WO2021036969A1 - 一种数据传输的时延补偿方法、终端设备以及trp - Google Patents

一种数据传输的时延补偿方法、终端设备以及trp Download PDF

Info

Publication number
WO2021036969A1
WO2021036969A1 PCT/CN2020/110719 CN2020110719W WO2021036969A1 WO 2021036969 A1 WO2021036969 A1 WO 2021036969A1 CN 2020110719 W CN2020110719 W CN 2020110719W WO 2021036969 A1 WO2021036969 A1 WO 2021036969A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
trp
trps
frequency domain
data
Prior art date
Application number
PCT/CN2020/110719
Other languages
English (en)
French (fr)
Inventor
梁星魂
田未巍
袁航
高慧
胥恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021036969A1 publication Critical patent/WO2021036969A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay

Definitions

  • This application relates to the field of communication technology, and in particular to a method for delay compensation of data transmission, terminal equipment, and TRP.
  • the traditional cellular network (also known as the mobile network) divides the service of the mobile phone into small regular hexagonal sub-areas, and each cell (Cell) has a base station, forming a shape that resembles a "cellular "Structure.
  • This traditional cell-centric network cannot guarantee the spectrum efficiency and user experience at the cell edge.
  • UCNC User Centric No Cell
  • UE User Experience
  • the main technology used is Coordinated Multiple Points Transmission (CoMP) Technology
  • COMP technology includes Downlink Coordinated Multiple Points Transmission (DL CoMP) and Uplink Coordinated Multi-Points Transmission (UL COMP).
  • TRP Transmission and Reception Point
  • the TRP corresponding to the serving cell where the UE is located is called the serving TRP
  • the one that provides services for the UE in addition to the serving TRP is called the cooperative TRP.
  • TRP will use DL COMP when sending downlink data to the UE. That is to say, the serving TRP and the cooperative TRP send downlink data to the UE respectively.
  • the throughput of the UE at the edge of the cell In order to improve the throughput of the UE at the edge of the cell.
  • the downlink data sent by two TRPs arrive at the same UE, if the downlink data that arrives at the UE first is used for timing, then the downlink data that arrives later will have a large delay deviation (also called a delay difference). In this way, the downlink data with a long time delay will produce a larger frequency selection in the frequency domain of the downlink data, thereby affecting the demodulation performance of the UE.
  • the first aspect of the embodiments of the present invention provides a data transmission delay compensation method, which specifically includes:
  • the first TRP will first determine the uplink delay between the first TRP and the UE communicating with it (the uplink delay can be called the first delay), because the UCNC technology is used between the TRP and the UE. Therefore, there are at least two TRPs serving the same UE, and the first TRP is any one of the at least two TRPs. After the first TRP determines the first delay, it will further obtain the delay difference between the first delay and the reference delay.
  • the reference delay is at least two obtained between the at least two TRPs and the same UE.
  • the reference delay may be the shortest one of the at least two uplink delays mentioned above, and at least two TRPs and at least two delays are one by one. correspond.
  • the first TRP will perform phase rotation compensation on the first downlink data in the frequency domain according to the obtained delay difference to obtain the second downlink data; and perform phase rotation on the first downlink data in the frequency domain
  • the second downlink data is sent to the corresponding UE.
  • the downlink data sent to the UE by each of the at least two TRPs is Received by the UE at different times, but because each downlink data is compensated for phase rotation in the frequency domain according to the corresponding delay difference, it can be equivalently understood in the frequency domain that the UE is receiving at the same time
  • the downlink data sent by each TRP eliminates the impact of the unsynchronization of the downlink data sent by each TRP to the same UE in the time domain, and finally makes the channel estimation more accurate, so that the UE receives the data from each TRP.
  • the downlink data will not generate frequency selection in the frequency domain, and the delay compensation method described in the embodiment of this application does not limit the number of TRPs, and can make multiple TRPs (that is, at least two TRPs) serving the UE together.
  • the downlink data issued by a TRP is equivalent to reaching the same UE served at the same time in the frequency domain, which breaks through the related delay compensation method in the prior art that can only apply to two TRPs.
  • the frequency domain data of the second downlink data can be expressed as X 2 (jw), the frequency domain of the first downlink data
  • the expressions of the first downlink data and the second downlink data in the frequency domain are given, and the difference between the first downlink data, the second downlink data and the delay difference is further explained.
  • the time delay difference is converted into the phase difference of the corresponding downlink data in the frequency domain, and the phase difference is compensated for the corresponding phase rotation, thereby eliminating the time when the downlink data is transmitted between different TRPs. Due to the impact of the delay difference.
  • the first TRP determines the specific manner of the first delay It can be: first, the first TRP receives a measurement signal from the corresponding UE, and then the first TRP performs channel estimation based on the measurement signal, that is, performs a delay deviation measurement on the first delay based on the measurement signal, Thus, the first time delay is obtained.
  • the first TRP obtains the first The delay difference between the first delay and the reference delay can be realized as follows:
  • Method 1 First, the first TRP will send to the second TRP the first delay corresponding to the first TRP, which is the other of the at least two TRPs mentioned above; after that, the first TRP will be from The reference delay is received in the second TRP, and the reference delay is determined by the second TRP; finally, the first TRP will calculate the first delay based on the first delay and the reference delay obtained from the second TRP The delay difference with the reference delay.
  • Manner 2 First, the first TRP sends the first TRP corresponding to the first TRP to the second TRP, and the second TRP is the other of the at least two TRPs mentioned above; then, the second TRP determines the reference time After the delay, the second TRP directly calculates the delay difference based on the first delay and the reference delay, and sends the calculated delay difference to the first TRP, that is, the first TRP directly receives the first time from the second TRP. The delay difference between the delay and the reference delay.
  • the first TRP receives each uplink delay (including at least one uplink time delay) corresponding to other TRPs (including at least one TRP) from other TRPs other than the first TRP among the above at least two TRPs. Delay), and the first TRP determines the reference delay according to each uplink delay corresponding to the other TRPs and the first delay acquired by itself. Finally, the first TRP determines the reference delay according to the determined reference delay and The first delay is calculated to obtain the delay difference.
  • the first TRP can obtain the delay difference between the first delay and the reference delay in multiple implementation manners, which are not specifically limited here.
  • the above three manners are merely illustrative, explaining the diversity of implementation manners for the first TRP to obtain the delay difference between the first delay and the reference delay.
  • the first TRP receives the measurement signal from the corresponding UE, It may be a channel sounding reference signal (Sounding Reference Signal, SRS).
  • SRS Sounding Reference Signal
  • the second aspect of the embodiments of the present application also provides a data transmission delay compensation method, which specifically includes:
  • the UE will first determine the delay difference according to the first delay and the second delay, where the first delay is the delay between the UE and the first TRP, and the second The delay is the delay difference between the same UE and the second delay, and the first delay is less than the second delay.
  • the first TRP and the second TRP are two different ones of the at least two TRPs. TRP.
  • the UE In addition to calculating the delay difference based on the first and second delays received from the first TRP and the second TRP, the UE also receives the first downlink pilot from the first TRP and the second TRP.
  • the second downlink pilot because the first delay refers to the time spent in data transmission between the first TRP and the UE, and the first downlink pilot is the data sent by the first TRP to the UE (belonging to the above One of the aforementioned data transmission), therefore, the delay of the first downlink pilot is the first delay, and similarly, the delay of the second downlink pilot is the second delay.
  • the UE After the UE obtains the delay difference between the first delay and the second delay, it will perform corresponding phase rotation compensation on the second downlink pilot in the frequency domain according to the delay difference to obtain the third downlink pilot.
  • Channel estimation will be performed on the first downlink pilot and the third downlink pilot respectively to obtain the first channel characteristic and the second channel characteristic, where the first channel characteristic is the channel between the first TRP and the UE Features, the second channel feature is the channel feature between the second TRP and the UE.
  • the UE obtains the delay difference between the first delay and the second delay, it also performs channel estimation on the first downlink pilot and the third downlink pilot respectively to obtain the first channel feature and the second channel feature , Then the UE can further perform phase rotation reverse compensation on the second channel feature in the frequency domain according to the delay difference to obtain the third channel feature.
  • the UE can decode the service data (including the first service data sent by the first TRP and the second service data sent by the second TRP) according to the obtained first channel characteristic and the third channel characteristic.
  • the second downlink pilot sent by the UE through the time-extended TRP first performs phase rotation compensation in the frequency domain (using the first delay and the The time delay difference between the second time delays corresponding to the two TRPs is subjected to phase rotation reverse compensation) to obtain the third downlink pilot, and further channel estimation is performed according to the third downlink pilot to obtain the second channel feature, and the above operations are used to achieve the The purpose of channel estimation is more accurate; then, according to the delay difference between the first delay corresponding to the first TRP and the second delay corresponding to the second TRP, the second channel feature is phase-rotated in the frequency domain. Reverse compensation to obtain the third channel characteristic, and finally jointly decode the service data according to the first channel characteristic and the third channel characteristic, and reverse compensation through phase rotation to match the service data with the actual service data.
  • the frequency domain data of the third pilot can be expressed as Y 2 (jw), and the frequency domain data of the second pilot It can be expressed as Y 1 (jw), and the delay difference can be expressed as ⁇ t, then the relationship between Y 2 (jw), Y 1 (jw) and ⁇ t satisfies:
  • the frequency domain data of the third channel feature can be expressed as Z 2 (jw)
  • the frequency domain data of the second channel feature can be expressed as Z 1 (jw), Z 1 (jw), Z 2 (jw), and ⁇ t
  • the expressions of the second downlink pilot and the third downlink pilot in the frequency domain and the expressions of the second channel feature and the third channel feature in the frequency domain are respectively given, and further Explains the relationship between the second downlink pilot, the third downlink pilot, and the delay difference, as well as the relationship between the second channel characteristics, the third channel characteristics, and the delay difference, which are eliminated in this way.
  • the UE obtains the first delay corresponding to the first TRP
  • the second delay corresponding to the second TRP can be obtained in the following manner: First, the UE receives the first timing signal from the first TRP and the second timing signal from the second TRP respectively, the first timing signal and the second timing signal
  • the first TRP and the second TRP are sent at the same time, and the first timing signal and the second timing signal are staggered in the frequency domain, so that when the UE receives the first timing signal and the second timing signal, due to the two timing signals
  • the signals are inconsistent in the frequency domain, and the UE can easily separate the two timing signals.
  • the UE can determine the first time delay and the second time delay through the received first timing signal and the second timing signal.
  • the timing signal (including the first timing signal and the second timing signal) may be a synchronization timing signal TRS can also be other types of signals.
  • TRS can also be other types of signals.
  • the signal can realize the function of determining the time delay between the UE and the TRP, it can be called a timing signal.
  • the specific form of the timing signal is not limited here.
  • the first TRS and the second TRS a specific manifestation of the timing signal is given, that is, the first TRS and the second TRS.
  • the TRS is easy to obtain and universal.
  • the third aspect of the embodiments of the present application provides a TRP.
  • the TRP as the first TRP, specifically includes:
  • the determining module is configured to determine a first delay, where the first delay is an uplink delay between the first TRP and a terminal equipment UE, and the first TRP is at least two sets that together provide services for the UE.
  • An acquiring module configured to acquire a delay difference between the first delay and a reference delay, where the reference delay is among the at least two acquired uplink delays between the at least two TRPs and the UE
  • the reference delay may be the shortest one of the at least two uplink delays, where the at least two TRPs correspond to the at least two uplink delays in a one-to-one correspondence;
  • a compensation module configured to perform phase rotation compensation on the first downlink data in the frequency domain according to the time delay difference to obtain second downlink data
  • the sending module is configured to send the second downlink data to the UE.
  • the frequency domain data of the second downlink data is expressed as X 2 (jw), and the first downlink data
  • the frequency domain data of is expressed as X 1 (jw)
  • the time delay difference is ⁇ t
  • the determining module is specifically configured to: The UE receives the measurement signal; and performs channel estimation according to the measurement signal to obtain the first time delay.
  • the acquisition module is specifically Used to: send the first delay to a second TRP, where the second TRP is the other of the at least two TRPs; and receive the reference delay from the second TRP; finally, according to the Calculating the delay difference with the first delay and the reference delay;
  • the acquiring module is specifically configured to: send the first delay to the second TRP, so that the second TRP calculates the delay difference according to the first delay and the reference delay; and Receiving the delay difference from the second TRP;
  • the acquiring module is specifically configured to: receive at least one uplink delay from the at least two TRPs other than the first TRP; and according to the at least one uplink delay and the first delay Determine the reference time delay; finally, calculate the time delay difference according to the first time delay and the reference time delay.
  • the measurement signal includes : Channel Sounding Reference Signal SRS.
  • the fourth aspect of the embodiments of the present application provides a UE, which specifically includes:
  • the determining module is configured to determine the delay difference according to the first delay and the second delay, where the first delay is the delay between the UE and the first TRP, and the second delay is the delay between the UE and the first TRP.
  • the receiving module is configured to receive a first downlink pilot from the first TRP and a second downlink pilot from the second TRP, wherein the time delay of the first downlink pilot is the first time delay , The time delay of the second downlink pilot is the second time delay;
  • the first compensation module is configured to perform phase rotation compensation in the frequency domain on the second downlink pilot according to the time delay difference to obtain a third downlink pilot;
  • the channel estimation module is configured to perform channel estimation on the first downlink pilot and the third downlink pilot respectively to obtain a first channel characteristic and a second channel characteristic, wherein the first channel characteristic is the first channel characteristic A channel characteristic between the TRP and the UE, and the second channel characteristic is the channel characteristic between the second TRP and the UE;
  • a second compensation module configured to perform phase rotation inverse compensation on the second channel feature in the frequency domain according to the time delay difference to obtain a third channel feature
  • the decoding module is configured to decode service data according to the first channel characteristic and the third channel characteristic.
  • the frequency domain data of the third pilot is expressed as Y 2 (jw)
  • the second pilot is The frequency domain data is expressed as Y 1 (jw)
  • the time delay difference is ⁇ t
  • the frequency domain data of the third channel characteristic is expressed as Z 2 (jw)
  • the frequency domain data of the second channel characteristic is expressed as Z 1 (jw), Z 1 (jw), Z 2 (jw), and ⁇ t.
  • Z 2 (jw) e jw ⁇ t *Z 1 (jw).
  • the determining module is based on the first delay and Before the second delay determines the delay difference, the determining module is further configured to:
  • the first timing signal and the second timing signal are sent simultaneously and staggered in the frequency domain;
  • the first time delay and the second time delay are determined according to the first timing signal and the second timing signal.
  • the first timing signal includes: a first synchronization timing signal TRS;
  • the timing signal includes: the second TRS.
  • the fifth aspect of the embodiments of the present application also provides a TRP.
  • the TRP serves as the first TRP.
  • the TRP may include: a memory, a transceiver, a processor, and a bus system.
  • the memory, the transceiver, and the processor pass through the bus system. Connection; where the memory is used to store programs and instructions; the transceiver is used to receive or send information under the control of the processor; the processor is used to call the instructions stored in the memory to execute the first aspect and any of the first aspects of the embodiments of the present application A method in an achievable way.
  • the sixth aspect of the embodiments of the present application further provides a UE.
  • the UE may include a memory, a transceiver, a processor, and a bus system.
  • the memory, the transceiver, and the processor are connected through the bus system; wherein the memory is used for Store programs and instructions; the transceiver is used to receive or send information under the control of the processor; the processor is used to call the instructions stored in the memory to execute the first aspect of the embodiments of the present application and the method in any one of the first aspects. .
  • a seventh aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a TRP or a chip in the TRP.
  • the communication device includes a processor.
  • the processor is configured to execute a computer program or instruction so that the communication device executes the first Aspect and the method in any implementable manner of the first aspect.
  • the communication device further includes the memory.
  • the processor is coupled with a memory, and the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions in the memory.
  • the communication device may further include a communication unit, and the communication unit is used to communicate with other devices or other components in the communication device.
  • the communication device is a TRP
  • the communication unit is a transceiver.
  • the communication device is a chip in TRP, and the communication unit is an input/output circuit or interface of the chip.
  • the eighth aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a UE or a chip in the UE.
  • the communication device includes a processor configured to execute a computer program or instruction so that the communication device executes a second Aspect and the method in any implementable manner of the first aspect.
  • the communication device further includes the memory.
  • the processor is coupled with a memory, and the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions in the memory.
  • the communication device may further include a communication unit, and the communication unit is used to communicate with other devices or other components in the communication device.
  • the communication device is a UE, and the communication unit is a transceiver.
  • the communication device is a chip in the UE, and the communication unit is an input/output circuit or interface of the chip.
  • the ninth aspect of the embodiments of the present application provides a chip, the chip includes a processor and an interface circuit, the interface circuit is coupled to the processor, and the processor is used to run a computer program or instruction to implement the first aspect and the second aspect.
  • the interface circuit is used to communicate with other modules outside the chip.
  • a tenth aspect of the embodiments of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can execute any one of the first aspect and the first aspect.
  • the eleventh aspect of the embodiments of the present application provides a computer program product containing instructions, which when running on a computer, enables the computer to execute the method in any one of the foregoing first aspect and the first aspect, or the foregoing second aspect. Aspect, any one of the possible implementation methods of the second aspect.
  • the UE will send measurements to multiple TRPs (the multiple TRPs are the TRPs that provide services to the UE together, and the multiple TRPs include at least two TRPs).
  • each TRP (may be called the first TRP) of the multiple TRPs can obtain the time delay of the measurement signal reaching the TRP (may be called the first delay) according to the time point of the acquired measurement signal, and The time delay difference between the first time delay and the reference time delay can be further obtained (the shortest time delay among the multiple time delays obtained by the above multiple TRPs is called the reference time delay), and finally, each TRP Both can perform phase rotation compensation in the frequency domain on the first downlink data to be sent to the UE according to the obtained delay difference to obtain the updated second downlink data, and send the obtained second downlink data to the UE.
  • the delay of the signal in the time domain is equivalent to the change in the phase of the signal in the frequency domain.
  • each TRP of the plurality of TRPs to the UE is received by the UE at different times in time.
  • each downlink data is compensated for the corresponding phase rotation in the frequency domain according to the corresponding delay difference, in the frequency domain, it can be equivalently understood that the UE receives the downlink data sent by each TRP at the same time. This eliminates the impact of the unsynchronization of the downlink data sent by each TRP to the same UE in the time domain, and finally makes the channel estimation more accurate, so that the downlink data received by the UE from each TRP will not be in the frequency domain.
  • Frequency selection is generated on the upstream, and the delay compensation method described in the embodiment of the application does not limit the number of TRPs, which can enable multiple TRPs (that is, at least two TRPs) that provide services for the UE together to issue downlink data In the frequency domain, it is equivalent to reaching the same UE served at the same time, which breaks through the related delay compensation method in the prior art that can only apply to two TRPs.
  • FIG. 1 is a schematic diagram of the network architecture of the UCNC technology in an embodiment of the application
  • FIG. 2 is a schematic diagram of a process in which a serving TRP and a cooperative TRP use a joint sending manner to send downlink data to the UE;
  • FIG. 3 is a schematic diagram of a method for delay compensation of data transmission in an embodiment of the application
  • FIG. 4 is a schematic diagram of a data transmission implementation manner in an embodiment of the application.
  • FIG. 5 is another schematic diagram of a method for delay compensation of data transmission in an embodiment of the application.
  • FIG. 6 is a schematic diagram of the implementation of data transmission on the UE side according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of the first TRP according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of a UE according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of the first TRP (take a base station as an example) according to an embodiment of the application.
  • FIG. 10 is another schematic diagram of a UE according to an embodiment of the application.
  • FIG. 1 is a schematic diagram of the network architecture of the UCNC technology in the embodiment of this application. It can be seen from Figure 1 that when the UE is in the position A shown in Figure 1, TRP1, TRP2, TRP3, and TRP4 are provided for the UE. Network services; when the UE moves to location B shown in Figure 1, TRP4, TRP5, and TRP6 provide network services for the UE; when the UE moves to location C shown in Figure 1, TRP6, TRP7 provides network services for the UE.
  • the network resources of multiple TRPs can be used to transmit data with the same UE, thereby weakening the probability of the cell edge of the traditional cellular network, so that each TRP can provide better network management and configuration for the UE. Improved user experience.
  • the TRP in the embodiment of the present application may be a base station, for example, it may be a 2G, 3G, 4G base station, or a 5G base station, and the TRP is not specifically limited here.
  • TRP TRP
  • the UE is in the intersection of the multiple TRP cells.
  • one of the two TRPs is called Serving TRP, and the other is called cooperative TRP.
  • the UE is in both the cell coverage of the serving TRP and the cell coverage of the cooperative TRP (the area covered by both cells can be called the cooperative area), in order to improve the UE’s data
  • the number of streams or signal quality, TRP will enable joint transmission when sending downlink data to the UE.
  • the specific process can be as follows: the UE first sends an uplink signal to each TRP.
  • each TRP After each TRP receives the uplink signal, it can know which TRP cooperation area the UE is in (as shown in Figure 2 for serving TRP and cooperation TRP). ), the serving TRP and cooperative TRP in Figure 2 have determined that the UE is in the cooperation area of the serving TRP and the cooperative TRP.
  • the serving TRP and cooperative TRP in Figure 2 When sending downlink data to the UE, it will use DL CoMP to transmit data to the UE to improve the UE’s The throughput rate of the collaboration area.
  • the two TRPs serving TRP and cooperative TRP
