WO2021088970A1 - 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备 - Google Patents

探测参考信号发射设置方法、信息配置方法、定位方法和相关设备 Download PDF

Info

Publication number
WO2021088970A1
WO2021088970A1 PCT/CN2020/127041 CN2020127041W WO2021088970A1 WO 2021088970 A1 WO2021088970 A1 WO 2021088970A1 CN 2020127041 W CN2020127041 W CN 2020127041W WO 2021088970 A1 WO2021088970 A1 WO 2021088970A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
cell
terminal
signal
spatial relationship
Prior art date
Application number
PCT/CN2020/127041
Other languages
English (en)
French (fr)
Inventor
王园园
司晔
邬华明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021088970A1 publication Critical patent/WO2021088970A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communication technology, in particular to an SRS transmission setting method, information configuration method, positioning method and related equipment.
  • the terminal needs to transmit SRS (Sounding Reference Signal).
  • SRS Sounding Reference Signal
  • the constraints of its transmission direction and transmission power do not meet the positioning requirements, which leads to poor positioning of SRS transmission; and, due to the limited power of the terminal, this makes the transmission power of each transmission direction unable to be sufficient.
  • the successful reception of the cell to achieve positioning results in the limited coverage of SRS signals and limits the application scenarios of SRS positioning.
  • the embodiments of the present invention provide an SRS transmission setting method, information configuration method, positioning method and related equipment to solve the problem of poor SRS transmission positioning and coverage.
  • an embodiment of the present invention provides an SRS transmission setting method, which is applied to a terminal, and the method includes:
  • the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal
  • the first measurement result is a result obtained by measuring the serving cell and neighboring cells by the terminal based on the cell information.
  • an embodiment of the present invention provides an information configuration method, and the method includes:
  • the network side device configures the cell information of the serving cell and neighboring cells for the terminal, where the cell information is used to determine the transmission parameters of the reference signal SRS for channel sounding;
  • the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal.
  • an embodiment of the present invention also provides a terminal, including:
  • a receiving module configured to receive cell information of a serving cell and neighboring cells, where the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal;
  • a setting module configured to set transmission parameters of the reference signal SRS for channel sounding according to the cell information and/or the first measurement result
  • the first measurement result is a result obtained by measuring the serving cell and neighboring cells by the terminal based on the cell information.
  • an embodiment of the present invention also provides a network side device, including:
  • the configuration module is used to configure cell information of the serving cell and neighboring cells for the terminal, and the cell information is used to determine the transmission parameters of the reference signal SRS for channel sounding;
  • the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal.
  • an embodiment of the present invention also provides a positioning method, which is applied to a communication device, where the communication device is a network-side device or a terminal, and the method includes:
  • the location information of the terminal is determined, and the target measurement information is the measurement information of the spatial relationship signal and the positioning reference signal.
  • an embodiment of the present invention also provides a communication device, where the communication device is a network-side device or a terminal, and includes:
  • the determining module is configured to determine the location information of the terminal according to the target measurement information, where the target measurement information is the measurement information of the spatial relationship signal and the positioning reference signal.
  • an embodiment of the present invention also provides another terminal, including: a memory, a processor, and a program stored on the memory and running on the processor.
  • a program stored on the memory and running on the processor.
  • an embodiment of the present invention also provides another network-side device, including: a memory, a processor, and a program stored on the memory and capable of running on the processor, and the program is used by the processor. When executed, the steps in the information configuration method in the second aspect of the embodiment of the present invention are realized.
  • an embodiment of the present invention also provides another communication device.
  • the communication device is a network-side device or a terminal, and includes: a memory, a processor, and a device stored in the memory and running on the processor.
  • a program when the program is executed by the processor, implements the steps in the positioning method in the fifth aspect of the embodiment of the present invention.
  • an embodiment of the present invention also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the embodiment of the present invention in the first aspect is implemented. Steps in the SRS transmission setting method, or, when the computer program is executed by a processor, implement the steps in the information configuration method in the second aspect of the embodiment of the present invention, or when the computer program is executed by the processor, implement the present invention The steps in the positioning method in the fifth aspect of the embodiment.
  • the terminal by configuring the cell information of the serving cell and neighboring cells for the terminal, the terminal can transmit parameters of the SRS according to the cell information of the serving cell and neighboring cells, and/or the measurement results of the serving cell and neighboring cells. Make settings. Since the terminal setting of the SRS transmission parameters comprehensively considers the cell information of the serving cell and neighboring cells, the directivity, localization and coverage of the SRS transmission can be improved.
  • Figure 1 is a structural diagram of a network system applicable to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for setting SRS transmission according to an embodiment of the present invention
  • Figure 3 is one of the schematic diagrams of an information configuration provided by an embodiment of the present invention.
  • FIG. 4 is a second schematic diagram of an information configuration provided by an embodiment of the present invention.
  • FIG. 5 is the third schematic diagram of an information configuration provided by an embodiment of the present invention.
  • Fig. 6 is a fourth schematic diagram of an information configuration provided by an embodiment of the present invention.
  • FIG. 7 is the fifth schematic diagram of an information configuration provided by an embodiment of the present invention.
  • FIG. 8 is a flowchart of another SRS transmission setting method provided by an embodiment of the present invention.
  • FIG. 9 is a flowchart of an information configuration method provided by an embodiment of the present invention.
  • FIG. 10 is a structural diagram of a terminal provided by an embodiment of the present invention.
  • FIG. 11 is a structural diagram of a network side device provided by an embodiment of the present invention.
  • Figure 12 is a structural diagram of another terminal provided by an embodiment of the present invention.
  • FIG. 13 is a structural diagram of another network side device provided by an embodiment of the present invention.
  • FIG. 14 is a flowchart of a positioning method provided by an embodiment of the present invention.
  • FIG. 15 is a structural diagram of a communication device provided by an embodiment of the present invention.
  • FIG. 16 is a structural diagram of another terminal provided by an embodiment of the present invention.
  • FIG. 17 is a structural diagram of another network side device provided by an embodiment of the present invention.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiment of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the wireless communication system can be a 5G system, or an evolved Long Term Evolution (eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present invention. As shown in FIG. 1, it includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a user terminal or other terminal side.
  • Devices such as: mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (personal digital assistant, PDA), mobile Internet devices (Mobile Internet Device, MID) or wearable devices
  • PDA personal digital assistant
  • mobile Internet devices Mobile Internet Device, MID
  • wearable devices For terminal-side devices such as (Wearable Device), it should be noted that the specific type of the terminal 11 is not limited in the embodiment of the present invention.
  • the above-mentioned network side device 12 may be a 5G base station, or a later version base station, or a base station in other communication systems, or called a node, an evolved node, or a transmission reception point (TRP), or an access point ( Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network side device is not limited to a specific technical vocabulary.
  • the aforementioned network side device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiment of the present invention, only a 5G base station is taken as an example, but the specific type of the network side device is not limited.
  • FIG. 2 is a flowchart of an SRS transmission setting method according to an embodiment of the present invention. The method is applied to the network system shown in FIG. 1, as shown in FIG. 2, and includes the following steps:
  • Step 201 The network side device configures the cell information of the serving cell and neighboring cells for the terminal.
  • the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal.
  • the content of cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal.
  • the aforementioned spatial relationship information may include at least one of the following:
  • Cell SSB ID Synchronization Signal and PBCH block IDentifier, synchronization signal block ID
  • Cell CSI-RS ID Channel State Information Reference Signal IDentifier, Channel State Information Reference Signal ID
  • DL-PRS resource set ID Downlink-Positioning Reference Signal resource set ID, downlink positioning reference signal resource set ID
  • DL-PRS resource ID downlink positioning reference signal resource identifier
  • SSB corresponds to the spatial direction information of the beam
  • DL-PRS corresponds to the spatial direction information of the beam
  • the spatial direction information of the beam corresponding to each reference signal includes at least one of the following:
  • Offset information of other beams relative to the reference beam or QCL beam is offset.
  • the aforementioned spatial relationship information may also include QCL (Quasi Co-Location) information.
  • the above-mentioned QCL information is the QCL information for setting the reference signals of the serving cell and neighboring cells as the configured SRS, and the above-mentioned QCL information may include cell identity, cell SSB ID, cell CSI-RS ID, and DL-PRS block ID information At least one of.
  • the above-mentioned QCL information may include the QCL reference signal and the ID of the QCL reference signal
  • the QCL reference signal may include at least one of SSB, CSI-RS, and DL-PRS
  • the ID of the QCL reference signal may include SSB index, DL PRS index, and CSI -At least one of the RS index
  • the SSB index may include the SSB ID
  • the DL PRS index may include at least the DL PRS resource set ID and the DL PRS resource ID
  • the CSI-RS index may include at least the CSI-RS ID.
  • the foregoing power configuration information may include path loss reference signal indication information and transmit power configuration information.
  • the path loss reference signal indication information may include at least one of the following:
  • the transmit power configuration information may include at least one of the following:
  • CSI-RS transmit power of the serving cell
  • the configuration information of the foregoing specific signal may include at least one of the following:
  • the specific cell is a cell that is not configured in the measurement configuration information.
  • the foregoing configuration information may include at least one of time-frequency resource configuration information, bandwidth, a common reference point (point A) of the resource block grid, measurement time, subcarrier spacing, and signal indication information;
  • the signal indication information is the cell ID and beam ID of the signal.
  • Step 202 The terminal receives cell information of the serving cell and neighboring cells.
  • Step 203 The terminal sets the transmission parameters of the SRS according to the cell information and/or the first measurement result.
  • the “cell information” or “the above cell information” involved in the embodiment of the present invention refers to the cell information of the serving cell and neighboring cells.
  • the above-mentioned first measurement result is a result obtained by the terminal measuring the serving cell and the neighboring cell based on the cell information of the serving cell and the neighboring cell.
  • the first measurement result may include the result of the terminal measuring the serving cell and neighboring cells based on the spatial relationship signal in the above-mentioned cell information, and may also include the terminal's measurement of the serving cell based on the power configuration information in the above-mentioned cell information. The result obtained by measuring with neighboring cells.
  • the terminal by configuring the cell information of the serving cell and neighboring cells for the terminal, the terminal can transmit parameters of the SRS according to the cell information of the serving cell and neighboring cells, and/or the measurement results of the serving cell and neighboring cells. Make settings. Since the setting of the SRS transmission parameters by the terminal comprehensively considers the cell information of the serving cell and neighboring cells, the directivity, location and coverage of the SRS transmission can be improved.
  • step 201 may include:
  • the serving cell configures the cell information of neighboring cells for the terminal through an RRC (Radio Resource Control) message; or,
  • the server configures the cell information for the terminal through LPP (LTE Positioning Protocol) signaling or LPP evolution signaling or data channel.
  • LPP Long Positioning Protocol
  • the network side device configures the above-mentioned cell information for the terminal, which can be implemented either through the serving cell or through the server.
  • the serving cell configures cell information of neighboring cells for the terminal through an RRC message.
  • the terminal may have obtained the cell information of the serving cell itself. Therefore, when the serving cell configures the above-mentioned cell information for the terminal, only the cell information of the neighboring cells may be configured. Of course, the serving cell can also configure the cell information of the serving cell itself and the cell information of neighboring cells for the terminal at the same time.
  • the serving cell configures the cell information of the neighboring cells for the terminal
  • the configuration manners of different cell information content will be respectively described below.
  • the spatial relationship information of the neighboring cells is configured through a cell identifier or TRP (Transmission Reception Point) identifier in the spatial relationship configuration information of the SRS; or,
  • the spatial relationship information of the neighboring cells is configured through the non-serving cell identity in the spatial relationship configuration information of the SRS; or,
  • the spatial relationship information of the neighboring cells is configured through the DL-PRS information in the spatial relationship configuration information of the SRS.
  • the serving cell identity in the spatial relationship configuration information of the SRS can be changed to a cell identity or a TRP identity, and the spatial relationship configuration information corresponding to the cell identity or the TRP identity can be configured.
  • the changed cell identity or TRP identity can be used to identify the serving cell as well as the neighboring cells.
  • the non-serving cell's indicator and the non-serving cell's spatial relationship configuration information can also be directly configured in the SRS spatial relationship configuration information.
  • the non-serving cell's indicator can be used to identify the neighboring cell, the non-serving cell
  • the spatial relationship configuration information of can be used to configure the spatial relationship information of neighboring cells.
  • directly configuring the indication identifier of the non-serving cell and the spatial relationship configuration information of the non-serving cell can be understood as retaining the original serving cell identifier and the spatial relationship configuration information of the original serving cell in the spatial relationship configuration information of the SRS. Add the indication identifier of the non-serving cell and the spatial relationship configuration information of the non-serving cell.
  • directly adding the indication identifier of the non-serving cell and the spatial relationship configuration information of the non-serving cell to the spatial relationship configuration information of the SRS has the advantage of being easy to implement compared to changing the original serving cell identifier.
  • DL-PRS information of neighboring cells may also be configured in the spatial relationship configuration information of the SRS, and the DL-PRS information may include at least one of DL-PRS resource set ID and DL-PRS resource ID.
  • the power configuration information of the neighboring cell includes the path loss reference signal configuration of the SRS; or,
  • the path loss reference signal of the neighboring cell is configured in each resource unit (per resource) or each resource unit set of the SRS; or,
  • the power configuration information of the neighboring cells is configured in a non-serving cell group or a neighboring cell group in each measurement object (measureObject); or,
  • the power configuration information of the neighboring cell includes the configuration of the reference signal information and the transmission power information configuration of the reference signal in each measurement target.
  • the DL-PRS information of the neighboring cell can be configured in the path loss reference signal of the SRS, so as to configure the power configuration information of the neighboring cell for the terminal.
  • the DL-PRS information may include at least one of DL-PRS resource set ID and DL-PRS resource ID.
  • other neighboring cells can also be introduced into the CG of the measureObject (that is, the primary cell and the primary and secondary cell group), so as to configure the power configuration information of the neighboring cells for the terminal.
  • the reference signal information and the transmission power information of the reference signal can also be introduced into the measureObject, so as to realize the configuration of the power configuration information of the neighboring cells for the terminal.
  • the reference signal may include SSB and DL-PRS
  • the reference signal information may include the cell ID to which the reference signal belongs and the TRP ID of the reference signal
  • the transmit power information of the reference signal may include the transmit power of the serving cell SSB and the relative transmit power of the neighboring cell SSB. At least one of the offset of the SSB power of the serving cell, the DL-PRS transmit power of the serving cell, and the offset of the DL-PRS transmit power of the neighboring cell relative to the SSB power of the serving cell.
  • the DL-PRS transmit power of the serving cell and/or the offset configuration of the neighboring cell relative to the SSB power of the serving cell and the DL-PRS signal configuration can be introduced into the measureObject.
  • add DL-PRS measurement configuration IE which includes at least DL-PRS set, DL-PRS resource set and corresponding DL-PRS signal configuration information and transmit power.
  • the configuration information of the specific signal of the neighboring cell is configured in a non-serving cell group or a neighboring cell group in each measurement target.
  • the specific signal may include SSB, CSI-RS, and DL-PRS.
  • the configuration information of the specific signal may include SSB configuration information, CSI-RS configuration information, and DL-PRS configuration information, and the configuration information may include time-frequency resource configuration. , At least one of bandwidth, point A, measurement time, subcarrier spacing, and signal indication information;
  • the signal indication information is the cell ID and beam ID of the signal.
  • the time-frequency resource information of the SSB can be obtained through MIB (Master Information Block, master information block), or optional signal configuration information of the neighboring cell SSB is added to the SSB-ConfigMobility (SSB mobility configuration).
  • MIB Master Information Block, master information block
  • optional signal configuration information of the neighboring cell SSB is added to the SSB-ConfigMobility (SSB mobility configuration).
  • the serving cell configures the cell information of the neighboring cells for the terminal according to the embodiments of the present invention.
  • the following describes in detail the manner in which the server configures the cell information of the serving cell and neighboring cells for the terminal.
  • the server configures the cell information of the serving cell and neighboring cells for the terminal through LPP signaling or LPP evolution signaling or a data channel, including:
  • the server configures the cell information of the serving cell and neighboring cells for the terminal through LPP signaling or LPP evolution signaling or a data channel.
  • the location information of the terminal may be historical location information or location information obtained by other positioning means.
  • the above-mentioned TRP information stored in the server may include at least one of TRP identification information, spatial relationship information, power configuration information, and configuration information of specific signals
  • the above-mentioned cell information stored in the server may include cell identification information , At least one of spatial relationship information, power configuration information, and specific signal configuration information.
  • the aforementioned spatial relationship information may include the QCL reference signal and the ID of the QCL reference signal of the configured serving cell and neighboring cells.
  • the power configuration information may include the transmit power information of the reference signal of the configured serving cell and neighboring cells, the reference signal including one or any combination of SSB and DL-PRS; the power configuration information may also include the configured serving cell and the neighboring cell's transmit power information. Reference signal information for path loss calculation.
  • the configuration information of a specific signal may include time-frequency resource information of reference signals of the configured serving cell and neighboring cells, and the reference signal includes one or any combination of SSB, CSI-RS, and DL-PRS.
  • the TRP information and/or cell information stored by the server may be collected from the TRP or the cell by LPPA signaling and NRPPA signaling or evolution. Further, it supports the transmission of LPPA signaling and NRPPA signaling and the collection of SSB information and CSI-RS information of the cell.
  • the SSB information and CSI-RS information may include ID information and configuration information, and the configuration information may include time-frequency resource configuration, bandwidth, point A, at least one of measurement time, subcarrier spacing, and signal indication information;
  • the signal indication information is the cell ID and beam ID of the signal.
  • the server configures the above cell information according to the location information of the terminal and the TRP information and/or cell information stored in the server, so that the server can configure reasonable spatial relationship information for the terminal before receiving the measurement.
  • the cell information of the serving cell and neighboring cells is configured by UTDOA (Observed Time Difference of Arrival) positioning assistance data IE (Information Element, information element in the signaling message), or
  • the cell information of the serving cell and neighboring cells is configured through the uplink time of arrival positioning method positioning assistance data IE.
  • a UTDOA positioning assistance data IE can be added to the LPP signaling protocol, and the UTDOA positioning assistance data IE includes the cell information.
  • an uplink time-of-arrival positioning method positioning assistance data IE may be added to the LPP signaling protocol, and the uplink time-of-arrival positioning method positioning assistance data IE includes the cell information.
  • configuring the cell information of the serving cell and neighboring cells through the above method enables the terminal to obtain not only resource configuration information, but also estimated spatial relationship information and power configuration information during SRS transmission.
  • the embodiment of the present invention provides a variety of cell information configuration schemes.
  • the network side device can flexibly select a suitable configuration scheme according to different application sites and different real-time requirements, thereby improving communication At the same time of performance, it can also improve communication flexibility.
  • the terminal after receiving the above cell information configured by the network side device, the terminal can set the transmission parameters of the SRS according to the above cell information and/or the first measurement result.
  • the transmission parameters of the SRS can include the transmission direction and Transmit power.
  • the terminal can set the transmission direction of the SRS, and can also set the transmission power of the SRS.
  • the terminal setting SRS transmission parameters according to the above cell information and/or the first measurement result includes:
  • the terminal sets the transmission direction of the SRS according to the spatial relationship information in the cell information and/or the first measurement result; or,
  • the terminal sets the transmission power of the SRS according to the power configuration information in the cell information and the configuration information of the specific signal and/or the first measurement result; or,
  • the terminal sets the transmission power of the SRS according to the spatial relationship information, power configuration information, and specific signal configuration information in the cell information, and the first measurement result; or,
  • the terminal According to the spatial relationship information and/or power configuration information in the cell information and the configuration information of a specific signal and/or the first measurement result, the terminal performs measurement on the transmission direction of the SRS and the transmission power corresponding to each transmission direction. Set up.
  • the above-mentioned first measurement result may be a result obtained by the terminal measuring the serving cell and neighboring cells based on the spatial relationship information in the cell information.
  • the above-mentioned first measurement result may be the result obtained by the terminal measuring the serving cell and neighboring cells based on the spatial relationship information and/or power configuration information in the cell information.
  • the above-mentioned The first measurement result may be a result obtained by the terminal measuring the serving cell and neighboring cells based on the spatial relationship information and/or path loss reference information and/or the transmission power in the cell information.
  • the foregoing first measurement result may be a result obtained by the terminal measuring the serving cell and neighboring cells based on the spatial relationship information and/or power configuration information and/or the configuration information of the specific signal in the cell information.
  • the terminal setting the transmission direction of the SRS according to the spatial relationship information in the cell information and/or the first measurement result includes:
  • the terminal sets the relevant direction of the spatial relationship signal between the serving cell and neighboring cells as the transmission direction of the SRS; or,
  • the terminal sets the spatial filtering direction that is the same as the related direction of the spatial relationship signal as the transmission direction of the SRS.
  • the terminal setting the relevant direction of the spatial relationship signal between the serving cell and the neighboring cell as the transmission direction of the SRS includes:
  • a specific beam direction is selected as the transmission direction of the SRS.
  • the relative direction of the spatial relationship signal received by the terminal is: the relative direction of the spatial relationship signal of the serving cell and neighboring cells received by the terminal.
  • This implementation manner can enable the terminal to predictively enable sufficient network-side equipment to receive the SRS signal, thereby enhancing the positioning performance of the SRS.
  • selecting a specific beam direction as the transmission direction of the SRS includes:
  • the terminal selects a specific direction from the related directions of the spatial relationship signal received by the terminal as the transmission direction of the SRS; or,
  • the terminal selects a specific direction from the relevant directions of the spatial relationship signal received by the terminal as the transmission direction of the SRS; or,
  • the terminal selects a specific direction as the transmission direction of the SRS from the related directions of the spatial relationship signal received by the terminal.
  • the terminal combines the first measurement result and the terminal's capabilities to select a specific direction from the relevant directions of the spatial relationship signal received by the terminal as the transmission direction of the SRS, which can make the setting of the transmission direction of the SRS more reasonable.
  • the correlation direction of the spatial relationship signal includes:
  • the receiving beam direction with the strongest received power of the spatial relationship signal is the receiving beam direction with the strongest received power of the spatial relationship signal.
  • the direction of the first path of the spatial relationship signal is measured; or,
  • the arrangement direction of the spatial relationship signal is the arrangement direction of the spatial relationship signal.
  • the terminal can set the relevant direction of the QCL signal of the serving cell and neighboring cells to the direction and direction of the SRS set (SRS resource set) according to the QCL configuration of the serving cell and neighboring cells, and the SRS resource configuration information provided by the network side device.
  • SRS resource (SRS resource) direction SRS resource (SRS resource) direction.
  • the relative direction of the QCL signal of the serving cell and the neighboring cell is the receiving beam direction with the strongest received QCL signal power, or the direction of the first path of the measured QCL signal, or the configuration and/or spatial filtering direction of the QCL signal.
  • the terminal may select the relevant direction of all QCL signals to transmit SRS according to the SRS resource configuration information, or may select a denser or sparser beam direction to transmit according to the first measurement result.
  • the relative direction of the QCL signal of the serving cell and the neighboring cell is the receiving beam direction with the strongest received QCL signal power or the direction of the first path of the measured QCL signal or the configuration and/or spatial filtering direction of the QCL signal.
  • the terminal can select the relevant direction of all QCL signals for transmission according to the resource configuration or select a denser or sparser beam direction for transmission according to previous measurements.
  • repeated directions may be transmitted; or a part of the RRC configured QCL directions may be selected for transmission.
  • the configured resources such as set and resource
  • the direction with higher priority of the QCL configured by the server or better terminal measurement result is selected for transmission.
  • the terminal sets SRS transmission parameters according to the cell information and/or the first measurement result, including:
  • the terminal sets the transmission power of the SRS according to the power configuration information and the configuration information of the specific signal in the cell information, and the first measurement result; or,
  • the terminal sets the transmission power of the SRS according to the spatial relationship information, power configuration information, and specific signal configuration information in the cell information, and the first measurement result.
  • the terminal can calculate the RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) of the received signal according to the transmit power configuration of the serving cell and neighboring cells, combined with the QCL signal measured by the signal configuration of the QCL signal. , Reference signal reception quality) or SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio) to calculate the path loss from the network side device to the terminal.
  • the SRS beam transmit power formula calculate and set the direction respectively The transmit power of the serving cell and neighboring cells.
  • the terminal can measure the RSRP, RSRQ or SINR of the path loss reference signal according to the transmit power and path loss reference signal in the power configuration of the cell, so as to calculate the path loss from the network side device to the terminal to configure the terminal's transmit power .
  • the terminal According to the spatial relationship information and/or power configuration information and specific signal configuration information and/or the first measurement result in the cell information, the terminal performs a measurement on the transmission direction of the SRS and the corresponding transmission power in the transmission direction. Set up.
  • the terminal measures the received signal of the path loss reference according to the transmit power in the power configuration of the cell and the spatial relationship information and path loss reference signal in the cell information.
  • RSRP, RSRQ, or SINR to calculate the path loss from the network side to the terminal, and combine the spatial relationship to configure the UE's transmit power to the corresponding spatial relationship.
  • the embodiments of the present invention provide a variety of SRS transmission parameter setting schemes.
  • the terminal can flexibly select a suitable setting scheme according to different resources and different configurations, thereby, while improving communication performance, It can also improve communication flexibility.
  • the terminal in the process of setting the transmission parameters of SRS by the terminal, if part or all of the information configured by the server conflicts with part or all of the information configured by the serving cell through the RRC message, the terminal will be affected by the transmission parameters of the SRS.
  • the setting can adopt the following two optional methods.
  • Method 1 If the conflicting information is the information of the serving cell or the information of the primary and secondary cells, the terminal can set the SRS transmission parameters with the information configured in the serving cell as a high priority, or select one of the above configurations according to the measurement situation. Or select other configurations according to the measurement, and report the updated QCL indication information and measurement results.
  • Method 2 If the conflicting information is the spatial relationship information of neighboring cells, the terminal can select one of the above configurations according to the measurement situation or other configurations according to the measurement, and report the updated QCL indication information and measurement results. If the conflicting information is neighboring With the power configuration information of the cell and the configuration information of the specific signal, the terminal can set the SRS transmission parameters with the configuration of the server as a high priority.
  • the above two methods provide a conflict resolution solution for the terminal, so that the terminal can reasonably select the SRS transmission solution under the conflict configuration.
  • the terminal may transmit the SRS according to the set transmission parameters.
