WO2021159707A1 - 定位方法及装置、wlan设备及存储介质 - Google Patents

定位方法及装置、wlan设备及存储介质 Download PDF

Info

Publication number
WO2021159707A1
WO2021159707A1 PCT/CN2020/115683 CN2020115683W WO2021159707A1 WO 2021159707 A1 WO2021159707 A1 WO 2021159707A1 CN 2020115683 W CN2020115683 W CN 2020115683W WO 2021159707 A1 WO2021159707 A1 WO 2021159707A1
Authority
WO
WIPO (PCT)
Prior art keywords
wlan device
wlan
uplink scheduling
baseband circuit
uplink
Prior art date
Application number
PCT/CN2020/115683
Other languages
English (en)
French (fr)
Inventor
潘淳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20918229.4A priority Critical patent/EP4060365A4/en
Publication of WO2021159707A1 publication Critical patent/WO2021159707A1/zh
Priority to US17/870,430 priority patent/US20220361207A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/564Enhancement of application control based on intercepted application data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of positioning technology, and in particular to a positioning method and device, WLAN equipment and storage medium.
  • each WLAN device When multiple wireless local area network (WLAN) devices are used to locate multiple WLAN devices to be located, each WLAN device sends trigger frames to multiple WLAN devices to be located in turn, so that the multiple WLAN devices to be located in turn Send uplink signals to multiple WLAN devices. After each WLAN device receives the uplink signals sent by the multiple WLAN devices to be located, the WLAN device locates the multiple WLAN devices to be located according to the received uplink signals.
  • WLAN wireless local area network
  • the WLAN device can locate the WLAN device to be located according to the wireless resources allocated to the WLAN device to be located, resulting in poor timeliness for positioning the WLAN device to be located.
  • This application provides a positioning method and device, WLAN equipment, and storage medium, which can solve the problem of poor timeliness in positioning the WLAN equipment to be located in related technologies.
  • the technical solutions provided by this application are as follows:
  • this application provides a positioning method.
  • the method includes: a WLAN device obtains an uplink scheduling parameter sent by another WLAN device to multiple WLAN devices to be located, and the uplink scheduling parameter is used to indicate to multiple WLAN devices to be located The allocated wireless resources; the WLAN device receives the uplink signal; the WLAN device measures the respective positioning data of the multiple WLAN devices to be located based on the wireless resources of the multiple WLAN devices to be located and the received uplink signals.
  • the uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located are acquired through a WLAN device, so that the WLAN device does not need to send uplink scheduling signals carrying uplink scheduling parameters to the WLAN device to be located.
  • the WLAN device obtains the uplink scheduling parameters, it can measure the positioning data of the WLAN device to be located according to the uplink scheduling parameters. It does not need to send the uplink scheduling signal to the WLAN device to be located before measuring the WLAN device to be located.
  • the positioning data effectively improves the timeliness of positioning the WLAN device to be located.
  • the WLAN device obtains the uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located, including: the WLAN device listens to triggers sent by another WLAN device to multiple WLAN devices to be located Frame: The WLAN device extracts uplink scheduling parameters from the trigger frame.
  • the WLAN device may include a listening receiver, and the working channel of the listening receiver is the same as the working channel of another WLAN device. Therefore, the WLAN device can use the listening receiver to monitor another WLAN device to multiple WLAN devices to be located. Trigger frame sent.
  • the radio frequency circuit of the other WLAN device can send the signal carrying the uplink scheduling parameter to multiple WLAN devices to be located, so as to Uplink scheduling of the WLAN device to be located.
  • the baseband circuit of the other WLAN device may also send the portable circuit to the baseband circuit of the WLAN device through a wired connection with the baseband circuit of the WLAN device.
  • the implementation process of the WLAN device acquiring the uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located includes: the baseband circuit of the WLAN device receives the uplink scheduling parameters sent by the baseband circuit of the other WLAN device.
  • the present application provides a positioning device.
  • the positioning device includes: an acquisition module configured to acquire uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located, and the uplink scheduling parameters are used to instruct multiple Wireless resources allocated by the WLAN device to be located; receiving module to receive uplink signals; processing module to measure the respective positioning of multiple WLAN devices to be located based on the wireless resources and received uplink signals of multiple WLAN devices to be located data.
  • the acquiring module is specifically configured to: monitor a trigger frame sent by another WLAN device; and extract uplink scheduling parameters from the trigger frame.
  • the positioning device includes a listening receiver, and the working channel of the listening receiver is the same as the working channel of another WLAN device.
  • the acquisition module is specifically used to: Uplink scheduling parameters sent by the baseband circuit of another WLAN device.
  • this application provides a wireless local area network WLAN device, including a processor and a receiver, the processor is used to obtain uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located, and the uplink scheduling parameters are used for Indicate the wireless resources allocated to multiple WLAN devices to be located; the receiver is used to receive uplink signals and transmit the received uplink signals to the processor; the processor is used to base the wireless resources of multiple WLAN devices to be located and the received uplink signals , To measure the respective positioning data of multiple WLAN devices to be located.
  • the receiver is also used to monitor a trigger frame sent by another WLAN device, extract uplink scheduling parameters from the trigger frame, and transmit the uplink scheduling parameters to the processor.
  • the processor when the processor is used to obtain the uplink scheduling parameter sent by another WLAN device to multiple WLAN devices to be located, it is specifically used to receive the uplink scheduling parameter transmitted by the receiver.
  • the receiver includes a listening receiver, and the working channel of the listening receiver is the same as the working channel of another WLAN device.
  • both the WLAN device and the other WLAN device include a baseband circuit, and the baseband circuit of the WLAN device and the baseband circuit of the other WLAN device are wiredly connected; the baseband circuit of the WLAN device is used to receive the baseband circuit of the other WLAN device
  • the transmitted uplink scheduling parameters are transmitted to the processor.
  • the processor when the processor is used to obtain the uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located, it is specifically used to receive the uplink scheduling parameters transmitted by the baseband circuit of the WLAN device.
  • the present application provides a storage medium, which implements the positioning method provided in the first aspect when the instructions in the storage medium are executed by a processor.
  • the present application provides a computer program product that, when running on a computing device, causes the computing device to execute the positioning method provided in the first aspect.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a positioning method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a positioning method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of deployment of a WLAN device and a WLAN device to be located according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of wireless resource allocation provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for a WLAN device to obtain uplink scheduling parameters according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of deployment of another WLAN device and a WLAN device to be located provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a positioning principle provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of another positioning method provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of yet another positioning method provided by an embodiment of the present application.
  • FIG. 10 is a structural block diagram of a positioning device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a WLAN device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a positioning method provided by an embodiment of this application.
  • the implementation environment may include: multiple WLAN devices 01 and multiple WLAN devices 02 to be located. At least one WLAN device 01 among the multiple WLAN devices 01 may perform uplink scheduling for the WLAN device 02 to be located.
  • the multiple WLAN devices 01 can share uplink scheduling parameters for uplink scheduling of the WLAN device 02 to be located.
  • Each to-be-located WLAN device 02 can send an uplink signal to the WLAN device 01 according to the uplink scheduling parameters.
  • the multiple WLAN devices 01 can receive the uplink signal sent by each WLAN device 02 to be located, and decode the received uplink signal according to the uplink scheduling parameters, so as to measure the respective information of each WLAN device 02 to be located according to the decoded uplink signal. Positioning data.
  • the positioning data of the WLAN device to be located 02 may be the location data (for example, coordinate values) of the WLAN device to be located, or may be intermediate data that can be used to calculate the location data of the WLAN device to be located.
  • the WLAN device 01 can measure the distance between the WLAN device 02 to be located and the WLAN device 01. The distance cannot directly indicate the location of the WLAN device 02 to be located, but can be combined with the distance measured by other WLAN devices ( For example, a three-point positioning method is used to obtain the position data of the WLAN device 02 to be located. Therefore, the distance between the WLAN device 02 to be located and the WLAN device 01 belongs to the positioning data.
  • positioning the WLAN device 02 to be located may include: estimating the angle of the WLAN device 02 to be located, or measuring the distance between the WLAN device 02 to be located and the WLAN device 01 (also called ranging from the WLAN device 02 to be located), Or, perform ranging and angle estimation on the WLAN device to be located.
  • the WLAN device 01 may be a wireless access point (wireless access point, WAP) or a part of a wireless access point.
  • WAP can be site equipment or network equipment with a WLAN chip.
  • the WLAN device 02 to be located may be a station (station, STA).
  • the STA can be a mobile phone, a tablet computer, a set-top box, a smart TV, a smart wearable device, a wireless access point, a vehicle-mounted communication device, a computer, etc.
  • another WLAN device 01 of the multiple WLAN devices 01 can obtain the uplink scheduling Parameters, so that each WLAN device 01 does not need to send an uplink scheduling signal carrying uplink scheduling parameters to the WLAN device 02 to be located.
  • the other WLAN device 01 may be any WLAN device 01 except at least one WLAN device 01 among the multiple WLAN devices 01. In this way, since each WLAN device 01 obtains the uplink scheduling parameters, it can locate the WLAN device 02 to be located according to the uplink scheduling parameters, and does not need to send the uplink scheduling signal to the WLAN device 02 to be located before the WLAN device 02 to be located can be located.
  • the device 02 performs positioning, which effectively improves the timeliness of positioning the WLAN device to be located.
  • the air interface overhead is effectively reduced.
  • Fig. 2 is a flowchart of a positioning method provided by an embodiment of the application. As shown in Figure 2, the method may include:
  • Step 201 A WLAN device obtains uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located.
  • the WLAN device and another WLAN device can jointly locate multiple WLAN devices to be located.
  • another WLAN device can perform uplink scheduling on multiple WLAN devices to be located, and the WLAN device can locate multiple WLAN devices to be located.
  • the WLAN device When a WLAN device is associated with multiple WLAN devices to be located, in order to facilitate the WLAN device to distinguish the uplink signals sent by different WLAN devices to be located, and to decode the uplink signals sent by different WLAN devices to be located, the WLAN device needs to The multiple WLAN devices to be located allocate wireless resources. In addition, the WLAN device can allocate wireless resources to some or all of the multiple WLAN devices to be located.
  • the WLAN device may send uplink scheduling parameters to multiple WLAN devices to be located to allocate wireless resources to the multiple WLAN devices to be located.
  • the uplink scheduling parameter is used to indicate the radio resources allocated to multiple WLAN devices to be located.
  • the uplink scheduling parameter may indicate subcarrier resource units (resource units, RU) and spatial streams (SS) allocated to multiple WLAN devices to be located.
  • the WLAN device may send a trigger frame (trigger frame) to multiple WLAN devices to be located, and the trigger frame may carry uplink scheduling parameters.
  • AP0 is associated with STA0, STA1 and STA2, AP1 is associated with STA5 and STA6, and AP2 is associated with STA3 and STA4.
  • AP0 sent a trigger frame carrying uplink scheduling parameters to STA0 and STA2, but did not send a trigger frame to STA1 (as shown by the solid arrow in FIG. 3).
  • the trigger frame may indicate that both STA0 and STA2 use all RU resources (including RU1 to RU4), and STA0 uses spatial stream SS1 and spatial stream SS2, and STA2 uses spatial stream SS3 and spatial stream SS4.
  • This step 201 can be implemented in a variety of ways. The following two implementation ways are used as examples to illustrate it:
  • the WLAN device may obtain the uplink scheduling parameter by means of wireless monitoring.
  • the implementation process of this step 201 may include:
  • Step 2011a The WLAN device monitors trigger frames sent by another WLAN device to multiple WLAN devices to be located.
  • the WLAN device can detect whether another WLAN device is sending a trigger frame. When it is detected that another WLAN device sends a trigger frame, the WLAN device can obtain the trigger frame.
  • a listening receiver may be configured in the WLAN device, and the working channel of the listening receiver is the same as the working channel of the other WLAN device. Therefore, the WLAN device can use the listening receiver to monitor the trigger frame sent by another WLAN device.
  • the WLAN device may be equipped with a receiver, and the receiver can not only monitor the trigger frame sent by another WLAN device, but also receive the uplink signal sent by the WLAN device to be located.
  • the WLAN device may be configured with at least two receivers, one of which is a listening receiver, and the listening receiver may be used to monitor a trigger frame sent by another WLAN device, and the other receiver is used to receive The uplink signal sent by the WLAN device to be located.
  • the receiver is a component that has at least a signal receiving function.
  • the receiver may be a receiver dedicated to receiving signals.
  • the receiver may also have the function of sending signals.
  • the receiver is also called a transceiver.
  • Step 2012a The WLAN device extracts uplink scheduling parameters from the trigger frame.
  • the format of the trigger frame is usually pre-appointed in the communication protocol. Therefore, after the WLAN device monitors the trigger frame sent by another WLAN device to multiple WLAN devices to be located, the WLAN device can extract the uplink scheduling parameters from the specified field of the trigger frame according to the pre-appointed format of the trigger frame.
  • the user field of the trigger frame includes: a radio resource unit allocation field and a spatial stream allocation field.
  • the radio resource unit allocation field is used to indicate that the WLAN device to be located can Used RU resources
  • spatial flow allocation is used to indicate the spatial flow that the WLAN device to be located can use.
  • the WLAN device monitors the trigger frame sent by another WLAN device to multiple WLAN devices to be located, the WLAN device can extract the content carried in the RF resource unit allocation field to obtain the RF resources allocated to different WLAN devices to be located, and Extract the content carried in the spatial stream allocation field to obtain the spatial streams allocated to different WLAN devices to be located.
  • both the WLAN device and the other WLAN device include baseband circuits, and the baseband circuit of the WLAN device and the baseband circuit of the other WLAN device are wiredly connected.
  • the baseband circuit of the WLAN device The circuit can obtain the uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located through a wired connection with the baseband circuit of another WLAN device.
  • the implementation process of this step 201 may include: the baseband circuit of the WLAN device receives the uplink scheduling parameters sent by the baseband circuit of another WLAN device using the wired connection between the two.
  • WLAN equipment includes baseband circuits and radio frequency circuits.
  • the baseband circuit is used to process the signals received and sent by the WLAN device.
  • Radio frequency circuits are used to receive and send signals.
  • the baseband circuit and the radio frequency circuit in the WLAN device and another WLAN device can be deployed according to the remote radio architecture. That is, the baseband circuit and the radio frequency circuit of the WLAN device can be deployed separately, and the baseband circuit and the radio frequency circuit of another WLAN device can also be deployed separately.
  • the baseband circuit of the WLAN device and the baseband circuit of another WLAN device may be wiredly connected.
  • the baseband circuit of the WLAN device and the baseband circuit of another WLAN device may be connected by a communication bus, and the communication bus may be an optical fiber or a peripheral component interconnect express (PCIe) bus.
  • the baseband circuit of the WLAN device and the baseband circuit of another WLAN device can also be installed in the same housing.
