WO2021179965A1 - 信息上报方法、接入方式确定方法、终端和网络设备 - Google Patents

信息上报方法、接入方式确定方法、终端和网络设备 Download PDF

Info

Publication number
WO2021179965A1
WO2021179965A1 PCT/CN2021/078848 CN2021078848W WO2021179965A1 WO 2021179965 A1 WO2021179965 A1 WO 2021179965A1 CN 2021078848 W CN2021078848 W CN 2021078848W WO 2021179965 A1 WO2021179965 A1 WO 2021179965A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
network device
measurement results
signal quality
measurement result
Prior art date
Application number
PCT/CN2021/078848
Other languages
English (en)
French (fr)
Inventor
杨坤
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21767246.8A priority Critical patent/EP4120724A4/en
Priority to JP2022554390A priority patent/JP7535121B2/ja
Priority to KR1020227034395A priority patent/KR20220150355A/ko
Publication of WO2021179965A1 publication Critical patent/WO2021179965A1/zh
Priority to US17/893,392 priority patent/US20220408277A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the present invention relates to the field of communication technology, in particular to an information reporting method, a method for determining an access mode, a terminal and a network device.
  • some nodes are deployed to transmit signals from network equipment.
  • the network equipment can transmit beams by pointing to these nodes, and these nodes will forward the beams to the terminal, so as to realize the communication between the network equipment and the terminal, and achieve the purpose of coverage expansion and hole compensation.
  • the implementation of these nodes is for example: Large Intelligent Surfaces (LIS) nodes, or layer-to-layer relay with beam forwarding function, or amplifying and forwarding relay, or transparent forwarding relay, etc.
  • LIS Large Intelligent Surfaces
  • the terminal may support multiple access methods for accessing the network equipment, but currently the network equipment cannot confirm the access method for the terminal to access the network equipment.
  • the embodiment of the present invention provides an information reporting method, an access mode determination method, a terminal, and a network device to solve the problem that the network device cannot confirm the access mode of the terminal to the network device.
  • the embodiments of the present invention provide an information reporting method, which is applied to a terminal, and includes:
  • N beams in the M beams are beams generated by the network device based on the same transmission spatial filter, M and N are integers greater than 1, and N is less than or Equal to M;
  • the M beams report first information to the network device, where the first information includes at least one of the following:
  • the target measurement result is: a measurement result determined according to measurement results of part or all of the M beams
  • the access state information is: a measurement result of part or all of the M beams Determined, information used to indicate an access mode for the terminal to access the network device
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • an embodiment of the present invention provides a method for determining an access mode, which is applied to a network device, and includes:
  • the first information includes: at least one of a target measurement result and access state information
  • the target measurement result is: the measurement result determined according to the measurement results of part or all of the M beams
  • the access state information is: the measurement result determined according to the measurement results of part or all of the M beams , Used to indicate the information of the access mode for the terminal to access the network device;
  • the N beams in the M beams are beams generated by the network device based on the same transmission spatial filter, M and N Is an integer greater than 1, and N is less than or equal to M;
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • an embodiment of the present invention provides a method for determining an access mode, which is applied to a network device, and includes:
  • N beams in the M beams are beams generated by the network device based on the same receiving spatial filter, M and N are integers greater than 1, and N is less than or Equal to M;
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • an embodiment of the present invention provides a terminal, including:
  • the first measurement module is used to measure part or all of the M beams, where N beams in the M beams are beams generated by the network device based on the same transmission spatial filter, and M and N are greater than 1. An integer of, and N is less than or equal to M;
  • the reporting module is configured to report first information to the network device according to measurement results of part or all of the M beams, where the first information includes at least one of the following:
  • the target measurement result is: a measurement result determined according to measurement results of part or all of the M beams
  • the access state information is: a measurement result of part or all of the M beams Determined, information used to indicate an access mode for the terminal to access the network device
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • an embodiment of the present invention provides a network device, including:
  • An obtaining module configured to obtain first information, where the first information includes: at least one of a target measurement result and access state information;
  • a determining module configured to determine an access mode for the terminal to access the network device according to the first information
  • the target measurement result is: the measurement result determined according to the measurement results of part or all of the M beams
  • the access state information is: the measurement result determined according to the measurement results of part or all of the M beams , Used to indicate the information of the access mode for the terminal to access the network device;
  • the N beams in the M beams are beams generated by the network device based on the same transmission spatial filter, M and N Is an integer greater than 1, and N is less than or equal to M;
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • an embodiment of the present invention provides a network device, including:
  • the measurement module is used to measure part or all of the M beams, where N beams in the M beams are beams generated by the network device based on the same receiving spatial filter, and M and N are integers greater than 1. , And N is less than or equal to M;
  • a determining module configured to determine an access mode for the terminal to access the network device according to measurement results of part or all of the M beams;
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • an embodiment of the present invention provides a terminal, including: a memory, a processor, and a program stored in the memory and capable of running on the processor, and the program is executed by the processor to realize the The steps in the information reporting method provided by the embodiment of the invention.
  • an embodiment of the present invention provides a network device, including: a memory, a processor, and a program stored on the memory and running on the processor, and the program is implemented when the processor is executed.
  • the steps in the access mode determination method provided by the second aspect of the embodiments of the present invention, or the steps in the access mode determination method provided by the third aspect of the embodiments of the present invention are implemented when the program is executed by the processor.
  • an embodiment of the present invention provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium.
  • the information reporting method provided by the embodiment of the present invention is implemented
  • the computer program is executed by a processor to implement the steps in the method for determining the access mode provided by the second aspect of the embodiment of the present invention, or when the computer program is executed by a processor, the third aspect of the embodiment of the present invention is implemented
  • the provided access method determines the steps in the method.
  • measurement is performed on part or all of the M beams, where N beams in the M beams are beams generated by the network equipment based on the same transmit spatial filter; according to the M beams
  • the measurement results of part or all of the beams are reported to the network device with first information, where the first information includes at least one of the following: target measurement results and access state information; wherein, the target measurement results are: according to the The measurement result determined by the measurement results of part or all of the M beams, and the access state information is determined according to the measurement results of part or all of the M beams, and is used to indicate that the terminal accesses the station Information about the access mode of the network device; wherein, the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • the terminal can report the above-mentioned first information to the network device, so that the network device can determine the access mode of the terminal to the network device.
  • Figure 1 is a structural diagram of a network system applicable to an embodiment of the present invention
  • FIG. 2 is a flowchart of an information reporting method provided by an embodiment of the present invention.
  • Figure 3 is a schematic diagram of an application scenario provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a working cycle of an LIS node provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the working cycle of another LIS node provided by an embodiment of the present invention.
  • FIG. 6 is a flowchart of another information reporting method provided by an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for determining an access mode according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present invention.
  • FIG. 9 is a structural diagram of another terminal provided by an embodiment of the present invention.
  • FIG. 10 is a structural diagram of another terminal provided by an embodiment of the present invention.
  • Figure 11 is a structural diagram of a network device provided by an embodiment of the present invention.
  • Figure 12 is a structural diagram of another network device provided by an embodiment of the present invention.
  • Figure 13 is a structural diagram of another network device provided by an embodiment of the present invention.
  • Figure 14 is a structural diagram of another network device provided by an embodiment of the present invention.
  • Figure 15 is a structural diagram of another network device provided by an embodiment of the present invention.
  • Figure 16 is a structural diagram of another terminal provided by an embodiment of the present invention.
  • Fig. 17 is a structural diagram of another network device provided by an embodiment of the present invention.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the uplink resource determination method, indication method, terminal, and network device provided in the embodiments of the present invention can be applied to a wireless communication system.
  • the wireless communication system can be a New Radio (NR) system, or other systems, such as: Evolved Long Term Evolution (eLTE) system or Long Term Evolution (LTE) system, or subsequent evolution Communication system, etc. Further, it can be applied to the unlicensed band (Unlicensed Band) in the above-mentioned wireless communication system.
  • NR New Radio
  • eLTE Evolved Long Term Evolution
  • LTE Long Term Evolution
  • Figure 1 is a structural diagram of a network system applicable to an embodiment of the present invention. As shown in Figure 1, it includes a terminal 11, a first node 12, and a network device 13, where the terminal 11 may be a user terminal.
  • UE User Equipment
  • FIG. 1 it includes a terminal 11, a first node 12, and a network device 13, where the terminal 11 may be a user terminal.
  • UE User Equipment
  • FIG. 1 it includes a terminal 11, a first node 12, and a network device 13, where the terminal 11 may be a user terminal.
  • UE User Equipment
  • PDA personal digital assistants
  • Mobile Internet devices Mobile Internet
  • MID wearable device
  • Wired Device wearable device
  • a terminal side device such as a robot.
  • the specific type of the terminal 11 is not limited in the embodiment of the present invention.
  • the first node 12 may be a Large Intelligent Surfaces (LIS) node or a metasurface node or an intelligent transmitting surface node, or a layer-to-layer relay with beam forwarding function, an amplified forwarding relay, or a transparent forwarding relay, etc.
  • LIS Large Intelligent Surfaces
  • the above-mentioned network device 13 may be a 4G base station, or a 5G base station, or a base station of a later version, or a base station in other communication systems, or called Node B, Evolved Node B, or Transmission Reception Point (TRP), Or access point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • the aforementioned network device 13 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiment of the present invention, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • the terminal 11 may directly communicate with the network device 13 or may communicate with the network device 12 through the first node 12.
  • the first node 12 can send the uplink signal of the terminal to the network device, and can also send the downlink signal of the network device to the terminal, where the transmission of the first node can be direct forwarding, transparent forwarding, amplifying forwarding, or frequency conversion of the signal. Modulation and retransmission, etc., are not limited.
  • the implementation of the first node may be a large intelligent surface (Large Intelligent Surfaces, LIS) node, or a metasurface node or an intelligent transmitting surface node, a layer one relay with a beam forwarding function, or an amplified forwarding relay or transparent forwarding.
  • LIS Large Intelligent Surfaces
  • the LIS node is a new type of man-made material equipment.
  • the LIS node can dynamically/semi-statically adjust its own electromagnetic characteristics, and affect the reflection/refraction behavior of electromagnetic waves incident on the LIS node.
  • the LIS node can control the reflected wave/refraction signal of the electromagnetic signal, and realize functions such as beam scanning/beam forming.
  • FIG. 2 is a flowchart of an information reporting method provided by an embodiment of the present invention. The method is applied to a terminal. As shown in FIG. 2, it includes the following steps:
  • Step 201 Perform measurement on part or all of the M beams.
  • the M beams may be beams configured by the network device to the terminal for channel measurement.
  • the N beams among the M beams are beams generated by the network device based on the same transmission spatial filter (spatial domain transmission filter), M and N are integers greater than 1, and N is less than or equal to M.
  • the channel measurement of a beam uses the reference signal associated with the beam, such as a synchronization signal block (Synchronization signal Block, SSB), a channel state indication reference signal (Channel state indication reference signal, CSI-RS), demodulation reference signal (Demodulation Reference Signal, DMRS), etc., the measurement result obtained by the measurement.
  • the above M beams are multiple beams that can be measured by the terminal.
  • the M beams may also include or exclude other beams.
  • they may also include beams generated based on other spatial filters.
  • the measurement of part or all of the foregoing M beams may be the measurement of the foregoing N beams, or the measurement of each of the foregoing M beams.
  • the foregoing N beams may be N beams generated at different times based on the same transmission spatial filter.
  • the above N beams may be N beams with different time resources in the beam direction, for example: sending synchronization signals on different time resources respectively Block (Synchronization Signal Block, SSB) 2, 3 beams of SSB3, and SSB4, that is, these 3 beams transmit SSB2, SSB3, and SSB4 on different time resources, respectively.
  • Block Synchrononization Signal Block
  • the signals of the aforementioned N beams can be radiated to the first node when propagating in space.
  • the signals transmitted by the above N beams may be forwarded by the beam of the first node or not.
  • the first node transmits SSB2, SSB3, and SSB4 through different beams.
  • the terminal When the terminal is a near-end user, it can directly receive the SSB transmitted by the network device, and when the terminal is a remote user, it can receive the SSB through the first node.
  • FIG. 3 is only a schematic diagram of an example.
  • the above-mentioned N beams may also have a case where the signals of some beams are forwarded through the same beam of the first node.
  • the N beams are all forwarded by the first node.
  • the above-mentioned N beams may include beams whose signals are forwarded by the first node, and may also include that the signals do not pass through the first node.
  • the forwarded beam For example: the beam resources of the first node are less than the N, or the resources of the N beams can be as large as the forwarding beam resources of the first node, that is, there may be beams directed to the first node by the network device but the first node does not forward. Condition.
  • the foregoing measurement of the M beams, and the terminal obtaining the measurement results of the M beams may be to measure the transmission signals of the foregoing M beams to obtain the measurement results of the M beams.
  • the measurement of the transmission signals of the above M beams includes the measurement of the signal transmitted by the network device through the beam forwarding of the first node.
  • the signal transmitted by the network device based on beam n is transmitted to the terminal through the beam of the first node, then the terminal The measurement result of measuring the signal transmitted by the first node is the measurement result of the terminal on the beam n.
  • the foregoing measurement of the signals sent by the foregoing M beams includes the measurement that the beams of the network device are directly sent to the terminal.
  • the above-mentioned signal may be a reference signal.
  • the reference signal associated with the M beams is performed to obtain the measurement result of the M beams.
  • the reference signal includes but not limited to SSB and channel state indication reference signal (Channel State Indication). reference signal, CSI-RS) or demodulation reference signal (Demodulation Reference Signal, DMRS).
  • the reference signals sent on the foregoing N beams use the same spatial domain transmission filter, or the foregoing N beams are transmitted.
  • the reference signal has a Quasi Co-Location (QCL) relationship on the network equipment side.
  • the N beams are beams generated by the network equipment based on the same transmit spatial filter, but due to other influences such as the transmission environment or the first node, these N beams may or may not have a QCL relationship on the terminal side. Have QCL relationship. Therefore, the above N beams can be referred to as beams that may have a QCL relationship.
  • Step 202 According to the measurement results of part or all of the M beams, report first information to the network device, where the first information includes at least one of the following:
  • the target measurement result is: a measurement result determined according to measurement results of part or all of the M beams
  • the access state information is: a measurement result of part or all of the M beams Determined, information used to indicate an access mode for the terminal to access the network device
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • the measurement results of part or all of the foregoing M beams may be the measurement results of all the beams of the M beams or the measurement results of the foregoing N beams.
  • the above-mentioned terminal indirectly accessing the network equipment may be through the above-mentioned first node to access the network equipment.
  • the first node is used to forward the signal of the network equipment.
  • the signal of the network equipment includes the signal sent to the network equipment and the signal sent by the network equipment. .
  • the measurement results of the M beams include at least one of the following: the signal quality of the M beams and the channel correlation between the M beams.
  • reporting the first information to the network device may be: determining the first information according to the measurement results of part or all of the M beams, and then reporting the first information to the network device First information.
  • the above-mentioned reporting of the first information may be directly reporting to the network device, or reporting to the network device through the first node.
  • the foregoing target measurement result may include measurement results of part or all of the foregoing M beams.
  • the measurement result adopted in step 202 may be the measurement result of all or part of the partial beams measured in step 201, and in step 201 In the case that all beams of the M beams are measured, the measurement result used in step 202 may be the measurement result of all or part of the M beams measured in step 201.
  • the terminal can report the above first information to the network device through the above steps, so that the network device can determine the access mode of the terminal to the network device, which is also conducive to improving the communication quality between the network device and the terminal.
  • the network device can determine the access mode of the above-mentioned terminal, and then use the transmission mode of this access mode to communicate with the terminal to improve the communication quality between the network device and the terminal; or the network device can determine the terminal based on the above-mentioned target measurement result The access mode or the signal quality of the terminal relative to the beam, so that the network device communicates with the terminal in a corresponding manner.
  • the network device can also reasonably schedule resources according to the access mode of the terminal, such as time-frequency resource allocation or determining the corresponding beamforming scheme, so as to improve the scheduling effect.
  • the target measurement result includes at least one of the following:
  • the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams are the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams.
  • the above-mentioned signal quality measurement results of the N beams may be a combined measurement result of the signal quality measurement results of the N beams, or the signal quality measurement results of all or part of the N beams.
  • the network device can determine the access of the terminal based on these measurement results. Method, and determine the signal quality and channel correlation of these beams relative to the terminal.
  • the method further includes:
  • the foregoing configuration information may be sent through system information block (System Information Block, SIB) or radio resource control (radio resource control, RRC) signaling or the like.
  • SIB System Information Block
  • RRC radio resource control
  • the foregoing indication that the N beams are beams generated by the same transmission spatial filter may be implicitly or explicitly indicated that the foregoing N beams are beams generated by the same transmission spatial filter.
  • the configuration information indicates that the N reference signals are reference signals with a QCL relationship, and implicitly indicates that the N beams are generated by the same transmission spatial filter, and the N beams are used for transmission.
  • the beams of the N reference signals are reference signals with a QCL relationship
  • N reference signals may be N reference signals of the same type, for example: N SSB, CSI-RS or DMRS, of course, this is not limited, and N reference signals of different types may also be used.
  • N reference signals may be transmitted to the terminal through the first node.
  • the other part of the reference signal is directly transmitted to the terminal by the network device. terminal.
  • different beams of the first node transmit different reference signals.
  • the first node transmits SSB2, SSB3, and SSB4 through different beams, and further, SSB2, SSB3, and SSB4 are transmitted to the first node by the network device through the same beam.
  • FIG. 3 is only a schematic diagram of an example.
  • association relationship between the reference signal and the beam may be dynamically indicated to the terminal, or pre-configured to the terminal, and so on.
  • the configuration information indicates the working time of the forwarding beam of the first node to implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are the network equipment The beam working at the working time in the middle, wherein the first node is a node used to forward a signal related to the network device.
  • the LIS node is closed at the sending time of SSB0 and SSB1, but is working at the time of SSB2, SSB3, and SSB4. Therefore, it is determined to send
  • the three beams of SSB2, SSB3, and SSB4 are assumed to be generated by the same transmit spatial filter, that is, the three beams may have a QCL relationship.
  • the beam cycle of the first node can be in one SSB transmission cycle or in multiple consecutive SSB transmission cycles.
  • the LIS node has multiple working cycles.
  • the SSB transmission period, where the LIS beam in FIG. 5 represents the forwarding beam of the LIS node.
  • Each forwarding beam time of the LIS node is an SSB transmission cycle, so due to the influence of the LIS node, the same number of SSBs in the foregoing multiple consecutive SSB cycles may or may not have a QCL relationship.
  • the network device can configure the parameters of the beam measurement for the terminal through the above configuration information, and can also include configuring the reference signal corresponding to the forwarding beam of the first node. For example, SSB, CSI-RS, DMRS. If there are multiple first nodes in the cell, the configuration of each first node may be separately indicated according to the first node grouping.
  • direct signaling indication may also be used.
  • the foregoing reporting of the first information to the network device according to the measurement results of part or all of the M beams includes:
  • the N beams According to whether the N beams have a QCL relationship, report the first information to the network device.