  • the method further includes:
  • the terminal reports relevant information of the target cell to the network side device
  • the target cell is a cell used for sending the SRS
  • the related information includes at least one of spatial relationship information and measurement results of spatial relationship signals.
  • the terminal may report the spatial relationship ID of each neighboring cell used for transmission to the server, and the server may send the information to the neighboring cell.
  • the spatial relationship ID of each neighboring cell includes the spatial relationship signal and the spatial relationship signal ID and the information to which they belong. Neighboring cell indication.
  • the network side device can determine the transmission direction of the terminal to transmit the SRS, so that the network side device can follow up according to the transmission direction selected by the terminal. Measurement, thereby reducing the search complexity and search delay of the network side equipment.
  • the network-side device before the network-side device configures the cell information of the serving cell and neighboring cells for the terminal, the network-side device needs to obtain the above-mentioned cell information.
  • the network-side device may obtain the above-mentioned cell information by the network-side device corresponding to the serving cell, or the network-side device corresponding to the server may obtain the above-mentioned cell information.
  • the acquisition of the cell information by the network-side device includes:
  • the serving cell obtains the cell information of the neighboring cell through the X2 or Xn interface; or,
  • the serving cell obtains the cell information of the neighboring cell from the server through LPPA signaling (LTE Positioning Protocol A, LET positioning protocol A), NRPPA (NR Positioning Protocol A, NR positioning protocol A) signaling or data channels; or,
  • the server obtains the cell information of the serving cell and neighboring cells through LPPA signaling, NRPPA signaling or a data channel.
  • the serving cell since the serving cell knows its own cell information such as spatial relationship information, power configuration information, or configuration information of a specific signal, the serving cell only needs to obtain cell information of neighboring cells.
  • the serving cell obtains the cell information of the neighboring cell from the location server through LPPA signaling, NRPPA signaling or a data channel.
  • FIG. 3 shows a schematic diagram of the serving cell obtaining the cell information of the neighboring cell through the X2 or Xn interface, and configuring the cell information of the neighboring cell for the terminal through the RRC message.
  • FIG. 4 shows a schematic diagram of a serving cell obtaining cell information of neighboring cells from a location server through LPPA signaling or an evolution interface, and configuring the cell information of neighboring cells for the terminal through an RRC message.
  • FIG. 5 shows a schematic diagram of a server obtaining cell information of the serving cell and neighboring cells through NRPPA signaling, and configuring the cell information for the terminal through LPP signaling.
  • the embodiments of the present invention provide multiple solutions for obtaining cell information.
  • the network side device can flexibly select a suitable solution to obtain cell information according to different application scenarios and different delay requirements, so that: While improving communication performance, it can also improve communication flexibility.
  • the network-side device may also update the above-mentioned cell information for the terminal.
  • the network side device may update the above cell information by the network side device corresponding to the serving cell, or the network side device corresponding to the server may update the above cell information.
  • the network-side device updates the cell information for the terminal includes:
  • the serving cell In the case that the serving cell receives the neighboring cell measurement information reported by the terminal, the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message; or,
  • the server In the case that the server receives the neighboring cell measurement information and/or the serving cell measurement information reported by the terminal, the server updates the serving cell and the service cell for the terminal through LPP signaling or LPP evolution signaling or data channel. Cell information of neighboring cells.
  • FIG. 6 shows a schematic diagram of the terminal reporting the optimal beam and power measurement information of the neighboring cell to the serving cell through the RRC message, and the serving cell updates the cell information of the neighboring cell for the terminal through the RRC message.
  • FIG. 7 shows a schematic diagram of the terminal reporting the QCL and measurement results of the serving cell and neighboring cells, and the server updating the above-mentioned cell information for the terminal through LPP signaling.
  • the network-side device when the terminal reports measurement information to the network-side device (serving cell or server), the network-side device can update the above-mentioned cell information for the terminal according to the measurement information reported by the terminal. In this way, the configuration and measurement can be updated according to the location of the terminal.
  • the following further describes various ways for the network side device to update the above-mentioned cell information for the terminal.
  • the server updates the cell information of the serving cell and neighboring cells for the terminal, including:
  • the server updates the cell information of the serving cell and neighboring cells for the terminal according to the reported information of the terminal and the related information stored in the server.
  • the serving cell uses an RRC message to update the cell information of the neighboring cell for the terminal, including:
  • the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message according to the related information stored in the serving cell; or,
  • the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message according to the neighboring cell measurement information; or,
  • the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message according to the neighboring cell measurement information and related information stored in the serving cell.
  • the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message, including:
  • the serving cell uses the cell information corresponding to the cell index and/or the cell information corresponding to the beam index reported by the terminal as cell information for transmitting the SRS to neighboring cells;
  • the cell information corresponding to the beam index includes the first path signal beam ID or the signal beam ID with the best signal quality.
  • the signal beam ID with the best signal quality can be the ID with the largest RSPR and/or the largest RSRQ.
  • the best signal quality can be selected.
  • the signal that is closest to the frequency domain or time domain configuration resource can also be selected.
  • the SSB signal or the same signal as the active BWP of the terminal is preferred.
  • the serving cell may use the signal beam ID with the best signal quality reported by the terminal as the spatial relationship signal for transmitting the SRS to neighboring cells; or, the serving cell may use the first path signal beam ID reported by the terminal as The spatial relationship signal of the SRS is transmitted to neighboring cells.
  • the serving cell may use the signal beam ID with the best signal quality reported by the terminal as the path loss reference signal ID of the neighboring cell; or, the serving cell may use the first path signal beam ID reported by the terminal as the neighboring cell's Path loss reference signal ID.
  • the serving cell may use the first path signal beam ID reported by the terminal as the specific signal configuration information of the neighboring cell; or the serving cell may use the first path signal beam ID reported by the terminal as the specific signal configuration information of the neighboring cell .
  • the server updates the cell information of the serving cell and neighboring cells for the terminal through LPP signaling or LPP evolution signaling or a data channel, including:
  • the server uses the cell information corresponding to the cell index and/or the cell information corresponding to the signal beam index reported by the terminal as cell information for transmitting the SRS to the serving cell and neighboring cells;
  • the signal beam index includes the first path signal beam ID or the signal beam ID with the best signal quality.
  • the signal beam ID with the best signal quality can be the ID with the largest RSPR and/or the largest RSRQ.
  • the best signal quality can be selected.
  • the signal that is closest to the frequency domain or time domain configuration resource can also be selected.
  • the SSB signal or the same signal as the active BWP of the terminal is preferred.
  • the server may use the signal beam ID with the best signal quality reported by the terminal as the spatial relationship signal for transmitting the SRS to the serving cell and neighboring cells; or, the server may use the first path signal beam ID reported by the terminal As a spatial relationship signal for transmitting the SRS to neighboring cells.
  • the signal beam ID with the best signal quality in the cell reported by the terminal is used as the QCL signal for transmitting SRS to the serving cell and neighboring cells, or the first path signal beam ID reported by the terminal is used as the signal beam ID for transmitting to the serving cell and neighboring cells.
  • QCL signal of SRS is used as the QCL signal for transmitting SRS to the serving cell and neighboring cells.
  • the server may use the signal beam ID with the best signal quality reported by the terminal as the path loss reference signal ID of the serving cell and neighboring cells; or, the server may use the first path signal beam ID reported by the terminal as the serving cell And the path loss reference signal ID of the neighboring cell.
  • the server may use the first path signal beam ID reported by the terminal as the specific signal configuration information of the serving cell and neighboring cells; or, the server may use the first path signal beam ID reported by the terminal as the difference between the serving cell and neighboring cells. Specific signal configuration information.
  • the neighboring cell measurement information includes the reference signal index of the neighboring cell and the reference signal measurement result.
  • the serving cell measurement information includes a reference signal index of the serving cell and a reference signal measurement result.
  • the reference signal index includes at least one of an SSB index, a CSI-RS index, a DL-PRS index, a signal beam index, and a signal beam index corresponding to the measurement first path.
  • the reference signal measurement result includes the RSRP, RSRQ, and SINR of the measurement signal.
  • the embodiments of the present invention provide multiple solutions for updating cell information.
  • the network side device can flexibly select a suitable solution to update the cell information according to different application scenarios and different delay requirements. , While improving communication performance, it can also improve communication flexibility.
  • the network-side device may also notify the serving cell and/or neighboring cells of the updated cell information.
  • the network-side device may notify the neighboring cell of updated cell information by the network-side device corresponding to the serving cell, or the network-side device corresponding to the server may obtain the above-mentioned cell information from the serving cell and/or neighboring cells. .
  • the method further includes at least one of the following:
  • the serving cell notifies neighboring cells of updated cell information through the X2 or Xn interface;
  • the server notifies the serving cell and/or neighboring cells of updated cell information through LPPA signaling or NRPPA evolution signaling or data channel.
  • the network-side device can notify the serving cell and/or neighboring cells of the updated cell information, so that the serving cell and/or neighboring cells can predict beam arrivals. To reduce the measurement search time.
  • the terminal by configuring the cell information of the serving cell and neighboring cells for the terminal, the terminal can be based on the cell information of the serving cell and neighboring cells, and/or the measurement results of the serving cell and neighboring cells , To set the transmission parameters of SRS. Since the setting of the SRS transmission parameters by the terminal comprehensively considers the cell information of the serving cell and neighboring cells, the directivity, location and coverage of the SRS transmission can be improved.
  • FIG. 8 is a flowchart of an SRS transmission setting method according to an embodiment of the present invention. The method is applied to a terminal. As shown in FIG. 8, it includes the following steps:
  • Step 801 Receive cell information of a serving cell and neighboring cells, where the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal;
  • Step 802 According to the cell information and/or the first measurement result, set the transmission parameters of the channel sounding reference signal SRS; wherein, the first measurement result is that the terminal performs information on the serving cell based on the cell information. The result obtained by measuring with neighboring cells.
  • the method further includes:
  • the target cell is a cell used for sending the SRS
  • the related information includes at least one of spatial relationship information and measurement results of spatial relationship signals.
  • the setting of SRS transmission parameters according to the cell information and/or the first measurement result includes:
  • the relevant direction of the spatial relationship signal between the serving cell and the neighboring cell is set as the transmission direction of the SRS;
  • the spatial filtering direction that is the same as the correlation direction of the spatial relationship signal is set as the transmission direction of the SRS.
  • the setting the relevant direction of the spatial relationship signal between the serving cell and the neighboring cell as the transmission direction of the SRS includes:
  • a specific beam direction is selected as the transmission direction of the SRS.
  • selecting a specific beam direction as the transmission direction of the SRS includes:
  • a specific direction is selected as the transmission direction of the SRS;
  • a specific direction is selected as the transmission direction of the SRS;
  • a specific direction is selected as the transmission direction of the SRS.
  • the correlation direction of the spatial relationship signal includes:
  • the receiving beam direction with the strongest received power of the spatial relationship signal is the receiving beam direction with the strongest received power of the spatial relationship signal.
  • the direction of the first path of the spatial relationship signal is measured; or,
  • the arrangement direction of the spatial relationship signal is the arrangement direction of the spatial relationship signal.
  • the setting of SRS transmission parameters according to the cell information and/or the first measurement result includes:
  • the transmission power of the SRS is set according to the spatial relationship information, power configuration information, and specific signal configuration information in the cell information, and the first measurement result.
  • the spatial relationship information in the cell information includes at least one of the following:
  • Downlink positioning reference signal resource identifier DL-PRS resource ID Downlink positioning reference signal resource identifier DL-PRS resource ID
  • the spatial relationship information in the cell information includes quasi co-located QCL information.
  • the power configuration information in the cell information includes path loss reference signal indication information and transmit power configuration information
  • the path loss reference signal indication information includes at least one of the following:
  • the transmit power configuration information includes at least one of the following:
  • CSI-RS transmit power of the serving cell
  • the specific signal includes at least one of the following:
  • the specific cell is a cell that is not configured in the measurement configuration information.
  • the configuration information includes at least one of time-frequency resource configuration information, bandwidth, common reference point A of the resource block grid, measurement time, subcarrier spacing, and signal indication information;
  • the signal indication information is the cell ID and beam ID of the signal.
  • this embodiment is used as an implementation manner of the terminal corresponding to the embodiment shown in FIG. 2.
  • specific implementation manners refer to the related description of the embodiment shown in FIG. 2 and achieve the same beneficial effects. In order to avoid repetition Description, not repeat them here.
  • Figure 9 is a flow chart of an information configuration method provided by an embodiment of the present invention. The method is applied to a network side device. As shown in Figure 9, it includes the following steps:
  • Step 901 The network side device configures cell information of the serving cell and neighboring cells for the terminal, the cell information is used to determine the transmission parameters of the channel sounding reference signal SRS; wherein, the cell information includes spatial relationship information, power configuration information, and At least one item of configuration information for a specific signal.
  • the network side device configuring the cell information of the serving cell and neighboring cells for the terminal includes:
  • the serving cell configures the cell information of neighboring cells for the terminal through an RRC message.
  • the network side device configuring the cell information of the serving cell and neighboring cells for the terminal includes:
  • the server configures the cell information of the serving cell and neighboring cells for the terminal through LPP signaling or LPP evolution signaling or data channel.
  • the spatial relationship information of the neighboring cells is configured through the cell identifier or TRP identifier in the spatial relationship configuration information of the SRS; or,
  • the spatial relationship information of the neighboring cells is configured through the non-serving cell identity in the spatial relationship configuration information of the SRS; or,
  • the spatial relationship information of the neighboring cells is configured through the DL-PRS information in the spatial relationship configuration information of the SRS.
  • the power configuration information of the neighboring cell includes the path loss reference signal configuration of the SRS; or,
  • the path loss reference signal of the neighboring cell is configured in each resource unit or each resource unit set of the SRS; or,
  • the power configuration information of the neighboring cells is configured in the non-serving cell group or the neighboring cell group in each measurement target; or,
  • the power configuration information of the neighboring cells includes configuration of reference signal information and/or reference signal transmission power information configuration in each measurement target.
  • the server configures the cell information of the serving cell and neighboring cells for the terminal through LPP signaling or LPP evolution signaling or a data channel, including:
  • the server configures the cell information of the serving cell and neighboring cells for the terminal through LPP signaling or LPP evolution signaling or a data channel.
  • the cell information of the serving cell and neighboring cells is configured by the UTDOA positioning assistance data IE of the uplink time difference of arrival positioning method; or,
  • the cell information of the serving cell and neighboring cells is configured by the positioning assistance data IE of the uplink arrival time positioning method.
  • the method further includes:
  • the serving cell obtains the cell information of the neighboring cell through the X2 or Xn interface; or,
  • the serving cell obtains the cell information of the neighboring cell from the server through LPPA signaling, NRPPA signaling or data channel; or,
  • the server obtains the cell information of the serving cell and neighboring cells through LPPA signaling, NRPPA signaling or a data channel.
  • the method further includes:
  • the serving cell In the case that the serving cell receives the neighboring cell measurement information reported by the terminal, the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message; or,
  • the server In the case that the server receives the neighboring cell measurement information and/or the serving cell measurement information reported by the terminal, the server updates the serving cell and the service cell for the terminal through LPP signaling or LPP evolution signaling or data channel. Cell information of neighboring cells.
  • the server updates the cell information of the serving cell and neighboring cells for the terminal, including:
  • the server updates the cell information of the serving cell and neighboring cells for the terminal according to the reported information of the terminal and the related information stored in the server.
  • the serving cell uses an RRC message to update the cell information of the neighboring cell for the terminal, including:
  • the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message according to the related information stored in the serving cell; or,
  • the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message according to the neighboring cell measurement information; or,
  • the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message according to the neighboring cell measurement information and related information stored in the serving cell.
  • the serving cell updates the cell information of the neighboring cell for the terminal through an RRC message, including:
  • the serving cell uses the cell information corresponding to the cell index and/or the cell information corresponding to the beam index reported by the terminal as cell information for transmitting the SRS to neighboring cells;
  • the cell information corresponding to the beam index includes the first path signal beam ID or the signal beam ID with the best signal quality.
  • the server updates the cell information of the serving cell and neighboring cells for the terminal through LPP signaling or LPP evolution signaling or a data channel, including:
  • the server uses the cell information corresponding to the cell index and/or the cell information corresponding to the signal beam index reported by the terminal as cell information for transmitting the SRS to the serving cell and neighboring cells;
  • the signal beam index includes the first path signal beam ID or the signal beam ID with the best signal quality.
  • the neighboring cell measurement information includes the reference signal index of the neighboring cell and the reference signal measurement result.
  • the reference signal index includes at least one of an SSB index, a CSI-RS index, a DL-PRS index, a signal beam index, and a signal beam index corresponding to the measurement first path.
  • the reference signal measurement result includes the reference signal received power RSRP of the measured signal, the reference signal received quality RSRQ, and the signal to interference plus noise ratio SINR.
  • the method further includes at least one of the following:
  • the serving cell notifies neighboring cells of updated cell information through the X2 or Xn interface;
  • the server notifies the serving cell and/or neighboring cells of updated cell information through LPPA signaling or NRPPA evolution signaling or a data channel.
  • the spatial relationship information in the cell information includes at least one of the following:
  • Downlink positioning reference signal resource identifier DL-PRS resource ID Downlink positioning reference signal resource identifier DL-PRS resource ID
  • the spatial relationship information in the cell information includes quasi co-located QCL information.
  • the power configuration information in the cell information includes path loss reference signal indication information and transmit power configuration information
  • the path loss reference signal indication information includes at least one of the following:
  • the transmit power configuration information includes at least one of the following:
  • CSI-RS transmit power of the serving cell
  • the specific signal includes at least one of the following:
  • the specific cell is a cell that is not configured in the measurement configuration information.
  • the configuration information includes at least one of time-frequency resource configuration information, bandwidth, common reference point A of the resource block grid, measurement time, subcarrier spacing, and signal indication information;
  • the signal indication information is the cell ID and beam ID of the signal.
  • this embodiment is used as an implementation manner of the network side device corresponding to the embodiment shown in FIG. 2.
  • the network side device corresponding to the embodiment shown in FIG. 2.
  • FIG. 10 is a structural diagram of a terminal provided by an embodiment of the present invention. As shown in FIG. 10, the terminal 1000 includes:
  • the receiving module 1001 is configured to receive cell information of a serving cell and neighboring cells, where the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal;
  • the setting module 1002 is configured to set transmission parameters of the reference signal SRS for channel sounding according to the cell information and/or the first measurement result;
  • the first measurement result is a result obtained by measuring the serving cell and neighboring cells by the terminal based on the cell information.
  • the terminal 1000 further includes:
  • a reporting module used to report relevant information of the target cell to the network side device
  • the target cell is a cell used for sending the SRS
  • the related information includes at least one of spatial relationship information and measurement results of spatial relationship signals.
  • the setting module 1002 is specifically used for:
  • the relevant direction of the spatial relationship signal between the serving cell and the neighboring cell is set as the transmission direction of the SRS;
  • the spatial filtering direction that is the same as the correlation direction of the spatial relationship signal is set as the transmission direction of the SRS.
  • the setting module 1002 is specifically used for:
  • a specific beam direction is selected as the transmission direction of the SRS.
  • the setting module 1002 is specifically used for:
  • a specific direction is selected as the transmission direction of the SRS;
  • a specific direction is selected as the transmission direction of the SRS;
  • a specific direction is selected as the transmission direction of the SRS.
  • the correlation direction of the spatial relationship signal includes:
  • the receiving beam direction with the strongest received power of the spatial relationship signal is the receiving beam direction with the strongest received power of the spatial relationship signal.
  • the direction of the first path of the spatial relationship signal is measured; or,
  • the arrangement direction of the spatial relationship signal is the arrangement direction of the spatial relationship signal.
  • the setting module 1002 is specifically used for:
  • the transmission power of the SRS is set according to the spatial relationship information, power configuration information, and specific signal configuration information in the cell information, and the first measurement result.
  • the spatial relationship information in the cell information includes at least one of the following:
  • Downlink positioning reference signal resource identifier DL-PRS resource ID Downlink positioning reference signal resource identifier DL-PRS resource ID
  • the spatial relationship information in the cell information includes quasi co-located QCL information.
  • the power configuration information in the cell information includes path loss reference signal indication information and transmit power configuration information
  • the path loss reference signal indication information includes at least one of the following:
  • the transmit power configuration information includes at least one of the following:
  • CSI-RS transmit power of the serving cell
  • the specific signal includes at least one of the following:
  • the specific cell is a cell that is not configured in the measurement configuration information.
  • the configuration information includes at least one of time-frequency resource configuration information, bandwidth, common reference point A of the resource block grid, measurement time, subcarrier spacing, and signal indication information;
  • the signal indication information is the cell ID and beam ID of the signal.
  • the terminal provided by the embodiment of the present invention can implement the various processes implemented by the terminal in the method embodiment of FIG. 2. To avoid repetition, details are not described herein again.
  • FIG. 11 is a structural diagram of a network side device according to an embodiment of the present invention. As shown in FIG. 11, the network side device 1100 includes:
  • the configuration module 1101 is configured to configure cell information of the serving cell and neighboring cells for the terminal, and the cell information is used to determine the transmission parameters of the channel sounding reference signal SRS;
  • the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal.
  • the network side device 1100 is a network side device corresponding to the serving cell, and the configuration module 1101 is specifically configured to:
  • the cell information of neighboring cells is configured for the terminal through the RRC message.
  • the network side device 1100 is a network side device corresponding to the server, and the configuration module 1101 is specifically used for:
  • the cell information of the serving cell and neighboring cells is configured for the terminal through LPP signaling or LPP evolution signaling or data channel.
  • the spatial relationship information of the neighboring cells is configured through the cell identifier or TRP identifier in the spatial relationship configuration information of the SRS; or,
  • the spatial relationship information of the neighboring cells is configured through the non-serving cell identity in the spatial relationship configuration information of the SRS; or,
  • the spatial relationship information of the neighboring cells is configured through the DL-PRS information in the spatial relationship configuration information of the SRS.
  • the power configuration information of the neighboring cell is configured through the path loss reference signal of the SRS; or,
  • the path loss reference signal of the neighboring cell is configured in each resource unit or each resource unit set of the SRS; or,
  • the power configuration information of the neighboring cells is configured in the non-serving cell group or the neighboring cell group in each measurement target; or,
  • the power configuration information of the neighboring cell is configured through the reference signal information and the transmission power information of the reference signal in each measurement target.
  • the network side device 1100 is a network side device corresponding to the server, and the configuration module 1101 is specifically used for:
  • the cell information of the serving cell and neighboring cells is configured for the terminal through LPP signaling or LPP evolution signaling or data channel.
  • the cell information of the serving cell and neighboring cells is configured by the time difference of arrival positioning method UTDOA positioning assistance data IE; or,
  • the cell information of the serving cell and neighboring cells is configured by the positioning assistance data IE of the uplink arrival time positioning method.
  • the network side device 1100 further includes an acquisition module
  • the network side device 1100 is a network side device corresponding to the serving cell, and the acquiring module is used for:
  • the network side device 1100 is a network side device corresponding to the server, and the acquiring module is used for:
  • the network side device 1100 further includes an update module
  • the network side device 1100 is a network side device corresponding to the serving cell, and the update module is used for:
  • the network side device 1100 is a network side device corresponding to the server, and the update module is used for:
  • the network side device 1100 is a network side device corresponding to the server, and the update module is specifically used for:
  • the cell information of the serving cell and neighboring cells is updated for the terminal.
  • the network side device 1100 is a network side device corresponding to the serving cell, and the update module is specifically used for:
  • the neighboring cell measurement information update the cell information of the neighboring cell for the terminal through an RRC message; or,
  • the cell information of the neighboring cell is updated for the terminal through an RRC message.
  • the network side device 1100 is a network side device corresponding to the serving cell, and the update module is specifically used for:
  • the cell information corresponding to the beam index includes the first path signal beam ID or the signal beam ID with the best signal quality.
  • the network side device 1100 is a network side device corresponding to the server, and the update module is specifically used for:
  • the cell information corresponding to the cell index and/or the cell information corresponding to the signal beam index reported by the terminal as the cell information for transmitting the SRS to the serving cell and neighboring cells;
  • the signal beam index includes the first path signal beam ID or the signal beam ID with the best signal quality.
  • the neighboring cell measurement information includes the reference signal index of the neighboring cell and the reference signal measurement result.
  • the reference signal index includes at least one of an SSB index, a CSI-RS index, a DL-PRS index, a signal beam index, and a signal beam index corresponding to the measurement first path.
  • the reference signal measurement result includes the reference signal received power RSRP of the measured signal, the reference signal received quality RSRQ, and the signal to interference plus noise ratio SINR.
  • the network side device 1100 further includes a notification module
  • the network side device 1100 is a network side device corresponding to the serving cell, and the notification module is used for:
  • the network side device 1100 is a network side device corresponding to the server, and the notification module is used for:
  • the updated cell information is notified to the serving cell and/or neighboring cells through LPPA signaling or NRPPA evolution signaling or data channel.
  • the spatial relationship information in the cell information includes at least one of the following:
  • Downlink positioning reference signal resource identifier DL-PRS resource ID Downlink positioning reference signal resource identifier DL-PRS resource ID
  • the spatial relationship information in the cell information includes quasi co-located QCL information.
  • the power configuration information in the cell information includes path loss reference signal indication information and transmit power configuration information
  • the path loss reference signal indication information includes at least one of the following:
  • the transmit power configuration information includes at least one of the following:
  • CSI-RS transmit power of the serving cell
  • the specific signal includes at least one of the following:
  • the specific cell is a cell that is not configured in the measurement configuration information.
  • the configuration information includes at least one of time-frequency resource configuration information, bandwidth, common reference point A of the resource block grid, measurement time, subcarrier spacing, and signal indication information;
  • the signal indication information is the cell ID and beam ID of the signal.
  • the network-side device provided in the embodiment of the present invention can implement each process implemented by the network-side device in the method embodiment in FIG.
  • the terminal 1200 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present invention.
  • the terminal 1200 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, User input unit 1207, interface unit 1208, memory 1209, processor 1210, power supply 1211 and other components.
  • a radio frequency unit 1201 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, User input unit 1207, interface unit 1208, memory 1209, processor 1210, power supply 1211 and other components.
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer,
  • the radio frequency unit 1201 or the processor 1210 is used for:
  • the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal
  • the first measurement result is a result obtained by measuring the serving cell and neighboring cells by the terminal based on the cell information.
  • the radio frequency unit 1201 or the processor 1210 is also used for:
  • the target cell is a cell used for sending the SRS
  • the related information includes at least one of spatial relationship information and measurement results of spatial relationship signals.
  • the radio frequency unit 1201 or the processor 1210 is also used for:
  • the relevant direction of the spatial relationship signal between the serving cell and the neighboring cell is set as the transmission direction of the SRS;
  • the spatial filtering direction that is the same as the correlation direction of the spatial relationship signal is set as the transmission direction of the SRS.
  • the radio frequency unit 1201 or the processor 1210 is also used for:
  • a specific beam direction is selected as the transmission direction of the SRS.
  • the radio frequency unit 1201 or the processor 1210 is also used for:
  • a specific direction is selected as the transmission direction of the SRS;
  • a specific direction is selected as the transmission direction of the SRS;
  • a specific direction is selected as the transmission direction of the SRS.
  • the correlation direction of the spatial relationship signal includes:
  • the receiving beam direction with the strongest received power of the spatial relationship signal is the receiving beam direction with the strongest received power of the spatial relationship signal.
  • the direction of the first path of the spatial relationship signal is measured; or,
  • the arrangement direction of the spatial relationship signal is the arrangement direction of the spatial relationship signal.
  • the radio frequency unit 1201 or the processor 1210 is also used for:
  • the transmission power of the SRS is set according to the spatial relationship information, power configuration information, and specific signal configuration information in the cell information, and the first measurement result.
  • the spatial relationship information in the cell information includes at least one of the following:
  • Downlink positioning reference signal resource identifier DL-PRS resource ID Downlink positioning reference signal resource identifier DL-PRS resource ID
  • the spatial relationship information in the cell information includes quasi co-located QCL information.
  • the power configuration information in the cell information includes path loss reference signal indication information and transmit power configuration information
  • the path loss reference signal indication information includes at least one of the following:
  • the transmit power configuration information includes at least one of the following:
  • CSI-RS transmit power of the serving cell
  • the specific signal includes at least one of the following:
  • the specific cell is a cell that is not configured in the measurement configuration information.
  • the configuration information includes at least one of time-frequency resource configuration information, bandwidth, common reference point A of the resource block grid, measurement time, subcarrier spacing, and signal indication information;
  • the signal indication information is the cell ID and beam ID of the signal.
  • processor 1210 and radio frequency unit 1201 can implement various processes implemented by the terminal in the method embodiment of FIG. 2. To avoid repetition, details are not described herein again.
  • the radio frequency unit 1201 can be used for receiving and sending signals during the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 1210; Uplink data is sent to the base station.
  • the radio frequency unit 1201 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1201 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 1202, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1203 can convert the audio data received by the radio frequency unit 1201 or the network module 1202 or stored in the memory 1209 into audio signals and output them as sounds. Moreover, the audio output unit 1203 may also provide audio output related to a specific function performed by the terminal 1200 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1203 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1204 is used to receive audio or video signals.
  • the input unit 1204 may include a graphics processing unit (GPU) 12041 and a microphone 12042, and the graphics processor 12041 is configured to respond to images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 1206.
  • the image frame processed by the graphics processor 12041 may be stored in the memory 1209 (or other storage medium) or sent via the radio frequency unit 1201 or the network module 1202.
  • the microphone 12042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 1201 in the case of a telephone call mode for output.
  • the terminal 1200 further includes at least one sensor 1205, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 12061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 12061 and/or when the terminal 1200 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 1205 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 1206 is used to display information input by the user or information provided to the user.
  • the display unit 1206 may include a display panel 12061, and the display panel 12061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1207 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 1207 includes a touch panel 12071 and other input devices 12072.
  • the touch panel 12071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 12071 or near the touch panel 12071. operating).
  • the touch panel 12071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1210, the command sent by the processor 1210 is received and executed.
  • multiple types of resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 12071.
  • the user input unit 1207 may also include other input devices 12072.
  • other input devices 12072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 12071 can be overlaid on the display panel 12061.
  • the touch panel 12071 detects a touch operation on or near it, it transmits it to the processor 1210 to determine the type of the touch event, and then the processor 1210 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 12061.
  • the touch panel 12071 and the display panel 12061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 12071 and the display panel 12061 may be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 1208 is an interface for connecting an external device to the terminal 1200.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1208 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 1200 or may be used to communicate between the terminal 1200 and the external device. Transfer data between.
  • the memory 1209 can be used to store software programs and various data.
  • the memory 1209 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones, etc.
  • the memory 1209 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1210 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 1209, and calling data stored in the memory 1209. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1210 may include one or more processing units; preferably, the processor 1210 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1210.
  • the terminal 1200 may also include a power supply 1211 (such as a battery) for supplying power to various components.
  • a power supply 1211 (such as a battery) for supplying power to various components.
  • the power supply 1211 may be logically connected to the processor 1210 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 1200 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 1210, a memory 1209, a computer program stored on the memory 1209 and running on the processor 1210, and the computer program is implemented when the processor 1210 is executed.
  • a terminal including a processor 1210, a memory 1209, a computer program stored on the memory 1209 and running on the processor 1210, and the computer program is implemented when the processor 1210 is executed.
  • FIG. 13 is a structural diagram of another network-side device provided by an embodiment of the present invention.
  • the network-side device 1300 includes a processor 1301, a transceiver 1302, a memory 1303, and a bus interface. among them:
  • the transceiver 1302 or the processor 1301 is used for:
  • Configure cell information of the serving cell and neighboring cells for the terminal where the cell information is used to determine the transmission parameters of the reference signal SRS for channel sounding;
  • the cell information includes at least one of spatial relationship information, power configuration information, and configuration information of a specific signal.
  • the network side device 1300 is a network side device corresponding to the serving cell, and the transceiver 1302 or the processor 1301 is used for:
  • the cell information of neighboring cells is configured for the terminal through the RRC message.
  • the network side device 1300 is a network side device corresponding to the server, and the transceiver 1302 or the processor 1301 is used for:
  • the cell information of the serving cell and neighboring cells is configured for the terminal through LPP signaling or LPP evolution signaling or data channel.
  • the spatial relationship information of the neighboring cells is configured through the cell identifier or TRP identifier in the spatial relationship configuration information of the SRS; or,
  • the spatial relationship information of the neighboring cells is configured through the non-serving cell identity in the spatial relationship configuration information of the SRS; or,
  • the spatial relationship information of the neighboring cells is configured through the DL-PRS information in the spatial relationship configuration information of the SRS.
  • the power configuration information of the neighboring cell is configured through the path loss reference signal of the SRS; or,
  • the path loss reference signal of the neighboring cell is configured in each resource unit or each resource unit set of the SRS; or,
  • the power configuration information of the neighboring cells is configured in the non-serving cell group or the neighboring cell group in each measurement target; or,
  • the power configuration information of the neighboring cell is configured through the reference signal information and the transmission power information of the reference signal in each measurement target.
  • the network side device 1300 is a network side device corresponding to the server, and the transceiver 1302 or the processor 1301 is also used for:
  • the cell information of the serving cell and neighboring cells is configured for the terminal through LPP signaling or LPP evolution signaling or data channel.
  • the cell information of the serving cell and neighboring cells is configured by the time difference of arrival positioning method UTDOA positioning assistance data IE; or,
  • the cell information of the serving cell and neighboring cells is configured by the positioning assistance data IE of the uplink arrival time positioning method.
  • the network side device 1300 is a network side device corresponding to the serving cell, and the transceiver 1302 or the processor 1301 is further configured to:
  • the network side device 1300 is a network side device corresponding to the server, and the transceiver 1302 or the processor 1301 is also used for:
  • the network side device 1300 is a network side device corresponding to the serving cell, and the transceiver 1302 or the processor 1301 is further configured to:
  • the network side device 1300 is a network side device corresponding to the server, and the transceiver 1302 or the processor 1301 is also used for:
  • the network side device 1300 is a network side device corresponding to the server, and the transceiver 1302 or the processor 1301 is also used for:
  • the cell information of the serving cell and neighboring cells is updated for the terminal.
  • the network side device 1300 is a network side device corresponding to the serving cell, and the transceiver 1302 or the processor 1301 is further configured to:
  • the neighboring cell measurement information update the cell information of the neighboring cell for the terminal through an RRC message; or,
  • the cell information of the neighboring cell is updated for the terminal through an RRC message.
  • the network side device 1300 is a network side device corresponding to the serving cell, and the transceiver 1302 or the processor 1301 is further configured to:
  • the cell information corresponding to the beam index includes the first path signal beam ID or the signal beam ID with the best signal quality.
  • the network side device 1300 is a network side device corresponding to the server, and the transceiver 1302 or the processor 1301 is also used for:
  • the cell information corresponding to the cell index and/or the cell information corresponding to the signal beam index reported by the terminal as the cell information for transmitting the SRS to the serving cell and neighboring cells;
  • the signal beam index includes the first path signal beam ID or the signal beam ID with the best signal quality.
  • the neighboring cell measurement information includes the reference signal index of the neighboring cell and the reference signal measurement result.
  • the reference signal index includes at least one of an SSB index, a CSI-RS index, a DL-PRS index, a signal beam index, and a signal beam index corresponding to the measurement first path.
  • the reference signal measurement result includes the reference signal received power RSRP of the measured signal, the reference signal received quality RSRQ, and the signal to interference plus noise ratio SINR.
  • the network side device 1300 is a network side device corresponding to the serving cell, and the transceiver 1302 or the processor 1301 is further configured to:
  • the network side device 1300 is a network side device corresponding to the server, and the transceiver 1302 or the processor 1301 is also used for:
  • the updated cell information is notified to the serving cell and/or neighboring cells through LPPA signaling or NRPPA evolution signaling or data channel.
  • the spatial relationship information in the cell information includes at least one of the following:
  • Downlink positioning reference signal resource identifier DL-PRS resource ID Downlink positioning reference signal resource identifier DL-PRS resource ID
  • the spatial relationship information in the cell information includes quasi co-located QCL information.
  • the power configuration information in the cell information includes path loss reference signal indication information and transmit power configuration information
  • the path loss reference signal indication information includes at least one of the following:
  • the transmit power configuration information includes at least one of the following:
  • CSI-RS transmit power of the serving cell
  • the specific signal includes at least one of the following:
  • the specific cell is a cell that is not configured in the measurement configuration information.
  • the configuration information includes at least one of time-frequency resource configuration information, bandwidth, common reference point A of the resource block grid, measurement time, subcarrier spacing, and signal indication information;
  • the signal indication information is the cell ID and beam ID of the signal.
  • processor 1301 and transceiver 1302 can implement each process implemented by the network side device in the method embodiment of FIG. 2. To avoid repetition, details are not described herein again.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1301 and various circuits of the memory represented by the memory 1303 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1302 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 1304 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1301 is responsible for managing the bus architecture and general processing, and the memory 1303 can store data used by the processor 1301 when performing operations.
  • the embodiment of the present invention also provides a network side device, including a processor 1301, a memory 1303, a computer program stored on the memory 1303 and running on the processor 1301, and the computer program is executed by the processor 1301
  • a network side device including a processor 1301, a memory 1303, a computer program stored on the memory 1303 and running on the processor 1301, and the computer program is executed by the processor 1301
  • the embodiment of the present invention also provides a positioning method, which aims to combine the spatial relationship signal and the positioning reference signal to perform joint positioning of the terminal.
  • the positioning method will be described in detail below.
  • FIG. 14 is a flowchart of a positioning method provided by an embodiment of the present invention.
  • the method is applied to a communication device, and the communication device is a network side device or a terminal. As shown in FIG. 14, it includes the following steps:
  • Step 1401 Determine the location information of the terminal according to the target measurement information, where the target measurement information is the measurement information of the spatial relationship signal and the positioning reference signal.
  • the communication device is the terminal
  • the method further includes:
  • the communication device is a network side device
  • the spatial relationship signal is a downlink spatial relationship signal configured when the terminal performs downlink positioning, and the target measurement information is measurement information reported by the terminal.
  • the downlink positioning includes AOD positioning, OTDOA (Observed Time Difference of Arrival) positioning, TOA (Time of Arrival), TDOA (Observed Time Difference of Arrival), and ECID positioning At least one of.
  • the target measurement information includes at least one of the following:
  • the joint measurement result is the measurement result of the terminal using the spatial relationship signal
  • the measurement result of the positioning reference signal Perform smoothing processing, and filter the measurement result obtained by the singular value of the measurement result of the positioning reference signal.
  • the target measurement information further includes second indication information, and the second indication information is used to indicate that the difference between the measurement result of the spatial relationship signal and the measurement result of the positioning reference signal is less than a preset threshold, and Alternatively, the second indication information is used to indicate that the measurement result of the positioning reference signal is optimized using the measurement result of the spatial relationship signal.
  • the target measurement information includes the joint measurement result and the second measurement result .
  • the measurement quantity when the measurement quantity is time, the measurement quantity includes RSTD (Reference Signal Time Difference, reference signal time difference) and/or TOA.
  • RSTD Reference Signal Time Difference, reference signal time difference
  • the method further includes:
  • the configuration of the positioning reference signal is updated.
  • the updating the configuration of the positioning reference signal includes:
  • the communication device is a network side device
  • the spatial relationship signal is a downlink spatial relationship signal configured when the terminal performs uplink positioning
  • the target measurement information includes the first measurement information of the spatial relationship signal reported by the terminal, and the second measurement information of the positioning reference signal reported by the TRP or the base station.
  • the uplink positioning is UTDOA or UL-TOA positioning.
  • the first measurement information includes RSRP of the spatial relationship signal and time of arrival information of the spatial relationship signal;
  • the first measurement information is reported by the terminal through LPP signaling or LPP evolution signaling, and the first measurement information is included in UTDOA or uplink time positioning measurement results.
  • the second measurement information includes the arrival time information of the positioning reference signal and the transmission time information of the spatial relationship signal; and/or,
  • the second measurement information is reported by the TRP or base station through LPPA signaling or NRPPA signaling, and the second measurement information is included in the UTDOA or uplink time positioning measurement result.
  • the determining the location information of the terminal according to the target measurement information includes:
  • the location information of the terminal is determined according to the RTT (Round Trip Time).
  • the method further includes:
  • the terminal is notified to report the first measurement information.
  • the spatial relationship signal includes at least one of SSB, CSI-RS, DL-PRS, and TRS.
  • the spatial relationship signal is a QCL signal.
  • the terminal is positioned in combination with the measurement information of the spatial relationship signal and the positioning reference signal, which can improve the accuracy of terminal positioning.
  • FIG. 15 is a structural diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1500 is a network side device or terminal, and includes:
  • the determining module 1501 is configured to determine the location information of the terminal according to the target measurement information, where the target measurement information is the measurement information of the spatial relationship signal and the positioning reference signal.
  • the communication device 1500 is the terminal;
  • the terminal further includes:
  • the communication device 1500 is a network side device
  • the spatial relationship signal is a downlink spatial relationship signal configured when the terminal performs downlink positioning, and the target measurement information is measurement information reported by the terminal.
  • the downlink positioning includes at least one of AOD positioning, observed time difference of arrival OTDOA positioning, time of arrival TOA, time difference of arrival TDOA, and ECID positioning.
  • the target measurement information includes at least one of the following:
  • the joint measurement result is the measurement result of the terminal using the spatial relationship signal
  • the measurement result of the positioning reference signal Perform smoothing processing, and filter the measurement result obtained by the singular value of the measurement result of the positioning reference signal.
  • the target measurement information further includes second indication information, and the second indication information is used to indicate that the difference between the measurement result of the spatial relationship signal and the measurement result of the positioning reference signal is less than a preset threshold, and Alternatively, the second indication information is used to indicate that the measurement result of the positioning reference signal is optimized using the measurement result of the spatial relationship signal.
  • the target measurement information includes the joint measurement result and the second measurement result .
  • the measurement quantity when the measurement quantity is time, the measurement quantity includes the reference signal time difference RSTD and/or TOA.
  • the communication device 1500 further includes:
  • the configuration of the positioning reference signal is updated.
  • the updating the configuration of the positioning reference signal includes:
  • the communication device 1500 is a network side device
  • the spatial relationship signal is a downlink spatial relationship signal configured when the terminal performs uplink positioning
  • the target measurement information includes the first measurement information of the spatial relationship signal reported by the terminal, and the second measurement information of the positioning reference signal reported by the TRP or the base station.
  • the uplink positioning is UTDOA or UL-TOA positioning.
  • the first measurement information includes RSRP of the spatial relationship signal and time of arrival information of the spatial relationship signal;
  • the first measurement information is reported by the terminal through LPP signaling or LPP evolution signaling, and the first measurement information is included in UTDOA or uplink time positioning measurement results.
  • the second measurement information includes the arrival time information of the positioning reference signal and the transmission time information of the spatial relationship signal; and/or,
  • the second measurement information is reported by the TRP or base station through LPPA signaling or NRPPA signaling, and the second measurement information is included in the UTDOA or uplink time positioning measurement result.
  • the determining the location information of the terminal according to the target measurement information includes:
  • the location information of the terminal is determined according to the RTT.
  • the communication device 1500 further includes:
  • the terminal is notified to report the first measurement information.
  • the spatial relationship signal includes at least one of SSB, CSI-RS, DL-PRS, and TRS.
  • the spatial relationship signal is a QCL signal.
  • the communication device provided in the embodiment of the present invention can implement each process implemented by the terminal or the network side device in the embodiment of the positioning method. To avoid repetition, details are not described here.
  • FIG. 16 is a schematic diagram of the hardware structure of another terminal provided by an embodiment of the present invention.
  • the terminal 1600 includes, but is not limited to: a radio frequency unit 1601, a network module 1602, and an audio output Unit 1603, input unit 1604, sensor 1605, display unit 1606, user input unit 1607, interface unit 1608, memory 1609, processor 1610, power supply 1611 and other components.
  • the terminal structure shown in FIG. 16 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, a pedometer, and the like.
  • the radio frequency unit 1601 or the processor 1610 is used for:
  • the location information of the terminal is determined, and the target measurement information is the measurement information of the spatial relationship signal and the positioning reference signal.
  • the radio frequency unit 1601 or the processor 1610 is further configured to:
  • the spatial relationship signal includes at least one of SSB, CSI-RS, DL-PRS, and TRS.
  • the spatial relationship signal is a QCL signal.
  • processor 1610 and radio frequency unit 1601 can implement various processes implemented by the terminal in the embodiment of the positioning method. To avoid repetition, details are not described herein again.
  • the radio frequency unit 1601 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 1610; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 1601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1601 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 1602, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1603 may convert the audio data received by the radio frequency unit 1601 or the network module 1602 or stored in the memory 1609 into audio signals and output them as sounds. Moreover, the audio output unit 1603 may also provide audio output related to a specific function performed by the terminal 1600 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1604 is used to receive audio or video signals.
  • the input unit 1604 may include a graphics processing unit (GPU) 16041 and a microphone 16042, and the graphics processor 16041 is configured to respond to images of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 1606.
  • the image frame processed by the graphics processor 16041 may be stored in the memory 1609 (or other storage medium) or sent via the radio frequency unit 1601 or the network module 1602.
  • the microphone 16042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 1601 for output in the case of a telephone call mode.
  • the terminal 1600 also includes at least one sensor 1605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 16061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 16061 and/or when the terminal 1600 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensors 1605 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 1606 is used to display information input by the user or information provided to the user.
  • the display unit 1606 may include a display panel 16061, and the display panel 16061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1607 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 1607 includes a touch panel 16071 and other input devices 16072.
  • the touch panel 16071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 16071 or near the touch panel 16071. operating).
  • the touch panel 16071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1610, the command sent by the processor 1610 is received and executed.
  • the touch panel 16071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 1607 may also include other input devices 16072.
  • other input devices 16072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 16071 can cover the display panel 16061.
  • the touch panel 16071 detects a touch operation on or near it, it transmits it to the processor 1610 to determine the type of the touch event, and then the processor 1610 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 16061.
  • the touch panel 16071 and the display panel 16061 are used as two independent components to realize the input and output functions of the terminal, but in some embodiments, the touch panel 16071 and the display panel 16061 may be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 1608 is an interface for connecting an external device to the terminal 1600.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1608 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 1600 or may be used to communicate between the terminal 1600 and the external device. Transfer data between.
  • the memory 1609 can be used to store software programs and various data.
  • the memory 1609 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 1609 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1610 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 1609, and calling data stored in the memory 1609. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1610 may include one or more processing units; preferably, the processor 1610 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc., the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1610.
  • the terminal 1600 may also include a power supply 1611 (such as a battery) for supplying power to various components.
  • a power supply 1611 such as a battery
  • the power supply 1611 may be logically connected to the processor 1610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 1600 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 1610, a memory 1609, a computer program stored on the memory 1609 and running on the processor 1610, and the computer program is implemented when the processor 1610 is executed.
  • a terminal including a processor 1610, a memory 1609, a computer program stored on the memory 1609 and running on the processor 1610, and the computer program is implemented when the processor 1610 is executed.
  • the communication device is a network-side device
  • FIG. 17 is a structural diagram of another network-side device according to an embodiment of the present invention.
  • the network-side device 1700 includes: a processor 1701 , Transceiver 1702, memory 1703 and bus interface, including:
  • the transceiver 1702 or the processor 1701 is used for:
  • the location information of the terminal is determined, and the target measurement information is the measurement information of the spatial relationship signal and the positioning reference signal.
  • the spatial relationship signal is a downlink spatial relationship signal configured when the terminal performs downlink positioning, and the target measurement information is measurement information reported by the terminal.
  • the downlink positioning includes at least one of AOD positioning, observed time difference of arrival OTDOA positioning, time of arrival TOA, time difference of arrival TDOA, and ECID positioning.
  • the target measurement information includes at least one of the following:
  • the joint measurement result is the measurement result of the terminal using the spatial relationship signal
  • the measurement result of the positioning reference signal Perform smoothing processing, and filter the measurement result obtained by the singular value of the measurement result of the positioning reference signal.
  • the target measurement information further includes second indication information, and the second indication information is used to indicate that the difference between the measurement result of the spatial relationship signal and the measurement result of the positioning reference signal is less than a preset threshold, and Alternatively, the second indication information is used to indicate that the measurement result of the positioning reference signal is optimized using the measurement result of the spatial relationship signal.
  • the target measurement information includes the joint measurement result and the second measurement result .
  • the measurement quantity when the measurement quantity is time, the measurement quantity includes the reference signal time difference RSTD and/or TOA.
  • the method further includes:
  • the configuration of the positioning reference signal is updated.
  • the updating the configuration of the positioning reference signal includes:
  • the spatial relationship signal is a downlink spatial relationship signal configured when the terminal performs uplink positioning
  • the target measurement information includes the first measurement information of the spatial relationship signal reported by the terminal, and the second measurement information of the positioning reference signal reported by the TRP or the base station.
  • the uplink positioning is UTDOA or UL-TOA positioning.
  • the first measurement information includes RSRP of the spatial relationship signal and time of arrival information of the spatial relationship signal;
  • the first measurement information is reported by the terminal through LPP signaling or LPP evolution signaling, and the first measurement information is included in UTDOA or uplink time positioning measurement results.
  • the second measurement information includes the arrival time information of the positioning reference signal and the transmission time information of the spatial relationship signal; and/or,
  • the second measurement information is reported by the TRP or base station through LPPA signaling or NRPPA signaling, and the second measurement information is included in the UTDOA or uplink time positioning measurement result.
  • the determining the location information of the terminal according to the target measurement information includes:
  • the location information of the terminal is determined according to the RTT.
  • the method further includes:
  • the terminal is notified to report the first measurement information.
  • the spatial relationship signal includes at least one of SSB, CSI-RS, DL-PRS, and TRS.
  • the spatial relationship signal is a QCL signal.
  • processor 1701 and transceiver 1702 can implement each process implemented by the network side device in the embodiment of the positioning method, and in order to avoid repetition, details are not described herein again.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1701 and various circuits of the memory represented by the memory 1703 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1702 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 1704 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1701 is responsible for managing the bus architecture and general processing, and the memory 1703 can store data used by the processor 1701 when performing operations.
  • the embodiment of the present invention also provides a network side device, including a processor 1701, a memory 1703, a computer program stored in the memory 1703 and capable of running on the processor 1701, and the computer program is executed by the processor 1701
  • a network side device including a processor 1701, a memory 1703, a computer program stored in the memory 1703 and capable of running on the processor 1701, and the computer program is executed by the processor 1701
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is executed by a processor
  • the embodiment of the terminal-side SRS transmission setting provided by the embodiment of the present invention is implemented.
  • Each process, or when the computer program is executed by the processor realizes the various processes of the embodiment of the information configuration on the network side device provided by the embodiment of the present invention, or when the computer program is executed by the processor, the network provided by the embodiment of the present invention is realized
  • Each process of the embodiment of the method for positioning a side device or a terminal can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种SRS发射设置方法、信息配置方法、定位方法和相关设备,其中,SRS发射设置方法包括:接收服务小区和邻近小区的小区信息,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项;根据所述小区信息和/或第一测量结果,对信道探测用参考信号SRS的发射参数进行设置;其中,所述第一测量结果为所述终端基于所述小区信息,对服务小区和邻近小区进行测量而得到的结果。本发明中,由于终端对SRS发射参数的设置综合考量了服务小区和邻近小区的小区信息,可以使得SRS发射的指向性、定位性和覆盖性均得以提高。