  • the synchronization timing signal is a broadcast signal that is sent by the serving TRP and the cooperation TRP at the same time.
  • the two synchronization timing signals sent by the serving TRP and the cooperative TRP will be successively obtained, and the UE will be timed according to the synchronization timing signal obtained first, then when the serving TRP and the cooperative TRP simultaneously send downlink data to the UE (in Figure 2
  • the downlink data sent by the serving TRP can be called Data1
  • the downlink data sent by the cooperative cell can be called Data2
  • Data1 and Data2 are sent at the same time.
  • the downlink delay of the UE is also different (assuming that the delay of Data1 is less than the delay of Data2, the delay difference between the two is ⁇ t0), because the UE has already timed the synchronization timing signal acquired first, then the UE will acquire it first To Data1, get Data2 after the interval of ⁇ t0.
  • the UE will perform multipath delay expansion processing on the obtained Data2, that is, use the adaptive Wiener filter algorithm to resist the existing delay difference to eliminate as much as possible Data1 and Data2 cannot arrive at the UE synchronously, because if the downlink data cannot arrive at the UE synchronously, then it does not matter whether it is the downlink data received by the UE first (i.e. Data1) or the downlink data received later (i.e. Data2)
  • the UE performs channel estimation on the two downlink data there will be a problem of channel mismatch between the two downlink data, which affects channel equalization and ultimately affects the demodulation performance of the UE.
  • an embodiment of the present application provides a delay compensation method for data transmission.
  • the delay compensation method can be implemented from the TRP side machine or It can be implemented on the UE side, which is not specifically limited here.
  • the following describes the data transmission delay compensation method in the embodiment of the present application from the TRP side and the UE side respectively:
  • the delay compensation method of data transmission is applied to TRP.
  • the first TRP determines a first delay.
  • the first TRP will first determine the uplink delay between the first TRP and the UE communicating with it (the uplink delay can be called the first delay), because the UCNC technology is used between the TRP and the UE. Therefore, there are at least two TRPs serving the same UE, and the first TRP is any one of the at least two TRPs.
  • the specific manner for the first TRP to determine the first delay may be as follows: first, the first TRP receives a measurement signal from the corresponding UE, and then the first TRP then performs the measurement according to the measurement signal. Channel estimation is performed on the signal, that is, the delay deviation is measured for the first time delay according to the measurement signal, so as to obtain the first time delay. It should also be noted that the function of the measurement signal is to enable the first TRP to use the measurement signal to perform channel estimation so as to calculate the uplink delay between the first TRP and the corresponding UE (ie, the first delay). There are many manifestations, for example, it can be SRS or other forms of signals. The specific form of the measurement signal is not limited here.
  • the first TRP obtains the delay difference between the first delay and the reference delay.
  • the first TRP After the first TRP determines the first delay, it will further obtain the delay difference between the first delay and the reference delay.
  • the reference delay is at least two obtained between the at least two TRPs and the same UE.
  • One of the two uplink delays may be the shortest one of the at least two uplink delays obtained between the at least two TRPs and the same UE, or it may be a randomly selected one. It is not limited here.
  • the reference delay is the shortest of the at least two uplink delays obtained between the at least two TRPs and the same UE. Take it as an example. Among them, at least two TRPs are in one-to-one correspondence with at least two delays, respectively.
  • TRPs (denoted as TPR11, TRP12, TRP13, and TRP14 respectively) at a certain moment, then the above-mentioned at least two TRPs are 4
  • the four TRPs can all determine the uplink delay between each TRP and the UE in a similar manner to step 301.
  • the uplink delay determined by each TRP can be marked as T1, T2, T3, and T4 respectively, that is, TRP11 corresponds to The delay is T1, the delay corresponding to TRP12 is T2, the delay corresponding to TRP13 is T3, and the delay corresponding to TRP14 is T4.
  • TRP12, TRP13 or TRP14 of these 4 TRPs is designated as the first TRP
  • the delay difference ⁇ t22 between T2, T3 or T4 and the reference delay T2 can also be obtained in the same way as TRP11.
  • ⁇ t32, ⁇ t42, namely ⁇ t22 T2-T2
  • ⁇ t32 T3-T2
  • ⁇ t42 T4-T2.
  • the first TRP determines that the first TRP is the reference TRP (if determined TRP22 is the reference TRP).
  • the reference TRP can directly send the corresponding downlink data (also called reference downlink data) to the UE.
  • the corresponding downlink data sent by TRP22 to the UE is Data12
  • Data12 is the reference downlink data. .
  • the first TRP can obtain the delay difference between the first delay and the reference delay in multiple implementation manners, which are not specifically limited here.
  • Several specific implementation manners for the first TRP to obtain the delay difference between the first delay and the reference delay are exemplarily described below:
  • the first TRP receives the reference delay from the second TRP, and calculates the delay difference based on the first delay and the reference delay.
  • the first TRP will send the first TRP corresponding to the first TRP to the second TRP, the second TRP being the other of the at least two TRPs mentioned above; after that, the first TRP will start from the second TRP.
  • the reference delay is received in the middle, the reference delay is determined by the second TRP; finally, the first TRP will calculate the first delay and the reference delay based on the first delay and the reference delay obtained from the second TRP. Delay difference between delays.
  • each TRP is determined to correspond to each other.
  • the respective determined uplink delay will be sent to any one of the other three TRPs except TRP11 (assuming TRP11 is the first TRP).
  • the other three can be determined according to the preset method.
  • One of the TRPs is the second TRP, and one of the other three TRPs can be determined as the second TRP according to a random designation method.
  • the specific method for determining the second TRP is not limited here, as long as the first TRP and the The second TRP does not need to be the same TRP.
  • TRP13 determines which of T1, T2, T3 (T3 has been determined by TRP13 itself), and T4 is the shortest. As mentioned above, assuming that TRP13 determines the shortest duration of T2, TRP13 can further determine that T2 is the reference delay, and send the reference delay T2 to TRP11.
  • the first TRP directly receives the delay difference from the second TRP.
  • the delay difference is calculated by the second TRP based on the first delay and the reference delay.
  • the first delay is sent from the first TRP to the second TRP.
  • the first TRP sends the first TRP corresponding to the first TRP to the second TRP, and the second TRP is the other of the above-mentioned at least two TRPs; then, after the second TRP determines the reference delay, The second TRP directly calculates the delay difference according to the first delay and the reference delay, and sends the calculated delay difference to the first TRP, that is, the first TRP directly receives the first delay and the reference from the second TRP Delay difference between delays.
  • each TRP of the 4 TRPs in Figure 4 determines its corresponding uplink delay (that is, T1 to T4), it will send the respective determined uplink delay to Except TRP11 (assuming TRP11 is the first TRP) any one of the other three TRPs, if one of the other three TRPs can be determined as the second TRP according to a preset method, it can also be determined according to a randomly designated method One of the other three TRPs is the second TRP.
  • the specific method for determining the second TRP is not limited here, as long as the first TRP and the second TRP are not the same TRP.
  • the TRP11 only needs to send the first delay T1 obtained by itself to the TRP13, and receive from the TRP13 the delay difference ⁇ t12 calculated by the TRP13 according to the first delay T1 and the reference delay T2.
  • the first TRP is TRP12, TRP13, or TRP14
  • the delay difference ⁇ t22, ⁇ t32, or ⁇ t42 is also calculated in a similar manner, and the details are not repeated here.
  • the first TRP receives the uplink delays of the TRPs other than the first TRP among the at least two TRPs, and determines the reference delay, so as to calculate the delay difference between the reference delay and the first delay.
  • the first TRP receives each of the uplink delays (including at least one uplink delay) corresponding to other TRPs (including at least one TRP) from other TRPs other than the first TRP among the above at least two TRPs, And the first TRP determines the reference delay according to each uplink delay corresponding to other TRPs and the first delay obtained by itself. Finally, the first TRP determines the reference delay and the first time delay according to the determined reference delay and the first delay. Delay calculation to obtain the delay difference.
  • the first TRP obtains the delay difference between the first delay and the reference delay through the participation of the UE.
  • the first TRP obtains the delay difference between the first delay and the reference delay.
  • the difference between the first delay and the reference delay can also be obtained through the participation of the UE. Latency is poor.
  • TRP Delay difference
  • the first TRP performs phase rotation compensation on the first downlink data in the frequency domain according to the time delay difference to obtain second downlink data.
  • the delay of the signal in the time domain is equivalent to the corresponding change in the phase of the signal in the frequency domain, for example, suppose X(t) represents the time domain signal, and X(jw) represents the frequency domain signal corresponding to the time domain signal. , ⁇ t' represents the time delay difference, then X(t+ ⁇ t') and X(jw)*e jw ⁇ t' represent the expression form of the same signal in the time domain and frequency domain respectively. Therefore, after the first TRP obtains the delay difference between the first delay and the reference delay, it will perform phase rotation compensation in the frequency domain on the first downlink data to be sent to the UE according to the delay difference. Thus, the second downlink data is obtained.
  • the first TRP converts the first downlink data from an expression in the time domain to an expression in the frequency domain
  • the second downlink data is converted from an expression in the time domain to an expression in the frequency domain.
  • the frequency domain data expression X 1 (jw) of the first downlink data and the frequency domain data expression X 2 (jw) of the second downlink data are obtained.
  • w 2 ⁇ kf
  • f the subcarrier spacing
  • k the subcarrier number
  • the first TRP sends second downlink data to the UE.
  • the first TRP After the first TRP performs phase rotation compensation for the first downlink data in the frequency domain according to the time delay difference to obtain the second downlink data, it will send the second downlink data to the corresponding UE.
  • each TRP serving the at least two TRPs can be used as the first TRP to perform the delay compensation mode for data transmission as described in the embodiment corresponding to FIG. 3, each TRP of the at least two TRPs sends to the UE Although the downlink data is received by the UE at different times in time, because each downlink data is compensated for phase rotation in the frequency domain according to the corresponding delay difference, it can be equivalent in the frequency domain. It is understood that the UE receives the downlink data sent by each TRP at the same time, which eliminates the influence of the unsynchronized time domain when the downlink data sent by each TRP arrives at the same UE.
  • the UE sends measurement signals to multiple TRPs (the multiple TRPs are TRPs that provide services to the UE together, and the multiple TRPs include at least two TRPs).
  • Each of the multiple TRPs A TRP (may be called the first TRP) can obtain the time delay of the measurement signal reaching the TRP (may be called the first delay) according to the time point of the acquired measurement signal, and further obtain the first delay and
  • the delay difference between the reference delays (the shortest delay among the multiple delays obtained by the above multiple TRPs is called the reference delay).
  • each TRP can be adjusted according to the obtained delay difference.
  • the first downlink data to be sent to the UE undergoes phase rotation compensation in the frequency domain to obtain the updated second downlink data, and the obtained second downlink data is sent to the UE, because the signal delay in the time domain is equivalent Due to the changes in the phase of the signal in the frequency domain, the downlink data sent by each TRP to the UE in the plurality of TRPs is received by the UE at different moments in time, but because each downlink data is based on The corresponding delay difference has been compensated for phase rotation in the frequency domain. Therefore, in the frequency domain, it can be equivalently understood that the UE receives the downlink data sent by each TRP at the same time, thus eliminating the downlink data sent by each TRP.
  • the delay compensation method described in the example has no limitation on the number of TRPs, which can make the downlink data issued by multiple TRPs (ie at least two TRPs) serving the UE together in the frequency domain are equivalent to arriving at the same time.
  • the same UE served breaks through the related delay compensation method in the prior art that can only apply to two TRPs.
  • the delay compensation method for data transmission is applied to the UE.
  • the UE determines a delay difference according to the first delay and the second delay.
  • the UE will first determine the delay difference according to the first delay and the second delay, where the first delay is the delay between the UE and the first TRP, and the second The delay is the delay difference between the same UE and the second delay, and the first delay is less than the second delay.
  • the first TRP and the second TRP are two different ones of the at least two TRPs. TRP. It should be noted that in some embodiments of the present application, the UE can obtain the first delay corresponding to the first TRP and the second delay corresponding to the second TRP through but not limited to the following methods: First, the UE obtains the first delay corresponding to the first TRP and the second delay corresponding to the second TRP.
  • a TRP receives a first timing signal and a second timing signal from a second TRP.
  • the first timing signal and the second timing signal are sent by the first TRP and the second TRP at the same time, and the first timing signal and the second timing signal
  • the signals are staggered in the frequency domain, so that when the UE receives the first timing signal and the second timing signal, since the two timing signals are inconsistent in the frequency domain, the UE can easily separate the two timing signals.
  • the UE can determine the first time delay and the second time delay by the existing technical means based on the received first timing signal and the second timing signal.
  • the timing signal (including the first timing signal and the second timing signal) can be a synchronization timing signal TRS, or other types of signals, as long as the signal can determine the UE
  • TRS synchronization timing signal
  • the time delay between TRP and TRP can be called a timing signal, and the specific form of the timing signal is not limited here.
  • Figure 2 shows that the UE is in the cooperation area of two TRPs (serving TRP and cooperative TRP respectively).
  • the UE will send two timings to the serving TRP and the cooperative TRP respectively. Signal (assuming that these two timing signals are called Xa and Xb respectively), these two timing signals are sent by the serving TRP and the cooperative TRP at the same time, and Xa and Xb are staggered in the frequency domain; after that, the UE receives Xa and Xb respectively determine the delay between the serving TRP and the UE (assuming the delay is called Ta) and the delay between the cooperative TRP and the UE (assuming the delay is called Tb), and the UE obtains these two After the delay, the two delays Ta and Tb will be compared. If Tb-Ta>0, the UE determines that the serving TRP is the first TRP, the cooperative TRP is the second TRP, and further determines that Ta is the first TRP. Delay and Tb are the second
  • the UE receives a first downlink pilot from the first TRP and a second downlink pilot from the second TRP.
  • the UE In addition to calculating the delay difference based on the first and second delays received from the first TRP and the second TRP, the UE also receives the first downlink pilot from the first TRP and the second TRP.
  • the second downlink pilot Since the first delay refers to the time spent in data transmission between the first TRP and the UE, and the first downlink pilot is the data sent by the first TRP to the UE (belonging to the data transmission mentioned above) Therefore, the time delay of the first downlink pilot is the first time delay, and similarly, the time delay of the second downlink pilot is the second time delay.
  • the first TRP in addition to sending the first timing synchronization signal and the first downlink pilot to the UE, the first TRP also sends service data (which may be referred to as first service data) to the UE. It refers to the data needed when the first TRP conducts business with the UE.
  • service data which may be referred to as first service data
  • the first TRP may send a data packet (may be called the first data packet) to the UE, and the first data packet includes the first timing synchronization signal, the first downlink pilot, First service data; the first TRP may also first send the first timing synchronization signal to the UE, so that after the UE first determines the first time delay according to the first timing synchronization signal, the first TRP then sends the second data packet to the UE,
  • the second data packet includes the first downlink pilot and first service data.
  • how the first TRP sends the first timing synchronization signal, the first downlink pilot, and the first service data are not described here. limited.
  • the second TRP a data transmission method similar to the first TRP can be used, that is, the second TRP will not only send the second timing synchronization signal and the second downlink pilot to the UE, but also send service data to the UE ( It can be called second service data), the second service data refers to the data used when the second TRP conducts services with the UE.
  • the second TRP may send a data packet to the UE.
  • the third data packet includes the second timing synchronization signal, the second downlink pilot, and the second service data; the second TRP may also send the second timing synchronization signal to the UE first, so that After the UE first determines the second time delay according to the second timing synchronization signal, the second TRP sends a fourth data packet to the UE.
  • the fourth data packet includes the second downlink pilot and the second service data, specifically here The manner in which the second TRP sends the second timing synchronization signal, the second downlink pilot, and the second service data is not limited.
  • first TRP and the second TRP respectively send the first data packet (or the second data packet) and the third data packet (or the fourth data packet) to the same UE at the same time, but due to the existence of The time delay is poor, so the UE receiving the first data packet (or the second data packet) and the third data packet (or the fourth data packet) are not at the same time.
  • Figure 6 Take the first data packet and the third data packet that the UE receives as an example. Although the UE receives the first data packet and the third data packet at different times, the The delay difference between the two TRPs is not very large.
  • the UE only It will sense that a data packet is received (as shown in Figure 6, which can be called a target data packet).
  • the target data packet includes the first data packet sent by the first TRP and the third data packet sent by the second TRP.
  • the UE receives After the target data packet, the front-end processing is performed first, that is, Cyclic Prefix (CP) and Fast Fourier Transformation (FFT) are performed to transform the time domain data of the target data packet into the target data.
  • CP Cyclic Prefix
  • FFT Fast Fourier Transformation
  • the UE After the frequency domain data of the packet, the UE will perform channel separation to extract and separate the first timing signal, the second timing signal, the first downlink pilot, and the second downlink pilot from the target data packet.
  • the first timing signal has two functions: 1) Measuring the first delay between the first TRP and the UE; 2) Performing the measurement of the first delay extension, and the measured first delay extension is used for Determine the channel interpolation (may be referred to as the first channel interpolation).
  • the first channel interpolation may be the value of the Wiener filter coefficient, and may also be referred to as the first Wiener filter interpolation.
  • the function of the first downlink pilot is to perform channel estimation to obtain the first channel characteristic.
  • the first channel feature includes the channel feature of the first downlink pilot and the channel feature of the first service data.
  • the specific process for the UE to perform channel estimation according to the first downlink pilot to obtain the first channel characteristic may be as follows: first, the UE first determines the channel characteristic of the first downlink pilot, and then uses the first channel interpolation (The first channel interpolation is obtained by the first delay spread measurement performed by the UE according to the first timing signal) Interpolate the channel characteristics of the first downlink pilot to obtain the channel characteristics of the first service data, which can then be determined
  • the first channel characteristic, the first channel characteristic includes the channel characteristic of the first downlink pilot and the channel characteristic of the first service data.
  • the second timing signal has similar functions, that is, the second timing signal has two functions: 1) measure the second delay between the second TRP and the UE; 2) measure the second delay spread, and measure The obtained second delay spread is used to determine the channel interpolation (which can be referred to as the second channel interpolation).
  • the second channel interpolation can be the value of the Wiener filter coefficient, and can also be referred to as the second Wiener filter interpolation.
  • the role of the second downlink pilot is to perform channel estimation to obtain the second channel characteristic.
  • the second channel feature includes the channel feature of the second downlink pilot and the channel feature of the second service data.
  • the specific process for the UE to perform channel estimation according to the second downlink pilot to obtain the second channel characteristic may be as follows: first, the UE first determines the channel characteristic of the second downlink pilot, and then uses the second channel interpolation (the first The two-channel interpolation is obtained by the second delay spread measurement performed by the UE according to the second timing signal) Interpolate the channel characteristics of the second downlink pilot to obtain the channel characteristics of the second service data, so that the second channel can be determined Features.
  • the second channel feature includes the channel feature of the second downlink pilot and the channel feature of the second service data.
  • step 501 can be performed first, then step 502, or step 502 can be performed first, then step 501, or steps 501 and 502 can be performed simultaneously.
  • the sequence between 501 and step 502 is not limited.
  • the UE performs phase rotation compensation in the frequency domain on the second downlink pilot according to the time delay difference to obtain the third downlink pilot.
  • the delay of the signal in the time domain is equivalent to the corresponding change in the phase of the signal in the frequency domain, for example, suppose X(t) represents the time domain signal, and X(jw) represents the frequency domain signal corresponding to the time domain signal. , ⁇ t' represents the time delay difference, then X(t+ ⁇ t') and X(jw)*e jw ⁇ t' represent the expression form of the same signal in the time domain and frequency domain respectively. Therefore, after the UE obtains the delay difference between the first delay and the second delay, it will perform corresponding phase rotation compensation for the second downlink pilot in the frequency domain according to the delay difference to obtain the third Downlink pilot (as shown in Figure 6).
  • the first TRP transforms the second downlink pilot from an expression in the time domain to an expression in the frequency domain
  • the third downlink pilot changes from an expression in the time domain.
  • the UE performs channel estimation on the first downlink pilot and the third downlink pilot respectively to obtain the first channel characteristic and the second channel characteristic.
  • the UE After the UE performs phase rotation compensation in the frequency domain on the second downlink pilot according to the time delay difference to obtain the third downlink pilot, it will perform channel estimation on the first downlink pilot and the third downlink pilot respectively to obtain the first downlink pilot.
  • the channel characteristics and the second channel characteristics (as shown in FIG. 6), where the first channel characteristics are the channel characteristics between the first TRP and the UE, and the second channel characteristics are the channel characteristics between the second TRP and the UE. It should be noted that, in this embodiment of the application, the reason why the third downlink pilot is used for channel estimation is to eliminate the influence of the delay difference in data transmission between the first TRP and the second TRP on the channel estimation, so that Channel estimation is more accurate.
  • the first channel feature includes not only the channel feature of the first downlink pilot, but also the channel feature of the first service data.
  • the second channel feature includes not only the channel feature of the second downlink pilot, but also the channel feature of the second service data.
  • the UE performs phase rotation reverse compensation in the frequency domain on the second channel feature according to the time delay difference to obtain the third channel feature.
  • the UE After the UE obtains the delay difference between the first delay and the second delay, it also performs channel estimation on the first downlink pilot and the third downlink pilot respectively to obtain the first channel feature and the second channel feature , Then the UE can further perform phase rotation inverse compensation on the second channel feature in the frequency domain according to the delay difference to obtain the third channel feature (see FIG. 6 for details).
  • the UE changes the second channel feature from an expression in the time domain to an expression in the frequency domain, and the third channel feature is converted from an expression in the time domain to an expression in the frequency domain.
  • the UE performs channel estimation on the second downlink pilot to obtain the second channel characteristic
  • the second channel characteristic includes the channel characteristic of the second downlink pilot and the second service.