  • determining whether the N beams have a quasi co-located QCL relationship based on the measurement results of the N beams may be determined based on the signal quality measurement results and/or the channel correlation measurement results of the N beams. Whether each beam has a QCL relationship.
  • the N measurement results include the signal quality measurement results of the N beams: if the difference value between the signal quality measurement results of the N beams satisfies the first condition, then The N beams have a QCL relationship.
  • the difference value between the signal quality measurement results of the above N beams satisfies the first condition, which may be that the difference value between the signal quality measurement results of the N beams is relatively small, which indicates that the terminal can directly access the network equipment (ie, the near-end User), otherwise, it means that the terminal accesses the network device (ie, remote user) through the first node.
  • the difference value between the signal quality measurement results of the N beams satisfying the first condition refers to:
  • the difference between the signal quality measurement result of the first beam in the N beams and the signal quality measurement reference result is less than or equal to a second threshold, and the first beam is any beam of the signal quality measurement results in the N beams ,
  • the signal quality measurement reference result is a calculation result of the signal quality measurement results of the N beams, such as an average value or a weighted average value; or
  • the absolute difference between the signal quality measurement result of the second beam in the N beams and the signal quality measurement result of the first beam is less than or equal to a third threshold, and the first beam is the signal quality measurement result of the N beams
  • the second beam is a beam whose signals are not affected by the first node among the N beams
  • the first node is a node for forwarding signals related to the network device.
  • the QCL relationship judgment may not be performed, and the access mode for the terminal to access the network device is directly judged. For example, if the difference value between the signal quality measurement results of N beams meets the first condition, it is determined that the terminal is directly connected to the network equipment, otherwise, it is determined that the terminal is connected to the network equipment through the first node; or, if the N beams If the channel correlation is higher than the first threshold, it is determined that the terminal is directly connected to the network device; otherwise, it is determined that the terminal is connected to the network device through the first node.
  • the beam resources of the network device directed to the first node are more than the forwarding beam resources of the first node, that is, the beam resources of at least one of the above-mentioned N beams will not be forwarded by the first node; so that this will not be forwarded by the first node.
  • second threshold and third threshold may be configured by a network device or defined by a protocol.
  • the N measurement results include the channel correlation measurement results between the N beams: if the channel correlation between the N beams is higher than the first threshold, Then the N beams have a QCL relationship.
  • the channel correlation between the N beams being higher than the first threshold may indicate that the channel correlation of the N beams is strong, so that it is determined that the N beams have a QCL relationship.
  • the N measurement results include the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams:
  • the difference value between the signal quality measurement results satisfies the first condition, and the channel correlation between the N beams is higher than the first threshold, then the N beams have a QCL relationship.
  • the target measurement results include combined measurement As a result, or, the target measurement result includes a measurement result determined according to a combined measurement result, where the combined measurement result is a measurement result obtained by combining the signal quality measurement results of the N beams;
  • the target measurement result includes several beams among the N beams The signal quality measurement result.
  • the signal quality measurement results of several beams in the aforementioned N beams may be the signal quality measurement results of one or more beams in the N beams.
  • the aforementioned combined measurement result may be a calculation result such as a maximum value, a minimum value, or an average value among the signal quality measurement results of the N beams, and is specifically a measurement result.
  • the above-mentioned target measurement result may include only the combined measurement result.
  • the measurement results of the above N beams are similar, that is, the difference of the measurement results is less than a certain threshold, only one measurement result is reported.
  • the measurement result can be the calculation result of the measurement results of the N beams, for example, the maximum value, the minimum value, Average value, etc.
  • the measurement result can also be the calculation result of the measurement results of the N beams, for example, the maximum value, the minimum value, Average value, etc.
  • the signaling overhead can be reduced, and the accuracy of the reported measurement result can also be ensured.
  • the target measurement result includes: K measurements with the highest signal quality selected from the combined measurement result and the signal quality measurement results of other MN beams As a result, K is a positive integer; or
  • the target measurement result further includes a signal quality measurement result of at least one beam among the MN beams, and the signal quality measurement result of the at least one beam is: according to the Ordering of signal quality measurement results of MN beams signal quality measurement results of at least one selected beam;
  • the M-N beams are M-N beams of the network device other than the N beams.
  • the above K may be a pre-configured number of report beams, and the number may be configured by the network device or agreed upon by a protocol.
  • the reported measurement results may be more conducive to the scheduling of network devices.
  • the measurement results with better signal quality in N beams can be included, and the measurement results with better signal quality in other beams can also be included, so that the reported measurement results are more beneficial to the network equipment.
  • Scheduling For example: sort the measurement results of the above N beams, select several results for reporting, and sort the measurement results of other beams, select several measurement results for reporting.
  • the foregoing first information further includes at least one of the following:
  • Indication information for indicating whether the target measurement result includes a combined measurement result
  • Indication information used to indicate whether the N beams have a QCL relationship.
  • the foregoing first information includes:
  • the network device determines whether the above N beams have a QCL relationship or determines the access mode of the terminal according to the above judgment criterion.
  • the above indication information can enable the network device to quickly determine the access mode of the terminal.
  • the method further includes:
  • the configuration of the beam measurement can be adjusted according to the access mode of the terminal or the QCL relationship. For example, the number of the above-mentioned N beams measured by the terminal can be reduced to achieve the purpose of power saving.
  • the access state information indicates that the access mode for the terminal to access the network device is to directly access the network device ;
  • the access state information indicates that the access mode for the terminal to access the network device is indirect access to the network device.
  • the terminal access mode can be accurately determined. Further, after the network device determines the access mode of the terminal, it can schedule corresponding time-frequency resources for the terminal. For example, for a terminal that directly accesses network equipment, the network device can perform scheduling on all available time slots, while for a terminal that accesses the network device through the first node, the network device can effectively forward the time-frequency resource at the first node To schedule.
  • the network device can determine the existence of the first node and its working status information.
  • the working status information of the first node may include information such as the number of forwarding beams of the first node, the duration of each forwarding beam, and the appearance period.
  • the first node can synchronize with the cell to ensure that the switching and on/off operations of the forwarding beam of the first node are synchronized with the time system of the cell, for example: at the time slot boundary Or sub-frame boundary or frame boundary or OFDM symbol boundary to switch. Further, the transmission beam between the network device and the first node is determined, and at least one SSB beam is directed to the first node in one SSB transmission period.
  • the terminal that accesses the network device through the first node can satisfy both the forwarding beam validity of the first node (the forwarding beam of the first node points to the terminal) and the beam validity of the network equipment to the first node (the network device beam points to the first node). Communicate with network equipment in the case.
  • the working period of the first node may be in one SSB period or in multiple consecutive SSB periods. For details, refer to FIG. 4 and FIG. 5.
  • the terminal accesses the network device through the first node, when the transmission beams of the network device are the same and the beams of the first node are also the same, the terminal can determine that the received beam meets the QCL assumption. Therefore, for a terminal that accesses the network device through the first node or a terminal in an unknown state, the QCL relationship may be established or not established by calculating the period of the reference signal in the working period of the first node.
  • the measurement result and access mode of the terminal can be updated in real time.
  • M beams are measured to obtain the measurement results of the M beams, where N beams in the M beams are beams generated by a network device based on the same transmission spatial filter;
  • the measurement results of part or all of the M beams are reported to the network device with first information, where the first information includes at least one of the following: target measurement results and access state information; wherein, the target measurement results Is: the measurement result determined according to the measurement results of part or all of the M beams, and the access state information is: determined according to the measurement results of part or all of the M beams, and is used to indicate all Information about the access mode for the terminal to access the network device; where the access mode is that the terminal directly accesses the network device or the terminal indirectly accesses the network device. In this way, the terminal can report the foregoing first information to the network device, so that the network device can determine the access mode of the terminal to the network device according to the first information.
  • FIG. 6 is a flowchart of a method for determining an access method according to an embodiment of the present invention. The method is applied to a network device. As shown in FIG. 6, the method includes the following steps:
  • Step 601 Acquire first information, where the first information includes: at least one of a target measurement result and access state information;
  • Step 602 Determine an access mode for the terminal to access the network device according to the first information.
  • the target measurement result is: the measurement result determined according to the measurement results of part or all of the M beams
  • the access state information is: the measurement result determined according to the measurement results of part or all of the M beams , Used to indicate the information of the access mode for the terminal to access the network device;
  • the N beams in the M beams are beams generated by the network device based on the same transmission spatial filter, M and N Is an integer greater than 1, and N is less than or equal to M;
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • the method further includes:
  • Sending configuration information where the configuration information is used to indicate that the N beams are beams generated by the same sending spatial filter.
  • the configuration information indicates that the N reference signals are reference signals with a QCL relationship, and implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are used for transmitting the N reference signal beams; or
  • the configuration information indicates the working time of the forwarding beam of the first node, to implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are the working time of the network device
  • the first node is a node for forwarding signals related to the network device.
  • the target measurement result includes at least one of the following:
  • the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams are the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams.
  • the determining an access mode for the terminal to access the network device according to the first information includes:
  • the access mode for the terminal to access the network device is to directly access the network device;
  • the access mode for the terminal to access the network device is indirect access to the network device.
  • the N beams have a QCL relationship
  • the signal quality measurement result implicitly indicates whether the N beams have a QCL relationship.
  • the N beams have a QCL relationship, wherein the combined measurement result The result is a measurement result obtained by combining the signal quality measurement results of the N beams;
  • the N beams do not have a QCL relationship.
  • the first information further includes at least one of the following:
  • Indication information for indicating whether the target measurement result includes a combined measurement result
  • Indication information used to indicate whether the N beams have a QCL relationship.
  • the method further includes:
  • corresponding transmission resources are scheduled for the terminal.
  • the N beams include beams whose signals are forwarded by the first node, and also include beams whose signals are not forwarded by the first node.
  • the terminal can also report the above-mentioned first information to the network device in this way, so that the network device can determine the access mode of the terminal to the network device based on the first information, and it is also beneficial to improve the relationship between the network device and the terminal.
  • FIG. 7 is a flowchart of a method for determining an access mode according to an embodiment of the present invention. The method is applied to a network device. As shown in FIG. 7, it includes the following steps:
  • Step 701 Measure part or all of the M beams, where N beams in the M beams are beams generated by the network device based on the same spatial domain receive filter, and M and N are An integer greater than 1, and N is less than or equal to M.
  • the measurement of the foregoing M beams may be the uplink signals sent by the measuring terminal to the foregoing M beams, such as: sounding radio signal (SRS), physical random access channel (PRACH) signal, or Pilot signals such as DMRS.
  • SRS sounding radio signal
  • PRACH physical random access channel
  • DMRS pilot signals
  • the uplink signals measured for these N beams are sent by the terminal to the first node, and the first node sends the uplink signal to the network device.
  • these uplink signals may be configured in multiple time slots or subframes, and may correspond to various time periods during which the forwarding beam of the first node works.
  • the number of uplink signals of the aforementioned N beams may be more than the number of forwarding beams of the first node, and there is at least one transmission resource of these uplink signal transmission resources corresponding to a time period during which the first node does not forward.
  • Step 702 Determine an access mode for the terminal to access the network device according to the measurement results of part or all of the M beams.
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • the network device measures the uplink signal sent by the terminal.
  • the network device measures the uplink signal sent by the terminal.
  • the measurement results of the foregoing M beams can be measured, and the access mode of the terminal can be determined, thereby helping to improve the communication quality between the network device and the terminal.
  • the terminal can also be notified of the terminal's access method.
  • the base station notifies the terminal of the access status.
  • the measurement results of the N beams include at least one of the following:
  • the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams are the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams.
  • the determining the access mode for the terminal to access the network device according to the measurement results of part or all of the M beams includes:
  • the N measurement results include the signal quality measurement results of the N beams: if the difference value between the signal quality measurement results of the N beams satisfies the first condition, then The N beams have a QCL relationship; or
  • the N measurement results include the channel correlation measurement results between the N beams: if the channel correlation between the N beams is higher than the first threshold, the N beams Have a QCL relationship; or
  • the N measurement results include the signal quality measurement results between the N beams and the channel correlation measurement results between the N beams: if the signal quality measurement results of the N beams The difference value between satisfies the first condition, and the channel correlation between the N beams is higher than the first threshold, then the N beams have a QCL relationship.
  • the difference value between the signal quality measurement results of the N beams satisfying the first condition refers to:
  • the difference between the signal quality measurement result of the first beam in the N beams and the signal quality reference result is less than or equal to a second threshold, and the first beam is any beam of the signal quality measurement results in the N beams,
  • the signal quality measurement reference result is a calculation result of the signal quality measurement results of the N beams;
  • the absolute difference between the signal quality measurement result of the second beam in the N beams and the signal quality measurement result of the first beam is less than or equal to a third threshold, and the first beam is the signal quality measurement result of the N beams
  • the second beam is a beam whose signals are not affected by the first node among the N beams
  • the first node is a node for forwarding signals related to the network device.
  • the method further includes:
  • corresponding transmission resources are scheduled for the terminal.
  • the N beams include beams whose signals are forwarded by the first node, and also include beams whose signals are not forwarded by the first node.
  • the method further includes:
  • the beam detection can also be adjusted directly according to the terminal's access mode. For example, when measuring N beams, part of the N beams can be measured to achieve the purpose of power saving.
  • the network device can also determine the access mode of the terminal to the network device according to the first information, and it is also beneficial to improve the communication quality between the network device and the terminal.
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present invention. As shown in FIG. 8, a terminal 800 includes:
  • the first measurement module 801 is configured to measure part or all of the M beams, where N beams in the M beams are beams generated by the network device based on the same transmission spatial filter, and M and N are greater than An integer of 1, and N is less than or equal to M;
  • the reporting module 802 is configured to report first information to the network device according to the measurement results of part or all of the M beams, where the first information includes at least one of the following:
  • the target measurement result is: a measurement result determined according to measurement results of part or all of the M beams
  • the access state information is: a measurement result of part or all of the M beams Determined, information used to indicate an access mode for the terminal to access the network device
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • the target measurement result includes at least one of the following:
  • the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams are the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams.
  • the terminal further includes:
  • the receiving module 803 is configured to receive configuration information, where the configuration information is used to indicate that the N beams are beams generated by the same transmit spatial filter.
  • the configuration information indicates that the N reference signals are reference signals with a QCL relationship, and implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are used for transmitting the N reference signal beams; or
  • the configuration information indicates the working time of the forwarding beam of the first node, to implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are the working time of the network device
  • the first node is a node for forwarding signals related to the network device.
  • the reporting module 802 is configured to determine whether the N beams have a quasi co-located QCL relationship according to the measurement results of the N beams; and according to whether the N beams have a QCL relationship, report to the network device Report the first information.
  • the N measurement results include the signal quality measurement results of the N beams: if the difference value between the signal quality measurement results of the N beams satisfies the first condition, then The N beams have a QCL relationship; or
  • the N measurement results include the channel correlation measurement results between the N beams: if the channel correlation between the N beams is higher than the first threshold, the N beams Have a QCL relationship; or
  • the N measurement results include the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams: if the signal quality measurement results of the N beams are between The difference value of satisfies the first condition, and the channel correlation between the N beams is higher than the first threshold, then the N beams have a QCL relationship.
  • the difference value between the signal quality measurement results of the N beams satisfying the first condition refers to:
  • the difference between the signal quality measurement result of the first beam in the N beams and the signal quality reference result is less than or equal to a second threshold, and the first beam is any beam of the signal quality measurement results in the N beams,
  • the signal quality reference result is a calculation result of the signal quality measurement results of the N beams;
  • the absolute difference between the signal quality measurement result of the second beam in the N beams and the signal quality measurement result of the first beam is less than or equal to a third threshold, and the first beam is the signal quality measurement result of the N beams
  • the second beam is a beam in which the signals of the N beams are not affected by the first node
  • the first node is a node for forwarding signals related to the network device.
  • the target measurement result includes a combined measurement result, or
  • the target measurement result includes a measurement result determined according to a combined measurement result, where the combined measurement result is a measurement result obtained by combining the signal quality measurement results of the N beams;
  • the target measurement result includes several beams among the N beams The signal quality measurement result.
  • the target measurement result includes: K measurements with the highest signal quality selected from the combined measurement result and the signal quality measurement results of other MN beams As a result, K is a positive integer; or
  • the target measurement result further includes a signal quality measurement result of at least one beam among the MN beams, and the signal quality measurement result of the at least one beam is: according to the Ordering of signal quality measurement results of MN beams signal quality measurement results of at least one selected beam;
  • the M-N beams are M-N beams of the network device other than the N beams.
  • the first information further includes at least one of the following:
  • Indication information for indicating whether the target measurement result includes a combined measurement result
  • Indication information used to indicate whether the N beams have a QCL relationship.
  • the terminal further includes:
  • the second measurement module 804 is configured to measure a part of the N beams when the N beams are measured when the N beams have a QCL relationship.
  • the access state information indicates that the access mode for the terminal to access the network device is to directly access the network device;
  • the access state information indicates that the access mode for the terminal to access the network device is indirect access to the network device.
  • the N beams include beams whose signals are forwarded by the first node, and also include beams whose signals are not forwarded by the first node.
  • the terminal provided by the embodiment of the present invention can implement the various processes implemented by the terminal in the method embodiment of FIG. It also helps to improve the communication quality between network devices and terminals.
  • FIG. 11 is a structural diagram of a network device according to an embodiment of the present invention. As shown in FIG. 11, the network device 1100 includes:
  • the obtaining module 1101 is configured to obtain first information, where the first information includes: at least one of a target measurement result and access state information;
  • the determining module 1102 is configured to determine an access mode for the terminal to access the network device according to the first information
