WO2021078235A1 - 测量处理方法、指示信息发送方法、终端和网络设备 - Google Patents

测量处理方法、指示信息发送方法、终端和网络设备 Download PDF

Info

Publication number
WO2021078235A1
WO2021078235A1 PCT/CN2020/123091 CN2020123091W WO2021078235A1 WO 2021078235 A1 WO2021078235 A1 WO 2021078235A1 CN 2020123091 W CN2020123091 W CN 2020123091W WO 2021078235 A1 WO2021078235 A1 WO 2021078235A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
state
indication
information
measurement state
Prior art date
Application number
PCT/CN2020/123091
Other languages
English (en)
French (fr)
Inventor
陈力
潘学明
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to BR112022007703A priority Critical patent/BR112022007703A2/pt
Priority to KR1020227016604A priority patent/KR20220084364A/ko
Priority to EP20878205.2A priority patent/EP4050927A4/en
Publication of WO2021078235A1 publication Critical patent/WO2021078235A1/zh
Priority to US17/724,766 priority patent/US20220248244A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, in particular to a measurement processing method, a method for sending indication information, a terminal and a network device.
  • the terminal In order to ensure the reliability of the terminal’s communication, the terminal often needs to perform some measurements, for example, through radio link monitoring (Radio Link Monitor, RLM) measurement to ensure the reliability of the wireless link, such as through beam failure detection (Beam Failure Detection). , BFD) measurement to ensure the reliability of the beam.
  • RLM Radio Link Monitor
  • BFD Beam Failure Detection
  • the terminal In the current technology, the terminal often maintains a measurement state, that is, the measurement state of the terminal cannot be adjusted, resulting in poor measurement capability of the terminal.
  • the embodiment of the present invention provides a measurement processing method, a method for sending indication information, a terminal, and a network device to solve the problem that the measurement state of the terminal cannot be adjusted and the measurement capability of the terminal is relatively poor.
  • an embodiment of the present invention provides a measurement processing method applied to a terminal, including:
  • the indication message is used to indicate measurement adjustment information, where the measurement includes measurement of at least one of RLM and BFD;
  • an embodiment of the present invention provides a method for sending indication information, which is applied to a network device, and includes:
  • the instruction message is used to indicate measurement adjustment information, where the measurement includes measurement of at least one of RLM and BFD, and the information is used to enable the terminal to determine whether to adjust the measurement state of the measurement.
  • an embodiment of the present invention provides a terminal, including:
  • a receiving module configured to receive an indication message, the indication message being used to indicate measurement adjustment information, wherein the measurement includes measurement of at least one of RLM and BFD;
  • the determining module is used to determine whether to adjust the measurement state of the measurement according to the information.
  • an embodiment of the present invention provides a network device, including:
  • the sending module is configured to send an indication message, the indication message is used to indicate measurement adjustment information, wherein the measurement includes the measurement of at least one of RLM and BFD, and the information is used to enable the terminal to determine whether to adjust the measurement Measurement status.
  • an embodiment of the present invention provides a terminal, including: a memory, a processor, and a program stored on the memory and capable of running on the processor, and the program is executed by the processor to realize this The steps in the measurement processing method provided by the embodiment of the invention.
  • an embodiment of the present invention provides a network device, including: a memory, a processor, and a program that is stored on the memory and can run on the processor, and is implemented when the program is executed by the processor The steps in the instruction information sending method provided in the embodiment of the present invention.
  • an embodiment of the present invention provides a computer-readable storage medium, characterized in that a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the The steps in the measurement processing method, or when the computer program is executed by the processor, implement the steps in the instruction information sending method provided in the embodiment of the present invention.
  • an instruction message is received, and the instruction message is used to indicate measurement adjustment information, wherein the measurement includes the measurement of at least one of RLM and BFD; according to the information, it is determined whether to adjust the measurement. Measurement status. This can support the terminal to adjust the measurement state, thereby improving the measurement capability of the terminal.
