WO2018121439A1 - 一种直射径判断方法及装置 - Google Patents

一种直射径判断方法及装置 Download PDF

Info

Publication number
WO2018121439A1
WO2018121439A1 PCT/CN2017/118024 CN2017118024W WO2018121439A1 WO 2018121439 A1 WO2018121439 A1 WO 2018121439A1 CN 2017118024 W CN2017118024 W CN 2017118024W WO 2018121439 A1 WO2018121439 A1 WO 2018121439A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
wireless
signal
direct path
wave
Prior art date
Application number
PCT/CN2017/118024
Other languages
English (en)
French (fr)
Inventor
潘淳
郎松平
江兴烽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018121439A1 publication Critical patent/WO2018121439A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • G01S2205/02Indoor

Definitions

  • the present application relates to the field of wireless positioning technologies, and in particular, to a direct path determination method and apparatus.
  • the WLAN positioning system can determine the angle of arrival of the wireless signal (English: angle of arrival, AOA).
  • the location of the device to be identified can be obtained from a plurality of AOAs of the same device to be identified measured by the WLAN device (which can be measured by one or more WLAN devices).
  • the wireless signal sent by the device to be identified may reach the WLAN device via multiple paths, and the signal received by the WLAN device is a superposition of the wireless signal that arrives at the WLAN device sequentially through multiple paths.
  • the AOA of the wireless signal arriving at the WLAN device via a direct path or a non-direct path is different. Since the AOA of the radio signal of the direct path is the correct angle of the device to be identified, the WLAN device measuring the AOA needs to determine the path between the device to be identified (such as the terminal device) and the WLAN device (such as an access point).
  • the indoor positioning technology mainly determines the path of the device to be identified based on the received signal strength indicator (RSSI).
  • RSSI received signal strength indicator
  • the RSSI of the wireless signal of the device to be identified is large, the probability of a direct path between the device to be identified and the WLAN device is large.
  • the RSSI of the wireless signal of the device to be identified is small, the probability of a non-direct path (for example, a reflection path) between the device to be identified and the WLAN device is large.
  • the direct path indicates that no object obstructs the line of sight between the device to be identified and the WLAN device, and the non-direct path refers to an object that blocks the line of sight between the device to be identified and the WLAN device. As shown in Fig.
  • the results based on the RSSI measurement are susceptible to environmental influences, which in turn leads to large errors in the RSSI measurement. For example, if the position of the device to be identified moves by several tens of centimeters, the RSSI change may be as high as 10 dBm.
  • the signal strength is also related to the distance between the device to be identified and the WLAN device. Even if there is no direct path between the device to be identified and the WLAN device, the measured RSSI may be large, so the RSSI measurement result cannot accurately determine whether the wireless signal sent by the terminal is a direct path or not. Direct path.
  • the present application provides a direct path determination method and apparatus for finding a direct path of a transmitted signal from a terminal device.
  • the embodiment of the present application provides a direct path determination method, which is applied to a WLAN device, such as an access point, where the method includes: acquiring a wireless signal sent by the terminal device at at least two moments, each wireless signal being Composing at least one transmit signal, each of the at least one transmit signal reaching the wireless device through a path;
  • the wireless device processes each of the wireless signals to obtain a wave angle of all the transmitted signals in each of the wireless signals;
  • the wireless device divides a coordinate point of each of the at least two wireless signals into at least one trajectory, and calculates a probability that each of the trajectories is a trajectory of a direct path, wherein
  • the coordinate point is a point in the angle-time coordinate system of each of the incoming wave angle and the time of the transmitted signal corresponding to the incoming wave angle;
  • the wireless device determines a wave angle of the direct path based on the probability.
  • the method provided by the present aspect because when the terminal device moves, the AOA angle change of the non-direct path is much larger than the angle change of the direct path AOA. For example, when the terminal device moves to cause the AOA angle change ⁇ of the direct path, the AOA of the reflected path The angle changes by at least 2 ⁇ . Since the AOA is easy to form a trajectory due to the point where the AOA changes with time, the method can accurately find the direct path by dividing the trajectory of the AOA, and determine the angle of arrival of each of the transmitted signals in the direct path.
  • the wireless device divides a coordinate point of each of the at least two wireless signals into at least one trajectory, including: The wireless device calculates an angular difference of the incoming wave angle corresponding to the at least one transmitting signal of the two adjacent moments in the at least two moments; the wireless device divides the coordinate point into at least one according to the angular difference Track.
  • the wireless device divides the coordinate point into at least one trajectory according to the angular difference.
  • the method includes: if the angle difference is less than or equal to a preset angle, dividing a coordinate point of the two wave angles corresponding to the angle difference into one track; if the angle difference is greater than the preset angle, The coordinate points of the two incoming wave angles corresponding to the angular difference are divided into two trajectories.
  • the wireless device calculates an angular difference of the incoming wave angle corresponding to the at least one transmitting signal of the two adjacent moments, including: the wireless The device predicts a wave angle of at least one transmit signal of the next time of the selected time according to each of the incoming wave angles of each of the wireless signals before the selected time and the selected time; the wireless device calculates the The angle difference between the predicted wave angle of the at least one transmitted signal and the incoming wave angle of the at least one transmitted signal transmitted by the terminal device at the next moment in the actual selected time.
  • the determining, by the wireless device, the incident angle of the direct path according to the probability includes: If the probability that one of the at least one track is a direct path is greater than a preset probability, determining that the wave angle of the transmitted signal corresponding to the track is the wave angle of the direct path.
  • an embodiment of the present application provides a direct path determining device, the device comprising means for performing the first method and the method steps of the implementations of the first aspect.
  • the embodiment of the present application provides a wireless device, where the wireless device includes: a transceiver and a processor, where the transceiver is configured to acquire a wireless signal sent by the terminal device at at least two moments, each The wireless signals are comprised of at least one transmitted signal, each of the at least one transmitted signal arriving at the wireless device through a path;
  • the processor is configured to process each of the wireless signals to obtain a wave angle of all the transmitted signals in each of the wireless signals, and to each of the at least two wireless signals And dividing a coordinate point of the transmitted signal into at least one trajectory, and calculating a probability that each of the trajectories is a trajectory of a direct path, and determining a wave angle of the direct path according to the probability, wherein the coordinate point is each wave angle
  • the time of the transmitted signal corresponding to the incoming wave angle is a point in the angle-time coordinate system.
  • the wireless device also includes a memory for storing the necessary program instructions and data.
  • a computer storage medium can store a program, and the program can include some or all of the steps in each implementation manner of the direct path determination method.
  • FIG. 1 is a schematic diagram of a principle of indoor positioning technology according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an AP line-of-sight state according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a direct path between an AP and a terminal device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a direct path between an AP and a terminal device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a dynamic judgment of an AP line-of-sight state according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a track of a change angle of an AP1 wave according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a track of a change angle of an AP2 according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of a direct path determination method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a principle based on clustering decision according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a direct path determining device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a wireless device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the method provided by the embodiments of the present application is applied to a WLAN network.
  • the method may be applicable to a Long Term Evolution (LTE) system, or a wireless communication system using a radio access technology such as code division multiple access and orthogonal frequency division multiple access.
  • LTE Long Term Evolution
  • NR new radio
  • the system includes at least one wireless device and at least one terminal device.
  • the terminal device is configured to send at least one transmission signal to the wireless device at different times, so that the wireless device locates the terminal device according to the transmission signals.
  • the terminal device may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket-sized, handheld, computer-in-built or in-vehicle mobile device that is wireless with The access network exchanges languages and or data.
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket-sized, handheld, computer-in-built or in-vehicle mobile device that is wireless with The access network exchanges languages and or data.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device can also be a subscriber unit (English: subscriber unit, SU), a subscriber station (English: subscriber station, SS), a mobile station (English: mobile station, MS), a remote station (English: remote station, RS), far End device (English: remote terminal, RT), access terminal (AT), user terminal (English terminal: UT), user agent (English: user agent, UA), user equipment, or user Equipment (English: user equipment, UE).
  • a subscriber unit English: subscriber unit, SU
  • a subscriber station English: subscriber station, SS
  • a mobile station English: mobile station, MS
  • a remote station English: remote station, RS
  • far End device English: remote terminal, RT
  • access terminal AT
  • user terminal English terminal: UT
  • user agent English: user agent, UA
  • user equipment or user Equipment (English: user equipment, UE).
  • the wireless device may be an access point (AP), or may be another network device, such as a base station, an enhanced base station, or a relay with scheduling function, or a device with a base station function.
