is positive, it means that the target is moving in the direction close to the STA; when the value of V R is negative, it means that the target The object moves in the opposite direction away from the STA.
  • the STA may first send the first radar signal according to the radar measurement instruction information used to instruct the STA to perform radar measurement, and send it the first starting time of the first radar signal and Information such as the period and frequency modulation frequency band of the first radar signal is used as the radar measurement result.
  • the first radar signal is used to form a second radar signal through the reflection of the target, and another STA corresponding to the STA and serving as the radar signal receiving end of the multi-station radar can receive the second radar signal.
  • the STA When the STA is used as the radar signal receiving end of a multi-station radar, the STA can first receive the second radar signal according to the radar measurement instruction information used to instruct the STA to perform radar measurement, and receive the second starting time of the second radar signal And the second radar signal is used as the radar measurement result.
  • the second radar signal is formed by the target object reflecting the first radar signal
  • the first radar signal is sent by another STA corresponding to the STA and serving as the radar signal transmitting end of the multi-station radar.
  • positioning the target includes but is not limited to determining the position information of the target in a specific coordinate system. For example, it may also include determining the distance between the target object and the AP in a specific coordinate system, and including determining the azimuth angle, pitch angle, and radial movement speed of the target object relative to the AP in the specific coordinate system.
  • the specific coordinate system includes but is not limited to a geographic coordinate system, for example, it may also be a map coordinate system constructed in accordance with actual business requirements.
  • FIG. 2 is a schematic diagram of an application scenario to which the technical solution provided in the embodiment of the application is applicable.
  • the AP may establish connections with multiple STAs in the coverage area to communicate; for example, the AP may communicate with multiple STAs in the coverage area at the same time.
  • STA1 ⁇ STA9 have established a connection.
  • the AP can poll each STA that is within its coverage area and has established a connection with it to determine the target STA that can be used as a radar to perform radar measurement on the target under the coordination of the AP; after that, the AP can further coordinate multiple The target STA performs radar measurement on the target, and locates the target according to the respective radar measurement results of the multiple target STAs and the location information of the multiple STAs in a specific coordinate system.
  • the AP when the AP needs to coordinate multiple STAs to perform radar measurements on the target, the AP can send WiFi sensing poll frames to STA1 to STA9 respectively. If STA1, STA2, STA3, and STA4 are receiving In the case of the WiFi sensing poll frame from the AP, automatically or under the trigger of the user, each determines that it can be used as a radar to perform radar measurement on the target, and then it can send the permission to send to the AP (clear to send to self). )frame.
  • the AP can determine STA1, STA2, STA3, and STA4 It is an STA that can perform radar measurement on targets as a radar under the coordination of AP.
  • STA1, STA2, STA3, and STA4 as an example of a single-station radar including a receiving antenna and a transmitting antenna.
  • the STA can transmit the radar signal (transmitted wave for short) for detecting the target through its transmitting antenna under the coordination of the AP; the transmitted wave can be The target is reflected under the action of the target, and the radar signal formed by the target’s reflection of the transmitted wave can be called the reflected wave; the STA can receive the reflected wave through its receiving antenna, and compare the reflected wave to the transmitted wave. The wave changes, get the radar measurement result.
  • the AP or other computing devices connected to the AP can locate the target based on the respective radar measurement results of STA1, STA2, STA3, and STA4 and the position information of each of STA1, STA2, STA3, and STA4 in a specific coordinate system. .
  • the AP needs to determine the location information of the multiple STAs before triggering the multiple STAs to perform radar measurements on the targets respectively.
  • the mobility of the STA may cause the position information of the STA determined in advance to not accurately reflect the real position of the STA during radar measurement of the target, which will affect the positioning results obtained when the target is located later. accuracy.
  • STA3 may perform radar measurement of the target before and/or during the radar measurement of the target.
  • the position where STA3 is located moves to another position (for example, the position where STA7 is located), which causes the previously determined position information of STA3 to not accurately reflect the true position of STA3 when it performs radar measurement on the target.
  • the embodiments of the present application provide at least a method for assisting target positioning, a method and device for positioning a target, and the AP performs FTM for a STA concurrently.
  • the FTM result of the STA can more accurately reflect the real position of the STA during the radar measurement of the target; accordingly, the AP can combine the respective radar measurement results and FTM results of multiple STAs, Realize the positioning of the target more accurately.
  • the AP can perform FTM on multiple STAs respectively based on the IEEE802.11az protocol.
  • the AP can receive the uplink data packet from the STA and send the downlink data packet to the STA;
  • the FTM result of the STA may at least include: the first uplink data packet sent by the STA to the AP The sending time t1, the first receiving time t4 when the STA receives the downlink data packet from the AP, the second receiving time t2 when the AP receives the uplink data packet from the STA, and the second sending time t3 when the AP sends the downlink data packet to the STA.
  • the AP can calculate the round trip time (RTT) defined by IEEE802.11az as [(t2-t1)+(t4-t3)] according to the FTM result of the STA, and then calculate the difference between the STA and the AP.
  • RTT round trip time
  • the distance between the two is RTT*c/2; where c represents the speed of light, and its value is usually 3 ⁇ 10 8 m/s.
  • the AP performs FTM on a STA
  • the STA concurrently performs radar measurement of the target
  • the distance between the STA and the AP determined according to the FTM result of the STA can be more It accurately reflects the true distance between the STA and the AP when the STA performs radar measurements on the target.
  • the position information of the STA determined according to the distance between the STA and the AP can more accurately reflect the true position of the STA during radar measurement of the target, which is conducive to more accurate realization of the target object. Positioning.
  • the AP may send an FTM request to the STA.
  • the FTM request may carry indication information.
  • the indication information is used to instruct the STA to measure the electromagnetic waves sent to it by the AP.
  • Angle of arrival (including azimuth and pitch angle); in the case that the STA can measure the angle of arrival of the electromagnetic wave sent to it by the AP, the STA can send its measured angle of arrival to the AP; the AP can combine its own in a specific
  • the position information in the coordinate system, the angle of arrival measured by the STA, and the distance between the STA and the AP when the STA performs radar measurement on the target are determined to determine the position information of the STA to realize the positioning of the STA.
  • the STA may not have the ability to measure the angle of arrival of electromagnetic waves sent to it by the AP, but the AP can measure the angle of arrival of electromagnetic waves from the STA.
  • the AP can combine the position information of the AP in a specific coordinate system, the angle of arrival of the electromagnetic wave from the STA, and the target The distance between the object and the AP during radar measurement is used to determine the position information of the STA, and realize the positioning of the STA.
  • the AP can measure the angle of arrival of electromagnetic waves from the STA by at least one or a combination of amplitude angle measurement method and phase angle measurement method, so that the AP can measure the angle of arrival of the electromagnetic wave from the STA according to its own position in a specific coordinate system.
  • the position information, the angle of arrival of electromagnetic waves from the STA, and the distance between the STA and the AP when the STA performs radar measurements on the target are determined to determine the position information of the STA.
  • the AP measures the angle of arrival of electromagnetic waves from the STA by the phase angle measurement method.
  • the arrival angle of the electromagnetic wave from a STA measured by AP specifically includes measuring the azimuth angle ⁇ and pitch angle ⁇ of the electromagnetic wave; where OP represents the distance between AP and STA, and OB represents OP on the horizontal plane.
  • the projection of OA is based on the reference direction preset by the geographic coordinate system (for example, the true north direction on the horizontal plane), the azimuth angle ⁇ is the angle between OA and OB in the horizontal direction, and the elevation angle ⁇ is the vertical angle between OB and OP.
  • the included angle on a vertical plane of the horizontal plane, the pitch angle ⁇ can also be called the inclination angle, the elevation angle or the elevation angle.
  • the AP may include multiple receiving antennas in a "T" shape, and multiple receiving antennas in a "T” row may form a receiving antenna array in the AP in an array manner as shown in FIG. 4.
  • the MN direction in the receiving antenna array of the AP is parallel to the preset reference direction in the radar coordinate system, and the projection of the STA on the horizontal plane is located on the extension line of the MN.
  • the distance between the STA and the AP is usually much larger than the distance between the two adjacent receiving antennas in the AP.
  • the electromagnetic waves that reach the two adjacent receiving antennas x and y contained in the AP are approximately plane waves; and, due to the existence between x and y A certain distance makes the electromagnetic waves received by x and y have a wave path difference R; therefore, the electromagnetic waves received by x and y have a phase difference due to the wave path difference R.
  • Phase difference It satisfies the relationship shown in the following formula 6 with the wave path difference R:
  • represents the wavelength of the electromagnetic wave received by x and y
  • represents the angle between x and y and the electromagnetic wave received respectively
  • d represents the distance between x and y in the horizontal direction
  • dedicated software and/or hardware can be used (For example, a phase meter) compare the phases of the electromagnetic waves received by x and y to obtain the phase difference
  • the AP may further determine the elevation angle ⁇ of the electromagnetic wave from the STA according to the angle ⁇ between the receiving antenna and the electromagnetic wave received by the receiving antenna.
  • the pitch angle ⁇ of the electromagnetic wave from the STA is (90°- ⁇ ).
  • the azimuth angle ⁇ of the electromagnetic wave from the STA can be determined by a method similar to the aforementioned measurement of the pitch angle ⁇ .
  • the electromagnetic wave used to measure the angle of arrival in the foregoing example includes but is not limited to the electromagnetic wave corresponding to the uplink data packet received by the AP from the STA.
  • it can also be the wireless sensor data (WiFi sensor data) sent by the STA to the AP.
  • the STA can measure the angle of arrival of electromagnetic waves sent to it by the AP
  • the STA can report the angle of arrival measured by the STA to the AP through an LMR frame, and the angle of arrival may include the AP sent to the STA The arrival angle of the electromagnetic wave corresponding to the downlink data packet.
  • the position information of each STA obtained through the aforementioned various methods is calculated based on the distance between each STA and the AP during the radar measurement of the target by each STA; the distance between each STA and the AP is based on The FTM result obtained by the AP performing FTM on each STA is calculated, which can more accurately reflect the true distance between each STA and the AP when each STA performs radar measurement on the target.
  • the position information of each STA obtained through the aforementioned various methods can more accurately reflect the actual position of each STA when the target is measured by radar; the AP or the computing device connected to the AP can be based on the The radar measurement results of each STA and the position information of multiple STAs can locate the target more accurately.
  • the STA may move at a relatively low speed during the radar measurement of the target.
  • the first radar signal sent by a STA is a frequency modulated continuous wave
  • the AP may also receive the first radar signal sent by the STA, and calculate the STA relative to the first radar signal according to the first radar signal.
  • the radial velocity of the AP can be used to assist the AP in positioning the target according to the first distance and the radar measurement result respectively corresponding to the multiple STAs.
  • the radial movement speed of the STA relative to the AP can be determined by a method similar to the foregoing measuring the radial movement speed of the target and the STA.
  • the radial movement speed of the STA relative to the AP can be used at least to correct the first distance of the STA relative to the AP.
  • an embodiment of the present application provides a method for assisting target positioning.
  • the method is applied to an STA, and the STA can perform at least the following steps 51-57.
  • Step 51 Receive a wireless sensor detection frame from the AP, where the wireless sensor detection frame contains radar measurement indication information.
  • the radar measurement indication information includes but is not limited to radar duration and frequency band information.
  • the wireless sensor detection frame may include a piece of radar measurement indication information, and the STA may obtain the radar measurement indication information from the wireless sensor detection frame.
  • the wireless sensor detection frame may have a structure as shown in FIG. 6.
  • the wireless sensor detection frame can include a medium access control (MAC, medium access control) header (MAC header) field, a common information (common info) field, and one or more user information (user info) fields. , Padding (padding) field and frame check sequence (FCS, frame check sequence) field.
  • the common info field may include at least a trigger type (trigger type) field, a reserved (reserved) field, and a trigger dependent common information (trigger dependent common info) field.
  • the trigger dependent common info field may include the subfields wireless sensing trigger subtype (WiFi sensing trigger subtype), radar information indication (radar info indication), and reserved.
  • the radar info indication subfield may include the subfields radar duration (radar duration) and resource control (resource control).
  • the subfield radar duration can store the radar duration contained in the radar measurement indication information used to instruct the STA to perform radar measurements
  • the resource control subfield can store the radar measurement indication information used to instruct the STA to perform radar measurements. Frequency band information.
  • the trigger frame sent by the AP to the STA to trigger the STA to perform a specific service usually includes the MAC header field and the common info field as shown in Figure 6. , One or more user info domains, padding domains and FCS domains.
  • the STA may determine the trigger type of the trigger frame according to the value of the trigger type field included in the common info field of the trigger frame. For example, the trigger frame from the AP is used to instruct the STA to execute the business process related to the trigger type "WiFi sensing", and the value of the trigger type field can be 9.
  • the AP can use the value of the subfield WiFi sensing trigger subtype to instruct the STA to perform various business processes related to the trigger type "WiFi sensing".
  • three reserved values can be selected from the reserved values of the subfield "WiFi Sensing Trigger Subtype" of the trigger type "WiFi Sensing”, and the selected three reserved values can be used to instruct the STA to perform communication with the WiFi sensing poll frame,
  • Table 1 refer to Table 1 below:
  • the reserved values of the "WiFi Sensing Trigger Subtype” subtype of the trigger type "WiFi Sensing” include “1", “2", and "3".
  • the STA can first obtain the value of the trigger type field contained in the common info field of the trigger frame. If the value of the trigger type field indicates that the trigger frame is used to trigger the STA to execute and trigger For business processes related to the type "WiFi sensing”, further obtain the value of the subfield WiFi Sensing Trigger Subtype contained in the trigger dependent user info field of the trigger frame, and execute and trigger type according to the value of the subfield WiFi Sensing Trigger Subtype " Various business processes related to WiFi sensing.
  • the value of the WiFi Sensing Trigger Subtype subfield is 2, it means that the trigger frame is a WiFi Sensing poll frame, and the STA can respond to the WiFi Sensing poll frame according to the corresponding business process; the value of the subfield WiFi Sensing Trigger Subtype is 3. It means that the trigger frame is a WiFi Sensing sounding frame, and the STA can respond to the WiFi Sensing sounding frame according to the corresponding business process; the value of the subfield WiFi Sensing Trigger Subtype is 1, which means that the trigger frame is a WiFi Sensing report frame STA can respond to the WiFi Sensing report frame according to the corresponding business process.
  • the wireless sensor detection frame may contain multiple pieces of radar measurement indication information, and the STA may obtain the radar measurement indication associated with its own identification from the wireless sensor detection frame according to its own identification. information.
  • the wireless sensor detection frame may have a structure as shown in FIG. 7.
  • the wireless sensor detection frame may include a MAC header field, a common info field, one or more user info fields, a padding field, and an FCS field.
  • the user info field can contain at least an application identification (AID, application identification) field, a reserved field, and a trigger dependent user info field; among them, the AID field is used to store one
  • the trigger dependent user info field can contain at least the subfield radar info indication, and the subfield radar info indication can contain the subfields radar duration and resource control; among them, the subfield radar duration can be used to instruct the STA to perform
  • the subfield resource control can store the frequency band information contained in the radar measurement indication information used to instruct the STA to perform the radar measurement.
  • the STA when the STA receives the wireless sensor detection frame from the AP, it can first query the AID field contained in one or more user info fields of the wireless sensor detection frame according to its own identification to determine whether the STA is included.
  • Step 53 Send an uplink data packet to the AP, record the first sending time of the uplink data packet, and perform radar measurement on the target according to the radar measurement indication information to obtain a radar measurement result.
  • the STA when the STA receives a trigger frame from the AP, it can identify whether the trigger frame is based on the value of the trigger type field contained in the common info field of the trigger frame and the value of the WiFi Sensing Trigger Subtype subfield Wireless sensor detection frame. If the trigger frame from the AP is a wireless sensor detection frame, step 53 is executed.
  • the STA may concurrently execute the sending of uplink data packets to the AP, and perform radar measurement of the target according to the radar measurement indication information.
  • the STA may also perform radar measurement of the target object according to the radar measurement instruction information after finishing sending the uplink data packet to the AP.
  • the uplink data packet may be a null data packet that does not carry data content, and the null data packet that does not carry data content may also be referred to as an uplink null data packet (UL NDP, uplink null data packet).
  • UL NDP uplink null data packet
  • the STA can be used as a single-station radar. After the STA obtains the radar duration and frequency band information from the wireless sensor detection frame, it can realize the radar measurement of the target based on the aforementioned method of radar measurement of the target. , And get the corresponding radar measurement results.
  • the radar measurement results obtained by the STA can include three forms: Before FFT, FFT info, and FFT result. Therefore, in a possible implementation manner, the wireless sensing detection frame from the AP may also include an indication message in the form of a radar measurement result that is used to instruct the STA to perform radar measurement on the target.
  • the subfield radar info indication can also include a feedback control subfield, and the feedback control subfield can include the subfields Before FFT control, FFT info control, FFT result control.
  • the AP can coordinate the values of the Before FFT control, FFT info control, and FFT result control subfields in the wireless sensor detection frame to instruct the STA to obtain a specific form of radar measurement results.
  • the AP can set the value of Before FFT control contained in the wireless sensor detection frame sent to the STA to 1, and set the subfield FFT
  • the value of info control and FFT result control is set to 0; accordingly, the AP can query the subfields contained in the wireless sensor detection frame Before FFT control, FFT info control, and FFT result control to determine the target subfield with a value of 1.
  • Field for example, Before FFT control
  • the form of the radar result obtained by the STA should be the form indicated by the target subfield.
  • the feedback control subfield may also include a channel state information (CSI, channel state information) control (CSI control) subfield.
  • the AP can coordinate the value of the subfield CSI control in the wireless sensing detection frame to indicate whether the STA needs to obtain the CSI for sensing the movement of the target, and add the obtained CSI to the radar measurement result.
  • the value of the subfield CSI control contained in the wireless sensing detection frame received by the STA is 1, the STA needs to obtain the CSI used to sense the movement of the target, and add the obtained CSI to the radar measurement result.
  • Step 55 Receive a downlink data packet from the AP, and record the first receiving moment of the downlink data packet.
  • a downlink data packet may be a null data packet that does not carry data content, and a null data packet that does not carry data content may also be referred to as a downlink null data packet (DL NDP, downlink null data packet).
  • DL NDP downlink null data packet
  • the STA may also receive a null data packet announcement (NDPA, null data packet announcement) from the AP.
  • NDPA null data packet announcement
  • NDPA is used to reserve the STA's downlink network resources so that the STA can receive the AP sent to it.
  • DL NDP null data packet announcement
  • Step 57 Send the first sending time, the first receiving time, and the radar measurement result to the AP.
  • the STA can send the first sending time and the second sending time to the AP through an LMR frame under the coordination of the AP; and under the coordination of the AP, send the radar measurement to the AP through a wireless sensor data frame result.