  • the channel characteristics of the data may also determine the channel characteristics of the second downlink pilot first, and then perform phase rotation reverse compensation on the channel characteristics of the second downlink pilot to obtain the reverse-compensated second downlink
  • the channel characteristics of the pilot, and then the second channel interpolation is used to interpolate the channel characteristics of the decompensated second downlink pilot to obtain the channel characteristics of the interpolated second service data, and finally determine the corresponding second channel characteristics
  • the second channel characteristic in the embodiment of the present application includes the channel characteristic of the second downlink pilot after decompensation and the channel characteristic of the second service data after interpolation.
  • the second channel feature since the second channel feature also includes the channel feature on the second service data, the second channel feature is subjected to phase rotation reverse compensation (or the first downlink).
  • the purpose of the second channel feature obtained after the phase rotation counter-compensation is performed on the channel feature of the pilot is to match the first service data with other service data in the target data packet, so that incorrect service data is not transmitted.
  • the UE decodes the data according to the first channel characteristic and the third channel characteristic.
  • the UE can decode the first service data and the second service data that are not separated from the target data packet according to the obtained first channel characteristic and the third channel characteristic (because in the process of channel separation, the target data packet has been The first timing signal, the second timing signal, the first downlink pilot, and the second downlink pilot in are separated, and only the first service data and the second service data are left in the target data packet, which cannot be separated).
  • the embodiment corresponding to FIG. 5 uses two TRPs as an example to illustrate the delay compensation method for data transmission. In fact, it can also be applied to multiple TRPs (that is, more than two TRPs). As long as in the actual application process, as long as the UE obtains the delay difference between each TRP and the reference TRP (the TRP with the shortest instant delay), it can obtain the corresponding TRP according to the process similar to steps 501 to 505.
  • the target channel feature eg, the third channel feature
  • the service data is decoded according to the reference channel feature (eg, the first channel feature) corresponding to the reference TRP and the target channel feature corresponding to each TRP.
  • the second downlink pilot () sent by the UE through the time-extended TRP first performs phase rotation compensation in the frequency domain (using the first time delay corresponding to the first TRP and The delay difference between the second delays corresponding to the second TRP is subjected to phase rotation reverse compensation) to obtain the third downlink pilot, and further channel estimation is performed according to the third downlink pilot to obtain the second channel feature, which is achieved through the above operations
  • the purpose of channel estimation is more accurate; then, according to the delay difference between the first delay corresponding to the first TRP and the second delay corresponding to the second TRP, the second channel feature is phased in the frequency domain.
  • Rotate reverse compensation to obtain the third channel characteristic, and finally jointly decode the service data according to the first channel characteristic and the third channel characteristic. Through the phase rotation reverse compensation, the service data is matched with the actual service data.
  • the embodiment corresponding to FIG. 3 of the present application can divide the first TRP into functional modules according to the above example of the delay compensation method for data transmission.
  • each functional module can be divided corresponding to each function, or two or more
  • the functions are integrated in a processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 7 shows a schematic diagram of a first TRP
  • the first TRP provided in an embodiment of the present application may include:
  • the determining module 701 is configured to determine a first delay, where the first delay is an uplink delay between the first TRP and a terminal equipment UE, and the first TRP is one of at least two TRPs serving the UE together one of;
  • the acquiring module 702 is configured to acquire a delay difference between the first delay and a reference delay, where the reference delay is one of the at least two acquired uplink delays between the at least two TRPs and the UE
  • the reference delay may be the shortest of the at least two uplink delays obtained between the at least two TRPs and the UE, where the at least two TRPs and the at least two uplink delays are one One correspondence
  • the compensation module 703 is configured to perform phase rotation compensation for the first downlink data in the frequency domain according to the delay difference to obtain the second downlink data;
  • the sending module 704 is configured to send the second downlink data to the UE.
  • the frequency domain data of the second downlink data is expressed as X 2 (jw)
  • the frequency domain data of the first downlink data is expressed as X 1 (jw)
  • the determining module 701 is specifically configured to: receive a measurement signal from the UE, and perform channel estimation based on the measurement signal to obtain the first time delay.
  • the obtaining module 702 is specifically configured to: send the first delay to a second TRP, the second TRP being the other of the at least two TRPs; and from the first TRP
  • the second TRP receives the reference delay; finally calculates the delay difference based on the first delay and the reference delay; or, sends the first delay to the second TRP so that the second TRP is based on the first delay Time delay and the reference delay to calculate the delay difference; receive the delay difference from the second TRP; or, receive at least one uplink delay from the at least two TRPs other than the first TRP;
  • the reference delay is determined according to the at least one uplink delay and the first delay; finally, the delay difference is calculated according to the first delay and the reference delay.
  • the measurement signal includes: SRS.
  • the specific function and structure of the first TRP in the embodiment corresponding to FIG. 7 are used to implement the steps of processing by the first TRP in the foregoing FIGS. 2 to 5, and the details are not repeated here.
  • each functional module may be divided corresponding to each function, or two or two More than one function is integrated in one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 8 shows a schematic diagram of a UE, and the UE provided in an embodiment of the present application may include:
  • the determining module 801 is configured to determine the delay difference according to the first delay and the second delay, where the first delay is the delay between the UE and the first TRP, and the second delay is the difference between the UE and the first TRP. The delay between the second TRPs, where the first delay is less than the second delay;
  • the receiving module 802 is configured to receive a first downlink pilot from the first TRP and a second downlink pilot from the second TRP, wherein the time delay of the first downlink pilot is the first time delay, and the The time delay of the second downlink pilot is the second time delay;
  • the first compensation module 803 is configured to perform phase rotation compensation in the frequency domain on the second downlink pilot according to the delay difference to obtain the third downlink pilot;
  • the channel estimation module 804 is configured to separately perform channel estimation on the first downlink pilot and the third downlink pilot to obtain a first channel characteristic and a second channel characteristic, where the first channel characteristic is the first TRP and A channel characteristic between the UE, and the second channel characteristic is a channel characteristic between the second TRP and the UE;
  • the second compensation module 805 is configured to perform phase rotation reverse compensation in the frequency domain on the second channel feature according to the delay difference to obtain the third channel feature;
  • the decoding module 806 is configured to decode service data according to the first channel characteristic and the third channel characteristic.
  • the frequency domain data of the third pilot is expressed as Y 2 (jw)
  • the frequency domain data of the second pilot is expressed as Y 1 (jw)
  • the frequency domain data of the third channel characteristic is expressed as Z 2 (jw)
  • the frequency domain data of the second channel feature is expressed as Z 1 (jw)
  • the determining module 801 before the determining module 801 determines the delay difference according to the first delay and the second delay, the determining module 801 is further configured to: receive the first TRP from the first TRP. Timing signal and receiving a second timing signal from the second TRP, the first timing signal and the second timing signal are sent simultaneously and staggered in the frequency domain; and the first timing signal and the second timing signal are determined according to the first timing signal and the second timing signal. The first time delay and the second time delay.
  • the first timing signal includes: a first TRS; and the second timing signal includes: a second TRS.
  • FIG. 9 another schematic diagram of the first TRP of the embodiment of this application.
  • the first TRP is taken as an example of a base station for description, and the details are shown in FIG. 9.
  • the base station includes at least one processor 111, at least one memory 112, at least one transceiver 113, at least one network interface 114, and one or more antennas 115.
  • the processor 111, the memory 112, the transceiver 113, and the network interface 114 are connected, for example, by a bus. In the embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment. .
  • the antenna 115 is connected to the transceiver 113.
  • the network interface 114 is used to connect the base station to other communication devices through a communication link.
  • the network interface 114 may include a network interface between the base station and a core network element, such as an S1 interface, and the network interface may include a base station and other network devices ( For example, the network interface between access network devices or core network network elements, such as X2 or Xn interfaces.
  • the processor 111 is mainly used to process communication protocols and communication data, and to control the entire base station, execute software programs, and process data of the software programs. For example, it is used to support the base station to execute the corresponding embodiments in FIGS. 2 to 5 above. An action described by TRP.
  • the processor 111 may specifically perform the following actions: determine the first delay, and obtain the delay difference between the first delay and the reference delay, and then perform the first download according to the delay difference.
  • the line data undergoes phase rotation compensation in the frequency domain to obtain the second downlink data; finally, the second downlink data is sent to the corresponding UE.
  • the way for the processor 111 to determine the first delay may also be specifically: first receiving a measurement signal (e.g., via an air interface, a new air interface, etc.) from the corresponding UE through the network interface 114 SRS), and then perform channel estimation based on the measurement signal to obtain the first time delay.
  • a measurement signal e.g., via an air interface, a new air interface, etc.
  • the processor 111 acquiring the time delay difference between the first time delay and the reference time delay may perform but is not limited to one of the following operation modes to obtain:
  • the processor 111 may send the first time delay corresponding to the base station to another base station through the network interface 114 (for example, through the X2 interface), and the other base station is one of multiple base stations serving the same UE. Another; after that, the base station will receive the reference delay from another base station, the reference delay is determined by another base station; finally, the base station will be based on the first delay and the reference obtained from another base station The delay calculates the delay difference between the first delay and the reference delay.
  • the processor 111 may send the first time delay corresponding to the base station to another base station through the network interface 114 (for example, through the X2 interface), and the other base station is one of multiple base stations serving the same UE. Another; After that, after the base station determines the reference delay, the processor of the other base station directly calculates the delay difference according to the first delay and the reference delay, and passes the calculated delay difference through the other base station's The network interface is sent to the base station, that is, the processor 111 directly receives the delay difference between the first delay and the reference delay from another base station.
  • the processor 111 receives other base stations (including at least one base station) from other base stations other than the current base station from the multiple base stations that provide services for the UE through the network interface 114 (for example, through the X2 interface). Each uplink delay (including at least one uplink delay), and the processor 111 determines the reference delay according to each uplink delay corresponding to other base stations and the first delay obtained by itself, and finally, The second processor 111 calculates the time delay difference according to the determined reference time delay and the first time delay.
  • the base station may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire base station, execute software programs, and process data of the software programs.
  • the processor 111 in FIG. 9 can integrate the functions of a baseband processor and a central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the base station may include multiple baseband processors to adapt to different network standards, the base station may include multiple central processors to enhance its processing capabilities, and various components of the base station may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the memory is mainly used to store software programs and data.
  • the memory 112 may exist independently and is connected to the processor 111.
  • the memory 112 may be integrated with the processor 111, for example, integrated in one chip.
  • the memory 112 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 111 controls the execution.
  • Various types of computer program codes that are executed can also be regarded as drivers of the processor 111.
  • Figure 9 shows only one memory and one processor. In an actual base station, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in the embodiment of the present application.
  • the transceiver 113 may be used to support the reception or transmission of radio frequency signals between the base station and the terminal, for example, to support operations such as the base station sending second downlink data to the UE and the base station receiving measurement signals from the UW in the embodiment of the present application.
  • the transceiver 113 may be connected to the antenna 115.
  • the transceiver 113 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 115 can receive radio frequency signals
  • the receiver Rx of the transceiver 113 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 111, so that the processor 111 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 113 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 111, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 115 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and the digital-to-analog conversion processing
  • the order of precedence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver may also be referred to as a transceiver unit, transceiver, transceiver, and so on.
  • the device used to implement the receiving function in the transceiver unit can be regarded as the receiving unit
  • the device used to implement the transmitting function in the transceiver unit can be regarded as the transmitting unit. That is, the transceiver unit includes a receiving unit and a transmitting unit, and the receiving unit is also It can be called a receiver, an input port, a receiving circuit, etc., and a sending unit can be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the steps performed by the first TRP in the embodiments corresponding to FIG. 2 to FIG. 5 can be implemented based on the structure shown in FIG. 9.
  • FIG. 10 it is another schematic diagram of a UE according to an embodiment of this application.
  • the UE may include mobile phones, tablet computers, smart watches, personal computers, and so on. Take UE as a mobile phone as an example:
  • the mobile phone includes a radio frequency (RF) circuit 1010, a memory 1020, an input unit 1030, a display unit 1040, a sensor 1050, an audio circuit 1060, a WiFi module 1070, a processor 1080, a power supply 1090 and other components.
  • RF radio frequency
  • FIG. 10 does not constitute a limitation on the mobile phone, and may include more or less components than those shown in the figure, or a combination of certain components, or different component arrangements.
  • the RF circuit 1010 can be used to send and receive information or to receive and send signals during a call.
  • the base station e.g., the base station shown in FIG. 9 includes the 5G new air interface
  • downlink information e.g., the No.
  • the processor 1080 After receiving the first downlink data, second downlink data, service data, etc., it is processed by the processor 1080.
  • the uplink data is sent to the base station.
  • the RF circuit 1010 may specifically perform the following actions: After the UE determines the delay difference according to the first delay and the second delay, the UE uses the RF circuit 1010 from the first base station (ie, The base station corresponding to Figure 9 above) receives the first downlink pilot and the second base station (that is, the other of the multiple base stations serving the UE corresponding to Figure 9 above, which may be referred to as the second base station) receives the second downlink pilot. frequency.
  • the first base station ie, The base station corresponding to Figure 9 above
  • the second base station that is, the other of the multiple base stations serving the UE corresponding to Figure 9 above, which may be referred to as the second base station
  • the UE may also receive the first timing signal from the first base station through the RF circuit 1010. (E.g., a first TRS) and receiving a second timing signal (e.g., a second TRS) from the second base station, so that the processor 1080 of the UE can determine the first time delay according to the first timing signal and the second timing signal And the second time delay.
  • a first TRS a first TRS
  • a second timing signal e.g., a second TRS
  • the RF circuit 1010 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 1010 can also communicate with the network and other devices through wireless communication.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (code division multiple access, GSM) multiple access, CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), email, short messaging service (SMS), etc.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • email short messaging service
  • the memory 1020 can be used to store software programs and modules.
  • the processor 1080 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 1020, that is, is used to execute the above-mentioned corresponding embodiments in FIGS. 2 to 6 The actions described by the UE in.
  • the processor 1080 may specifically perform the following actions: the processor 1080 determines the delay difference according to the first delay and the second delay, where the first delay is the same as that of the mobile phone and FIG. 9 above.
  • the time delay between the corresponding base stations i.e. the first base station.
  • the second time delay is the time delay between the mobile phone and another base station (i.e. the second base station) of the multiple base stations serving the UE corresponding to Figure 9 above.
  • the first time delay is less than the second time delay; after that, the processor 1080 receives the first downlink pilot from the first base station and the second downlink pilot from the second base station through the RE circuit 1010, where the first downlink pilot
  • the time delay of the line pilot is the first time delay
  • the time delay of the second downlink pilot is the second time delay
  • the processor 1080 performs the phase in the frequency domain on the second downlink pilot according to the obtained time delay difference
  • Rotation compensation is used to obtain the third downlink pilot
  • the processor 1080 also performs channel estimation on the first downlink pilot and the third downlink pilot respectively to obtain the first channel characteristic and the second channel characteristic, where the first channel characteristic is the first channel characteristic.
  • a channel characteristic between the base station and the UE, the second channel characteristic is the channel characteristic between the second base station and the UE; finally, the processor 1080 performs phase rotation reverse compensation on the second channel characteristic in the frequency domain according to the delay difference, Obtain the third channel characteristic, and finally decode the service data according to the first channel characteristic and the third channel characteristic.
  • the processor 1080 may also receive the first timing signal from the first base station through the RF circuit 1010. (E.g., the first TRS) and receiving the second timing signal (e.g., the second TRS) from the second base station. After that, the processor 1080 determines the first delay and the second timing signal according to the first timing signal and the second timing signal. Two time delay.
  • the memory 1020 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 1020 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 1030 can be used to receive input digital or character information, and generate key signal input related to the user settings and function control of the mobile phone.
  • the input unit 1030 may include a touch panel 1031, an under-screen fingerprint 1032, and other input devices 1033.
  • the touch panel 1031 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1031 or near the touch panel 1031. Operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1031 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1080, and can receive and execute the commands sent by the processor 1080.
  • the touch panel 1031 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 1030 can also include other input devices 1033.
  • other input devices 1033 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick. It should be noted that in some full-screen mobile phones, in addition to the touch panel 1031, the input unit 1030 may also include an under-screen fingerprint 1032 (for example, an optical fingerprint, an ultrasonic fingerprint, etc.), which is not specifically limited here.
  • an under-screen fingerprint 1032 for example, an optical fingerprint, an ultrasonic fingerprint, etc.
  • the display unit 1040 can be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 1040 may include a display screen 1041 (also may be referred to as a display panel 1041).
  • the display unit 1040 of the mobile phone may be configured in the form of an LCD screen or an OLED screen.
  • the touch panel 1031 can cover the display screen 1041. When the touch panel 1031 detects a touch operation on or near it, it is sent to the processor 1080 to determine the type of the touch event, and then the processor 1080 responds to the touch event. Type provides corresponding visual output on display 1041.
  • the touch panel 1031 and the display screen 1041 are used as two independent components to implement the input and input functions of the mobile phone, but in some embodiments, the touch panel 1031 and the display screen 1041 can be integrated. Realize the input and output functions of the mobile phone.
  • the mobile phone may also include at least one sensor 1050, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display screen 1041 according to the brightness of the ambient light.
  • the mobile phone can obtain the ambient light brightness of the environment where the mobile phone is located through the light sensor, and further determine the brightness of the target background pattern according to the ambient light brightness.
  • the proximity sensor can turn off the display 1041 and/or the backlight when the mobile phone is moved to the ear.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary. It can be used to identify mobile phone posture applications (such as horizontal and vertical screen switching, related Games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; as for other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc., which can also be configured in mobile phones, I will not here Go into details.
  • mobile phone posture applications such as horizontal and vertical screen switching, related Games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; as for other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc., which can also be configured in mobile phones, I will not here Go into details.
  • the audio circuit 1060, the speaker 1061, and the microphone 1062 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 1060 can transmit the electric signal after the conversion of the received audio data to the speaker 1061, which is converted into a sound signal by the speaker 1061 for output; on the other hand, the microphone 1062 converts the collected sound signal into an electric signal, and the audio circuit 1060 After being received, it is converted into audio data, and then processed by the audio data output processor 1080, and then sent to, for example, another mobile phone via the RF circuit 1010, or the audio data is output to the memory 1020 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users send and receive emails, browse web pages, and access streaming media through the WiFi module 1070. It provides users with wireless broadband Internet access.
  • FIG. 10 shows the WiFi module 1070, it is understandable that it is not a necessary component of the mobile phone, and can be omitted as needed without changing the essence of the invention.
  • the processor 1080 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the entire mobile phone. It executes by running or executing software programs and/or modules stored in the memory 1020 and calling data stored in the memory 1020. Various functions and processing data of the mobile phone can be used to monitor the mobile phone as a whole.
  • the processor 1080 may include one or more processing units; preferably, the processor 1080 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc. , The modem processor mainly deals with wireless communication. It is understandable that the foregoing modem processor may not be integrated into the processor 1080.
  • the mobile phone also includes a power supply 1090 (such as a battery) for supplying power to various components.
  • a power supply 1090 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 1080 through a power management system, so that functions such as charging, discharging, and power consumption management can be managed through the power management system.
  • the mobile phone may also include a camera, a Bluetooth module, etc., which will not be repeated here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据传输的时延补偿方法、终端设备以及TRP:为UE提供服务的多个TRP确定各自与UE之间的第一时延,并获取第一时延与基准时延的时延差,各TRP根据各自时延差对将向UE发送的第一下行数据在频域上进行相位旋转补偿得到第二下行数据,并将第二下行数据向UE发送。由于信号在时域上的延迟等效于信号在频域的相位变化,因此各TRP的下行数据虽是在不同时刻被UE接收,但由于对每个下行数据都根据对应时延差在频域上进行了相位旋转补偿,因此在频域上可以等效理解为UE是在同一时间接收各TRP发送的下行数据,这样就消除了各TRP发送的下行数据到达同一个UE在时域上不同步所带来的影响,使得UE接收到的各下行数据不会在频域上产生频选。