  • the base station may be an evolved base station (eNB) in an LTE system, or may be a base station in other systems.
  • eNB evolved base station
  • the AOA angle can correctly reflect the geometric relationship between the terminal device and the wireless device.
  • AOA indicates the incoming wave angle of the wireless signal of the terminal device to the wireless device. Since the direct path has accurate angle information, the wireless device can determine the location of the terminal device by measuring the AOA of the wireless signal transmitted by the direct path.
  • the following describes the device to be identified as the terminal device and the wireless device as the AP.
  • the AP and the terminal device have a stable line of sight direction, that is, there is a direct path between the AP and the terminal device, and as shown in FIG. 4, the AP and the terminal are caused by obstructions between the AP and the terminal device. There is no direct path between the devices.
  • the wireless signal is reflected or scattered by the surrounding obstructions to the AP, and the reflected or scattered paths are non-direct path.
  • the terminal device may have different line-of-sight states at different locations, and as shown in FIG. 5, the terminal device moves from the first location A1 to the second location A2.
  • AP1 For AP1, there is always a direct path between the terminal device in the first position and the second position and AP1, so a clear AOA angle change trajectory can be planned by clustering, as shown in Fig. 6, the solid dot in the figure It indicates the AOA angle of the terminal device acquired at different times, and the square origin indicates the clutter. By tracking the trajectory of the dot, it can be judged that there is always a direct path between the AP1 and the terminal device.
  • the transmission signal of the terminal device mainly reaches the AP2 through scattering, penetration, etc., and thus has no direct path.
  • a trajectory can be planned. As shown in FIG. 7, by tracking the trajectory of the dot, it can be determined that the position of all the points in the trajectory has a direct path between the AP2 and the ordinate according to the ordinate.
  • the AOA can determine the direction of the incoming wave for each direct path.
  • FIG. 8 is a schematic flowchart of a direct path determination method according to an embodiment of the present disclosure. As shown in FIG. 8 , the method includes the following steps:
  • Step 101 The AP acquires a wireless signal sent by the terminal device at at least two moments, each wireless signal is composed of at least one transmitted signal, and each of the at least one transmitted signal reaches the access point through a path.
  • the AP acquires a wireless signal transmitted by the terminal device at the kth time and the k+1th time, respectively, where each wireless signal is a superimposed signal of M transmission signals that are transmitted by the terminal device to the AP through the M paths.
  • Step 102 The AP processes each of the wireless signals to obtain a wave angle of all the transmitted signals in each of the wireless signals.
  • the AP After receiving the wireless signal, the AP obtains a series of baseband data by performing frequency conversion, amplification, and digital-to-analog conversion on each wireless signal, and then the baseband data is processed by the processor for digital signal processing or transmitted through the LAN interface.
  • the server performs processing to obtain a wave angle of all the transmitted signals in each of the wireless signals. Further, the incoming wave angle includes a wave angle of the direct path and a wave angle of the non-direct path.
  • Step 103 The AP divides a coordinate point of each of the at least two wireless signals into at least one trajectory, and calculates a probability that each trajectory is a trajectory of a direct path.
  • the coordinate point is a point in the angle-time coordinate system for each of the incoming wave angle and the time of the transmitted signal corresponding to the incoming wave angle.
  • Step 104 The AP determines the incoming wave angle of the direct path according to the probability.
  • the probability that one of the at least one track is a direct path is greater than a preset probability, determining that a wave angle of the transmitted signal corresponding to the track is a wave angle of the direct path. If the probability of all the trajectories is less than or equal to the preset probability, the position of the terminal device corresponding to all the transmitted signals is not a direct path between the AP and the AP. At this time, the AP can acquire the arrival angle of different transmission signals at the next moment and re-divide the trajectory.
  • the AP divides a coordinate point of each of the at least two wireless signals into at least one trajectory, and includes: calculating, adjacent to the at least two moments The angle difference of the incoming wave angle corresponding to the at least one transmitted signal at two moments, and dividing the coordinate point into at least one trajectory according to the angular difference.
  • the coordinate points of the two incoming wave angles corresponding to the angle difference are divided into one track; if the angle difference is greater than the preset angle, The coordinate points of the two incoming wave angles corresponding to the angular difference are divided into two different trajectories.
  • the AP may further divide the at least one trajectory according to at least one wave angle of the next moment at the selected moment, and an angle difference between the selected moment and all the incoming wave angles before the selected moment.
  • the method for dividing at least one trajectory according to the angle of the wave is not limited in this application, but the angles of arrival in each trajectory that are required to be divided are from different moments or different terminal devices.
  • the neighboring moment includes a selected moment and a next moment of the selected moment
  • the AP calculates an angle difference of the incoming wave angle corresponding to the at least one transmitting signal of the two adjacent moments, including: acquiring an actual a wave angle corresponding to the at least one transmitted signal transmitted by the terminal device at the next moment of the selected time; and a predicted angle of each wave according to the selected time and each wireless signal before the selected time Calculating a wave angle of at least one transmitted signal at a next moment of the selected time; calculating a wave angle of the predicted at least one transmitted signal and a wave angle of the at least one transmitted signal of the actually acquired terminal device The angle is poor.
  • the AP calculates the angular difference between the kth time and the k+1th time, including the following steps: the AP acquires the terminal device at the kth +1 the actual arrival angle of at least one transmitted signal; then, based on the angle of arrival of each of the transmitted signals acquired by the AP before the kth and kth times, the k+1th time at which the k+1th time may be the direct path is predicted Finally, the angle difference between the incoming wave angle actually obtained by the AP at the k+1th time and the predicted incoming wave angle which may be the direct path is calculated separately. By predicting the angle of the incoming wave at the next moment, the success rate of dividing the trajectory into a direct path trajectory can be improved, thereby improving the accuracy of the decision.
  • the AOA angle change of the non-direct path is much larger than the angle change of the direct path AOA, for example, when the terminal device moves to cause the AOA angle change ⁇ of the direct path, the reflection path
  • the AOA angle changes by at least 2 ⁇ . Since the point where the AOA changes with time is easy to form a trajectory, the method can accurately find the direct path by dividing the point in the angle-time coordinate system corresponding to each transmitted signal, and determine the direct path. The incoming wave angle of each transmitted signal.
  • the method avoids collecting a large number of packets in a short time compared to the juxtaposition mode, thereby reducing the complexity of the judgment calculation and reducing the overhead of the air interface resources.
  • determining whether the method is a direct path specifically includes: the AP may collect multiple sample data, as shown in FIG. 9, and the data of each sample is represented by a point in the coordinate graph.
  • Each sample is a wireless signal received by the AP from a path.
  • the horizontal axis of the graph represents the time t at which each sample is received, and the vertical axis represents the AOA of the sample.
  • the terminal device transmits a plurality of wireless signals, each of which reaches the AP via multiple paths and is received by the AP. Since the movement of the terminal device is continuous, the angle change of each path is also continuous, so the AP clusters the points in the coordinate map. After clustering, the AP obtains multiple paths for transmitting wireless signals.
  • the cluster of points of each shape in the graph represents a path, such as P1, P2, P3, P4, and P5.
  • Each path in the graph may be a direct path or a non-direct path.
  • the non-direct path includes a reflection diameter, a scattering diameter, or a refractive diameter.
  • the AP can identify the direct path according to the degree of dispersion of the points in the clusters of each path (corresponding to the size of each circle in the graph).
  • the degree of dispersion of the cluster midpoint of the direct path is large, so that a large number of messages need to be acquired in a short time (for example, 1 s) to Improve the accuracy of the judgment.
  • the direct path determination method provided by the present application does not need to acquire a large number of messages in a short time, and the determination of the direct path and the AOA of the direct path are realized by means of the continuity of the motion track of the terminal device, thereby It can greatly reduce the computational complexity and save the air interface overhead.
  • the direct path determination method includes the following steps:
  • the AP acquires at least one wireless signal transmitted by the terminal device at the kth time and the k+1th time, wherein each wireless signal is composed of at least one transmitted signal, and each transmitted signal reaches the AP through a path.
  • the AP parses the acquired at least one wireless signal to obtain at least one transmitted signal. For example, the AP is processed, and the M transmit signals passing through the M paths at the kth time, and the N paths passing through the N paths at the k+1th time. transmit a signal.
  • the AP estimates the incoming wave angle of these transmitted signals using channel state information (CSI) or parsed baseband data. For example, the AP calculates the incoming wave angle of all acquired transmitted signals according to a pre-established data model.
  • CSI channel state information
  • parsed baseband data For example, the AP calculates the incoming wave angle of all acquired transmitted signals according to a pre-established data model.
  • the AP predicts the incoming wave angle of at least one transmitted signal transmitted by the terminal device at the next moment.
  • the kth time be the current time
  • the k+1th time is the next time
  • the AP initializes the line of sight direction of the AP, the line of sight direction includes a horizontal angle and a pitch angle, and predicts at least one of the transmitted signals at the k+1th time.
  • the wave angle can be achieved by a state equation.