  • the target measurement result is: the measurement result determined according to the measurement results of part or all of the M beams
  • the access state information is: the measurement result determined according to the measurement results of part or all of the M beams , Used to indicate the information of the access mode for the terminal to access the network device;
  • the N beams in the M beams are beams generated by the network device based on the same transmission spatial filter, M and N Is an integer greater than 1, and N is less than or equal to M;
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device. .
  • the network device 1100 further includes:
  • the sending module 1103 is configured to send configuration information, where the configuration information is used to indicate that the N beams are beams generated by the same transmission spatial filter.
  • the configuration information indicates that the N reference signals are reference signals with a QCL relationship, and implicitly indicate that the N beams are generated by the same transmit spatial filter, and the N beams are used for transmitting the N reference signal beams; or
  • the configuration information indicates the working time of the forwarding beam of the first node, to implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are the working time of the network device.
  • the first node is a node for forwarding signals related to the network device.
  • the target measurement result includes at least one of the following:
  • the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams are the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams.
  • the determining module 1102 is configured to determine whether the N beams have a quasi co-located QCL relationship according to the target measurement result; and determine whether the terminal accesses the terminal according to whether the N beams have a QCL relationship Access method of network equipment;
  • the access mode for the terminal to access the network device is to directly access the network device;
  • the access mode for the terminal to access the network device is indirect access to the network device.
  • the N beams have a QCL relationship
  • the signal quality measurement result implicitly indicates whether the N beams have a QCL relationship.
  • the N beams have a QCL relationship, wherein the combined measurement result The result is a measurement result obtained by combining the signal quality measurement results of the N beams;
  • the N beams do not have a QCL relationship.
  • the first information further includes at least one of the following:
  • Indication information for indicating whether the target measurement result includes a combined measurement result
  • Indication information used to indicate whether the N beams have a QCL relationship.
  • the network device 1100 further includes:
  • the scheduling module 1104 is configured to schedule corresponding transmission resources for the terminal according to the access mode for the terminal to access the network device.
  • the N beams include beams whose signals are forwarded by the first node, and also include beams whose signals are not forwarded by the first node.
  • the network device provided by the embodiment of the present invention can implement the various processes implemented by the network device in the method embodiment in FIG. In addition, it also helps to improve the communication quality between network equipment and terminals.
  • FIG. 14 is a structural diagram of another network device provided by an embodiment of the present invention. As shown in FIG. 14, the network device 1400 includes:
  • the measurement module 1401 is configured to measure part or all of the M beams, where N beams in the M beams are beams generated by the network equipment based on the same receiving spatial filter, and M and N are greater than 1. An integer, and N is less than or equal to M;
  • the determining module 1402 is configured to determine an access mode for the terminal to access the network device according to the measurement results of part or all of the M beams;
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • the measurement results of the N beams include at least one of the following:
  • the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams are the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams.
  • the determining module 1502 is configured to determine whether the N beams have a quasi co-located QCL relationship according to the measurement results of the N beams; and determine whether the N beams have a QCL relationship The access mode for the terminal to access the network device.
  • the N measurement results include the signal quality measurement results of the N beams: if the difference value between the signal quality measurement results of the N beams satisfies the first condition, then The N beams have a QCL relationship; or
  • the N measurement results include the channel correlation measurement results between the N beams: if the channel correlation between the N beams is higher than the first threshold, the N beams Have a QCL relationship; or
  • the N measurement results include the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams: if the signal quality measurement results of the N beams are between The difference value of satisfies the first condition, and the channel correlation between the N beams is higher than the first threshold, then the N beams have a QCL relationship.
  • the difference value between the signal quality measurement results of the N beams satisfying the first condition refers to:
  • the difference between the signal quality measurement result of the first beam in the N beams and the signal quality reference result is less than or equal to a second threshold, and the first beam is any beam of the signal quality measurement results in the N beams,
  • the signal quality measurement reference result is a calculation result of the signal quality measurement results of the N beams;
  • the absolute difference between the signal quality measurement result of the second beam in the N beams and the signal quality measurement result of the first beam is less than or equal to a third threshold, and the first beam is the signal quality measurement result of the N beams
  • the second beam is a beam in which the signals of the N beams are not affected by the first node
  • the first node is a node for forwarding signals related to the network device.
  • the network device 1400 further includes:
  • the scheduling module 1403 is configured to schedule corresponding transmission resources for the terminal according to the access mode of the terminal to the network device.
  • the N beams include beams whose signals are forwarded by the first node, and also include beams whose signals are not forwarded by the first node.
  • the network device provided by the embodiment of the present invention can implement each process implemented by the terminal in the method embodiment of FIG. It also helps to improve the communication quality between network devices and terminals.
  • FIG. 16 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present invention.
  • the terminal 1600 includes but is not limited to: a radio frequency unit 1601, a network module 1602, an audio output unit 1603, an input unit 1604, a sensor 1605, a display unit 1606, a user input unit 1607, an interface unit 1608, a memory 1609, a processor 1610, and a power supply 1611 and other parts.
  • a radio frequency unit 1601 includes but is not limited to: a radio frequency unit 1601, a network module 1602, an audio output unit 1603, an input unit 1604, a sensor 1605, a display unit 1606, a user input unit 1607, an interface unit 1608, a memory 1609, a processor 1610, and a power supply 1611 and other parts.
  • the terminal structure shown in FIG. 16 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted
  • the radio frequency unit 1601 is used to measure part or all of the M beams, where N beams in the M beams are beams generated by the network device based on the same transmit spatial filter, and M and N are greater than 1. An integer, and N is less than or equal to M;
  • the radio frequency unit 1601 is configured to report first information to the network device according to the measurement results of part or all of the M beams, where the first information includes at least one of the following:
  • the target measurement result is: a measurement result determined according to measurement results of part or all of the M beams
  • the access state information is: a measurement result of part or all of the M beams Determined, information used to indicate an access mode for the terminal to access the network device
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • the target measurement result includes at least one of the following:
  • the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams are the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams.
  • the radio frequency unit 1601 is further configured to:
  • the configuration information indicates that the N reference signals are reference signals with a QCL relationship, and implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are used for transmitting the N reference signal beams; or
  • the configuration information indicates the working time of the forwarding beam of the first node, to implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are the working time of the network device
  • the first node is a node for forwarding signals related to the network device.
  • the reporting the first information to the network device according to the measurement results of part or all of the M beams includes:
  • the N beams According to whether the N beams have a QCL relationship, report the first information to the network device.
  • the N measurement results include the signal quality measurement results of the N beams: if the difference value between the signal quality measurement results of the N beams satisfies the first condition, then The N beams have a QCL relationship; or
  • the N measurement results include the channel correlation measurement results between the N beams: if the channel correlation between the N beams is higher than the first threshold, the N beams Have a QCL relationship; or
  • the N measurement results include the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams: if the signal quality measurement results of the N beams are between The difference value of satisfies the first condition, and the channel correlation between the N beams is higher than the first threshold, then the N beams have a QCL relationship.
  • the difference value between the signal quality measurement results of the N beams satisfying the first condition refers to:
  • the difference between the signal quality measurement result of the first beam in the N beams and the signal quality reference result is less than or equal to a second threshold, and the first beam is any beam of the signal quality measurement results in the N beams,
  • the signal quality reference result is a calculation result of the signal quality measurement results of the N beams;
  • the absolute difference between the signal quality measurement result of the second beam in the N beams and the signal quality measurement result of the first beam is less than or equal to a third threshold, and the first beam is the signal quality measurement result of the N beams
  • the second beam is a beam whose signals are not affected by the first node among the N beams
  • the first node is a node for forwarding signals related to the network device.
  • the target measurement result includes a combined measurement result, or
  • the target measurement result includes a measurement result determined according to a combined measurement result, where the combined measurement result is a measurement result obtained by combining the signal quality measurement results of the N beams;
  • the target measurement result includes several beams among the N beams The signal quality measurement result.
  • the target measurement result includes: K measurements with the highest signal quality selected from the combined measurement result and the signal quality measurement results of other MN beams As a result, K is a positive integer; or
  • the target measurement result further includes a signal quality measurement result of at least one beam among the MN beams, and the signal quality measurement result of the at least one beam is: according to the Ordering of signal quality measurement results of MN beams signal quality measurement results of at least one selected beam;
  • the M-N beams are M-N beams of the network device other than the N beams.
  • the first information further includes at least one of the following:
  • Indication information for indicating whether the target measurement result includes a combined measurement result
  • Indication information used to indicate whether the N beams have a QCL relationship.
  • the radio frequency unit 1601 or the processor 1610 is further configured to:
  • the access state information indicates that the access mode for the terminal to access the network device is to directly access the network device;
  • the access state information indicates that the access mode for the terminal to access the network device is indirect access to the network device.
  • the N beams include beams whose signals are forwarded by the first node, and also include beams whose signals are not forwarded by the first node.
  • the foregoing terminal can enable the network device to determine the access mode of the terminal to the network device according to the first information, and is also beneficial to improve the communication quality between the network device and the terminal.
  • the radio frequency unit 1601 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 1610; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 1601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1601 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 1602, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1603 may convert the audio data received by the radio frequency unit 1601 or the network module 1602 or stored in the memory 1609 into audio signals and output them as sounds. Moreover, the audio output unit 1603 may also provide audio output related to a specific function performed by the terminal 1600 (e.g., call signal reception sound, message reception sound, etc.).
  • the audio output unit 1603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1604 is used to receive audio or video signals.
  • the input unit 1604 may include a graphics processing unit (GPU) 16041 and a microphone 16042, and the graphics processor 16041 is configured to respond to images of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 1606.
  • the image frame processed by the graphics processor 16041 may be stored in the memory 1609 (or other storage medium) or sent via the radio frequency unit 1601 or the network module 1602.
  • the microphone 16042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 1601 in the case of a telephone call mode for output.
  • the terminal 1600 also includes at least one sensor 1605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 16061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 16061 and/or when the terminal 1600 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensors 1605 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 1606 is used to display information input by the user or information provided to the user.
  • the display unit 1606 may include a display panel 16061, and the display panel 16061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1607 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 1607 includes a touch panel 16071 and other input devices 16072.
  • the touch panel 16071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 16071 or near the touch panel 16071. operate).
  • the touch panel 16071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1610, the command sent by the processor 1610 is received and executed.
  • the touch panel 16071 can be realized in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 1607 may also include other input devices 16072.
  • other input devices 16072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 16071 can cover the display panel 16061.
  • the touch panel 16071 detects a touch operation on or near it, it transmits it to the processor 1610 to determine the type of the touch event, and then the processor 1610 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 16061.
  • the touch panel 16071 and the display panel 16061 are used as two independent components to realize the input and output functions of the terminal, but in some embodiments, the touch panel 16071 and the display panel 16061 may be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 1608 is an interface for connecting an external device with the terminal 1600.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1608 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 1600 or may be used to communicate between the terminal 1600 and the external device. Transfer data between.
  • the memory 1609 can be used to store software programs and various data.
  • the memory 1609 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 1609 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1610 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1610 may include one or more processing units; preferably, the processor 1610 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., the modem
  • the processor mainly deals with wireless communication. It can be understood that the above-mentioned modem processor may not be integrated into the processor 1610.
  • the terminal 1600 may also include a power supply 1611 (such as a battery) for supplying power to various components.
  • a power supply 1611 such as a battery
  • the power supply 1611 may be logically connected to the processor 1610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. Function.
  • the terminal 1600 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 1610, a memory 1609, a computer program stored on the memory 1609 and running on the processor 1610, and the computer program is implemented when the processor 1610 is executed.
  • a terminal including a processor 1610, a memory 1609, a computer program stored on the memory 1609 and running on the processor 1610, and the computer program is implemented when the processor 1610 is executed.
  • FIG. 17 is a structural diagram of another network device provided by an embodiment of the present invention.
  • the network device 1700 includes: a processor 1701, a transceiver 1702, a memory 1703, and a bus interface, in which:
  • the transceiver 1702 is configured to obtain first information, where the first information includes: at least one of a target measurement result and access state information;
  • the processor 1701 is configured to determine an access mode for a terminal to access the network device according to the first information
  • the target measurement result is: the measurement result determined according to the measurement results of part or all of the M beams
  • the access state information is: the measurement result determined according to the measurement results of part or all of the M beams , Used to indicate the information of the access mode for the terminal to access the network device;
  • the N beams in the M beams are beams generated by the network device based on the same transmission spatial filter, M and N Is an integer greater than 1, and N is less than or equal to M;
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • the transceiver 1702 is also used for the first information.
  • the transceiver 1702 is also used for the first information.
  • Sending configuration information where the configuration information is used to indicate that the N beams are beams generated by the same sending spatial filter.
  • the configuration information indicates that the N reference signals are reference signals with a QCL relationship, and implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are used for transmitting the N reference signal beams; or
  • the configuration information indicates the working time of the forwarding beam of the first node, to implicitly indicate that the N beams are generated by the same transmission spatial filter, and the N beams are the working time of the network device
  • the first node is a node for forwarding signals related to the network device.
  • the target measurement result includes at least one of the following:
  • the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams are the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams.
  • the determining an access mode for the terminal to access the network device according to the first information includes:
  • the access mode for the terminal to access the network device is to directly access the network device;
  • the access mode for the terminal to access the network device is indirect access to the network device.
  • the N beams have a QCL relationship
  • the signal quality measurement result implicitly indicates whether the N beams have a QCL relationship.
  • the N beams have a QCL relationship, wherein the combined measurement result The result is a measurement result obtained by combining the signal quality measurement results of the N beams;
  • the N beams do not have a QCL relationship.
  • the first information further includes at least one of the following:
  • Indication information for indicating whether the target measurement result includes a combined measurement result
  • Indication information used to indicate whether the N beams have a QCL relationship.
  • the transceiver 1702 is also used for the transceiver 1702 .
  • corresponding transmission resources are scheduled for the terminal.
  • the N beams include beams whose signals are forwarded by the first node, and also include beams whose signals are not forwarded by the first node.
  • the transceiver 1702 is configured to measure part or all of the M beams, where N beams in the M beams are beams generated by the network device based on the same receiving spatial filter, and M and N are greater than 1. An integer, and N is less than or equal to M;
  • the processor 1701 is configured to determine an access mode for the terminal to access the network device according to measurement results of part or all of the M beams;
  • the access mode is that the terminal directly accesses the network device, or the terminal indirectly accesses the network device.
  • the measurement results of the N beams include at least one of the following:
  • the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams are the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams.
  • the determining the access mode for the terminal to access the network device according to the measurement results of part or all of the M beams includes:
  • the N measurement results include the signal quality measurement results of the N beams: if the difference value between the signal quality measurement results of the N beams satisfies the first condition, then The N beams have a QCL relationship; or
  • the N measurement results include the channel correlation measurement results between the N beams: if the channel correlation between the N beams is higher than the first threshold, the N beams Have a QCL relationship; or
  • the N measurement results include the signal quality measurement results of the N beams and the channel correlation measurement results between the N beams: if the signal quality measurement results of the N beams are between The difference value of satisfies the first condition, and the channel correlation between the N beams is higher than the first threshold, then the N beams have a QCL relationship.
  • the difference value between the signal quality measurement results of the N beams satisfying the first condition refers to:
  • the difference between the signal quality measurement result of the first beam in the N beams and the signal quality reference result is less than or equal to a second threshold, and the first beam is any beam of the signal quality measurement results in the N beams,
  • the signal quality measurement reference result is a calculation result of the signal quality measurement results of the N beams;
  • the absolute difference between the signal quality measurement result of the second beam in the N beams and the signal quality measurement result of the first beam is less than or equal to a third threshold, and the first beam is the signal quality measurement result of the N beams
  • the second beam is a beam whose signals are not affected by the first node among the N beams
  • the first node is a node for forwarding signals related to the network device.
  • the transceiver 1702 is also used for:
  • corresponding transmission resources are scheduled for the terminal.
  • the N beams include beams whose signals are forwarded by the first node, and also include beams whose signals are not forwarded by the first node.
  • the above-mentioned network device can determine the access mode of the terminal to access the network device according to the first information, and it is also beneficial to improve the communication quality between the network device and the terminal.
  • the transceiver 1702 is configured to receive and send data under the control of the processor 1701, and the transceiver 1702 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1701 and various circuits of the memory represented by the memory 1703 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1702 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 1704 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1701 is responsible for managing the bus architecture and general processing, and the memory 1703 can store data used by the processor 1701 when performing operations.
  • the embodiment of the present invention also provides a network device, including a processor 1701, a memory 1703, a computer program stored on the memory 1703 and capable of running on the processor 1701, when the computer program is executed by the processor 1701
  • a network device including a processor 1701, a memory 1703, a computer program stored on the memory 1703 and capable of running on the processor 1701, when the computer program is executed by the processor 1701
  • the embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps in the information reporting method provided by the embodiment of the present invention are implemented, or When the computer program is executed by the processor, the steps in the method for determining the access mode provided in the embodiment of the present invention are implemented, and the same technical effect can be achieved. To avoid repetition, details are not described herein again.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息上报方法、接入方式确定方法、终端和网络设备,该方法包括:对M个波束的部分或者全部波束进行测量,其中,M个波束中的N个波束为网络设备基于相同发送空间滤波器产生的波束;依据M个波束的部分或者全部波束的测量结果,向网络设备上报第一信息,第一信息包括如下至少一项:目标测量结果和接入状态信息;其中,目标测量结果为:依据M个波束的部分或者全部波束的测量结果确定的测量结果,接入状态信息为:依据M个波束的部分或者全部波束的测量结果确定的,用于表示终端接入网络设备的接入方式的信息。