  • the STA may send the first sending time, the first receiving time, and the radar measurement result to the AP through a wireless sensing data (WiFi sensing data) frame under the coordination of the AP.
  • the STA may respond to the WiFi sensing report frame sent by the AP to the STA, and send to the AP a WiFi sensing data frame that includes the first sending time, the first receiving time, and the radar measurement result.
  • the WiFi sensing report frame may have a structure as shown in FIG. 8.
  • the WiFi sensing report frame may include a MAC header field, a common info field, one or more user info fields, a padding field, and an FCS field.
  • the common info field can include at least a trigger type field, a reserved field, and a trigger dependent common info field.
  • the trigger dependent common info field may include WiFi sensing trigger subtype subfield, reserved subfield, and feedback control subfield.
  • the feedback control subfield may include at least the FTM feedback control subfield.
  • the AP can coordinate the value of the subfield FTM feedback control in the WiFi sensing report frame to indicate whether the STA needs to feed back to the AP a WiFi sensing data frame that includes the first sending time, the first receiving time, and the radar measurement result.
  • the STA can further query the value of the subfield FTM feedback control subfield contained in the WiFi sensing report frame.
  • the STA can feed back a WiFi sensing data frame containing the radar measurement result to the AP.
  • the feedback control subfield included in the WiFi sensing report frame may also include the subfields CSI, Before FFT control, FFT info control, FFT result control, and the subfields CSI control, Before FFT control, FFT
  • info control and FFT result control are the same as those of the subfields CSI, Before FFT control, FFT info control, and FFT result control included in the WiFi sensing sounding frame shown in Figure 6 and Figure 7, and will not be repeated here.
  • the WiFi sensing data frame may include the structure shown in FIG. 9.
  • the WiFi sensing data frame sent by the STA to the AP can include the MAC header field, category field, and wireless transmission as shown in Figure 9.
  • WiFi sensing action domain, WiFi sensing data action domain, FCS domain, WiFi sensing data action domain can include wireless sensor data control (WiFi sensing data control) field, sequence identifier (sequence) id) field, timestamp (timestamp) field, sampling frequency (sampling frequency) field, CSI field, Before FFT field, FFT info field, FFT result field, FTM result element field.
  • the WiFi sensing data control field can include subfield sequence id control, timestamp control, sampling frequency control, CSI control, Before FFT control, FFT info control, FFT result control , FTM control.
  • the FTM result element field can include sub-field element ID, element ID extension, dialog token, time of departure (TOD), time of arrival (TOA, time of arrival) , Departure time error (TOD error), arrival time error (TOA error), carrier frequency offset (CFO, carrier frequency offset).
  • the STA can coordinate the value of the FTM control subfield contained in the WiFi sensing data frame to indicate to the AP whether the WiFi sensing data frame includes the first receiving moment and the first sending time recorded by the STA when the AP performs FTM on the STA. time.
  • the AP may first query the value of the FTM control subfield contained in the WiFi sensing data frame. If the value of the FTM control subfield is the second indication information (for example, 1), it means that the WiFi sensing data frame contains the FTM result.
  • the second indication information for example, 1
  • the AP can obtain the first receiving time and the first sending time recorded by the STA from the FTM result element field under the instruction of the second indication information; specifically, the first receiving time can be stored in the subfield TOA, The first transmission time may be located in the subfield TOD.
  • the AP finds that the value of the FTM control subfield contained in the WiFi sensing data frame is not the second indication information (for example, 0), it means that the WiFi sensing data frame does not contain the FTM result element field, or, It is explained that the FTM result element field included in the WiFi sensing data frame does not include the first receiving moment and the first sending moment recorded by the STA when the AP performs FTM on the STA.
  • the second indication information for example, 0
  • the STA may respond to the ranging report from the AP (ranging report). report) frame to send an LMR frame containing the first sending moment and the first receiving moment to the AP.
  • an embodiment of the present application also provides a method for positioning a target.
  • the method is directed to each of the multiple STAs, and the method is applied For AP, as shown in FIG. 10, the method for positioning a target can at least include the following steps 101-106.
  • Step 101 Send a wireless sensor detection frame to the STA.
  • the wireless sensor detection frame includes radar measurement indication information used to instruct the STA to perform radar measurement on the target.
  • multiple STAs are STAs that can be determined by the AP to perform radar measurement on a target as a radar under the coordination of the AP after polling each STA connected to it.
  • the AP may send wireless sensor detection frames to multiple STAs at different times.
  • the wireless sensor detection frames respectively received by multiple STAs may have the structure as shown in FIG. 6, and the wireless sensor detection frames received by multiple STAs may contain the same radar measurement indication information.
  • the AP sends wireless sensor detection frames to multiple STAs in a multicast or broadcast manner.
  • the wireless sensor detection frame may have a structure as shown in FIG. 7, and the radar measurement indication information contained in the multiple user information fields of the wireless sensor detection frame respectively include different frequency band information.
  • multiple STAs can respectively send the first radar signal and/or receive the second radar signal on different frequency bands in the same time period. In this way, it is beneficial to reduce the time overhead required for the information exchange process between the AP and multiple STAs.
  • the user information field may also contain channel information used to instruct its corresponding STA to send uplink data packets.
  • the channel information contained in the multiple user information fields is different, so that multiple STAs can send uplink data packets to the AP on different channels in the same time period. In this way, the time overhead required for the information exchange process between the AP and multiple STAs can be further reduced.
  • Step 102 Receive an uplink data packet from the STA, and record a second receiving moment of the uplink data packet.
  • the AP when it sends a wireless sensor detection frame to multiple STAs in a multicast or broadcast manner, it can be based on the channel information contained in the multiple user info fields of the wireless sensor detection frame, Concurrently receive uplink data packets sent to them by multiple STAs on multiple channels concurrently.
  • Step 103 Send a downlink data packet to the STA, and record the second sending moment of the downlink data packet.
  • the AP may also send NDPA to each STA through unicast, multicast, or broadcast, and reserve the downlink network resources of each STA, so that each STA can receive the DL NDP sent to it by the AP.
  • the AP may send downlink data packets to multiple STAs at different times.
  • the AP can send downlink data packets to multiple STAs in a multicast or broadcast manner; in this way, the time overhead required for the information exchange process between the AP and multiple STAs can be further reduced.
  • Step 104 Receive the first sending time, the first receiving time, and the radar measurement result from the STA.
  • the first sending time is the time corresponding to when the STA sends the uplink data packet
  • the receiving time is the time corresponding to when the STA receives the downlink data packet
  • the radar measurement result is the The radar measurement result obtained when the STA performs radar measurement on the target according to the radar measurement indication information.
  • the AP can send WiFi sensing report frames to multiple STAs through multicast or broadcast, so that multiple STAs can send WiFi sensing data frames to the AP through different frequency bands/channels in the same time period.
  • the frequency band/channel used by the STA to send the WiFi sensing data frame to the AP may be the frequency band indicated by the frequency band information contained in the radar measurement indication information obtained by the STA, or the user info corresponding to the STA The channel indicated by the channel information contained in the domain. In this way, the time overhead required for the information exchange process between the AP and multiple STAs can be further reduced.
  • Step 105 Calculate a first distance between the STA and the AP according to the first sending time, the first receiving time, the second sending time, and the second receiving time.
  • Step 106 Position the target according to the first distance and the radar measurement result respectively corresponding to the multiple STAs.
  • the AP can be based on the first distance between the STA and the AP, the location information of the AP in a specific coordinate system, and the arrival of electromagnetic waves from the STA.
  • the angle of arrival or the angle of arrival of the electromagnetic wave sent by the AP to the STA determines the position information of the STA; where the angle of arrival of the electromagnetic wave from the STA can be combined with at least the radar coordinate system shown in Fig. 3, as mentioned above.
  • Figure 4 shows an example of the phase angle measurement method, which is measured by the AP through the phase angle measurement method. Then, the AP can locate the target based on the respective position information and radar measurement results of multiple STAs.
  • the following takes multiple STAs including STA1, STA2, STA3, and STA4 as an example to describe an exemplary description of the information exchange process between the AP and multiple STAs.
  • the AP may select an unselected STA from multiple STAs (STA1, STA2, STA3, STA4), and send a WiFi sensing sounding frame to the selected STA.
  • the STA selected by the AP sends the UL NDP to the AP, sends the first radar signal S1 to the target, and receives the second radar signal S2 formed by reflecting the S1 sent by the target.
  • the AP after the AP receives the UL NDP sent to it by the selected STA, it can re-select an unselected STA from the multiple STAs and perform the aforementioned similar process, so as to realize that the multiple STAs can be sent to multiple STAs at different time points.
  • the AP can send NDPA to multiple STAs through unicast, multicast, or broadcast, and notify multiple STAs to receive the DL NDP that the AP is about to send through NDPA.
  • the AP sends DL NDPs to multiple STAs separately through unicast, multicast or broadcast.
  • the AP sends WiFi sensing report frames to multiple STAs through unicast, multicast, or broadcast, so that multiple STAs send WiFi sensing data frames to the AP respectively.
  • the AP may select an unselected STA from multiple STAs (STA1, STA2, STA3, STA4), and send a WiFi sensing sounding frame to the selected STA.
  • the STA selected by the AP sends the UL NDP to the AP, sends the first radar signal S1 to the target, and receives the second radar signal S2 formed by reflecting the S1 sent by the target.
  • the AP sends NDPA to the selected STA in unicast mode, and informs the selected STA to receive the DL NDP to be sent by the AP through NDPA.
  • the AP sends DL NDP to the selected STA through unicast.
  • the AP can select an unselected STA from the multiple STAs and perform the aforementioned similar process.
  • the AP can send WiFi sensing report frames to multiple STAs through unicast, multicast, or broadcast, so that multiple STAs can send WiFi sensing data to the AP. frame.
  • the AP can send WiFi sensing sounding frames to multiple STAs ((STA1, STA2, STA3, STA4)) through multicast or broadcast, so that multiple STAs are in the same
  • the UL NDP is sent to the AP on different channels within the time period of, and the first radar signal S1 and the second radar signal S2 are received on different frequency bands in the same time period.
  • the AP can send NDPA to multiple STAs through unicast, multicast, or broadcast, and notify multiple STAs to receive the DL NDP that the AP is about to send through NDPA.
  • the AP can send DL NDPs to multiple STAs separately through unicast, multicast, or broadcast.
  • the AP can send WiFi sensing report frames to multiple STAs through unicast, multicast, or broadcast, so that multiple STAs send WiFi sensing data frames to the AP respectively.
  • an embodiment of the present application also provides a device for assisting target positioning, which is applied to an STA, and the device 140 includes:
  • the transceiver unit 141 is configured to receive a wireless sensor detection frame from an AP, the wireless sensor detection frame contains radar measurement indication information; send an uplink data packet to the AP; receive a downlink data packet from the AP;
  • the processing unit 143 is configured to record the first transmission time of the uplink data packet; record the first reception time of the downlink data packet; and perform radar measurement on the target according to the radar measurement instruction information to obtain a radar measurement result;
  • the transceiver unit is further configured to send the first sending time, the first receiving time, and the radar measurement result to the AP.
  • the processing unit 143 is specifically configured to trigger the transceiver unit to send the first radar signal according to the radar measurement instruction information; and trigger the transceiver unit to receive the second radar signal according to the radar measurement instruction information,
  • the second radar signal is formed by reflecting the target object on the first radar signal;
  • the processing unit 141 is specifically configured to correspond to a first starting time when the transceiver unit sends the first radar signal, a second starting time corresponding to when the transceiver unit receives the second radar signal, and The first radar signal and the second radar signal determine the radar measurement result.
  • the trigger-dependent common information field of the wireless sensor detection frame includes a radar information flag subfield
  • the radar information flag subfield includes the radar measurement indication information
  • a user information field of the wireless sensor detection frame contains an application identification field and a trigger-dependent user information field, wherein the application identification field contains the identification of the STA ,
  • the trigger-dependent user information field includes a radar information indicator subfield, and the radar information indicator subfield includes the radar measurement indication information.
  • the radar information indicator subfield includes a radar duration subfield and a resource control subfield
  • the radar measurement indication information includes radar duration and frequency band information, wherein the radar duration subfield includes the radar duration, and the resource control subfield includes the frequency band information.
  • the processing unit 143 is specifically configured to, in response to the wireless sensor report frame sent by the AP to the STA, trigger the transceiver unit to send the wireless sensor data frame to the AP ,
  • the wireless sensor data frame includes the first sending time, the first receiving time, and the radar measurement result.
  • the trigger-dependent common information field of the wireless sensor report frame includes a feedback control subfield
  • the feedback control subfield includes at least a precise time measurement FTM feedback control subfield, and the FTM feedback control subfield includes first indication information, and the first indication information is used to instruct the STA to send all data to the AP.
  • the wireless sensor data frame includes
  • the wireless sensor data action field of the wireless sensor data frame includes an FTM result element field
  • the first receiving time and the first sending time are included in the FTM result element field.
  • the wireless sensor data action field of the wireless sensor data frame further includes a wireless sensor data control field
  • the wireless sensor data control field includes an FTM control subfield
  • the FTM control subfield includes second indication information
  • the second indication information is used to instruct the AP to obtain the first receiving time and the first sending time from the FTM result element field.
  • an embodiment of the present application also provides a device for positioning a target, which is applied to an AP, and the device 150 includes:
  • the transceiver unit 151 is configured to send a wireless sensor detection frame to each of the multiple STAs, where the wireless sensor detection frame contains radar measurement indication information; and receive uplink data packets from the STA; Send a downlink data packet to the STA; receive a first sending time, a first receiving time, and a radar measurement result from the STA, where the first sending time is the corresponding time when the STA sends the uplink data packet.
  • the first receiving time is a time corresponding to when the STA receives the downlink data packet, and the radar measurement result is a radar measurement result obtained when the STA performs radar measurement on a target according to the radar measurement indication information ;
  • the processing unit 153 is configured to record the second receiving moment of the uplink data packet; record the second sending moment of the downlink data packet; and, according to the first sending moment, the first receiving moment, and the first sending moment; 2.
  • the first distance between the STA and the AP is calculated; and the target is located according to the first distance and the radar measurement result respectively corresponding to the multiple STAs.
  • the processing unit 153 is specifically configured to trigger the transceiver unit 151 to send the wireless sensor detection frame to the multiple STAs in a multicast or broadcast manner, where the The multiple user information fields of the wireless sensor detection frame correspond to the multiple STAs one-to-one, and the user information field contains the identification of the corresponding STA and the radar measurement indication information used to instruct the corresponding STA to perform radar measurement.
  • the radar measurement indication information contained in the plurality of user information domains respectively contain different frequency band information.
  • the user information field also contains channel information used to instruct its corresponding STA to send the uplink data packet, and the channel information contained in the multiple user information fields is different;
  • the processing unit 153 is specifically configured to trigger the transceiver unit to receive the uplink data packets from the multiple STAs according to the channel information respectively contained in each of the user information fields.
  • the processing unit 153 is specifically configured to trigger the transceiver unit 151 to send the downlink data packet to the multiple STAs in a multicast or broadcast manner.
  • the embodiments of the present application also provide a computer-readable storage medium for storing instructions.
  • the STA can realize the assisted target object provided in any of the embodiments of the present application. Method of positioning.
  • the embodiments of the present application also provide a computer-readable storage medium for storing instructions.
  • the instructions When the instructions are executed by the processor of the AP, the AP can implement the target object provided in any one of the embodiments of the present application. Method of positioning.
  • An embodiment of the present application also provides an STA, including a memory and a processor, the memory stores executable code, and when the processor executes the executable code, it implements the assistance provided in any of the embodiments of the present application.
  • the method of positioning the target is also provided.
  • An embodiment of the present application also provides an AP, including a memory and a processor, the memory stores executable code, and when the processor executes the executable code, it implements the pairing provided in any one of the embodiments of the present application. The method of positioning the target.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the auxiliary progress target provided in any of the embodiments of the present application.
  • the method of object positioning is not limited to:
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the target object provided in any one of the embodiments of the present application. The method of positioning.
  • the embodiment of the present application also provides a communication device, the communication device having the function of the STA in the above-mentioned various aspects.
  • the function of the STA can be realized by hardware, or can be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • An embodiment of the present application also provides a communication device, which has the function of the AP in the above-mentioned various aspects.
  • the function of the AP may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the embodiment of the present application also provides a communication device, and the communication device may be the STA described in the foregoing aspects, or a chip set in the STA.
  • the communication device includes a memory, a communication interface, and a processor.
  • the memory is used to store a computer program or instruction.
  • the processor is coupled to the memory and the communication interface. When the processor executes the computer program or instruction, the communication device executes the computer program or instruction. Apply for the method for assisting target positioning provided in any of the embodiments.
  • the embodiment of the present application also provides a communication device, and the communication device may be the AP described in the foregoing aspects, or a chip set in the AP.
  • the communication device includes a memory, a communication interface, and a processor.
  • the memory is used to store a computer program or instruction.
  • the processor is coupled to the memory and the communication interface. When the processor executes the computer program or instruction, the communication device executes the computer program or instruction. Apply for the method for positioning the target provided in any of the embodiments.
  • the embodiment of the present application also provides a chip system
  • the chip system includes a processor, used for the function of the STA described in any embodiment of the present application, for example, receiving or processing the auxiliary provided in any embodiment of the present application The data and/or information involved in the method of positioning the target.
  • the chip system further includes a memory, and the memory is used to store program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiment of the present application also provides a chip system.
  • the chip system includes a processor for implementing the function of the AP described in any embodiment of the present application, for example, receiving or processing the functions provided in any one of the embodiments of the present application.
  • the data and/or information involved in the method of locating the target In a possible design, the chip system further includes a memory, and the memory is used to store program instructions and/or data.
  • the chip system can be composed of chips, or it can include chips and other discrete devices
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be dealt with.
  • the implementation process of the embodiments of the present application constitutes any limitation.
  • the device embodiments described above are illustrative, for example, the division of the modules/units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be Combined or can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请提供了一种辅助进行目标物定位的方法、对目标物进行定位的方法及装置。实施例中,辅助进行目标物定位的方法应用于STA,该方法包括:从AP接收包含雷达测量指示信息的无线传感探测帧;向AP发送上行数据包并记录第一发送时刻,以及根据雷达测量指示信息对目标物进行雷达测量以得到雷达测量结果;从AP接收下行数据包并记录第一接收时刻;向AP发送第一发送时刻、第一接收时刻和雷达测量结果。根据本申请实施例的技术方案,AP针对STA进行FTM的过程中,该STA并发的执行对目标物进行雷达测量,该STA的FTM结果能够更为准确的反映该STA在对目标物进行雷达测量时的真实位置;相应的,AP即可结合多个STA各自的雷达测量结果和FTM结果,更为准确的定位目标物。