  • the line-of-sight state between the transmitted signal transmitted at the moment and the AP, and the vector x represents the set of states before the kth time and the kth time.
  • the AP combines the predicted wave angles of all possible transmission signals at the k+1th moment to form an AOA prediction set, and forms a wave angle of the at least one transmitted signal actually acquired by the AP at the k+1th time to form an AOA actual angle set, and then The angle difference between the different incoming wave angles in the two sets is then calculated.
  • the AP obtains 3 transmit signals to obtain three incoming wave angles through three different paths, and obtains that the three incoming wave angles are 0°, 30°, and -30°, respectively.
  • the three incoming wave angles are taken as the three incoming wave angles predicted at the k+1th time, and constitute the AOA prediction set ⁇ 0°, 30°, -30° ⁇ .
  • the AP collects the physical layer information to estimate the incoming wave angle of at least one transmitted signal actually transmitted by the terminal device, and actually sets the three incoming wave angles of the three paths, which are 10° and -60 respectively. ° and 20°, and constitute the actual angle set of AOA ⁇ 10°, -60°, 20° ⁇ .
  • the AP divides the points of the transmitted signals in the angle-time coordinate system into at least one trajectory.
  • a division manner is: dividing the trajectory according to the calculated angular difference of the incoming wave angle, specifically comprising: according to the 0th moment, the AOA prediction set ⁇ 0°, 30°, -30° ⁇ and the AOA actual angle set ⁇ 10°, -60°, 20° ⁇ .
  • the angular difference between the incoming wave angle in the predicted set in the two sets and the incoming wave angle in the AOA actual angle set is calculated, and the two incoming wave angles in which the absolute value of the angular difference is within a preset range are divided into one track.
  • the AP calculates the set of the angular differences at the k+1th time as Let the preset angle be 10°, divide the two incoming wave angles whose absolute value of the angular difference is less than or equal to 10° into one trajectory, that is, divide the 0° in the predicted set and the 10° in the actual AA set of the AA into one
  • the trajectory for example, is set as the first angular trajectory, and the 30° in the prediction set and the 20° in the AOA actual angle set are divided into one trajectory, for example, the second angular trajectory, and the remaining prediction set is -30°.
  • -60° in the actual AA set of angles are used as the third angle trajectory and the fourth angle trajectory, respectively.
  • a method for calculating the probability is: calculating by a defined probability model, setting the probability model to Where p i represents the probability corresponding to the i-th trajectory, Indicates the actual incoming wave angle of the i-th track, Indicates the predicted incoming wave angle of the ith trajectory.
  • the probability of calculating the four angular trajectories according to the above probability model is: 85%, 8%, 5%, and 2%, respectively, corresponding to the first angular trajectory, the second angular trajectory, the third angular trajectory, and the fourth angular trajectory, and The sum of the probabilities of all the trajectories is 1.
  • the incoming wave angle of the path, the incoming wave angle of the remaining paths and the AP are non-direct path, that is, there is no good line of sight condition.
  • the AOA angle change of the non-direct path is much larger than the angle change of the direct path AOA, for example, when the terminal device moves to cause the AOA angle change ⁇ of the direct path, the reflection path
  • the AOA angle changes by at least 2 ⁇ . Since the point where the AOA changes with time is easy to form a trajectory, the method can accurately find the direct path by dividing the trajectory of the coordinate point, and determine the angle of arrival of each transmitted signal in the direct path without environmental interference. And the limitations of equipment accuracy. In addition, the method can also prevent the AP from collecting a large amount of packet data in a short period of time, thereby saving air interface overhead.
  • the probability of each trajectory is calculated only by using a modeling formula, and the probability of the trajectory may be calculated by other methods, such as linear programming, sequential analysis, etc., and a method for acquiring the probability of each trajectory, There is no limit to the application.
  • FIG. 10 a schematic structural diagram of a direct path determining device provided by an embodiment is shown.
  • the apparatus may be used to perform the direct path determination method in the related embodiment of FIG. 8 described above.
  • the apparatus may include: a receiving unit 1001 and a processing unit 1002, which may include other unit modules such as a transmitting unit, in addition to the receiving unit 1001 and the processing unit 1002.
  • the receiving unit 1001 is configured to acquire a wireless signal that is sent by the terminal device at at least two moments, each of the wireless signals is composed of at least one transmit signal, and each of the transmit signals reaches a receiving unit through a path. .
  • the processing unit 1002 is configured to process each of the wireless signals to obtain a wave angle of all the transmitted signals in each of the wireless signals, and to divide the wireless signal into at least according to the incoming wave angle.
  • a trajectory and calculating a probability that each of the trajectories is a trajectory of a direct path, and determining a wave angle of the direct path according to the probability.
  • the processing unit 1002 is further configured to: according to the selected time and the incoming wave angle of each of the wireless signals acquired before the selected time, and the next time of the selected time, sent by the terminal device And a at least one incoming wave angle of the at least one transmitted signal is divided into at least one trajectory by at least one incoming wave angle of the next time and the selected wave time and the incoming wave angle before the selected time.
  • the processing unit 1002 is further configured to: if a probability that a track of the at least one track is a direct path is greater than a preset probability, determine that a wave angle of the transmit signal corresponding to the track is a direct path Wave angle.
  • the processing unit 1002 is further configured to divide the at least one wave angle according to the next time of the selected time, and the angle difference between the selected time and all the wave angles before the selected time to divide at least one Track.
  • the processing unit 1002 is further configured to calculate an angular difference between any two incoming wave angles acquired at different times, and if the absolute value of the angular difference is less than or equal to the preset angle, the two corresponding to the angular difference
  • the angles are divided into one track, and all of the at least one angle difference that satisfies the preset angle is counted, and at least one track is divided according to the at least one angle difference of the statistics.
  • a wireless device for performing all of the steps of the aforementioned direct path determination method.
  • the wireless device is provided with all the functions of the direct path determining device in the foregoing embodiment. Further, the wireless device is configured to search for at least one wireless signal sent by the obtained terminal device, and find a direct path and a direct path according to the wireless signal. The wave angle.
  • the wireless device includes: a transceiver 1101, a processor 1102, a memory 1103, and a power supply 1104.
  • the transceiver 1101 includes at least one communication interface and an antenna, and the antenna is configured to receive a signal.
  • the signal includes a wireless signal transmitted by a terminal device transmitted via a plurality of paths, and the antenna may include an antenna array.
  • the transceiver 1101 is configured to implement a transceiving function of a wireless signal with a terminal device, and at least one interface is used to connect the wireless device to the wireless network.
  • the processor 1102 is configured to control the transceiver 1101, and perform analysis processing on the received wireless signal, and find a wave angle corresponding to the direct path and the direct path. Further, the processor 1102 can include a modem for modulating and demodulating wireless signals from the terminal device, such as signals conforming to the 802.11 standard.
  • the processor 1102 can be a central processing unit (CPU), or a combination of a CPU and a hardware chip.
  • the hardware chip described above may be an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a Complex Programmable Logic Device (CPLD), a Field Programmable Gate Array (FPGA), a General Array Logic (GAL), or any combination thereof.
  • the memory 1103 is used to store various applications, operating systems, and parsed data, and the memory 1103 can transfer the stored data to the processor 1102.
  • the memory can be a read only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type of dynamic storage device that can store information and instructions, or can be electrically Programmable Read Only Memory (EEPROM), CD-ROM or other optical disk storage, optical disk storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic A storage device, or any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and that can be accessed by a computer, but is not limited thereto.
  • ROM read only memory
  • RAM random access memory
  • EEPROM electrically Programmable Read Only Memory
  • CD-ROM or other optical disk storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 1103 can exist independently or be integrated with the processor.
  • the memory is used to store application code for executing the solution of the present application, and is controlled by a processor, and can also be used to execute application code stored therein.
  • the embodiment further provides a terminal device.
  • the terminal device includes: a transceiver 1201 and a processor 1202.
  • the transceiver 1201 may include components such as a receiver, a transmitter, and an antenna.
  • the terminal device may further include other components such as a memory, which is not limited in this embodiment.
  • the processor 1202 is a control center of the terminal device, and connects various parts of the entire terminal device by using various interfaces and lines, by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory, Perform various functions and/or process data of the terminal device.
  • the transceiver 1201 is configured to establish a communication connection with a wireless device, such as an AP, and send at least one transmission signal to the AP to implement data transmission between the terminal device and the wireless device.
  • the transceiver 1201 may include a communication module such as a WLAN module, a Bluetooth module, a baseband module, and the like, and a radio frequency (RF) circuit corresponding to the communication module, configured to perform wireless local area network communication, Bluetooth communication, infrared communication, and/or cellular communication system. Communication.
  • the transceiver is used to control communication of components in the terminal device and can support direct memory access.
  • the embodiment of the present application further provides a computer storage medium for storing computer software instructions for the direct path determination method shown in FIG. 8 above, which includes a program designed to execute the foregoing method embodiment. By executing the stored program, the decision of the AP line-of-sight state can be achieved.