Description

信息上报方法、接入方式确定方法、终端和网络设备
相关申请的交叉引用
本申请主张在2020年3月9日在中国提交的中国专利申请号No.202010158943.2的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种信息上报方法、接入方式确定方法、终端和网络设备。
背景技术
在无线通信中由于网络设备(例如:基站)部署或者传输环境的变化,可能会出现无线网络覆盖空洞,因此,在一些通信系统(例如:5G系统)通过部署一些节点来传输网络设备的信号,使得网络设备可以通过指向这些节点发射波束,这些节点将转发波束指向终端,实现网络设备与终端的通信,达到覆盖扩展和空洞补盲的目的。这些节点的实现方式例如:大型智能表面(Large Intelligent Surfaces,LIS)节点,或者具有波束转发功能的层一中继或者放大转发中继或者透明转发中继等。然而,在实际应用中,终端可能支持多种接入网络设备的接入方式,但目前网络设备无法确认终端的接入网络设备的接入方式。
发明内容
本发明实施例提供一种信息上报方法、接入方式确定方法、终端和网络设备,以解决网络设备无法确认终端的接入网络设备的接入方式的问题。
第一方面,本发明实施例提供信息上报方法,应用于终端,包括:
对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上 报第一信息,所述第一信息包括如下至少一项:
目标测量结果和接入状态信息;
其中,所述目标测量结果为:依据所述M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
第二方面,本发明实施例提供一种接入方式确定方法,应用于网络设备,包括:
获取第一信息,所述第一信息包括:目标测量结果和接入状态信息中的至少一项;
依据第一信息确定终端接入所述网络设备的接入方式;
其中,所述目标测量结果为:依据M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;所述M个波束中的所述N个波束为所述网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
第三方面,本发明实施例提供一种接入方式确定方法,应用于网络设备,包括:
对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同接收空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
依据所述M个波束的部分或者全部波束的测量结果,确定所述终端接入所述网络设备的接入方式;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
第四方面,本发明实施例提供一种终端,包括:
第一测量模块,用于对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
上报模块,用于依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,所述第一信息包括如下至少一项:
目标测量结果和接入状态信息;
其中,所述目标测量结果为:依据所述M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
第五方面,本发明实施例提供一种网络设备,包括:
获取模块,用于获取第一信息,所述第一信息包括:目标测量结果和接入状态信息中的至少一项;
确定模块,用于依据第一信息确定终端接入所述网络设备的接入方式;
其中,所述目标测量结果为:依据M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;所述M个波束中的所述N个波束为所述网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
第六方面,本发明实施例提供一种网络设备,包括:
测量模块,用于对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同接收空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
确定模块,用于依据所述M个波束的部分或者全部波束的测量结果,确 定所述终端接入所述网络设备的接入方式;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
第七方面,本发明实施例提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本发明实施例提供的信息上报方法中的步骤。
第八方面,本发明实施例提供一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本发明实施例第二方面提供的接入方式确定方法中的步骤,或者所述程序被所述处理器执行时实现本发明实施例第三方面提供的接入方式确定方法中的步骤。
第九方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例提供的信息上报方法中的步骤,或者所述计算机程序被处理器执行时实现本发明实施例第二方面提供的接入方式确定方法中的步骤,或者所述计算机程序被处理器执行时实现本发明实施例第三方面提供的接入方式确定方法中的步骤。
本发明实施例中,对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同发送空间滤波器产生的波束;依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,所述第一信息包括如下至少一项:目标测量结果和接入状态信息;其中,所述目标测量结果为:依据所述M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。这样可以实现终端向网络设备上报上述第一信息,从而网络设备可以确定终端的接入网络设备的接入方式。
附图说明
图1是本发明实施例可应用的一种网络系统的结构图;
图2是本发明实施例提供的一种信息上报方法的流程图;
图3是本发明实施例提供的一种应用场景的示意图;
图4是本发明实施例提供的一种LIS节点的工作周期示意图;
图5是本发明实施例提供的另一种LIS节点的工作周期示意图;
图6是本发明实施例提供的另一种信息上报方法的流程图;
图7是本发明实施例提供的一种接入方式确定方法的流程图;
图8是本发明实施例提供的一种终端的结构图;
图9是本发明实施例提供的另一种终端的结构图;
图10是本发明实施例提供的另一种终端的结构图;
图11是本发明实施例提供的一种网络设备的结构图;
图12是本发明实施例提供的另一种网络设备的结构图;
图13是本发明实施例提供的另一种网络设备的结构图;
图14是本发明实施例提供的另一种网络设备的结构图;
图15是本发明实施例提供的另一种网络设备的结构图;
图16是本发明实施例提供的另一种终端的结构图;
图17是本发明实施例提供的另一种网络设备的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本发明的实施例。本发明实施例提供的上行资源确定方法、指示方法、终端和网络设备可以应用于无线通信系统中。该无线通信系统可以为新空口(New Radio,NR)系统,或者其他系统,例如:演进型长期演进(Evolved Long Term Evolution,eLTE)系统或者长期演进(Long Term Evolution,LTE)系统,或者后续演进通信系统等。进一步,可以应用于上述无线通信系统中的非授权频段(Unlicensed Band)。
请参见图1,图1是本发明实施例可应用的一种网络系统的结构图,如图1所示,包括终端11、第一节点12和网络设备13,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或者机器人等终端侧设备,需要说明的是,在本发明实施例中并不限定终端11的具体类型。第一节点12可以是大型智能表面(Large Intelligent Surfaces,LIS)节点或超表面节点或智能发射表面节点,或者具有波束转发功能的层一中继、放大转发中继或者透明转发中继来等可以传输网络设备与终端之间信号的节点或者设备。上述网络设备13可以是4G基站,或者5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者传输接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备13可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本发明实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
本发明实施例中,终端11可以直接与网络设备13进行通信,也可以通过第一节点12与网络设备12进行通信。第一节点12可以将终端的上行信号 发送给网络设备,也可以将网络设备的下行信号发送给终端,其中,第一节点的发送可以是直接转发、透明转发、放大转发或者对信号进行变频或者调制再发送等等,对此不作限定。
所述第一节点的实现方式可以是大型智能表面(Large Intelligent Surfaces,LIS)节点,或超表面节点或智能发射表面节点、具有波束转发功能的层一中继或者放大转发中继或者透明转发中继等。其中,LIS节点是一种新兴的人造材料设备,LIS节点可以动态地/半静态地调整自身的电磁特性,影响入射到LIS节点的电磁波的反射/折射行为。LIS节点可以对电磁信号的反射波/折射信号进行操控,实现波束扫描/波束赋形等功能。
请参见图2,图2是本发明实施例提供的一种信息上报方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201、对M个波束的部分或者全部波束进行测量。
其中,所述M个波束可以是网络设备配置给终端的用于信道测量的波束。
所述M个波束中的N个波束为网络设备基于相同发送空间滤波器(spatial domain transmission filter)产生的波束,M和N为大于1的整数,且N小于或者等于M。应理解,在信道测量过程中,对一个波束的信道测量是利用所述波束相关联的参考信号,例如同步信号块(Synchronization signal Block,SSB),信道状态指示参考信号(Channel state indication reference signal,CSI-RS),解调参考信号(Demodulation Reference Signal,DMRS)等,进行测量而得到的测量结果。
其中,上述M个波束是终端可测量的多个波束,这M个波束除了上述N个波束之外,还可以包括或者不包括其他波束,例如:还可以包括基于其他空间滤波器为产生的波束。上述M个波束的部分或者全部波束进行测量可以是,对上述N个波束进行测量,或者对上述M个波束中的每个波束均进行测量。
其中,上述N个波束可以是基于相同发送空间滤波器为产生的不同时间的N个波束。例如:如图3所示,网络设备指向第一节点存在一个波束方向,而上述N个波束可以是在该波束方向上不同时间资源的N个波束,例如:分别在不同时间资源上发送同步信号块(Synchronization signal Block,SSB)2、 SSB3和SSB4的3个波束,即这3个波束分别在不同的时间资源上发送SSB2、SSB3和SSB4。
另外,上述N个波束的信号在空间传播时可以辐射到第一节点。
进一步的,本发明实施例中,上述N个波束发送的信号可以由第一节点的波束转发或者不转发,例如:如图3所示,第一节点通过不同的波束传输SSB2、SSB3和SSB4。当终端为近端用户时,可以直接接收网络设备传输发送的SSB,当终端为远端用户时可以通过第一节点接收SSB。需要说明的是,图3仅是一个举例示意图。例如:上述N个波束也可以存在部分波束的信号通过第一节点的相同波束转发的情况。
在图3中仅示意N个波束都经过第一节点转发,在实际应用于,上述N个波束可以包括信号经过所述第一节点转发的波束,以及还可以包括信号不经过所述第一节点转发的波束。例如:上述第一节点的波束资源少于上述N,或者上述N个波束的资源可以第一节点的转发波束资源多,即可能存在网络设备指向第一节点的波束但是第一节点不进行转发的情况。
上述对M个波束进行测量,终端得到所述M个波束的测量结果可以是,对上述M个波束的发送信号进行测量,以得到这M个波束的测量结果。其中,对上述M个波束的发送信号进行测量包括网络设备发送的信号经过第一节点的波束转发的测量,例如:网络设备基于波束n发送的信号经过第一节点的波束传输给终端,则终端对第一节点传输的信号进行测量的测量结果为终端对波束n的测量结果。当然,上述对上述M个波束发送的信号进行测量包括网络设备的波束直接发送给终端的测量。
另外,上述信号可以是参考信号,如对这M个波束相关联的参考信号进行,以得到这M个波束的测量结果,该参考信号包括但不限于SSB、信道状态指示参考信号(Channel state indication reference signal,CSI-RS)或者解调参考信号(Demodulation Reference Signal,DMRS)。
进一步的,由于上述N个波束为网络设备基于相同发送空间滤波器产生的波束,从而在上述N个波束发送的参考信号使用相同的空间滤波配置(spatial domain transmission filter),或者上述N个波束发送的参考信号在网络设备侧具备准共址(Quasi Co-Location,QCL)关系。
需要说明的是,由于N个波束为网络设备基于相同发送空间滤波器产生的波束,但由于传输环境或者第一节点等其他的影响,在终端侧这N个波束可能具备QCL关系,也有可能不具备QCL关系。因此,上述N个波束可以称作可能具备QCL关系的波束。
步骤202、依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,所述第一信息包括如下至少一项:
目标测量结果和接入状态信息;
其中,所述目标测量结果为:依据所述M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
上述M个波束的部分或者全部波束的测量结果可以是,M个波束的全部波束的测量结果或者上述N个波束的测量结果。上述终端间接接入所述网络设备可以是通过上述第一节点接入网络设备,该第一节点用于转发网络设备的信号,网络设备的信号包括发送给网络设备的信号和网络设备发送的信号。
其中,所述M个波束的测量结果包括如下至少一项:所述M个波束的信号质量和所述M个波束之间的信道相关性。
上述依据M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息可以是,依据上述M个波束的部分或者全部波束的测量结果,确定第一信息,之后向网络设备上报第一信息。其中,上述上报第一信息可以是直接向网络设备上报,或者通过第一节点向网络设备上报。
上述目标测量结果可以包括上述M个波束中部分或者全部波束的测量结果。
需要说明的是,在步骤201对M个波束的部分波束进行测量的情况下,步骤202中采用的测量结果可以是步骤201测量的这部分波束的全部或者部分波束的测量结果,在步骤201对M个波束的全部波束进行测量的情况下,步骤202中采用的测量结果可以是步骤201测量的M个波束的全部或者部分 波束的测量结果。
本发明实施例中,通过上述步骤可以实现终端向网络设备上报上述第一信息,从而网络设备可以确定终端的接入网络设备的接入方式,还有利于提升网络设备与终端之间的通信质量。例如:网络设备可以确定上述终端的接入方式,进而采用该接入方式的传输方式与终端进行通信,以提升网络设备与终端之间的通信质量;或者网络设备可以通过上述目标测量结果确定终端的接入方式或者终端相对于波束的信号质量,以使得网络设备采用相应的方式与终端进行通信。进一步,网络设备还可以根据终端的接入方式合理调度资源,如时频资源分配或者确定对应的波束赋形方案,以提高调度效果。
作为一种可选的实施方式,所述目标测量结果包括如下至少一项:
所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
其中,上述N个波束的信号质量测量结果可以是,N个波束的信号质量测量结果的合并测量结果,或者N个波束的全部或者部分波束的信号质量测量结果。
该实施方式中,由于上报上述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果中的至少一项,这样可以使得网络设备基于这些测量结果确定终端的接入方式,以及确定这些波束相对于终端的信号质量和信道相关性。
作为一种可选的实施方式,所述对M个波束进行测量,得到所述M个波束的测量结果之前,所述方法还包括:
接收配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
其中,上述配置信息可以是通过系统信息块(System Information Block,SIB)或者无线资源控制(radio resource control,RRC)信令等发送的。
上述指示所述N个波束为相同的发送空间滤波器产生的波束可以是隐式或者显式指示上述N个波束为相同的发送空间滤波器产生的波束。
在一种方式中,上述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个 波束为用于发送所述N个参考信号的波束。
其中,上述N个参考信号可以N个相同类型的参考信号,例如:N个SSB、CSI-RS或DMRS,当然,对此不作限定,也可以不同类型的N个参考信号。
需要说明的是,上述N个参考信号全部或者部分参考信号可以是通过第一节点传输给终端的,当部分参考信号通过第一节点传输给终端时,另一部分的参考信号是网络设备直接传输给终端。其中,通过第一节点传输给终端的情况下,第一节点的不同波束传输不同的参考信号。例如:如图3所示,第一节点通过不同的波束传输SSB2、SSB3和SSB4,进一步的,SSB2、SSB3和SSB4由网络设备通过相同的波束传输给第一节点。当终端为近端用户时,可以直接接收网络设备传输发送的SSB,当终端为远端用户时可以通过第一节点接收SSB。需要说明的是,图3仅是一个举例示意图。
另外,参考信号与波束的关联关系可以是动态指示给终端,或者预先配置给终端等等。
在另一种方式中,所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
如图4所示,以第一节点为LIS节点,参考信号为SSB为例,LIS节点在SSB0和SSB1发送时间是关闭的,而在SSB2、SSB3和SSB4的时间是工作的,因此,确定发送SSB2、SSB3和SSB4的3个波束假设为相同的发送空间滤波器产生,即这3个波束可能存在QCL关系。
需要说明的是,本发明实施例中,第一节点的波束周期可以在一个SSB发送周期,也可以在多个连续的SSB发送周期内,如图5所示,LIS节点的工作周期对应多个SSB发送周期,其中,图5中的LIS波束表示LIS节点的转发波束。LIS节点的每一转发波束时间是一个SSB发送周期,那么由于LIS节点的影响,上述多个连续SSB周期内的相同编号的SSB可能存在QCL关系,也可能不存在QCL关系。
需要说明的是,上述配置信息仅举例说明,本发明实施例中,网络设备 可以通过上述配置信息可以为终端配置波束测量的参数,以及还可以包括配置第一节点的转发波束对应的参考信号,例如SSB、CSI-RS,DMRS。如果小区中存在多个第一节点,则各第一节点的配置可以按照第一节点分组分别指示。
另外,本发明实施例中除了隐式指示之外,还可以直接信令指示。
作为一种可选的实施方式,上述依据所述M波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,包括:
依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;
依据所述N个波束是否具备QCL关系,向所述网络设备上报所述第一信息。
其中,上述依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系可以是依据上述N个波束的信号质量测量结果和/或信道相关性测量结果确定所述N个波束是否具备QCL关系。
一种方式中,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系。
上述N个波束的信号质量测量结果之间的差异值满足第一条件可以是,N个波束的信号质量测量结果之间的差异值比较小,从而说明终端可以直接接入网络设备(即近端用户),否则,说明终端通过第一节点接入网络设备(即远端用户)。
可选的,所述N个波束的信号质量测量结果之间的差异值满足第一条件是指:
所述N个波束中第一波束的信号质量测量结果与信号质量测量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量测量参考结果为所述N个波束的信号质量测量结果的计算结果,例如平均值或者加权平均值等;或者
所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中 信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
例如,上述N个波束为{B i},i=1,…n,其信号质量测量结果为{Q i},i=1,…n,表示波束B i的信号质量测量结果。其中,信号质量参考结果为平均信号质量Q mean=mean{Q i}。如果任何一个波束的波束信号质量与信号质量平均值高于第二门限Δ,则认为不具备QCL关系,或者直接确定终端通过第一节点接入小区,或者小于或者等于第二门限Δ,则认为具备QCL关系,或者直接确定终端直接接入网络设备。也就是说,本发明实施例中,也可以不进行QCL关系判断,而直接判断终端接入网络设备的接入方式。例如:在N个波束的信号质量测量结果之间的差异值满足第一条件,则确定终端直接接入网络设备,反之,确定终端通过第一节点接入网络设备;或者,若N个波束的信道相关性高于第一门限,则确定终端直接接入网络设备,反之,确定终端通过第一节点接入网络设备。