  • Figure 1 is a structural diagram of a network system applicable to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for sending indication information according to an embodiment of the present invention
  • Figure 4 is a structural diagram of a terminal provided by an embodiment of the present invention.
  • Figure 5 is a structural diagram of another terminal provided by an embodiment of the present invention.
  • Figure 6 is a structural diagram of a network device provided by an embodiment of the present invention.
  • Figure 7 is a structural diagram of another network device provided by an embodiment of the present invention.
  • FIG. 8 is a structural diagram of another terminal provided by an embodiment of the present invention.
  • Fig. 9 is a structural diagram of another network device provided by an embodiment of the present invention.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiment of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the measurement processing method, the indication information sending method, the terminal, and the network device provided by the embodiments of the present invention can be applied to a wireless communication system.
  • the wireless communication system can be a New Radio (NR) system, or other systems, such as: Evolved Long Term Evolution (eLTE) system or Long Term Evolution (LTE) system, or subsequent evolution Communication system, etc.
  • NR New Radio
  • eLTE Evolved Long Term Evolution
  • LTE Long Term Evolution
  • subsequent evolution Communication system etc.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present invention. As shown in FIG. 1, it includes a terminal 11 and a network device 12.
  • the terminal 11 may be a user terminal (User Equipment, UE). ) Or other terminal side devices, such as mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (PDA), mobile Internet devices (Mobile Internet Device, MID)
  • UE User Equipment
  • UE User Equipment
  • PDA personal digital assistants
  • mobile Internet devices Mobile Internet Device, MID
  • For terminal-side devices such as wearable devices (Wearable Devices) or robots, it should be noted that the specific type of the terminal 11 is not limited in the embodiment of the present invention.
  • the aforementioned network device 12 may be a 4G base station, or a 5G base station, or a base station of a later version, or a base station in other communication systems, or it is called Node B, Evolved Node B, or Transmission Reception Point (TRP), Or access point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • the aforementioned network device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiment of the present invention, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of a measurement processing method provided by an embodiment of the present invention. The method is applied to a terminal. As shown in FIG. 2, it includes the following steps:
  • Step 201 Receive an indication message, where the indication message is used to indicate measurement adjustment information, where the measurement includes measurement of at least one of RLM and BFD.
  • the foregoing indication message may be sent by the receiving network device, and the foregoing measurement may be RLM measurement or BFD measurement, or may be RLM measurement and BFD measurement.
  • RLM measurement may also be referred to as RLM monitoring
  • BFD measurement may also be referred to as BFD monitoring.
  • the foregoing measurement may be a measurement in a discontinuous reception (Discontinuous reception, DRX) period.
  • DRX discontinuous reception
  • the above information may be related to the terminal adjusting the measurement state of the above measurement, for example: indicating whether the cell supports one or more measurement states, so that the terminal can determine whether to adjust from the original measurement state to these measurement states.
  • a measurement state may be a measurement adjustment parameter, so that the terminal can determine whether to adjust the measurement state and so on according to the measurement.
  • Step 202 Determine whether to adjust the measurement state of the measurement according to the information.
  • the foregoing determination of whether to adjust the measurement state of the measurement based on the information may be: determining whether to adjust the measurement state of the measurement when the foregoing information indicates that the terminal adjusts the measurement state; or the foregoing determining whether to adjust the measurement based on the information
  • the measurement state may be that, in the case where the above information indicates that one or more measurement states are supported, the terminal may determine whether to adjust to one or more of the indications in combination with the sensor information or cell information of the terminal A measurement state in the measurement state; or the foregoing determination of whether to adjust the measurement state of the measurement based on the information may be, in the case where the foregoing information indicates an adjustment parameter, the terminal determines the measurement state of the adjustment measurement according to the adjustment parameter, etc. Wait. Specifically, it may be determined whether to adjust the measurement state only based on the above information, or it may be determined whether to adjust the measurement state based on the information combined with other information of the terminal.