  • a baseband circuit installed in the housing and a radio frequency circuit deployed in a remote manner realize the function of a WLAN device, it includes a baseband circuit in the housing and a radio frequency circuit deployed in a remote manner.
  • the overall structure can be called a WLAN device.
  • the baseband circuit of another WLAN device can send a signal carrying uplink scheduling parameters to the radio frequency circuit of the other WLAN device, and the radio frequency circuit of the other WLAN device can send the signal to multiple WLAN devices to be located.
  • the baseband circuit of the other WLAN device may also send the carrying uplink to the baseband circuit of the WLAN device through a wired connection with the WLAN device. The signal of the scheduling parameter, so that the WLAN device can obtain the uplink scheduling parameter.
  • the baseband circuit of the WLAN device receives the signal carrying the uplink scheduling parameter, it can also send the signal carrying the uplink scheduling parameter to the radio frequency circuit of the WLAN device, so that the radio frequency circuit of the WLAN device can obtain the uplink scheduling parameter. parameter.
  • AP0 includes a baseband circuit BBU0 and a radio frequency circuit RU0
  • AP1 includes a baseband circuit BBU1 and a radio frequency circuit RU1
  • AP2 includes a baseband circuit BBU2 and a radio frequency circuit RU2.
  • the radio frequency circuit RU0 of AP0 may send the signal carrying the uplink scheduling parameters to multiple WLAN devices to be located.
  • the baseband circuit BBU0 of the AP0 can also send the signal carrying the uplink scheduling parameter to the baseband circuit BBU1 of the AP1 and the baseband circuit BBU2 of the AP2 through the communication bus.
  • the baseband circuit BBU1 of AP1 may send the signal carrying the uplink scheduling parameter to the radio frequency circuit RU1 of AP1, so that the radio frequency circuit RU1 obtains the uplink scheduling parameter.
  • the baseband circuit BBU2 of AP2 may send the signal carrying the uplink scheduling parameter to the radio frequency circuit RU2 of AP2, so that the radio frequency circuit RU2 obtains the uplink scheduling parameter.
  • Step 202 The WLAN device receives the uplink signal, and decodes the uplink signal sent by the multiple WLAN devices to be located based on the radio resources of the multiple WLAN devices to be located and the received uplink signals indicated by the uplink scheduling parameters.
  • the WLAN device can receive the uplink signal sent by the WLAN device to be located, and perform channel estimation based on the received uplink signal.
  • the WLAN device can distinguish the uplink signals sent by different WLAN devices to be located from the uplink signals based on the radio resources allocated to multiple WLAN devices to be located, and send them to different WLAN devices to be located.
  • the uplink signal is decoded, so as to measure the respective positioning data of multiple WLAN devices to be located according to the decoded uplink signal.
  • a receiver may also be used to perform data preprocessing on the received uplink signal. For example, the receiver can amplify and sample the received uplink signal, then perform analog-to-digital conversion on the sampled uplink signal, and then synchronize the time and frequency of the uplink signal after the analog-to-digital conversion, and then synchronize the time and frequency. Identify the direct path signal in the uplink signal, and then determine the arrival angle and arrival time based on the recognized direct path signal.
  • Step 203 The WLAN device measures the respective positioning data of the multiple WLAN devices to be located based on the signals after decoding the uplink signals sent by the multiple WLAN devices to be located.
  • Positioning the WLAN device to be located may include: performing angle estimation on the WLAN device to be located; or, ranging from the WLAN device to be located; or, WLAN ranging and angle estimation to be located, that is, determining the location data of the WLAN device to be located.
  • the operation of determining the location data of the WLAN device to be located may be executed by the WLAN device or by the positioning server.
  • the location data may be intermediate data used to calculate the location data of the WLAN device to be located, and the WLAN device may send the location data to the location server to For the positioning server to determine the position data of the to-be-positioned WLAN device according to the positioning data.
  • the location data may be the location data of the WLAN device to be located, or the location data may be intermediate data used to determine the location data of the WLAN device to be located .
  • the WLAN device can determine the location data of the WLAN device to be located according to the intermediate data.
  • the intermediate data may be the angle of arrival of the WLAN device to be located relative to the WLAN device, and the time used for packet transmission between the WLAN device and the WLAN device to be located, and the WLAN device The position data of the WLAN device to be located can be determined according to the angle of arrival and the time.
  • the intermediate data can be the angle of arrival of the WLAN device to be located relative to the WLAN device, and the distance between the WLAN device and the WLAN device to be located, and the WLAN device can be based on the The angle of arrival and the distance determine the location data of the WLAN device to be located.
  • WLAN devices usually have multiple antenna sub-arrays with different installation positions.
  • the WLAN device may use the multiple antenna sub-arrays to respectively receive uplink signals sent by the same WLAN device to be located. Due to the different setting positions of the multiple antenna sub-arrays, the reception phases of the multiple measurement reference codes respectively received by the multiple antenna sub-arrays are different. Wherein, the reception phases of the multiple measurement reference codes received by the antenna sub-array are used to reflect the directional relationship between the WLAN device to be located and the corresponding antenna sub-array. After obtaining the decoded uplink signal, the WLAN device can determine the reception phase difference between the antenna sub-arrays receiving different measurement reference codes according to the reception phases of the measurement reference codes received by the different antenna sub-arrays.
  • the angle of arrival (AoA) of the WLAN device to be located relative to the WLAN device can be determined, that is, the angle of the WLAN device to be located is estimated .
  • the distance between the WLAN device and the WLAN device to be located can be determined, so as to realize the ranging of the WLAN device to be located.
  • the time for the message to be transmitted between the WLAN device and the WLAN device to be located can be: the time of flight (ToF) for the WLAN device to be located to send the uplink signal to the WLAN device, or the WLAN device to be located.
  • the time for the message to be transmitted between the WLAN device and the WLAN device to be located may be:
  • the absolute time difference of the arrival time of the message to every two WLAN devices that is, the time difference of arrival (TDoA)
  • the distance between AP1 and AP2 is d0
  • the distance between AP1 and STA is d2
  • the distance between AP2 and STA is d1.
  • the trigger frame sent by AP1 at time T1 is monitored by AP2 at time T2.
  • the uplink packet sent by the STA according to the trigger frame is received by AP2 at time T4, and received by AP1 at time T3. According to the sending time and receiving time (and arrival time) of the trigger frame, and the time when the uplink signal is received, the following relationship can be obtained:
  • the t0 is the time difference between the STA receiving the trigger frame and sending the uplink signal according to the trigger frame.
  • a hyperbola Q1 with AP1 and AP2 as the focal points of the hyperbola and the distance difference between the points on the hyperbola and the focal point can be obtained. That is, the STA can be obtained on the hyperbola Q1.
  • AP3 can also be used to monitor trigger frames sent by AP1, and AP3 can be used to receive uplink signals sent by STAs.
  • the distance difference between STA and AP1 and AP3, S2 can be obtained, and get Taking AP1 and AP3 as the focal points of the hyperbola, and taking the distance difference S2 as the hyperbola Q2 of the distance difference from the point on the hyperbola to the focal point, it can be determined that the STA is on the hyperbola Q2. At this time, it can be determined that the intersection of the hyperbola Q1 and the hyperbola Q2 is the location of the STA.
  • the uplink signal sent by the WLAN device to be positioned may include multiple measurement reference codes, and the WLAN device may use different antenna sub-arrays to receive the multiple measurement reference codes respectively, and according to the number of antenna sub-arrays received.
  • a measurement reference code measures the positioning data of the WLAN device to be located.
  • the multiple measurement reference codes include the preamble of the uplink signal and one or more midambles.
  • Change the antenna sub-array for receiving uplink signals in the receiving component of the WLAN device may further include:
  • Step 204 The WLAN device obtains a location indication sent by another WLAN device to multiple WLAN devices to be located, where the location indication is used to indicate the location of one or more midambles in the uplink signal sent by the WLAN device to be located to the WLAN device.
  • step 204 reference may be made to the implementation of step 201 accordingly.
  • the trigger frame may include information about the position of one or more midambles carried in the uplink signal. Therefore, the WLAN device can monitor the trigger frame sent by another WLAN device to multiple WLAN devices to be located, and extract the indication of the position of one or more midambles carried in the uplink signal from the trigger frame.
  • monitoring the trigger frame please refer to the implementation of the monitoring trigger frame in step 201, which will not be repeated here.
  • the trigger frame can indicate the length of the uplink signal and the interval between adjacent midambles.
  • the trigger frame may carry a Doppler (doppler) field, a frame length (UL length) field, and a midamble period (midamble period) field.
  • the Doppler field is used to define whether the midamble is carried in the uplink signal.
  • the frame length field is used to define the length of the uplink signal, and the length of the uplink signal refers to the length of valid data in the uplink signal.
  • the midamble period field is used to define the interval between adjacent midambles in the uplink signal. Therefore, by extracting the Doppler field, the frame length field and the midamble period field in the trigger frame, an indication of the position of one or more midamble codes carried in the uplink signal can be obtained.
  • the WLAN device to be located can be based on the received preamble and midamble during the process of receiving the uplink signal. Perform channel estimation on the wireless channel. Since the transmission interval between different measurement reference codes is smaller than the transmission interval of different uplink signals, when channel estimation is performed based on the measurement reference codes, the accuracy of channel estimation can be improved, and the influence of fast wireless channel fading on the accuracy of channel estimation can be effectively reduced . Correspondingly, when the positioning data of the WLAN device to be positioned is measured according to the uplink signal containing the midamble, the accuracy of positioning based on the positioning data can be improved.
  • the implementation process of the foregoing step 202 includes step 205 in FIG. 8: the WLAN device transmits an uplink signal based on the position of one or more midambles During the period of the data part of the WLAN device, change the antenna sub-array of the receiving component of the WLAN device to receive the uplink signal, and according to the radio resources of the WLAN device to be located and the received uplink signal indicated by the uplink scheduling parameter, the WLAN device to be located is sent The uplink signal is decoded.
  • the WLAN device to be located may send an uplink signal to the WLAN device based on the position indication.
  • the uplink signal contains a specified number of midambles, and multiple OFDM symbols are inserted between every two midambles that are adjacent in time sequence.
  • the WLAN device can, based on the position of the one or more midambles indicated by the location indicator, change the antenna element of the receiving component of the WLAN device that receives the uplink signal during the period when the WLAN device to be located sends the data part of the uplink signal.
  • the data part is between two adjacent measurement reference codes among the multiple measurement reference codes of the uplink signal.
  • the multiple measurement reference codes include the preamble of the uplink signal and one or more midambles.
  • the positions of the at least two antenna sub-arrays are different, so that after the at least two antenna sub-arrays respectively receive multiple measurement reference codes, the angle estimation of the WLAN device to be positioned can be performed according to the multiple measurement reference codes.
  • the receiving component includes one or more radio frequency circuits and at least two antenna sub-arrays.
  • the implementation process of this step 205 may include: the WLAN device is based on the position of one or more midambles, and the WLAN device time-sharing controls the at least two positions during the period when the WLAN device to be located sends the data part of the uplink signal.
  • the electrical connection state of the antenna sub-array and the radio frequency circuit so that when any measurement reference code is sent to the WLAN device, one of the at least two antenna sub-arrays is electrically connected to the radio frequency circuit, so that at least two antenna sub-arrays are electrically connected to the radio frequency circuit Receive multiple measurement reference codes respectively.
  • the total number of antenna sub-arrays in the WLAN device may be equal to the total number of radio frequency circuits, that is, at least two antenna sub-arrays in the WLAN device correspond to multiple radio frequency circuits one-to-one.
  • the WLAN device time-sharing controls the electrical connection state of the at least two antenna sub-arrays and the radio frequency circuit, different antenna sub-arrays can be controlled to be electrically connected to their corresponding radio frequency circuits at different times.
  • the total number of antenna sub-arrays in the WLAN device may be greater than the total number of radio frequency circuits.
  • all or part of the antenna sub-arrays in the at least two antenna sub-arrays can be controlled to be electrically connected to the same radio frequency circuit at different times. .
  • the WLAN device may be equipped with a radio frequency circuit, and when the WLAN device time-sharing controls the electrical connection state of the at least two antenna sub-arrays and the radio frequency circuit, the radio frequency circuit can be controlled to be electrically connected to different antenna sub-arrays at different times.
  • the WLAN device may also be provided with a switch, one end of the switch is electrically connected to the radio frequency circuit, and the other end of the switch is connected to the antenna sub-array. The switch can be closed or opened to realize the connection between the radio frequency circuit and the antenna sub-array. Control of the electrical connection status of the array.
  • the WLAN device has seven antenna sub-arrays. After the WLAN device sends a trigger frame to the WLAN device to be located, the WLAN device can control the first antenna sub-array. The array is electrically connected to the radio frequency circuit to use the first antenna sub-array to receive the preamble in the uplink signal. After the first antenna sub-array receives the preamble, the WLAN device can switch the antenna sub-array electrically connected to the radio frequency circuit to the second antenna sub-array during the period when the WLAN device to be located sends M OFDM symbols after the preamble. , To use the second antenna sub-array to receive the first midamble in the uplink signal.
  • the WLAN device can connect the antenna sub-array that is electrically connected to the radio frequency circuit.
  • the array is switched to the third antenna sub-array to use the third antenna sub-array to receive the second midamble in the uplink signal.
  • the antenna sub-arrays electrically connected to the radio frequency circuit are sequentially adjusted until the reception of all midambles in the uplink signal is completed.
  • the WLAN device can compare the total number of adjustments to the working state of the receiving component with the total number of midambles indicated in the trigger frame. When the total number of working states of the receiving component is equal to the total number of midambles indicated in the trigger frame, it is determined that the reception of all midambles in the uplink signal is completed, and the working state of the receiving component can no longer be adjusted.
  • some or all of the antenna sub-arrays in the at least two antenna sub-arrays can share the radio frequency circuit.
  • Reducing the number of radio frequency circuits that the WLAN device needs to configure can effectively reduce the positioning cost.
  • the WLAN device can obtain multiple measurement reference codes by receiving one uplink signal, compared to The technology of receiving multiple uplink signals through different antenna sub-arrays, because the transmission interval between different measurement reference codes is smaller than the transmission interval of different uplink signals, which effectively reduces the probability of channel changes between different measurement reference codes. Therefore, The influence of channel changes on positioning accuracy can be reduced.
  • the total number of antenna sub-arrays of the WLAN device can be adjusted according to application requirements.
  • the radio frequency circuit electrically connected to the antenna sub-array can also be adjusted according to application requirements. It is not specifically limited.
  • the embodiment of the present application also limits the type of antenna sub-array in the WLAN device.
  • the antenna sub-array in the WLAN device may be a linear array, a uniform circular array, or a uniform planar array.
  • the receiving component may also include a reference antenna. Therefore, in order to further improve the positioning accuracy of the WLAN device to be located, the reference antenna can also be used to receive multiple measurement reference codes, and the measurement reference codes received by the reference antenna can be used to compensate for the same measurement reference codes received by the antenna sub-array.