Description

探测参考信号发射设置方法、信息配置方法、定位方法和相关设备
相关申请的交叉引用
本申请主张在2019年11月7日在中国提交的中国专利申请号No.201911083841.2的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种SRS发射设置方法、信息配置方法、定位方法和相关设备。
背景技术
终端基于信道探测和定位需求,需要发射SRS(Sounding Reference Signal,信道探测用参考信号)。目前,终端发射SRS时,其发射方向和发射功率的约束性不满足定位需求,这导致SRS发射的定位性较差;并且,由于终端功率受限,这使得各发射方向的发射功率无法使足够的小区成功接收以实现定位,导致了SRS信号的覆盖性受限,限制了SRS定位的应用场景。
发明内容
本发明实施例提供一种SRS发射设置方法、信息配置方法、定位方法和相关设备,以解决SRS发射定位性和覆盖性较差的问题。
第一方面,本发明实施例提供一种SRS发射设置方法,应用于终端,所述方法包括:
接收服务小区和邻近小区的小区信息,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项;
根据所述小区信息和/或第一测量结果,对信道探测用参考信号SRS的发射参数进行设置;
其中,所述第一测量结果为所述终端基于所述小区信息,对服务小区和邻近小区进行测量而得到的结果。
第二方面,本发明实施例提供一种信息配置方法,所述方法包括:
网络侧设备为终端配置服务小区和邻近小区的小区信息,所述小区信息用于确定信道探测用参考信号SRS的发射参数;
其中,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项。
第三方面,本发明实施例还提供一种终端,包括:
接收模块,用于接收服务小区和邻近小区的小区信息,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项;
设置模块,用于根据所述小区信息和/或第一测量结果,对信道探测用参考信号SRS的发射参数进行设置;
其中,所述第一测量结果为所述终端基于所述小区信息,对服务小区和邻近小区进行测量而得到的结果。
第四方面,本发明实施例还提供一种网络侧设备,包括:
配置模块,用于为终端配置服务小区和邻近小区的小区信息,所述小区信息用于确定信道探测用参考信号SRS的发射参数;
其中,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项。
第五方面,本发明实施例还提供一种定位方法,应用于通信设备,所述通信设备为网络侧设备或终端,所述方法包括:
根据目标测量信息,确定终端的位置信息,所述目标测量信息为空间关系信号和定位参考信号的测量信息。
第六方面,本发明实施例还提供一种通信设备,所述通信设备为网络侧设备或终端,包括:
确定模块,用于根据目标测量信息,确定终端的位置信息,所述目标测量信息为空间关系信号和定位参考信号的测量信息。
第七方面,本发明实施例还提供另一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本发明实施例第一方面中的SRS发射设置方法中的步骤。
第八方面,本发明实施例还提供另一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所 述处理器执行时实现本发明实施例第二方面中的信息配置方法中的步骤。
第九方面,本发明实施例还提供另一种通信设备,所述通信设备为网络侧设备或终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本发明实施例第五方面中的定位方法中的步骤。
第十方面,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例第一方面中的SRS发射设置方法中的步骤,或者,所述计算机程序被处理器执行时实现本发明实施例第二方面中的信息配置方法中的步骤,或者,所述计算机程序被处理器执行时实现本发明实施例第五方面中的定位方法中的步骤。
本发明实施例中,通过为终端配置服务小区和邻近小区的小区信息,使得终端能够根据服务小区和邻近小区的小区信息,和/或,服务小区和邻近小区的测量结果,对SRS的发射参数进行设置。由于终端对SRS发射参数的设置综合考量了服务小区和邻近小区的小区信息,使得SRS发射的指向性、定位性和覆盖性均得以提高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例可应用的一种网络系统的结构图;
图2是本发明实施例提供的一种SRS发射设置方法的流程图;
图3是本发明实施例提供的一种信息配置的示意图之一;
图4是本发明实施例提供的一种信息配置的示意图之二;
图5是本发明实施例提供的一种信息配置的示意图之三;
图6是本发明实施例提供的一种信息配置的示意图之四;
图7是本发明实施例提供的一种信息配置的示意图之五;
图8是本发明实施例提供的另一种SRS发射设置方法的流程图;
图9是本发明实施例提供的一种信息配置方法的流程图;
图10是本发明实施例提供的一种终端的结构图;
图11是本发明实施例提供的一种网络侧设备的结构图;
图12是本发明实施例提供的另一种终端的结构图;
图13是本发明实施例提供的另一种网络侧设备的结构图;
图14是本发明实施例提供的一种定位方法的流程图;
图15是本发明实施例提供的一种通信设备的结构图;
图16是本发明实施例提供的又一种终端的结构图;
图17是本发明实施例提供的又一种网络侧设备的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本发明的实施例。本发明实施例提供的一种SRS发射设置方法和信息配置方法均可以应用于无线通信系统中。该无线通信系统可 以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
请参见图1,图1是本发明实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络侧设备12,其中,终端11可以是用户终端或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本发明实施例中并不限定终端11的具体类型。上述网络侧设备12可以是5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点,演进节点,或者发送接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络侧设备不限于特定技术词汇。另外,上述网络侧设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本发明实施例中仅以5G基站为例,但是并不限定网络侧设备的具体类型。
请参见图2,图2是本发明实施例提供的一种SRS发射设置方法的流程图,该方法应用于图1示出的网络系统,如图2所示,包括以下步骤:。
步骤201:网络侧设备为终端配置服务小区和邻近小区的小区信息。
其中,小区信息包括空间关系信息、功率配置信息、特定信号的配置信息中的至少一项,或者说,小区信息的内容包括空间关系信息、功率配置信息、特定信号的配置信息中的至少一项。以下分别对上述每种小区信息进行详细的说明。
上述空间关系信息可包括以下至少一项:
小区标识;
小区SSB ID(Synchronization Signal and PBCH block IDentifier,同步信号块标识);
小区CSI-RS ID(Channel State Information Reference Signal IDentifier,信道状态信息参考信号标识);
DL-PRS resource set ID(Downlink-Positioning Reference Signal resource  set ID,下行定位参考信号资源集标识);
DL-PRS resource ID(下行定位参考信号资源标识);
SSB对应波束的空间方向信息;
CSI-RS对应波束的空间方向信息;
DL-PRS对应波束的空间方向信息;
SSB对应的空间滤波信息;
CSI-RS对应的空间滤波信息;
DL-PRS对应的空间滤波信息。
进一步的,上述各参考信号对应波束的空间方向信息包括以下至少一项:
各波束ID相对于地理北的方向信息;
参考波束或QCL波束相对于地理北的方向信息;
其它波束相对于参考波束或QCL波束的偏移信息。
上述空间关系信息还可包括QCL(Quasi Co-Location,准共址)信息。
进一步的,上述QCL信息为将服务小区和邻近小区的参考信号设置为所配置的SRS的QCL信息,上述QCL信息可包括小区标识、小区SSB ID、小区CSI-RS ID和DL-PRS block ID信息中的至少一项。
上述QCL信息可包括QCL参考信号和QCL参考信号的ID,QCL参考信号可包括SSB、CSI-RS和DL-PRS中的至少一项,QCL参考信号的ID可包括SSB索引、DL PRS索引和CSI-RS索引中的至少一项,SSB索引可包括SSB ID,DL PRS索引可至少包括DL PRS resource set ID和DL PRS resource ID,CSI-RS索引可至少包括CSI-RS ID。
上述功率配置信息可包括路损参考信号指示信息和发射功率配置信息。
其中,路损参考信号指示信息可包括以下至少一项:
小区SSB ID;
小区CSI-RS ID;
DL-PRS resource set ID;
DL-PRS resource ID。
其中,发射功率配置信息可包括以下至少一项:
服务小区的SSB发射功率;
邻近小区SSB发射功率相对于服务小区SSB发射功率的偏移;
服务小区的CSI-RS发射功率;
邻近小区CSI-RS发射功率相对于服务小区SSB发射功率的偏移;
服务小区的DL-PRS发射功率;
邻近小区DL-PRS发射功率相对于服务小区SSB发射功率的偏移。
上述特定信号的配置信息可包括以下至少一项:
DL-PRS的信号配置信息;
特定小区的SSB的配置信息;
特定小区的CSI-RS的配置信息;
其中,所述特定小区为测量配置信息中未配置的小区。
上述配置信息可包括时频资源配置信息、带宽、资源块网格的公共参考点(point A)、测量时间、子载波间隔和信号指示信息中的至少一种;
其中,所述信号指示信息为信号的小区ID和波束ID。
步骤202:终端接收服务小区和邻近小区的小区信息。
步骤203:终端根据所述小区信息和/或第一测量结果,对SRS的发射参数进行设置。
为了描述方便,本发明实施例所涉及的“所述小区信息”或“上述小区信息”均指服务小区和邻近小区的小区信息。
上述第一测量结果为所述终端基于服务小区和邻近小区的小区信息,对服务小区和邻近小区进行测量而得到的结果。
具体的,第一测量结果可包括终端基于上述小区信息中的空间关系信号,对服务小区和邻近小区进行测量而得到的结果,也可包括终端基于上述小区信息中的功率配置信息,对服务小区和邻近小区进行测量而得到的结果。
本发明实施例中,通过为终端配置服务小区和邻近小区的小区信息,使得终端能够根据服务小区和邻近小区的小区信息,和/或,服务小区和邻近小区的测量结果,对SRS的发射参数进行设置。由于终端对SRS发射参数的设置综合考量了服务小区和邻近小区的小区信息,使得SRS发射的指向性、定位性和覆盖性均得以提高。
本发明实施例中,网络侧设备为终端配置上述小区信息的方式有多种, 即,步骤201可包括:
服务小区通过RRC(Radio Resource Control,无线资源控制)消息为所述终端配置邻近小区的小区信息;或者,
服务器通过LPP(LTE Positioning Protocol,LTE定位协议)信令或LPP演进信令或数据信道,为所述终端配置所述小区信息。
可见,本发明实施例中,网络侧设备为终端配置上述小区信息,既可通过服务小区实现,也可通过服务器实现。
其中,服务小区通过RRC消息为所述终端配置邻近小区的小区信息。
需要说明的是,在服务小区为终端配置邻近小区的小区信息之前,终端可能已经获取到了服务小区自身的小区信息。因此,服务小区为终端配置上述小区信息时,可仅配置邻近小区的小区信息。当然,服务小区也可为终端同时配置服务小区自身的小区信息和邻近小区的小区信息。
对于服务小区为终端配置邻近小区的小区信息的实施方式,以下分别就不同的小区信息内容的配置方式进行说明。
可选的,所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的小区标识或TRP(Transmission Reception Point,发送接收点)标识配置;或者,
所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的非服务小区标识配置;或者,
所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的DL-PRS信息配置。
该实施方式中,可以对SRS的空间关系配置信息中的服务小区标识进行变更,变更为小区标识或TRP标识,并配置小区标识或TRP标识对应的空间关系配置信息。这里,变更后的小区标识或TRP标识既可用于标识服务小区,也可用于标识邻近小区。
该实施方式中,还可以直接在SRS的空间关系配置信息中配置非服务小区的指示标识和非服务小区的空间关系配置信息,该非服务小区的指示标识可用于标识邻近小区,该非服务小区的空间关系配置信息可用于配置邻近小区的空间关系信息。
需要说明的是,直接配置非服务小区的指示标识和非服务小区的空间关系配置信息,可以理解为,在SRS的空间关系配置信息中保留原服务小区标识和原服务小区的空间关系配置信息,增加非服务小区的指示标识和非服务小区的空间关系配置信息。
在某个方面,直接在SRS的空间关系配置信息中增加非服务小区的指示标识和非服务小区的空间关系配置信息,相比于更改原有服务小区标识,具有易于实现的优势。
该实施方式中,还可以在SRS的空间关系配置信息中配置邻近小区的DL-PRS信息,该DL-PRS信息可包括DL-PRS resource set ID和DL-PRS resource ID中的至少一项。
可选的,所述邻近小区的功率配置信息包括所述SRS的路损参考信号配置;或者,
所述邻近小区的路损参考信号配置于所述SRS的每个资源单元(per resource)或每个资源单元集中;或者,
所述邻近小区的功率配置信息配置于每个测量目标(measureObject)中的非服务小区组或邻近小区组中;或者,
所述邻近小区的功率配置信息包括配置每个测量目标中的参考信号信息和参考信号的发射功率信息配置。
该实施方式中,可以在SRS的路损参考信号中配置邻近小区的DL-PRS信息,以实现为终端配置邻近小区的功率配置信息。该DL-PRS信息可包括DL-PRS resource set ID和DL-PRS resource ID中的至少一项。
该实施方式中,还可以在measureObject的CG(即主小区和主辅小区组)中引入其它邻近小区,以实现为终端配置邻近小区的功率配置信息。
该实施方式中,还可以在measureObject里引入参考信号信息和参考信号的发射功率信息,以实现为终端配置邻近小区的功率配置信息。其中,参考信号可包括SSB和DL-PRS,参考信号信息可包括参考信号所属小区ID和参考信号的TRP ID,参考信号的发射功率信息可包括服务小区SSB的发射功率、邻近小区SSB发射功率相对于服务小区SSB功率的偏移、服务小区DL-PRS发射功率、邻近小区DL-PRS发射功率相对于服务小区SSB功率的 偏移中的至少一项。
具体的,可在measureObject里引入服务小区的DL-PRS发射功率和/或邻近小区相对于服务小区SSB功率的偏移配置和DL-PRS的信号配置。例如,增加DL-PRS测量配置IE,至少包括DL-PRS集,DL-PRS resource集和对应的DL-PRS信号配置信息和发射功率。
可选的,所述邻近小区的特定信号的配置信息在每个测量目标中的非服务小区组或邻近小区组中进行配置。
其中,特定信号可包括SSB、CSI-RS和DL-PRS,特定信号的配置信息可包括SSB的配置信息、CSI-RS的配置信息和DL-PRS的配置信息,配置信息可包括时频资源配置、带宽、point A、测量时间、子载波间隔和信号指示信息中的至少一种;
其中,所述信号指示信息为信号的小区ID和波束ID。
具体的,SSB的时频资源信息可通过MIB(Master Information Block,主信息块)获取,或者,在SSB-ConfigMobility(SSB的移动性配置)中增加可选的邻近小区SSB的信号配置信息。
以上为本发明实施例提供的服务小区为终端配置邻近小区的小区信息的各种实施方式。
以下针对服务器为终端配置服务小区和邻近小区的小区信息的方式进行详细说明。
可选的,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端配置服务小区和邻近小区的小区信息,包括:
服务器根据所述终端的位置信息,以及存储在所述服务器的TRP信息和/或小区信息,通过LPP信令或LPP演进信令或数据信道为所述终端配置服务小区和邻近小区的小区信息。
其中,终端的位置信息可为历史位置信息或其它定位手段获取的位置信息。
上述存储在所述服务器的TRP信息可包括TRP的标识信息、空间关系信息、功率配置信息、特定信号的配置信息中的至少一项,上述存储在所述服务器的小区信息可包括小区的标识信息、空间关系信息、功率配置信息、特 定信号的配置信息中的至少一项。
具体的,上述空间关系信息可包括配置的服务小区和邻近小区的QCL参考信号和QCL参考信号的ID。功率配置信息可包括配置的服务小区和邻近小区的参考信号的发射功率信息,该参考信号包括SSB和DL-PRS的一种或任意组合;功率配置信息还可包括配置的服务小区和邻近小区的路损计算的参考信号信息。特定信号的配置信息可包括配置的服务小区和邻近小区的参考信号的时频资源信息,该参考信号包括SSB、CSI-RS和DL-PRS的一种或任意组合。
该实施方式中,服务器存储的TRP信息和/或小区信息可由LPPA信令和NRPPA信令或演进从TRP或小区收集得到。进一步的,支持LPPA信令和NRPPA信令传输和收集小区的SSB信息和CSI-RS信息,SSB信息和CSI-RS信息可包括ID信息和配置信息,配置信息可包括时频资源配置、带宽、point A、测量时间、子载波间隔和信号指示信息中的至少一种;
其中,所述信号指示信息为信号的小区ID和波束ID。
该实施方式中,服务器根据终端的位置信息以及存储在服务器的TRP信息和/或小区信息来配置上述小区信息,能够使得服务器在接收测量之前为终端配置合理的空间关系信息。
可选的,所述服务小区和邻近小区的小区信息通过UTDOA(Observed Time Difference of Arrival,到达时间差定位法)定位辅助数据IE(Information Element,信令消息中的信息单元)配置,或者,所述服务小区和邻近小区的小区信息通过上行到达时间定位法定位辅助数据IE配置。
具体的,可在LPP信令协议中增加UTDOA定位辅助数据IE,所述UTDOA定位辅助数据IE包括所述小区信息。或者,可在LPP信令协议中增加上行到达时间定位法定位辅助数据IE,该上行到达时间定位法定位辅助数据IE包括所述小区信息。
该实施方式中,通过上述方法配置服务小区和邻近小区的小区信息,能够使得终端在SRS发射时不仅获得资源配置信息,还能获得预估的空间关系信息和功率配置信息。
以上为本发明实施例提供的服务器为终端配置服务小区和邻近小区的小 区信息的各种实施方式。
由上述可知,本发明实施例中提供了多种小区信息的配置方案,这样,网络侧设备可以根据不同的应用场所和不同的实时性要求,灵活地选择合适的配置方案,从而,在提高通信性能的同时,还能够提高通信灵活性。
本发明实施例中,终端在接收到网络侧设备配置的上述小区信息之后,可根据上述小区信息和/或第一测量结果,对SRS的发射参数进行设置,SRS的发射参数可包括发射方向和发射功率。本发明实施例中,终端既可以对SRS的发射方向进行设置,也可以对SRS的发射功率进行设置。
可选的,所述终端根据上述小区信息和/或第一测量结果,对SRS的发射参数进行设置,包括:
终端根据所述小区信息中的空间关系信息和/或所述第一测量结果,对所述SRS的发射方向进行设置;或者,
终端根据所述小区信息中的功率配置信息和特定信号的配置信息和/或所述第一测量结果,对所述SRS的发射功率进行设置;或者,
终端根据所述小区信息中的空间关系信息、功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置;或者,
终端根据所述小区信息中的空间关系信息和/或功率配置信息和特定信号的配置信息和/或所述第一测量结果,对所述SRS的发射方向和每个发射方向对应的发射功率进行设置。
需要说明的是,在SRS发射方向的设置上,上述第一测量结果可为终端基于所述小区信息中的空间关系信息,对服务小区和邻近小区进行测量而得到的结果。在SRS发射功率的设置上,上述第一测量结果可为终端基于所述小区信息中的空间关系信息和/或功率配置信息,对服务小区和邻近小区进行测量而得到的结果,具体的,上述第一测量结果可为终端基于所述小区信息中的空间关系信息和/或路损参考信息和/或发射功率,对服务小区和邻近小区进行测量而得到的结果。上述第一测量结果可为终端基于所述小区信息中的空间关系信息和/或功率配置信息和/或特定信号的配置信息,对服务小区和邻近小区进行测量而得到的结果。
以下针对终端对SRS的发射方向进行设置的具体方式进行详细说明。
可选的,终端根据所述小区信息中的空间关系信息和/或第一测量结果,对所述SRS的发射方向进行设置,包括:
终端根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将服务小区和邻近小区的空间关系信号的相关方向设置为所述SRS的发射方向;或者,
终端根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将与所述空间关系信号的相关方向相同的空间滤波方向设置为所述SRS的发射方向。
可选的,终端将服务小区和邻近小区的空间关系信号的相关方向设置为所述SRS的发射方向,包括:
将所述终端接收到的空间关系信号的所有相关方向作为所述SRS的发射方向;或者,
从所述终端接收到的空间关系信号的相关方向中,选择特定波束方向作为所述SRS的发射方向。
其中,终端接收到的空间关系信号的相关方向为:终端接收到的服务小区和邻近小区的空间关系信号的相关方向。
该实施方式能够使终端预判性的使足够的网络侧设备接收到SRS信号,从而增强SRS的定位性能。
可选的,终端从所述终端接收到的空间关系信号的相关方向中,选择特定波束方向作为所述SRS的发射方向,包括:
终端根据所述第一测量结果,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
终端根据所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
终端根据所述第一测量结果,以及所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向。
该实施方式中,终端结合第一测量结果和终端的能力,从终端接收到的空间关系信号的相关方向中,选择特定方向作为SRS的发射方向,能够使得SRS发射方向的设置更加合理。
可选的,所述空间关系信号的相关方向包括:
所述空间关系信号接收功率最强的接收波束方向;或者,
测得所述空间关系信号首径的方向;或者,
所述空间关系信号的配置方向。
具体的,终端可根据服务小区和邻近小区的QCL配置,以及网络侧设备提供的SRS资源配置信息,将服务小区和邻近小区的QCL信号的相关方向设置为SRS set(SRS资源集)的方向和SRS resource(SRS资源)的方向。
具体的,服务小区和邻近小区的QCL信号的相关方向为接收QCL信号功率最强的接收波束方向,或者,测得QCL信号首径的方向,或者,QCL信号的配置和/或空间滤波方向。
进一步的,终端可根据SRS资源配置信息选择所有QCL信号的相关方向发射SRS,或者,可根据第一测量结果选择更密集或更稀疏的波束方向发射。
进一步的,服务小区和邻近小区的QCL信号的相关方向为接收QCL信号功率最强的接收波束方向或测得QCL信号首径的方向或QCL信号的配置和/或空间滤波方向。
终端可根据资源配置选择所有QCL信号的相关方向发射或根据之前的测量选择更密集或更稀疏的波束方向发射。
进一步的,当配置资源(如set和resource)大于服务器配置的QCL数目时,可以发射重复的方向;或选取部分RRC配置的QCL方向发射。
进一步的,当配置资源(如set和resource)小于服务器配置的QCL数目时,选取服务器配置的QCL优先级高或终端测量结果更好的方向发射。
以上为本发明实施例提供的终端对SRS的发射方向进行设置的各种实施方式。
以下针对终端对SRS的发射功率进行设置的具体方式进行详细说明。
可选的,终端根据所述小区信息和/或第一测量结果,对SRS的发射参数进行设置,包括:
终端根据所述小区信息中的功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置;或者,
终端根据所述小区信息中的空间关系信息、功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置。
例如,终端可根据服务小区和邻近小区的发射功率配置,结合QCL信号的信号配置测得的QCL信号,计算接收信号的RSRP(Reference Signal Received Power,参考信号接收功率)、RSRQ(Reference Signal Received Quality,参考信号接收质量)或SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比),从而计算出从网络侧设备到终端的路损,根据SRS波束的发射功率公式,分别计算和设置指向服务小区和邻近小区的发射功率。
终端可根据所述小区的功率配置中的发射功率和路损参考信号,测量路损参考信号的RSRP、RSRQ或SINR,从而计算出从网络侧设备到终端的路损,来配置终端的发射功率。
终端根据所述小区信息中的空间关系信息和/或功率配置信息和特定信号的配置信息和/或所述第一测量结果,对所述SRS的发射方向和发射方向上所对应的发射功率进行设置。
所述小区信息中的空间关系信息和路损参考信号存在对照关系,终端根据小区的功率配置中的发射功率和小区信息中的空间关系信息和路损参考信号,测量路损参考的接收信号的RSRP、RSRQ或SINR,从而计算出从网络侧到终端的路损,并结合空间关系,来配置UE向对应空间关系的发射功率。
以上为本发明实施例提供的终端对SRS的发射功率进行设置的实施方式。
由上述可知,本发明实施例中提供了多种SRS发射参数的设置方案,这样,终端可以根据不同的资源和不同的配置,灵活地选择合适的设置方案,从而,在提高通信性能的同时,还能够提高通信灵活性。
本发明实施例中,终端在对SRS的发射参数进行设置的过程中,如果服务器配置的部分或全部信息与服务小区通过RRC消息配置的部分和全部信息相冲突,则终端对SRS的发射参数的设置可采用以下两种可选的方式。
方式一:若冲突的信息为服务小区的信息或主辅小区的信息,则终端可以以服务小区配置的信息为高优先级进行SRS发射参数的相关设置,也可根据测量情况选择上述配置其一或按照测量选择其它配置,并上报更新的QCL指示信息和测量结果。
方式二:若冲突的信息为邻近小区的空间关系信息,则终端可以根据测量情况选择上述配置其一或按照测量选择其它配置,并上报更新的QCL指示信息和测量结果,若冲突的信息为邻近小区的功率配置信息和特定信号的配置信息,则终端可以以服务器的配置为高优先级进行SRS发射参数的相关设置。
上述两种方式为终端提供了冲突解决方案,使得在冲突配置下,终端可以合理地选择SRS的发射方案。
本发明实施例中,终端在对SRS的发射参数进行设置之后,可根据设置的发射参数发送SRS。
可选的,在所述终端发送所述SRS之后,所述方法还包括:
终端将目标小区的相关信息上报给所述网络侧设备;
其中,所述目标小区为发送所述SRS所使用的小区;
所述相关信息包括空间关系信息,以及空间关系信号的测量结果中的至少一项。
具体的,终端可将发射所使用的各邻近小区的空间关系ID上报给服务器,服务器可以将该信息发给邻近小区,各邻近小区的空间关系ID包括空间关系信号和空间关系信号ID和所属的邻近小区指示。
该实施方式中,通过将发送SRS所使用的小区的相关信息上报给网络侧设备,从而能够使网络侧设备确定终端发射SRS的发射方向,以便于网络侧设备按照终端所选择的发射方向进行后续测量,从而减小网络侧设备的搜索复杂度和搜索时延。
本发明实施例中,在网络侧设备为终端配置服务小区和邻近小区的小区信息之前,网络侧设备需要获取上述小区信息。本发明实施例中,网络侧设备既可以由服务小区对应的网络侧设备来获取上述小区信息,也可以由服务器对应的网络侧设备来获取上述小区信息。
可选的,所述网络侧设备获取所述小区信息,包括:
服务小区通过X2或Xn接口,获取所述邻近小区的小区信息;或者,
服务小区通过LPPA信令(LTE Positioning Protocol A,LET定位协议A)、NRPPA(NR Positioning Protocol A,NR定位协议A)信令或数据信道,从 服务器获取所述邻近小区的小区信息;或者,
服务器通过LPPA信令、NRPPA信令或数据信道,获取所述服务小区和邻近小区的小区信息。
需要说明的是,由于服务小区知晓其自身的空间关系信息、功率配置信息或特定信号的配置信息等小区信息,因此,服务小区只需获取邻近小区的小区信息即可。
具体的,服务小区通过LPPA信令、NRPPA信令或数据信道,从位置服务器获取所述邻近小区的小区信息。
其中,图3示出了服务小区通过X2或Xn接口获取邻近小区的小区信息,并通过RRC消息为终端配置邻近小区的小区信息的示意图。图4示出了服务小区通过LPPA信令或演进接口,从位置服务器获取邻近小区的小区信息,并通过RRC消息为终端配置邻近小区的小区信息的示意图。
图5示出了服务器通过NRPPA信令获取所述服务小区和邻近小区的小区信息,并通过通过LPP信令为所述终端配置所述小区信息的示意图。
由上述可知,本发明实施例中提供了多种获取小区信息的方案,这样,网络侧设备可以根据不同的应用场景和不同的时延要求,灵活地选择合适的方案来获取小区信息,从而,在提高通信性能的同时,还能够提高通信灵活性。
本发明实施例中,在网络侧设备为终端配置服务小区和邻近小区的小区信息之后,网络侧设备还可以为终端更新上述小区信息。本发明实施例中,网络侧设备既可以由服务小区对应的网络侧设备来更新上述小区信息,也可以由服务器对应的网络侧设备来更新上述小区信息。
可选的,所述网络侧设备为所述终端更新所述小区信息,包括:
在服务小区接收到所述终端上报的邻近小区测量信息的情况下,所述服务小区通过RRC消息,为所述终端更新所述邻近小区的小区信息;或者,
在服务器接收到所述终端上报的邻近小区测量信息和/或服务小区测量信息的情况下,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端更新所述服务小区和邻近小区的小区信息。
其中,图6示出了终端通过RRC消息向服务小区上报邻近小区最优波束 和功率测量信息,服务小区通过RRC消息为终端更新邻近小区的小区信息的示意图。图7示出了终端上报服务小区和邻近小区的QCL和测量结果,服务器通过LPP信令为终端更新上述小区信息的示意图。
该实施方式中,在终端向网络侧设备(服务小区或服务器)上报测量信息的情况下,网络侧设备可根据终端上报的测量信息,为终端更新上述小区信息。这样,能够使配置和测量根据终端的位置进行更新。
以下针对网络侧设备为终端更新上述小区信息的各种方式进行进一步的说明。
可选的,所述服务器为所述终端更新所述服务小区和邻近小区的小区信息,包括:
服务器根据所述终端的上报信息,以及存储在所述服务器的相关信息,为所述终端更新所述服务小区和邻近小区的小区信息。
可选的,所述服务小区通过RRC消息,为所述终端更新所述邻近小区的小区信息,包括:
服务小区根据存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
服务小区根据所述邻近小区测量信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
服务小区根据所述邻近小区测量信息,以及存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息。
可选的,所述服务小区通过RRC消息为所述终端更新所述邻近小区的小区信息,包括:
服务小区将所述终端上报的小区索引对应的小区信息和/或波束索引对应的小区信息作为向邻近小区发射所述SRS的小区信息;
其中,所述波束索引对应的小区信息包括首径信号波束ID或信号质量最好的信号波束ID。
其中,信号质量最好的信号波束ID可为RSPR最大和/或RSRQ最大的ID,信号质量最好的信号波束有不同信号,如SSB、CSI-RS和DL-PRS时,可选取信号质量最好的信号波束ID,也可选取与频域或时域配置资源最相近 的信号。TRP不同信号的波束ID指向方向相近时,优选SSB信号或与终端active BWP相同的信号。