Description

对目标物进行定位的方法及装置
本申请要求于2019年11月20日提交中国专利局、申请号为201911140636.5、申请名称为“对目标物进行定位的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及对目标物进行定位的方法及装置。
背景技术
雷达可以用于探测目标物,比如探测目标物相对于雷达的距离、速度及方向角(包括方位角和俯仰角)中的一项或多项。雷达通常包括有发射天线和接收天线,雷达可以利用其发射天线发射雷达信号(简称发射波),利用其接收天线接收由目标物对发射波进行反射所形成的雷达信号(简称反射波);之后,即可根据反射波相对于发射波的变化,得到雷达测量结果,比如得到目标物相对于雷达的距离、运动速度及方向角,或者得到用于计算目标物相对于雷达的距离、运动速度及方向角中的任意一项的其它信息。
无线局域网(WLAN,wireless local access network)作为一种接入方便、数据传输速率较快的局域通信网络,已经得到了广泛的部署和应用。其中,在密集部署的WLAN中,一个接入点(AP,access point)通常连接了多个工作站(STA,Station),各个STA可能作为用于对目标物进行探测的雷达。
通常的,AP可以从其覆盖的多个STA中,确定出能够用于在AP的协调下对目标物进行探测的多个目标STA;然后确定出多个目标STA的位置信息,并协调多个目标STA对目标物进行雷达测量;之后,AP或者与AP连接的计算设备,即可根据在先确定的多个目标STA的位置信息,以及多个目标STA分别对目标物进行雷达测量时得到的雷达测量结果,对目标物进行定位。
然而,WLAN中的STA通常具有移动性,即在确定出目标STA的位置信息之后,目标STA可能发生运动,导致目标STA的位置信息不能准确反映该目标STA进行雷达测量时的真实位置,从而影响目标物的定位结果。
发明内容
本申请实施例中提供了一种辅助进行目标物定位的方法、对目标物进行定位的方法及装置,能够更为准确的定位目标物。
本申请实施例中至少提供了如下技术方案:
第一方面,提供了一种辅助进行目标物定位的方法,应用于STA,所述方法包括:
从AP接收无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;
向所述AP发送上行数据包,并记录所述上行数据包的第一发送时刻,以及,根据所述雷达测量指示信息对目标物进行雷达测量,得到雷达测量结果;
从所述AP接收下行数据包,并记录所述下行数据包的第一接收时刻;
向所述AP发送所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
在一种可能的实施方式中,所述根据所述雷达测量指示信息对目标物进行雷达测量,得到雷达测量结果,包括:
根据所述雷达测量指示信息发送第一雷达信号,并根据所述雷达测量指示信息接收第二雷达信号,所述第二雷达信号由目标物对所述第一雷达信号进行反射以形成;
根据发送所述第一雷达信号时对应的第一起始时刻、接收所述第二雷达信号时对应的第二起始时刻,以及所述第一雷达信号、所述第二雷达信号,确定雷达测量结果。
在一种可能的实施方式中,所述无线传感探测帧的依赖于触发器的公共信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息。
在一种可能的实施方式中,所述无线传感探测帧的一个用户信息域中包含应用标识字段和依赖于触发器的用户信息字段,其中,所述应用标识字段中包含所述STA的标识,所述依赖于触发器的用户信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息。
在一种可能的实施方式中,
所述雷达信息标示子字段中包含雷达持续时间子字段和资源控制子字段;
所述雷达测量指示信息包含雷达持续时间和频段信息,其中,所述雷达持续时间子字段中包含所述雷达持续时间,所述资源控制子字段中包含所述频段信息。
在一种可能的实施方式中,所述向所述AP发送所述第一发送时刻、所述第一接收时刻和所述雷达测量结果,包括:响应于所述AP向所述STA发送的无线传感报告帧,向所述AP发送无线传感数据帧,所述无线传感数据帧中包含所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
在一种可能的实施方式中,
所述无线传感报告帧的依赖于触发器的公共信息字段中包含反馈控制子字段;
所述反馈控制子字段中至少包含精确时间测量FTM反馈控制子字段,所述FTM反馈控制子字段中包含第一指示信息,所述第一指示信息用于指示所述STA向所述AP发送所述无线传感数据帧。
在一种可能的实施方式中,
所述无线传感数据帧的无线传感数据动作域中包含FTM结果元素字段;
所述第一接收时刻和所述第一发送时刻包含于所述FTM结果元素字段中。
在一种可能的实施方式中,所述无线传感数据帧的无线传感数据动作域中还包含无线传感数据控制字段,所述无线传感数据控制字段中包含FTM控制子字段,其中,所述FTM控制子字段中包含第二指示信息,所述第二指示信息用于指示所述AP从所述FTM结果元素字段中获取所述第一接收时刻、所述第一发送时刻。
第二方面,提供了一种对目标物进行定位的方法,应用于AP,所述方法针对多个STA中的每个STA,所述方法包括:
向所述STA发送无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;
从所述STA接收上行数据包,并记录所述上行数据包的第二接收时刻;
向所述STA发送下行数据包,并记录所述下行数据包的第二发送时刻;
从所述STA接收第一发送时刻、第一接收时刻和雷达测量结果,其中,所述第一 发送时刻为所述STA发送所述上行数据包时对应的时刻,所述第一接收时刻为所述STA接收所述下行数据包时对应的时刻,所述雷达测量结果为所述STA根据所述雷达测量指示信息对目标物进行雷达测量时得到的雷达测量结果;
根据所述第一发送时刻、所述第一接收时刻、所述第二发送时刻、所述第二接收时刻,计算所述STA与所述AP之间的第一距离;
根据多个所述STA分别对应的第一距离和雷达测量结果对目标物进行定位。
在一种可能的实施方式中,所述向所述STA发送无线传感探测帧,包括:通过组播或广播的方式向所述多个STA发送所述无线传感探测帧,其中,所述无线传感探测帧的多个用户信息域和所述多个STA一一对应,所述用户信息域中包含其对应的STA的标识、用于指示其对应的STA进行雷达测量的雷达测量指示信息,多个所述用户信息域所分别包含的雷达测量指示信息中各自包含不同的频段信息。
在一种可能的实施方式中,所述用户信息域中还包含用于指示其对应的STA发送所述上行数据包的信道信息,多个所述用户信息域中分别包含的信道信息各不相同;
所述从所述STA接收上行数据包,包括:根据各个所述用户信息域中分别包含的信道信息,从所述多个STA分别接收所述上行数据包。
在一种可能的实施方式中,所述向所述STA发送下行数据包,包括:通过组播或广播的方式向所述多个STA发送所述下行数据包。
第三方面,提供了一种辅助进行目标物定位的装置,应用于STA,所述装置包括:
收发单元,用于从AP接收无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;向所述AP发送上行数据包;从所述AP接收下行数据包;
处理单元,用于记录所述上行数据包的第一发送时刻;记录所述下行数据包的第一接收时刻;以及根据所述雷达测量指示信息对目标物进行雷达测量,得到雷达测量结果;
所述收发单元,还用于向所述AP发送所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
在一种可能的实施方式中,
所述处理单元,具体用于根据所述雷达测量指示信息,触发所述收发单元发送第一雷达信号;以及根据所述雷达测量指示信息,触发所述收发单元接收第二雷达信号,所述第二雷达信号由目标物对所述第一雷达信号进行反射以形成;
所述处理单元,具体用于根据所述收发单元发送所述第一雷达信号时对应的第一起始时刻、所述收发单元接收所述第二雷达信号时对应的第二起始时刻,以及所述第一雷达信号、所述第二雷达信号,确定雷达测量结果。
在一种可能的实施方式中,所述无线传感探测帧的依赖于触发器的公共信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息。
在一种可能的实施方式中,所述无线传感探测帧的一个用户信息域中包含应用标识字段和依赖于触发器的用户信息字段,其中,所述应用标识字段中包含所述STA的标识,所述依赖于触发器的用户信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息。
在一种可能的实施方式中,
所述雷达信息标示子字段中包含雷达持续时间子字段和资源控制子字段;
所述雷达测量指示信息包含雷达持续时间和频段信息,其中,所述雷达持续时间子字段中包含所述雷达持续时间,所述资源控制子字段中包含所述频段信息。
在一种可能的实施方式中,所述处理单元,具体用于响应于所述AP向所述STA发送的无线传感报告帧,触发所述收发单元向所述AP发送无线传感数据帧,所述无线传感数据帧中包含所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
在一种可能的实施方式中,
所述无线传感报告帧的依赖于触发器的公共信息字段中包含反馈控制子字段;
所述反馈控制子字段中至少包含精确时间测量FTM反馈控制子字段,所述FTM反馈控制子字段中包含第一指示信息,所述第一指示信息用于指示所述STA向所述AP发送所述无线传感数据帧。
在一种可能的实施方式中,
所述无线传感数据帧的无线传感数据动作域中包含FTM结果元素字段;
所述第一接收时刻和所述第一发送时刻包含于所述FTM结果元素字段中。
在一种可能的实施方式中,所述无线传感数据帧的无线传感数据动作域中还包含无线传感数据控制字段,所述无线传感数据控制字段中包含FTM控制子字段,其中,所述FTM控制子字段中包含第二指示信息,所述第二指示信息用于指示所述AP从所述FTM结果元素字段中获取所述第一接收时刻、所述第一发送时刻。
第四方面,提供了一种对目标物进行定位的装置,应用于AP,所述装置包括:
收发单元,用于针对多个STA中的每个STA,向所述STA发送无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;从所述STA接收上行数据包;向所述STA发送下行数据包;从所述STA接收第一发送时刻、第一接收时刻和雷达测量结果,其中,所述第一发送时刻为所述STA发送所述上行数据包时对应的时刻,所述第一接收时刻为所述STA接收所述下行数据包时对应的时刻,所述雷达测量结果为所述STA根据所述雷达测量指示信息对目标物进行雷达测量时得到的雷达测量结果;
处理单元,用于记录所述上行数据包的第二接收时刻;记录所述下行数据包的第二发送时刻;以及,根据所述第一发送时刻、所述第一接收时刻、所述第二发送时刻、所述第二接收时刻,计算所述STA与所述AP之间的第一距离;根据多个所述STA分别对应的第一距离和雷达测量结果对目标物进行定位。
在一种可能的实施方式中,所述处理单元,具体用于触发所述收发单元通过组播或广播的方式向所述多个STA发送所述无线传感探测帧,其中,所述无线传感探测帧的多个用户信息域和所述多个STA一一对应,所述用户信息域中包含其对应的STA的标识、用于指示其对应的STA进行雷达测量的雷达测量指示信息,多个所述用户信息域所分别包含的雷达测量指示信息中各自包含不同的频段信息。
在一种可能的实施方式中,
所述用户信息域中还包含用于指示其对应的STA发送所述上行数据包的信道信息,多个所述用户信息域中分别包含的信道信息各不相同;
所述处理单元,具体用于根据各个所述用户信息域中分别包含的信道信息,触发所述收发单元从所述多个STA分别接收所述上行数据包。
在一种可能的实施方式中,所述处理单元,具体用于触发所述收发单元通过组播或广播的方式向所述多个STA发送所述下行数据包。
第五方面,提供了一种计算机可读存储介质,用于存储指令,当所述指令被STA的处理器执行时,使得所述STA实现第一方面中任一项所述的方法。
第六方面,提供了一种计算机可读存储介质,用于存储指令,当所述指令被AP的处理器执行时,使得所述AP实现第二方面中任一项所述的方法。
第七方面,提供了一种STA,包括存储器和处理器,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现第一方面中任一项所述的方法。
第八方面,提供了一种AP,包括存储器和处理器,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现第二方面中任一项所述的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一项所述的方法。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面中任一项所述的方法。
第十一方面,提供了一种通信装置,所述通信装置具有上述各个方面中STA的功能。所述STA的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第十二方面,提供了一种通信装置,所述通信装置具有上述各个方面中AP的功能。所述AP的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第十三方面,提供了一种通信装置,该通信装置可以为上述各个方面中所述的STA,或者为设置在所述STA中的芯片。该通信装置包括存储器、通信接口以及处理器,其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使得通信装置执行上述第一方面中任一项所述的方法。
第十四方面,提供了一种通信装置,该通信装置可以为上述各个方面中所述的AP,或者为设置在所述AP中的芯片。该通信装置包括存储器、通信接口以及处理器,其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使得通信装置执行上述第二方面中任一项所述的方法。
第十五方面,提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各个方面中所述的STA的功能,例如,接收或处理上述第一方面的方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
第十六方面,提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各个方面中所述的AP的功能,例如,接收或处理上述第二方面的方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存 程序指令和/或数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
根据本申请的技术方案,AP针对STA进行精确时间测量(FTM,fine time measurement)的过程中,该STA并发的执行对目标物进行雷达测量,该STA的FTM结果能够更为准确的反映该STA在对目标物进行雷达测量时的真实位置;相应的,AP即可结合多个STA各自的雷达测量结果和FTM结果,更为准确的定位目标物。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1为本申请实施例中第一雷达信号和第二雷达信号的频率变化关系示意图。
图2为本申请实施例中提供的技术方案所适用的一种应用场景的示意图。
图3为本申请实施例中提供的一种雷达坐标系的示意图。
图4为本申请实施例中提供的一种通过相位测角法测量电磁波的到达角的实例。
图5为本申请实施例中提供的一种辅助进行目标物定位的方法的流程图。
图6为本申请实施例中提供的一种无线传感探测帧的结构示意图。
图7为本申请实施例中提供的另一种无线传感探测帧的结构示意图。
图8为本申请实施例中提供的一种无线传感报告帧的结构示意图。
图9为本申请实施例中提供的一种无线传感数据帧的结构示意图。
图10为本申请实施例中提供的一种对目标物进行定位的方法的流程图。
图11为本申请实施例中提供的AP与多个STA的信息交互过程的示意图之一。
图12为本申请实施例中提供的AP与多个STA的信息交互过程的示意图之二。
图13为本申请实施例中提供的AP与多个STA的信息交互过程的示意图之三。
图14为本申请实施例中提供的一种辅助进行目标物定位的装置的结构示意图。
图15为本申请实施例中提供的一种对目标物进行定位的装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例中,目标物包括但不限于人物对象,比如还可以包括各种形式的物理设备。
本申请实施例中,AP是指用于将STA接入有线网络的网络设备。单个AP的网络覆盖范围通常可以达到数十米,AP与其覆盖范围内的STA之间的通信通常基于IEEE802.11协议进行。