Description

一种数据传输的时延补偿方法、终端设备以及TRP
本申请要求于2019年08月30日提交中国专利局、申请号为201910818401.0、申请名称为“一种数据传输的时延补偿方法、终端设备以及TRP”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输的时延补偿方法、终端设备以及TRP。
背景技术
在无线通信系统中,传统的蜂窝网络(也可称为移动网络)把移动电话的服务区分为一个个正六边形的小子区,每个小区(Cell)设一个基站,形成了形状酷似“蜂窝”的结构。这种以小区为中心的传统网络无法保证小区边缘的频谱效率和用户体验。基于此,一种以终端设备(User Experience,UE)为中心的名为“以用户为中心无小区(User Centric No Cell,UCNC)”新型网络架构和无线接入方式应运而生,在UCNC中,是以用户为中心,UE对小区边缘不感知,这使得用户在网络任意位置都能获得高速率和低时延的体验,其利用的主要技术是多点发送(Coordinated Multiple Points Transmission,CoMP)技术,COMP技术包括下行协作多点发送(Downlink Coordinated Multiple Points Transmission,DL CoMP)和上行协作多点发送(Uplink Coordinated Multi-Points Transmission,UL COMP)。
在COMP技术中,不再是单个传输和接收节点(Transmission and Reception Point,TRP)为UE服务,而是以UE为中心、多个TRP(例如两个TRP)一起为同一个UE提供服务,其中,UE所处服务小区对应的TRP称为服务TRP,除了服务TRP之外且也为该UE提供服务的则称为协作TRP。举例来说,当用户处于小区边缘时,为了提升用户的数据流数或信号质量,TRP在向UE发送下行数据时会采用DL COMP,也就是说,服务TRP和协作TRP分别发送下行数据给UE,以提升处于小区边缘的UE的吞吐率。
然而,当两个TRP发送的下行数据到达同一个UE,如果以先到达UE的下行数据进行定时,那么后到的下行数据就会存在较大的时延偏差(也可称为时延差),这样时延大的下行数据会在该下行数据的频域上产生较大的频选,从而影响UE的解调性能。
发明内容
本发明实施例第一方面提供了一种数据传输的时延补偿方法,具体包括:
首先,第一TRP会先确定该第一TRP以及与其进行通信的UE之间的上行时延(该上行时延可称为第一时延),由于TRP与UE之间采用的是UCNC技术进行通信的,因此为该同一个UE服务的TRP至少有两个,第一TRP即为这至少两个TRP中的任意一个。第一TRP确定了第一时延之后,将进一步获取第一时延与基准时延的时延差,该基准时延为上述至少两个TRP与该同一个UE之间的获取到的至少两个上行时延中的其中一个,在本申请的一些实施方式中,基准时延具体可以是上述至少两个上行时延中时长最短的那个,至少两个 TRP与至少两个时延分别一一对应。然后,第一TRP将会根据获取到的时延差对第一下行数据在频域上进行相位旋转补偿,得到第二下行数据;并在对第一下行数据在频域上进行相位旋转补偿得到第二下行数据之后,将该第二下行数据向对应的UE进行发送。
在本申请上述实施方式中,由于信号在时域上面的延迟等效于信号在频域上相位的变化,因此,至少两个TRP中的每一个TRP向UE发送的下行数据虽然在时间上是在不同时刻被UE所接收,但由于对每个下行数据都根据对应的时延差在频域上进行了相应的相位旋转补偿,因此在频域上可以等效理解为UE是在同一时间接收各TRP发送的下行数据,这样就消除了各个TRP发送的下行数据到达同一个UE在时域上不同步所带来的影响,最终使得信道估计更为准确,这样UE从各TRP上接收到的下行数据就不会在频域上产生频选,并且本申请实施例所述的时延补偿方法对TRP的数量没有限制,都能够使得一起为所述UE提供服务的多个TRP(即至少两个TRP)下发的下行数据在频域上等效为同时到达所服务的同一个UE,突破了目前只能适用两个TRP的已有技术中的相关时延补偿方法。
结合本申请实施例第一方面,在本申请实施例第一方面的第一种实施方式中,第二下行数据的频域数据可以表示为X 2(jw),第一下行数据的频域数据可以表示为X 1(jw),时延差可以表示为Δt,那么X 2(jw)、X 1(jw)和Δt之间的关系就满足:X 2(jw)=e -jwΔt*X 1(jw),其中,w=2πkf,f为子载波间隔,k为子载波编号。
在本申请上述实施方式中,给出了第一下行数据以及第二下行数据在频域上的表达式,并且进一步阐述了第一下行数据、第二下行数据以及时延差之间所满足的关系,通过这种方式,将时延差转换为对应的下行数据在频域上的相位差,并对该相位差进行对应的相位旋转补偿,从而消除了不同TRP之间下行数据传输时由于时延差带来的影响。
结合本申请实施例第一方面以及本申请实施例第一方面的第一种实施方式,在本申请实施例第一方面的第二种实施方式中,第一TRP确定第一时延的具体方式可以是:首先,第一TRP从对应UE处接收一个测量信号,之后第一TRP再根据该测量信号进行信道估计,也就是说,根据该测量信号对第一时延进行时延偏差的测量,从而得到第一时延。
在本申请上述实施方式中,给出了第一TRP确定第一时延的一种具体实现方式,具备灵活性。
结合本申请实施例第一方面、本申请实施例第一方面的第一种实施方式至第二种实施方式,在本申请实施例第一方面的第三种实施方式中,第一TRP获取第一时延与基准时延之间的时延差的实现方式可以是:
方式一:首先,第一TRP会向第二TRP发送第一TRP对应的第一时延,该第二TRP为上述所述的至少两个TRP中的另一个;之后,第一TRP将会从第二TRP中接收到基准时延,该基准时延是由第二TRP来确定;最后,第一TRP将根据第一时延以及从第二TRP处获取到的基准时延计算第一时延与该基准时延之间的时延差。
方式二:首先,第一TRP向第二TRP发送第一TRP对应的第一时延,该第二TRP为上述所述的至少两个TRP中的另一个;之后,第二TRP确定出基准时延之后,直接由第二TRP根据第一时延以及基准时延计算得到时延差,并将计算得到的时延差发送给第一TRP,即第一TRP直接从第二TRP接收第一时延与基准时延之间的时延差。
方式三:首先,第一TRP从上述至少两个TRP中除第一TRP之外的其他TRP处接收其他TRP(至少包括有一个TRP)分别对应的每个上行时延(至少包括有一个上行时延),并且由该第一TRP根据其他TRP分别对应的每个上行时延以及自身获取到的第一时延确定出基准时延,最后,由该第一TRP根据确定出的基准时延以及第一时延计算得到时延差。
在本申请上述实施方式中,第一TRP获取第一时延与基准时延之间的时延差可以有多种实现方式,具体此处不做限定。上述三种方式仅是示意,说明第一TRP获取第一时延与基准时延之间的时延差的实现方式的多样性。
结合本申请实施例第一方面的第二种实施方式至第三种实施方式,在本申请实施例第一方面的第四种实施方式中,第一TRP从对应UE处接收到的测量信号,可以是信道探测参考信号(Sounding Reference Signal,SRS)。
在本申请上述实施方式中,给出了测量信号的一种具体表现形式,该SRS易于获取,具备普遍性。
本申请实施例第二方面还提供了一种数据传输的时延补偿方法,具体包括:
若UE处于至少两个TRP的协作区域,那么UE首先会根据第一时延以及第二时延确定时延差,其中,第一时延为UE与第一TRP之间的时延,第二时延为该同一个UE与第二时延之间的时延差,并且第一时延小于第二时延,第一TRP与第二TRP分别为所述至少两个TRP中不同的两个TRP。UE除了会根据从第一TRP以及第二TRP接收到的第一时延以及第二时延计算时延差之外,还会从第一TRP接收第一下行导频以及从第二TRP接收第二下行导频,由于第一时延指的是第一TRP与UE之间进行数据传输时所花费的时长,而第一下行导频是由第一TRP向UE发送的数据(属于上述所述的数据传输中的一种),因此第一下行导频的时延就是所述的第一时延,类似地,第二下行导频的时延就是所述的第二时延。UE获取到第一时延与第二时延之间的时延差之后,将会根据该时延差对第二下行导频在频域上进行相应的相位旋转补偿,以得到第三下行导频,并将分别对第一下行导频以及第三下行导频进行信道估计,以得到第一信道特征以及第二信道特征,其中,第一信道特征为第一TRP与UE之间的信道特征,第二信道特征为第二TRP与UE之间的信道特征。UE获取到第一时延与第二时延之间的时延差之后,并且也分别对第一下行导频以及第三下行导频进行信道估计得到了第一信道特征以及第二信道特征,那么UE就可以进一步根据该时延差对第二信道特征进行频域上的相位旋转反补偿,以得到第三信道特征。最后,UE可以根据得到的第一信道特征以及第三信道特征对业务数据(包括第一TRP发送的第一业务数据以及第二TRP发送的第二业务数据)进行译码。
在本申请上述实施方式中,UE通过对时延长的TRP(即第二TRP)发送的第二下行导频先在频域上进行相位旋转补偿(利用第一TRP对应的第一时延与第二TRP对应的第二时延之间的时延差进行相位旋转反补偿),得到第三下行导频,并进一步根据第三下行导频进行信道估计得到第二信道特征,通过以上操作实现对信道估计更为准确的目的;之后,再根据第一TRP对应的第一时延与第二TRP对应的第二时延之间的时延差,对第二信道特征进行频域上的相位旋转反补偿,得到第三信道特征,最终根据第一信道特征以及第三信道特征联合对业务数据进行译码,通过相位旋转反补偿,是使得业务数据与实际的业务数 据匹配上。
结合本申请实施例第二方面,在本申请实施例第二方面的第一种实施方式中,第三导频的频域数据可以表示为Y 2(jw),第二导频的频域数据可以表示为Y 1(jw),时延差可以表示为Δt,那么Y 2(jw)、Y 1(jw)和Δt之间的关系就满足:
Y 2(jw)=e -jwΔt*Y 1(jw),其中,w=2πkf,f为子载波间隔,k为子载波编号。
类似地,第三信道特征的频域数据可以表示为Z 2(jw),第二信道特征的频域数据可以表示为Z 1(jw),Z 1(jw)、Z 2(jw)和Δt之间的关系就满足:
Z 2(jw)=e jwΔt*Z 1(jw),其中,w=2πkf,f为子载波间隔,k为子载波编号。
在本申请上述实施方式中,分别给出了第二下行导频、第三下行导频在频域上的表达式以及第二信道特征、第三信道特征在频域上的表达式,并且进一步阐述了第二下行导频、第三下行导频、时延差之间所满足的关系以及第二信道特征、第三信道特征、时延差之间所满足的关系,通过这种方式消除了不同TRP之间下行数据传输时由于时延差带来的影响。
结合本申请实施例第二方面以及本申请实施例第二方面的第一种实施方式,在本申请实施例第二方面的第二种实施方式中,UE获取第一TRP对应的第一时延以及第二TRP对应的第二时延可以通过如下方式得到:首先,UE分别从第一TRP接收第一定时信号以及从第二TRP接收第二定时信号,该第一定时信号以及第二定时信号由第一TRP和第二TRP在同一时刻发送,且第一定时信号与第二定时信号在频域上是错开的,这样UE在接收第一定时信号以及第二定时信号时,由于两个定时信号在频域上是不一致的,UE就能够轻易将这两个定时信号实现分离。该UE通过接收到的第一定时信号以及第二定时信号就可以确定出第一时延以及第二时延。
在本申请上述实施方式中,给出了第一TRP确定第一时延以及第二时延的一种具体实现方式,具备灵活性。
结合本申请实施例第二方面的第二种实施方式,在本申请实施例第二方面的第三种实施方式中,定时信号(包括第一定时信号以及第二定时信号)可以是同步定时信号TRS,也可以是其他类型的信号,只要信号能够实现确定UE与TRP之间的时延的作用,就都可以称之为定时信号,具体此处对定时信号的具体形式不做限定。
在本申请上述实施方式中,给出了定时信号的一种具体表现形式,即第一TRS以及第二TRS,TRS易于获取,具备普遍性。
本申请实施例第三方面提供一种TRP,该TRP作为第一TRP,具体包括:
确定模块,用于确定第一时延,所述第一时延为所述第一TRP与终端设备UE之间的上行时延,所述第一TRP为一起为所述UE提供服务的至少两个TRP中的一个;
获取模块,用于获取所述第一时延与基准时延的时延差,所述基准时延为所述至少两个TRP与所述UE之间的获取到的至少两个上行时延中的其中一个,在一些实施方式中,基准时延可以是至少两个上行时延中时长最短的那个,其中,所述至少两个TRP与所述至少两个上行时延一一对应;
补偿模块,用于根据所述时延差对第一下行数据在频域上进行相位旋转补偿,得到第二下行数据;
发送模块,用于向所述UE发送所述第二下行数据。
结合本申请实施例第三方面,在本申请实施例第三方面的第一种实现方式中,所述第二下行数据的频域数据表示为X 2(jw),所述第一下行数据的频域数据表示为X 1(jw),所述时延差为Δt,X 2(jw)、X 1(jw)和Δt之间的关系满足:X 2(jw)=e -jwΔt*X 1(jw)。
结合本申请实施例第三方面以及本申请实施例第三方面的第一种实现方式,在本申请实施例第三方面的第二种实现方式中,所述确定模块具体用于:从所述UE接收测量信号;并根据所述测量信号进行信道估计,得到所述第一时延。
结合本申请实施例第三方面、本申请实施例第三方面的第一种实现方式至第二种实现方式,在本申请实施例第三方面的第三种实现方式中,所述获取模块具体用于:向第二TRP发送所述第一时延,所述第二TRP为所述至少两个TRP中的另一个;并从所述第二TRP接收所述基准时延;最后根据所述第一时延以及所述基准时延计算所述时延差;
或,
所述获取模块具体用于:向所述第二TRP发送所述第一时延,以使所述第二TRP根据所述第一时延以及所述基准时延计算所述时延差;并从所述第二TRP接收所述时延差;
或,
所述获取模块具体用于:从所述至少两个TRP中除所述第一TRP之外的其他TRP接收至少一个上行时延;并根据所述至少一个上行时延以及所述第一时延确定所述基准时延;最后根据所述第一时延以及所述基准时延计算所述时延差。
结合本申请实施例第三方面、本申请实施例第三方面的第一种实现方式至第三种实现方式,在本申请实施例第三方面的第四种实现方式中,所述测量信号包括:信道探测参考信号SRS。
本申请实施例第四方面提供一种UE,具体包括:
确定模块,用于根据第一时延以及第二时延确定时延差,其中,所述第一时延为所述UE与第一TRP之间的时延,所述第二时延为所述UE与所述第二TRP之间的时延,所述第一时延小于所述第二时延;
接收模块,用于从所述第一TRP接收第一下行导频以及从第二TRP接收第二下行导频,其中,所述第一下行导频的时延为所述第一时延,所述第二下行导频的时延为所述第二时延;
第一补偿模块,用于根据所述时延差对所述第二下行导频进行频域上的相位旋转补偿,得到第三下行导频;
信道估计模块,用于分别对所述第一下行导频和所述第三下行导频进行信道估计得到第一信道特征和第二信道特征,其中,所述第一信道特征为所述第一TRP与所述UE之间的信道特征,所述第二信道特征为所述第二TRP与所述UE之间的信道特征;
第二补偿模块,用于根据所述时延差对所述第二信道特征进行频域上的相位旋转反补偿,得到第三信道特征;
译码模块,用于根据所述第一信道特征以及所述第三信道特征对业务数据进行译码。
结合本申请实施例第四方面,在本申请实施例第四方面的第一种实现方式中,所述第 三导频的频域数据表示为Y 2(jw),所述第二导频的频域数据表示为Y 1(jw),所述时延差为Δt,Y 2(jw)、Y 1(jw)和Δt之间的关系满足:Y 2(jw)=e -jwΔt*Y 1(jw);
所述第三信道特征的频域数据表示为Z 2(jw),所述第二信道特征的频域数据表示为Z 1(jw),Z 1(jw)、Z 2(jw)和Δt之间的关系满足:Z 2(jw)=e jwΔt*Z 1(jw)。
结合本申请实施例第四方面以及本申请实施例第四方面的第一种实现方式,在本申请实施例第四方面的第二种实现方式中,在所述确定模块根据第一时延以及第二时延确定时延差之前,所述确定模块还用于:
分别从所述第一TRP接收第一定时信号以及从所述第二TRP接收第二定时信号,所述第一定时信号与所述第二定时信号被同时发送并在频域上错开;
根据所述第一定时信号以及所述第二定时信号确定所述第一时延以及所述第二时延。
结合本申请实施例第四方面的第二种实现方式,在本申请实施例第四方面的第三种实现方式中,所述第一定时信号包括:第一同步定时信号TRS;所述第二定时信号包括:第二TRS。
本申请实施例第五方面还提供一种TRP,该TRP作为第一TRP,该TRP可以包括:存储器、收发器、处理器以及总线系统,该存储器、该收发器和该处理器通过该总线系统连接;其中,存储器用于存储程序和指令;收发器用于在处理器的控制下接收或发送信息;处理器用于调用该存储器中存储的指令执行本申请实施例第一方面以及第一方面中任一可实现方式中的方法。
本申请实施例第六方面还提供一种UE,该UE可以包括:存储器、收发器、处理器以及总线系统,该存储器、该收发器和该处理器通过该总线系统连接;其中,存储器用于存储程序和指令;收发器用于在处理器的控制下接收或发送信息;处理器用于调用该存储器中存储的指令执行本申请实施例第一方面以及第一方面中任一可实现方式中的方法。
本申请实施例第七方面提供了一种通信装置,该通信装置可以是TRP或者TRP中的芯片,该通信装置包括处理器,该处理器用于执行计算机程序或指令,使得该通信装置执行第一方面以及第一方面中任一可实现方式中的方法。
可选的,该通信装置还包括该存储器。所述处理器与存储器耦合,该存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器中的计算机程序或指令。