  • the above method also includes adjusting the measurement state of the above measurement, for example: adjusting from one measurement state with high energy consumption to another measurement with low energy consumption. State, so as to achieve the effect of saving terminal power consumption, that is, to achieve the purpose of power saving.
  • the foregoing indication message includes system information or an advance indication message.
  • the foregoing system information may be a system information block (System Information Block, SIB), and the foregoing advance indication message may be at least one of the following: wake-up-signaling (WUS), sleep signal (Go-to-sleep) , GTS) and Downlink Control Information (DCI), where the DCI includes scheduling DCI or other newly designed DCI.
  • SIB System Information Block
  • WUS wake-up-signaling
  • GRS sleep signal
  • DCI Downlink Control Information
  • the adjusting the measurement state of the measurement includes adjusting between any two measurement states as follows:
  • the first measurement state, the second measurement state, and the third measurement state wherein the first measurement state refers to measurement relaxation, the second measurement state refers to normal measurement, and the third measurement state refers to measurement enhancement.
  • the energy consumption of performing the measurement in the first measurement state may be lower than the energy consumption of performing the measurement in the second measurement state, and the energy consumption of performing the measurement in the second measurement state may be It is lower than the energy consumption of performing the measurement in the third measurement state.
  • the above-mentioned measured energy consumption may be the power consumption of the terminal during the above-mentioned measurement.
  • the above-mentioned first measurement state refers to measurement relaxation, which may mean, the first measurement state refers to a state in which measurement relaxation is performed on the basis of the second measurement state, and the above third measurement state refers to measurement enhancement, which may mean, The third measurement state refers to a state in which measurement enhancement is performed on the basis of the second measurement state.
  • the above-mentioned first measurement state refers to measurement relaxation
  • the above-mentioned second measurement state refers to normal measurement
  • the above-mentioned second measurement state can be referred to as a normal measurement state ( Referred to as normal measurement).
  • the normal measurement may refer to the default measurement state or the pre-configured state
  • the third measurement state refers to the measurement enhancement
  • the third measurement state may be referred to as the measurement enhancement state (referred to as the measurement enhancement state).
  • Enhanced
  • the first measurement state satisfies at least one of the following:
  • the measurement period is longer than the measurement period of the second measurement state
  • the number of measurement samples in the first time is less than the number of measurement samples in the second measurement state
  • the measurement indication interval is longer than the measurement indication interval of the second measurement state
  • the upper layer indication for not performing the measurement within the third time (Upper layer indication), or the number of upper layer indications measured during the third time is less than the measured upper layer indication for the second measurement state;
  • the number of the measured reference signals is less than the number of the measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes a difference in at least one of a period of the reference signal and a subcarrier space (SCS).
  • SCS subcarrier space
  • the measurement period may be the measurement period of at least one of layer one (L1), layer 2 (L2) and layer 3 (L3), and the number of measurement samples may be the number of measurement samples.
  • the foregoing measurement is longer than the measurement period of the second measurement state, and the number of measurement samples being smaller than the measurement sampling number of the second measurement state, the foregoing measurement (for example: RLM/BFD measurement) can be relaxed in the time domain. That is, the L1 measurement period of the above-mentioned measurement is extended or the number of measurement samples is reduced to save power.
  • the measurement indication interval may be the measurement indication interval in layer 2 or layer 3.
  • the measurement indication interval in the second measurement state may be longer than the measurement indication interval in the second measurement state to realize the measurement in the time domain (for example: RLM/BFD measurement) Relax, that is, the above-mentioned measurement L2/L3 indicates that the interval is extended to save power.
  • the aforementioned first time, second time, and third time may be the same or different time periods, or the same or different time periods.
  • the above measurement is not performed within a period of time (for example: RLM /BFD measurement) or reduce the above measurement to save power.
  • the number of the above-mentioned measured reference signals is less than the number of the measured parameter signals in the second measurement state, and the number of the above-mentioned measurement (for example: RLM/BFD measurement) reference signals is reduced to save power.