本申请实施例中,STA可以是具有发射天线和接收天线的无线通讯设备,无线通讯设备通常具有移动性。无线通讯设备也可称为移动设备(MD,mobile device)、用户设备(UE,user equipment)、终端(terminal)、移动台(MS,mobile station)、移动终端(MT,mobile terminal)。具体而言,STA包括但不限于各种形式的移动电话(或称为“蜂窝”电话)、笔记本电脑、平板电脑、具有无线通讯模块的台式计算机,比如还可以包括各种形式的物联网终端,以及各种便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
可以理解,雷达可以按照其发射天线和接收天线是否具有相同的地址信息,划分 为单站雷达和多站雷达。相应的,如果一个雷达同时具有发射天线和接收天线,则其不仅可以作为单站雷达,还可能与其他雷达相配合,作为多站雷达的雷达信号发射端或者作为多站雷达的雷达信号接收端。
本申请实施例中,作为STA的无线通讯设备通常同时具有发射天线和接收天线。因此,一个STA可以在AP的协调下作为单站雷达,也可以在AP的协调下作为多站雷达的雷达信号发射端或雷达信号接收端。
STA作为单站雷达时,该STA可以首先根据其获取的雷达测量指示信息发送第一雷达信号,并根据该雷达测量指示信息接收第二雷达信号,第二雷达信号由目标物对第一雷达信号进行反射以形成;然后根据发送第一雷达信号时对应的第一起始时刻、接收第二雷达信号时对应的第二起始时刻,以及该第一雷达信号、第二雷达信号,确定雷达测量结果。
其中,STA发送的第一雷达信号,可以是该STA根据雷达持续时间和频段信息发送的普通连续波,也可以是该STA根据雷达持续时间和频段信息发送的调频连续波,或者还可以是该STA根据雷达持续时间和频段信息发送的脉冲信号。
下面以一个STA发送的第一雷达信号是调频连续波为例,对该STA对目标物进行雷达测量,得到雷达测量结果的过程进行示例性描述。
如图1所示,一个STA获取的、用于指示该STA对目标物进行雷达测量的雷达测量指示信息中,雷达持续时间为2T、频段信息限定了该STA发送的第一雷达信号S1的频段应当位于频段f3~f4中。
首先,该STA可以在第一起始时刻T1于调频频段f1~f2上发送周期为T、调制带宽B为(f2-f1)的第一雷达信号S1,在T3停止发送第一雷达信号S1;其中,T3与T1之间的时间差为雷达持续时间2T,调频频段f1~f2位于频段f3~f4中。
之后,该STA可以在第二起始时刻T2于频段f3~f4上开始接收第二雷达信号S2或S3,并且在T4之后停止在频段f3~f4上接收第二雷达信号S2或S3;其中,T4与T2之间的时间差为雷达持续时间2T。
可以理解,如果该STA和目标物在T1~T4时间段内相对静止,则该STA可以在调频频段f1~f2上,接收到波形与第一雷达信号S1相同的第二雷达信号S2;如果该STA和目标物在T1~T4时间段内并非相对静止,即如果该STA和/或目标物在T1~T4时间段内发生运动,该STA接收的第二雷达信号中则可能包含因该STA和/或目标物发生运动而产生的多普勒频率fd,该STA可能接收到包含多普勒频率fd的第二雷达信号S3。
进一步的,该STA可以根据其发送第一雷达信号的第一起始时刻T1、接收第二雷达信号的第二起始时刻T2、第一雷达信号S1和第二雷达信号S2/S3,得到该STA的雷达测量结果。
具体而言,该STA通常可以根据T1、T2,对S1、S2/S3进行采样处理,进而由该STA或者AP对进行采样处理后的第一雷达信号S1、第二雷达信号S2进行快速傅里叶变换(FFT,fast flourier transformation),从而得到目标物与该STA之间的距离。其中,还可能得到目标物相对于该STA的方向角和径向运动速度。相应的,该STA得到的雷达测量结果包含但不限于如下三种形式:
Before FFT:该STA可以根据其发送第一雷达信号的第一起始时刻T1、接收第二雷达信号的第二起始时刻T2,对第一雷达信号S1和第二雷达信号S2/S3进行混频得到中频信号,通过模数转换器(ADC,analog to digital converter)将中频信号转换成数字信号,并对数字信号进行采样以得到采样后的数字信号,采样后的数字信号具体可以包含采样频率、采样点数以及各个采样点分别对应的采样值。该STA可以将采样后的数字信号作为该STA的雷达测量结果反馈给AP。
FFT info:该STA可以进一步对采样后的数字信号进行N点FFT,得到采样后的数字信号对应的频域图形,在频域图形中,每一个点(横轴)对应着一个频率点,该点的模值(纵轴)为该频率点下的幅度特性。该STA可以将频域图形作为该STA的雷达测量结果反馈给AP。
FFT result:该STA可以进一步对频域图形进行range-FFT,得到目标物相对于该STA的距离,该STA可以将目标物与该STA之间的距离作为该STA的雷达测量结果反馈给AP。可选地,该STA还可以对频域图形进行doppler-FFT,得到目标物相对于该STA的径向运动速度,将径向运动速度加入该STA的雷达测量结果并反馈给AP。可选地,该STA还可以对频域图形进行angle-FFT,得到目标物相对于该STA的方向角,将方向角加入该STA的雷达测量结果并反馈给AP。
在一个较为具体的示例中,该STA或者AP可以根据如下公式1或公式2计算目标物与该STA之间的距离:
R=(T2-T1)*c/2       (1)
Figure PCTCN2020130119-appb-000001
其中,R表征目标物与该STA之间的距离,T2表征第二起始时刻,T1表征第一起始时刻,c表征光速,T表征该STA发送的第一雷达信号的调频周期,B表征该STA发送的第一雷达信号的调制带宽,f0表征中频信号的频率。
需要说明的是,在目标物和/或STA发生运动的情况下,可根据如下公式3计算中频信号的频率f0:
Figure PCTCN2020130119-appb-000002
其中,fa表征第二雷达信号相对于第一雷达信号在正向调频阶段的差频,fb表征第二雷达信号相对于第一雷达信号在负向调频阶段的差频。
在一个较为具体的示例中,该STA或者AP可以根据如下公式4计算目标物与该STA的径向运动速度:
Figure PCTCN2020130119-appb-000003
其中,V R表征目标物与该STA的径向运动速度,f x表征该STA发送的第一雷达信号的中心频率。
需要说明的是,当一个STA发送的第一雷达信号是普通连续波时,该STA或AP可以首先通过上述公式1计算目标物与该STA之间的距离,并通过如下公式5计算目标物与该STA的径向运动速度V R
Figure PCTCN2020130119-appb-000004
其中,f m表征该STA接收的第二雷达信号的频率、f n表征该STA发送的第一雷达 信号的频率。
需要说明的是,对于通过前述各种方式计算的V R,当V R的取值为正数时,表征目标物朝向靠近该STA的方向运动;当V R的取值为负数时,表征目标物朝向远离该STA的反向运动。
STA作为多站雷达的雷达信号发射端时,该STA可以首先根据用于指示该STA进行雷达测量的雷达测量指示信息发送第一雷达信号,并将其发送第一雷达信号的第一起始时刻以及该第一雷达信号的周期、调频频段等信息作为雷达测量结果。其中,该第一雷达信号用于经由目标物的反射以形成第二雷达信号,与该STA对应的、作为多站雷达的雷达信号接收端的另一个STA可以接收该第二雷达信号。
STA作为多站雷达的雷达信号接收端时,该STA可以首先根据用于指示该STA进行雷达测量的雷达测量指示信息接收第二雷达信号,并将其接收第二雷达信号的第二起始时刻以及该第二雷达信号作为雷达测量结果。其中,该第二雷达信号由目标物对第一雷达信号进行反射以形成,该第一雷达信号由该STA对应的、作为多站雷达的雷达信号发射端的另一个STA发送。
可以理解的,AP可以对多组相互对应的STA分别发送的雷达测量结果进行综合处理,更为准确的定位目标物。
本申请实施例中,对目标物进行定位,包括但不限于确定目标物在特定坐标系下的位置信息。比如,还可以包括确定目标物在特定坐标系下与AP之间的距离,以及包括确定目标物在特定坐标系下相对于AP的方位角、俯仰角、径向运动速度等。
本申请实施例中,特定坐标系包括但不限于地理坐标系,比如还可以是结合实际业务需求构建的地图坐标系。
图2为本申请实施例中提供的技术方案所适用的一种应用场景的示意图。如图2所示,在一个密集部署的WLAN中,AP的覆盖范围内可能存在多个STA,且该AP可能与其覆盖范围内的多个STA建立了连接以进行通信;比如,AP可能同时与STA1~STA9建立了连接。AP可以对位于其覆盖范围内并已经与其建立了连接的各个STA进行轮询,以确定出能够在AP协调下作为雷达对目标物进行雷达测量的目标STA;之后,AP即可进一步协调多个目标STA分别对目标物进行雷达测量,并根据多个目标STA各自的雷达测量结果、多个STA各自在特定坐标系下的位置信息对目标物进行定位。
示例性的,当AP需要协调多个STA分别对目标物进行雷达测量时,AP可以向STA1~STA9分别发送无线传感轮询(WiFi sensing poll)帧,如果STA1、STA2、STA3、STA4在接收到来自AP的WiFi sensing poll帧的情况下,自动的或者在用户的触发下各自确定其自身可以作为雷达对目标物进行雷达测量,即可向AP发送给自己的允许发送(clear to send to self)帧。相应的,如果AP从STA1、STA2、STA3、STA4分别接收到clear to send to self帧,并未从STA5~STA9接收到clear to send to self帧,AP即可将STA1、STA2、STA3、STA4确定为能够在AP的协调下作为雷达对目标物进行雷达测量的STA。
以STA1、STA2、STA3、STA4分别作为包含接收天线和发射天线的单站雷达为例。对于STA1、STA2、STA3、STA4中的每个STA,如前所述,该STA可以在AP 的协调下通过其发射天线发送用于探测目标物的雷达信号(简称发射波);发射波可在目标物的作用下对其进行反射,由目标物对发射波进行反射所形成的雷达信号可称为反射波;该STA则可以通过其接收天线接收该反射波,并根据该反射波相对于发射波的变化,得到雷达测量结果。之后,AP或者与AP连接的其它计算设备,即可基于STA1、STA2、STA3、STA4各自的雷达测量结果以及STA1、STA2、STA3、STA4各自在特定坐标系下的位置信息,对目标物进行定位。
在现有技术中,AP需要在确定出多个STA的位置信息之后,才触发多个STA分别对目标物进行雷达测量。STA具有的移动性,可能导致在先确定的STA的位置信息,并不能准确反映该STA对目标物进行雷达测量时的真实位置,从而影响后续对目标物进行定位时,所得到的定位结果的准确性。示例性的,仍然以图2所示的应用场景为例,在完成确定STA3的位置信息之后,STA3可能在其对目标物进行雷达测量之前和/或在其对目标物进行雷达测量的过程中,由STA3所在的位置运动到其它位置(比如,STA7所在的位置),这就导致在先确定的STA3的位置信息,并不能准确反映STA3对目标物进行雷达测量时的真实位置。
有鉴于此,本申请实施例中至少提供了一种辅助进行目标物定位的方法、对目标物进行定位的方法及装置,通过在AP针对一个STA进行FTM的过程中,该STA并发的执行对目标物进行雷达测量,该STA的FTM结果能够更为准确的反映该STA在对目标物进行雷达测量时的真实位置;相应的,AP即可结合多个STA各自的雷达测量结果和FTM结果,更为准确的实现对目标物进行定位。
可以理解,AP可以基于IEEE802.11az协议对多个STA分别进行FTM。AP对一个STA进行FTM的过程中,AP可以接收来自该STA的上行数据包,以及向该STA发送下行数据包;该STA的FTM结果至少可以包含:该STA向AP发送上行数据包的第一发送时刻t1、该STA从AP接收下行数据包的第一接收时刻t4、AP从该STA接收上行数据包的第二接收时刻t2、AP向该STA发送下行数据包的第二发送时刻t3。相应的,AP可以根据该STA的FTM结果,计算出IEEE802.11az定义的往返时间(RTT,round trip time)为[(t2-t1)+(t4-t3)],进而计算该STA与AP之间的距离为RTT*c/2;其中,c表征光速,其取值通常为3×10 8m/s。
可以理解,如果在AP对一个STA进行FTM的过程中,该STA并发的执行对目标物进行雷达测量;那么,根据该STA的FTM结果确定的该STA与AP之间的距离,则可更为准确的反映该STA对目标物进行雷达测量时该STA与AP之间的真实距离。相应的,根据该STA与AP之间的距离确定的该STA的位置信息,则能够更为准确的反映该STA对目标物进行雷达测量时的真实位置,有利于更为准确的实现对目标物进行定位。
在一种可能的实施方式中,AP对一个STA进行FTM之前,可以向该STA发送FTM请求,该FTM请求中可以携带指示信息,该指示信息用于指示该STA测量AP向其发送的电磁波的到达角(包括方位角和俯仰角);在该STA能够测量AP向其发送的电磁波的到达角的情况下,该STA则可将其测量的到达角发送给AP;AP可结合其自身在特定坐标系下的位置信息、该STA测量的到达角、该STA对目标物进行雷达测量时与AP之间的距离,确定该STA的位置信息,实现对该STA的定位。
在另一种可能的实施方式中,STA可能并不具有测量AP向其发送的电磁波的到达角的能力,但AP可以测量来自STA的电磁波的到达角。相应的,AP在完成测量来自一个STA的电磁波的到达角(包括方位角和俯仰角)之后,可以结合AP在特定坐标系下的位置信息、来自该STA的电磁波的到达角、该STA对目标物进行雷达测量时与AP之间的距离,确定该STA的位置信息,实现对该STA的定位。
本申请实施例中,AP至少可以通过振幅测角法、相位测角法中的任意一种或多种相结合,测量来自STA的电磁波的到达角,以便AP根据其自身在特定坐标系下的位置信息、来自该STA的电磁波的到达角、该STA对目标物进行雷达测量时与AP之间的距离,确定该STA的位置信息。
下面结合如图3所示的雷达坐标系、如图4所示相位测角法的实例,对AP通过相位测角法测量来自STA的电磁波的到达角进行示例性描述。
如图3所示,AP测量的来自一个STA的电磁波的到达角,具体包含测量该电磁波的方位角α和俯仰角β;其中,OP表征AP与STA之间的距离,OB表征OP在水平面上的投影,OA表征基于地理坐标系预先设定的基准方向(比如为水平面上的正北方向),方位角α为OA与OB在水平方向上的夹角,俯仰角β为OB与OP在垂直于水平面的一个铅垂面上的夹角,俯仰角β也可称为倾角、高低角或仰角。
如图4所示,AP可以包含多个呈“T”形的接收天线,多个呈“T”行的接收天线可按照如图4所示的阵列方式在AP中形成接收天线阵列。为了方便描述,这里以AP的接收天线阵列中MN方向平行于雷达坐标系中预先设定的基准方向、该STA的在水平面上的投影位于MN的延长线上为例。STA与AP的距离通常远大于AP中相邻两个接收天线之间的距离,到达AP包含的、相邻两个接收天线x、y的电磁波近似为平面波;并且,由于x、y之间存在一定的距离,使得x、y分别接收的电磁波存在波程差R;因此,x、y分别接收的电磁波则因存在波程差R而产生相位差
Figure PCTCN2020130119-appb-000005
相位差
Figure PCTCN2020130119-appb-000006
与波程差R之间满足如下公式6所示的关系:
Figure PCTCN2020130119-appb-000007
其中,λ表征x、y分别接收的电磁波的波长,θ表征x、y分别与其接收的电磁波之间的夹角,d表征x、y在水平方向上的距离;可以通过专用软件和/或硬件(比如,相位计)对x、y分别接收的电磁波进行相位比较,获得相位差
Figure PCTCN2020130119-appb-000008
相应的,AP可进一步根据接收天线与其接收的电磁波之间的夹角θ,确定出来自该STA的电磁波的俯仰角β。这里,可以确定出来自该STA的电磁波的俯仰角β为(90°-θ)。
本申请实施例中,可以通过与前述测量俯仰角β相似的方法,确定来自STA的电磁波的方位角α。
需要说明的是,前述示例中用于测量到达角的电磁波,包括但不限于AP从该STA接收的上行数据包所对应的电磁波,比如还可以为该STA向AP发送的无线传感数据(WiFi sensing data)帧所对应的电磁波,或者为该STA向AP发送的位置测量报告(LMR,location measurement report)帧所对应的电磁波。
需要说明的是,在STA能够测量AP向其发送的电磁波的到达角的情况下,该STA可以通过一个LMR帧,向AP上报到该STA测量的到达角,该到达角可以包括AP向 STA发送的下行数据包所对应的电磁波的到达角。
通过前述各种方式得到的各个STA的位置信息,是基于各个STA对目标物进行雷达测量过程中,各个STA分别与AP之间的距离计算得到的;各个STA分别与AP之间的距离是根据AP对各个STA进行FTM的所得到的FTM结果计算得到的,能够更为准确的反映各个STA分别对目标物进行雷达测量时分别与AP之间的真实距离。相应的,通过前述各种方式得到的各个STA的位置信息,则能够更为准确的反映各个STA分别对目标物进行雷达测量时的真实位置;AP或者与AP连接的计算设备,即可根据多个STA各自的雷达测量结果、多个STA各自的位置信息,更为准确的定位目标物。
可以理解,STA对目标物进行雷达测量过程中,可能以较小的移动速度发生运动。仍然以一个STA发送的第一雷达信号是调频连续波为例,在一种可能的实施方式中,AP还可以接收该STA发送的第一雷达信号,根据该第一雷达信号计算该STA相对于AP的径向运动速度。其中,多个STA分别相对于AP的径向运动速度,可以用于辅助AP根据多个STA分别对应的第一距离和雷达测量结果对目标物进行的定位。