可选的,该通信装置还可以包括通信单元,该通信单元用于与其他设备或者该通信装置中的其他组件通信。例如,所述通信装置是TRP,该通信单元为收发器。例如,所述通信装置是TRP中的芯片,该通信单元为芯片的输入/输出电路或者接口。
本申请实施例第八方面提供了一种通信装置,该通信装置可以是UE或者UE中的芯片,该通信装置包括处理器,该处理器用于执行计算机程序或指令,使得该通信装置执行第二方面以及第一方面中任一可实现方式中的方法。
可选的,该通信装置还包括该存储器。所述处理器与存储器耦合,该存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器中的计算机程序或指令。
可选的,该通信装置还可以包括通信单元,该通信单元用于与其他设备或者该通信装置中的其他组件通信。例如,所述通信装置是UE,该通信单元为收发器。例如,所述通信 装置是UE中的芯片,该通信单元为芯片的输入/输出电路或者接口。
本申请实施例第九方面提供了一种芯片,该芯片包括处理器和接口电路,该接口电路和该处理器耦合,该处理器用于运行计算机程序或指令,以实现如第一方面和第二方面中任一方面的方法,该接口电路用于与该芯片之外的其它模块进行通信。
本申请实施例第十方面提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面、第一方面任意一种可能实现方式的方法或上述第二方面、第二方面任意一种可能实现方式的方法。
本申请实施例第十一方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面、第一方面任意一种可能实现方式的方法或上述第二方面、第二方面任意一种可能实现方式的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:首先,UE会向多个TRP(这多个TRP为一起向该UE提供服务的TRP,多个TRP至少包括两个TRP)发送测量信号,这多个TRP中的每一个TRP(可称为第一TRP)都可以根据获取到的测量信号的时间点得到测量信号到达该TRP的时延(可称为第一时延),并且可以进一步获取到第一时延与基准时延之间的时延差(上述多个TRP获取到的多个时延中时长最短的一个时延就称为基准时延),最后,每一个TRP都可以根据得到的时延差对即将向UE发送的第一下行数据在频域上进行相位旋转补偿以得到更新后的第二下行数据,并将得到的第二下行数据发送至UE,由于信号在时域上面的延迟等效于信号在频域上相位的变化,因此,所述多个TRP中的每一个TRP向UE发送的下行数据虽然在时间上是在不同时刻被UE所接收,但由于对每个下行数据都根据对应的时延差在频域上进行了相应的相位旋转补偿,因此在频域上可以等效理解为UE是在同一时间接收各TRP发送的下行数据,这样就消除了各个TRP发送的下行数据到达同一个UE在时域上不同步所带来的影响,最终使得信道估计更为准确,这样UE从各TRP上接收到的下行数据就不会在频域上产生频选,并且本申请实施例所述的时延补偿方法对TRP的数量没有限制,都能够使得一起为所述UE提供服务的多个TRP(即至少两个TRP)下发的下行数据在频域上等效为同时到达所服务的同一个UE,突破了目前只能适用两个TRP的已有技术中的相关时延补偿方法。
附图说明
图1为本申请实施例中UCNC技术的网络架构的一个示意图;
图2为服务TRP以及协作TRP采用联合发送的方式向UE发送下行数据的过程的一个示意图;
图3为本申请实施例中数据传输的时延补偿方法的一个示意图;
图4为本申请实施例中数据传输实现方式的一个示意图;
图5为本申请实施例中数据传输的时延补偿方法的另一示意图;
图6为本申请实施例UE侧数据传输实现方式的一个示意图;
图7为本申请实施例第一TRP的一个示意图;
图8为本申请实施例UE的一个示意图;
图9为本申请实施例第一TRP(以基站为例)的一个示意图;
图10为本申请实施例UE的另一示意图。
具体实施方式
UCNC通过采用COMP技术,使得不再是单个TRP为UE提供服务,而是以UE为中心,多个TRP一起为同一个UE提供服务,使得UE的使用体验更佳。图1为本申请实施例中UCNC技术的网络架构的一个示意图,从图1中可以看出,当UE处于图1所示的位置A时,是由TRP1、TRP2、TRP3、TRP4为该UE提供网络服务;当UE移动到图1所示的位置B时,则是由TRP4、TRP5、TRP6为该UE提供网络服务;当UE移动到图1所示的位置C时,则又是由TRP6、TRP7为该UE提供网络服务。这样,就可以通过利用多个TRP的网络资源与该同一个UE之间进行数据传输,从而弱化了传统的蜂窝网络小区边缘的概率,使得各TRP能为UE提供更好的网络管理和配置,提升了用户体验。需要说明的是,本申请实施例中的TRP可以是基站,如,可以是2G、3G、4G基站,也可以是5G基站,具体此处对TRP不做限定。
若有多个TRP为同一个UE提供服务,也就是说,此时UE处于这多个TRP的小区交集范围内,以图2中两个TRP为例进行说明:这两个TRP中一个称为服务TRP,另一个则称为协作TRP,当UE同时处于服务TRP的小区覆盖范围与协作TRP的小区覆盖范围(这两个小区均覆盖的区域可称为协作区域)时,为了提升UE的数据流数或信号质量,TRP在向UE发送下行数据时就会启用联合发送的方式。具体的过程可以是:UE先向各TRP发送一个上行信号,各个TRP收到该上行信号后,就可以知道该UE究竟处于哪几个TRP的协作区域(如图2中的服务TRP和协作TRP),图2中的服务TRP和协作TRP确定了该UE处于服务TRP和协作TRP的协作区域后,在向UE发送下行数据时,就会采用DL CoMP的方式向UE传输数据,以提升UE在协作区域的吞吐率。两个TRP(即服务TRP和协作TRP)在向UE发送下行数据之前,会先向UE发送同步定时信号,该同步定时信号是一种广播信号,是由服务TRP和协作TRP同时发送的,UE会先后获取到服务TRP和协作TRP分别发送的两个同步定时信号,并且UE会根据先获取到的同步定时信号进行定时,那么当服务TRP和协作TRP同时向该UE发送下行数据(在图2中,服务TRP发送的下行数据可称为Data1,协作小区发送的下行数据可称为Data2)时,由于服务TRP、协作TRP与UE之间的距离不一样,Data1和Data2同时被发出后到达该UE的下行时延也不一样(假设Data1的时延小于Data2的时延,两者存在时延差为Δt0),由于UE已经以先获取到的同步定时信号进行定时了,那么UE会先获取到Data1,在间隔Δt0后再获取到Data2,此时UE会对获取到的Data2做多径时延扩展处理,即通过自适应维纳滤波算法对存在的时延差进行抵抗,以尽可能消除Data1和Data2不能同步到达UE所带来时延差的影响,因为下行数据不能同步到达UE的话,那么不管是UE先接收到的下行数据(即Data1)还是后接收到的下行数据(即Data2),UE在对这两下行数据进行信道估计时,都会存在两下行数据之间信道不匹配的问题,从而影响信道均衡,最终影响UE的解调性能。
为解决上述时延差导致的UE获取到的下行数据不能同步的问题,本申请实施例提供了一种数据传输的时延补偿方法,该时延补偿方法既可以从TRP侧机进行实施,也可以由UE 侧进行实施,具体此处不做限定。下面分别从TRP侧和UE侧对本申请实施例中的数据传输的时延补偿方法进行说明:
一、数据传输的时延补偿方法应用于TRP。
请参照图3,本申请实施例中的一种数据传输的时延补偿方法的具体实现方式如下:
301、第一TRP确定第一时延。
首先,第一TRP会先确定该第一TRP以及与其进行通信的UE之间的上行时延(该上行时延可称为第一时延),由于TRP与UE之间采用的是UCNC技术进行通信的,因此为该同一个UE服务的TRP至少有两个,第一TRP即为这至少两个TRP中的任意一个。
需要说明的是,在本申请的一些实施方式中,第一TRP确定第一时延的具体方式可以是:首先,第一TRP从对应UE处接收一个测量信号,之后第一TRP再根据该测量信号进行信道估计,也就是说,根据该测量信号对第一时延进行时延偏差的测量,从而得到第一时延。还需要说明的是,该测量信号的作用是使得第一TRP利用该测量信号进行信道估计从而计算得到该第一TRP与对应UE之间的上行时延(即第一时延),测量信号的表现形式有很多种,例如,可以是SRS,也可以是其他形式的信号,具体此处对测量信号的形式不做限定。
302、第一TRP获取第一时延与基准时延的时延差。
第一TRP确定了第一时延之后,将进一步获取第一时延与基准时延的时延差,该基准时延为上述至少两个TRP与该同一个UE之间的获取到的至少两个上行时延中的其中一个,例如,可以是上述至少两个TRP与该同一个UE之间的获取到的至少两个上行时延中时长最短的一个,也可以是随意选取的一个,具体此处不做限定,为便于理解,在下面的具体介绍中,均以基准时延为上述至少两个TRP与该同一个UE之间的获取到的至少两个上行时延中时长最短的一个为例进行说明。其中,至少两个TRP与至少两个时延分别一一对应。
为便于理解,以图4为例进行说明:假设某一时刻UE正处于4个TRP(分别记为TPR11、TRP12、TRP13、TRP14)的协作区域,那么上述所述的至少两个TRP即为4个,这4个TRP都可以根据步骤301类似的方式确定各自与UE之间的上行时延,每个TRP各自确定出的上行时延可分别记为T1、T2、T3、T4,即TRP11对应的时延为T1、TRP12对应的时延为T2、TRP13对应的时延为T3、TRP14对应的时延为T4。并且假设已预先确定了各个时延之间的大小关系满足关系:T4>T3>T1>T2,由于基准时延是这4个TRP分别对应的上行时延中时长最短的一个,那么就可以确定T1至T4中的T2为基准时延。当各个TRP均确定了各自与该同一个UE之间的上行时延之后,此时可指定这4个TRP中的任意一个为第一TRP(假设TRP11为第一TRP),那么TRP11就可以获取第一时延T1与基准时延T2之间的时延差(该时延差可记为Δt12),即TRP11获取到的第一时延T1与基准时延T2的时延差为:Δt12=T1-T2。类似地,若指定的是这4个TRP中的TRP12、TRP13或TRP14为第一TRP,也可以依照与TRP11同样的方式分别得到T2、T3或T4与基准时延T2之间的时延差Δt22、Δt32、Δt42,即Δt22=T2-T2、Δt32=T3-T2、Δt42=T4-T2。
这里需要说明的是,在本申请的一些实施方式中,若指定的至少两个TRP中的第一TRP的第一时延恰好也是基准时延,如所述的Δt22=T2-T2,此时得到的时延差为零,在这 种情况下,若第一TRP(如上述的TRP22)获取到的时延差为零,那么该第一TRP就确定该第一TRP为基准TRP(如确定TRP22为基准TRP),此时基准TRP可直接向UE发送对应的下行数据(也可称为基准下行数据),如图2中TRP22对应向UE发送的下行数据为Data12,Data12就为基准下行数据。
需要说明的是,在本申请的一些实施方式中,第一TRP获取第一时延与基准时延之间的时延差可以有多种实现方式,具体此处不做限定。下面对第一TRP获取第一时延与基准时延之间的时延差的几种具体实现方式进行示例性说明:
A、第一TRP从第二TRP接收基准时延,并根据第一时延与该基准时延计算时延差。
首先,第一TRP会向第二TRP发送第一TRP对应的第一时延,该第二TRP为上述所述的至少两个TRP中的另一个;之后,第一TRP将会从第二TRP中接收到基准时延,该基准时延是由第二TRP来确定;最后,第一TRP将根据第一时延以及从第二TRP处获取到的基准时延计算第一时延与该基准时延之间的时延差。
为便于理解,依然以图4为例进行说明:由于图4中这4个TRP都会各自确定各自与该同一个UE之间的上行时延(即T1至T4),每个TRP确定好各自对应的上行时延之后,就会将各自确定好的上行时延发送给除TRP11(假设TRP11为第一TRP)之外的其他3个TRP中的任意一个,如可根据预设方式确定出其他3个TRP中的一个为第二TRP,也可以根据随机指定的方式确定出其他3个TRP中的一个为第二TRP,具体此处对第二TRP的确定方式不做限定,只要第一TRP与第二TRP不是同一个TRP即可。假设确定出图4中的TRP13为第二TRP,那么TRP11、TRP12、TRP14在各自分别获取到各自对应的时延T1、T2、T4后,就会分别将T1、T2、T4发送给TRP13,由TRP13来确定T1、T2、T3(T3已由TRP13自身确定得出)、T4中的哪一个时长最短。如上述所述,假设TRP13确定出T2的时长最短,那么TRP13就可以进一步确定该T2为基准时延,并将基准时延T2发送给TRP11,TRP11获取到该基准时延T2之后,就可以根据自身已获取到的第一时延T1以及从TRP13处接收到的基准时延T2来计算时延差Δt12,其中,Δt12=T1-T2。类似地,若第一TRP为TRP12、TRP13、TRP14,也是采用类似的方式计算时延差Δt22、Δt32或Δt42,具体此处不予赘述。
B、第一TRP从第二TRP直接接收时延差,该时延差由第二TRP根据第一时延与基准时延计算得到,第一时延由第一TRP向第二TRP发送。
首先,第一TRP向第二TRP发送第一TRP对应的第一时延,该第二TRP为上述所述的至少两个TRP中的另一个;之后,第二TRP确定出基准时延之后,直接由第二TRP根据第一时延以及基准时延计算得到时延差,并将计算得到的时延差发送给第一TRP,即第一TRP直接从第二TRP接收第一时延与基准时延之间的时延差。
此处依然以图4为例进行说明:图4中的4个TRP中的每个TRP确定好各自对应的上行时延(即T1至T4)之后,会将各自确定好的上行时延发送给除TRP11(假设TRP11为第一TRP)之外的其他3个TRP中的任意一个,如可根据预设方式确定出其他3个TRP中的一个为第二TRP,也可以根据随机指定的方式确定出其他3个TRP中的一个为第二TRP,具体此处对第二TRP的确定方式不做限定,只要第一TRP与第二TRP不是同一个TRP即可。依然假设确定的是图4中TRP13为第二TRP,那么TRP11、TRP12、TRP14在各自分别获取 到各自对应的时延T1、T2、T4后,就会分别将T1、T2、T4发送给TRP13,由TRP13来确定T1、T2、T3(T3已由TRP13自身确定得出)、T4中的哪一个时长最短。如上述所述,假设TRP13确定出T2的时长最短,那么TRP13就可以确定该T2为基准时延,并进一步根据从第一TRP处接收的T1以及确定出的基准时延T2计算得到时延差Δt12,其中,Δt12=T1-T2,最后,TRP13就会将计算出的时延差Δt12发送给TRP11。即,TRP11只需将自身获取到的第一时延T1发送至TRP13,并从TRP13接收由TRP13根据第一时延T1以及基准时延T2计算得到的时延差Δt12。类似地,若第一TRP为TRP12、TRP13、TRP14,也是采用类似的方式计算时延差Δt22、Δt32或Δt42,具体此处不予赘述。
C、第一TRP接收上述至少两个TRP中除第一TRP之外的其他TRP的上行时延,并确定出基准时延,从而计算基准时延与第一时延的时延差。
首先,第一TRP从上述至少两个TRP中除第一TRP之外的其他TRP处接收其他TRP(至少包括有一个TRP)分别对应的每个上行时延(至少包括有一个上行时延),并且由该第一TRP根据其他TRP分别对应的每个上行时延以及自身获取到的第一时延确定出基准时延,最后,由该第一TRP根据确定出的基准时延以及第一时延计算得到时延差。
同样地,为便于理解,依然以图4为例进行说明:图4中的4个TRP中的每个TRP确定好各自对应的上行时延(即T1至T4)之后,除了TRP11(假设TRP11为第一TRP)之外,其他3个TRP(即TRP12、TRP13、TRP14)会将各自确定好的上行时延(即T2、T3、T4)分别发送给TRP11,这样,TRP11接收到各TRP分别发送的T2、T3、T4之后,就可以确定T1(T1已由TRP11自身确定得出)、T2、T3、T4中的哪一个时长最短。如上述所述,假设TRP11确定出T2的时长最短,那么TRP11就可以确定该T2为基准时延,并进一步根据第一时延T1以及确定出的基准时延T2计算得到时延差Δt12,其中,Δt12=T1-T2。即,TRP11除了获取自身的第一时延T1之外,还会从其他3个TRP处接收其他3个TRP分别对应的3个上行时延T2、T3、T4,并据此确定出基准时延为T2,最后根据第一时延T1以及基准时延T2计算得到的时延差Δt12。类似地,若第一TRP为TRP12、TRP13、TRP14,也是采用类似的方式计算时延差Δt22、Δt32或Δt42,具体此处不予赘述。
D、第一TRP通过UE的参与获取第一时延与基准时延之间的时延差。
还需要说明的是,第一TRP获取第一时延与基准时延之间的时延差除了上述实现方式之外,还可以通过UE的参与获取到第一时延与基准时延之间的时延差。
例如,依然以图4为例进行说明:各个TRP分别确定了各自的上行时延T1、T2、T3、T4之后,各个TRP会分别将各自对应的上行时延发送至UE,UE获取到T1、T2、T3、T4之后,就可以继续如下几种操作的任意一种:1)UE确定T1、T2、T3、T4中的哪一个时长最短,并确定出时长最短的这个上行时延为基准时延(假设UE确定T2为基准时延),之后UE将该基准时延T2发送至TRP11,由TRP11根据第一时延T1以及基准时延T2计算得到时延差Δt12,其中,Δt12=T1-T2。2)UE将接收到的T1、T2、T3、T4发送给TRP11,由TRP11确定T1、T2、T3、T4中的哪一个时长最短,并确定出时长最短的这个上行时延为基准时延(假设UE确定T2为基准时延),之后由TRP11根据第一时延T1以及基准时延T2计算得到时延差Δt12,其中,Δt12=T1-T2。3)UE确定T1、T2、T3、T4中的哪一个时长最短,并确 定出时长最短的这个上行时延为基准时延(假设UE确定T2为基准时延),之后UE根据第一时延T1以及基准时延T2计算得到时延差Δt12,并将该时延差Δt12直接发送给TRP11,其中,Δt12=T1-T2。需要说明的是,第一TRP与UE之间如何配合确定出第一时延以及基准时延之间的时延差的具体方式除了上述几种操作之外,还可以有更多的实现方式,具体此处不做限定。