  • the period of the foregoing reference signal is different, and the period of the reference signal measured in the first measurement state may be greater than the period of the reference signal measured in the second measurement state.
  • the foregoing SCS difference may be that the SCS of the reference signal measured in the first measurement state is greater than The SCS of the reference signal measured in the second measurement state, which can save power.
  • multiple ways are provided to make the energy consumption of performing the measurement in the first measurement state lower than the energy consumption of performing the measurement in the second measurement state.
  • the foregoing manner is not limited, and it may also be a manner in which the energy consumption of performing the measurement in the first measurement state is lower than the energy consumption of performing the measurement in the second measurement state.
  • the third measurement state satisfies at least one of the following:
  • the measurement period is shorter than the measurement period of the second measurement state
  • the number of measurement samples in the fourth time is greater than the number of measurement samples in the second measurement state
  • the measurement indication interval is shorter than the measurement indication interval of the second measurement state
  • the upper-layer indication of the measurement is performed within the sixth time, or the number of upper-layer indications measured during the sixth time is greater than the upper-layer indication of the measurement in the second measurement state;
  • the number of measured reference signals is greater than the number of measured parameter signals in the second measurement state
  • the measured reference signal is different from the number of measured parameter signals in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • the above-mentioned information is used to indicate that the above-mentioned at least one item may be that the above-mentioned information includes the content of the above-mentioned at least one item.
  • the parameters of the measurement state may be parameters of one or more of the first measurement state, the second measurement state, and the third measurement state, such as the parameters of the first measurement state.
  • the parameter of the measurement state here may be a parameter related to the measurement, for example: at least one of a timer and a counter related to the measurement, for example: a timer T310 and a timer T311 for judging beam failure or radio link failure , The parameter of at least one of the counter N310 and the counter N311.
  • the above-mentioned measurement parameter may be a parameter of the measurement state of the cell.
  • the measurement state supported by the cell may be the measurement state supported by the cell. Further, the measurement state supported by the cell may be one or more of the first measurement state, the second measurement state, and the third measurement state supported by the cell. Measurement state, for example, the cell supports the first measurement state.
  • the type of the above-mentioned cell may be the type of the cell, such as indoor and outdoor macro cells, outdoor micro cells, and so on.
  • the above-mentioned information includes at least one of the above-mentioned items, which enables the terminal to determine whether to adjust the measurement state of the measurement according to the information. If the above information includes that the cell supports the first measurement state, the terminal can determine to adjust to the first measurement state. If the above information includes the cell type, if the cell type is a cell type that supports the first measurement state or the third measurement state, it can It is determined to adjust to the first measurement state or the third measurement state. If the above information includes parameters of the first measurement state, the terminal may determine to adjust to the first measurement state.
  • the foregoing indication message may be a broadcast indication message, for example, the indication message includes a SIB message.
  • the information is used to indicate at least one of the following:
  • Parameters of measurement status supported measurement status, first indication, second indication and third indication
  • the information is used to indicate at least one of the following:
  • Parameters of the measurement state whether the first measurement state is supported, whether the third measurement state is supported, the first indication, the second indication, and the third indication
  • the first indication is used to instruct to skip the measurement corresponding to at least one cycle
  • the second indication is used to instruct to perform measurement at least one cycle after the indication message
  • the cycle includes a measurement cycle and a non-continuous cycle.
  • the third indication is used to indicate to skip at least one upper-layer indication period.
  • the parameters of the measurement state may be parameters of one or more of the first measurement state, the second measurement state, and the third measurement state, such as the parameters of the first measurement state.
  • the parameter of the measurement state here may be a parameter related to the measurement, for example: at least one of a timer and a counter related to the measurement, for example: a timer T310 and a timer T311 for judging beam failure or radio link failure , The parameter of at least one of the counter N310 and the counter N311.
  • the above-mentioned measurement parameter may be a parameter of the measurement state of the above-mentioned terminal.