  • the implementation process of the foregoing step 202 may also include step 206 in FIG.
  • the device controls the reference antenna to receive multiple measurement reference codes, and decodes the uplink signal sent by the WLAN device to be located according to the radio resources of the WLAN device to be located and the received uplink signal indicated by the uplink scheduling parameters, and based on the received uplink signal from the reference antenna Any measurement reference code performs signal compensation on any measurement reference code received by the antenna sub-array, where the multiple measurement reference codes include the preamble of the uplink signal and one or more midambles.
  • the position of the reference antenna is fixed, and it can be considered that the channel has the same influence on the different measurement reference codes received by the reference antenna.
  • the phase of the measurement reference code received by the receiving component is not only affected by the channel, but also affected by the performance of the receiver in the receiving component. Therefore, if the performance of the receiver in the receiving component is stable, the different measurement reference received by the reference antenna The phase of the code should be the same.
  • the phases of the different measurement reference codes received by the reference antenna are different, it can be determined that the performance of the receiver is unstable.
  • the channel has different influences on the phases of different measurement reference codes received by the at least two antenna sub-arrays. That is, when the performance of the receiver is stable, the phases of the measurement reference codes received by different antenna sub-arrays will be different, and the phase difference of the different measurement reference codes is caused by channel changes. However, if the performance of the receiver is unstable, for example, when the receiver has a crystal oscillator drift, the phase of the measurement reference code may still be affected by the performance of the receiver.
  • the WLAN device when the WLAN device to be located sends an uplink signal to the WLAN device, the WLAN device can control the reference antenna to always be in the receiving state, and use the reference antenna to receive multiple measurement reference codes in the uplink signal.
  • the phase difference can be used to compensate the measurement reference code with a later time sequence among the two measurement reference codes collected by the antenna sub-array to compensate for the instability of the receiver to the measurement reference code received by the antenna sub-array. The effect of the phase.
  • the implementation of signal compensation may include: determining the phase difference of two measurement reference codes that are adjacent in time sequence collected by the reference antenna, and the measurement reference of the two measurement reference codes collected by the antenna sub-array at the later time sequence.
  • the weighted sum of the phases of the code, and the weighted sum is determined as the measurement reference code after signal compensation is performed on the measurement reference code with a later time sequence.
  • the weight value of the phase difference and the weight value of the measurement reference code can be determined according to application requirements. For example, the weight value of the phase difference and the weight value of the measurement reference code may both be 1.
  • the channel estimation result is closer to the real channel condition. At this time, when the WLAN device to be located is positioned according to the channel estimation result, the positioning accuracy can be further improved.
  • this step 206 is an optional step. During the positioning process, it can be determined whether to perform the above step 206 according to application requirements.
  • the implementation process of step 203 includes step 207 in FIG. 9: the WLAN device is based on at least two antennas.
  • the measurement reference code received by the array is the measurement reference code after signal compensation is performed to measure the positioning data of the WLAN device to be located.
  • the implementation process of measuring the positioning data of the WLAN device to be located please refer to the implementation process of the foregoing step 203 accordingly, which will not be repeated here.
  • the WLAN device obtains the uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located, so that the WLAN device does not need to send the uplink scheduling parameters to the WLAN device to be located.
  • the uplink scheduling signal of the scheduling parameter is used.
  • the WLAN device obtains the uplink scheduling parameter, it can measure the positioning data of the WLAN device to be located according to the uplink scheduling parameter. It does not need to send the uplink scheduling signal to the WLAN device to be located. Only then measure the positioning data of the WLAN device to be located, which effectively improves the timeliness of positioning the WLAN device to be located.
  • the positioning device 100 may include:
  • the obtaining module 1001 is configured to obtain uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located, and the uplink scheduling parameters are used to indicate radio resources allocated to the multiple WLAN devices to be located.
  • the receiving module 1002 is used to receive uplink signals.
  • the processing module 1003 is configured to measure the respective positioning data of the multiple WLAN devices to be located based on the wireless resources of the multiple WLAN devices to be located and the received uplink signals.
  • the acquiring module 1001 is specifically configured to monitor a trigger frame sent by another WLAN device, and extract uplink scheduling parameters from the trigger frame.
  • the positioning apparatus 100 includes a listening receiver, and the working channel of the listening receiver is the same as the working channel of another WLAN device.
  • both the positioning device 100 and the other WLAN device include a baseband circuit, and the baseband circuit of the positioning device 100 and the baseband circuit of the other WLAN device are wiredly connected, and the acquisition module 1001 is specifically used to:
  • the baseband circuit receives the uplink scheduling parameters sent by the baseband circuit of another WLAN device.
  • the uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located are acquired through the acquisition module, so that the positioning device does not need to send the uplink scheduling parameters to the WLAN device to be located.
  • the uplink scheduling signal of the scheduling parameter is acquired through the acquisition module, so that the positioning device does not need to send the uplink scheduling parameters to the WLAN device to be located.
  • the uplink scheduling signal of the scheduling parameter is acquired through the acquisition module, so that the positioning device does not need to send the uplink scheduling parameters to the WLAN device to be located.
  • the uplink scheduling signal of the scheduling parameter is measured after the uplink scheduling parameter, and does not need to send the uplink scheduling to the WLAN device to be located.
  • the positioning data of the WLAN device to be located is measured after the signal, which effectively improves the timeliness of positioning the WLAN device to be located.
  • the embodiment of the present application also provides a WLAN device.
  • the WLAN device 1100 includes a processor 1110 and a receiver 1120.
  • the processor 1110 and the receiver 1120 are connected to each other through a bus 1130.
  • the WLAN device may be WAP or a part of WAP.
  • WAP can be site equipment or network equipment with a WLAN chip.
  • the bus 1130 can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the processor 1110 is configured to obtain an uplink scheduling parameter sent by another WLAN device to multiple WLAN devices to be located, where the uplink scheduling parameter is used to indicate radio resources allocated to the multiple WLAN devices to be located.
  • the receiver 1120 is configured to receive uplink signals, and transmit the received uplink signals to the processor 1110.
  • the processor 1110 is configured to measure the respective positioning data of the multiple WLAN devices to be located based on the radio resources of the multiple WLAN devices to be located and the received uplink signals.
  • the processor 1110 may include at least one of a baseband circuit and a signal processor.
  • the processor 1110 includes a baseband circuit
  • the function of measuring the respective positioning data of multiple WLAN devices to be located is implemented by the baseband circuit.
  • the processor 1110 includes a signal processor
  • the function of measuring the respective positioning data of multiple WLAN devices to be located is implemented by the signal processor.
  • the processor 1110 includes a baseband circuit and a signal processor
  • the function of measuring the respective positioning data of multiple WLAN devices to be positioned is implemented by either the baseband circuit and the signal processor, or by the baseband circuit and the signal processor in cooperation. .
  • the signal processor may be a digital signal processor (digital signal processor, DSP) and other signal processors that implement functions through software.
  • the signal processor may be a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • the receiver 1120 is a component having at least a signal receiving function.
  • the receiver 1120 may be a receiver 1120 dedicated to receiving signals.
  • the receiver 1120 may also have a signal sending function.
  • the receiver 1120 is also called a transceiver.
  • the receiver 1120 includes: a radio frequency circuit (or radio frequency unit).
  • the WLAN device further includes an antenna 1140.
  • the receiver 1120 uses the antenna 1140 to realize the function of receiving signals. And when the receiver 1120 also has the function of sending signals, the receiver 1120 uses the antenna 1140 to realize the function of sending signals.
  • the WLAN device may further include: a memory 1150.
  • the memory 1150 is used to store uplink scheduling parameters and uplink signals.
  • the signal processor implements functions through software
  • the memory 1150 is also used to store program instructions, and the signal processor can implement the functions that the signal processor needs to implement by calling the program instructions stored in the memory 1150. For example, by calling the program instructions stored in the memory 1150, the signal processor can measure the respective positioning data of the multiple WLAN devices to be located based on the wireless resources of the multiple WLAN devices to be located and the received uplink signals.
  • the memory 1150 may include a volatile memory (volatile memory), such as random-access memory (RAM); the memory 1150 may also include a non-volatile memory (non-volatile memory), such as fast Flash memory (flash memory), hard disk drive (HDD) or solid-state drive (SSD); the memory 1150 may also include a combination of the foregoing types of memories.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory 1150 may also include a combination of the foregoing types of memories.
  • the receiver 1120 is also used to monitor a trigger frame sent by another WLAN device, extract the uplink scheduling parameters from the trigger frame, and transmit the uplink scheduling parameters to the processor 1110.
  • the processor 1110 is configured to obtain the uplink scheduling parameters sent by another WLAN device to multiple WLAN devices to be located, it is specifically configured to receive the uplink scheduling parameters transmitted by the receiver 1120.
  • the receiver 1120 may include a listening receiver, and the working channel of the listening receiver is the same as the working channel of another WLAN device.
  • both the WLAN device and the other WLAN device include a baseband circuit, and the baseband circuit of the WLAN device and the baseband circuit of the other WLAN device are wiredly connected.
  • the baseband circuit of the WLAN device is used to receive uplink scheduling parameters transmitted by the baseband circuit of another WLAN device, and transmit the uplink scheduling parameters to the processor 1110.
  • the processor 1110 when the processor 1110 is configured to obtain the uplink scheduling parameter sent by another WLAN device to multiple WLAN devices to be located, it is specifically configured to receive the uplink scheduling parameter transmitted by the baseband circuit of the WLAN device.
  • the receiver 1120 and the transmitter may both have baseband circuits.
  • the baseband circuit for receiving uplink scheduling parameters sent by another WLAN device may be the receiver Either the 1120 baseband circuit or the baseband circuit of the transmitter.
  • the baseband circuit for receiving uplink scheduling parameters sent by another WLAN device is the shared baseband circuit.
  • the baseband circuit for receiving uplink scheduling parameters sent by another WLAN device is the baseband circuit of the transceiver.
  • the antenna 1140 includes at least two antenna sub-arrays, and the positions of the at least two antenna sub-arrays are different.
  • the uplink signal sent by the WLAN device to be positioned may include multiple measurement reference codes, and the WLAN device may use different antenna sub-arrays to receive the multiple measurement reference codes respectively, and according to the multiple measurement reference codes received by the different antenna sub-arrays Code to measure the positioning data of the WLAN device to be located.
  • the multiple measurement reference codes include the preamble of the uplink signal and one or more midambles.
  • the WLAN device In order for the WLAN device to be able to use different antenna sub-arrays to receive the multiple measurement reference codes respectively, it is necessary to obtain the positions of the multiple measurement reference codes in the uplink signal in advance, so as to determine the positions of the multiple measurement reference codes in the uplink signal. , Change the antenna sub-array in the antenna used by the receiver 1120 to receive the uplink signal.
  • the receiver 1120 is also used to obtain a location indicator sent by another WLAN device to multiple WLAN devices to be located, and the location indicator is used to indicate one or more intermediate guides in the uplink signal sent by the WLAN device to be located to the WLAN device.
  • the location of the code is used to indicate one or more intermediate guides in the uplink signal sent by the WLAN device to be located to the WLAN device.
  • the location of the code is used to indicate one or more intermediate guides in the uplink signal sent by the WLAN device to be located to the WLAN device.
  • the receiver 1120 is specifically used to change the receiver based on the position of one or more midambles during the period when the WLAN device to be located sends the data part of the uplink signal.
  • the data part is between two adjacent measurement reference codes among the multiple measurement reference codes of the uplink signal.
  • the multiple measurement reference codes include the preamble of the uplink signal and one or more midambles indicated by the trigger frame.
  • the receiver 1120 uses the antenna sub-array to receive the measurement reference code, it is also used to transmit to the processor 1110 different measurement reference codes in the uplink signals received by the different antenna sub-arrays before and after the change.
  • the processor 1110 is used to measure the respective positioning data of the multiple WLAN devices to be located based on the wireless resources of the multiple WLAN devices to be located and the received uplink signals, specifically used to: receive based on different antenna sub-arrays before and after the change Different measurement reference codes and radio resources in the received uplink signal are used to measure the positioning data of the WLAN device to be located.
  • the trigger frame can indicate the position of one or more midamble codes by indicating the length of the uplink signal and the interval between adjacent midamble codes.
  • the receiver 1120 may further include: a switch. At this time, the receiver 1120 is used to change the antenna in the antenna 1140 used by the receiver 1120 to receive the uplink signal during the period when the WLAN device to be located sends the data part of the uplink signal based on the position of one or more midambles.
  • its implementation may include: based on the position of one or more midambles, during the period when the WLAN device to be located sends the data portion of the uplink signal, by controlling the switch to control at least two antennas in a time-sharing manner
  • the electrical connection state of the sub-array and the radio frequency circuit is such that when any measurement reference code is sent to the WLAN device, one of the at least two antenna sub-arrays is electrically connected to the radio frequency circuit.
  • the antenna 1140 further includes a reference antenna.
  • the reference antenna is used to receive multiple measurement reference codes when the WLAN device to be located sends an uplink signal to the WLAN device, and transmit the multiple measurement reference codes received by the reference antenna to the processor 1110.
  • the processor 1110 is further configured to perform signal compensation on any measurement reference code received by the antenna sub-array of the at least two antenna sub-arrays based on any measurement reference code received by the reference antenna.
  • the processor 1110 is specifically configured to measure the positioning data of the WLAN device to be positioned based on the measurement reference code after signal compensation is performed on the measurement reference code received by the at least two antenna sub-arrays.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer is used to execute the positioning method provided in the present application.
  • the computer-readable storage medium includes, but is not limited to, volatile memory, such as random access memory, and non-volatile memory, such as flash memory, HDD, and SSD.
  • This application also provides a computer program product.
  • the computer program product includes computer instructions. When executed by a computing device, the computing device executes the positioning method provided in this application.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium mentioned can be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种定位方法及装置、WLAN设备及存储介质。该定位方法包括:WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,上行调度参数用于指示向多个待定位WLAN设备分配的无线资源;WLAN设备接收上行信号;WLAN设备基于多个待定位WLAN设备的无线资源和接收到的上行信号,测量多个待定位WLAN设备各自的定位数据。本方法提高了对待定位WLAN设备进行定位的及时性。