303、第一TRP根据时延差对第一下行数据在频域上进行相位旋转补偿,得到第二下行数据。
由于信号在时域上面的延迟等效于信号在频域上相位的相应变化,例如,假设X(t)表示时域信号,X(jw)表示与所述时域信号相对应的频域信号,Δt′表示时延差,那么X(t+Δt′)与X(jw)*e jwΔt′所表示的是同一个信号分别在时域和频域上的表达形式。因此,第一TRP获取到第一时延以及基准时延之间的时延差之后,将会根据该时延差对即将发送给UE的第一下行数据在频域上进行相位旋转补偿,从而得到第二下行数据。在本申请的一些实施方式中,具体可以是第一TRP将第一下行数据由时域上的表达方式转变为频域上的表达方式、第二下行数据由时域上的表达方式转变为频域上的表达方式,从而得到第一下行数据的频域数据表达式X 1(jw)以及第二下行数据的频域数据表达式X 2(jw),若第一时延与基准时延之间的时延差被表示为Δt,那么Δt,X 2(jw)、X 1(jw)和Δt之间的关系就满足:X 2(jw)=e -jwΔt*X 1(jw),其中,w=2πkf,f为子载波间隔,k为子载波编号。通过这种方式,将时延差转换为对应的下行数据在频域上的相位差,并对该相位差进行对应的相位旋转补偿,从而消除了不同TRP之间下行数据传输时由于时延差带来的影响。
304、第一TRP向UE发送第二下行数据。
第一TRP根据时延差对第一下行数据在频域上进行相位旋转补偿得到第二下行数据之后,就会将该第二下行数据向对应的UE进行发送。
由于服务该至少两个TRP中的每一个TRP都可以作为第一TRP进行如图3对应的实施例所述的数据传输的时延补偿方式,因此至少两个TRP中的每一个TRP向UE发送的下行数据虽然在时间上是在不同时刻被UE所接收,但由于对每个下行数据都根据对应的时延差在频域上进行了相应的相位旋转补偿,因此在频域上可以等效理解为UE是在同一时间接收各TRP发送的下行数据,这样就消除了各个TRP发送的下行数据到达同一个UE在时域上不同步所带来的影响。
在本申请实施例中,首先,UE会向多个TRP(这多个TRP为一起向该UE提供服务的TRP,多个TRP至少包括两个TRP)发送测量信号,这多个TRP中的每一个TRP(可称为第一TRP)都可以根据获取到的测量信号的时间点得到测量信号到达该TRP的时延(可称为第一时延),并且可以进一步获取到第一时延与基准时延之间的时延差(上述多个TRP获取到的多个时延中时长最短的一个时延就称为基准时延),最后,每一个TRP都可以根据得到的时延差对即将向UE发送的第一下行数据在频域上进行相位旋转补偿以得到更新后的第二下行数据,并将得到的第二下行数据发送至UE,由于信号在时域上面的延迟等效于信号在频域上相位的变化,因此,所述多个TRP中的每一个TRP向UE发送的下行数据虽然在时 间上是在不同时刻被UE所接收,但由于对每个下行数据都根据对应的时延差在频域上进行了相应的相位旋转补偿,因此在频域上可以等效理解为UE是在同一时间接收各TRP发送的下行数据,这样就消除了各个TRP发送的下行数据到达同一个UE在时域上不同步所带来的影响,最终使得信道估计更为准确,这样UE从各TRP上接收到的下行数据就不会在频域上产生频选,并且本申请实施例所述的时延补偿方法对TRP的数量没有限制,都能够使得一起为所述UE提供服务的多个TRP(即至少两个TRP)下发的下行数据在频域上等效为同时到达所服务的同一个UE,突破了目前只能适用两个TRP的已有技术中的相关时延补偿方法。
二、数据传输的时延补偿方法应用于UE。
请参照图5,本申请实施例中的一种数据传输的时延补偿方法的具体实现方式如下:
501、UE根据第一时延以及第二时延确定时延差。
若UE处于至少两个TRP的协作区域,那么UE首先会根据第一时延以及第二时延确定时延差,其中,第一时延为UE与第一TRP之间的时延,第二时延为该同一个UE与第二时延之间的时延差,并且第一时延小于第二时延,第一TRP与第二TRP分别为所述至少两个TRP中不同的两个TRP。需要说明的是,在本申请的一些实施方式中,UE获取第一TRP对应的第一时延以及第二TRP对应的第二时延可以通过但不限于如下方式得到:首先,UE分别从第一TRP接收第一定时信号以及从第二TRP接收第二定时信号,该第一定时信号以及第二定时信号由第一TRP和第二TRP在同一时刻发送,且第一定时信号与第二定时信号在频域上是错开的,这样UE在接收第一定时信号以及第二定时信号时,由于两个定时信号在频域上是不一致的,UE就能够轻易将这两个定时信号实现分离。该UE通过接收到的第一定时信号以及第二定时信号就可以已有技术手段确定出第一时延以及第二时延。还需要说明的是,在本申请的一些实施方式中,定时信号(包括第一定时信号以及第二定时信号)可以是同步定时信号TRS,也可以是其他类型的信号,只要信号能够实现确定UE与TRP之间的时延的作用,就都可以称之为定时信号,具体此处对定时信号的具体形式不做限定。
为便于理解,以图2为例进行说明:图2示意出了UE处于两个TRP(分别为服务TRP与协作TRP)的协作区域,首先,UE会分别向服务TRP以及协作TRP发送两个定时信号(假设这两个定时信号分别称为Xa和Xb),这两个定时信号由服务TRP和协作TRP在同一时刻发送,且Xa与Xb在频域上是错开的;之后,UE根据接收到的Xa和Xb分别确定服务TRP与UE之间的时延(假设该时延称为Ta)以及协作TRP与UE之间的时延(假设该时延称为Tb),UE获取到这两个时延之后,将会对这两个时延Ta、Tb进行比较,若Tb-Ta>0,则UE确定服务TRP为第一TRP、协作TRP为第二TRP,并进一步确定Ta为第一时延、Tb为第二时延。
502、UE从第一TRP接收第一下行导频以及从第二TRP接收第二下行导频。
UE除了会根据从第一TRP以及第二TRP接收到的第一时延以及第二时延计算时延差之外,还会从第一TRP接收第一下行导频以及从第二TRP接收第二下行导频。由于第一时延指的是第一TRP与UE之间进行数据传输时所花费的时长,而第一下行导频是由第一TRP向UE发送的数据(属于上述所述的数据传输中的一种),因此第一下行导频的时延就是所述的第一时延,类似地,第二下行导频的时延就是所述的第二时延。
需要说明的是,第一TRP除了会向UE发送第一定时同步信号以及第一下行导频之外,还会向UE发送业务数据(可称为第一业务数据),该第一业务数据就是指第一TRP与UE进行业务时所需用到的数据。
在本申请的一些实施方式中,第一TRP可以向UE发送一个数据包(可称为第一数据包),该第一数据包就包括有第一定时同步信号、第一下行导频、第一业务数据;第一TRP也可以先向UE发送第一定时同步信号,使得UE先根据该第一定时同步信号确定出第一时延之后,第一TRP再向UE发送第二数据包,该第二数据包就包括有第一下行导频、第一业务数据,具体此处对第一TRP如何发送第一定时同步信号、第一下行导频、第一业务数据的方式不做限定。类似地,针对第二TRP可采用与第一TRP类似的数据发送方式,即第二TRP除了会向UE发送第二定时同步信号以及第二下行导频之外,也会向UE发送业务数据(可称为第二业务数据),该第二业务数据是指第二TRP与UE进行业务时所需用到的数据,在本申请的一些实施方式中,第二TRP可以向UE发送一个数据包(可称为第三数据包),该第三数据包包括有第二定时同步信号、第二下行导频、第二业务数据;第二TRP也可以先向UE发送第二定时同步信号,使得UE先根据该第二定时同步信号确定出第二时延之后,第二TRP再向UE发送第四数据包,该第四数据包包括有第二下行导频、第二业务数据,具体此处对第二TRP如何发送第二定时同步信号、第二下行导频、第二业务数据的方式不做限定。
需要说明的是,虽然第一TRP以及第二TRP向同一个UE分别发送第一数据包(或第二数据包)以及第三数据包(或第四数据包)是同时发送的,但由于存在时延差,因此UE接收到第一数据包(或第二数据包)以及第三数据包(或第四数据包)并不是同时的。为便于理解,具体见图6:以UE接收到的是第一数据包以及第三数据包为例进行说明,虽然UE是在不同时刻分别接收到第一数据包以及第三数据包,但由于两个TRP之间的时延差并不会很大,因此UE侧接收到第一数据包以及第三数据包以后,并不能区分开哪个是第一数据包哪个是第三数据包,UE只会感知接收到一个数据包(如图6,可称为目标数据包),该目标数据包就包括有第一TRP发送的第一数据包以及第二TRP发送的第三数据包,UE接收到该目标数据包之后,会先进行前端处理,即先进行去循环前缀(Cyclic Prefix,CP)、快速傅里叶变换(Fast Fourier Transformation,FFT)以将目标数据包的时域数据变换为目标数据包的频域数据,之后,UE将进行信道分离,将第一定时信号、第二定时信号、第一下行导频、第二下行导频分别从目标数据包中提取分离出来。其中,第一定时信号的作用有两个:1)测量第一TRP与UE之间的第一时延;2)进行第一时延扩展的测量,测量得到的第一时延扩展则用于确定信道插值(可称为第一信道插值),如,第一信道插值可以是维纳滤波系数的取值,也可称为第一维纳滤波插值。第一下行导频的作用则是用于进行信道估计以得到第一信道特征。
需要说明的是,该第一信道特征包括了第一下行导频的信道特征以及第一业务数据的信道特征。在本申请实施例中,UE根据第一下行导频进行信道估计得到第一信道特征的具体过程可以是:首先,UE先确定第一下行导频的信道特征,之后利用第一信道插值(第一信道插值由UE根据第一定时信号进行的第一时延扩展测量而得到)对第一下行导频的信道 特征进行插值,从而得到第一业务数据的信道特征,从而就可以确定第一信道特征,第一信道特征包括有第一下行导频的信道特征以及第一业务数据的信道特征。同样地,第二定时信号也有类似作用,即第二定时信号的作用也是两个:1)测量第二TRP与UE之间的第二时延;2)进行第二时延扩展的测量,测量得到的第二时延扩展则用于确定信道插值(可称为第二信道插值),如,第二信道插值可以是维纳滤波系数的取值,也可称为第二维纳滤波插值。第二下行导频的作用则是用于进行信道估计以得到第二信道特征。需要说明的是,该第二信道特征包括了第二下行导频的信道特征以及第二业务数据的信道特征。在本申请实施例中,UE根据第二下行导频进行信道估计得到第二信道特征的具体过程可以是:首先,UE先确定第二下行导频的信道特征,之后利用第二信道插值(第二信道插值由UE根据第二定时信号进行的第二时延扩展测量而得到)对第二下行导频的信道特征进行插值,从而得到第二业务数据的信道特征,从而就可以确定第二信道特征,第二信道特征包括有第二下行导频的信道特征以及第二业务数据的信道特征。
还需要说明的是,在本申请的一些实施方式中,可以先执行步骤501再执行步骤502,也可以先执行步骤502再执行步骤501,还可以同时执行步骤501和502,具体此处对步骤501和步骤502之间的先后顺序不做限定。
503、UE根据时延差对第二下行导频进行频域上的相位旋转补偿,得到第三下行导频。
由于信号在时域上面的延迟等效于信号在频域上相位的相应变化,例如,假设X(t)表示时域信号,X(jw)表示与所述时域信号相对应的频域信号,Δt′表示时延差,那么X(t+Δt′)与X(jw)*e jwΔt′所表示的是同一个信号分别在时域和频域上的表达形式。因此,UE获取到第一时延与第二时延之间的时延差之后,将会根据该时延差对第二下行导频在频域上进行相应的相位旋转补偿,以得到第三下行导频(如图6所示)。在本申请的一些实施方式中,具体可以是第一TRP将第二下行导频由时域上的表达方式转变为频域上的表达方式、第三下行导频由时域上的表达方式转变为频域上的表达方式,从而得到第二下行导频的频域数据表达式Y 1(jw)以及第三下行导频的频域数据表达式Y 2(jw),若第一时延与第二时延之间的时延差被表示为Δt,那么Δt,Y 2(jw)、Y 1(jw)和Δt之间的关系就满足:Y 2(jw)=e -jwΔt*Y 1(jw),其中,w=2πkf,f为子载波间隔,k为子载波编号。
504、UE分别对第一下行导频和第三下行导频进行信道估计,得到第一信道特征和第二信道特征。
UE根据时延差对第二下行导频进行频域上的相位旋转补偿得到第三下行导频之后,将分别对第一下行导频以及第三下行导频进行信道估计,以得到第一信道特征以及第二信道特征(如图6所示),其中,第一信道特征为第一TRP与UE之间的信道特征,第二信道特征为第二TRP与UE之间的信道特征。需要说明的是,在本申请实施例中,之所以利用第三下行导频进行信道估计,是为了要消除第一TRP和第二TRP之间传输数据时时延差对信道估计产生的影响,使得信道估计更为准确。
还需要说明的是,在本申请的一些实施方式中,第一信道特征除了包括第一下行导频的信道特征,还包括有第一业务数据的信道特征。同样地,第二信道特征除了包括第二下行导频的信道特征,还包括有第二业务数据的信道特征。
505、UE根据时延差对第二信道特征进行频域上的相位旋转反补偿,得到第三信道特征。
UE获取到第一时延与第二时延之间的时延差之后,并且也分别对第一下行导频以及第三下行导频进行信道估计得到了第一信道特征以及第二信道特征,那么UE就可以进一步根据该时延差对第二信道特征进行频域上的相位旋转反补偿,以得到第三信道特征(具体见图6)。在本申请的一些实施方式中,具体可以是UE将第二信道特征由时域上的表达方式转变为频域上的表达方式、第三信道特征由时域上的表达方式转变为频域上的表达方式,从而得到第二信道特征的频域数据表达式Z 1(jw)以及第三信道特征的频域数据表达式Z 2(jw),若第一时延与第二时延之间的时延差被表示为Δt,那么Δt,Y 2(jw)、Y 1(jw)和Δt之间的关系就满足:Z 2(jw)=e jwΔt*Z 1(jw),其中,w=2πkf,f为子载波间隔,k为子载波编号。
需要说明的是,在本申请实施例中,UE是对第二下行导频进行信道估计得到了第二信道特征,该第二信道特征是包括了第二下行导频的信道特征以及第二业务数据的信道特征的。在本申请其他的一些实施方式中,UE也可以先确定第二下行导频的信道特征,然后再对该第二下行导频的信道特征进行相位旋转反补偿,得到反补偿后的第二下行导频的信道特征,之后再利用第二信道插值对反补偿后的第二下行导频的信道特征进行插值,以得到插值后的第二业务数据的信道特征,最后确定对应的第二信道特征,此时在本申请实施例中的第二信道特征就是包括反补偿后的第二下行导频的信道特征以及插值后的第二业务数据的信道特征。
还需要说明的是,在本申请实施例中,由于第二信道特征中还包括有第二业务数据上的信道特征,因此,对第二信道特征进行相位旋转反补偿(或对第一下行导频的信道特征进行相位旋转反补偿之后得到的第二信道特征)的目的是使得第一业务数据与目标数据包中的其他业务数据相匹配,不至于传输的是错误的业务数据。
506、UE根据第一信道特征以及第三信道特征对数据进行译码。
最后,UE可以根据得到的第一信道特征以及第三信道特征对目标数据包未分离出的第一业务数据以及第二业务数据进行译码(因为在信道分离的过程中,已将目标数据包中的第一定时信号、第二定时信号、第一下行导频、第二下行导频分离出来了,目标数据包中就只剩下第一业务数据以及第二业务数据无法实现分离)。
还需要说明的是,图5对应的实施例是以两个TRP为例对数据传输的时延补偿方法进行了说明,实际上还可以应用于多个TRP(即大于2个以上的TRP),只要在实际应用过程中,UE只要获取到每个TRP与基准TRP(即时延最短的那个TRP)之间的时延差,就可以根据与步骤501至步骤505类似的过程得到每个TRP对应的目标信道特征(如,第三信道特征),最后根据基准TRP对应的基准信道特征(如,第一信道特征)与每个TRP对应的目标信道特征一起对业务数据进行译码。
在本申请实施例中,UE通过对时延长的TRP(即第二TRP)发送的第二下行导频()先在频域上进行相位旋转补偿(利用第一TRP对应的第一时延与第二TRP对应的第二时延之间的时延差进行相位旋转反补偿),得到第三下行导频,并进一步根据第三下行导频进行 信道估计得到第二信道特征,通过以上操作实现对信道估计更为准确的目的;之后,再根据第一TRP对应的第一时延与第二TRP对应的第二时延之间的时延差,对第二信道特征进行频域上的相位旋转反补偿,得到第三信道特征,最终根据第一信道特征以及第三信道特征联合对业务数据进行译码,通过相位旋转反补偿,是使得业务数据与实际的业务数据匹配上。
本申请图3对应的实施例可以根据上述数据传输的时延补偿方法的示例对第一TRP进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
例如,图7示出了一种第一TRP的示意图,本申请实施例提供的第一TRP可以包括:
确定模块701,用于确定第一时延,该第一时延为该第一TRP与终端设备UE之间的上行时延,该第一TRP为一起为该UE提供服务的至少两个TRP中的一个;
获取模块702,用于获取该第一时延与基准时延的时延差,该基准时延为该至少两个TRP与该UE之间的获取到的至少两个上行时延中的其中一个,例如,基准时延可以是该至少两个TRP与该UE之间的获取到的至少两个上行时延中时长最短的那个,其中,该至少两个TRP与该至少两个上行时延一一对应;
补偿模块703,用于根据该时延差对第一下行数据在频域上进行相位旋转补偿,得到第二下行数据;
发送模块704,用于向该UE发送该第二下行数据。