  • the supported measurement state may be a measurement state supported by the terminal or network device. Further, the supported measurement state may be that the terminal or network device supports any of the first measurement state, the second measurement state, and the third measurement state. One or more measurement states, for example, the aforementioned terminal or network device supports the first measurement state.
  • the foregoing first indication is used to indicate the skipping of the measurement corresponding to at least one cycle.
  • the foregoing information may be used to indicate the skipping of one or more measurement periods (for example: RLM/BFD measurement period) or the foregoing measurement corresponding to the DRX cycle ( For example: RLM/BFD measurement), or used to indicate that the above measurement (for example: RLM/BFD measurement) will not be performed in the next several measurement periods (for example: RLM/BFD measurement period) or the upper-layer indication period or DRX period (for example: RLM/BFD measurement) to save power .
  • the above-mentioned second indication is used to indicate that the measurement is performed in at least one period.
  • the above-mentioned information may be used to indicate that the measurement period is performed in several subsequent measurement periods (for example: RLM/BFD measurement period) or the upper-layer indication period or DRX period to perform the above-mentioned measurement (for example, : RLM/BFD measurement).
  • the above third indication is used to indicate the skipping of at least one upper-layer indication period.
  • the above information may be used to indicate the skipping of one or more upper-layer indication periods, that is, no upper-layer indication is performed during these one or more upper-layer indication periods, but it may be Measure to save power.
  • the above-mentioned information includes at least one of the above-mentioned items, which enables the terminal to determine whether to adjust the measurement state of the measurement according to the information, and enables the terminal to perform measurement according to the above-mentioned information.
  • the foregoing indication message may be sent through a dedicated message of the terminal, for example: the foregoing indication message is included in the advance indication message.
  • the embodiments of the present invention do not limit the foregoing information to include the foregoing content.
  • the foregoing information may include parameters configured on the network side, such as related parameters used to determine radio link failure or beam failure, and the terminal depends on these parameters. Determine whether to adjust the measurement status of the above measurement.
  • the information includes the following items:
  • BWP Bandwidth part
  • the information configured by the network side for each terminal may be Per-UE configuration, that is, the network configures separate information for indicating measurement adjustment for each terminal.
  • the information configured by the network side for each cell may be a Per-cell configuration, that is, the information configured by the network in the range of a cell for indicating measurement adjustment is consistent, so that the terminal applies the information in the range of the cell.
  • the information configured on the network side for each frequency, each carrier, each frequency band, or each bandwidth part may be: information for indicating measurement adjustment is configured separately for each frequency, or information for indicating measurement adjustment is configured separately for each carrier
  • the measurement adjustment information may be configured separately for each frequency band to indicate measurement adjustment, or each bandwidth part may be configured separately for indicating measurement adjustment.
  • the Per-frequency/carrier/band/BWP configuration that is, the network configured in a frequency/carrier/band/BWP range is consistent with the information used to indicate the measurement adjustment.
  • the information configured on the network side for each frequency, each carrier, each frequency band, or each bandwidth part of each terminal may be configured to separately configure information for indicating measurement adjustment for each frequency of each terminal, or Each carrier of each terminal is individually configured to indicate measurement adjustment information, or each frequency band of each terminal is separately configured to indicate measurement adjustment information, or each bandwidth part of each terminal is separately configured to indicate measurement adjustment.
  • Information indicating measurement adjustment For example: According to Per-UE per-frequency/carrier/band/BWP configuration, that is, the network configured for each terminal in a frequency/carrier/band/BWP range is consistent with the information used to indicate measurement adjustment.
  • the foregoing information configured on the network side for each beam may be information for indicating measurement adjustment, that is, Per-Beam configuration, separately configured for each beam, so that the terminal uses information corresponding to the measurement application corresponding to the beam.
  • the above-mentioned indication message indicates the information explicitly or implicitly.
  • the explicit indication of the information may be to indicate the above-mentioned information through several bits, for example: the indication message explicitly indicates the information through at least one bit.