Description

定位方法及装置、WLAN设备及存储介质
本申请要求于2020年02月10日提交的申请号为202010085284.4、发明名称为“定位方法及装置、WLAN设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及一种定位方法及装置、WLAN设备及存储介质。
背景技术
使用多个无线局域网(wireless local area network,WLAN)设备对多个待定位WLAN设备进行定位时,每个WLAN设备依次向多个待定位WLAN设备发送触发帧,以便于多个待定位WLAN设备依次向多个WLAN设备发送上行信号。在每个WLAN设备接收到多个待定位WLAN设备发送的上行信号后,WLAN设备根据接收到的上行信号对该多个待定位WLAN设备进行定位。
但是,在该定位方式中,在向待定位WLAN设备分配无线资源后,WLAN设备才能根据向待定位WLAN设备分配的无线资源对待定位WLAN设备进行定位,导致对待定位WLAN设备进行定位的及时性差。
发明内容
本申请提供了一种定位方法及装置、WLAN设备及存储介质,可以解决相关技术中对待定位WLAN设备进行定位的及时性较差的问题,本申请提供的技术方案如下:
第一方面,本申请提供了一种定位方法,该方法包括:WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,上行调度参数用于指示向多个待定位WLAN设备分配的无线资源;WLAN设备接收上行信号;WLAN设备基于多个待定位WLAN设备的无线资源和接收到的上行信号,测量多个待定位WLAN设备各自的定位数据。
在本申请提供的定位方法中,通过WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,使得WLAN设备无需向待定位WLAN设备发送携带有上行调度参数的上行调度信号,这样一来,由于WLAN设备在获取上行调度参数后,就可以根据该上行调度参数测量待定位WLAN设备的定位数据,不需要自身向待定位WLAN设备发送上行调度信号后才测量待定位WLAN设备的定位数据,有效地提高了对待定位WLAN设备进行定位的及时性。
并且,由于减少对待定位WLAN设备进行上行调度时需要发送的上行调度信号的总数,因此,有效地降低了空口开销。
在一种可实现方式中,WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数的实现过程,包括:WLAN设备监听另一WLAN设备向多个待定位WLAN设备发送的触发帧;WLAN设备从触发帧中提取上行调度参数。
此时,WLAN设备可以包括监听接收机,该监听接收机的工作信道和另一WLAN设备的工作信道相同,因此,WLAN设备能够使用该监听接收机监听另一WLAN设备向多个待定位WLAN设备发送的触发帧。
在另一种可实现方式中,当WLAN设备和另一WLAN设备均包括射频电路和基带电路,且WLAN设备的基带电路和另一WLAN设备的基带电路之间有线连接时,另一WLAN设备的基带电路向另一WLAN设备的射频电路发送携带有上行调度参数的信号后,该另一WLAN设备的射频电路可以向多个待定位WLAN设备发送该携带有上行调度参数的信号,以对多个待定位WLAN设备的上行调度。并且,在向该另一WLAN设备的射频电路发送上行调度参数后,该另一WLAN设备的基带电路还可以通过与WLAN设备的基带电路之间的有线连接,向WLAN设备的基带电路发送该携带有上行调度参数的信号,以便于WLAN设备获取该上行调度参数。此时,WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数的实现过程,包括:WLAN设备的基带电路接收另一WLAN设备的基带电路发送的上行调度参数。
第二方面,本申请提供了一种定位装置,该定位装置包括:获取模块,用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,上行调度参数用于指示向多个待定位WLAN设备分配的无线资源;接收模块,用于接收上行信号;处理模块,用于基于多个待定位WLAN设备的无线资源和接收到的上行信号,测量多个待定位WLAN设备各自的定位数据。
可选地,获取模块,具体用于:监听另一WLAN设备发送的触发帧;从触发帧中提取上行调度参数。
可选地,定位装置包括监听接收机,该监听接收机的工作信道和另一WLAN设备的工作信道相同。
可选地,当定位装置和另一WLAN设备均包括基带电路,且定位装置的基带电路和另一WLAN设备的基带电路之间有线连接时,获取模块具体用于:通过定位装置的基带电路接收另一WLAN设备的基带电路发送的上行调度参数。
第三方面,本申请提供了一种无线局域网WLAN设备,包括:处理器和接收机,该处理器用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,上行调度参数用于指示向多个待定位WLAN设备分配的无线资源;接收机用于接收上行信号,向处理器传输接收到的上行信号;处理器用于基于多个待定位WLAN设备的无线资源和接收到的上行信号,测量多个待定位WLAN设备各自的定位数据。
可选地,接收机还用于监听另一WLAN设备发送的触发帧,从触发帧中提取上行调度参数,向处理器传输上行调度参数。
相应的,处理器用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数时,具体用于接收接收机传输的上行调度参数。
可选地,接收机包括监听接收机,监听接收机的工作信道和另一WLAN设备的工作信道相同。
可选地,WLAN设备和另一WLAN设备均包括基带电路,且WLAN设备的基带电路和另一WLAN设备的基带电路之间有线连接;WLAN设备的基带电路用于接收另一WLAN设备的基带电路传输的上行调度参数,向处理器传输上行调度参数。
相应的,处理器用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数时,具体用于接收WLAN设备的基带电路传输的上行调度参数。
第四方面,本申请提供了一种存储介质,当存储介质中的指令被处理器执行时,实现第一方面提供的定位方法。
第五方面,本申请提供了一种计算机程序产品,该计算机程序产品在计算设备上运行时,使得计算设备执行第一方面提供的定位方法。
附图说明
图1是本申请实施例提供的一种定位方法所涉及的实施环境的示意图;
图2是本申请实施例提供的一种定位方法的流程图;
图3是本申请实施例提供的一种WLAN设备和待定位WLAN设备的部署示意图;
图4是本申请实施例提供的一种无线资源的分配示意图;
图5是本申请实施例提供的一种WLAN设备获取上行调度参数的方法流程图;
图6是本申请实施例提供的另一种WLAN设备和待定位WLAN设备的部署示意图;
图7是本申请实施例提供的一种定位原理的示意图;
图8是本申请实施例提供的另一种定位方法的流程图;
图9是本申请实施例提供的再一种定位方法的流程图;
图10是本申请实施例提供的一种定位装置的结构框图;
图11是本申请实施例提供的一种WLAN设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1为本申请实施例提供的一种定位方法所涉及的实施环境的示意图。如图1所示,该实施环境可以包括:多个WLAN设备01和多个待定位WLAN设备02。多个WLAN设备01中至少一个WLAN设备01可以对待定位WLAN设备02进行上行调度。且该多个WLAN设备01之间可以共享对待定位WLAN设备02进行上行调度的上行调度参数。每个待定位WLAN设备02可以根据上行调度参数向WLAN设备01发送上行信号。该多个WLAN设备01可以接收每个待定位WLAN设备02发送的上行信号,并根据上行调度参数解码接收到的上行信号,以便于根据解码后的上行信号测量每个待定位WLAN设备02各自的定位数据。
其中,该待定位WLAN设备02的定位数据可以是该待定位WLAN设备的位置数据(例如坐标值),也可以是能用于计算该待定位WLAN设备的位置数据的中间数据。例如,WLAN设备01可以测量得到该待定位WLAN设备02和WLAN设备01间的距离,该距离不能直接表明该待定位WLAN设备02的位置,但可以和别的WLAN设备测量到的距离结合得到(例如用三点定位法得到)该待定位WLAN设备02的位置数据。因此该待定位WLAN设备02和WLAN设备01间的距离属于定位数据。
并且,对待定位WLAN设备02进行定位可以包括:对该待定位WLAN设备02进行角度估计,或者,测量该待定位WLAN设备02到WLAN设备01的距离(也称对待定位WLAN设备02测距),或者,对该待定位WLAN设备进行测距和角度估计。
WLAN设备01可以为无线接入点(wireless accesspoint,WAP)或无线接入点的一部分。WAP可以是带有WLAN芯片的站点设备或者网络设备等。待定位WLAN设备02可以为站(station,STA)。例如:该STA可以为移动电话、平板电脑、机顶盒、智能电视、智能可穿戴设备、无线接入点、车载通信设备和计算机等。
在本申请实施例中,当多个WLAN设备01中的至少一个WLAN设备01向待定位WLAN设备02发送上行调度参数后,该多个WLAN设备01中的另一WLAN设备01可以获取该上行调度参数,使得无需每个WLAN设备01均向待定位WLAN设备02发送携带有上行调度参数的上行调度信号。其中,该另一WLAN设备01可以为多个WLAN设备01中除至少一个WLAN设备01外的任一WLAN设备01。这样一来,由于每个WLAN设备01在获取上行调度参数后,就可以根据该上行调度参数对待定位WLAN设备02进行定位,不需要自身向待定位WLAN设备02发送上行调度信号后才能对待定位WLAN设备02进行定位,有效地提高了对待定位WLAN设备进行定位的及时性。并且,由于减少对待定位WLAN设备进行上行调度时需要发送的上行调度信号的总数,因此,有效地降低了空口开销。
下面对本申请实施例提供的定位方法的实现过程进行说明。图2为本申请实施例提供的一种定位方法的流程图。如图2所示,该方法可以包括:
步骤201、WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数。
其中,WLAN设备和另一WLAN设备可以共同对多个待定位WLAN设备进行定位。或者,另一WLAN设备可以对多个待定位WLAN设备进行上行调度,WLAN设备可以对多个待定位WLAN设备进行定位。
当某个WLAN设备与多个待定位WLAN设备关联时,为便于该WLAN设备区分不同待定位WLAN设备发送的上行信号,并对不同待定位WLAN设备发送的上行信号进行解码,该WLAN设备需要向该多个待定位WLAN设备分配无线资源。并且,WLAN设备可以向该多个待定位WLAN设备中的部分或全部分配无线资源。
可选地,该WLAN设备可以通过向多个待定位WLAN设备发送上行调度参数,以向该多个待定位WLAN设备分配无线资源。该上行调度参数用于指示向多个待定位WLAN设备分配的无线资源。例如,该上行调度参数可以指示向多个待定位WLAN设备分配的子载波资源单元(resource unit,RU)和空间流(spatial stream,SS)。在一种可实现方式中,WLAN设备可以向多个待定位WLAN设备发送触发帧(trigger帧),该触发帧中可以携带有上行调度参数。
示例地,如图3所示,AP0与STA0、STA1和STA2关联,AP1与STA5和STA6关联,AP2与STA3和STA4关联。其中,AP0向STA0与STA2发送了携带有上行调度参数的触发帧,未向STA1发送触发帧(如图3中实线箭头所示)。如图4所示,该触发帧可以指示STA0与STA2均使用所有的RU资源(包括RU1至RU4),且STA0使用空间流SS1与空间流SS2,STA2使用空间流SS3与空间流SS4。
该步骤201可以有多种可实现方式,下面以以下两种可实现方式为例对其进行说明:
在步骤201的第一种可实现方式中,WLAN设备可以采用无线监听的方式获取该上行调度参数。如图5所示,该步骤201的实现过程可以包括:
步骤2011a、WLAN设备监听另一WLAN设备向多个待定位WLAN设备发送的触发帧。
WLAN设备可以侦测另一WLAN设备是否在发送触发帧。在侦测到另一WLAN设备发送触发帧时,该WLAN设备可以获取该触发帧。
在一种可实现方式中,WLAN设备中可以配置有监听接收机,该监听接收机的工作信道和该另一WLAN设备的工作信道相同。因此,WLAN设备可以采用该监听接收机监听另一WLAN设备发送的触发帧。例如,该WLAN设备中可以配置有一个接收机,该接收机既可以监听另一WLAN设备发送的触发帧,又可以接收待定位WLAN设备发送的上行信号。又例如,该WLAN设备中可以配置有至少两个接收机,其中一个接收机为监听接收机,该监听接收机可以用于监听另一WLAN设备发送的触发帧,其中另一个接收机用于接收待定位WLAN设备发送的上行信号。
并且,接收机为至少具有信号接收功能的组件。例如,该接收机可以为专用于接收信号的接收机。或者,该接收机也可以具有发送信号的功能,此时,该接收机也称收发机。