Abstract

公开了一种直射径判断方法及装置。该方法包括:无线设备获取终端设备在至少两个时刻发送的无线信号,每个无线信号由至少一个发射信号组成,所述至少一个发射信号中的每个发射信号通过一条路径到达;每个所述无线信号进行处理,得到每个所述无线信号中的所有发射信号的来波角度;将所述至少两个无线信号中每个无线信号的每个发射信号的坐标点划分为至少一个轨迹,并计算每个所述轨迹为直射径的轨迹的概率,根据所述概率确定直射径的来波角度。本方法通过对AOA进行划分轨迹的方式能够准确地找到直射径,并确定该直射径中每个发射信号的来波角度。

Description

一种直射径判断方法及装置
本申请要求于2016年12月28日提交中国专利局、申请号为201611240124.2、发明名称为“一种直射径判断方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线定位技术领域,尤其涉及一种直射径判断方法及装置。
背景技术
用户或者运营商可以依靠定位系统完成各种差异化服务,例如:室内导航、广告推送、周边服务发现以及人员流量监控。
WLAN定位系统可以确定无线信号的到达角度(英文:angle of arrival,AOA)。根据WLAN设备测量的同一待识别设备的多个AOA(可以由一个或多个WLAN设备测量),可以得到该待识别设备的位置。待识别设备发送的无线信号可能经由多条路径到达WLAN设备,WLAN设备接收到的信号是经由多条路径先后到达该WLAN设备的该无线信号的叠加。经由直射径或非直射径到达WLAN设备的无线信号的AOA不同。由于直射径的无线信号的AOA是待识别设备的正确的角度,故测量AOA的WLAN设备需要确定待识别设备(如终端设备)与WLAN设备(如接入点)间的路径。
目前室内定位的技术主要是基于接收信号强度(英文:received signal strength indicator,RSSI)确定待识别设备的路径。当待识别设备的无线信号的RSSI大时,该待识别设备与WLAN设备之间是直射径的概率大。当待识别设备的无线信号的RSSI小时,该待识别设备与WLAN设备之间是非直射径(例如,反射径)的概率大。其中,所述直射径是指待识别设备与WLAN设备间没有物体遮挡视线,非直射径是指待识别设备与WLAN设备间有物体遮挡视线。如图2所示,AP1对终端的视线方向由于被建筑物遮挡,所以其获得的RSSI小(例如RSSI=-70分贝毫瓦(dBm))。AP2对终端的视线方向没有遮挡,故RSSI大(例如RSSI=-50dBm)。
但是,基于RSSI测量的结果易受到环境影响,进而导致RSSI的测量存在较大的误差,例如待识别设备位置移动几十厘米,RSSI的变化就可能高达10dBm。信号强度还与待识别设备与WLAN设备间的距离相关。即使待识别设备与WLAN设备间无直射径,但待识别设备与WLAN设备间的距离近,测量的RSSI可能大,因此基于RSSI测量结果不能准确地判断出终端发送的无线信号是直射径还是非直射径。
发明内容
本申请提供了一种直射径判断方法及装置,以寻找来自的终端设备的发射信号的直射径。
为了解决上述技术问题,本申请公开了如下技术方案:
第一方面,本申请实施例提供了一种直射径判断方法,应用于WLAN设备,例如接入点,所述方法包括:获取终端设备在至少两个时刻发送的无线信号,每个无线信号由至 少一个发射信号组成,所述至少一个发射信号中的每个发射信号通过一条路径到达所述无线设备;
所述无线设备对每个所述无线信号进行处理,得到每个所述无线信号中的所有发射信号的来波角度;
所述无线设备将所述至少两个无线信号中每个无线信号的每个发射信号的坐标点划分为至少一个轨迹,并计算每个所述轨迹为直射径的轨迹的概率,其中,所述坐标点为每个来波角度和所述来波角度对应的发射信号的时间在角度-时间坐标系中的点;
所述无线设备根据所述概率确定直射径的来波角度。
本方面提供的方法,由于当终端设备发生移动时,非直射径的AOA角度变化远大于直射径AOA的角度变化,例如,当终端设备移动导致直射径的AOA角度变化α时,反射径的AOA角度至少变化2α。由于AOA随时间变化较小的点才容易形成轨迹,因此本方法通过对AOA进行划分轨迹的方式能够准确地找到直射径,并确定该直射径中每个发射信号的来波角度。
结合第一方面,在第一方面第一种实现中,所述无线设备将所述至少两个无线信号中每个无线信号的每个发射信号的坐标点划分为至少一个轨迹,包括:所述无线设备计算所述至少两个时刻中,相邻两个时刻的所述至少一个发射信号对应的来波角度的角度差;所述无线设备根据所述角度差将所述坐标点划分为至少一个轨迹。
结合第一方面第一种实现,在第一方面第二种实现中,所述无线设备根据所述角度差将所述坐标点划分为至少一个轨迹。包括:如果所述角度差小于等于预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为一个轨迹;如果所述角度差大于所述预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为两个轨迹。
结合第一方面第一种实现,在第一方面第三种实现中,所述无线设备计算相邻两个时刻的所述至少一个发射信号对应的来波角度的角度差,包括:所述无线设备根据选定时刻和所述选定时刻之前的每个无线信号的每个来波角度预测所述选定时刻的下一个时刻的至少一个发射信号的来波角度;所述无线设备计算所述预测的至少一个发射信号的来波角度与实际所述选定时刻的下一时刻终端设备发射的至少一个发射信的来波角度的角度差。
结合第一方面或第一方面第一种至第三种中的任意一种实现,在第一方面第四种实现中,所述无线设备根据所述概率确定直射径的来波角度,包括:如果所述至少一个轨迹中的一个轨迹为直射径的概率大于预设概率,则确定所述轨迹对应的发射信号的来波角度是直射径的来波角度。
第二方面,本申请实施例提供了一种直射径判断装置,该装置包括用于执行第一方面以及第一方面各实现方式的中方法步骤的单元。
第三方面,本申请实施例提供了一种无线设备,所述无线设备包括:收发器和处理器,其中,所述收发器,用于获取终端设备在至少两个时刻发送的无线信号,每个无线信号由至少一个发射信号组成,所述至少一个发射信号中的每个发射信号通过一条路径到达所述无线设备;
所述处理器,用于对每个所述无线信号进行处理,得到每个所述无线信号中的所有发射信号的来波角度,将所述至少两个无线信号中每个无线信号的每个发射信号的坐标 点划分为至少一个轨迹,并计算每个所述轨迹为直射径的轨迹的概率,根据所述概率确定直射径的来波角度,其中,所述坐标点为每个来波角度和所述来波角度对应的发射信号的时间在角度-时间坐标系中的点。
所述无线设备还包括存储器,所述存储器用于存储必要的程序指令和数据。
第四方面,还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可包括本申请提供一种直射径判断方法的各实现方式中的部分或全部步骤。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种室内定位技术原理的示意图;
图2为本申请实施例提供的一种AP视距状态的示意图;
图3为本申请实施例提供的一种AP与终端设备之间具有直射径的示意图;
图4为本申请实施例提供的一种AP与终端设备之间不具有直射径的示意图
图5为本申请实施例提供的一种AP视距状态动态判决的示意图;
图6为本申请实施例提供的AP1来波角度变化轨迹的示意图;
图7为本申请实施例提供的AP2来波角度变化轨迹的示意图;
图8为本申请实施例提供的一种直射径判断方法的流程示意图;
图9为本申请实施例提供的一种基于聚类判决的原理示意图;
图10为本申请实施例提供的一种直射径判断装置的结构示意图;
图11为本申请实施例提供的一种无线设备的结构示意图;
图12为本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面通过附图和实施例,对本申请实施例的技术方案做进一步的详细描述。
本申请各实施例提供的方法应用于WLAN网络,具体地,该方法可以适用于长期演进(LTE)系统,或采用码分多址、正交频分多址等无线接入技术的无线通信系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代(5G)系统或新空口(英文:new radio,NR)系统等。