  • the implicit indication may be implicitly indicated through other message content.
  • the above indication message implicitly indicates the skipping of physical downlink control channel (Physical downlink control channel, PDCCH) monitoring or not starting the DRX duration timer.
  • the information specifically, may implicitly indicate at least one of the foregoing items included in the foregoing information, so that signaling overhead can be saved.
  • the foregoing determining whether to adjust the measurement state of the measurement based on the information includes:
  • the parameter of the terminal includes at least one of a moving speed and a position of the terminal.
  • the parameters of the terminal mentioned above have a corresponding relationship with the measurement state of the measurement, so that a suitable measurement state of the terminal can be determined according to the corresponding relationship.
  • the above-mentioned cell type has a corresponding relationship with the measurement state of the measurement, so that a suitable measurement state can be determined according to the cell type.
  • the corresponding relationship here may be pre-configured, or the network device is configured to the terminal, or agreed in the agreement. For example: the indoor cell performs RLM/BFD measurement relaxation or measurement enhancement, or vice versa, a combination of normal measurement and so on.
  • the foregoing determination of whether to adjust the measurement state of the measurement based on the information and the parameters of the terminal may be that the foregoing information indicates that certain measurement states are supported, and the terminal determines which measurement state is currently suitable for the terminal according to the parameters of the terminal, thereby deciding whether to Adjust the measurement state; or the above information indicates some parameters of the measurement state, the terminal determines which measurement state is currently suitable for the terminal according to the parameters of the terminal, thereby deciding whether to adjust the measurement state, etc.
  • the foregoing determination of whether to adjust the measurement state of the measurement based on the information, the parameters of the terminal, and the cell type may be: determining the measurement state supported by the cell based on the information and cell type, and the terminal then determines the measurement state supported by the cell according to the parameters of the terminal.
  • the terminal Determine which measurement state the terminal is currently suitable for, thereby deciding whether to adjust the measurement state; or the information indicates that certain measurement states are supported, and the terminal judges which measurement state is currently suitable for the terminal according to the parameters and cell types of the terminal, thereby deciding whether to adjust the measurement state; or The above-mentioned information indicates certain measurement state parameters, and the terminal determines which measurement state is currently suitable for the terminal according to the parameters of the terminal and the cell type, thereby deciding whether to adjust the measurement state, etc.
  • the foregoing determination of whether to adjust the measurement state of the measurement based on the information and cell type may be to determine the measurement state supported by the cell based on the information and cell type, so that the terminal determines whether to adjust to the measurement supported by the cell.
  • the indoor cell can be adjusted to the first measurement state (e.g., RLM/BFD measurement relaxed), and vice versa, it can be adjusted to the second measurement state (e.g., normal measurement) or the third measurement state (e.g., enhanced measurement).
  • At least one of the moving speed and the position of the terminal may be determined according to the threshold configured on the network side and the measurement result of the terminal. For example, when the cell center or the moving speed is low, it can be adjusted to the first measurement state (for example: RLM/BFD measurement relaxed), otherwise it can be adjusted to the second measurement state (for example: normal measurement) or the third measurement state (for example: enhanced measuring). Of course, at least one of the moving speed and position of the terminal can also be determined according to the preset time.
  • the first measurement state for example: RLM/BFD measurement relaxed
  • the second measurement state for example: normal measurement
  • the third measurement state for example: enhanced measuring
  • at least one of the moving speed and position of the terminal can also be determined according to the preset time.
  • the above-mentioned information is combined with the parameters of the terminal and the cell type to determine whether to adjust the measurement state, so that the determined result is more accurate and more in line with the actual situation of the terminal, so as to further improve the measurement performance of the terminal.
  • the threshold may be configured through the above-mentioned information.