优选的,在本申请的一些实施方式中,该第二下行数据的频域数据表示为X 2(jw),该第一下行数据的频域数据表示为X 1(jw),该时延差为Δt,X 2(jw)、X 1(jw)和Δt之间的关系满足:X 2(jw)=e -jwΔt*X 1(jw)。
优选的,在本申请的一些实施方式中,确定模块701具体用于:从该UE接收测量信号,并根据该测量信号进行信道估计,得到该第一时延。
优选的,在本申请的一些实施方式中,该获取模块702具体用于:向第二TRP发送该第一时延,该第二TRP为该至少两个TRP中的另一个;并从该第二TRP接收该基准时延;最后根据该第一时延以及该基准时延计算该时延差;或,向该第二TRP发送该第一时延,以使该第二TRP根据该第一时延以及该基准时延计算该时延差;从该第二TRP接收该时延差;或,从该至少两个TRP中除该第一TRP之外的其他TRP接收至少一个上行时延;并根据该至少一个上行时延以及该第一时延确定该基准时延;最后根据该第一时延以及该基准时延计算该时延差。
优选的,在本申请的一些实施方式中,该测量信号包括:SRS。
图7对应的实施例中的第一TRP具体的功能以及结构用于实现前述图2至图5中由第一TRP进行处理的步骤,具体此处不予赘述。
类似地,本申请图5对应的实施例也可以根据上述数据传输的时延补偿方法的示例对UE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两 个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
例如,图8示出了一种UE的示意图,本申请实施例提供的UE可以包括:
确定模块801,用于根据第一时延以及第二时延确定时延差,其中,该第一时延为该UE与第一TRP之间的时延,该第二时延为该UE与该第二TRP之间的时延,该第一时延小于该第二时延;
接收模块802,用于从该第一TRP接收第一下行导频以及从第二TRP接收第二下行导频,其中,该第一下行导频的时延为该第一时延,该第二下行导频的时延为该第二时延;
第一补偿模块803,用于根据该时延差对该第二下行导频进行频域上的相位旋转补偿,得到第三下行导频;
信道估计模块804,用于分别对该第一下行导频和该第三下行导频进行信道估计得到第一信道特征和第二信道特征,其中,该第一信道特征为该第一TRP与该UE之间的信道特征,该第二信道特征为该第二TRP与该UE之间的信道特征;
第二补偿模块805,用于根据该时延差对该第二信道特征进行频域上的相位旋转反补偿,得到第三信道特征;
译码模块806,用于根据该第一信道特征以及该第三信道特征对业务数据进行译码。
优选的,在本申请的一些实施方式中,该第三导频的频域数据表示为Y 2(jw),该第二导频的频域数据表示为Y 1(jw),该时延差为Δt,Y 2(jw)、Y 1(jw)和Δt之间的关系满足:Y 2(jw)=e -jwΔt*Y 1(jw);该第三信道特征的频域数据表示为Z 2(jw),该第二信道特征的频域数据表示为Z 1(jw),Z 1(jw)、Z 1(jw)和Δt之间的关系满足:Z 2(jw)=e jwΔt*Z 1(jw)。
优选的,在本申请的一些实施方式中,在该确定模块801根据第一时延以及第二时延确定时延差之前,该确定模块801还用于:分别从该第一TRP接收第一定时信号以及从该第二TRP接收第二定时信号,该第一定时信号与该第二定时信号被同时发送并在频域上错开;并根据该第一定时信号以及该第二定时信号确定该第一时延以及该第二时延。
优选的,在本申请的一些实施方式中,第一定时信号包括:第一TRS;第二定时信号包括:第二TRS。
图8对应的实施例中的UE具体的功能以及结构用于实现前述图2至图6中由UE进行处理的步骤,具体此处不予赘述。
如图9所示,为本申请实施例第一TRP的另一示意图,为便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。需要说明的是,为便于理解,以第一TRP为基站为例进行说明,具体如图9所示。
基站包括至少一个处理器111、至少一个存储器112、至少一个收发器113、至少一个网络接口114和一个或多个天线115。处理器111、存储器112、收发器113和网络接口114相连,例如通过总线相连,在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线115与收发器113相连。网络接口114用于使得基站通 过通信链路,与其它通信设备相连,例如网络接口114可以包括基站与核心网网元之间的网络接口,例如S1接口,网络接口可以包括基站和其他网络设备(如,接入网设备或者核心网网元)之间的网络接口,例如X2或者Xn接口。
处理器111主要用于对通信协议以及通信数据进行处理,以及对整个基站进行控制,执行软件程序,处理软件程序的数据,例如用于支持基站执行上述图2至图5对应实施例中由第一TRP所描述的动作。
例如,在本申请的一些实施方式中,处理器111具体可以执行如下动作:确定第一时延,并获取第一时延与基准时延的时延差,之后根据时延差对第一下行数据在频域上进行相位旋转补偿,得到第二下行数据;最后向对应的UE发送第二下行数据。
在本申请的一些实施方式中,处理器111确定第一时延的方式具体还可以是:先通过网络接口114(如,可通过空口、新空口等)从对应的UE接收测量信号(如,SRS),之后再根据该测量信号进行信道估计,得到第一时延。
在本申请的一些实施方式中,处理器111获取第一时延与基准时延的时延差可以执行但不限于如下操作方式之一得到:
方式一:处理器111可通过网络接口114(如,可通过X2接口)向另一基站发送该基站对应的第一时延,该另一基站为一起为同一UE提供服务的多个基站中的另一个;之后,基站将会从另一基站中接收到基准时延,该基准时延是由另一基站来确定;最后,基站将根据第一时延以及从另一基站处获取到的基准时延计算第一时延与该基准时延之间的时延差。
方式二:处理器111可通过网络接口114(如,可通过X2接口)向另一基站发送该基站对应的第一时延,该另一基站为一起为同一UE提供服务的多个基站中的另一个;之后,基站确定出基准时延之后,直接由另一基站的处理器根据第一时延以及基准时延计算得到时延差,并将计算得到的时延差同样通过另一基站的网络接口发送给本基站,即处理器111直接从另一基站接收第一时延与基准时延之间的时延差。
方式三:处理器111从一起为UE提供服务的多个基站中除本基站之外的其他基站处通过网络接口114(如,可通过X2接口)接收其他基站(至少包括有一个基站)分别对应的每个上行时延(至少包括有一个上行时延),并且由该处理器111根据其他基站分别对应的每个上行时延以及自身获取到的第一时延确定出基准时延,最后,由该第处理器111根据确定出的基准时延以及第一时延计算得到时延差。
基站可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个基站进行控制,执行软件程序,处理软件程序的数据。图9中的处理器111可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,基站可以包括多个基带处理器以适应不同的网络制式,基站可以包括多个中央处理器以增强其处理能力,基站的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理 器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器112可以是独立存在,与处理器111相连。可选的,存储器112可以和处理器111集成在一起,例如集成在一个芯片之内。其中,存储器112能够存储执行本申请实施例的技术方案的程序代码,并由处理器111来控制执行,被执行的各类计算机程序代码也可被视为是处理器111的驱动程序。
图9仅示出了一个存储器和一个处理器。在实际的基站中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器113可以用于支持基站与终端之间射频信号的接收或者发送,如,支持本申请实施例中基站向UE发送第二下行数据、基站从UW接收测量信号等操作。收发器113可以与天线115相连。收发器113包括发射机Tx和接收机Rx。具体地,一个或多个天线115可以接收射频信号,该收发器113的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器111,以便处理器111对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器113中的发射机Tx还用于从处理器111接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线115发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
上述图2至图5对应的实施例中由第一TRP所执行的步骤可以基于该图9所示的结构实现。
如图10所示,为本申请实施例UE的另一示意图。为便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例的方法部分。该UE可以包括手机、平板电脑、智能手表、个人电脑等。以UE为手机为例进行说明:
手机包括射频(radio frequency,RF)电路1010、存储器1020、输入单元1030、显示单元1040、传感器1050、音频电路1060、WiFi模块1070、处理器1080、电源1090等部件。本领域技术人员可以理解,图10中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图10对手机的各个构成部件进行具体的介绍:
RF电路1010可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站(如,图9所述的基站,包括5G新空口)的下行信息(如,本申请实施例的第一下行数据、第二下行数据、业务数据等)接收后,给处理器1080处理。另外,将涉及上行的数据发送给基站。
例如,在本申请的一些实施方式中,RF电路1010具体可以执行如下动作:在UE根据第一时延以及第二时延确定了时延差之后,UE通过RF电路1010从第一基站(即上述图9对应的基站)接收第一下行导频以及第二基站(即上述图9对应的服务于该UE的多个基站中的另一个,可称为第二基站)接收第二下行导频。
又例如,在本申请的一些实施方式中,在UE根据第一时延以及第二时延确定时延差之前,UE还可以通过该RF电路1010分别从所述第一基站接收第一定时信号(如,第一TRS)以及从所述第二基站接收第二定时信号(如,第二TRS),以使得UE的处理器1080可根据第一定时信号以及第二定时信号确定第一时延以及第二时延。
通常,RF电路1010包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路1010还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器1020可用于存储软件程序以及模块,处理器1080通过运行存储在存储器1020的软件程序以及模块,从而执行手机的各种功能应用以及数据处理,即用于执行上述图2至图6对应实施例中由UE所描述的动作。
例如,在本申请的一些实施方式中,处理器1080具体可以执行如下动作:处理器1080根据第一时延以及第二时延确定时延差,其中,第一时延为手机与上述图9对应的基站(即第一基站)之间的时延,第二时延为该手机与上述图9对应的服务于该UE的多个基站中的另一基站(即第二基站)之间的时延,第一时延小于第二时延;之后,处理器1080通过RE电路1010从第一基站接收第一下行导频以及从第二基站接收第二下行导频,其中,第一下行导频的时延为第一时延,第二下行导频的时延为第二时延;随后,该处理器1080根据得到的时延差对第二下行导频进行频域上的相位旋转补偿,得到第三下行导频;处理器1080还分别对第一下行导频和第三下行导频进行信道估计得到第一信道特征和第二信道特征,其中,第一信道特征为第一基站与UE之间的信道特征,第二信道特征为第二基站与UE之间的信道特征;最后,处理器1080根据时延差对第二信道特征进行频域上的相位旋转反补偿,得到第三信道特征,并最终根据第一信道特征以及第三信道特征对业务数据进行译码。
在本申请的一些实施方式中,在处理器1080根据第一时延以及第二时延确定时延差之前,处理器1080还可以通过RF电路1010分别从所述第一基站接收第一定时信号(如,第 一TRS)以及从所述第二基站接收第二定时信号(如,第二TRS),之后,处理器1080再根据第一定时信号以及第二定时信号确定第一时延以及第二时延。
存储器1020可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1020可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1030可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1030可包括触控面板1031、屏下指纹1032以及其他输入设备1033。触控面板1031,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1031上或在触控面板1031附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1031可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1080,并能接收处理器1080发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1031,除了触控面板1031,输入单元1030还可以包括其他输入设备1033。具体地,其他输入设备1033可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。需要说明的是,在一些全面屏手机中,除了触控面板1031,输入单元1030还可以包括屏下指纹1032(例如,光学指纹、超声波指纹等),具体此处不做限定。
显示单元1040可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1040可包括显示屏1041(也可称为显示面板1041),可选的,在本申请实施例中,手机的显示单元1040包括采用LCD屏或OLED屏等形式来配置的。进一步的,触控面板1031可覆盖显示屏1041,当触控面板1031检测到在其上或附近的触摸操作后,传送给处理器1080以确定触摸事件的类型,随后处理器1080根据触摸事件的类型在显示屏1041上提供相应的视觉输出。虽然在图10中,触控面板1031与显示屏1041是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1031与显示屏1041集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1050,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示屏1041的亮度,在本申请实施例中,当目标背景图案的显示属性为亮度时,那么手机就可以通过光传感器获取手机所处环境的环境光亮度,并进一步根据环境光亮度确定目标背景图案的亮度。接近传感器可在手机移动到耳边时,关闭显示屏1041和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机 还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1060、扬声器1061,传声器1062可提供用户与手机之间的音频接口。音频电路1060可将接收到的音频数据转换后的电信号,传输到扬声器1061,由扬声器1061转换为声音信号输出;另一方面,传声器1062将收集的声音信号转换为电信号,由音频电路1060接收后转换为音频数据,再将音频数据输出处理器1080处理后,经RF电路1010以发送给比如另一手机,或者将音频数据输出至存储器1020以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1070可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图10示出了WiFi模块1070,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器1080是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1020内的软件程序和/或模块,以及调用存储在存储器1020内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1080可包括一个或多个处理单元;优选的,处理器1080可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1080中。
手机还包括给各个部件供电的电源1090(比如电池),优选的,电源可以通过电源管理系统与处理器1080逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
上述图2至图6对应的实施例中由UE所执行的步骤可以基于该图10所示的结构实现,此处不再一一赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。