本申请实施例中,可以通过与前述测量目标物与STA的径向运动速度相似的方法,确定STA相对于AP的径向运动速度。
在一个较为具体的示例中,STA相对于AP的径向运动速度,至少可以用于修正该STA相对于AP的第一距离。
接下来,针对AP、STA在完成对目标物进行定位的过程中,各自需要执行的步骤进行详细描述。如图5所示,本申请实施例中提供了一种辅助进行目标物定位的方法,该方法应用于STA,该STA至少可以执行如下步骤51-57。
步骤51,从AP接收无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息。
本申请实施例中,雷达测量指示信息包括但不限于雷达持续时间和频段信息。
在一种可能的实施方式中,无线传感探测帧可以包含一条雷达测量指示信息,该STA可以从无线传感探测帧获取该雷达测量指示信息。
在一个较为具体的示例中,无线传感探测帧可以具有如图6所示的结构。如图6所示,无线传感探测帧可以包含媒体访问控制(MAC,medium access control)头部(MAC header)域、公共信息(common info)域、一个或多个用户信息(user info)域、填充(padding)域和帧校验序列(FCS,frame check sequence)域。common info域中至少可以包含触发类型(trigger type)字段、保留(reserved)字段和依赖于触发器的公共信息(trigger dependent common info)字段。trigger dependent common info字段中可以包含子字段无线传感触发子类型(WiFi sensing trigger subtype)、雷达信息标示(radar info indication)、reserved。radar info indication子字段中可以包含子字段雷达持续时间(radar duration)、资源控制(resource control)。子字段radar duration中可以存放用于指示该STA进行雷达测量的雷达测量指示信息所包含的雷达持续时间,resource control子字段中可以存放用于指示该STA进行雷达测量的雷达测量指示信息所包含的频段信息。
应当理解,AP与一个STA基于IEEE802.11协议进行通信时,AP向该STA发送 的、用于触发该STA执行特定业务的触发帧,通常包含如图6所示的MAC header域、common info域、一个或多个user info域、padding域和FCS域。其中,该STA可以根据触发帧的common info域所包含的trigger type字段的取值,确定该触发帧的触发类型。比如,来自AP的触发帧,用于指示STA执行与触发类型“无线传感(WiFi sensing)”相关的业务流程,trigger type字段的取值则可以为9。
本申请实施例中,来自AP且用于触发STA执行与“WiFi sensing”相关的业务流程的触发帧,包括但不限于无线传感探测帧;比如还可以包括WiFi sensing poll帧、无线传感报告(WiFi sensing report)帧。
在一个更为具体的示例中,AP可以通过子字段WiFi sensing trigger subtype的取值,来指示STA执行与触发类型“WiFi sensing”相关的各种业务流程。具体地,可以在触发类型“WiFi Sensing”的子字段“WiFi Sensing Trigger Subtype”的预留值中选择3个预留值,利用选择的三个预留值来指示STA执行与WiFi sensing poll帧、WiFi sensing sounding帧、WiFi sensing report帧分别对应的业务流程。示例性的,参考如下表1:
表1
WiFi Sensing Trigger Subtype field value Meaning
1 Report
2 Poll
3 Sounding
如上表1所示,触发类型“WiFi Sensing”的“WiFi Sensing Trigger Subtype”子字段的预留值包括“1”、“2”、“3”。当STA接收到来自AP的触发帧时,该STA可以首先获取该触发帧的common info域包含的trigger type字段的取值,如果trigger type字段的取值表征该触发帧用于触发STA执行与触发类型“WiFi sensing”相关的业务流程,则进一步获取该触发帧的trigger dependent user info字段包含的子字段WiFi Sensing Trigger Subtype的取值,并根据子字段WiFi Sensing Trigger Subtype的取值执行与触发类型“WiFi sensing”相关的各种业务流程。比如,WiFi Sensing Trigger Subtype子字段的取值为2,则说明该触发帧为WiFi Sensing poll帧,STA可以按照相应的业务流程对WiFi Sensing poll帧进行响应;子字段WiFi Sensing Trigger Subtype的取值为3,则说明该触发帧为WiFi Sensing sounding帧,STA可以按照相应的业务流程对WiFi Sensing sounding帧进行响应;子字段WiFi Sensing Trigger Subtype的取值为1,则说明该触发帧为WiFi Sensing report帧,STA可以按照相应的业务流程对WiFi Sensing report帧进行响应。
在另一种可能的实施方式中,无线传感探测帧中可以包含多条雷达测量指示信息,STA可以根据其自身的标识,从无线传感探测帧获取与其自身的标识相关联的雷达测量指示信息。
在一个较为具体的示例中,无线传感探测帧可以具有如图7所示的结构。如图7所示,无线传感探测帧可以包含MAC header域、common info域、一个或多个user info域、padding域和FCS域。对于一个user info域,该user info域中至少可以包含应用标识(AID,application identification)字段、reserved字段和依赖于触发器的用户信息 (trigger dependent user info)字段;其中,AID字段用于存放一个STA的标识;trigger dependent user info字段中至少可以包含子字段radar info indication,子字段radar info indication中可以包含子字段radar duration、resource control;其中,子字段radar duration中可以存放用于指示该STA进行雷达测量的雷达测量指示信息所包含的雷达持续时间,子字段resource control中可以存放用于指示该STA进行雷达测量的雷达测量指示信息所包含的频段信息。
相应的,STA在接收到来自AP的无线传感探测帧时,可以首先根据其自身的标识,查询无线传感探测帧的一个或多个user info域各自包含的AID字段,以确定包含该STA的标识的AID字段所在的目标user info域;然后从该目标user info域包含的子字段radar duration和resource control中,分别获取用于指示该STA进行雷达测量的雷达持续时间和频段信息。
步骤53,向所述AP发送上行数据包,并记录所述上行数据包的第一发送时刻,以及,根据所述雷达测量指示信息对目标物进行雷达测量,得到雷达测量结果。
如前所述,STA在接收到来自AP的触发帧时,可以根据触发帧的common info域所包含的trigger type字段的取值、WiFi Sensing Trigger Subtype子字段的取值,识别该触发帧是否为无线传感探测帧。在来自AP的触发帧为无线传感探测帧的情况下,执行步骤53。
本申请实施例中,STA可以并发的执行向AP发送上行数据包、根据雷达测量指示信息对目标物进行雷达测量。或者,STA也可以在完成向AP发送上行数据包之后,执行根据雷达测量指示信息对目标物进行雷达测量。
本申请实施例中,上行数据包可以为未携带数据内容的空数据包,未携带数据内容的空数据包也可称为上行链路空数据包(UL NDP,uplink null data packet)。
本申请实施例中,STA可以作为单站雷达,在该STA从无线传感探测帧获取的雷达持续时间和频段信息之后,基于前述的对目标物进行雷达测量的方法实现对目标物进行雷达测量,并得到相应的雷达测量结果。
如前所述,STA得到的雷达测量结果可以包括Before FFT、FFT info、FFT result三种形式。因此,在一种可能的实施方式中,来自AP的无线传感探测帧中,还可以包含用于指示STA对目标物进行雷达测量时,所需要得到的雷达测量结果的形式的指示消息。
在一个较为具体的示例中,请参考图6、图7,子字段radar info indication中还可以包含反馈控制(feedback control)子字段,feedback control子字段可以包含子字段Before FFT control、FFT info control、FFT result control。AP可以通过协调无线传感探测帧中子字段Before FFT control、FFT info control、FFT result control的取值,来指示STA得到特定形式的雷达测量结果。示例性的,如果AP需要指示STA得到形式为Before FFT的雷达测量结果,即可将其发送给该STA的无线传感探测帧包含的Before FFT control的取值置为1,并将子字段FFT info control、FFT result control的取值置为0;相应的,AP可以通过查询无线传感探测帧包含的子字段Before FFT control、FFT info control、FFT result control,以确定取值为1的目标子字段(比如为Before FFT control);之后,该STA得到的雷达结果的形式,则应当为该目标子字段所指示的形式。
在一种可能的实施方式中,feedback control子字段还可以包含信道状态信息(CSI,channel state information)控制(CSI control)子字段。AP可以通过协调无线传感探测帧中子字段CSI control的取值,来指示STA是否需要获取用于感知目标物的移动情况的CSI,并将其获取的CSI加入雷达测量结果。示例性的,如果STA接收的无线传感探测帧包含的子字段CSI control的取值为1,则该STA需要获取用于感知目标物的移动情况的CSI,并将其获取的CSI加入雷达测量结果。
步骤55,从所述AP接收下行数据包,并记录所述下行数据包的第一接收时刻。
本申请实施例中,下行数据包可以为未携带数据内容的空数据包,未携带数据内容的空数据包也可称为下行链路空数据包(DL NDP,downlink null data packet)。
可以理解的,在步骤55之前,STA还可能接收到来自AP的空数据包通知(NDPA,null data packet announcement),NDPA用于预约STA的下行网络资源,以便STA能够接收到AP向其发送的DL NDP。
步骤57,向所述AP发送所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
本申请实施例中,STA可以在AP的协调下,通过一个LMR帧向AP发送第一发送时刻和第二发送时刻;以及在AP的协调下,通过一个无线传感数据帧向AP发送雷达测量结果。或者,STA可以在AP的协调下,通过一个无线传感数据(WiFi sensing data)帧向AP发送第一发送时刻、第一接收时刻和雷达测量结果。
在一种可能的实施方式中,STA可以响应于AP向该STA发送的WiFi sensing report帧,向AP发送一个包含第一发送时刻、第一接收时刻和雷达测量结果的WiFi sensing data帧。
在一个较为具体的示例中,WiFi sensing report帧可以具有如图8所示的结构。如图8所示,WiFi sensing report帧可以包含MAC header域、common info域、一个或多个user info域、padding域和FCS域。common info域中至少可以包含trigger type字段、reserved字段和trigger dependent common info字段。trigger dependent common info字段可以包含WiFi sensing trigger subtype子字段、reserved子字段和feedback control子字段。其中,feedback control子字段至少可以包含FTM feedback control子字段。AP可以通过协调WiFi sensing report帧中子字段FTM feedback control的取值,来指示STA是否需要向AP反馈一个包含第一发送时刻、第一接收时刻和雷达测量结果的WiFi sensing data帧。示例性的,在STA识别来自AP的触发帧为WiFi sensing report帧之后,可以进一步查询WiFi sensing report帧包含的子字段FTM feedback control子字段的取值,如果FTM feedback control子字段的取值第一指示信息(比如为1),则向AP反馈一个包含第一发送时刻、第一接收时刻和雷达测量结果的WiFi sensing data帧;反之,如果FTM feedback control子字段的取值并非为第一指示信息(比如为0),STA则可以向AP反馈一个包含雷达测量结果的WiFi sensing data帧。
在一个更为具体的示例中,WiFi sensing report帧包含的feedback control子字段中,还可以包含子字段CSI、Before FFT control、FFT info control、FFT result control,子字段CSI control、Before FFT control、FFT info control、FFT result control的作用,与图6、图7所示的WiFi sensing sounding帧包含的子字段CSI、Before FFT control、FFT  info control、FFT result control的作用相同,这里不再赘述。
在一个较为具体的示例中,WiFi sensing data帧可以包含如图9所示的结构。如图9所示,AP与一个STA基于IEEE802.11协议进行通信时,该STA向AP发送的WiFi sensing data帧,可以包含如图9所示的MAC header域、类别(category)域、无线传感动作(WiFi sensing action)域、无线传感数据动作(WiFi sensing data action)域、FCS域,WiFi sensing data action域中可以包含无线传感数据控制(WiFi sensing data control)字段、序列标识(sequence id)字段、时间戳(timestamp)字段、采样频率(sampling frequency)字段、CSI字段、Before FFT字段、FFT info字段、FFT result字段、FTM result element字段。WiFi sensing data control字段中可以包含子字段序列标识控制(sequence id control)、时间戳控制(timestamp control)、采样频率控制(sampling frequency control)、CSI control、Before FFT control、FFT info control、FFT result control、FTM control。FTM result element字段可以包含子字段元素标识(element id)、元素标识扩展(element id extension)、对话标记(dialog token)、离开时间(TOD,time of departure)、到达时间(TOA,time of arrival)、离开时间误差(TOD error)、到达时间误差(TOA error)、载波频率偏移(CFO,carrier frequency offset)。
其中,STA可以通过协调WiFi sensing data帧包含的FTM control子字段的取值,来指示AP该WiFi sensing data帧是否包含AP对该STA进行FTM时,该STA记录的第一接收时刻和第一发送时刻。示例性的,AP可以首先查询WiFi sensing data帧包含的FTM control子字段的取值,如果FTM control子字段的取值第二指示信息(比如为1),则说明该WiFi sensing data帧包含FTM result element字段,AP可以在第二指示信息的指示下,从FTM result element字段中获取该STA记录的第一接收时刻和第一发送时刻;具体地,第一接收时刻可以存放于子字段TOA中,第一发送时刻可以位于子字段TOD中。