所述系统包括至少一个无线设备和至少一个终端设备。所述终端设备用于在不同时刻向无线设备发送至少一个发射信号,以使无线设备根据这些发射信号对终端设备进行定位。
终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或车载的移动装置,它们与无线接入网交换语言和或数据。例如,个人通信业务(英文:personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL)站、个人数字助理(PDA)等设备。终端设备也可以为订户单元(英文: subscriber unit,SU)、订户站(英文:subscriber station,SS),移动站(英文:mobile station,MS)、远程站(英文:remote station,RS)、远端设备(英文:remote terminal,RT)、接入终端(英文:access terminal,AT)、用户终端(英文:user terminal,UT)、用户代理(英文:user agent,UA)、用户设备、或用户装备(英文:user equipment,UE)。
所述无线设备可以是接入点(英文:access point,AP),还可以是其它网络设备,例如基站、增强型基站、或具有调度功能的中继、或具有基站功能的设备等。其中,基站可以是LTE系统中的演进型基站(英文:evolved Node B,eNB),也可以其他系统中的基站,本申请实施例并不限定。
在WLAN定位系统中,AOA角度可以正确反映终端设备与无线设备间的几何关系。AOA表示终端设备的无线信号到达无线设备的来波角度。由于直射径具有准确的角度信息,所以无线设备可以通过测量直射径传输的无线信号的AOA确定终端设备的位置。
下面以待识别设备为终端设备,无线设备为AP为例进行描述。
如图3所示,AP和终端设备之间具有稳定的视线方向,即AP与终端设备间存在直射径,而如图4所示,由于AP和终端设备之间有遮挡物,导致AP和终端设备之间不存在直射径。无线信号通过周围的遮挡物经过反射或散射到达AP,这些反射或散射的路径为非直射径。
终端设备在不同的位置可以具有不同的视线状态,如图5所示,终端设备从第一位置A1移动到第二位置A2。对于AP1来说,第一位置和第二位置的终端设备与AP1之间始终具有直射径,所以可以通过聚类规划出一条清晰的AOA角度变化轨迹,如图6所示,图中实心圆点表示在不同时刻获取的终端设备的AOA角度,而方形原点表示杂波,通过跟踪圆点的轨迹可以判断出AP1与终端设备之间始终具有直射径。
对于AP2,终端设备在第一位置A1时,由于受到遮挡物的遮挡,终端设备的发射信号主要是通过散射,穿透等方式到达AP2,进而不具有直射径。当终端设备移动到第二位置A2时便可以规划出一个轨迹,如图7所示,通过跟踪圆点轨迹可以确定轨迹中所有点的位置与AP2之间都具有直射径,并根据纵坐标的AOA可以确定每个直射径的来波方向。
图8为本申请实施例提供的一种直射径判断方法的流程示意图,如图8所示,该方法包括如下步骤:
步骤101:AP获取终端设备在至少两个时刻发送的无线信号,每个无线信号由至少一个发射信号组成,所述至少一个发射信号中的每个发射信号通过一条路径到达所述接入点。
例如,AP获取终端设备分别在第k时刻和第k+1时刻发送的无线信号,其中,每个无线信号为终端设备发送的通过M条路径到达AP的M个发射信号的叠加信号。
步骤102:AP对每个所述无线信号进行处理,得到每个所述无线信号中的所有发射信号的来波角度。
AP接收到无线信号之后,通过对每个无线信号进行变频、放大以及数模转换等处理,得到一系列基带数据,然后再将这些基带数据通过处理器进行数字信号处理,或者 通过LAN接口传输到服务器进行处理,进而得到每个所述无线信号中的所有发射信号的来波角度,进一步地,所述来波角度包括直射径的来波角度和非直射径的来波角度。
步骤103:AP将所述至少两个无线信号中每个无线信号的每个发射信号的坐标点划分为至少一个轨迹,并计算每个所述轨迹为直射径的轨迹的概率,其中,所述坐标点为每个来波角度和所述来波角度对应的发射信号的时间在角度-时间坐标系中的点。
步骤104:AP根据所述概率确定直射径的来波角度。
具体包括:如果所述至少一个轨迹中的一个轨迹为直射径的概率大于预设概率,则确定所述轨迹对应的发射信号的来波角度是直射径的来波角度。如果所有轨迹的概率均小于或等于预设概率,则所有发射信号所对应的终端设备的位置与AP之间都不是直射径。此时,AP可以再获取下一个时刻的不同发射信号的来波角度,并重新划分轨迹。
进一步地,在上述步骤103中,AP将所述至少两个无线信号中每个无线信号的每个发射信号的坐标点划分为至少一个轨迹,包括:计算所述至少两个时刻中,相邻两个时刻的所述至少一个发射信号对应的来波角度的角度差,并根据所述角度差将所述坐标点划分为至少一个轨迹。
具体地,如果所述角度差小于等于预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为一个轨迹;如果所述角度差大于所述预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为两个不同的轨迹。
可选的,AP还可以根据选定时刻的下一时刻的至少一个来波角度,和所述选定时刻以及所述选定时刻之前的所有来波角度的角度差划分至少一个轨迹。具体根据来波角度对至少一个轨迹的划分方式本申请不做限制,但是要求划分的每个轨迹中的来波角度均来自不同的时刻或者不同的终端设备位置。
可选的,所述相邻时刻包括选定时刻和所述选定时刻的下一时刻,AP计算相邻两个时刻的所述至少一个发射信号对应的来波角度的角度差包括:获取实际所述选定时刻的下一时刻所述终端设备发送的至少一个发射信号所对应的来波角度;根据选定时刻和所述选定时刻之前的每个无线信号的每个来波角度预测所述选定时刻的下一个时刻的至少一个发射信号的来波角度;计算所述预测的至少一个发射信号的来波角度与所述实际获取的终端设备发射的至少一个发射信号的来波角度的角度差。
例如,设选定时刻为第k时刻,选定时刻的下一时刻为第k+1时刻,AP计算第k时刻和第k+1时刻的角度差包括以下步骤:AP获取终端设备在第k+1时刻实际的至少一个发射信号的来波角度;然后,根据AP在第k时刻和第k时刻之前获取的各个发射信号的来波角度预测第k+1时刻可能是直射径的来波角度;最后,分别计算第k+1时刻AP实际获得的来波角度与预测的可能是直射径的来波角度之间的角度差。通过预测下一时刻的来波角度能够提高划分轨迹为直射径轨迹的成功率,从而提高了判决的准确性。
本实施例提供的方法,由于当终端设备发生移动时,非直射径的AOA角度变化远大于直射径AOA的角度变化,例如,当终端设备移动导致直射径的AOA角度变化α时,反射径的AOA角度至少变化2α。由于AOA随时间变化较小的点才容易形成轨迹,因此本方法通过对每个发射信号对应的角度-时间坐标系中的点进行划分轨迹的方式能够准确地找到直射径,并确定该直射径中每个发射信号的来波角度。
另外,本方法相比于类聚方式判断直射径而言,避免在短时间内采集大量报文, 所以降低了判决计算的复杂度,减少了空口资源的开销。
具体地,所述类聚的方式判断是否是直射径具体包括:AP可以收集多个样本数据,如图9所示,每个样本的数据用坐标图中的一个点表示。每个样本是AP接收到的来自一个路径的无线信号。坐标图的横轴表示接收各样本的时间t,纵轴表示该样本的AOA。终端设备发送多个无线信号,每个无线信号经由多个路径到达AP,并被AP接收。由于终端设备的移动有连续性,各个路径的角度变化也有连续性,因此AP将坐标图中的点聚类。聚类后,AP得到传输无线信号的多个路径。坐标图中的每一种形状的点的聚类表示一个路径,如P1、P2、P3、P4和P5。坐标图中的各路径可能是直射径或非直射径。其中,非直射径包括反射径、散射径或折射径等。AP可以依据各个路径的聚类中点的弥散程度(相当于坐标图图中各个圈的大小),识别直射径。然而,当终端设备快速运动时,即使终端设备与AP间存在直射径,由于该直射径的聚类中点的弥散程度也大,从而需要在短时间内(例如1s)获取大量报文,以提高判决的准确性。