Claims (19)

  1. 一种数据传输的时延补偿方法,其特征在于,包括:
    第一传输和接收节点TRP确定第一时延,所述第一时延为所述第一TRP与终端设备UE之间的上行时延,所述第一TRP为一起为所述UE提供服务的至少两个TRP中的一个;
    所述第一TRP获取所述第一时延与基准时延的时延差,所述基准时延为所述至少两个TRP与所述UE之间的获取到的至少两个上行时延中的其中一个,其中,所述至少两个TRP与所述至少两个上行时延一一对应;
    所述第一TRP根据所述时延差对第一下行数据在频域上进行相位旋转补偿,得到第二下行数据;
    所述第一TRP向所述UE发送所述第二下行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述基准时延具体为所述至少两个TRP与所述UE之间的获取到的至少两个上行时延中的时长最短的一个。
  3. 根据权利要求1-2中任一项所述的方法,其特征在于,
    所述第二下行数据的频域数据表示为X 2(jw),所述第一下行数据的频域数据表示为X 1(jw),所述时延差为Δt,X 2(jw)、X 1(jw)和Δt之间的关系满足:X 2(jw)=e -jwΔt*X 1(jw)。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一TRP确定第一时延包括:
    所述第一TRP从所述UE接收测量信号;
    所述第一TRP根据所述测量信号进行信道估计,得到所述第一时延。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,
    所述第一TRP获取所述第一时延与基准时延的时延差包括:
    所述第一TRP向第二TRP发送所述第一时延,所述第二TRP为所述至少两个TRP中的另一个;
    所述第一TRP从所述第二TRP接收所述基准时延;
    所述第一TRP根据所述第一时延以及所述基准时延计算所述时延差;
    或,
    所述第一TRP获取所述第一时延与基准时延的时延差包括:
    所述第一TRP向所述第二TRP发送所述第一时延,以使所述第二TRP根据所述第一时延以及所述基准时延计算所述时延差;
    所述第一TRP从所述第二TRP接收所述时延差;
    或,
    所述第一TRP获取所述第一时延与基准时延的时延差包括:
    所述第一TRP从所述至少两个TRP中除所述第一TRP之外的其他TRP接收至少一个上行时延;
    所述第一TRP根据所述至少一个上行时延以及所述第一时延确定所述基准时延;
    所述第一TRP根据所述第一时延以及所述基准时延计算所述时延差。
  6. 根据权利要求4-5中任一项所述的方法,其特征在于,所述测量信号包括:
    信道探测参考信号SRS。
  7. 一种数据传输的时延补偿方法,其特征在于,包括:
    UE根据第一时延以及第二时延确定时延差,其中,所述第一时延为所述UE与第一TRP之间的时延,所述第二时延为所述UE与所述第二TRP之间的时延,所述第一时延小于所述第二时延;
    所述UE从所述第一TRP接收第一下行导频以及从第二TRP接收第二下行导频,其中,所述第一下行导频的时延为所述第一时延,所述第二下行导频的时延为所述第二时延;
    所述UE根据所述时延差对所述第二下行导频进行频域上的相位旋转补偿,得到第三下行导频;
    所述UE分别对所述第一下行导频和所述第三下行导频进行信道估计得到第一信道特征和第二信道特征,其中,所述第一信道特征为所述第一TRP与所述UE之间的信道特征,所述第二信道特征为所述第二TRP与所述UE之间的信道特征;
    所述UE根据所述时延差对所述第二信道特征进行频域上的相位旋转反补偿,得到第三信道特征;
    所述UE根据所述第一信道特征以及所述第三信道特征对业务数据进行译码。
  8. 根据权利要求7所述的方法,其特征在于:
    所述第三导频的频域数据表示为Y 2(jw),所述第二导频的频域数据表示为Y 1(jw),所述时延差为Δt,Y 2(jw)、Y 1(jw)和Δt之间的关系满足:
    Y 2(jw)=e -jwΔt*Y 1(jw);
    所述第三信道特征的频域数据表示为Z 2(jw),所述第二信道特征的频域数据表示为Z 1(jw),Z 1(jw)、Z 2(jw)和Δt之间的关系满足:
    Z 2(jw)=e -jwΔt*Z 1(jw)。
  9. 根据权利要求7-8中任一项所述的方法,其特征在于,在所述UE根据第一时延以及第二时延确定时延差之前,所述方法还包括:
    所述UE分别从所述第一TRP接收第一定时信号以及从所述第二TRP接收第二定时信号,所述第一定时信号与所述第二定时信号被同时发送并在频域上错开;
    所述UE根据所述第一定时信号以及所述第二定时信号确定所述第一时延以及所述第二时延。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一定时信号包括:第一同步定时信号TRS;
    所述第二定时信号包括:第二TRS。
  11. 一种传输和接收节点TRP,所述TRP作为第一TRP,其特征在于,包括:
    所述TRP通过硬件或通过硬件执行相应的软件实现如权利要求1-6中任一项所述的方法,所述硬件或所述软件包括一个或多个与权利要求1-6任一项所述的方法相对应的模块。
  12. 一种终端设备UE,其特征在于,包括:
    所述UE通过硬件或通过硬件执行相应的软件实现如权利要求7-10中任一项所述的方 法,所述硬件或所述软件包括一个或多个与权利要求6-9任一项所述的方法相对应的模块。
  13. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1-6中任一项所述的方法被执行。
  14. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求7-10中任一项所述的方法被执行。
  15. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行计算机程序或指令,使得权利要求1-10中任一项所述的方法被执行。
  16. 一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-10中任一项所述的方法。
  17. 一种通信装置,所述通信装置用于执行权利要求1-6中任一项所述的方法,或,用于执行权利要求7-10中任一项所述的方法。
  18. 一种计算机程序产品,包括计算机可读指令,当所述计算机可读指令在计算机上运行时,使得计算机执行如权利要求1-10中任一项所述的方法,或,使得计算机执行权利要求7-10中任一项所述的方法。
  19. 一种通信系统,其特征在于,所述通信系统包括传输和接收节点TRP和终端设备UE;
    所述TRP作为第一TRP,用于执行权利要求1-6中任一项所述的方法;
    所述UE,用于执行权利要求7-10中任一项所述的方法。
PCT/CN2020/110719 2019-08-30 2020-08-24 一种数据传输的时延补偿方法、终端设备以及trp WO2021036969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910818401.0A CN112448783B (zh) 2019-08-30 2019-08-30 一种数据传输的时延补偿方法、终端设备以及trp
CN201910818401.0 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021036969A1 true WO2021036969A1 (zh) 2021-03-04

Family

ID=74684059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110719 WO2021036969A1 (zh) 2019-08-30 2020-08-24 一种数据传输的时延补偿方法、终端设备以及trp

Country Status (2)

Country Link
CN (1) CN112448783B (zh)
WO (1) WO2021036969A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412463A (zh) * 2021-05-28 2022-11-29 中国移动通信有限公司研究院 时延测量方法、装置及数字孪生网络

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220162520A (ko) * 2021-06-01 2022-12-08 삼성전자주식회사 네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치
CN116456361A (zh) * 2022-01-07 2023-07-18 大唐移动通信设备有限公司 定时测量上报、定时配置、信息传输方法、装置及设备
CN114466450B (zh) * 2022-02-28 2022-09-13 广州爱浦路网络技术有限公司 基于5g的trp定位方法、系统、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917381A (zh) * 2010-08-20 2010-12-15 西安电子科技大学 协作多点传输系统中小区间延迟差补偿方法
CN108365997A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种信息传输方法和装置
US20190149379A1 (en) * 2017-09-08 2019-05-16 Intel IP Corporation System and method for pucch transmission scheme
WO2019164430A1 (en) * 2018-02-26 2019-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Optimizing usage of a coordinated service

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118825B (zh) * 2009-12-31 2013-12-04 华为技术有限公司 实现多点联合传输的方法、终端及系统
CN102958084B (zh) * 2011-08-23 2018-03-02 中兴通讯股份有限公司 一种时延差的纠正方法和系统
US9531573B2 (en) * 2012-04-09 2016-12-27 Samsung Electronics Co., Ltd. Methods and apparatus for cyclic prefix reduction in MMwave mobile communication systems
EP2920934B1 (en) * 2012-11-14 2020-12-23 Telefonaktiebolaget LM Ericsson (publ) Pilot signal transmission method, associated transmit-receive point, pilot signal reception method and associated user equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917381A (zh) * 2010-08-20 2010-12-15 西安电子科技大学 协作多点传输系统中小区间延迟差补偿方法
CN108365997A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种信息传输方法和装置
US20190149379A1 (en) * 2017-09-08 2019-05-16 Intel IP Corporation System and method for pucch transmission scheme
WO2019164430A1 (en) * 2018-02-26 2019-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Optimizing usage of a coordinated service

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on UL multi-panel/TRP operation", 3GPP DRAFT; R1-1715719, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051339181 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412463A (zh) * 2021-05-28 2022-11-29 中国移动通信有限公司研究院 时延测量方法、装置及数字孪生网络
CN115412463B (zh) * 2021-05-28 2024-06-04 中国移动通信有限公司研究院 时延测量方法、装置及数字孪生网络

Also Published As

Publication number Publication date
CN112448783A (zh) 2021-03-05
CN112448783B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2021036969A1 (zh) 一种数据传输的时延补偿方法、终端设备以及trp
CN110167091B (zh) 下行信道的接收方法、发送方法、终端和基站
WO2019214663A1 (zh) 准共址配置方法、终端及网络设备
US12028818B2 (en) Measurement processing method, parameter configuration method, terminal, and network device
WO2019141057A1 (zh) 上行功率控制参数配置方法、终端及网络设备
CN110719632B (zh) 一种准共址确定方法、调度方法、终端及网络设备
CN111182579B (zh) 定位测量信息上报方法、终端和网络设备
WO2019192385A1 (zh) 信道和信号的传输方法及通信设备
CN109803253A (zh) 一种信号传输方法、终端及网络设备
WO2019076169A1 (zh) 同步信号块的处理方法、同步信号块的指示方法及装置
WO2019101063A1 (zh) 一种数据传输的方法及相关装置
WO2021088970A1 (zh) 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备
WO2019091273A1 (zh) 波束历史信息传输方法、终端及网络设备
WO2019137275A1 (zh) 测量方法、测量配置方法、终端及网络设备
CN111835482A (zh) 准共址qcl信息确定方法、配置方法及相关设备
CN110022194B (zh) 资源映射方法、网络侧设备及终端
US20230337175A1 (en) Method for reporting positioning capability, terminal device, and network device
CN111818563B (zh) 测量方法、资源配置方法、终端和网络侧设备
US11259323B2 (en) Random access method and user equipment
WO2021147763A1 (zh) 确定波束信息的方法、终端及网络设备
WO2022268197A1 (zh) 定位处理方法、定位参考信号发送方法、装置及设备
WO2019001188A1 (zh) 一种数据处理方法、终端以及基站
WO2019218832A1 (zh) 上行数据传输指示方法、终端和网络侧设备
WO2021147956A1 (zh) 一种测量上报、配置方法、终端及网络侧设备
US11736327B2 (en) Uplink transmission method and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856418

Country of ref document: EP

Kind code of ref document: A1