相反的,如果AP查询到WiFi sensing data帧包含的FTM control子字段的取值为并非为第二指示信息(比如为0),则说明该WiFi sensing data帧并未包含FTM result element字段,或者,说明该WiFi sensing data帧包含的FTM result element字段中并未包含AP对STA进行FTM时,该STA记录的第一接收时刻和第一发送时刻。
相应的,在STA向AP反馈的WiFi sensing data帧没有包含第一发送时刻和第一接收时刻的情况下,在另一种可能的实施方式中,STA可以响应于来自AP的测距报告(ranging report)帧,向AP发送一个包含第一发送时刻和第一接收时刻的LMR帧。
与如图5所示辅助进行目标物定位的方法相对应的,本申请实施例中还提供了一种对目标物进行定位的方法,该方法针对多个STA中的每个STA,该方法应用于AP,如图10所示,对目标物进行定位的方法至少可以包括如下步骤101-106。
步骤101,向STA发送无线传感探测帧。
其中,该无线传感探测帧中包含用于指示该STA对目标物进行雷达测量的雷达测量指示信息。
其中,多个STA为AP对与其连接的各个STA进行轮询之后,所确定的能够用于在AP的协调下作为雷达对目标物进行雷达测量的STA。
在一种可能的实施方式中,AP可以在不同的时刻分别向多个STA发送无线传感探测帧。其中,多个STA各自接收的无线传感探测帧均可具有如图6所示的结构,多个STA各自接收的无线传感探测帧可以包含相同的雷达测量指示信息。
在另一种可能的实施方式中,AP通过组播或广播的方式向多个STA发送无线传感探测帧。其中,该无线传感探测帧可以具有如图7所示的结构,该无线传感探测帧的多个用户信息域所分别包含的雷达测量指示信息中,各自包含不同的频段信息。以便多个STA可以在相同的时间段内分别于不同的频段上发送第一雷达信号和/或接收第二雷达信号。如此,有利于降低AP与多个STA的信息交互过程所需要的时间开销。
在一种可能的实施方式中,当AP通过组播或广播的方式向多个STA发送无线传感探测帧时,对于该无线传感探测帧包含的多个用户信息域中的每个用户信息域,该用户信息域中还可以包含用于指示其对应的STA发送上行数据包的信道信息。其中,多个用户信息域中分别包含的信道信息各不相同,以便多个STA可以在相同的时间段内分别于不同的信道上向AP发送上行数据包。如此,可进一步降低AP与多个STA的信息交互过程所需要的时间开销。
步骤102,从所述STA接收上行数据包,并记录所述上行数据包的第二接收时刻。
在一种可能的实施方式中,AP通过组播或广播的方式向多个STA发送无线传感探测帧时,可以根据该无线传感探测帧的多个user info域所分别包含的信道信息,在多个信道上并发的接收多个STA分别向其发送的上行数据包。
步骤103,向所述STA发送下行数据包,并记录所述下行数据包的第二发送时刻。
在步骤103之前,AP还可以通过单播、组播或广播的方式,向各个STA分别发送NDPA,预约各个STA的下行网络资源,以便各个STA能够接收到AP向其发送的DL NDP。
在一种可能的实施方式中,AP可以在不同的时刻分别向多个STA发送下行数据包。
在另一种可能的实施方式中,AP可以通过组播或广播的方式向多个STA发送下行数据包;如此,可进一步降低AP与多个STA的信息交互过程所需要的时间开销。
步骤104,从所述STA接收第一发送时刻、第一接收时刻和雷达测量结果。
其中,所述第一发送时刻为所述STA发送所述上行数据包时对应的时刻,所述接收时刻为所述STA接收所述下行数据包时对应的时刻、所述雷达测量结果为所述STA根据所述雷达测量指示信息对目标物进行雷达测量时得到的雷达测量结果。
在一种可能的实施方式中,AP可以通过组播或广播的方式向多个STA发送WiFi sensing report帧,使得多个STA在相同时间段内通过不同的频段/信道向AP发送WiFi sensing data帧。其中,对于一个STA而言,该STA向AP发送WiFi sensing data帧使用的频段/信道,可以为该STA获取的雷达测量指示信息中包含的频段信息所指示的频段,或者为STA对应的user info域中包含的信道信息所指示的信道。如此,可进一步降低AP与多个STA的信息交互过程所需要的时间开销。
步骤105,根据所述第一发送时刻、所述第一接收时刻、所述第二发送时刻、所述第二接收时刻,计算所述STA与所述AP之间的第一距离。
步骤106,根据多个所述STA分别对应的第一距离和雷达测量结果对目标物进行 定位。
如前所述,在步骤106,对于多个STA中的每个STA,AP可以根据该STA与AP之间的第一距离、AP在特定坐标系下的位置信息、来自该STA的电磁波的到达角或者AP向该STA发送的电磁波的到达角,确定该STA的位置信息;其中,对于来自STA的电磁波的到达角,如前所述,至少可以结合如图3所示的雷达坐标系、如图4所示相位测角法的实例,由AP通过相位测角法进行测量。然后,AP即可根据多个STA各自的位置信息和雷达测量结果,对目标物进行定位。
为了方便描述及理解通过本申请的技术方案,下面以多个STA包括STA1、STA2、STA3、STA4为例,对AP与多个STA之间的信息交互过程进行示例性描述。
在一个示例中,如图11所示,首先,AP可以从多个STA(STA1、STA2、STA3、STA4)中选择一个未被选择过的STA,并向选择的STA发送WiFi sensing sounding帧。如此,使得被AP选择的STA向AP发送UL NDP,向目标物(Target)发送第一雷达信号S1,以及接收由目标物对其发送的S1进行反射以形成的第二雷达信号S2。
其中,AP在接收到选择的STA向其发送的UL NDP之后,可以重新从多个STA中选择一个未被选择过的STA并执行前述相似的过程,实现在不同的时间点向多个STA分别发送WiFi sensing sounding帧。
当多个STA中已经不存在未被选择过的STA之后,AP即可通过单播、组播或广播的方式向多个STA发送NDPA,通过NDPA通知多个STA接收AP即将发送的DL NDP。
接着,AP通过单播、组播或广播的方式向多个STA分别发送DL NDP。
最后,AP通过单播、组播或广播的方式向多个STA发送WiFi sensing report帧,使得多个STA分别向AP发送WiFi sensing data帧。
在另一个示例中,如图12所示,首先,AP可以从多个STA(STA1、STA2、STA3、STA4)中选择一个未被选择过的STA,并向选择的STA发送WiFi sensing sounding帧。如此,使得被AP选择的STA向AP发送UL NDP,向目标物(Target)发送第一雷达信号S1,以及接收由目标物对其发送的S1进行反射以形成的第二雷达信号S2。
然后,AP通过单播的方式向选择的STA发送NDPA,通过NDPA通知选择的STA接收AP即将发送的DL NDP。
接着,AP通过单播的方式向选择的STA发送DL NDP。
之后,AP可以重新从多个STA中选择一个未被选择过的STA并执行前述相似的过程。
当多个STA中已经不存在未被选择过的STA之后,AP即可通过单播、组播或广播的方式向多个STA发送WiFi sensing report帧,使得多个STA分别向AP发送WiFi sensing data帧。
在另一个示例中,如图13所示,首先,AP可以通过组播或广播的方式向多个STA((STA1、STA2、STA3、STA4))发送WiFi sensing sounding帧,使得多个STA在相同的时间段内于不同的信道上分别向AP发送UL NDP,在相同的时间段内分别于不同的频段上发送第一雷达信号S1以及接收第二雷达信号S2。
接着,AP可以通过单播、组播或广播的方式向多个STA发送NDPA,通过NDPA通知多个STA接收AP即将发送的DL NDP。
之后,AP可以通过单播、组播或广播的方式向多个STA分别发送DL NDP。
最后,AP可以通过单播、组播或广播的方式向多个STA发送WiFi sensing report帧,使得多个STA分别向AP发送WiFi sensing data帧。
基于与前述方法实施例相同的构思,如图14所示,本申请实施例中还提供了一种辅助进行目标物定位的装置,应用于STA,所述装置140包括:
收发单元141,用于从AP接收无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;向所述AP发送上行数据包;从所述AP接收下行数据包;
处理单元143,用于记录所述上行数据包的第一发送时刻;记录所述下行数据包的第一接收时刻;以及根据所述雷达测量指示信息对目标物进行雷达测量,得到雷达测量结果;
所述收发单元,还用于向所述AP发送所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
在一种可能的实施方式中,
所述处理单元143,具体用于根据所述雷达测量指示信息,触发所述收发单元发送第一雷达信号;以及根据所述雷达测量指示信息,触发所述收发单元接收第二雷达信号,所述第二雷达信号由目标物对所述第一雷达信号进行反射以形成;
所述处理单元141,具体用于根据所述收发单元发送所述第一雷达信号时对应的第一起始时刻、所述收发单元接收所述第二雷达信号时对应的第二起始时刻,以及所述第一雷达信号、所述第二雷达信号,确定雷达测量结果。
在一种可能的实施方式中,所述无线传感探测帧的依赖于触发器的公共信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息。
在一种可能的实施方式中,所述无线传感探测帧的一个用户信息域中包含应用标识字段和依赖于触发器的用户信息字段,其中,所述应用标识字段中包含所述STA的标识,所述依赖于触发器的用户信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息。
在一种可能的实施方式中,
所述雷达信息标示子字段中包含雷达持续时间子字段和资源控制子字段;
所述雷达测量指示信息包含雷达持续时间和频段信息,其中,所述雷达持续时间子字段中包含所述雷达持续时间,所述资源控制子字段中包含所述频段信息。
在一种可能的实施方式中,所述处理单元143,具体用于响应于所述AP向所述STA发送的无线传感报告帧,触发所述收发单元向所述AP发送无线传感数据帧,所述无线传感数据帧中包含所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
在一种可能的实施方式中,
所述无线传感报告帧的依赖于触发器的公共信息字段中包含反馈控制子字段;
所述反馈控制子字段中至少包含精确时间测量FTM反馈控制子字段,所述FTM反馈控制子字段中包含第一指示信息,所述第一指示信息用于指示所述STA向所述AP发送所述无线传感数据帧。
在一种可能的实施方式中,
所述无线传感数据帧的无线传感数据动作域中包含FTM结果元素字段;
所述第一接收时刻和所述第一发送时刻包含于所述FTM结果元素字段中。
在一种可能的实施方式中,所述无线传感数据帧的无线传感数据动作域中还包含无线传感数据控制字段,所述无线传感数据控制字段中包含FTM控制子字段,其中,所述FTM控制子字段中包含第二指示信息,所述第二指示信息用于指示所述AP从所述FTM结果元素字段中获取所述第一接收时刻、所述第一发送时刻。
基于与前述方法实施例相同的构思,如图15所示,本申请实施例中还提供了一种对目标物进行定位的装置,应用于AP,所述装置150包括:
收发单元151,用于针对多个STA中的每个STA,向所述STA发送无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;从所述STA接收上行数据包;向所述STA发送下行数据包;从所述STA接收第一发送时刻、第一接收时刻和雷达测量结果,其中,所述第一发送时刻为所述STA发送所述上行数据包时对应的时刻,所述第一接收时刻为所述STA接收所述下行数据包时对应的时刻,所述雷达测量结果为所述STA根据所述雷达测量指示信息对目标物进行雷达测量时得到的雷达测量结果;
处理单元153,用于记录所述上行数据包的第二接收时刻;记录所述下行数据包的第二发送时刻;以及,根据所述第一发送时刻、所述第一接收时刻、所述第二发送时刻、所述第二接收时刻,计算所述STA与所述AP之间的第一距离;根据多个所述STA分别对应的第一距离和雷达测量结果对目标物进行定位。
在一种可能的实施方式中,所述处理单元153,具体用于触发所述收发单元151通过组播或广播的方式向所述多个STA发送所述无线传感探测帧,其中,所述无线传感探测帧的多个用户信息域和所述多个STA一一对应,所述用户信息域中包含其对应的STA的标识、用于指示其对应的STA进行雷达测量的雷达测量指示信息,多个所述用户信息域所分别包含的雷达测量指示信息中各自包含不同的频段信息。
在一种可能的实施方式中,
所述用户信息域中还包含用于指示其对应的STA发送所述上行数据包的信道信息,多个所述用户信息域中分别包含的信道信息各不相同;
所述处理单元153,具体用于根据各个所述用户信息域中分别包含的信道信息,触发所述收发单元从所述多个STA分别接收所述上行数据包。
在一种可能的实施方式中,所述处理单元153,具体用于触发所述收发单元151通过组播或广播的方式向所述多个STA发送所述下行数据包。
本申请实施例还提供了一种计算机可读存储介质,用于存储指令,当所述指令被STA的处理器执行时,使得所述STA实现本申请任意一个实施例中提供的辅助进行目标物定位的方法。
本申请实施例还提供了一种计算机可读存储介质,用于存储指令,当所述指令被AP的处理器执行时,使得所述AP实现本申请任意一个实施例中提供的对目标物进行定位的方法。
本申请实施例还提供了一种STA,包括存储器和处理器,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现本申请任意一个实施例中提供的 辅助进行目标物定位的方法。
本申请实施例还提供了一种AP,包括存储器和处理器,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现本申请任意一个实施例中提供的对目标物进行定位的方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行本申请任意一个实施例中提供的辅助进行目标物定位的方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行本申请任意一个实施例中提供的对目标物进行定位的方法。
本申请实施例还提供了一种通信装置,所述通信装置具有上述各个方面中STA的功能。所述STA的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
本申请实施例还提供了一种通信装置,所述通信装置具有上述各个方面中AP的功能。所述AP的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
本申请实施例还提供了一种通信装置,该通信装置可以为上述各个方面中所述的STA,或者为设置在所述STA中的芯片。该通信装置包括存储器、通信接口以及处理器,其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使得通信装置执行本申请任意一个实施例中提供的辅助进行目标物定位的方法。
本申请实施例还提供了一种通信装置,该通信装置可以为上述各个方面中所述的AP,或者为设置在所述AP中的芯片。该通信装置包括存储器、通信接口以及处理器,其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使得通信装置执行本申请任意一个实施例中提供的对目标物进行定位的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于本申请任意一个实施例中所述的STA的功能,例如,接收或处理本申请任意一个实施例中提供的辅助进行目标物定位的方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于实现本申请任意一个实施例中所述的AP的功能,例如,接收或处理本申请任意一个实施例中提供的对目标物进行定位的方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专 业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
应当理解的是,在本申请实施例的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述网络设备的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,以上所描述的装置实施例是示意性的,例如,所述模块/单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内
最后需要说明的是,以上实施例仅用以说明本申请的技术方案,而未对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,依然可以对前述各个实施例中所提供的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或替换,并不使相应技术方案的本质脱离本申请各个实施例中所提供技术方案的精神和范围。