而本申请提供的直射径判断方法不需要在短时间内获取大量的报文,借助于终端设备的运动轨迹具有连续性的特点,实现了对直射径的判决以及直射径的AOA的判断,从而可以大大降低了计算复杂度低,节约空口开销。
在一个具体实施例中,该直射径判断方法包括以下步骤:
AP在第k时刻和第k+1时刻获取终端设备发送的至少一个无线信号,其中,每个无线信号由至少一个发射信号组成,每个发射信号通过一条路径到达AP。AP解析获取的至少一个无线信号得到至少一个发射信号,例如,AP经过处理得到,在第k时刻的经过M条路径的M个发射信号,在第k+1时刻的经过N条路径的N个发射信号。
AP利用信道状态信息(英文:Channel State Information,CSI)或者解析的基带数据估计出这些发射信号的来波角度。例如,AP根据预先建立的数据模型计算所有获取的发射信号的来波角度。
AP预测下一时刻终端设备发射的至少一个发射信号的来波角度。设第k时刻为当前时刻,第k+1时刻为下一时刻,AP初始化AP的视距方向,该视距方向包括水平角度和俯仰角度,预测第k+1时刻的至少一个发射信号的来波角度可以通过状态方程实现,
Figure PCTCN2017118024-appb-000001
时刻发射的发射信号与AP之间的视距状态,向量x表示第k时刻以及第k时刻之前的状态集合。
Figure PCTCN2017118024-appb-000002
情况确定,本实施例对此不予限定。
AP将预测的第k+1时刻的所有可能的发射信号的来波角度组成AOA预测集合,将AP在第k+1时刻实际获取的至少一个发射信号的来波角度组成AOA实际角度集合,然后再计算这两个集合中的不同的来波角度之间的角度差。
在本实施例中,假设在第k时刻,AP获得3发射信号得到经过3个不同的路径的3个来波角度,并得到这3个来波角度分别是0°、30°和-30°,将这3个来波 角度作为第k+1时刻预测的3个来波角度,并组成AOA预测集合{0°,30°,-30°}。在第k+1时刻,AP采集物理层信息估计出终端设备实际发送的至少一个发射信号的来波角度,设实际接收到经过3个路径的3个来波角度,分别是10°、-60°和20°,并组成AOA实际角度集合{10°,-60°,20°}。
AP在获取的一系列发射信号的来波角度之后,对这些发射信号在角度-时间坐标系中的点划分至少一个轨迹。一种划分方式是:根据计算的来波角度的角度差划分轨迹,具体包括:根据第k+1时刻AOA预测集合{0°,30°,-30°}和AOA实际角度集合{10°,-60°,20°}。计算这两个集合中预测集合中的来波角度与AOA实际角度集合中的来波角度的角度差,并将角度差的绝对值在预设范围内的两个来波角度划分为一个轨迹。
例如,AP计算第k+1时刻的角度差组成的集合为
Figure PCTCN2017118024-appb-000003
设预设角度为10°,则将角度差的绝对值小于等于10°的两个来波角度划分为一个轨迹,即将预测集合中的0°与AOA实际角度集合中的10°为划分为一个轨迹,例如设为第一角度轨迹,将预测集合中的30°与AOA实际角度集合中的20°为划分为一个轨迹,例如设为第二角度轨迹,将其余的预测集合中的-30°和AOA实际角度集合中的-60°分别作为第三角度轨迹和第四角度轨迹。
计算每个划分的轨迹的概率,并寻找直射径以及直射径对应的来波角度。
一种计算概率的方法是:通过定义的概率模型计算,设所述概率模型为
Figure PCTCN2017118024-appb-000004
其中,p i表示第i个轨迹所对应的概率,
Figure PCTCN2017118024-appb-000005
表示第i个轨迹的实际来波角度,
Figure PCTCN2017118024-appb-000006
表示第i个轨迹的预测来波角度。
根据上述概率模型计算这4条角度轨迹的概率分别是:85%,8%,5%和2%,对应于第一角度轨迹、第二角度轨迹、第三角度轨迹和第四角度轨迹,且所有轨迹的概率之和为1。
判断所有轨迹的概率中是否有一个概率大于预设概率,设预设概率为80%,则比较上述4个概率中,是否存在大于80%的概率,比较发现第一角度轨迹大于预设概率,则确定第一角度轨迹对应的两个角度所在的位置与AP之间是直射径,即具有良好的视线条件,该第一角度轨迹所对应的两个来波角度0°和10°为该直射径的来波角度,其余路径的来波角度与AP之间是非直射径,即不具有良好的视线条件。
本实施例提供的方法,由于当终端设备发生移动时,非直射径的AOA角度变化远大于直射径AOA的角度变化,例如,当终端设备移动导致直射径的AOA角度变化α时,反射径的AOA角度至少变化2α。由于AOA随时间变化较小的点才容易形成轨迹,因此本方法通过划分坐标点轨迹的方式能够准确地找到直射径,并确定该直射径中每个发射 信号的来波角度,不受环境干扰以及设备精度的限制。另外,采用本方法还能够避免AP在短时间内采集大量的报文数据,节省了空口开销。
需要说明的是,本实施例中仅通过建模公式计算各个轨迹的概率,还可以通过其它方式计算轨迹的概率,例如线性规划,序贯分析等,具体获取每个轨迹的概率的方法,本申请对此并不限制。
参见图10,为实施例提供的一种直射径判断装置的结构示意图。所述装置可以用于执行前述图8相关实施例中的直射径判断方法。
如图10所示,所述装置可以包括:接收单元1001和处理单元1002,除接收单元1001和处理单元1002外,可以包括发送单元等其他单元模块。
在本实施例中,接收单元1001,用于获取终端设备在至少两个时刻发送的无线信号,每个所述无线信号由至少一个发射信号组成,每个所述发射信号通过一条路径达到接收单元。
处理单元1002,用于对每个所述无线信号进行处理,得到每个所述无线信号中的所有发射信号的来波角度;还用于根据所述来波角度将所述无线信号划分为至少一个轨迹,并计算每个所述轨迹为直射径的轨迹的概率,并根据所述概率确定直射径的来波角度。
可选的,处理单元1002,还用于根据选定时刻和所述选定时刻之前获取的各个所述无线信号的来波角度,以及所述选定时刻的下一时刻所述终端设备发送的至少一个发射信号的来波角度,将所述下一时刻的至少一个来波角度与所述选定时刻和所述选定时刻之前的来波角度划分为至少一个轨迹。
可选的,处理单元1002,还用于如果所述至少一个轨迹中的一个轨迹的为直射径的概率大于预设概率,则确定所述轨迹对应的发射信号的来波角度是直射径的来波角度。
可选的,处理单元1002,还用于根据选定时刻的下一时刻的至少一个来波角度,和所述选定时刻以及所述选定时刻之前的所有来波角度的角度差划分至少一个轨迹。
可选的,处理单元1002,还用于计算不同时刻获取的任意两个来波角度的角度差,如果所述角度差的绝对值小于等于预设角度,则将所述角度差所对应的两个角度划分为一个轨迹,以及,统计所有满足所述小于等于预设角度的至少一个角度差,并根据所述统计的至少一个角度差划分至少一个轨迹。
该装置的各功能单元的功能,可以通过上述方法实施例的各步骤来实现,因此,本实施例提供的直射径判断装置的具体工作过程,在此不复赘述。
在一个具体硬件的实施例中,还提供了一种无线设备,用于执行前述的直射径判断方法的全部步骤。其中,该无线设备具备前述实施例中的直射径判断装置的全部功能,进一步地,该无线设备用于对获取的终端设备发送的至少一个无线信号,并根据无线信号寻找直射径以及直射径的来波角度。
如图11所示,该无线设备包括:收发器1101、处理器1102、存储器1103和电源1104,其中,收发器1101中包括至少一个通信接口以及天线等部件,所述天线用于接 收信号,该信号包括经由多条路径传输的终端设备发送的无线信号,天线可以包括天线阵列。收发器1101用于实现与终端设备之间无线信号的收发功能,至少一个接口用于将无线设备连接到无线网络。
处理器1102用于控制收发器1101,以及对接收到的无线信号进行分析处理,并寻找直射径和直射径对应的来波角度。进一步地,处理器1102中可以包括调制解调器,该调制解调器用于调制解调来自终端设备的无线的信号,例如符合802.11标准的信号。