又例如,网络设备指向第一节点的波束资源比第一节点的转发波束资源多,即上述N个波束有至少有一个的波束资源不会被第一节点转发;令这个不会被第一节点转发的波束的测量结果为Q 0;将Q 0与其他波束测量结果{Q i},i=1,…n进行比较;如果|Q 0-Q i|<δ,则确定具备QCL关系,可以确定终端直接接入网络设备,否则确定不具备QCL关系,或者确定终端通过第一节点接入网络设备。
需要说明的是,上述第二门限和第三门限可以是网络设备配置的或者协议定义的。
另一种方式中,在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
上述N个波束之间的信道相关性高于第一门限可以表示上述N个波束的信道相关性强,从而确定上述N个波束具备QCL关系。
另一种方式中,在所述N个的测量结果包括所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果的情况下:若所述N个波 束的信号质量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
作为一种可选的实施方式,在所述N个的测量结果包括所述N个波束的信号质量测量结果,且所述N个波束具备QCL关系的情况下:所述目标测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
或者,
在所述N个的测量结果包括所述N个波束的信号质量测量结果,且所述N个波束不具备QCL关系的情况下:所述目标测量结果包括所述N个波束中的若干个波束的信号质量测量结果。
上述N波束中的若干个波束的信号质量测量结果可以是所述N个波束中的一个或者多个波束的信号质量测量结果。
其中,上述合并测量结果可以是N个波束的信号质量测量结果中的最大值、最小值或者平均值等计算结果,具体为一个测量结果。
该实施方式中,在具备QCL关系的情况下,上述目标测量结果可以是只包括合并测量结果。例如:上述N个波束的测量结果相近,即测量结果差异小于某个门限,则只上报一个测量结果,该测量结果可以是N个波束的测量结果的计算结果,例如,最大值,最小值,平均值等。又例如:上述N个波束的信道相关性强(大于某个门限)时,只上报一个测量结果,该测量结果同样可以是N个波束的测量结果的计算结果,例如,最大值,最小值,平均值等。
该实施方式中,由于可以上报合并测量结果,这样可以降低信令开销,且还可以保证上报测量结果的准确性。
可选的,所述N个波束具备QCL关系的情况下,所述目标测量结果包括:从所述合并测量结果和其他M-N个波束的信号质量测量结果中选择的信号质量靠前的K个测量结果,K为正整数;或者
在所述N个波束不具备QCL关系的情况下,所述目标测量结果还包括M-N个波束中的至少一个波束的信号质量测量结果,所述至少一个波束的信 号质量测量结果为:依据所述M-N个波束的信号质量测量结果的排序选择的至少一个波束的信号质量测量结果;
其中,所述M-N个波束为所述网络设备除所述N个波束之外的M-N个波束。
上述K可以是预先配置的上报波束数量,该数量可以由网络设备配置或者协议约定。该实施方式中,由于从所述合并测量结果和其他M-N个波束的信号质量测量结果中选择的信号质量靠前的K个测量结果,这样可以使得上报的测量结果更加有利于网络设备的调度。
另外,在不具备QCL关系的情况下,可以N个波束中信号质量较好的测量结果,以及还可以包括其他波束中信号质量较好的测量结果,从而使得上报的测量结果更加有利于网络设备的调度。例如:对上述N个波束的测量结果进行排序,选择其中若干个结果进行上报,以及对其他波束的测量结果进行排序,选择若干个测量结果进行上报。
作为一种可选的实施方式,上述第一信息还包括以下至少一项:
用于指示所述目标测量结果是否包括合并测量结果的指示信息;
用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
用于指示所述N个波束是否具备QCL关系的指示信息。
作为一种可选地实施方式,上述第一信息包括:
上述N个波束的测量结果,网络设备依据上述判断准则确定上述N个波束是否具备QCL关系,或者确定终端的接入方式。
其中,上述合并测量结果可以参见上述实施方式的描述,此处不作赘述。
该实施方式中,通过上述指示信息可以使得网络设备可以快速地确定终端的接入方式。
作为一种可选的实施方式,所述依据所述N个波束的测量结果,向所述网络设备上报第一信息之后,所述方法还包括:
在所述N个波束具备QCL关系的情况下,针对所述N个波束进行测量时,测量所述N个波束中的部分波束。
该实施方式中,可以实现在确定QCL关系后,后续可以只对N个波束中的部分波束进行测量,以在后续的测量周期中减少单个波束的测量次数,以 节约终端功耗和资源。
进一步的,网络设备在配置波束测量时,可以根据终端的接入方式或者QCL关系调整波束测量的配置,如可以减少终端测量上述N个波束的数量,达到节电的目的。
作为一种可选的实施方式,在所述N个波束具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
在所述N个波束不具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
该实施方式中,可以准确地确定终端接入方式。进一步的,在网络设备确定终端的接入方式后,可以为终端调度相应时频资源。例如:对于直接接入网络设备的终端,网络设备可以在所有的可用时隙上进行调度,而对于通过第一节点接入网络设备的终端,网络设备可以在第一节点有效转发的时频资源上进行调度。
另外,本发明实施实施例中,第一节点接入网络设备的小区后,网络设备可以确定第一节点的存在以及其工作状态信息。其中,第一节点的工作状态信息可以包含第一节点的转发波束的数量,每个转发波束的持续时间以及出现周期等信息。另外,在第一节点接入网络设备的小区后,第一节点可以与小区同步,以保证第一节点的转发波束的切换和开启/关闭操作与小区的时间体系同步,例如:在时隙边界或者子帧边界或者帧边界或者OFDM符号边界进行切换。进一步的,确定网络设备与第一节点之间的传输波束,在一个SSB发送周期内至少有一个SSB波束指向第一节点。
通过第一节点接入网络设备的终端可以在第一节点的转发波束有效(第一节点的转发波束指向终端)和网络设备到第一节点的波束有效(网络设备波束指向第一节点)同时满足的情况下与网络设备通信。可选的,第一节点的工作周期可以在一个SSB周期内或者多个连续SSB周期内,具体可以参见图4和图5。当终端通过第一节点接入网络设备时,当网络设备的发送波束相同并且第一节点的波束也相同时,终端可以确定接收到的波束满足QCL假设。因此,对于通过第一节点接入网络设备的终端或者未知状态的终端,通 过第一节点的工作周期内参考信号的周期计算出QCL关系存在成立或不成立的情况。
另外,本发明实施例中,可以实时更新终端的测量结果和接入方式等。
本发明实施例中,对M个波束进行测量,得到所述M个波束的测量结果,其中,所述M个波束中的N个波束为网络设备基于相同发送空间滤波器产生的波束;依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,所述第一信息包括如下至少一项:目标测量结果和接入状态信息;其中,所述目标测量结果为:依据所述M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。这样可以实现终端向网络设备上报上述第一信息,从而网络设备可以依据第一信息确定终端的接入网络设备的接入方式。
请参见图6,图6是本发明实施例提供的一种接入方法确定方法的流程图,该方法应用于网络设备,如图6所示,包括以下步骤:
步骤601、获取第一信息,所述第一信息包括:目标测量结果和接入状态信息中的至少一项;
步骤602、依据第一信息确定终端接入所述网络设备的接入方式;
其中,所述目标测量结果为:依据M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;所述M个波束中的所述N个波束为所述网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
上述依据第一信息确定终端接入所述网络设备的接入方式,即确定终端的接入状态。
可选的,所述获取第一信息之前,所述方法还包括:
发送配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
可选的,所述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为用于发送所述N个参考信号的波束;或者
所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,所述目标测量结果包括如下至少一项:
所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
可选的,所述依据第一信息确定终端接入所述网络设备的接入方式,包括:
依据所述目标测量结果,确定所述N个波束是否具备准共址QCL关系;
依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式;
其中,在所述N个波束具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
在所述N个波束不具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
可选的,若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
所述信号质量测量结果隐式指示所述N个波束是否具备QCL关系。
可选的,所述信号质量测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果的情况下:所述N个波束具备QCL关系,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
所述信号质量测量结果包括所述N个波束中的若干个波束的信号质量测 量结果的情况下:所述N个波束不具备QCL关系。
可选的,所述第一信息还包括以下至少一项:
用于指示所述目标测量结果是否包括合并测量结果的指示信息;
用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
用于指示所述N个波束是否具备QCL关系的指示信息。
可选的,所述方法还包括:
依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
可选的,所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络设备侧的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。本实施例中,同样可以这样可以实现终端向网络设备上报上述第一信息,从而网络设备可以依据第一信息确定终端的接入网络设备的接入方式,且还有利于提升网络设备与终端之间的通信质量。
请参见图7,图7是本发明实施例提供的一种接入方式确定方法的流程图,该方法应用于网络设备,如图7所示包括以下步骤:
步骤701、对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同接收空间滤波器(spatial domain receive filter)产生的波束,M和N为大于1的整数,且N小于或者等于M。
其中,对上述M个波束测量可以是测量终端向上述M个波束发送的上行信号,例如:探测无线信号(Sounding radio signal,SRS)、物理随机接入信道(Physical Random Access Channel,PRACH)信号或者DMRS等导频信号。
由于上述N个波束指向第一节点,测量这N个波束的上行信号存在部分或者全部是由终端发送给第一节点,由第一节点发送给网络设备的上行信号。另外,这些上行信号可以配置在多个时隙或子帧上,可以对应于第一节点的转发波束工作的各个时间段。
上述N个波束的上行信号数量可以多于第一节点的转发波束的数量,这些上行信号的发送资源存在至少一个发送资源对应于第一节点不转发的时间段。
步骤702、依据所述M个波束的部分或者全部波束的测量结果,确定所述终端接入所述网络设备的接入方式;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
需要说明的是,本实施例中是网络设备测量终端发送的上行信号,该实施例的实施方式可以参见前面终端进行测量的实施方式,此处不作赘述。
本实施例中,通过上述步骤可以测量到上述M个波束的测量结果,并确定终端的接入方式,从而有利于提升网络设备与终端之间的通信质量。另外,还可以向终端通知终端的接入方式。基站将接入状态通知终端。
可选的,所述N个波束的测量结果包括如下至少一项:
所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
可选的,所述依据所述M个波束的部分或者全部波束的测量结果,确定所述终端接入所述网络设备的接入方式,包括:
依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;
依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式。
可选的,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束之间的信号质量测量结果和所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的信号质 量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
可选的,所述N个波束的信号质量测量结果之间的差异值满足第一条件是指:
所述N个波束中第一波束的信号质量测量结果与信号质量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量测量参考结果为所述N个波束的信号质量测量结果的计算结果;或者
所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,所述方法还包括:
依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
可选的,所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
可选的,所述方法还包括:
在所述N个波束具备QCL关系的情况下,针对所述N个波束进行测量时,测量所述N个波束中的部分波束。
当然,也可以直接根据终端的接入方式,调整波束检测,如再对N个波束进行测量时,可以测量N个波束中的部分波束,以达到节电的目的。
需要说明的是,本实施例作为与图2所示的实施例中对应的终端的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。本实施例中,同样可以使得网络设备依据第一信息确定终端的接入网络设备的接入方式,且还有利于提升网络设备与终端之间的通信质量。
请参见图8,图8是本发明实施例提供一种终端的结构图,如图8所示, 终端800包括:
第一测量模块801,用于对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;;
上报模块802,用于依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,所述第一信息包括如下至少一项:
目标测量结果和接入状态信息;
其中,所述目标测量结果为:依据所述M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
可选的,所述目标测量结果包括如下至少一项:
所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
可选的,如图9所示,所述终端还包括:
接收模块803,用于接收配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
可选的,所述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为用于发送所述N个参考信号的波束;或者
所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,上报模块802用于依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;以及依据所述N个波束是否具备QCL关系,向所述网络设备上报所述第一信息。
可选的,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
可选的,所述N个波束的信号质量测量结果之间的差异值满足第一条件是指:
所述N个波束中第一波束的信号质量测量结果与信号质量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量参考结果为所述N个波束的信号质量测量结果的计算结果;或者
所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,在所述N个的测量结果包括所述N个波束的信号质量测量结果,且所述N个波束具备QCL关系的情况下:所述目标测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
或者,
在所述N个的测量结果包括所述N个波束的信号质量测量结果,且所述N个波束不具备QCL关系的情况下:所述目标测量结果包括所述N个波束 中的若干个波束的信号质量测量结果。
可选的,所述N个波束具备QCL关系的情况下,所述目标测量结果包括:从所述合并测量结果和其他M-N个波束的信号质量测量结果中选择的信号质量靠前的K个测量结果,K为正整数;或者
在所述N个波束不具备QCL关系的情况下,所述目标测量结果还包括M-N个波束中的至少一个波束的信号质量测量结果,所述至少一个波束的信号质量测量结果为:依据所述M-N个波束的信号质量测量结果的排序选择的至少一个波束的信号质量测量结果;
其中,所述M-N个波束为所述网络设备除所述N个波束之外的M-N个波束。
可选的,所述第一信息还包括以下至少一项:
用于指示所述目标测量结果是否包括合并测量结果的指示信息;
用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
用于指示所述N个波束是否具备QCL关系的指示信息。
可选的,如图10所示,终端还包括:
第二测量模块804,用于在所述N个波束具备QCL关系的情况下,针对所述N个波束进行测量时,测量所述N个波束中的部分波束。
可选的,在所述N个波束具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
在所述N个波束不具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
可选的,所述N个波束包括信号经过所述第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
本发明实施例提供的终端能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述,且可以使得网络设备依据第一信息确定终端的接入网络设备的接入方式,以及还有利于提升网络设备与终端之间的通信质量。
请参见图11,图11是本发明实施例提供的一种网络设备的结构图,如图11所示,网络设备1100包括:
获取模块1101,用于获取第一信息,所述第一信息包括:目标测量结果和接入状态信息中的至少一项;
确定模块1102,用于依据第一信息确定终端接入所述网络设备的接入方式;
其中,所述目标测量结果为:依据M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;所述M个波束中的所述N个波束为所述网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。。
可选的,如图12所示,网络设备1100还包括:
发送模块1103,用于发送配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
可选的,所述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为用于发送所述N个参考信号的波束;或者
所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,所述目标测量结果包括如下至少一项:
所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
可选的,确定模块1102用于依据所述目标测量结果,确定所述N个波束是否具备准共址QCL关系;以及依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式;
其中,在所述N个波束具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
在所述N个波束不具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