  • the above information includes the measurement adjustment judgment threshold, it can be judged whether to perform RRM measurement adjustment according to the following rules:
  • the terminal performs RLM/BFD measurement relaxation, or when the measurement result is lower than or equal to the second threshold, the terminal performs normal RLM/BFD measurement;
  • the terminal performs normal RLM/BFD measurement, or when the measurement result is lower than or equal to the second threshold, the terminal performs RLM/BFD measurement enhancement;
  • the terminal performs RLM/BFD measurement relaxation, or when the measurement result is lower than or equal to the second threshold, the terminal performs RLM/BFD measurement enhancement.
  • the first threshold or the second threshold in 1, 2, and 3 above may be the same or different, and may be specifically configured by the network.
  • first threshold and/or the second threshold may be the same as or different from the S-measure threshold defined in the protocol (threshold used to determine whether to perform adjacent cell or other frequency measurement in the connected state and the idle state).
  • the above information includes the RLM/BFD measurement adjustment judgment threshold and the preset time, and then it can be judged whether to perform the RLM/BFD measurement adjustment according to the following rules:
  • the terminal performs RLM/BFD measurement relaxation, or when the measurement result is always lower than or equal to the second threshold within the preset time two, the terminal Perform normal RLM/BFD measurement;
  • the terminal performs normal RLM/BFD measurement, or when the measurement result is always lower than or equal to the second threshold within the preset time two, the terminal Perform RLM/BFD measurement enhancement;
  • the terminal performs RLM/BFD measurement relaxation, or when the measurement result is always lower than or equal to the second threshold within the preset time two, the terminal Perform RLM/BFD measurement enhancements.
  • the terminal performs RLM/BFD measurement relaxation, or when the measurement result is lower than or equal to the second threshold, And if no measurement result is higher than the first threshold within the second preset time, the terminal performs normal RLM/BFD measurement;
  • the terminal performs ordinary RLM/BFD measurement, or when the measurement result is lower than or equal to the second threshold, And if no measurement result is higher than the first threshold within the second preset time, the terminal performs RLM/BFD measurement enhancement;
  • the terminal performs RLM/BFD measurement relaxation, or when the measurement result is lower than or equal to the second threshold, And if no measurement result is higher than the first threshold within the second preset time, the terminal performs RLM/BFD measurement enhancement.
  • the first threshold or the second threshold in 1, 2, and 3 above may be the same or different, and may be specifically configured by the network.
  • first threshold and/or the second threshold may be the same as or different from the S-measure threshold defined in the protocol (threshold used to determine whether to perform adjacent cell or other frequency measurement in the connected state and the idle state).
  • the above information includes the RLM/BFD measurement preset timer or preset time or counter, it can be determined whether to perform RLM/BFD measurement adjustment according to the following rules:
  • the terminal After the terminal performs RLM/BFD measurement relaxation or measurement enhancement for the preset time, it will automatically return to RLM/BFD normal measurement, or start the timer when the terminal starts RLM/BFD measurement relaxation/enhancement, and when the timer expires , Then return to RLM/BFD normal measurement.
  • the above information includes the RLM/BFD measurement adjustment judgment threshold and the preset time, and then it can be judged whether to perform the RLM/BFD measurement adjustment according to the following rules:
  • the terminal performs RLM/BFD measurement relaxation, or when the change of the measurement result within the preset time two is always higher than or equal to the second threshold , The terminal performs normal RLM/BFD measurement;
  • the terminal performs normal RLM/BFD measurement, or when the change in the measurement result within the preset time two is higher than or equal to the second threshold , The terminal performs RLM/BFD measurement enhancement.
  • the terminal performs RLM/BFD measurement relaxation, or when the change in the measurement result within the preset time two is greater than or equal to the second threshold , The terminal performs RLM/BFD measurement enhancement.
  • the terminal performs RLM/BFD measurement relaxation, or when the change of the measurement result within the preset time two is always higher than or equal to the second threshold , The terminal performs normal RLM/BFD measurement;
  • the terminal performs normal RLM/BFD measurement, or when the change in the measurement result within the preset time two is higher than or equal to the second threshold , The terminal performs RLM/BFD measurement enhancement.