Claims (28)

  1. 一种辅助进行目标物定位的方法,其特征在于,应用于工作站STA,所述方法包括:
    从接入点AP接收无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;
    向所述AP发送上行数据包,并记录所述上行数据包的第一发送时刻,以及,根据所述雷达测量指示信息对目标物进行雷达测量,得到雷达测量结果;
    从所述AP接收下行数据包,并记录所述下行数据包的第一接收时刻;
    向所述AP发送所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述雷达测量指示信息对目标物进行雷达测量,得到雷达测量结果,包括:
    根据所述雷达测量指示信息发送第一雷达信号,并根据所述雷达测量指示信息接收第二雷达信号,所述第二雷达信号由目标物对所述第一雷达信号进行反射以形成;
    根据发送所述第一雷达信号时对应的第一起始时刻、接收所述第二雷达信号时对应的第二起始时刻,以及所述第一雷达信号、所述第二雷达信号,确定雷达测量结果。
  3. 根据权利要求1所述的方法,其特征在于,
    所述无线传感探测帧的依赖于触发器的公共信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息;
    或者,
    所述无线传感探测帧的一个用户信息域中包含应用标识字段和依赖于触发器的用户信息字段,其中,所述应用标识字段中包含所述STA的标识,所述依赖于触发器的用户信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息。
  4. 根据权利要求3所述的方法,其特征在于,
    所述雷达信息标示子字段中包含雷达持续时间子字段和资源控制子字段;
    所述雷达测量指示信息包含雷达持续时间和频段信息,其中,所述雷达持续时间子字段中包含所述雷达持续时间,所述资源控制子字段中包含所述频段信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述向所述AP发送所述第一发送时刻、所述第一接收时刻和所述雷达测量结果,包括:响应于所述AP向所述STA发送的无线传感报告帧,向所述AP发送无线传感数据帧,所述无线传感数据帧中包含所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
  6. 根据权利要求5所述的方法,其特征在于,
    所述无线传感报告帧的依赖于触发器的公共信息字段中包含反馈控制子字段;
    所述反馈控制子字段中至少包含精确时间测量FTM反馈控制子字段,所述FTM反馈控制子字段中包含第一指示信息,所述第一指示信息用于指示所述STA向所述AP发送所述无线传感数据帧。
  7. 根据权利要求5所述的方法,其特征在于,
    所述无线传感数据帧的无线传感数据动作域中包含FTM结果元素字段;
    所述第一接收时刻和所述第一发送时刻包含于所述FTM结果元素字段中。
  8. 根据权利要求7所述的方法,其特征在于,
    所述无线传感数据帧的无线传感数据动作域中还包含无线传感数据控制字段,所述无线传感数据控制字段中包含FTM控制子字段,其中,所述FTM控制子字段中包含第二指示信息,所述第二指示信息用于指示所述AP从所述FTM结果元素字段中获取所述第一接收时刻、所述第一发送时刻。
  9. 一种对目标物进行定位的方法,其特征在于,应用于接入点AP,所述方法针对多个STA中的每个STA,所述方法包括:
    向所述STA发送无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;
    从所述STA接收上行数据包,并记录所述上行数据包的第二接收时刻;
    向所述STA发送下行数据包,并记录所述下行数据包的第二发送时刻;
    从所述STA接收第一发送时刻、第一接收时刻和雷达测量结果,其中,所述第一发送时刻为所述STA发送所述上行数据包时对应的时刻,所述第一接收时刻为所述STA接收所述下行数据包时对应的时刻,所述雷达测量结果为所述STA根据所述雷达测量指示信息对目标物进行雷达测量时得到的雷达测量结果;
    根据所述第一发送时刻、所述第一接收时刻、所述第二发送时刻、所述第二接收时刻,计算所述STA与所述AP之间的第一距离;
    根据多个所述STA分别对应的第一距离和雷达测量结果对目标物进行定位。
  10. 根据权利要求9所述的方法,其特征在于,
    所述向所述STA发送无线传感探测帧,包括:通过组播或广播的方式向所述多个STA发送所述无线传感探测帧,其中,所述无线传感探测帧的多个用户信息域和所述多个STA一一对应,所述用户信息域中包含其对应的STA的标识、用于指示其对应的STA进行雷达测量的雷达测量指示信息,多个所述用户信息域所分别包含的雷达测量指示信息中各自包含不同的频段信息。
  11. 根据权利要求10所述的方法,其特征在于,
    所述用户信息域中还包含用于指示其对应的STA发送所述上行数据包的信道信息,多个所述用户信息域中分别包含的信道信息各不相同;
    所述从所述STA接收上行数据包,包括:根据各个所述用户信息域中分别包含的信道信息,从所述多个STA分别接收所述上行数据包。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,
    所述向所述STA发送下行数据包,包括:通过组播或广播的方式向所述多个STA发送所述下行数据包。
  13. 一种辅助进行目标物定位的装置,其特征在于,应用于工作站STA,所述装置包括:
    收发单元,用于从接入点AP接收无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;向所述AP发送上行数据包;从所述AP接收下行数据包;
    处理单元,用于记录所述上行数据包的第一发送时刻;记录所述下行数据包的第一接收时刻;以及根据所述雷达测量指示信息对目标物进行雷达测量,得到雷达测量结果;
    所述收发单元,还用于向所述AP发送所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
  14. 根据权利要求13所述的装置,其特征在于,
    所述处理单元,具体用于根据所述雷达测量指示信息,触发所述收发单元发送第一雷达信号;以及根据所述雷达测量指示信息,触发所述收发单元接收第二雷达信号,所述第二雷达信号由目标物对所述第一雷达信号进行反射以形成;
    所述处理单元,具体用于根据所述收发单元发送所述第一雷达信号时对应的第一起始时刻、所述收发单元接收所述第二雷达信号时对应的第二起始时刻,以及所述第一雷达信号、所述第二雷达信号,确定雷达测量结果。
  15. 根据权利要求13所述的装置,其特征在于,
    所述无线传感探测帧的依赖于触发器的公共信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息;
    或者,
    所述无线传感探测帧的一个用户信息域中包含应用标识字段和依赖于触发器的用户信息字段,其中,所述应用标识字段中包含所述STA的标识,所述依赖于触发器的用户信息字段中包含雷达信息标示子字段,所述雷达信息标示子字段中包含所述雷达测量指示信息。
  16. 根据权利要求15所述的装置,其特征在于,
    所述雷达信息标示子字段中包含雷达持续时间子字段和资源控制子字段;
    所述雷达测量指示信息包含雷达持续时间和频段信息,其中,所述雷达持续时间子字段中包含所述雷达持续时间,所述资源控制子字段中包含所述频段信息。
  17. 根据权利要求13至16中任一项所述的装置,其特征在于,
    所述处理单元,具体用于响应于所述AP向所述STA发送的无线传感报告帧,触发所述收发单元向所述AP发送无线传感数据帧,所述无线传感数据帧中包含所述第一发送时刻、所述第一接收时刻和所述雷达测量结果。
  18. 根据权利要求17所述的装置,其特征在于,
    所述无线传感报告帧的依赖于触发器的公共信息字段中包含反馈控制子字段;
    所述反馈控制子字段中至少包含精确时间测量FTM反馈控制子字段,所述FTM反馈控制子字段中包含第一指示信息,所述第一指示信息用于指示所述STA向所述AP发送所述无线传感数据帧。
  19. 根据权利要求17所述的装置,其特征在于,
    所述无线传感数据帧的无线传感数据动作域中包含FTM结果元素字段;
    所述第一接收时刻和所述第一发送时刻包含于所述FTM结果元素字段中。
  20. 根据权利要求19所述的装置,其特征在于,
    所述无线传感数据帧的无线传感数据动作域中还包含无线传感数据控制字段,所述无线传感数据控制字段中包含FTM控制子字段,其中,所述FTM控制子字段中包含第二指示信息,所述第二指示信息用于指示所述AP从所述FTM结果元素字段中获取所述第一接收时刻、所述第一发送时刻。
  21. 一种对目标物进行定位的装置,其特征在于,应用于接入点AP,所述装置包 括:
    收发单元,用于针对多个STA中的每个STA,向所述STA发送无线传感探测帧,所述无线传感探测帧中包含雷达测量指示信息;从所述STA接收上行数据包;向所述STA发送下行数据包;从所述STA接收第一发送时刻、第一接收时刻和雷达测量结果,其中,所述第一发送时刻为所述STA发送所述上行数据包时对应的时刻,所述第一接收时刻为所述STA接收所述下行数据包时对应的时刻,所述雷达测量结果为所述STA根据所述雷达测量指示信息对目标物进行雷达测量时得到的雷达测量结果;
    处理单元,用于记录所述上行数据包的第二接收时刻;记录所述下行数据包的第二发送时刻;以及,根据所述第一发送时刻、所述第一接收时刻、所述第二发送时刻、所述第二接收时刻,计算所述STA与所述AP之间的第一距离;根据多个所述STA分别对应的第一距离和雷达测量结果对目标物进行定位。
  22. 根据权利要求21所述的装置,其特征在于,
    所述处理单元,用于触发所述收发单元通过组播或广播的方式向所述多个STA发送所述无线传感探测帧,其中,所述无线传感探测帧的多个用户信息域和所述多个STA一一对应,所述用户信息域中包含其对应的STA的标识、用于指示其对应的STA进行雷达测量的雷达测量指示信息,多个所述用户信息域所分别包含的雷达测量指示信息中各自包含不同的频段信息。
  23. 根据权利要求22所述的装置,其特征在于,
    所述用户信息域中还包含用于指示其对应的STA发送所述上行数据包的信道信息,多个所述用户信息域中分别包含的信道信息各不相同;
    所述处理单元,具体用于根据各个所述用户信息域中分别包含的信道信息,触发所述收发单元从所述多个STA分别接收所述上行数据包。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,
    所述处理单元,具体用于触发所述收发单元通过组播或广播的方式向所述多个STA发送所述下行数据包。
  25. 一种计算机可读存储介质,用于存储指令,当所述指令被工作站STA的处理器执行时,使得所述STA实现权利要求1至8中任一项所述的方法。
  26. 一种计算机可读存储介质,用于存储指令,当所述指令被接入点AP的处理器执行时,使得所述AP实现权利要求9至12中任一项所述的方法。
  27. 一种工作站STA,包括存储器和处理器,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现权利要求1至8中任一项所述的方法。
  28. 一种接入点AP,包括存储器和处理器,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现权利要求9至12中任一项所述的方法。
PCT/CN2020/130119 2019-11-20 2020-11-19 对目标物进行定位的方法及装置 WO2021098780A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/740,487 US20220268912A1 (en) 2019-11-20 2022-05-10 Method and apparatus for locating target object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911140636.5A CN112825568B (zh) 2019-11-20 2019-11-20 对目标物进行定位的方法及装置
CN201911140636.5 2019-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/740,487 Continuation US20220268912A1 (en) 2019-11-20 2022-05-10 Method and apparatus for locating target object