可选的,若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
所述信号质量测量结果隐式指示所述N个波束是否具备QCL关系。
可选的,所述信号质量测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果的情况下:所述N个波束具备QCL关系,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
所述信号质量测量结果包括所述N个波束中的若干个波束的信号质量测量结果的情况下:所述N个波束不具备QCL关系。
可选的,所述第一信息还包括以下至少一项:
用于指示所述目标测量结果是否包括合并测量结果的指示信息;
用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
用于指示所述N个波束是否具备QCL关系的指示信息。
可选的,如图13所示,网络设备1100还包括:
调度模块1104,用于依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
可选的,所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
本发明实施例提供的网络设备能够实现图6的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述,且使得网络设备依据第一信息确定终端的接入网络设备的接入方式,以及还有利于提升网络设备与终端之间的通信质量。
请参见图14,图14是本发明实施例提供的另一种网络设备的结构图,如图14所示,网络设备1400包括:
测量模块1401,用于对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同接收空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
确定模块1402,用于依据所述M个波束的部分或者全部波束的测量结果,确定所述终端接入所述网络设备的接入方式;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
可选的,所述N个波束的测量结果包括如下至少一项:
所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
可选的,所述确定模块1502用于依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;以及依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式。
可选的,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的之间信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
可选的,所述N个波束的信号质量测量结果之间的差异值满足第一条件是指:
所述N个波束中第一波束的信号质量测量结果与信号质量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量测量参考结果为所述N个波束的信号质量测量结果的计算结果;或者
所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第 一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,如图15所示,网络设备1400还包括:
调度模块1403,用于依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
可选的,所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
本发明实施例提供的网络设备能够实现图7的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述,且使得网络设备依据第一信息确定终端的接入网络设备的接入方式,以及还有利于提升网络设备与终端之间的通信质量。
图16为实现本发明各个实施例的一种终端的硬件结构示意图,
该终端1600包括但不限于:射频单元1601、网络模块1602、音频输出单元1603、输入单元1604、传感器1605、显示单元1606、用户输入单元1607、接口单元1608、存储器1609、处理器1610、以及电源1611等部件。本领域技术人员可以理解,图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、机器人、可穿戴设备、以及计步器等。
射频单元1601,用于对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;;
射频单元1601,用于依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,所述第一信息包括如下至少一项:
目标测量结果和接入状态信息;
其中,所述目标测量结果为:依据所述M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
可选的,所述目标测量结果包括如下至少一项:
所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
可选的,所述对M个波束进行测量,得到所述M个波束的测量结果之前,射频单元1601还用于:
接收配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
可选的,所述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为用于发送所述N个参考信号的波束;或者
所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,所述依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,包括:
依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;
依据所述N个波束是否具备QCL关系,向所述网络设备上报所述第一信息。
可选的,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束的信号质量测量结果和所述N 个波束之间的信道相关性测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
可选的,所述N个波束的信号质量测量结果之间的差异值满足第一条件是指:
所述N个波束中第一波束的信号质量测量结果与信号质量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量参考结果为所述N个波束的信号质量测量结果的计算结果;或者
所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,在所述N个的测量结果包括所述N个波束的信号质量测量结果,且所述N个波束具备QCL关系的情况下:所述目标测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
或者,
在所述N个的测量结果包括所述N个波束的信号质量测量结果,且所述N个波束不具备QCL关系的情况下:所述目标测量结果包括所述N个波束中的若干个波束的信号质量测量结果。
可选的,所述N个波束具备QCL关系的情况下,所述目标测量结果包括:从所述合并测量结果和其他M-N个波束的信号质量测量结果中选择的信号质量靠前的K个测量结果,K为正整数;或者
在所述N个波束不具备QCL关系的情况下,所述目标测量结果还包括M-N个波束中的至少一个波束的信号质量测量结果,所述至少一个波束的信号质量测量结果为:依据所述M-N个波束的信号质量测量结果的排序选择的 至少一个波束的信号质量测量结果;
其中,所述M-N个波束为所述网络设备除所述N个波束之外的M-N个波束。
可选的,所述第一信息还包括以下至少一项:
用于指示所述目标测量结果是否包括合并测量结果的指示信息;
用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
用于指示所述N个波束是否具备QCL关系的指示信息。
可选的,所述依据所述N个波束的测量结果,向所述网络设备上报第一信息之后,射频单元1601或者处理器1610还用于:
在所述N个波束具备QCL关系的情况下,针对所述N个波束进行测量时,测量所述N个波束中的部分波束。
可选的,在所述N个波束具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
在所述N个波束不具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
可选的,所述N个波束包括信号经过所述第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
上述终端可以使得网络设备依据第一信息确定终端的接入网络设备的接入方式,且还有利于提升网络设备与终端之间的通信质量。
应理解的是,本发明实施例中,射频单元1601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1610处理;另外,将上行的数据发送给基站。通常,射频单元1601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1601还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1603可以将射频单元1601或网络模块1602接收的或者在存储器1609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1603还可以提供与终端1600执行的特定功能相关的音频输出(例 如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1603包括扬声器、蜂鸣器以及受话器等。
输入单元1604用于接收音频或视频信号。输入单元1604可以包括图形处理器(Graphics Processing Unit,GPU)16041和麦克风16042,图形处理器16041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1606上。经图形处理器16041处理后的图像帧可以存储在存储器1609(或其它存储介质)中或者经由射频单元1601或网络模块1602进行发送。麦克风16042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1601发送到移动通信基站的格式输出。
终端1600还包括至少一种传感器1605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板16061的亮度,接近传感器可在终端1600移动到耳边时,关闭显示面板16061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1606用于显示由用户输入的信息或提供给用户的信息。显示单元1606可包括显示面板16061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板16061。
用户输入单元1607可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1607包括触控面板16071以及其他输入设备16072。触控面板16071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板16071上或在触控面板16071附近的操作)。触控面 板16071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1610,接收处理器1610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板16071。除了触控面板16071,用户输入单元1607还可以包括其他输入设备16072。具体地,其他输入设备16072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板16071可覆盖在显示面板16061上,当触控面板16071检测到在其上或附近的触摸操作后,传送给处理器1610以确定触摸事件的类型,随后处理器1610根据触摸事件的类型在显示面板16061上提供相应的视觉输出。虽然在图16中,触控面板16071与显示面板16061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板16071与显示面板16061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1608为外部装置与终端1600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1600内的一个或多个元件或者可以用于在终端1600和外部装置之间传输数据。
存储器1609可用于存储软件程序以及各种数据。存储器1609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1610是终端的控制中心,利用各种接口和线路连接整个终端的各 个部分,通过运行或执行存储在存储器1609内的软件程序和/或模块,以及调用存储在存储器1609内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1610可包括一个或多个处理单元;优选的,处理器1610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
终端1600还可以包括给各个部件供电的电源1611(比如电池),优选的,电源1611可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1600包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器1610,存储器1609,存储在存储器1609上并可在所述处理器1610上运行的计算机程序,该计算机程序被处理器1610执行时实现上述信息上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图17,图17是本发明实施例提供的另一种网络设备的结构图,如图17所示,该网络设备1700包括:处理器1701、收发机1702、存储器1703和总线接口,其中:
在一个实施例中:
收发机1702,用于获取第一信息,所述第一信息包括:目标测量结果和接入状态信息中的至少一项;
处理器1701,用于依据第一信息确定终端接入所述网络设备的接入方式;
其中,所述目标测量结果为:依据M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;所述M个波束中的所述N个波束为所述网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
可选的,所述获取第一信息之前,收发机1702还用于
发送配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
可选的,所述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为用于发送所述N个参考信号的波束;或者
所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,所述目标测量结果包括如下至少一项:
所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
可选的,所述依据第一信息确定终端接入所述网络设备的接入方式包括:
依据所述目标测量结果,确定所述N个波束是否具备准共址QCL关系;
依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式;
其中,在所述N个波束具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
在所述N个波束不具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
可选的,若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
所述信号质量测量结果隐式指示所述N个波束是否具备QCL关系。
可选的,所述信号质量测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果的情况下:所述N个波束具备QCL关系,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
所述信号质量测量结果包括所述N个波束中的若干个波束的信号质量测量结果的情况下:所述N个波束不具备QCL关系。
可选的,所述第一信息还包括以下至少一项:
用于指示所述目标测量结果是否包括合并测量结果的指示信息;
用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
用于指示所述N个波束是否具备QCL关系的指示信息。
可选的,收发机1702还用于
依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
可选的,所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
在另一个实施例中:
收发机1702,用于对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同接收空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
处理器1701,用于依据所述M个波束的部分或者全部波束的测量结果,确定所述终端接入所述网络设备的接入方式;
其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
可选的,所述N个波束的测量结果包括如下至少一项:
所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
可选的,所述依据所述M个波束的部分或者全部波束的测量结果,确定所述终端接入所述网络设备的接入方式,包括:
依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;
依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式。
可选的,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的之间信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
在所述N个的测量结果包括所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
可选的,所述N个波束的信号质量测量结果之间的差异值满足第一条件是指:
所述N个波束中第一波束的信号质量测量结果与信号质量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量测量参考结果为所述N个波束的信号质量测量结果的计算结果;或者
所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
可选的,收发机1702还用于:
依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
可选的,所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
上述网络设备可以依据第一信息确定终端的接入网络设备的接入方式,且还有利于提升网络设备与终端之间的通信质量。
其中,收发机1702,用于在处理器1701的控制下接收和发送数据,所述收发机1702包括至少两个天线端口。
在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1701代表的一个或多个处理器和存储器1703代表的存储器的各种电路链 接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1701负责管理总线架构和通常的处理,存储器1703可以存储处理器1701在执行操作时所使用的数据。
优选的,本发明实施例还提供一种网络设备,包括处理器1701,存储器1703,存储在存储器1703上并可在所述处理器1701上运行的计算机程序,该计算机程序被处理器1701执行时实现上述接入方式确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例提供的信息上报方法中的步骤,或者所述计算机程序被处理器执行时实现本发明实施例提供的接入方式确定方法中的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体 现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (66)