步骤2012a、WLAN设备从触发帧中提取上行调度参数。
触发帧的格式通常是通信协议中预先约定的。因此,在WLAN设备监听到另一WLAN设备向多个待定位WLAN设备发送的触发帧后,该WLAN设备可以根据预先约定的触发帧的格式,从该触发帧的指定字段中提取上行调度参数。
示例地,根据802.11.ax协议,触发帧的用户字段包括:射频资源单元分配(resource unit allocation)字段和空间流分配(spatial stream allocation)字段,射频资源单元分配字段用于指示待定位WLAN设备能够使用的RU资源,空间流分配用于指示待定位WLAN设备能够使用的空间流。WLAN设备监听到另一WLAN设备向多个待定位WLAN设备发送的触发帧后,该WLAN设备可以提取射频资源单元分配字段中携带的内容,以获取向不同待定位WLAN设备分配的射频资源,并提取空间流分配字段中携带的内容,以获取向不同待定位WLAN设备分配的空间流。
在步骤201的第二种可实现方式中,WLAN设备和另一WLAN设备均包括基带电路,且WLAN设备的基带电路和另一WLAN设备的基带电路之间有线连接,此时,WLAN设备的基带电路可以通过与另一WLAN设备的基带电路之间的有线连接,获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数。该步骤201的实现过程可以包括:WLAN设备的基带电路接收另一WLAN设备的基带电路采用两者之间有线连接发送的上行调度参数。
WLAN设备包括基带电路和射频电路。基带电路用于对WLAN设备接收和发送的信号进行信号处理。射频电路用于接收和发送信号。在本申请实施例中,WLAN设备和另一WLAN设备中的基带电路和射频电路均可以按照射频拉远架构进行部署。也即是,WLAN设备的基带电路和射频电路可以分开部署,且另一WLAN设备的基带电路和射频电路也可以分开部署。并且,WLAN设备的基带电路和另一WLAN设备的基带电路可以有线连接。例如,WLAN设备的基带电路和另一WLAN设备的基带电路可以通过通信总线连接,且该通信总线可以为光纤或外围组件互连快速(peripheral component interconnect express,PCIe)总线等。并且,WLAN设备的基带电路和另一WLAN设备的基带电路还可以安装在同一外壳中。其中,由于安装在该外壳中的一个基带电路与按照拉远方式部署的一个射频电路共同实现一个WLAN设备的功能,因此,包括该外壳中的一个基带电路与按照拉远方式部署的一个射频电路的整 体结构可称为一个WLAN设备。
在该部署方式下,另一WLAN设备的基带电路可以向该另一WLAN设备的射频电路发送携带有上行调度参数的信号,该另一WLAN设备的射频电路可以向多个待定位WLAN设备发送该携带有上行调度参数的信号,以对多个待定位WLAN设备的上行调度。并且,在向该另一WLAN设备的射频电路发送上行调度参数后,该另一WLAN设备的基带电路还可以通过与该WLAN设备之间的有线连接,向WLAN设备的基带电路发送该携带有上行调度参数的信号,以便于WLAN设备获取该上行调度参数。进一步的,WLAN设备的基带电路接收到携带有上行调度参数的信号后,还可以向该WLAN设备的射频电路发送该携带有上行调度参数的信号,以便于该WLAN设备的射频电路获取该上行调度参数。
示例地,如图6所示,AP0包括基带电路BBU0和射频电路RU0,AP1包括基带电路BBU1和射频电路RU1,AP2包括基带电路BBU2和射频电路RU2。在AP0的基带电路BBU0向AP0的射频电路RU0发送携带有上行调度参数的信号后,AP0的射频电路RU0可以向多个待定位WLAN设备发送该携带有上行调度参数的信号。并且,该AP0的基带电路BBU0还可以通过通信总线,向AP1的基带电路BBU1和AP2的基带电路BBU2发送该携带有上行调度参数的信号。AP1的基带电路BBU1在接收到该携带有上行调度参数的信号后,可以向AP1的射频电路RU1发送该携带有上行调度参数的信号,使得该射频电路RU1获取该上行调度参数。且AP2的基带电路BBU2在接收到该携带有上行调度参数的信号后,可以向AP2的射频电路RU2发送该携带有上行调度参数的信号,使得该射频电路RU2获取该上行调度参数。
步骤202、WLAN设备接收上行信号,并基于上行调度参数所指示的多个待定位WLAN设备的无线资源和接收到的上行信号,对多个待定位WLAN设备发送的上行信号进行解码。
多个待定位WLAN设备发送上行信号时,由于所有待定位WLAN设备发送的上行信号均会被WLAN设备接收到,且上行调度参数用于指示向多个待定位WLAN设备分配的无线资源,因此,该WLAN设备可以接收待定位WLAN设备发送的上行信号,并根据接收到的上行信号进行信道估计。并且,WLAN设备根据上行信号进行信道估计后,可以基于向多个待定位WLAN设备分配的无线资源,在上行信号中区分出不同待定位WLAN设备发送的上行信号,并对不同待定位WLAN设备发送的上行信号进行解码,以便于根据解码后的上行信号分别测量多个待定位WLAN设备各自的定位数据。
需要说明的是,对接收到的上行信号进行解码之前,还可以采用接收机对接收到的上行信号进行数据预处理。例如,接收机可以对接收到上行信号进行信号放大并采样,然后对采样得到的上行信号进行模数转换操作,然后对经过模数转换后的上行信号进行时间频率同步,再在时间频率同步后的上行信号中识别直射径信号,然后再根据识别到的直射径信号,确定到达角和到达时间。
步骤203、WLAN设备基于对多个待定位WLAN设备发送的上行信号进行解码后的信号,分别测量多个待定位WLAN设备各自的定位数据。
其中,待定位WLAN设备的定位数据用于对该待定位WLAN设备进行定位。对待定位WLAN设备进行定位可以包括:对该待定位WLAN设备进行角度估计;或者,对待定位WLAN设备测距;或者,对待定位WLAN测距和角度估计,即确定该待定位WLAN设备的位置数据。
并且,确定待定位WLAN设备位置数据的操作,可以由该WLAN设备执行,也可以由定位服务器执行。当确定待定位WLAN设备位置数据的操作由定位服务器执行时,该定位数据可以为用于计算待定位WLAN设备的位置数据的中间数据,该WLAN设备可以将该定位数据发送至该定位服务器,以供定位服务器根据该定位数据确定该待定位WLAN设备的位置数据。
当确定待定位WLAN设备位置数据的操作由该WLAN设备执行时,该定位数据可以为待定位WLAN设备的位置数据,或者,该定位数据可以为用于确定待定位WLAN设备的位置数据的中间数据,该WLAN设备可以根据该中间数据确定待定位WLAN设备的位置数据。例如,当WLAN设备具有测角能力时,该中间数据可以为待定位WLAN设备相对于WLAN设备的到达角,以及,报文在WLAN设备和待定位WLAN设备之间传输所使用的时间,WLAN设备可以根据该到达角和该时间确定待定位WLAN设备的位置数据。例如,当WLAN设备具有测距和测角能力时,该中间数据可以为待定位WLAN设备相对于WLAN设备的到达角,以及,WLAN设备和待定位WLAN设备之间的距离,WLAN设备可以根据该到达角和该距离确定待定位WLAN设备的位置数据。
WLAN设备通常具有设置位置不同的多个天线子阵列。WLAN设备可以采用该多个天线子阵列分别接收同一待定位WLAN设备发送的上行信号。由于多个天线子阵列的设置位置不同,分别被多个天线子阵列接收的多个测量参考码的接收相位不同。其中,天线子阵列接收的多个测量参考码的接收相位用于反映待定位WLAN设备与对应天线子阵列的方向关系。在获取解码后的上行信号后,WLAN设备根据不同天线子阵列接收的测量参考码的接收相位,可以确定接收不同测量参考码的天线子阵列之间的接收相位差。并且,根据该接收相位差和该多个天线子阵列的设置位置,可以确定待定位WLAN设备相对于WLAN设备的到达角(angle of arrival,AoA),即实现对该待定位WLAN设备的角度估计。
并且,根据报文在WLAN设备和待定位WLAN设备之间传输所使用的时间,可以确定该WLAN设备与待定位WLAN设备的距离,实现对该待定位WLAN设备的测距。其中,报文在WLAN设备和待定位WLAN设备之间传输所使用的时间可以为:待定位WLAN设备将上行信号发送至WLAN设备的飞行时间(time of flight,ToF),或者,待定位WLAN设备向WLAN设备发送上行信号,WLAN设备再将该上行信号发送至待定位WLAN设备的过程中,上行信号在信号发送过程中的往返时间(round trip time,RTT)。或者,当使用至少三个WLAN设备对待定位WLAN设备进行定位时,该报文在WLAN设备和待定位WLAN设备之间传输所使用的时间可以为:待定位WLAN设备分别向该至少三个WLAN设备发送报文时,报文到达每两个WLAN设备的到达时间的绝对时间差(即到达时间差(time difference of arrival,TDoA))。
示例地,如图7所示,假设AP1与AP2的距离为d0,AP1与STA的距离为d2,AP2与STA的距离为d1。AP1在T1时刻发送的触发帧被AP2在T2时刻监听到。STA根据该触发帧发送的上行报文在T4时刻被AP2接收,在T3时刻被AP1接收。根据触发帧的发送时刻和接收时刻(及到达时间),及上行信号被接收时刻,可以得到以下关系:
从AP1发送触发帧到AP1接收STA发送的上行信号的时长T31=T3-T1=(d2/c)×2+t0。其中,该t0为STA接收到触发帧到根据触发帧发出上行信号的时间差。
从AP2接收触发帧到AP2接收STA发送的上行信号的时长 T42=T4-T2=(d2/c+d1/c+t0)-d0/c。
相应的,可以得到信号的飞行时间差T42-T31+d0/c=(d1-d2)/c。并且,根据该飞行时间差可以确定STA到AP1与AP2的距离差S1=(T42-T31+d0/c)×c=d1-d2。
根据双曲线定位原理,可以得到以AP1和AP2为双曲线的焦点,以该距离差为双曲线上的点到焦点的距离差的双曲线Q1,即可以得到STA在该双曲线Q1上。
类似的,还可以采用AP3监听AP1发送的触发帧,并采用AP3接收STA发送的上行信号。并且,根据AP3监听到触发帧的时刻,AP3接收到STA发送的上行信号的时刻,以及AP1发送触发帧的时刻和接收上行信号的时刻,可以得到STA到AP1与AP3的距离差S2,并得到以AP1和AP3为双曲线的焦点,以该距离差S2为双曲线上的点到焦点的距离差的双曲线Q2,且可以确定STA在该双曲线Q2上。此时,可以确定双曲线Q1和双曲线Q2的交点即为STA所在位置。
需要说明的是,待定位WLAN设备发送的上行信号中可以包括多个测量参考码,WLAN设备可以使用不同的天线子阵列分别接收该多个测量参考码,并根据不同的天线子阵列接收的多个测量参考码测量待定位WLAN设备的定位数据。其中,多个测量参考码包括上行信号的前导码和一个或多个中导码。WLAN设备为便于能够使用不同的天线子阵列分别接收该多个测量参考码,需要预先获取该多个测量参考码在上行信号中的位置,以根据该多个测量参考码在上行信号中的位置,改变WLAN设备的接收组件中接收上行信号的天线子阵列。相应的,如图8所示,在步骤202之前,本申请实施例提供的定位方法还可以包括:
步骤204、WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的位置指示,该位置指示用于指示对待定位WLAN设备向WLAN设备发送的上行信号中一个或多个中导码的位置。
该步骤204的实现方式可以相应参考步骤201的实现方式。例如,在步骤204的第一种可实现方式中,由于WLAN设备可以通过触发帧对待定位WLAN设备进行上行调度,该触发帧可以包括对上行信号中携带的一个或多个中导码的位置的指示,因此,WLAN设备可以监听另一WLAN设备向多个待定位WLAN设备发送的触发帧,并从触发帧中提取对上行信号中携带的一个或多个中导码的位置的指示。其中,监听触发帧的实现方式请相应参考步骤201中监听触发帧的实现方式,此处不再赘述。
并且,由于中导码在上行信号中的位置可以通过上行信号的长度和相邻中导码的间隔表示,相应的,触发帧可以指示上行信号的长度,及相邻中导码的间隔。例如,根据802.11.ax协议,触发帧中可以携带有多普勒(doppler)字段、帧长度(UL length)字段和中导码周期(midamble periodicity)字段。其中,多普勒字段用于定义上行信号中是否携带有中导码。帧长度字段用于定义上行信号的长度,且上行信号的长度是指上行信号中有效数据的长度。中导码周期字段用于定义上行信号中相邻中导码的间隔。因此,可以通过提取触发帧中的多普勒字段、帧长度字段和中导码周期字段,得到对上行信号中携带的一个或多个中导码的位置的指示。
由于前导码和中导码均用于进行信道估计,当上行信号包含前导码和中导码时,待定位WLAN设备在接收上行信号的过程中,可以分别根据接收到的前导码和中导码对无线信道进行信道估计。由于不同测量参考码之间的发送间隔小于不同上行信号的发送间隔,根据测量参考码进行信道估计时,能够提高信道估计的准确性,可以有效降低无线信道衰落快对信道 估计准确性产生的影响。相应的,当根据该包含有中导码的上行信号测量待定位WLAN设备的定位数据时,可以提高根据该定位数据进行定位的准确性。