处理器1102可以是中央处理器(CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(ASIC),可编程逻辑器件(PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(CPLD),现场可编程门阵列(FPGA),通用阵列逻辑(英文:generic array logic,GAL)或其任意组合。
存储器1103用于存储各种应用、操作系统和解析的数据,存储器1103可以将存储的数据传输给处理器1102。存储器可以是只读存储器(ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(EEPROM)、只读光盘(CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器1103可以是独立存在,也可以和处理器集成在一起。其中,所述存储器用于存储执行本申请方案的应用程序代码,并由处理器来控制执行,还可以用于执行其内部存储的应用程序代码。
另外,本实施例还提供了一种终端设备,如图12所示,该终端设备包括:收发器1201和处理器1202,收发器1201可以包括接收机、发射机与天线等部件。该终端设备还可以包括存储器等其它部件,本实施例对此不进行限定。
处理器1202为终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,以执行终端设备的各种功能和/或处理数据。
收发器1201用于与无线设备,例如AP建立通信连接,并将至少一个发射信号发送给AP,实现终端设备与无线设备之间的数据传输。收发器1201可以包括WLAN模块、蓝牙模块、基带模块等通信模块,以及所述通信模块对应的射频(RF)电路,用于进行无线局域网络通信、蓝牙通信、红外线通信及/或蜂窝式通信系统通信。收发器用于控制终端设备中的各组件的通信,并且可以支持直接内存存取。
本申请实施例还提供了一种计算机存储介质,用于储存为上述图8所示的直射径判断方法所用的计算机软件指令,其包含用于执行上述方法实施例所设计的程序。通过执行存储的程序,可以实现对AP视距状态的判决。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种直射径判断方法,其特征在于,所述方法包括:
    无线设备获取终端设备在至少两个时刻发送的无线信号,每个无线信号由至少一个发射信号组成,所述至少一个发射信号中的每个发射信号通过一条路径到达所述无线设备;
    所述无线设备对每个所述无线信号进行处理,得到每个所述无线信号中的所有发射信号的来波角度;
    所述无线设备将所述至少两个无线信号中每个无线信号的每个发射信号的坐标点划分为至少一个轨迹,并计算每个所述轨迹为直射径的轨迹的概率,其中,所述坐标点为每个来波角度和所述来波角度对应的发射信号的时间在角度-时间坐标系中的点;
    所述无线设备根据所述概率确定直射径的来波角度。
  2. 根据权利要求1所述的方法,其特征在于,所述无线设备将所述至少两个无线信号中每个无线信号的每个发射信号的坐标点划分为至少一个轨迹,包括:
    所述无线设备计算所述至少两个时刻中,相邻两个时刻的所述至少一个发射信号对应的来波角度的角度差;
    所述无线设备根据所述角度差将所述坐标点划分为至少一个轨迹。
  3. 根据权利要求2所述的方法,其特征在于,所述无线设备根据所述角度差将所述坐标点划分为至少一个轨迹,包括:
    如果所述角度差小于等于预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为一个轨迹;
    如果所述角度差大于所述预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为两个轨迹。
  4. 根据权利要求2所述的方法,其特征在于,所述无线设备计算相邻两个时刻的所述至少一个发射信号对应的来波角度的角度差,包括:
    所述无线设备根据选定时刻和所述选定时刻之前的每个无线信号的每个来波角度预测所述选定时刻的下一个时刻的至少一个发射信号的来波角度;
    所述无线设备计算所述预测的至少一个发射信号的来波角度与实际所述选定时刻的下一时刻终端设备发射的至少一个发射信号的来波角度的角度差。
  5. 一种直射径判断装置,其特征在于,所述装置包括:
    接收单元,用于获取终端设备在至少两个时刻发送的无线信号,每个无线信号由至少一个发射信号组成,所述至少一个发射信号中的每个发射信号通过一条路径接收;
    处理单元,用于对每个所述无线信号进行处理,得到每个所述无线信号中的所有发射信号的来波角度,将所述至少两个无线信号中每个无线信号的每个发射信号的坐标点划分为至少一个轨迹,并计算每个所述轨迹为直射径的轨迹的概率,根据所述概率确定直射径的来波角度,其中,所述坐标点为每个来波角度和所述来波角度对应的发射信号的时间在角度-时间坐标系中的点。
  6. 根据权利要求5所述的装置,其特征在于,
    所述处理单元,还用于计算所述至少两个时刻中,相邻两个时刻的所述至少一个发射信号对应的来波角度的角度差,根据所述角度差将所述坐标点划分为至少一个轨迹。
  7. 根据权利要求6所述的装置,其特征在于,
    所述处理单元,还用于如果所述角度差小于等于预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为一个轨迹;如果所述角度差大于所述预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为两个轨迹。
  8. 根据权利要求6所述的装置,其特征在于,
    所述处理单元,还用于根据选定时刻和所述选定时刻之前的每个无线信号的每个来波角度预测所述选定时刻的下一个时刻的至少一个发射信号的来波角度,并计算所述预测的至少一个发射信号的来波角度与实际所述选定时刻的下一时刻终端设备发射的至少一个发射信号的来波角度的角度差。
  9. 一种无线设备,其特征在于,所述无线设备包括:收发器和处理器,
    所述收发器,用于获取终端设备在至少两个时刻发送的无线信号,每个无线信号由至少一个发射信号组成,所述至少一个发射信号中的每个发射信号通过一条路径到达所述无线设备;
    所述处理器,用于对每个所述无线信号进行处理,得到每个所述无线信号中的所有发射信号的来波角度,将所述至少两个无线信号中每个无线信号的每个发射信号的坐标点划分为至少一个轨迹,并计算每个所述轨迹为直射径的轨迹的概率,根据所述概率确定直射径的来波角度,其中,所述坐标点为每个来波角度和所述来波角度对应的发射信号的时间在角度-时间坐标系中的点。
  10. 根据权利要求9所述的无线设备,其特征在于,
    所述处理器,还用于计算所述至少两个时刻中,相邻两个时刻的所述至少一个发射信号对应的来波角度的角度差,并根据所述角度差将所述坐标点划分为至少一个轨迹。
  11. 根据权利要求10所述的无线设备,其特征在于,
    所述处理器,还用于如果所述角度差小于等于预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为一个轨迹;如果所述角度差大于所述预设角度,则将所述角度差所对应的两个来波角度的坐标点划分为两个轨迹。
  12. 根据权利要求11所述的无线设备,其特征在于,
    所述处理器,还用于根据选定时刻和所述选定时刻之前的每个无线信号的每个来波角度预测所述选定时刻的下一个时刻的至少一个发射信号的来波角度,并计算所述预测的至少一个发射信号的来波角度与实际所述选定时刻的下一时刻终端设备发射的至少一个发射信号的来波角度的角度差。
PCT/CN2017/118024 2016-12-28 2017-12-22 一种直射径判断方法及装置 WO2018121439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611240124.2 2016-12-28
CN201611240124.2A CN108271245B (zh) 2016-12-28 2016-12-28 一种直射径判断方法及装置