  1. 一种信息上报方法,应用于终端,包括:
    对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
    依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,所述第一信息包括如下至少一项:
    目标测量结果和接入状态信息;
    其中,所述目标测量结果为:依据所述M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;
    其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
  2. 如权利要求1所述的方法,其中,所述目标测量结果包括如下至少一项:
    所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
  3. 如权利要求1所述的方法,其中,所述对M个波束进行测量,得到所述M个波束的测量结果之前,所述方法还包括:
    接收配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
  4. 如权利要求3所述的方法,其中,所述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为用于发送所述N个参考信号的波束;或者
    所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关 的信号的节点。
  5. 如权利要求1所述的方法,其中,所述依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,包括:
    依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;
    依据所述N个波束是否具备QCL关系,向所述网络设备上报所述第一信息。
  6. 如权利要求5所述的方法,其中,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系;或者
    在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
    在所述N个的测量结果包括所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
  7. 如权利要求6所述的方法,其中,所述N个波束的信号质量测量结果之间的差异值满足第一条件是指:
    所述N个波束中第一波束的信号质量测量结果与信号质量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量参考结果为所述N个波束的信号质量测量结果的计算结果;或者
    所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
  8. 如权利要求5所述的方法,其中,在所述N个的测量结果包括所述N 个波束的信号质量测量结果,且所述N个波束具备QCL关系的情况下:所述目标测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
    或者,
    在所述N个的测量结果包括所述N个波束的信号质量测量结果,且所述N个波束不具备QCL关系的情况下:所述目标测量结果包括所述N个波束中的若干个波束的信号质量测量结果。
  9. 如权利要求8所述的方法,其中,所述N个波束具备QCL关系的情况下,所述目标测量结果包括:从所述合并测量结果和其他M-N个波束的信号质量测量结果中选择的信号质量靠前的K个测量结果,K为正整数;或者
    在所述N个波束不具备QCL关系的情况下,所述目标测量结果还包括M-N个波束中的至少一个波束的信号质量测量结果,所述至少一个波束的信号质量测量结果为:依据所述M-N个波束的信号质量测量结果的排序选择的至少一个波束的信号质量测量结果;
    其中,所述M-N个波束为所述网络设备除所述N个波束之外的M-N个波束。
  10. 如权利要求8所述的方法,其中,所述第一信息还包括以下至少一项:
    用于指示所述目标测量结果是否包括合并测量结果的指示信息;
    用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
    用于指示所述N个波束是否具备QCL关系的指示信息。
  11. 如权利要求8所述的方法,其中,所述依据所述N个波束的测量结果,向所述网络设备上报第一信息之后,所述方法还包括:
    在所述N个波束具备QCL关系的情况下,针对所述N个波束进行测量时,测量所述N个波束中的部分波束。
  12. 如权利要求5所述的方法,其中,在所述N个波束具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
    在所述N个波束不具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
  13. 如权利要求1所述的方法,其中,
    所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
  14. 一种接入方式确定方法,应用于网络设备,包括:
    获取第一信息,所述第一信息包括:目标测量结果和接入状态信息中的至少一项;
    依据第一信息确定终端接入所述网络设备的接入方式;
    其中,所述目标测量结果为:依据M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;所述M个波束中的所述N个波束为所述网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
    其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
  15. 如权利要求14所述的方法,其中,所述获取第一信息之前,所述方法还包括:
    发送配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
  16. 如权利要求15所述的方法,其中,所述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为用于发送所述N个参考信号的波束;或者
    所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
  17. 如权利要求14所述的方法,其中,所述目标测量结果包括如下至少一项:
    所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
  18. 如权利要求17所述的方法,其中,所述依据第一信息确定终端接入所述网络设备的接入方式,包括:
    依据所述目标测量结果,确定所述N个波束是否具备准共址QCL关系;
    依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式;
    其中,在所述N个波束具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
    在所述N个波束不具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
  19. 如权利要求18所述的方法,其中,若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
    所述信号质量测量结果隐式指示所述N个波束是否具备QCL关系。
  20. 如权利要求19所述的方法,其中,所述信号质量测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果的情况下:所述N个波束具备QCL关系,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
    所述信号质量测量结果包括所述N个波束中的若干个波束的信号质量测量结果的情况下:所述N个波束不具备QCL关系。
  21. 如权利要求20所述的方法,其中,所述第一信息还包括以下至少一项:
    用于指示所述目标测量结果是否包括合并测量结果的指示信息;
    用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
    用于指示所述N个波束是否具备QCL关系的指示信息。
  22. 如权利要求14所述的方法,还包括:
    依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
  23. 如权利要求14所述的方法,其中,所述N个波束包括信号经过第一 节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
  24. 一种接入方式确定方法,应用于网络设备,包括:
    对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同接收空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
    依据所述M个波束的部分或者全部波束的测量结果,确定所述终端接入所述网络设备的接入方式;
    其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
  25. 如权利要求24所述的方法,其中,所述N个波束的测量结果包括如下至少一项:
    所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
  26. 如权利要求24所述的方法,其中,所述依据所述M个波束的部分或者全部波束的测量结果,确定所述终端接入所述网络设备的接入方式,包括:
    依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;
    依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式。
  27. 如权利要求26所述的方法,其中,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系;或者
    在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的之间信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
    在所述N个的测量结果包括所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于 第一门限,则所述N个波束具备QCL关系。
  28. 如权利要求27所述的方法,其中,所述N个波束的信号质量测量结果之间的差异值满足第一条件是指:
    所述N个波束中第一波束的信号质量测量结果与信号质量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量测量参考结果为所述N个波束的信号质量测量结果的计算结果;或者
    所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
  29. 如权利要求24所述的方法,还包括:
    依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
  30. 如权利要求24所述的方法,其中,所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
  31. 一种终端,包括:
    第一测量模块,用于对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
    上报模块,用于依据所述M个波束的部分或者全部波束的测量结果,向所述网络设备上报第一信息,所述第一信息包括如下至少一项:
    目标测量结果和接入状态信息;
    其中,所述目标测量结果为:依据所述M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;
    其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端 间接接入所述网络设备。
  32. 根据权利要求31所述的终端,其中,所述目标测量结果包括如下至少一项:
    所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
  33. 根据权利要求31所述的终端,还包括:
    接收模块,用于接收配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
  34. 根据权利要求33所述的终端,其中,所述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为用于发送所述N个参考信号的波束;或者
    所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
  35. 根据权利要求31所述的终端,其中,所述上报模块用于依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;以及依据所述N个波束是否具备QCL关系,向所述网络设备上报所述第一信息。
  36. 根据权利要求35所述的终端,其中,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系;或者
    在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
    在所述N个的测量结果包括所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
  37. 根据权利要求36所述的终端,其中,所述N个波束的信号质量测量 结果之间的差异值满足第一条件是指:
    所述N个波束中第一波束的信号质量测量结果与信号质量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量参考结果为所述N个波束的信号质量测量结果的计算结果;或者
    所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
  38. 根据权利要求35所述的终端,其中,在所述N个的测量结果包括所述N个波束的信号质量测量结果,且所述N个波束具备QCL关系的情况下:所述目标测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
    或者,
    在所述N个的测量结果包括所述N个波束的信号质量测量结果,且所述N个波束不具备QCL关系的情况下:所述目标测量结果包括所述N个波束中的若干个波束的信号质量测量结果。
  39. 根据权利要求38所述的终端,其中,所述N个波束具备QCL关系的情况下,所述目标测量结果包括:从所述合并测量结果和其他M-N个波束的信号质量测量结果中选择的信号质量靠前的K个测量结果,K为正整数;或者
    在所述N个波束不具备QCL关系的情况下,所述目标测量结果还包括M-N个波束中的至少一个波束的信号质量测量结果,所述至少一个波束的信号质量测量结果为:依据所述M-N个波束的信号质量测量结果的排序选择的至少一个波束的信号质量测量结果;
    其中,所述M-N个波束为所述网络设备除所述N个波束之外的M-N个波束。
  40. 根据权利要求38所述的终端,其中,所述第一信息还包括以下至少一项:
    用于指示所述目标测量结果是否包括合并测量结果的指示信息;
    用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
    用于指示所述N个波束是否具备QCL关系的指示信息。
  41. 根据权利要求38所述的终端,还包括:
    第二测量模块,用于在所述N个波束具备QCL关系的情况下,针对所述N个波束进行测量时,测量所述N个波束中的部分波束。
  42. 根据权利要求35所述的终端,其中,在所述N个波束具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
    在所述N个波束不具备QCL关系的情况下:所述接入状态信息表示所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
  43. 根据权利要求31所述的终端,其中,所述N个波束包括信号经过所述第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
  44. 一种网络设备,包括:
    获取模块,用于获取第一信息,所述第一信息包括:目标测量结果和接入状态信息中的至少一项;
    确定模块,用于依据第一信息确定终端接入所述网络设备的接入方式;
    其中,所述目标测量结果为:依据M个波束的部分或者全部波束的测量结果确定的测量结果,所述接入状态信息为:依据所述M个波束的部分或者全部波束的测量结果确定的,用于表示所述终端接入所述网络设备的接入方式的信息;所述M个波束中的所述N个波束为所述网络设备基于相同发送空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
    其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
  45. 根据权利要求44所述的网络设备,还包括:
    发送模块,用于发送配置信息,所述配置信息用于指示所述N个波束为相同的发送空间滤波器产生的波束。
  46. 根据权利要求45所述的网络设备,其中,所述配置信息指示N个参考信号是具备QCL关系的参考信号,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为用于发送所述N个参考信号的波束;或者
    所述配置信息指示第一节点的转发波束的工作时间,以隐式指示所述N个波束为相同的发送空间滤波器产生,所述N个波束为所述网络设备中工作在所述工作时间的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
  47. 根据权利要求44所述的网络设备,其中,所述目标测量结果包括如下至少一项:
    所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
  48. 根据权利要求47所述的网络设备,其中,所述确定模块用于依据所述目标测量结果,确定所述N个波束是否具备准共址QCL关系;以及依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式;
    其中,在所述N个波束具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为直接接入所述网络设备;或者
    在所述N个波束不具备QCL关系的情况下:所述终端接入所述网络设备的接入方式为间接接入所述网络设备。
  49. 根据权利要求48所述的网络设备,其中,若所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
    所述信号质量测量结果隐式指示所述N个波束是否具备QCL关系。
  50. 根据权利要求49所述的网络设备,其中,所述信号质量测量结果包括合并测量结果,或者,所述目标测量结果包括依据合并测量结果确定的测量结果的情况下:所述N个波束具备QCL关系,其中,所述合并测量结果为对所述N个波束的信号质量测量结果进行合并得到的测量结果;
    所述信号质量测量结果包括所述N个波束中的若干个波束的信号质量测量结果的情况下:所述N个波束不具备QCL关系。
  51. 根据权利要求50所述的网络设备,其中,所述第一信息还包括以下至少一项:
    用于指示所述目标测量结果是否包括合并测量结果的指示信息;
    用于指示所述目标测量结果是否包括依据合并测量结果确定的测量结果;
    用于指示所述N个波束是否具备QCL关系的指示信息。
  52. 根据权利要求44所述的网络设备,还包括:
    调度模块,用于依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
  53. 根据权利要求44所述的网络设备,其中,所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
  54. 一种网络设备,包括:
    测量模块,用于对M个波束的部分或者全部波束进行测量,其中,所述M个波束中的N个波束为网络设备基于相同接收空间滤波器产生的波束,M和N为大于1的整数,且N小于或者等于M;
    确定模块,用于依据所述M个波束的部分或者全部波束的测量结果,确定所述终端接入所述网络设备的接入方式;
    其中,所述接入方式为所述终端直接接入所述网络设备,或者所述终端间接接入所述网络设备。
  55. 根据权利要求54所述的网络设备,其中,所述N个波束的测量结果包括如下至少一项:
    所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果。
  56. 根据权利要求54所述的网络设备,其中,所述确定模块用于依据所述N个波束的测量结果,确定所述N个波束是否具备准共址QCL关系;以及依据所述N个波束是否具备QCL关系,确定所述终端接入所述网络设备的接入方式。
  57. 根据权利要求56所述的网络设备,其中,在所述N个的测量结果包括所述N个波束的信号质量测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,则所述N个波束具备QCL关系;或者
    在所述N个的测量结果包括所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的之间信道相关性高于第一门限,则所述N个波束具备QCL关系;或者
    在所述N个的测量结果包括所述N个波束的信号质量测量结果和所述N个波束之间的信道相关性测量结果的情况下:若所述N个波束的信号质量测量结果之间的差异值满足第一条件,且所述N个波束之间的信道相关性高于第一门限,则所述N个波束具备QCL关系。
  58. 根据权利要求57所述的网络设备,其中,所述N个波束的信号质量测量结果之间的差异值满足第一条件是指:
    所述N个波束中第一波束的信号质量测量结果与信号质量参考结果的差值小于或者等于第二门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述信号质量测量参考结果为所述N个波束的信号质量测量结果的计算结果;或者
    所述N个波束中第二波束的信号质量测量结果与第一波束的信号质量测量结果的绝对差值小于或者等于第三门限,所述第一波束为所述N个波束中信号质量测量结果的任一波束,所述第二波束为所述N个波束中信号不被第一节点影响的波束,其中,所述第一节点为用于转发所述网络设备相关的信号的节点。
  59. 根据权利要求54所述的网络设备,还包括:
    调度模块,用于依据所述终端接入所述网络设备的接入方式,为所述终端调度相应的传输资源。
  60. 根据权利要求54所述的网络设备,其中,所述N个波束包括信号经过第一节点转发的波束,以及还包括信号不经过所述第一节点转发的波束。
  61. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至13中任一项所述的信息上报方法中的步骤。
  62. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求14至23中任一项所述的接入方式确定方法中的步骤,或者所述程序被所述处理 器执行时实现如权利要求24至30中任一项所述的接入方式确定方法中的步骤。
  63. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至13中任一项所述的信息上报方法中的步骤,或者所述计算机程序被处理器执行时实现如权利要求14至23中任一项所述的接入方式确定方法中的步骤,或者所述计算机程序被处理器执行时实现如权利要求24至30中任一项所述的接入方式确定方法中的步骤。
  64. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至13中任一项所述的信息上报方法,或者如权利要求14至23中任一项所述的接入方式确定方法,或者如权利要求24至30中任一项所述的接入方式确定方法。
  65. 一种终端,用于执行如权利要求1至13中任一项所述的信息上报方法。
  66. 一种网络设备,用于执行如权利要求14至23中任一项所述的接入方式确定方法,或者如权利要求24至30中任一项所述的接入方式确定方法。
PCT/CN2021/078848 2020-03-09 2021-03-03 信息上报方法、接入方式确定方法、终端和网络设备 WO2021179965A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21767246.8A EP4120724A4 (en) 2020-03-09 2021-03-03 INFORMATION REPORTING METHOD, ACCESS METHOD DETERMINING METHOD, TERMINAL AND NETWORK DEVICE
JP2022554390A JP7535121B2 (ja) 2020-03-09 2021-03-03 情報報告方法、アクセス方式決定方法、端末とネットワーク機器
KR1020227034395A KR20220150355A (ko) 2020-03-09 2021-03-03 정보 리포팅 방법, 액세스 방식 결정 방법, 단말기 및 네트워크 기기
US17/893,392 US20220408277A1 (en) 2020-03-09 2022-08-23 Information reporting method, access manner determining method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010158943.2A CN113382439B (zh) 2020-03-09 2020-03-09 信息上报方法、接入方式确定方法、终端和网络设备
CN202010158943.2 2020-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/893,392 Continuation US20220408277A1 (en) 2020-03-09 2022-08-23 Information reporting method, access manner determining method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2021179965A1 true WO2021179965A1 (zh) 2021-09-16