当本申请实施例提供的定位方法包括步骤204时,前述步骤202的实现过程包括图8中的步骤205:WLAN设备基于一个或多个中导码的位置,在待定位WLAN设备发送上行信号中的数据部分的时段中,改变WLAN设备的接收组件中接收上行信号的天线子阵列,并根据上行调度参数所指示的待定位WLAN设备的无线资源和接收到的上行信号,对待定位WLAN设备发送的上行信号进行解码。
待定位WLAN设备接收到中导码的位置指示后,可以基于该位置指示向WLAN设备发送上行信号。该上行信号中包含了指定数量的中导码,且时序相邻的每两个中导码之间插入了多个OFDM符号。相应的,WLAN设备可以基于位置指示所指示的一个或多个中导码的位置,在待定位WLAN设备发送上行信号中数据部分的时段中,改变WLAN设备的接收组件中接收上行信号的天线子阵列,以使用接收组件中的至少两个天线子阵列分别接收上行信号中的多个测量参考码。其中,数据部分在上行信号的多个测量参考码中的两个相邻测量参考码之间。该多个测量参考码包括上行信号的前导码和一个或多个中导码。且至少两个天线子阵列的位置不同,以便于在至少两个天线子阵列分别接收多个测量参考码后,可以根据该多个测量参考码对待定位WLAN设备进行角度估计。
在一种可实现方式中,接收组件包括一个或多个射频电路和至少两个天线子阵列。相应的,该步骤205的实现过程可以包括:WLAN设备基于一个或多个中导码的位置,在待定位WLAN设备发送上行信号中的数据部分的时段中,WLAN设备分时控制该至少两个天线子阵列与射频电路的电连接状态,以使得任一测量参考码被发送至WLAN设备时,至少两个天线子阵列中存在一个天线子阵列与射频电路电连接,使得至少两个天线子阵列分别接收多个测量参考码。
在一种情况中,WLAN设备中天线子阵列的总数可以等于射频电路的总数,即该WLAN设备中至少两个天线子阵列与多个射频电路一一对应。相应的,在WLAN设备分时控制该至少两个天线子阵列与射频电路的电连接状态时,可以在不同时刻分别控制不同的天线子阵列与其对应的射频电路电连接。
在另一种情况中,WLAN设备中天线子阵列的总数可以大于射频电路的总数。相应的,在WLAN设备分时控制该至少两个天线子阵列与射频电路的电连接状态时,可以控制该至少两个天线子阵列中全部或部分天线子阵列在不同时刻与同一射频电路电连接。
例如,WLAN设备可以配置有一个射频电路,在WLAN设备分时控制该至少两个天线子阵列与射频电路的电连接状态时,可以控制该射频电路在不同时刻与不同天线子阵列电连接。并且,WLAN设备中还可以设置有切换开关,该切换开关的一端与射频电路电连接,该切换开关的另一端与天线子阵列,可以通过该切换开关闭合或断开实现对射频电路与天线子阵列的电连接状态的控制。
又例如,假设上行信号中每隔M个OFDM符号插入一个中导码,WLAN设备具有七个天线子阵列,在WLAN设备向待定位WLAN设备发送触发帧后,WLAN设备可以控制第一个天线子阵列与射频电路电连接,以使用第一个天线子阵列接收上行信号中的前导码。在第一个天线子阵列接收到前导码后,在待定位WLAN设备发送前导码后面M个OFDM符号的时段中,WLAN设备可以将与射频电路电连接的天线子阵列切换为第二天线子阵列,以使用 第二个天线子阵列接收上行信号中的第一个中导码。在第二个天线子阵列接收到第一个中导码后,在待定位WLAN设备发送第一个中导码后面M个OFDM符号的时段中,WLAN设备可以将与射频电路电连接的天线子阵列切换为第三天线子阵列,以使用第三个天线子阵列接收上行信号中的第二个中导码。按照该规律依次调整与射频电路电连接的天线子阵列,直至完成上行信号中所有中导码的接收。
需要说明的是,在调整天线子阵列与射频电路的电连接状态的过程中,WLAN设备可以将调整接收组件的工作状态的总次数与触发帧中指示的中导码的总数进行比较,当调整接收组件的工作状态的总次数等于触发帧中指示的中导码的总数时,确定完成上行信号中所有中导码的接收,可以不再调整接收组件的工作状态。
通过根据测量参考码的位置,调整至少两个天线子阵列与射频电路的电连接状态,使得至少两个天线子阵列中的部分或全部天线子阵列能够共用射频电路,相较于相关技术,可以减小WLAN设备需配置的射频电路的数量,能够有效降低定位成本。
并且,通过在待定位WLAN设备发送上行信号中的数据部分的时段中,改变接收组件中接收上行信号的天线子阵列,使得WLAN设备通过接收一个上行信号能够获取多个测量参考码,相较于通过不同天线子阵列接收多个上行信号的技术,由于不同测量参考码之间的发送间隔小于不同上行信号的发送间隔,有效地减小了不同测量参考码之间发生信道变化的几率,因此,可以减小信道变化对定位准确性的影响。
需要说明的是,WLAN设备具有的天线子阵列的总数可以根据应用需求进行调整。并且,当WLAN设备具有多个射频电路时,在调整天线子阵列与射频电路的电连接状态的过程中,与天线子阵列电连接的射频电路也可以根据应用需求进行调整,本申请实施例对其不做具体限定。同时,本申请实施例也限定WLAN设备中天线子阵列的类型。例如,WLAN设备中天线子阵列可以为线性阵列、均匀圆形阵列或均匀平面阵列。
还需要说明的是,接收组件还可以包括参考天线。因此,为进一步提高对待定位WLAN设备的定位准确性,还可以使用参考天线接收多个测量参考码,并使用参考天线接收的测量参考码对天线子阵列接收的相同的测量参考码进行信号补偿。
相应的,当本申请实施例提供的定位方法还包括步骤204时,前述步骤202的实现过程还可以包括图9中的步骤206:在待定位WLAN设备向WLAN设备发送上行信号的过程中,WLAN设备控制参考天线接收多个测量参考码,根据上行调度参数所指示的待定位WLAN设备的无线资源和接收到的上行信号,对待定位WLAN设备发送的上行信号进行解码,并基于参考天线接收到的任一测量参考码,对天线子阵列接收到的该任一测量参考码进行信号补偿,其中,多个测量参考码包括上行信号的前导码和一个或多个中导码。
由于参考天线的位置固定,且可以认为信道对该参考天线接收的不同测量参考码的影响相同。并且,由于接收组件接收到的测量参考码的相位不仅受到信道的影响,还受到接收组件中接收机性能的影响,因此,若接收组件中接收机的性能稳定,参考天线接收到的不同测量参考码的相位应该相同。相应的,当参考天线接收到的不同测量参考码的相位不同时,可以确定接收机的性能不稳定。
并且,由于至少两个天线子阵列的设置位置不同,信道对至少两个天线子阵列接收到的不同测量参考码的相位影响不同。即在接收机的性能稳定的情况下,不同天线子阵列接收到 的测量参考码的相位会不同,且不同测量参考码的相位差由信道变化引起。但是,若接收机的性能不稳定,例如接收机出现晶振漂移时,测量参考码的相位可能还会受到接收机的性能的影响。
因此,在待定位WLAN设备向WLAN设备发送上行信号的过程中,WLAN设备可以控制参考天线一直处于接收状态,使用该参考天线接收上行信号中的多个测量参考码。当参考天线采集的时序相邻的某两个测量参考码存在相位差时,可以确定接收机的性能不稳定。此时,可以采用该相位差,对天线子阵列采集的该两个测量参考码中时序在后的测量参考码进行信号补偿,以弥补接收机不稳定对天线子阵列接收到的测量参考码的相位所产生的影响。
可选的,信号补偿的实现方式可以包括:确定参考天线采集的时序相邻的某两个测量参考码的相位差,与天线子阵列采集的该两个测量参考码中时序在后的测量参考码的相位的加权和,并将该加权和确定为对该时序在后的测量参考码进行信号补偿后的测量参考码。并且,该相位差的权重值与测量参考码的权重值可以根据应用需求进行确定。例如,该相位差的权重值与测量参考码的权重值可以均为1。
通过对测量参考码进行信号补偿,能够弥补接收机不稳定对天线子阵列接收到的测量参考码的相位所产生的影响,使得经过信号补偿后的测量参考码能够更真实地反映信道的变化。当根据经过信号补偿后的测量参考码进行信道估计时,信道估计结果更接近于真实信道情况,此时,根据该信道估计结果对待定位WLAN设备进行定位时,能够进一步提高定位的准确性。
需要说明的是,该步骤206为可选步骤,在定位过程中,可以根据应用需求确定是否执行上述步骤206。
当本申请实施例提供的定位方法还包括步骤204,步骤202的实现过程包括步骤205和步骤206时,前述步骤203的实现过程包括图9中的步骤207:WLAN设备基于对至少两个天线子阵列接收到的测量参考码进行信号补偿后的测量参考码,测量待定位WLAN设备的定位数据。其中,该测量待定位WLAN设备的定位数据的实现过程,请相应参考前述步骤203的实现过程,此处不再赘述。
综上所述,在本申请实施例提供的定位方法中,通过WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,使得WLAN设备无需向待定位WLAN设备发送携带有上行调度参数的上行调度信号,这样一来,由于WLAN设备在获取上行调度参数后,就可以根据该上行调度参数测量待定位WLAN设备的定位数据,不需要自身向待定位WLAN设备发送上行调度信号后才测量待定位WLAN设备的定位数据,有效地提高了对待定位WLAN设备进行定位的及时性。
并且,由于减少对待定位WLAN设备进行上行调度时需要发送的上行调度信号的总数,因此,有效地降低了空口开销。
需要说明的是,本申请实施例提供的定位方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
下述为本申请的装置实施例,可以用于执行本申请的方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
本申请实施例提供了一种定位装置,如图10所示,该定位装置100可以包括:
获取模块1001,用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,上行调度参数用于指示向多个待定位WLAN设备分配的无线资源。
接收模块1002,用于接收上行信号。
处理模块1003,用于基于多个待定位WLAN设备的无线资源和接收到的上行信号,测量多个待定位WLAN设备各自的定位数据。
可选地,获取模块1001,具体用于:监听另一WLAN设备发送的触发帧,从触发帧中提取上行调度参数。
可选地,定位装置100包括监听接收机,该监听接收机的工作信道和另一WLAN设备的工作信道相同。
可选地,定位装置100和另一WLAN设备均包括基带电路,且定位装置100的基带电路和另一WLAN设备的基带电路之间有线连接,获取模块1001,具体用于:通过定位装置100的基带电路接收另一WLAN设备的基带电路发送的上行调度参数。
综上所述,在本申请实施例提供的定位装置中,通过获取模块获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,使得定位装置无需向待定位WLAN设备发送携带有上行调度参数的上行调度信号,这样一来,由于定位装置在获取上行调度参数后,处理模块就可以根据该上行调度参数测量待定位WLAN设备的定位数据,不需要自身向待定位WLAN设备发送上行调度信号后才测量待定位WLAN设备的定位数据,有效地提高了对待定位WLAN设备进行定位的及时性。
并且,由于减少对待定位WLAN设备进行上行调度时需要发送的上行调度信号的总数,因此,有效地降低了空口开销。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种WLAN设备。如图11所示,该WLAN设备1100包括:处理器1110和接收机1120。该处理器1110和接收机1120之间通过总线1130相互连接。可选地,该WLAN设备可以为WAP或WAP的一部分。WAP可以是带有WLAN芯片的站点设备或者网络设备等。总线1130可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1110用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,该上行调度参数用于指示向多个待定位WLAN设备分配的无线资源。接收机1120用于接收上行信号,向处理器1110传输接收到的上行信号。处理器1110用于基于多个待定位WLAN设备的无线资源和接收到的上行信号,测量多个待定位WLAN设备各自的定位数据。
其中,处理器1110可以包括基带电路和信号处理器中的至少一个。当处理器1110包括基带电路时,测量多个待定位WLAN设备各自的定位数据的功能由该基带电路实现。当处理器1110包括信号处理器时,测量多个待定位WLAN设备各自的定位数据的功能由该信号处理器实现。当处理器1110包括基带电路和信号处理器时,测量多个待定位WLAN设备各自的定位数据的功能由该基带电路和信号处理器中任一个实现,或由该基带电路和信号处理器协作实现。