具体的,服务小区可将所述终端上报的信号质量最好的信号波束ID作为向邻近小区发射所述SRS的空间关系信号;或者,服务小区可将所述终端上报的首径信号波束ID作为向邻近小区发射所述SRS的空间关系信号。
具体的,服务小区可将所述终端上报的信号质量最好的信号波束ID作为邻近小区的路损参考信号ID;或者,服务小区可将所述终端上报的首径信号波束ID作为邻近小区的路损参考信号ID。
具体的,服务小区可将所述终端上报的首径信号波束ID作为邻近小区的特定信号配置信息;或者,服务小区可将所述终端上报的首径信号波束ID作为邻近小区的特定信号配置信息。
可选的,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端更新所述服务小区和邻近小区的小区信息,包括:
服务器将所述终端上报的小区索引对应的小区信息和/或信号波束索引对应的小区信息作为向服务小区和邻近小区发射所述SRS的小区信息;
其中,所述信号波束索引包括首径信号波束ID或信号质量最好的信号波束ID。
其中,信号质量最好的信号波束ID可为RSPR最大和/或RSRQ最大的ID,信号质量最好的信号波束有不同信号,如SSB、CSI-RS和DL-PRS时,可选取信号质量最好的信号波束ID,也可选取与频域或时域配置资源最相近的信号。TRP不同信号的波束ID指向方向相近时,优选SSB信号或与终端active BWP相同的信号。
具体的,服务器可将所述终端上报的信号质量最好的信号波束ID作为向服务小区和邻近小区发射所述SRS的空间关系信号;或者,服务器可将所述终端上报的首径信号波束ID作为向邻近小区发射所述SRS的空间关系信号。
例如,将终端上报的小区下信号质量最好的信号波束ID作为向服务小区和邻近小区发射SRS的QCL信号,或者,将终端上报的小区下首径信号波束ID作为向服务小区和邻近小区发射SRS的QCL信号。
具体的,服务器可将所述终端上报的信号质量最好的信号波束ID作为服 务小区和邻近小区的路损参考信号ID;或者,服务器可将所述终端上报的首径信号波束ID作为服务小区和邻近小区的路损参考信号ID。
具体的,服务器可将所述终端上报的首径信号波束ID作为服务小区和邻近小区的特定信号配置信息;或者,服务器可将所述终端上报的首径信号波束ID作为服务小区和邻近小区的特定信号配置信息。
可选的,所述邻近小区测量信息包括邻近小区的参考信号索引和参考信号测量结果。
可选的,所述服务小区测量信息包括服务小区的参考信号索引和参考信号测量结果。
可选的,所述参考信号索引包括SSB索引、CSI-RS索引、DL-PRS索引、信号波束索引和测量首径对应的信号波束索引中的至少一种。
可选的,所述参考信号测量结果包括测量信号的RSRP、RSRQ和SINR。
以上为本发明实施例提供的网络侧设备为终端更新上述小区信息的各种实施方式。
由上述可知,本发明实施例中提供了多种更新小区信息的方案,这样,网络侧设备可以根据不同的应用场景和不同的时延要求,灵活地选择合适的方案对小区信息进行更新,从而,在提高通信性能的同时,还能够提高通信灵活性。
本发明实施例中,在网络侧设备为终端更新上述小区信息之后,网络侧设备还可以向服务小区和/或邻近小区通知更新后的小区信息。本发明实施例中,网络侧设备既可以由服务小区对应的网络侧设备向邻近小区通知更新后的小区信息,也可以由服务器对应的网络侧设备向服务小区和/或邻近小区获取上述小区信息。
可选的,在为所述终端更新所述小区信息之后,所述方法还包括以下至少一项:
服务小区通过X2或Xn接口向邻近小区通知更新后的小区信息;
服务器通过LPPA信令或NRPPA演进信令或数据信道,向服务小区和/或邻近小区通知更新后的小区信息。
该实施方式中,在网络侧设备为终端更新上述小区信息之后,网络侧设 备可向服务小区和/或邻近小区通知更新后的小区信息,这样,能够使服务小区和/或邻近小区预知波束来向,从而减少测量搜索时间。
综合上述各实施方式,本发明实施例中,通过为终端配置服务小区和邻近小区的小区信息,使得终端能够根据服务小区和邻近小区的小区信息,和/或,服务小区和邻近小区的测量结果,对SRS的发射参数进行设置。由于终端对SRS发射参数的设置综合考量了服务小区和邻近小区的小区信息,使得SRS发射的指向性、定位性和覆盖性均得以提高。
请参见图8,图8是本发明实施例提供的一种SRS发射设置方法的流程图,该方法应用于终端,如图8所示,包括以下步骤:
步骤801:接收服务小区和邻近小区的小区信息,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项;
步骤802:根据所述小区信息和/或第一测量结果,对信道探测用参考信号SRS的发射参数进行设置;其中,所述第一测量结果为所述终端基于所述小区信息,对服务小区和邻近小区进行测量而得到的结果。
可选的,所述方法还包括:
将目标小区的相关信息上报给所述网络侧设备;
其中,所述目标小区为发送所述SRS所使用的小区;
所述相关信息包括空间关系信息,以及空间关系信号的测量结果中的至少一项。
可选的,所述根据所述小区信息和/或第一测量结果,对SRS的发射参数进行设置,包括:
根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将服务小区和邻近小区的空间关系信号的相关方向设置为所述SRS的发射方向;或者,
根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将与所述空间关系信号的相关方向相同的空间滤波方向设置为所述SRS的发射方向。
可选的,所述将服务小区和邻近小区的空间关系信号的相关方向设置为所述SRS的发射方向,包括:
将所述终端接收到的空间关系信号的所有相关方向作为所述SRS的发射方向;或者,
从所述终端接收到的空间关系信号的相关方向中,选择特定波束方向作为所述SRS的发射方向。
可选的,所述从所述终端接收到的空间关系信号的相关方向中,选择特定波束方向作为所述SRS的发射方向,包括:
根据所述第一测量结果,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
根据所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
根据所述第一测量结果,以及所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向。
可选的,所述空间关系信号的相关方向包括:
所述空间关系信号接收功率最强的接收波束方向;或者,
测得所述空间关系信号首径的方向;或者,
所述空间关系信号的配置方向。
可选的,所述根据所述小区信息和/或第一测量结果,对SRS的发射参数进行设置,包括:
根据所述小区信息中的功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置;或者,
根据所述小区信息中的空间关系信息、功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置。
可选的,所述小区信息中的空间关系信息包括以下至少一项:
小区标识;
小区同步信号块标识SSB ID;
小区信道状态信息参考信号标识CSI-RS ID;
下行定位参考信号资源集标识DL-PRS resource set ID;
下行定位参考信号资源标识DL-PRS resource ID;
同步信号块SSB对应波束的空间方向信息;
信道状态信息参考信号CSI-RS对应波束的空间方向信息;
下行定位参考信号DL-PRS对应波束的空间方向信息;
SSB对应的空间滤波信息;
CSI-RS对应的空间滤波信息;
DL-PRS对应的空间滤波信息。
可选的,所述小区信息中的空间关系信息包括准共址QCL信息。
可选的,所述小区信息中的功率配置信息包括路损参考信号指示信息和发射功率配置信息;
所述路损参考信号指示信息包括以下至少一项:
小区SSB ID;
小区CSI-RS ID;
DL-PRS resource set ID;
DL-PRS resource ID;
所述发射功率配置信息包括以下至少一项:
服务小区的SSB发射功率;
邻近小区SSB发射功率相对于服务小区SSB发射功率的偏移;
服务小区的CSI-RS发射功率;
邻近小区CSI-RS发射功率相对于服务小区SSB发射功率的偏移;
服务小区的DL-PRS发射功率;
邻近小区DL-PRS发射功率相对于服务小区SSB发射功率的偏移。
可选的,所述特定信号包括以下至少一项:
DL-PRS;
特定小区的SSB;
特定小区的CSI-RS;
路损参考信号;
空间关系信号;
其中,所述特定小区为测量配置信息中未配置的小区。
可选的,所述配置信息包括时频资源配置信息、带宽、资源块网格的公共参考点point A、测量时间、子载波间隔和信号指示信息中的至少一种;
其中,所述信号指示信息为信号的小区ID和波束ID。
需要说明的是,本实施例作为图2所示的实施例对应的终端的实施方式,其具体的实施方式可以参见图2所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
请参见图9,图9是本发明实施例提供的一种信息配置方法的流程图,该方法应用于网络侧设备,如图9所示,包括以下步骤:
步骤901:网络侧设备为终端配置服务小区和邻近小区的小区信息,所述小区信息用于确定信道探测用参考信号SRS的发射参数;其中,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项。
可选的,所述网络侧设备为终端配置服务小区和邻近小区的小区信息,包括:
服务小区通过RRC消息为所述终端配置邻近小区的小区信息。
可选的,所述网络侧设备为终端配置服务小区和邻近小区的小区信息,包括:
服务器通过LPP信令或LPP演进信令或数据信道,为所述终端配置服务小区和邻近小区的小区信息。
可选的,所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的小区标识或TRP标识配置;或者,
所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的非服务小区标识配置;或者,
所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的DL-PRS信息配置。
可选的,所述邻近小区的功率配置信息包括所述SRS的路损参考信号配置;或者,
所述邻近小区的路损参考信号配置于所述SRS的每个资源单元或每个资源单元集中;或者,
所述邻近小区的功率配置信息配置于每个测量目标中的非服务小区组或邻近小区组中;或者,
所述邻近小区的功率配置信息包括配置每个测量目标中的参考信号信息 和/或参考信号的发射功率信息配置。
可选的,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端配置服务小区和邻近小区的小区信息,包括:
服务器根据所述终端的位置信息,以及存储在所述服务器的TRP信息和/或小区信息,通过LPP信令或LPP演进信令或数据信道为所述终端配置服务小区和邻近小区的小区信息。
可选的,所述服务小区和邻近小区的小区信息通过上行到达时间差定位法UTDOA定位辅助数据IE配置;或者,
所述服务小区和邻近小区的小区信息通过上行到达时间定位法定位辅助数据IE配置。
可选的,在所述网络侧设备为终端配置服务小区和邻近小区的小区信息之前,所述方法还包括:
服务小区通过X2或Xn接口,获取所述邻近小区的小区信息;或者,
服务小区通过LPPA信令、NRPPA信令或数据信道,从服务器获取所述邻近小区的小区信息;或者,
服务器通过LPPA信令、NRPPA信令或数据信道,获取所述服务小区和邻近小区的小区信息。
可选的,在所述网络侧设备为终端配置服务小区和邻近小区的小区信息之后,所述方法还包括:
在服务小区接收到所述终端上报的邻近小区测量信息的情况下,所述服务小区通过RRC消息,为所述终端更新所述邻近小区的小区信息;或者,
在服务器接收到所述终端上报的邻近小区测量信息和/或服务小区测量信息的情况下,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端更新所述服务小区和邻近小区的小区信息。
可选的,所述服务器为所述终端更新所述服务小区和邻近小区的小区信息,包括:
服务器根据所述终端的上报信息,以及存储在所述服务器的相关信息,为所述终端更新所述服务小区和邻近小区的小区信息。
可选的,所述服务小区通过RRC消息,为所述终端更新所述邻近小区的 小区信息,包括:
服务小区根据存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
服务小区根据所述邻近小区测量信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
服务小区根据所述邻近小区测量信息,以及存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息。
可选的,所述服务小区通过RRC消息为所述终端更新所述邻近小区的小区信息,包括:
服务小区将所述终端上报的小区索引对应的小区信息和/或波束索引对应的小区信息作为向邻近小区发射所述SRS的小区信息;
其中,所述波束索引对应的小区信息包括首径信号波束ID或信号质量最好的信号波束ID。
可选的,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端更新所述服务小区和邻近小区的小区信息,包括:
服务器将所述终端上报的小区索引对应的小区信息和/或信号波束索引对应的小区信息作为向服务小区和邻近小区发射所述SRS的小区信息;
其中,所述信号波束索引包括首径信号波束ID或信号质量最好的信号波束ID。
可选的,所述邻近小区测量信息包括邻近小区的参考信号索引和参考信号测量结果。
可选的,所述参考信号索引包括SSB索引、CSI-RS索引、DL-PRS索引、信号波束索引和测量首径对应的信号波束索引中的至少一种。
可选的,所述参考信号测量结果包括测量信号的参考信号接收功率RSRP、参考信号接收质量RSRQ和信号与干扰加噪声比SINR。
可选的,在为所述终端更新所述小区信息之后,所述方法还包括以下至少一项:
服务小区通过X2或Xn接口向邻近小区通知更新后的小区信息;
服务器通过LPPA信令或NRPPA演进信令或数据信道,向服务小区和/ 或邻近小区通知更新后的小区信息。
可选的,所述小区信息中的空间关系信息包括以下至少一项:
小区标识;
小区同步信号块标识SSB ID;
小区信道状态信息参考信号标识CSI-RS ID;
下行定位参考信号资源集标识DL-PRS resource set ID;
下行定位参考信号资源标识DL-PRS resource ID;
同步信号块SSB对应波束的空间方向信息;
信道状态信息参考信号CSI-RS对应波束的空间方向信息;
下行定位参考信号DL-PRS对应波束的空间方向信息;
SSB对应的空间滤波信息;
CSI-RS对应的空间滤波信息;
DL-PRS对应的空间滤波信息。
可选的,所述小区信息中的空间关系信息包括准共址QCL信息。
可选的,所述小区信息中的功率配置信息包括路损参考信号指示信息和发射功率配置信息;
所述路损参考信号指示信息包括以下至少一项:
小区SSB ID;
小区CSI-RS ID;
DL-PRS resource set ID;
DL-PRS resource ID;
所述发射功率配置信息包括以下至少一项:
服务小区的SSB发射功率;
邻近小区SSB发射功率相对于服务小区SSB发射功率的偏移;
服务小区的CSI-RS发射功率;
邻近小区CSI-RS发射功率相对于服务小区SSB发射功率的偏移;
服务小区的DL-PRS发射功率;
邻近小区DL-PRS发射功率相对于服务小区SSB发射功率的偏移。
可选的,所述特定信号包括以下至少一项:
DL-PRS;
特定小区的SSB;
特定小区的CSI-RS;
路损参考信号;
空间关系信号;
其中,所述特定小区为测量配置信息中未配置的小区。
可选的,所述配置信息包括时频资源配置信息、带宽、资源块网格的公共参考点point A、测量时间、子载波间隔和信号指示信息中的至少一种;
其中,所述信号指示信息为信号的小区ID和波束ID。
需要说明的是,本实施例作为图2所示的实施例对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
请参见图10,图10是本发明实施例提供的一种终端的结构图,如图10所示,终端1000包括:
接收模块1001,用于接收服务小区和邻近小区的小区信息,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项;
设置模块1002,用于根据所述小区信息和/或第一测量结果,对信道探测用参考信号SRS的发射参数进行设置;
其中,所述第一测量结果为所述终端基于所述小区信息,对服务小区和邻近小区进行测量而得到的结果。
可选的,终端1000还包括:
上报模块,用于将目标小区的相关信息上报给所述网络侧设备;
其中,所述目标小区为发送所述SRS所使用的小区;
所述相关信息包括空间关系信息,以及空间关系信号的测量结果中的至少一项。
可选的,设置模块1002具体用于:
根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将服务小区和邻近小区的空间关系信号的相关方向设置为所述SRS的发射方向;或者,
根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将与所述空间关系信号的相关方向相同的空间滤波方向设置为所述SRS的发射方向。
可选的,设置模块1002具体用于:
将所述终端接收到的空间关系信号的所有相关方向作为所述SRS的发射方向;或者,
从所述终端接收到的空间关系信号的相关方向中,选择特定波束方向作为所述SRS的发射方向。
可选的,设置模块1002具体用于:
根据所述第一测量结果,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
根据所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
根据所述第一测量结果,以及所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向。
可选的,所述空间关系信号的相关方向包括:
所述空间关系信号接收功率最强的接收波束方向;或者,
测得所述空间关系信号首径的方向;或者,
所述空间关系信号的配置方向。
可选的,设置模块1002具体用于:
根据所述小区信息中的功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置;或者,
根据所述小区信息中的空间关系信息、功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置。
可选的,所述小区信息中的空间关系信息包括以下至少一项:
小区标识;
小区同步信号块标识SSB ID;
小区信道状态信息参考信号标识CSI-RS ID;
下行定位参考信号资源集标识DL-PRS resource set ID;
下行定位参考信号资源标识DL-PRS resource ID;
同步信号块SSB对应波束的空间方向信息;
信道状态信息参考信号CSI-RS对应波束的空间方向信息;
下行定位参考信号DL-PRS对应波束的空间方向信息;
SSB对应的空间滤波信息;
CSI-RS对应的空间滤波信息;
DL-PRS对应的空间滤波信息。
可选的,所述小区信息中的空间关系信息包括准共址QCL信息。
可选的,所述小区信息中的功率配置信息包括路损参考信号指示信息和发射功率配置信息;
所述路损参考信号指示信息包括以下至少一项:
小区SSB ID;
小区CSI-RS ID;
DL-PRS resource set ID;
DL-PRS resource ID;
所述发射功率配置信息包括以下至少一项:
服务小区的SSB发射功率;
邻近小区SSB发射功率相对于服务小区SSB发射功率的偏移;
服务小区的CSI-RS发射功率;
邻近小区CSI-RS发射功率相对于服务小区SSB发射功率的偏移;
服务小区的DL-PRS发射功率;
邻近小区DL-PRS发射功率相对于服务小区SSB发射功率的偏移。
可选的,所述特定信号包括以下至少一项:
DL-PRS;
特定小区的SSB;
特定小区的CSI-RS;
路损参考信号;
空间关系信号;
其中,所述特定小区为测量配置信息中未配置的小区。
可选的,所述配置信息包括时频资源配置信息、带宽、资源块网格的公共参考点point A、测量时间、子载波间隔和信号指示信息中的至少一种;
其中,所述信号指示信息为信号的小区ID和波束ID。
本发明实施例提供的终端能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
请参见图11,图11是本发明实施例提供的一种网络侧设备的结构图,如图11所示,网络侧设备1100包括:
配置模块1101,用于为终端配置服务小区和邻近小区的小区信息,所述小区信息用于确定信道探测用参考信号SRS的发射参数;
其中,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项。
可选的,网络侧设备1100为服务小区对应的网络侧设备,配置模块1101具体用于:
通过RRC消息为所述终端配置邻近小区的小区信息。
可选的,网络侧设备1100为服务器对应的网络侧设备,配置模块1101具体用于:
通过LPP信令或LPP演进信令或数据信道,为所述终端配置服务小区和邻近小区的小区信息。
可选的,所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的小区标识或TRP标识配置;或者,
所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的非服务小区标识配置;或者,
所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的DL-PRS信息配置。
可选的,所述邻近小区的功率配置信息通过所述SRS的路损参考信号配置;或者,
所述邻近小区的路损参考信号配置于所述SRS的每个资源单元或每个资源单元集中;或者,
所述邻近小区的功率配置信息在每个测量目标中的非服务小区组或邻近 小区组中进行配置;或者,
所述邻近小区的功率配置信息通过每个测量目标中的参考信号信息和参考信号的发射功率信息配置。
可选的,网络侧设备1100为服务器对应的网络侧设备,配置模块1101具体用于:
根据所述终端的位置信息,以及存储在所述服务器的TRP信息和/或小区信息,通过LPP信令或LPP演进信令或数据信道为所述终端配置服务小区和邻近小区的小区信息。
可选的,所述服务小区和邻近小区的小区信息通过到达时间差定位法UTDOA定位辅助数据IE配置;或者,
所述服务小区和邻近小区的小区信息通过上行到达时间定位法定位辅助数据IE配置。
可选的,网络侧设备1100还包括获取模块;
网络侧设备1100为服务小区对应的网络侧设备,获取模块用于:
通过X2或Xn接口,获取所述邻近小区的小区信息;或者,
通过LPPA信令、NRPPA信令或数据信道,从服务器获取所述邻近小区的小区信息;
或者,
网络侧设备1100为服务器对应的网络侧设备,获取模块用于:
通过LPPA信令、NRPPA信令或数据信道,获取所述服务小区和邻近小区的小区信息。
可选的,网络侧设备1100还包括更新模块;
网络侧设备1100为服务小区对应的网络侧设备,更新模块用于:
在接收到所述终端上报的邻近小区测量信息的情况下,通过RRC消息,为所述终端更新所述邻近小区的小区信息;
或者,
网络侧设备1100为服务器对应的网络侧设备,更新模块用于:
在接收到所述终端上报的邻近小区测量信息和/或服务小区测量信息的情况下,通过LPP信令或LPP演进信令或数据信道,为所述终端更新所述服 务小区和邻近小区的小区信息。
可选的,网络侧设备1100为服务器对应的网络侧设备,更新模块具体用于:
根据所述终端的上报信息,以及存储在所述服务器的相关信息,为所述终端更新所述服务小区和邻近小区的小区信息。
可选的,网络侧设备1100为服务小区对应的网络侧设备,更新模块具体用于:
根据存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
根据所述邻近小区测量信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
根据所述邻近小区测量信息,以及存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息。
可选的,网络侧设备1100为服务小区对应的网络侧设备,更新模块具体用于:
将所述终端上报的小区索引对应的小区信息和/或波束索引对应的小区信息作为向邻近小区发射所述SRS的小区信息;
其中,所述波束索引对应的小区信息包括首径信号波束ID或信号质量最好的信号波束ID。
可选的,网络侧设备1100为服务器对应的网络侧设备,更新模块具体用于:
将所述终端上报的小区索引对应的小区信息和/或信号波束索引对应的小区信息作为向服务小区和邻近小区发射所述SRS的小区信息;
其中,所述信号波束索引包括首径信号波束ID或信号质量最好的信号波束ID。
可选的,所述邻近小区测量信息包括邻近小区的参考信号索引和参考信号测量结果。
可选的,所述参考信号索引包括SSB索引、CSI-RS索引、DL-PRS索引、信号波束索引和测量首径对应的信号波束索引中的至少一种。
可选的,所述参考信号测量结果包括测量信号的参考信号接收功率RSRP、参考信号接收质量RSRQ和信号与干扰加噪声比SINR。
可选的,网络侧设备1100还包括通知模块;
网络侧设备1100为服务小区对应的网络侧设备,通知模块用于:
通过X2或Xn接口向邻近小区通知更新后的小区信息;
网络侧设备1100为服务器对应的网络侧设备,通知模块用于:
通过LPPA信令或NRPPA演进信令或数据信道,向服务小区和/或邻近小区通知更新后的小区信息。
可选的,所述小区信息中的空间关系信息包括以下至少一项:
小区标识;
小区同步信号块标识SSB ID;
小区信道状态信息参考信号标识CSI-RS ID;
下行定位参考信号资源集标识DL-PRS resource set ID;
下行定位参考信号资源标识DL-PRS resource ID;
同步信号块SSB对应波束的空间方向信息;
信道状态信息参考信号CSI-RS对应波束的空间方向信息;
下行定位参考信号DL-PRS对应波束的空间方向信息;
SSB对应的空间滤波信息;
CSI-RS对应的空间滤波信息;
DL-PRS对应的空间滤波信息。
可选的,所述小区信息中的空间关系信息包括准共址QCL信息。
可选的,所述小区信息中的功率配置信息包括路损参考信号指示信息和发射功率配置信息;
所述路损参考信号指示信息包括以下至少一项:
小区SSB ID;
小区CSI-RS ID;
DL-PRS resource set ID;
DL-PRS resource ID;
所述发射功率配置信息包括以下至少一项:
服务小区的SSB发射功率;
邻近小区SSB发射功率相对于服务小区SSB发射功率的偏移;
服务小区的CSI-RS发射功率;
邻近小区CSI-RS发射功率相对于服务小区SSB发射功率的偏移;
服务小区的DL-PRS发射功率;
邻近小区DL-PRS发射功率相对于服务小区SSB发射功率的偏移。
可选的,所述特定信号包括以下至少一项:
DL-PRS;
特定小区的SSB;
特定小区的CSI-RS;
路损参考信号;
空间关系信号;
其中,所述特定小区为测量配置信息中未配置的小区。
可选的,所述配置信息包括时频资源配置信息、带宽、资源块网格的公共参考点point A、测量时间、子载波间隔和信号指示信息中的至少一种;
其中,所述信号指示信息为信号的小区ID和波束ID。
本发明实施例提供的网络侧设备能够实现图2的方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
图12为实现本发明各个实施例的一种终端的硬件结构示意图,该终端1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209、处理器1210、以及电源1211等部件。本领域技术人员可以理解,图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元1201或处理器1210用于:
接收服务小区和邻近小区的小区信息,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项;
根据所述小区信息和/或第一测量结果,对信道探测用参考信号SRS的发射参数进行设置;
其中,所述第一测量结果为所述终端基于所述小区信息,对服务小区和邻近小区进行测量而得到的结果。
可选的,射频单元1201或处理器1210还用于:
将目标小区的相关信息上报给所述网络侧设备;
其中,所述目标小区为发送所述SRS所使用的小区;
所述相关信息包括空间关系信息,以及空间关系信号的测量结果中的至少一项。
可选的,射频单元1201或处理器1210还用于:
根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将服务小区和邻近小区的空间关系信号的相关方向设置为所述SRS的发射方向;或者,
根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将与所述空间关系信号的相关方向相同的空间滤波方向设置为所述SRS的发射方向。
可选的,射频单元1201或处理器1210还用于:
将所述终端接收到的空间关系信号的所有相关方向作为所述SRS的发射方向;或者,
从所述终端接收到的空间关系信号的相关方向中,选择特定波束方向作为所述SRS的发射方向。
可选的,射频单元1201或处理器1210还用于:
根据所述第一测量结果,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
根据所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
根据所述第一测量结果,以及所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向。
可选的,所述空间关系信号的相关方向包括:
所述空间关系信号接收功率最强的接收波束方向;或者,
测得所述空间关系信号首径的方向;或者,
所述空间关系信号的配置方向。
可选的,射频单元1201或处理器1210还用于:
根据所述小区信息中的功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置;或者,
根据所述小区信息中的空间关系信息、功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置。
可选的,所述小区信息中的空间关系信息包括以下至少一项:
小区标识;
小区同步信号块标识SSB ID;
小区信道状态信息参考信号标识CSI-RS ID;
下行定位参考信号资源集标识DL-PRS resource set ID;
下行定位参考信号资源标识DL-PRS resource ID;
同步信号块SSB对应波束的空间方向信息;
信道状态信息参考信号CSI-RS对应波束的空间方向信息;
下行定位参考信号DL-PRS对应波束的空间方向信息;
SSB对应的空间滤波信息;
CSI-RS对应的空间滤波信息;
DL-PRS对应的空间滤波信息。
可选的,所述小区信息中的空间关系信息包括准共址QCL信息。
可选的,所述小区信息中的功率配置信息包括路损参考信号指示信息和发射功率配置信息;
所述路损参考信号指示信息包括以下至少一项:
小区SSB ID;
小区CSI-RS ID;
DL-PRS resource set ID;
DL-PRS resource ID;
所述发射功率配置信息包括以下至少一项:
服务小区的SSB发射功率;
邻近小区SSB发射功率相对于服务小区SSB发射功率的偏移;
服务小区的CSI-RS发射功率;
邻近小区CSI-RS发射功率相对于服务小区SSB发射功率的偏移;
服务小区的DL-PRS发射功率;
邻近小区DL-PRS发射功率相对于服务小区SSB发射功率的偏移。
可选的,所述特定信号包括以下至少一项:
DL-PRS;
特定小区的SSB;
特定小区的CSI-RS;
路损参考信号;
空间关系信号;
其中,所述特定小区为测量配置信息中未配置的小区。
可选的,所述配置信息包括时频资源配置信息、带宽、资源块网格的公共参考点point A、测量时间、子载波间隔和信号指示信息中的至少一种;
其中,所述信号指示信息为信号的小区ID和波束ID。
应理解,本实施例中,上述处理器1210和射频单元1201能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