Family

ID=77568732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078848 WO2021179965A1 (zh) 2020-03-09 2021-03-03 信息上报方法、接入方式确定方法、终端和网络设备

Country Status (6)

Country Link
US (1) US20220408277A1 (zh)
EP (1) EP4120724A4 (zh)
JP (1) JP7535121B2 (zh)
KR (1) KR20220150355A (zh)
CN (1) CN113382439B (zh)
WO (1) WO2021179965A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044266A1 (en) * 2021-09-17 2023-03-23 Qualcomm Incorporated Efficient reconfigurable intelligent surface or repeater assisted communication
WO2023044265A1 (en) * 2021-09-17 2023-03-23 Qualcomm Incorporated Reconfigurable intelligent surface or repeater assisted synchronization signal block transmission and initial access
WO2024131830A1 (zh) * 2022-12-22 2024-06-27 北京紫光展锐通信技术有限公司 滤波方法、测量上报方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11863281B2 (en) * 2020-04-30 2024-01-02 Qualcomm Incorporated Methods and apparatus to facilitate cross-carrier beam association
CN114449528A (zh) * 2020-11-06 2022-05-06 维沃移动通信有限公司 识别节点方法、装置、设备及可读存储介质
US20230073398A1 (en) * 2021-09-08 2023-03-09 Qualcomm Incorporated Dynamic quasi co-location mapping for multiple links with assistive communication nodes
WO2023047551A1 (ja) * 2021-09-24 2023-03-30 富士通株式会社 基地局装置、端末装置、無線通信システム及び無線通信方法
CN114286328A (zh) * 2021-10-11 2022-04-05 北京物资学院 一种无线通信系统中的信号处理方法和装置
EP4424060A1 (en) * 2021-10-25 2024-09-04 Qualcomm Incorporated Techniques for configuring communications associated with reconfigurable intelligent surfaces
CN114205834B (zh) * 2021-12-03 2024-06-25 中国信息通信研究院 一种无线通信系统同步块发送指示方法和设备
CN118435651A (zh) * 2021-12-28 2024-08-02 高通股份有限公司 用于反向散射通信中的波束确定和报告的技术
CN116471606A (zh) * 2022-01-12 2023-07-21 索尼集团公司 电子设备、无线通信方法和计算机可读存储介质
CN115955726A (zh) * 2022-04-29 2023-04-11 中兴通讯股份有限公司 随机接入过程的控制方法和相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304120A (zh) * 2015-06-08 2017-01-04 中兴通讯股份有限公司 一种波束识别方法、系统和网络节点
CN109150338A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信号传输方法、相关装置及系统
WO2019054575A1 (ko) * 2017-09-18 2019-03-21 삼성전자주식회사 무선 통신 시스템에서 빔포밍을 운용하기 위한 장치 및 방법
WO2019074761A1 (en) * 2017-10-12 2019-04-18 Qualcomm Incorporated BEAM MANAGEMENT SCHEMES

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10484066B2 (en) * 2017-04-04 2019-11-19 Qualcomm Incorporated Beam management using synchronization signals through channel feedback framework
KR102447632B1 (ko) * 2017-04-28 2022-09-27 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 무선 통신 네트워크에서의 반사 컴포넌트 추정
CN110661556B (zh) * 2018-06-29 2022-04-05 华为技术有限公司 发送和接收信道状态信息的方法和通信装置
JP7096334B2 (ja) * 2018-07-13 2022-07-05 株式会社Nttドコモ 端末、基地局、無線通信方法及びシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304120A (zh) * 2015-06-08 2017-01-04 中兴通讯股份有限公司 一种波束识别方法、系统和网络节点
CN109150338A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信号传输方法、相关装置及系统
WO2019054575A1 (ko) * 2017-09-18 2019-03-21 삼성전자주식회사 무선 통신 시스템에서 빔포밍을 운용하기 위한 장치 및 방법
WO2019074761A1 (en) * 2017-10-12 2019-04-18 Qualcomm Incorporated BEAM MANAGEMENT SCHEMES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120724A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044266A1 (en) * 2021-09-17 2023-03-23 Qualcomm Incorporated Efficient reconfigurable intelligent surface or repeater assisted communication
WO2023044265A1 (en) * 2021-09-17 2023-03-23 Qualcomm Incorporated Reconfigurable intelligent surface or repeater assisted synchronization signal block transmission and initial access
US11695466B2 (en) 2021-09-17 2023-07-04 Qualcomm Incorporated Reconfigurable intelligent surface or repeater assisted synchronization signal block transmission and initial access
US11863286B2 (en) 2021-09-17 2024-01-02 Qualcomm Incorporated Efficient reconfigurable intelligent surface or repeater assisted communication
WO2024131830A1 (zh) * 2022-12-22 2024-06-27 北京紫光展锐通信技术有限公司 滤波方法、测量上报方法及装置

Also Published As

Publication number Publication date
EP4120724A1 (en) 2023-01-18
KR20220150355A (ko) 2022-11-10
CN113382439B (zh) 2022-12-13
CN113382439A (zh) 2021-09-10
JP2023517925A (ja) 2023-04-27
JP7535121B2 (ja) 2024-08-15
US20220408277A1 (en) 2022-12-22
EP4120724A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2021179965A1 (zh) 信息上报方法、接入方式确定方法、终端和网络设备
WO2020221042A1 (zh) Prs资源配置方法、测量间隔配置方法和相关设备
EP3998713A1 (en) Transmitting antenna switching method and terminal device
US11855734B2 (en) Beam failure processing method and related device
WO2021023061A1 (zh) 准共址qcl信息确定方法、配置方法及相关设备
WO2020164594A1 (zh) 测量处理方法、参数配置方法、终端和网络设备
US20220014335A1 (en) Method for reporting positioning measurement information, terminal, and network device
WO2020253587A1 (zh) Srs功率控制方法、srs功率控制的配置方法及相关设备
WO2021109955A1 (zh) 邻小区csi报告发送方法、接收方法及相关设备
WO2021179966A1 (zh) 信号传输方法、信息指示方法和通信设备
US11936474B2 (en) Transmission antenna switching method and terminal device
WO2021088970A1 (zh) 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备
WO2021078235A1 (zh) 测量处理方法、指示信息发送方法、终端和网络设备
WO2021175178A1 (zh) 功率余量报告上报方法及终端
WO2021027713A1 (zh) 上行传输方法、上行传输控制方法及相关设备
WO2021004522A1 (zh) 调度请求发送方法、调度请求接收方法、终端和网络设备
JP7139441B2 (ja) 測定結果の指示方法、端末及び基地局
WO2021155807A1 (zh) 传输控制方法、终端及网络设备
US20200252966A1 (en) Random access method and user equipment
US20210105651A1 (en) Measurement gap processing method, terminal, and network node
WO2021000778A1 (zh) 上行发送丢弃方法、上行发送丢弃配置方法及相关设备
WO2021208953A1 (zh) 冲突资源判断方法、终端和网络设备
US20210219247A1 (en) Power headroom reporting method and terminal device
WO2021197149A1 (zh) 终端能力上报、确定方法、终端及通信设备
WO2020216331A1 (zh) 随机接入方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554390

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227034395

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767246

Country of ref document: EP

Effective date: 20221010