信号处理器可以为数字信号处理器(digital signal processor,DSP)等通过软件实现功能 的信号处理器。或者,信号处理器可以为硬件芯片。例如,该硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
可选地,接收机1120为至少具有信号接收功能的组件。例如,该接收机1120可以为专用于接收信号的接收机1120。或者,该接收机1120也可以具有发送信号的功能,此时,该接收机1120也称收发机。
接收机1120包括:射频电路(或射频单元)。相应的,如图11所示,WLAN设备还包括天线1140。接收机1120使用天线1140实现接收信号的功能。且当该接收机1120还具有发送信号的功能时,该接收机1120使用天线1140实现发送信号的功能。
如图11所示,WLAN设备还可以包括:存储器1150。该存储器1150用于存储上行调度参数和上行信号等。并且,当信号处理器通过软件方式实现功能时,该存储器1150还用于存储程序指令,信号处理器通过调用该存储器1150中存储的程序指令,可以实现该信号处理器需要实现的功能。例如,信号处理器通过调用该存储器1150中存储的程序指令,可以基于多个待定位WLAN设备的无线资源和接收到的上行信号,测量多个待定位WLAN设备各自的定位数据。
可选地,存储器1150可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器1150也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器1150还可以包括上述种类的存储器的组合。
在获取上行调度参数的一种可实现方式中,接收机1120还用于监听另一WLAN设备发送的触发帧,从触发帧中提取上行调度参数,向处理器1110传输上行调度参数。相应的,处理器1110用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数时,具体用于接收接收机1120传输的上行调度参数。
此时,接收机1120可以包括监听接收机,该监听接收机的工作信道和另一WLAN设备的工作信道相同。
在获取上行调度参数的另一种可实现方式中,WLAN设备和另一WLAN设备均包括基带电路,且WLAN设备的基带电路和另一WLAN设备的基带电路之间有线连接。WLAN设备的基带电路用于接收另一WLAN设备的基带电路传输的上行调度参数,并向处理器1110传输上行调度参数。相应的,处理器1110用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数时,具体用于接收WLAN设备的基带电路传输的上行调度参数。
需要说明的是,当WLAN设备还包括发射机时,接收机1120和发射机可以均具有基带电路,此时,用于接收另一WLAN设备发送的上行调度参数的基带电路,可以为该接收机1120的基带电路和该发射机种的基带电路中的任一个。或者,当发射机和接收机1120共用基带电路时,用于接收另一WLAN设备发送的上行调度参数的基带电路为该共用的基带电路。当接收机1120实质为收发机时,用于接收另一WLAN设备发送的上行调度参数的基带电路为该收发机的基带电路。
可选地,天线1140包括至少两个天线子阵列,且至少两个天线子阵列的位置不同。并且, 待定位WLAN设备发送的上行信号中可以包括多个测量参考码,WLAN设备可以使用不同的天线子阵列分别接收该多个测量参考码,并根据不同的天线子阵列接收的多个测量参考码测量待定位WLAN设备的定位数据。其中,多个测量参考码包括上行信号的前导码和一个或多个中导码。WLAN设备为便于能够使用不同的天线子阵列分别接收该多个测量参考码,需要预先获取该多个测量参考码在上行信号中的位置,以根据该多个测量参考码在上行信号中的位置,改变接收机1120接收上行信号所使用的天线中的天线子阵列。
此时,接收机1120还用于获取另一WLAN设备向多个待定位WLAN设备发送的位置指示,该位置指示用于指示对待定位WLAN设备向WLAN设备发送的上行信号中一个或多个中导码的位置。相应的,接收机1120用于接收上行信号时,该接收机1120具体用于基于一个或多个中导码的位置,在待定位WLAN设备发送上行信号中的数据部分的时段中,改变接收机1120接收上行信号所使用的天线1140中的天线子阵列。该数据部分在上行信号的多个测量参考码中的两个相邻测量参考码之间,多个测量参考码包括上行信号的前导码和触发帧指示的一个或多个中导码。并且,接收机1120在使用天线子阵列接收到测量参考码后,还用于向处理器1110传输改变前后不同天线子阵列接收到的上行信号中的不同测量参考码。相应的,处理器1110用于基于多个待定位WLAN设备的无线资源和接收到的上行信号,测量多个待定位WLAN设备各自的定位数据时,具体用于:基于改变前后不同天线子阵列接收到的上行信号中的不同测量参考码和无线资源,测量待定位WLAN设备的定位数据。
其中,触发帧可以通过指示上行信号的长度,及相邻中导码的间隔,以实现对一个或多个中导码的位置进行指示。
在一种可实现方式中,接收机1120还可以包括:切换开关。此时,接收机1120用于基于一个或多个中导码的位置,在待定位WLAN设备发送上行信号中的数据部分的时段中,改变接收机1120接收上行信号所使用的天线1140中的天线子阵列时,其实现方式可以包括:基于一个或多个中导码的位置,在待定位WLAN设备发送上行信号中的数据部分的时段中,通过控制切换开关,以分时控制至少两个天线子阵列与射频电路的电连接状态,使得任一测量参考码被发送至WLAN设备时,至少两个天线子阵列中存在一个天线子阵列与射频电路电连接。
可选地,天线1140还包括参考天线。参考天线用于在待定位WLAN设备向WLAN设备发送上行信号的过程中,接收多个测量参考码,并向处理器1110传输参考天线接收到的多个测量参考码。此时,处理器1110还用于基于参考天线接收到的任一测量参考码,对至少两个天线子阵列中天线子阵列接收到的任一测量参考码进行信号补偿。相应的,处理器1110具体用于基于对至少两个天线子阵列接收到的测量参考码进行信号补偿后的测量参考码,测量待定位WLAN设备的定位数据。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的接收机、处理器和天线等组件的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,当计算机可读存储介质中的指令被计算机执行时,该计算机用于执行本申请提供的定位方法。该计算机可读存储介质包括但不限于易失性存储器,例如随机访问存储器,非易失性存储器,例如快闪存储器、HDD、SSD。
本申请还提供了一种计算机程序产品,该计算机程序产品包括计算机指令,在被计算设备执行时,该计算设备执行本申请提供的定位方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种定位方法,其特征在于,所述方法包括:
    无线局域网(WLAN)设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,所述上行调度参数用于指示向所述多个待定位WLAN设备分配的无线资源;
    所述WLAN设备接收上行信号;
    所述WLAN设备基于所述多个待定位WLAN设备的无线资源和接收到的上行信号,测量所述多个待定位WLAN设备各自的定位数据。
  2. 根据权利要求1所述的方法,其特征在于,所述WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,包括:
    所述WLAN设备监听所述另一WLAN设备发送的触发帧;
    所述WLAN设备从所述触发帧中提取所述上行调度参数。
  3. 根据权利要求2所述的方法,其特征在于,所述WLAN设备包括监听接收机,所述监听接收机的工作信道和所述另一WLAN设备的工作信道相同。
  4. 根据权利要求1所述的方法,其特征在于,所述WLAN设备和所述另一WLAN设备均包括基带电路,且所述WLAN设备的基带电路和所述另一WLAN设备的基带电路之间有线连接,所述WLAN设备获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,包括:
    所述WLAN设备的基带电路接收所述另一WLAN设备的基带电路发送的所述上行调度参数。
  5. 一种无线局域网(WLAN)设备中的定位装置,其特征在于,所述装置包括:
    获取模块,用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,所述上行调度参数用于指示向所述多个待定位WLAN设备分配的无线资源;
    接收模块,用于接收上行信号;
    处理模块,用于基于所述多个待定位WLAN设备的无线资源和接收到的上行信号,测量所述多个待定位WLAN设备各自的定位数据。
  6. 根据权利要求5所述的装置,其特征在于,所述获取模块,具体用于:
    监听所述另一WLAN设备发送的触发帧;
    从所述触发帧中提取所述上行调度参数。
  7. 根据权利要求6所述的装置,其特征在于,所述定位装置包括监听接收机,所述监听接收机的工作信道和所述另一WLAN设备的工作信道相同。
  8. 根据权利要求5所述的装置,其特征在于,所述定位装置和所述另一WLAN设备均包括基带电路,且所述定位装置的基带电路和所述另一WLAN设备的基带电路之间有线连接,所述获取模块,具体用于:
    通过所述定位装置的基带电路接收所述另一WLAN设备的基带电路发送的所述上行调度参数。
  9. 一种无线局域网(WLAN)设备,其特征在于,包括:处理器和接收机,
    所述处理器用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数,所述上行调度参数用于指示向所述多个待定位WLAN设备分配的无线资源;
    所述接收机用于接收上行信号,向所述处理器传输接收到的上行信号;
    所述处理器用于基于所述多个待定位WLAN设备的无线资源和接收到的上行信号,测量所述多个待定位WLAN设备各自的定位数据。
  10. 根据权利要求9所述的WLAN设备,其特征在于,
    所述接收机还用于监听所述另一WLAN设备发送的触发帧,从所述触发帧中提取所述上行调度参数,向所述处理器传输所述上行调度参数;
    所述处理器用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数时,具体用于接收所述接收机传输的所述上行调度参数。
  11. 根据权利要求10所述的WLAN设备,其特征在于,所述接收机包括监听接收机,所述监听接收机的工作信道和所述另一WLAN设备的工作信道相同。
  12. 根据权利要求9所述的WLAN设备,其特征在于,所述WLAN设备和所述另一WLAN设备均包括基带电路,且所述WLAN设备的基带电路和所述另一WLAN设备的基带电路之间有线连接;
    所述WLAN设备的基带电路用于接收所述另一WLAN设备的基带电路传输的所述上行调度参数,向所述处理器传输所述上行调度参数;
    所述处理器用于获取另一WLAN设备向多个待定位WLAN设备发送的上行调度参数时,具体用于接收所述WLAN设备的基带电路传输的所述上行调度参数。
  13. 一种存储介质,其特征在于,当所述存储介质中的指令被处理器执行时,实现权1至4任一所述的定位方法。
PCT/CN2020/115683 2020-02-10 2020-09-16 定位方法及装置、wlan设备及存储介质 WO2021159707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20918229.4A EP4060365A4 (en) 2020-02-10 2020-09-16 LOCATION METHOD AND APPARATUS, WIRELESS LOCAL NETWORK (WLAN) DEVICES AND STORAGE MEDIA
US17/870,430 US20220361207A1 (en) 2020-02-10 2022-07-21 Positioning Method and Apparatus, WLAN Device, and Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010085284.4A CN113260043B (zh) 2020-02-10 2020-02-10 定位方法及装置、wlan设备及存储介质
CN202010085284.4 2020-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/870,430 Continuation US20220361207A1 (en) 2020-02-10 2022-07-21 Positioning Method and Apparatus, WLAN Device, and Storage Medium