Publications (1)

Publication Number Publication Date
WO2021098780A1 true WO2021098780A1 (zh) 2021-05-27

Family

ID=75906572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130119 WO2021098780A1 (zh) 2019-11-20 2020-11-19 对目标物进行定位的方法及装置

Country Status (3)

Country Link
US (1) US20220268912A1 (zh)
CN (2) CN115474152A (zh)
WO (1) WO2021098780A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022238975A1 (en) * 2021-05-14 2022-11-17 Cognitive Systems Corp. Systems and methods for wi-fi sensing using uplink orthogonal frequency division multiple access (ul-ofdma)
CN113473356B (zh) * 2021-05-24 2024-05-17 杭州涂鸦信息技术有限公司 定位方法以及电子设备、存储装置
CN117581576A (zh) * 2021-08-23 2024-02-20 Oppo广东移动通信有限公司 无线通信的方法和设备
CN114667754B (zh) * 2022-02-16 2023-10-03 北京小米移动软件有限公司 通信方法和通信装置
CN114828075B (zh) * 2022-03-24 2023-05-02 极米科技股份有限公司 无线感知测量控制方法、装置、设备及存储介质
CN117981397A (zh) * 2022-08-19 2024-05-03 北京小米移动软件有限公司 信息指示方法及电子设备、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209249A (zh) * 2015-02-10 2017-09-26 高通股份有限公司 具有抵达角和离开角的ftm协议
EP3315995A2 (en) * 2016-10-25 2018-05-02 Apple Inc. Time of arrival estimation
CN108513247A (zh) * 2017-02-23 2018-09-07 华为技术有限公司 基于无线局域网的网络站点协作定位方法及装置
CN109188354A (zh) * 2018-08-29 2019-01-11 新华三技术有限公司 一种无线定位方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015130712A1 (en) * 2014-02-25 2015-09-03 Mediatek Inc. Direction finding and ftm positioning in wireless local area networks
US20160337868A1 (en) * 2014-02-28 2016-11-17 Intel IP Corporation Access point and method for coexistence of wi-fi and airborne radars in the 5 ghz band
US10185031B2 (en) * 2015-11-24 2019-01-22 The Boeing Company Passive radar weather detection systems and methods
US10613213B2 (en) * 2016-05-13 2020-04-07 Google Llc Systems, methods, and devices for utilizing radar with smart devices
EP3407082B1 (en) * 2017-05-24 2021-06-23 Apple Inc. Apparatus and method for determining a distance to an object
WO2018231727A1 (en) * 2017-06-12 2018-12-20 Intel Corporation Enhanced location measurements for wireless communication
CN108200644B (zh) * 2018-01-10 2020-06-02 浙江工业大学 一种基于网络可视图的无源室内定位方法
CN109709523B (zh) * 2019-01-24 2020-06-19 电子科技大学 一种WiFi无源雷达的城市建筑环境杂波抑制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209249A (zh) * 2015-02-10 2017-09-26 高通股份有限公司 具有抵达角和离开角的ftm协议
EP3315995A2 (en) * 2016-10-25 2018-05-02 Apple Inc. Time of arrival estimation
CN108513247A (zh) * 2017-02-23 2018-09-07 华为技术有限公司 基于无线局域网的网络站点协作定位方法及装置
CN109188354A (zh) * 2018-08-29 2019-01-11 新华三技术有限公司 一种无线定位方法及装置

Also Published As

Publication number Publication date
US20220268912A1 (en) 2022-08-25
CN115474152A (zh) 2022-12-13
CN112825568B (zh) 2022-08-26
CN112825568A (zh) 2021-05-21

Similar Documents

Publication Publication Date Title
WO2021098780A1 (zh) 对目标物进行定位的方法及装置
WO2022001713A1 (zh) 感知测量信息交互装置
US11445507B2 (en) Communication devices and methods for RF-based communication and position determination
US10182360B2 (en) FTM protocol with angle of arrival and angle of departure
CN110012536B (zh) 用于终端设备的定位方法、装置及系统
US10371783B2 (en) Direction finding antenna format
EP3100543B1 (en) Direction finding and ftm positioning in wireless local area networks
RU2632475C1 (ru) Инициированное точкой доступа позиционирование по времени распространения
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
EP3372024B1 (en) Positioning in wlan systems
US20220299629A1 (en) Ranging method and apparatus
WO2021115405A1 (zh) 探测物体位置的方法和装置
CN112771397B (zh) 无线网络中基于定时测量的位置信息确定
US11307299B2 (en) Radio frequency based sensing using communication signals
EP3972331A1 (en) Positioning method and device
WO2018112693A1 (zh) 终端定位的方法和装置
WO2022194144A1 (zh) 定位方法、终端及网络侧设备
WO2022268197A1 (zh) 定位处理方法、定位参考信号发送方法、装置及设备
US11510172B1 (en) Device detection and locationing within a wireless network
CN107404757A (zh) 一种用户设备ue的定位方法和系统
WO2024027664A1 (zh) 载波相位定位方法、装置、设备及介质
WO2022152265A1 (zh) 定位方法、装置、设备及存储介质
WO2023133828A1 (en) Joint communication and sensing mechanism
Wan et al. iLoc: Non-invasive Localization for Mobile Devices with COTS WiFi Access Points
WO2021159707A1 (zh) 定位方法及装置、wlan设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890120

Country of ref document: EP

Kind code of ref document: A1