应理解的是,本发明实施例中,射频单元1201可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1210处理;另外,将上行的数据发送给基站。通常,射频单元1201包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1201还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1202为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1203可以将射频单元1201或网络模块1202接收的或者在存储器1209中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1203还可以提供与终端1200执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1203包括扬声器、 蜂鸣器以及受话器等。
输入单元1204用于接收音频或视频信号。输入单元1204可以包括图形处理器(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1206上。经图形处理器12041处理后的图像帧可以存储在存储器1209(或其它存储介质)中或者经由射频单元1201或网络模块1202进行发送。麦克风12042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1201发送到移动通信基站的格式输出。
终端1200还包括至少一种传感器1205,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板12061的亮度,接近传感器可在终端1200移动到耳边时,关闭显示面板12061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1205还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1206用于显示由用户输入的信息或提供给用户的信息。显示单元1206可包括显示面板12061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板12061。
用户输入单元1207可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1207包括触控面板12071以及其他输入设备12072。触控面板12071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板12071上或在触控面板12071附近的操作)。触控面 板12071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1210,接收处理器1210发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板12071。除了触控面板12071,用户输入单元1207还可以包括其他输入设备12072。具体地,其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板12071可覆盖在显示面板12061上,当触控面板12071检测到在其上或附近的触摸操作后,传送给处理器1210以确定触摸事件的类型,随后处理器1210根据触摸事件的类型在显示面板12061上提供相应的视觉输出。虽然在图12中,触控面板12071与显示面板12061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板12071与显示面板12061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1208为外部装置与终端1200连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1208可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1200内的一个或多个元件或者可以用于在终端1200和外部装置之间传输数据。
存储器1209可用于存储软件程序以及各种数据。存储器1209可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1209可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1210是终端的控制中心,利用各种接口和线路连接整个终端的各 个部分,通过运行或执行存储在存储器1209内的软件程序和/或模块,以及调用存储在存储器1209内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1210可包括一个或多个处理单元;优选的,处理器1210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
终端1200还可以包括给各个部件供电的电源1211(比如电池),优选的,电源1211可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1200包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器1210,存储器1209,存储在存储器1209上并可在所述处理器1210上运行的计算机程序,该计算机程序被处理器1210执行时实现上述SRS发射设置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图13,图13是本发明实施例提供的另一种网络侧设备的结构图,如图13所示,该网络侧设备1300包括:处理器1301、收发机1302、存储器1303和总线接口,其中:
收发机1302或处理器1301用于:
为终端配置服务小区和邻近小区的小区信息,所述小区信息用于确定信道探测用参考信号SRS的发射参数;
其中,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项。
可选的,网络侧设备1300为服务小区对应的网络侧设备,收发机1302或处理器1301用于:
通过RRC消息为所述终端配置邻近小区的小区信息。
可选的,网络侧设备1300为服务器对应的网络侧设备,收发机1302或处理器1301用于:
通过LPP信令或LPP演进信令或数据信道,为所述终端配置服务小区和邻近小区的小区信息。
可选的,所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的小区标识或TRP标识配置;或者,
所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的非服务小区标识配置;或者,
所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的DL-PRS信息配置。
可选的,所述邻近小区的功率配置信息通过所述SRS的路损参考信号配置;或者,
所述邻近小区的路损参考信号配置于所述SRS的每个资源单元或每个资源单元集中;或者,
所述邻近小区的功率配置信息在每个测量目标中的非服务小区组或邻近小区组中进行配置;或者,
所述邻近小区的功率配置信息通过每个测量目标中的参考信号信息和参考信号的发射功率信息配置。
可选的,网络侧设备1300为服务器对应的网络侧设备,收发机1302或处理器1301还用于:
根据所述终端的位置信息,以及存储在所述服务器的TRP信息和/或小区信息,通过LPP信令或LPP演进信令或数据信道为所述终端配置服务小区和邻近小区的小区信息。
可选的,所述服务小区和邻近小区的小区信息通过到达时间差定位法UTDOA定位辅助数据IE配置;或者,
所述服务小区和邻近小区的小区信息通过上行到达时间定位法定位辅助数据IE配置。
可选的,网络侧设备1300为服务小区对应的网络侧设备,收发机1302或处理器1301还用于:
通过X2或Xn接口,获取所述邻近小区的小区信息;或者,
通过LPPA信令、NRPPA信令或数据信道,从服务器获取所述邻近小区的小区信息;
或者,
网络侧设备1300为服务器对应的网络侧设备,收发机1302或处理器1301还用于:
通过LPPA信令、NRPPA信令或数据信道,获取所述服务小区和邻近小区的小区信息。
可选的,网络侧设备1300为服务小区对应的网络侧设备,收发机1302或处理器1301还用于:
在接收到所述终端上报的邻近小区测量信息的情况下,通过RRC消息,为所述终端更新所述邻近小区的小区信息;
或者,
网络侧设备1300为服务器对应的网络侧设备,收发机1302或处理器1301还用于:
在接收到所述终端上报的邻近小区测量信息和/或服务小区测量信息的情况下,通过LPP信令或LPP演进信令或数据信道,为所述终端更新所述服务小区和邻近小区的小区信息。
可选的,网络侧设备1300为服务器对应的网络侧设备,收发机1302或处理器1301还用于:
根据所述终端的上报信息,以及存储在所述服务器的相关信息,为所述终端更新所述服务小区和邻近小区的小区信息。
可选的,网络侧设备1300为服务小区对应的网络侧设备,收发机1302或处理器1301还用于:
根据存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
根据所述邻近小区测量信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
根据所述邻近小区测量信息,以及存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息。
可选的,网络侧设备1300为服务小区对应的网络侧设备,收发机1302或处理器1301还用于:
将所述终端上报的小区索引对应的小区信息和/或波束索引对应的小区 信息作为向邻近小区发射所述SRS的小区信息;
其中,所述波束索引对应的小区信息包括首径信号波束ID或信号质量最好的信号波束ID。
可选的,网络侧设备1300为服务器对应的网络侧设备,收发机1302或处理器1301还用于:
将所述终端上报的小区索引对应的小区信息和/或信号波束索引对应的小区信息作为向服务小区和邻近小区发射所述SRS的小区信息;
其中,所述信号波束索引包括首径信号波束ID或信号质量最好的信号波束ID。
可选的,所述邻近小区测量信息包括邻近小区的参考信号索引和参考信号测量结果。
可选的,所述参考信号索引包括SSB索引、CSI-RS索引、DL-PRS索引、信号波束索引和测量首径对应的信号波束索引中的至少一种。
可选的,所述参考信号测量结果包括测量信号的参考信号接收功率RSRP、参考信号接收质量RSRQ和信号与干扰加噪声比SINR。
可选的,网络侧设备1300为服务小区对应的网络侧设备,收发机1302或处理器1301还用于:
通过X2或Xn接口向邻近小区通知更新后的小区信息;
网络侧设备1300为服务器对应的网络侧设备,收发机1302或处理器1301还用于:
通过LPPA信令或NRPPA演进信令或数据信道,向服务小区和/或邻近小区通知更新后的小区信息。
可选的,所述小区信息中的空间关系信息包括以下至少一项:
小区标识;
小区同步信号块标识SSB ID;
小区信道状态信息参考信号标识CSI-RS ID;
下行定位参考信号资源集标识DL-PRS resource set ID;
下行定位参考信号资源标识DL-PRS resource ID;
同步信号块SSB对应波束的空间方向信息;
信道状态信息参考信号CSI-RS对应波束的空间方向信息;
下行定位参考信号DL-PRS对应波束的空间方向信息;
SSB对应的空间滤波信息;
CSI-RS对应的空间滤波信息;
DL-PRS对应的空间滤波信息。
可选的,所述小区信息中的空间关系信息包括准共址QCL信息。
可选的,所述小区信息中的功率配置信息包括路损参考信号指示信息和发射功率配置信息;
所述路损参考信号指示信息包括以下至少一项:
小区SSB ID;
小区CSI-RS ID;
DL-PRS resource set ID;
DL-PRS resource ID;
所述发射功率配置信息包括以下至少一项:
服务小区的SSB发射功率;
邻近小区SSB发射功率相对于服务小区SSB发射功率的偏移;
服务小区的CSI-RS发射功率;
邻近小区CSI-RS发射功率相对于服务小区SSB发射功率的偏移;
服务小区的DL-PRS发射功率;
邻近小区DL-PRS发射功率相对于服务小区SSB发射功率的偏移。
可选的,所述特定信号包括以下至少一项:
DL-PRS;
特定小区的SSB;
特定小区的CSI-RS;
路损参考信号;
空间关系信号;
其中,所述特定小区为测量配置信息中未配置的小区。
可选的,所述配置信息包括时频资源配置信息、带宽、资源块网格的公共参考点point A、测量时间、子载波间隔和信号指示信息中的至少一种;
其中,所述信号指示信息为信号的小区ID和波束ID。
应理解,本实施例中,上述处理器1301和收发机1302能够实现图2的方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1301代表的一个或多个处理器和存储器1303代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1302可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1304还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1301负责管理总线架构和通常的处理,存储器1303可以存储处理器1301在执行操作时所使用的数据。
优选的,本发明实施例还提供一种网络侧设备,包括处理器1301,存储器1303,存储在存储器1303上并可在所述处理器1301上运行的计算机程序,该计算机程序被处理器1301执行时实现上述信息配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
此外,本发明实施例还提供一种定位方法,该方法旨在结合空间关系信号和定位参考信号,对终端进行联合定位。以下针对该定位方法进行详细说明。
请参见图14,图14是本发明实施例提供的一种定位方法的流程图,该方法应用于通信设备,所述通信设备为网络侧设备或终端,如图14所示,包括以下步骤:
步骤1401:根据目标测量信息,确定终端的位置信息,所述目标测量信息为空间关系信号和定位参考信号的测量信息。
可选的,所述通信设备为所述终端;
在所述确定终端的位置信息之后,所述方法还包括:
向网络侧设备发送所述位置信息和第一指示信息,所述第一指示信息用于指示所述位置信息由所述目标测量信息确定。
可选的,所述通信设备为网络侧设备;
所述空间关系信号为所述终端执行下行定位时配置的下行空间关系信号,所述目标测量信息为所述终端上报的测量信息。
可选的,所述下行定位包括AOD定位、OTDOA(Observed Time Difference of Arrival,观察到达时间差)定位、TOA(Time of Arrival,到达时刻)、TDOA(Observed Time Difference of Arrival,到达时间差)和ECID定位中的至少一项。
可选的,所述目标测量信息包括以下至少一项:
所述空间关系信号的第一测量结果;
所述定位参考信号的第二测量结果:
所述空间关系信号和所述定位参考信号的联合测量结果。
可选的,若所述空间关系信号和所述定位参考信号配置有时域间隔,则所述联合测量结果为所述终端利用所述空间关系信号的测量结果,对所述定位参考信号的测量结果进行平滑处理,并过滤所述定位参考信号的测量结果的奇异值而得到的测量结果。
可选的,所述目标测量信息还包括第二指示信息,所述第二指示信息用于指示所述空间关系信号的测量结果和所述定位参考信号的测量结果的差值小于预设阈值,或者,所述第二指示信息用于指示所述定位参考信号的测量结果使用所述空间关系信号的测量结果进行优化。
可选的,若所述空间关系信号和所述定位参考信号配置在不同带宽,且测量量为时间或子载波相位,则所述目标测量信息包括所述联合测量结果和所述第二测量结果。
可选的,所述测量量为时间时,所述测量量包括RSTD(Reference Signal Time Difference,参考信号时间差)和/或TOA。
可选的,所述方法还包括:
若在特定小区下,所述定位参考信号的测量结果与所述空间关系信号的测量结果小于阈值的定位用户数量超过预设比率,则对所述定位参考信号的配置进行更新。
可选的,所述对所述定位参考信号的配置进行更新,包括:
取消特定方向的波束;或者,
增大波束发射的周期;或者,
设置更多的静默波束。
可选的,所述通信设备为网络侧设备;
所述空间关系信号为所述终端执行上行定位时配置的下行空间关系信号;
所述目标测量信息包括所述终端上报的空间关系信号的第一测量信息,以及TRP或基站上报的定位参考信号的第二测量信息。
可选的,所述上行定位为UTDOA或UL-TOA定位。
可选的,所述第一测量信息包括所述空间关系信号的RSRP和所述空间关系信号的到达时间信息;
所述第一测量信息由所述终端通过LPP信令或LPP演进信令上报,所述第一测量信息包括在UTDOA或上行时间定位的测量结果中。
可选的,所述第二测量信息包括所述定位参考信号的到达时间信息和所述空间关系信号的发送时间信息;和/或,
所述第二测量信息由所述TRP或基站通过LPPA信令或NRPPA信令上报,所述第二测量信息包括在UTDOA或上行时间定位的测量结果中。
可选的,所述根据所述目标测量信息,确定终端的位置信息,包括:
根据所述第一测量信息和所述第二测量信息,计算所述终端的往返时延RTT;
根据所述RTT(Round Trip Time,往返时延)确定所述终端的位置信息。
可选的,所述方法还包括:
根据所述终端的能力,通知所述终端上报所述第一测量信息。
可选的,所述空间关系信号包括SSB、CSI-RS、DL-PRS和TRS中的至少一项。
可选的,所述空间关系信号为QCL信号。
本发明实施例中,结合空间关系信号和定位参考信号的测量信息,对终端进行定位,能够提高终端定位的精准度。
请参见图15,图15是本发明实施例提供的一种通信设备的结构图,如图15所示,通信设备1500为网络侧设备或终端,包括:
确定模块1501,用于根据目标测量信息,确定终端的位置信息,所述目标测量信息为空间关系信号和定位参考信号的测量信息。
可选的,所述通信设备1500为所述终端;
在所述确定终端的位置信息之后,所述终端还包括:
向网络侧设备发送所述位置信息和第一指示信息,所述第一指示信息用于指示所述位置信息由所述目标测量信息确定。
可选的,所述通信设备1500为网络侧设备;
所述空间关系信号为所述终端执行下行定位时配置的下行空间关系信号,所述目标测量信息为所述终端上报的测量信息。
可选的,所述下行定位包括AOD定位、观察到达时间差OTDOA定位、到达时刻TOA、到达时间差TDOA和ECID定位中的至少一项。
可选的,所述目标测量信息包括以下至少一项:
所述空间关系信号的第一测量结果;
所述定位参考信号的第二测量结果:
所述空间关系信号和所述定位参考信号的联合测量结果。
可选的,若所述空间关系信号和所述定位参考信号配置有时域间隔,则所述联合测量结果为所述终端利用所述空间关系信号的测量结果,对所述定位参考信号的测量结果进行平滑处理,并过滤所述定位参考信号的测量结果的奇异值而得到的测量结果。
可选的,所述目标测量信息还包括第二指示信息,所述第二指示信息用于指示所述空间关系信号的测量结果和所述定位参考信号的测量结果的差值小于预设阈值,或者,所述第二指示信息用于指示所述定位参考信号的测量结果使用所述空间关系信号的测量结果进行优化。
可选的,若所述空间关系信号和所述定位参考信号配置在不同带宽,且测量量为时间或子载波相位,则所述目标测量信息包括所述联合测量结果和所述第二测量结果。
可选的,所述测量量为时间时,所述测量量包括参考信号时间差RSTD和/或TOA。
可选的,所述通信设备1500还包括:
若在特定小区下,所述定位参考信号的测量结果与所述空间关系信号的测量结果小于阈值的定位用户数量超过预设比率,则对所述定位参考信号的配置进行更新。
可选的,所述对所述定位参考信号的配置进行更新,包括:
取消特定方向的波束;或者,
增大波束发射的周期;或者,
设置更多的静默波束。
可选的,所述通信设备1500为网络侧设备;
所述空间关系信号为所述终端执行上行定位时配置的下行空间关系信号;
所述目标测量信息包括所述终端上报的空间关系信号的第一测量信息,以及TRP或基站上报的定位参考信号的第二测量信息。
可选的,所述上行定位为UTDOA或UL-TOA定位。
可选的,所述第一测量信息包括所述空间关系信号的RSRP和所述空间关系信号的到达时间信息;
所述第一测量信息由所述终端通过LPP信令或LPP演进信令上报,所述第一测量信息包括在UTDOA或上行时间定位的测量结果中。
可选的,所述第二测量信息包括所述定位参考信号的到达时间信息和所述空间关系信号的发送时间信息;和/或,
所述第二测量信息由所述TRP或基站通过LPPA信令或NRPPA信令上报,所述第二测量信息包括在UTDOA或上行时间定位的测量结果中。
可选的,所述根据所述目标测量信息,确定终端的位置信息,包括:
根据所述第一测量信息和所述第二测量信息,计算所述终端的往返时延RTT;
根据所述RTT确定所述终端的位置信息。
可选的,所述通信设备1500还包括:
根据所述终端的能力,通知所述终端上报所述第一测量信息。
可选的,所述空间关系信号包括SSB、CSI-RS、DL-PRS和TRS中的至少一项。
可选的,所述空间关系信号为QCL信号。
本发明实施例提供的通信设备能够实现定位方法实施例中终端或网络侧设备实现的各个过程,为避免重复,这里不再赘述。
在通信设备为终端的情况下,参见图16,图16为实现本发明实施例提供的另一种终端的硬件结构示意图,该终端1600包括但不限于:射频单元1601、网络模块1602、音频输出单元1603、输入单元1604、传感器1605、显示单元1606、用户输入单元1607、接口单元1608、存储器1609、处理器1610、以及电源1611等部件。本领域技术人员可以理解,图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元1601或处理器1610用于:
根据目标测量信息,确定终端的位置信息,所述目标测量信息为空间关系信号和定位参考信号的测量信息。
可选的,在所述确定终端的位置信息之后,射频单元1601或处理器1610还用于:
向网络侧设备发送所述位置信息和第一指示信息,所述第一指示信息用于指示所述位置信息由所述目标测量信息确定。
可选的,所述空间关系信号包括SSB、CSI-RS、DL-PRS和TRS中的至少一项。
可选的,所述空间关系信号为QCL信号。
应理解,本实施例中,上述处理器1610和射频单元1601能够实现定位方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
应理解的是,本发明实施例中,射频单元1601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1610处理;另外,将上行的数据发送给基站。通常,射频单元1601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1601还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1602为用户提供了无线的宽带互联网访问,如帮助用 户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1603可以将射频单元1601或网络模块1602接收的或者在存储器1609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1603还可以提供与终端1600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1603包括扬声器、蜂鸣器以及受话器等。
输入单元1604用于接收音频或视频信号。输入单元1604可以包括图形处理器(Graphics Processing Unit,GPU)16041和麦克风16042,图形处理器16041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1606上。经图形处理器16041处理后的图像帧可以存储在存储器1609(或其它存储介质)中或者经由射频单元1601或网络模块1602进行发送。麦克风16042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1601发送到移动通信基站的格式输出。
终端1600还包括至少一种传感器1605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板16061的亮度,接近传感器可在终端1600移动到耳边时,关闭显示面板16061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1606用于显示由用户输入的信息或提供给用户的信息。显示单元1606可包括显示面板16061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板16061。
用户输入单元1607可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1607包括触控面板16071以及其他输入设备16072。触控面板16071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板16071上或在触控面板16071附近的操作)。触控面板16071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1610,接收处理器1610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板16071。除了触控面板16071,用户输入单元1607还可以包括其他输入设备16072。具体地,其他输入设备16072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板16071可覆盖在显示面板16061上,当触控面板16071检测到在其上或附近的触摸操作后,传送给处理器1610以确定触摸事件的类型,随后处理器1610根据触摸事件的类型在显示面板16061上提供相应的视觉输出。虽然在图16中,触控面板16071与显示面板16061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板16071与显示面板16061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1608为外部装置与终端1600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1600内的一个或多个元件或者可以用于在终端1600和外部装置之间传输数据。
存储器1609可用于存储软件程序以及各种数据。存储器1609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个 功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1609内的软件程序和/或模块,以及调用存储在存储器1609内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1610可包括一个或多个处理单元;优选的,处理器1610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
终端1600还可以包括给各个部件供电的电源1611(比如电池),优选的,电源1611可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1600包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器1610,存储器1609,存储在存储器1609上并可在所述处理器1610上运行的计算机程序,该计算机程序被处理器1610执行时实现上述定位方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在通信设备为网络侧设备的情况下,参见图17,图17是本发明实施例提供的另一种网络侧设备的结构图,如图17所示,该网络侧设备1700包括:处理器1701、收发机1702、存储器1703和总线接口,其中:
收发机1702或处理器1701用于:
根据目标测量信息,确定终端的位置信息,所述目标测量信息为空间关系信号和定位参考信号的测量信息。
可选的,所述空间关系信号为所述终端执行下行定位时配置的下行空间关系信号,所述目标测量信息为所述终端上报的测量信息。
可选的,所述下行定位包括AOD定位、观察到达时间差OTDOA定位、到达时刻TOA、到达时间差TDOA和ECID定位中的至少一项。
可选的,所述目标测量信息包括以下至少一项:
所述空间关系信号的第一测量结果;
所述定位参考信号的第二测量结果:
所述空间关系信号和所述定位参考信号的联合测量结果。
可选的,若所述空间关系信号和所述定位参考信号配置有时域间隔,则所述联合测量结果为所述终端利用所述空间关系信号的测量结果,对所述定位参考信号的测量结果进行平滑处理,并过滤所述定位参考信号的测量结果的奇异值而得到的测量结果。
可选的,所述目标测量信息还包括第二指示信息,所述第二指示信息用于指示所述空间关系信号的测量结果和所述定位参考信号的测量结果的差值小于预设阈值,或者,所述第二指示信息用于指示所述定位参考信号的测量结果使用所述空间关系信号的测量结果进行优化。
可选的,若所述空间关系信号和所述定位参考信号配置在不同带宽,且测量量为时间或子载波相位,则所述目标测量信息包括所述联合测量结果和所述第二测量结果。
可选的,所述测量量为时间时,所述测量量包括参考信号时间差RSTD和/或TOA。
可选的,所述方法还包括:
若在特定小区下,所述定位参考信号的测量结果与所述空间关系信号的测量结果小于阈值的定位用户数量超过预设比率,则对所述定位参考信号的配置进行更新。
可选的,所述对所述定位参考信号的配置进行更新,包括:
取消特定方向的波束;或者,
增大波束发射的周期;或者,
设置更多的静默波束。
可选的,所述空间关系信号为所述终端执行上行定位时配置的下行空间关系信号;
所述目标测量信息包括所述终端上报的空间关系信号的第一测量信息,以及TRP或基站上报的定位参考信号的第二测量信息。
可选的,所述上行定位为UTDOA或UL-TOA定位。
可选的,所述第一测量信息包括所述空间关系信号的RSRP和所述空间关系信号的到达时间信息;
所述第一测量信息由所述终端通过LPP信令或LPP演进信令上报,所述第一测量信息包括在UTDOA或上行时间定位的测量结果中。
可选的,所述第二测量信息包括所述定位参考信号的到达时间信息和所述空间关系信号的发送时间信息;和/或,
所述第二测量信息由所述TRP或基站通过LPPA信令或NRPPA信令上报,所述第二测量信息包括在UTDOA或上行时间定位的测量结果中。
可选的,所述根据所述目标测量信息,确定终端的位置信息,包括:
根据所述第一测量信息和所述第二测量信息,计算所述终端的往返时延RTT;
根据所述RTT确定所述终端的位置信息。
可选的,所述方法还包括:
根据所述终端的能力,通知所述终端上报所述第一测量信息。
可选的,所述空间关系信号包括SSB、CSI-RS、DL-PRS和TRS中的至少一项。
可选的,所述空间关系信号为QCL信号。
应理解,本实施例中,上述处理器1701和收发机1702能够实现定位方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1701代表的一个或多个处理器和存储器1703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1701负责管理总线架构和通常的处理,存储器1703可以存储处 理器1701在执行操作时所使用的数据。
优选的,本发明实施例还提供一种网络侧设备,包括处理器1701,存储器1703,存储在存储器1703上并可在所述处理器1701上运行的计算机程序,该计算机程序被处理器1701执行时实现上述定位方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本发明实施例提供的终端侧的SRS发射设置的实施例的各个过程,或者该计算机程序被处理器执行时实现本发明实施例提供的网络侧设备侧的信息配置的实施例的各个过程,或者该计算机程序被处理器执行时实现本发明实施例提供的网络侧设备或终端的定位方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本发明各个实施例所述的方法。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子 模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (54)