Publications (1)

Publication Number Publication Date
WO2021159707A1 true WO2021159707A1 (zh) 2021-08-19

Family

ID=77219427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115683 WO2021159707A1 (zh) 2020-02-10 2020-09-16 定位方法及装置、wlan设备及存储介质

Country Status (4)

Country Link
US (1) US20220361207A1 (zh)
EP (1) EP4060365A4 (zh)
CN (1) CN113260043B (zh)
WO (1) WO2021159707A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170289933A1 (en) * 2016-03-30 2017-10-05 Jonathan Segev Access point (ap), station (sta) and method of multi-user (mu) location measurment
US20170295004A1 (en) * 2016-04-07 2017-10-12 Intel IP Corporation Apparatus, system and method of multi user (mu) fine timing measurement (ftm)
WO2018048809A1 (en) * 2016-09-06 2018-03-15 Marvell Semiconductor, Inc. Multi-user ranging with unassociated stations
US20180310133A1 (en) * 2017-04-25 2018-10-25 Qualcomm Incorporated Wireless network positioning
CN109479282A (zh) * 2016-07-20 2019-03-15 英特尔Ip公司 多用户资源分配的装置、系统和方法
US10264544B1 (en) * 2017-05-12 2019-04-16 Marvell International Ltd. Station selection for null data packet (NDP) ranging

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9699713B2 (en) * 2014-02-27 2017-07-04 Qualcomm Incorporated Enhanced trigger frame based discovery for a neighbor awareness network
WO2016196672A1 (en) * 2015-06-02 2016-12-08 Newracom, Inc. Random access ppdu for wlan systems
GB2539693B (en) * 2015-06-24 2019-06-19 Canon Kk Emission of a signal in unused resource units to increase energy detection of an 802.11 channel
CN106535334A (zh) * 2015-09-11 2017-03-22 华为技术有限公司 数据传输方法及装置
EP4093062A1 (en) * 2016-04-15 2022-11-23 Denso Corporation System and method for establishing real-time location
WO2018156229A1 (en) * 2017-02-27 2018-08-30 Intel IP Corporation Access point (ap), station (sta) and methods to exchange sounding frames and control information for location measurement
US20180249437A1 (en) * 2017-02-27 2018-08-30 Qualcomm Incorporated Access point (ap) to access point (ap) ranging for passive locationing
US10750395B2 (en) * 2017-03-11 2020-08-18 Qualcomm Incorporated Identifying nulling wireless nodes for distributed MIMO communication in a wireless node cluster
CN110719599A (zh) * 2018-07-11 2020-01-21 华为技术有限公司 多接入点ap协作传输方法、相关装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170289933A1 (en) * 2016-03-30 2017-10-05 Jonathan Segev Access point (ap), station (sta) and method of multi-user (mu) location measurment
US20170295004A1 (en) * 2016-04-07 2017-10-12 Intel IP Corporation Apparatus, system and method of multi user (mu) fine timing measurement (ftm)
CN109479282A (zh) * 2016-07-20 2019-03-15 英特尔Ip公司 多用户资源分配的装置、系统和方法
WO2018048809A1 (en) * 2016-09-06 2018-03-15 Marvell Semiconductor, Inc. Multi-user ranging with unassociated stations
US20180310133A1 (en) * 2017-04-25 2018-10-25 Qualcomm Incorporated Wireless network positioning
US10264544B1 (en) * 2017-05-12 2019-04-16 Marvell International Ltd. Station selection for null data packet (NDP) ranging

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERIK LINDSKOG (SAMSUNG): "Informative text for passive location ranging", IEEE DRAFT; 11-19-0035-12-00AZ-INFORMATIVE-TEXT-FOR-PASSIVE-LOCATION-RANGING, vol. 802.11az, no. 12, 14 November 2019 (2019-11-14), Piscataway, NJ USA, pages 1 - 15, XP068164790 *
See also references of EP4060365A4
VLADICA SARK (IHP), ECKHARD GRASS (IHP), JESUS GUTIERREZ TERAN (IHP): "Efficient Positioning Method using Beacon Frames", IEEE DRAFT; 11-17-0981-00-00AZ-EFFICIENT-POSITIONING-METHOD-USING-BEACON-FRAMES, vol. 802.11az, no. 0, 12 July 2017 (2017-07-12), Piscataway, NJ USA, pages 1 - 12, XP068116360 *
VLADICA SARK , ECKHARD GRASS , JESUS GUTIERREZ TERAN: "Efficient Positioning Method Applicable in Dense Multi User Scenarios ; 11-16-1249-01-00az-efficient-positioning-method-applicable-in-dense-multi-user-scenarios", IEEE DRAFT; 11-16-1249-01-00AZ-EFFICIENT-POSITIONING-METHOD-APPLICABLE-IN-DENSE-MULTI-USER-SCENARIOS, vol. 802.11az, no. 1, 13 September 2016 (2016-09-13), Piscataway, NJ USA, pages 1 - 14, XP068107696 *

Also Published As

Publication number Publication date
US20220361207A1 (en) 2022-11-10
EP4060365A1 (en) 2022-09-21
CN113260043A (zh) 2021-08-13
CN113260043B (zh) 2022-09-02
EP4060365A4 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
US10182360B2 (en) FTM protocol with angle of arrival and angle of departure
US10623909B2 (en) User equipment positioning using PRSS from a plurality of TRPS in a 5G-NR network
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
RU2632475C1 (ru) Инициированное точкой доступа позиционирование по времени распространения
WO2020073644A1 (en) Method and device for user equipment positioning
CN112825568B (zh) 对目标物进行定位的方法及装置
US9715019B2 (en) Determining a relative position between devices
US9781566B1 (en) Apparatus, system and method of estimating a distance between a first station and a second station
WO2021036969A1 (zh) 一种数据传输的时延补偿方法、终端设备以及trp
WO2022105756A1 (zh) 定位方法、装置、终端设备、基站及位置管理服务器
US11444677B2 (en) Communication devices for efficient beam management
WO2019105302A1 (zh) 信号测量方法、相关装置及系统
WO2018121439A1 (zh) 一种直射径判断方法及装置
WO2020108499A1 (zh) 一种定时测量方法及相关设备
CN115550864B (zh) 一种基于ue上行信号的5g nr室内定位系统及方法
WO2021159707A1 (zh) 定位方法及装置、wlan设备及存储介质
WO2022268197A1 (zh) 定位处理方法、定位参考信号发送方法、装置及设备
CN113259834B (zh) 定位方法、wlan设备、存储介质
CN108243509B (zh) 一种下行数据发送方法及基站
WO2022130584A1 (ja) 物体検知システム、物体検知方法、およびデータ振り分け装置
JP2024513338A (ja) Wlanセンシングのオーバーヘッド削減のための通信装置および通信方法
CN117221051A (zh) 通信方法及通信装置
WO2023033836A1 (en) Apparatus and method of performing an anti-multipath function to calibrate an antenna array
CN116868531A (zh) 一种非周期定位参考信号的测量上报方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020918229

Country of ref document: EP

Effective date: 20220615

NENP Non-entry into the national phase

Ref country code: DE