Publications (1)

Publication Number Publication Date
WO2018121439A1 true WO2018121439A1 (zh) 2018-07-05

Family

ID=62707855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118024 WO2018121439A1 (zh) 2016-12-28 2017-12-22 一种直射径判断方法及装置

Country Status (2)

Country Link
CN (1) CN108271245B (zh)
WO (1) WO2018121439A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784282A (zh) * 2021-08-31 2021-12-10 北京京诚瑞达电气工程技术有限公司 无线定位器标定方法及装置
CN114745035A (zh) * 2022-05-10 2022-07-12 中国电信股份有限公司 信号传输方法、装置、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159351A1 (zh) * 2022-02-22 2023-08-31 Oppo广东移动通信有限公司 无线通信的方法及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014037687A1 (en) * 2012-09-05 2014-03-13 Khalifa University of Science, Technology, and Research Methods and devices for channel identification
KR101380437B1 (ko) * 2012-07-03 2014-04-01 한국과학기술원 분산소형 기지국을 활용하는 이동 통신 시스템 및 이의 빔 포밍 방법
CN103873122A (zh) * 2012-12-11 2014-06-18 中兴通讯股份有限公司 天线信号的发送方法、装置及设备
WO2014168635A1 (en) * 2013-04-12 2014-10-16 Hewlett-Packard Development Company, L.P. Determining an angle of direct path of a signal
US20150234033A1 (en) * 2012-10-19 2015-08-20 Ucl Business Plc Apparatus and method for determining the location of a mobile device using multiple wireless access points
CN106062580A (zh) * 2013-12-27 2016-10-26 麻省理工学院 利用非同步发射和多径传输的定位
CN106604394A (zh) * 2016-12-28 2017-04-26 南京航空航天大学 一种基于csi的判定室内人体运动速度模型

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174925A (zh) * 2006-10-31 2008-05-07 株式会社Ntt都科摩 确定循环延迟分集延迟值的方法、系统、基站及用户设备
US9104788B2 (en) * 2010-08-03 2015-08-11 General Electric Company System and method of using location technology to aid patient recovery
CN101909036B (zh) * 2010-08-13 2013-11-13 北京交通大学 正交频分复用的改进互相关定时同步方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380437B1 (ko) * 2012-07-03 2014-04-01 한국과학기술원 분산소형 기지국을 활용하는 이동 통신 시스템 및 이의 빔 포밍 방법
WO2014037687A1 (en) * 2012-09-05 2014-03-13 Khalifa University of Science, Technology, and Research Methods and devices for channel identification
US20150234033A1 (en) * 2012-10-19 2015-08-20 Ucl Business Plc Apparatus and method for determining the location of a mobile device using multiple wireless access points
CN103873122A (zh) * 2012-12-11 2014-06-18 中兴通讯股份有限公司 天线信号的发送方法、装置及设备
WO2014168635A1 (en) * 2013-04-12 2014-10-16 Hewlett-Packard Development Company, L.P. Determining an angle of direct path of a signal
CN106062580A (zh) * 2013-12-27 2016-10-26 麻省理工学院 利用非同步发射和多径传输的定位
CN106604394A (zh) * 2016-12-28 2017-04-26 南京航空航天大学 一种基于csi的判定室内人体运动速度模型

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784282A (zh) * 2021-08-31 2021-12-10 北京京诚瑞达电气工程技术有限公司 无线定位器标定方法及装置
CN113784282B (zh) * 2021-08-31 2023-08-15 北京京诚瑞达电气工程技术有限公司 无线定位器标定方法及装置
CN114745035A (zh) * 2022-05-10 2022-07-12 中国电信股份有限公司 信号传输方法、装置、设备及介质
CN114745035B (zh) * 2022-05-10 2024-01-02 中国电信股份有限公司 信号传输方法、装置、设备及介质

Also Published As

Publication number Publication date
CN108271245A (zh) 2018-07-10
CN108271245B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
CN108370551B (zh) 基于到达时间差定位方法、用户设备及网络设备
US20200267684A1 (en) RSRP Reporting Methods for NR High Resolution Angle-based Downlink Positioning
US7764794B2 (en) Location-based wireless messaging for wireless devices
EP2727392B1 (en) Distributed positioning mechanism for wireless communication devices
US9462482B2 (en) Geo-location in a wireless communication network
WO2020042081A1 (en) Method and apparatus for location services
US20220271818A1 (en) Non-Line-of-Sight Path Detection for User Equipment Positioning in Wireless Networks
CN111356075A (zh) 一种多站点的定位方法及装置
US20080161011A1 (en) Method enabling indoor local positioning and movement tracking in wifi capable mobile terminals
US10123295B2 (en) Method and apparatus for mobile positioning optimization with reporting
US20140051460A1 (en) Positioning using observer-based time-of-arrival measurements
CN111818634B (zh) 一种5g场景下的定位方法、定位平台及用户终端
CN114007183B (zh) 定位方式的触发方法及通信装置
CN101860872A (zh) 一种无线局域网ap定位的方法
WO2017181952A1 (zh) 定位方法和装置
WO2018121439A1 (zh) 一种直射径判断方法及装置
CN114223170A (zh) 按需定位的方法和设备
Manodham et al. A novel wireless positioning system for seamless internet connectivity based on the WLAN infrastructure
CN113194531A (zh) 定位方法及通信设备
CN107533123A (zh) 无线通信环境中的通信设备的定位方法和定位服务器
EP3711353B1 (en) Network access nodes and method thereof
WO2016172965A1 (zh) 定位参数的交互方法、装置及系统
CN105898858B (zh) 一种不依赖于邻居节点的apit节点定位系统及方法
Machaj et al. Challenges introduced by heterogeneous devices for Wi‐Fi–based indoor localization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888255

Country of ref document: EP

Kind code of ref document: A1