  1. 一种探测参考信号SRS发射设置方法,应用于终端,包括:
    接收服务小区和邻近小区的小区信息,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项;
    根据所述小区信息和/或第一测量结果,对信道探测用参考信号SRS的发射参数进行设置;
    其中,所述第一测量结果为所述终端基于所述小区信息,对服务小区和邻近小区进行测量而得到的结果。
  2. 根据权利要求1所述的方法,还包括:
    将目标小区的相关信息上报给所述网络侧设备;
    其中,所述目标小区为发送所述SRS所使用的小区;
    所述相关信息包括空间关系信息,以及空间关系信号的测量结果中的至少一项。
  3. 根据权利要求1所述的方法,其中,所述根据所述小区信息和/或第一测量结果,对SRS的发射参数进行设置,包括:
    根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将服务小区和邻近小区的空间关系信号的相关方向设置为所述SRS的发射方向;或者,
    根据所述小区信息中的空间关系信息,以及所述网络侧设备提供的SRS资源配置信息,将与所述空间关系信号的相关方向相同的空间滤波方向设置为所述SRS的发射方向。
  4. 根据权利要求3所述的方法,其中,所述将服务小区和邻近小区的空间关系信号的相关方向设置为所述SRS的发射方向,包括:
    将所述终端接收到的空间关系信号的所有相关方向作为所述SRS的发射方向;或者,
    从所述终端接收到的空间关系信号的相关方向中,选择特定波束方向作为所述SRS的发射方向。
  5. 根据权利要求4所述的方法,其中,所述从所述终端接收到的空间关 系信号的相关方向中,选择特定波束方向作为所述SRS的发射方向,包括:
    根据所述第一测量结果,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
    根据所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向;或者,
    根据所述第一测量结果,以及所述终端的能力,从所述终端接收到的空间关系信号的相关方向中,选择特定方向作为所述SRS的发射方向。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述空间关系信号的相关方向包括:
    所述空间关系信号接收功率最强的接收波束方向;或者,
    测得所述空间关系信号首径的方向;或者,
    所述空间关系信号的配置方向。
  7. 根据权利要求1所述的方法,其中,所述根据所述小区信息和/或第一测量结果,对SRS的发射参数进行设置,包括:
    根据所述小区信息中的功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置;或者,
    根据所述小区信息中的空间关系信息、功率配置信息和特定信号的配置信息,以及所述第一测量结果,对所述SRS的发射功率进行设置。
  8. 根据权利要求1所述的方法,其中,所述小区信息中的空间关系信息包括以下至少一项:
    小区标识;
    小区同步信号块标识SSB ID;
    小区信道状态信息参考信号标识CSI-RS ID;
    下行定位参考信号资源集标识DL-PRS resource set ID;
    下行定位参考信号资源标识DL-PRS resource ID;
    同步信号块SSB对应波束的空间方向信息;
    信道状态信息参考信号CSI-RS对应波束的空间方向信息;
    下行定位参考信号DL-PRS对应波束的空间方向信息;
    SSB对应的空间滤波信息;
    CSI-RS对应的空间滤波信息;
    DL-PRS对应的空间滤波信息。
  9. 根据权利要求1所述的方法,其中,所述小区信息中的空间关系信息包括准共址QCL信息。
  10. 根据权利要求1所述的方法,其中,所述小区信息中的功率配置信息包括路损参考信号指示信息和发射功率配置信息;
    所述路损参考信号指示信息包括以下至少一项:
    小区SSB ID;
    小区CSI-RS ID;
    DL-PRS resource set ID;
    DL-PRS resource ID;
    所述发射功率配置信息包括以下至少一项:
    服务小区的SSB发射功率;
    邻近小区SSB发射功率相对于服务小区SSB发射功率的偏移;
    服务小区的CSI-RS发射功率;
    邻近小区CSI-RS发射功率相对于服务小区SSB发射功率的偏移;
    服务小区的DL-PRS发射功率;
    邻近小区DL-PRS发射功率相对于服务小区SSB发射功率的偏移。
  11. 根据权利要求1所述的方法,其中,所述特定信号包括以下至少一项:
    DL-PRS;
    特定小区的SSB;
    特定小区的CSI-RS;
    路损参考信号;
    空间关系信号。
  12. 根据权利要求11所述的方法,其中,所述特定信号的配置信息包括时频资源配置信息、带宽、资源块网格的公共参考点point A、测量时间、子载波间隔和信号指示信息中的至少一种;
    其中,所述信号指示信息为信号的小区ID和波束ID。
  13. 一种信息配置方法,包括:
    网络侧设备为终端配置服务小区和邻近小区的小区信息,所述小区信息用于确定信道探测用参考信号SRS的发射参数;
    其中,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项。
  14. 根据权利要求13所述的方法,其中,所述网络侧设备为终端配置服务小区和邻近小区的小区信息,包括:
    服务小区通过RRC消息为所述终端配置邻近小区的小区信息。
  15. 根据权利要求14所述的方法,其中,所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的小区标识或发送接收点TRP标识配置;或者,
    所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的非服务小区标识配置;或者,
    所述邻近小区的空间关系信息通过所述SRS的空间关系配置信息中的DL-PRS信息配置。
  16. 根据权利要求14所述的方法,其中,所述邻近小区的功率配置信息包括所述SRS的路损参考信号配置;或者,
    所述邻近小区的路损参考信号配置于所述SRS的每个资源单元或每个资源单元集中;或者,
    所述邻近小区的功率配置信息配置于每个测量目标中的非服务小区组或邻近小区组中;或者,
    所述邻近小区的功率配置信息包括配置每个测量目标中的参考信号信息和/或参考信号的发射功率信息。
  17. 根据权利要求13所述的方法,其中,所述网络侧设备为终端配置服务小区和邻近小区的小区信息,包括:
    服务器通过LTE定位协议LPP信令或LPP演进信令信令或数据信道,为所述终端配置服务小区和邻近小区的小区信息。
  18. 根据权利要求17所述的方法,其中,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端配置服务小区和邻近小区的小区信息,包括:
    服务器根据所述终端的位置信息,以及存储在所述服务器的TRP信息和/或小区信息,通过LPP信令或LPP演进信令或数据信道为所述终端配置服务小区和邻近小区的小区信息。
  19. 根据权利要求18所述的方法,其中,所述服务小区和邻近小区的小区信息通过上行到达时间差定位法UTDOA定位辅助数据IE配置;或者,
    所述服务小区和邻近小区的小区信息通过上行到达时间定位法定位辅助数据IE配置。
  20. 根据权利要求13所述的方法,其中,在所述网络侧设备为终端配置服务小区和邻近小区的小区信息之前,所述方法还包括:
    服务小区通过X2或Xn接口,获取所述邻近小区的小区信息;或者,
    服务小区通过LPPA信令、NRPPA信令或数据信道,从服务器获取所述邻近小区的小区信息;或者,
    服务器通过LPPA信令、NRPPA信令或数据信道,获取所述服务小区和邻近小区的小区信息。
  21. 根据权利要求13所述的方法,其中,在所述网络侧设备为终端配置服务小区和邻近小区的小区信息之后,所述方法还包括:
    在服务小区接收到所述终端上报的邻近小区测量信息的情况下,所述服务小区通过RRC消息,为所述终端更新所述邻近小区的小区信息;或者,
    在服务器接收到所述终端上报的邻近小区测量信息和/或服务小区测量信息的情况下,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端更新所述服务小区和邻近小区的小区信息。
  22. 根据权利要求21所述的方法,其中,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端更新所述服务小区和邻近小区的小区信息,包括:
    服务器根据所述终端的上报信息,以及存储在所述服务器的相关信息,通过LPP信令或LPP演进信令或数据信道为所述终端更新所述服务小区和邻近小区的小区信息。
  23. 根据权利要求21所述的方法,其中,所述服务小区通过RRC消息,为所述终端更新所述邻近小区的小区信息,包括:
    服务小区根据存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
    服务小区根据所述邻近小区测量信息,通过RRC消息为所述终端更新所述邻近小区的小区信息;或者,
    服务小区根据所述邻近小区测量信息,以及存储在所述服务小区的相关信息,通过RRC消息为所述终端更新所述邻近小区的小区信息。
  24. 根据权利要求21所述的方法,其中,所述服务小区通过RRC消息为所述终端更新所述邻近小区的小区信息,包括:
    服务小区将所述终端上报的小区索引对应的小区信息和/或波束索引对应的小区信息作为向邻近小区发射所述SRS的小区信息;
    其中,所述波束索引对应的小区信息包括首径信号波束ID或信号质量最好的信号波束ID。
  25. 根据权利要求21所述的方法,其中,所述服务器通过LPP信令或LPP演进信令或数据信道,为所述终端更新所述服务小区和邻近小区的小区信息,包括:
    服务器将所述终端上报的小区索引对应的小区信息和/或信号波束索引对应的小区信息作为向服务小区和邻近小区发射所述SRS的小区信息;
    其中,所述信号波束索引包括首径信号波束ID或信号质量最好的信号波束ID。
  26. 根据权利要求21所述的方法,其中,所述邻近小区测量信息包括邻近小区的参考信号索引和参考信号测量结果。
  27. 根据权利要求26所述的方法,其中,所述参考信号索引包括SSB索引、CSI-RS索引、DL-PRS索引、信号波束索引和测量首径对应的信号波束索引中的至少一种。
  28. 根据权利要求26所述的方法,其中,所述参考信号测量结果包括测量信号的参考信号接收功率RSRP、参考信号接收质量RSRQ和信号与干扰加噪声比SINR。
  29. 根据权利要求21所述的方法,其中,在为所述终端更新所述小区信息之后,所述方法还包括以下至少一项:
    服务小区通过X2或Xn接口向邻近小区通知更新后的小区信息;
    服务器通过LPPA信令或NRPPA演进信令或数据信道,向服务小区和/或邻近小区通知更新后的小区信息。
  30. 一种信息配置方法,包括:
    服务器通过通过LPPA信令、NRPPA信令或数据信道,向服务小区发送邻近小区的小区信息。
  31. 一种终端,包括:
    接收模块,用于接收服务小区和邻近小区的小区信息,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项;
    设置模块,用于根据所述小区信息和/或第一测量结果,对信道探测用参考信号SRS的发射参数进行设置;
    其中,所述第一测量结果为所述终端基于所述小区信息,对服务小区和邻近小区进行测量而得到的结果。
  32. 一种网络侧设备,包括:
    配置模块,用于为终端配置服务小区和邻近小区的小区信息,所述小区信息用于确定信道探测用参考信号SRS的发射参数;
    其中,所述小区信息包括空间关系信息、功率配置信息和特定信号的配置信息中的至少一项。
  33. 一种定位方法,应用于通信设备,所述通信设备为网络侧设备或终端,包括:
    根据目标测量信息,确定终端的位置信息,所述目标测量信息为空间关系信号和定位参考信号的测量信息。
  34. 根据权利要求33所述的方法,其中,所述通信设备为所述终端;
    在所述确定终端的位置信息之后,所述方法还包括:
    向网络侧设备发送所述位置信息和第一指示信息,所述第一指示信息用于指示所述位置信息由所述目标测量信息确定。
  35. 根据权利要求33所述的方法,其中,所述通信设备为网络侧设备;
    所述空间关系信号为所述终端执行下行定位时配置的下行空间关系信号,所述目标测量信息为所述终端上报的测量信息。
  36. 根据权利要求35所述的方法,其中,所述下行定位包括AOD定位、观察到达时间差OTDOA定位、到达时刻TOA、到达时间差TDOA和ECID定位中的至少一项。
  37. 根据权利要求35所述的方法,其中,所述目标测量信息包括以下至少一项:
    所述空间关系信号的第一测量结果;
    所述定位参考信号的第二测量结果:
    所述空间关系信号和所述定位参考信号的联合测量结果。
  38. 根据权利要求37所述的方法,其中,若所述空间关系信号和所述定位参考信号配置有时域间隔,则所述联合测量结果为所述终端利用所述空间关系信号的测量结果,对所述定位参考信号的测量结果进行平滑处理,并过滤所述定位参考信号的测量结果的奇异值而得到的测量结果。
  39. 根据权利要求38所述的方法,其中,所述目标测量信息还包括第二指示信息,所述第二指示信息用于指示所述空间关系信号的测量结果和所述定位参考信号的测量结果的差值小于预设阈值,或者,所述第二指示信息用于指示所述定位参考信号的测量结果使用所述空间关系信号的测量结果进行优化。
  40. 根据权利要求37所述的方法,其中,若所述空间关系信号和所述定位参考信号配置在不同带宽,且测量量为时间或子载波相位,则所述目标测量信息包括所述联合测量结果和所述第二测量结果。
  41. 根据权利要求40所述的方法,其中,所述测量量为时间时,所述测量量包括参考信号时间差RSTD和/或TOA。
  42. 根据权利要求35所述的方法,还包括:
    若在特定小区下,所述定位参考信号的测量结果与所述空间关系信号的测量结果小于阈值的定位用户数量超过预设比率,则对所述定位参考信号的配置进行更新。
  43. 根据权利要求42所述的方法,其中,所述对所述定位参考信号的配置进行更新,包括:
    取消特定方向的波束;或者,
    增大波束发射的周期;或者,
    设置更多的静默波束。
  44. 根据权利要求33所述的方法,其中,所述通信设备为网络侧设备;
    所述空间关系信号为所述终端执行上行定位时配置的下行空间关系信号;
    所述目标测量信息包括所述终端上报的空间关系信号的第一测量信息,以及TRP或基站上报的定位参考信号的第二测量信息。
  45. 根据权利要求44所述的方法,其中,所述上行定位为UTDOA或UL-TOA定位。
  46. 根据权利要求44所述的方法,其中,所述第一测量信息包括所述空间关系信号的RSRP和所述空间关系信号的到达时间信息;
    所述第一测量信息由所述终端通过LPP信令或LPP演进信令上报,所述第一测量信息包括在UTDOA或上行时间定位的测量结果中。
  47. 根据权利要求44所述的方法,其中,所述第二测量信息包括所述定位参考信号的到达时间信息和所述空间关系信号的发送时间信息;和/或,
    所述第二测量信息由所述TRP或基站通过LPPA信令或NRPPA信令上报,所述第二测量信息包括在UTDOA或上行时间定位的测量结果中。
  48. 根据权利要求44所述的方法,其中,所述根据所述目标测量信息,确定终端的位置信息,包括:
    根据所述第一测量信息和所述第二测量信息,计算所述终端的往返时延RTT;
    根据所述RTT确定所述终端的位置信息。
  49. 根据权利要求44所述的方法,还包括:
    根据所述终端的能力,通知所述终端上报所述第一测量信息。
  50. 根据权利要求33所述的方法,其中,所述空间关系信号包括SSB、CSI-RS、DL-PRS和TRS中的至少一项。
  51. 根据权利要求33所述的方法,其中,所述空间关系信号为QCL信号。
  52. 一种通信设备,所述通信设备为网络侧设备或终端,包括:
    确定模块,用于根据目标测量信息,确定终端的位置信息,所述目标测量信息为空间关系信号和定位参考信号的测量信息。
  53. 一种通信设备,所述通信设备为网络侧设备或终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至12中任一项所述的SRS发射设置方法中的步骤,或者,所述程序被所述处理器执行时实现如权利要求13至30中任一项所述的信息配置方法中的步骤,或者,所述程序被所述处理器执行时实现如权利要求33至51中任一项所述的定位方法中的步骤。
  54. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的SRS发射设置方法中的步骤,或者,所述计算机程序被处理器执行时实现如权利要求13至30中任一项所述的信息配置方法中的步骤,或者,所述计算机程序被处理器执行时实现如权利要求33至51中任一项所述的定位方法中的步骤。
PCT/CN2020/127041 2019-11-07 2020-11-06 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备 WO2021088970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911083841.2A CN112787780B (zh) 2019-11-07 2019-11-07 Srs发射设置方法、信息配置方法、定位方法和相关设备
CN201911083841.2 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021088970A1 true WO2021088970A1 (zh) 2021-05-14

Family

ID=75748093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127041 WO2021088970A1 (zh) 2019-11-07 2020-11-06 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备

Country Status (2)

Country Link
CN (1) CN112787780B (zh)
WO (1) WO2021088970A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266562A1 (en) * 2021-06-16 2022-12-22 Qualcomm Incorporated Adaption of reference signal for positioning based on user equipment (ue) mobility
WO2023051529A1 (zh) * 2021-09-29 2023-04-06 维沃移动通信有限公司 参考信号处理方法、装置、终端及介质
WO2023082981A1 (zh) * 2021-11-11 2023-05-19 华为技术有限公司 上报信息的方法和通信装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114666875A (zh) * 2020-12-23 2022-06-24 维沃移动通信有限公司 上行定位处理方法及相关设备
CN118102207A (zh) * 2022-11-25 2024-05-28 华为技术有限公司 一种通信方法、装置、存储介质及计算机程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104521273A (zh) * 2012-08-07 2015-04-15 瑞典爱立信有限公司 多载波系统中用于控制中断和测量性能的方法和装置
CN104956745A (zh) * 2013-12-31 2015-09-30 华为技术有限公司 基于小基站的定位用户终端的方法和小基站控制器
CN105191472A (zh) * 2013-01-17 2015-12-23 瑞典爱立信有限公司 使用不同子帧配置的无线电通信的方法以及相关无线电和/或网络节点
KR20160080038A (ko) * 2014-12-29 2016-07-07 한국전자통신연구원 사운딩 참조 신호의 전송 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103503523B (zh) * 2011-07-13 2018-01-23 太阳专利信托公司 终端装置和发送方法
JP5927802B2 (ja) * 2011-08-02 2016-06-01 シャープ株式会社 基地局、端末および通信方法
US8977313B2 (en) * 2012-05-18 2015-03-10 Futurewei Technologies, Inc. Method for optimizing uplink power-control parameters in LTE
CN104247287A (zh) * 2012-12-31 2014-12-24 华为技术有限公司 一种确定CoMP用户的方法和设备
CN105493585B (zh) * 2013-12-25 2020-01-31 华为技术有限公司 上行参考信号配置的方法、基站、定位服务器及系统
US10285153B2 (en) * 2014-11-12 2019-05-07 Industry-University Cooperation Foundation Hanyang University Method and apparatus for transmitting positioning reference signal
CN107306421B (zh) * 2016-04-25 2020-03-24 电信科学技术研究院 一种定位方法及装置
CN107370590A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 Srs的发送处理方法及装置和发送方法、装置及系统
CN106572478B (zh) * 2016-11-14 2020-09-08 上海华为技术有限公司 一种构造无线栅格的方法及基站
US11997563B2 (en) * 2016-11-23 2024-05-28 Qualcomm Incorporated Enhancements to observed time difference of arrival positioning of a mobile device
CN109714787A (zh) * 2017-10-25 2019-05-03 普天信息技术有限公司 干扰信号协调方法及装置
JP6516392B2 (ja) * 2018-01-04 2019-05-22 インテル・コーポレーション ユーザ機器(ue)、プログラム、方法、およびコンピュータ可読記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104521273A (zh) * 2012-08-07 2015-04-15 瑞典爱立信有限公司 多载波系统中用于控制中断和测量性能的方法和装置
CN105191472A (zh) * 2013-01-17 2015-12-23 瑞典爱立信有限公司 使用不同子帧配置的无线电通信的方法以及相关无线电和/或网络节点
CN104956745A (zh) * 2013-12-31 2015-09-30 华为技术有限公司 基于小基站的定位用户终端的方法和小基站控制器
KR20160080038A (ko) * 2014-12-29 2016-07-07 한국전자통신연구원 사운딩 참조 신호의 전송 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266562A1 (en) * 2021-06-16 2022-12-22 Qualcomm Incorporated Adaption of reference signal for positioning based on user equipment (ue) mobility
WO2023051529A1 (zh) * 2021-09-29 2023-04-06 维沃移动通信有限公司 参考信号处理方法、装置、终端及介质
WO2023082981A1 (zh) * 2021-11-11 2023-05-19 华为技术有限公司 上报信息的方法和通信装置

Also Published As

Publication number Publication date
CN112787780A (zh) 2021-05-11
CN112787780B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN111342943B (zh) Prs资源配置方法、测量间隔配置方法和相关设备
WO2021088970A1 (zh) 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备
WO2021179965A1 (zh) 信息上报方法、接入方式确定方法、终端和网络设备
CN111182579B (zh) 定位测量信息上报方法、终端和网络设备
CN111278042B (zh) 一种信息上报方法及终端
WO2020164594A1 (zh) 测量处理方法、参数配置方法、终端和网络设备
WO2021023061A1 (zh) 准共址qcl信息确定方法、配置方法及相关设备
WO2020001380A1 (zh) 定位参考信号传输方法、终端及网络设备
WO2021109955A1 (zh) 邻小区csi报告发送方法、接收方法及相关设备
CN113517965B (zh) 信道状态信息报告的获取方法及终端
JP7461483B2 (ja) 測位方法及び通信機器
WO2020253744A1 (zh) 信息上报、获取方法、终端及网络侧设备
WO2019242678A1 (zh) 测量方法及终端
WO2021098560A1 (zh) Srs上报处理方法及相关设备
WO2021088816A1 (zh) 信干噪比测量方法、装置、设备及介质
WO2020239087A1 (zh) 信息的上报方法、信息的获取方法、终端及网络侧设备
CN113259075B (zh) 一种参考信号的确定方法和通信设备
US20230019838A1 (en) Measurement method, terminal device, and network side device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885119

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20885119

Country of ref document: EP

Kind code of ref document: A1