  • the terminal performs RLM/BFD measurement relaxation, or when the change in the measurement result within the preset time two is greater than or equal to the second threshold , The terminal performs RLM/BFD measurement enhancement.
  • the terminal performs RLM/BFD measurement relaxation, Or when the change in the measurement result within the preset time one is higher than or equal to the first threshold, and there is no change in the measurement result lower than or equal to the first threshold within the preset time one, the terminal performs normal RLM/BFD measurement;
  • the terminal performs normal RLM/BFD measurement. Or when the change in the measurement result within the preset time one is higher than or equal to the first threshold, and there is no change in the measurement result lower than or equal to the first threshold within the preset time one, the terminal performs RLM/BFD measurement enhancement;
  • the terminal performs RLM/BFD measurement relaxation, Or when the change in the measurement result within the preset time one is higher than or equal to the first threshold, and there is no change in the measurement result lower than or equal to the first threshold within the preset time one, the terminal performs RLM/BFD measurement enhancement.
  • the first threshold or the second threshold in 1, 2, and 3 above may be the same or different, and may be specifically configured by the network.
  • first threshold and/or the second threshold may be the same as or different from the S-measure threshold defined in the protocol (threshold used to determine whether to perform adjacent cell or other frequency measurement in the connected state and the idle state).
  • the method before the foregoing receiving the indication message, the method further includes:
  • the measurement state requesting the measurement adjustment and the parameter requesting the measurement adjustment
  • the measurement status for requesting the measurement adjustment includes at least one of the following:
  • the first measurement state, the second measurement state, and the third measurement state are the first measurement state, the second measurement state, and the third measurement state.
  • the measurement state requested for the measurement adjustment may be the measurement state that the terminal expects to adjust before receiving the indication message. It should be noted that, when the measurement state requested for the measurement adjustment includes multiple items of the first measurement state, the second measurement state, and the third measurement state, it may be that the terminal desires to adjust to the first measurement state. Any one of a number of states, the second measurement state, and the third measurement state. For example, if the measurement state requested for the measurement adjustment includes the first measurement state and the second measurement state, it means that the terminal expects to be adjusted to any one of the first measurement state and the second measurement state.
  • the network side further configures the terminal to be specifically adjusted to a certain measurement state.
  • the measurement state requested for the measurement adjustment includes multiple of the first measurement state, the second measurement state, and the third measurement state, it may be in multiple beams, carriers, BWPs or frequency bands.
  • the measurement state requested on beam 1 for example, the measurement state requested on beam 1 is the first measurement state, the measurement state requested on beam 2 is the third measurement state, and the measurement state requested on beam 2 is the second measurement state.
  • the parameter requesting the measurement adjustment includes at least one of the following:
  • the period of the measurement the period indicating the upper layer, the threshold value related to the measurement, and the duration related to the measurement.
  • the measurement period may be the period of the above-mentioned RLM measurement and BFD measurement.
  • the above-mentioned measurement-related thresholds may be the thresholds of counters and timers related to performing RLM and BFD measurements, such as T310, T311, N310, and N311.
  • the aforementioned measurement-related duration may be the duration of the measurement adjustment, for example: the first time, the second time, the third time, the fourth time, the fifth time, or the sixth time described in the foregoing embodiment. Or it may be the aforementioned determining the duration of the adjusted measurement state.
  • the measurement state of the measurement adjustment and the parameter request of the measurement adjustment are requested, so that the network side terminal can be notified of the desired measurement state and the desired adjustment parameter, so that the network side and the terminal can perform the measurement state Negotiation to improve the measurement capability of the terminal, for example: the network side allows the terminal to perform measurement status, or the network side further optimizes the parameters for measurement adjustment.
  • the foregoing measurement includes at least one of the following:
  • the above-mentioned local cell measurement can realize the adjustment of the measurement status of the local cell measurement
  • the above-mentioned neighboring cell measurement can realize the adjustment of the measurement status of the adjacent cell measurement
  • the above-mentioned inter-frequency point measurement can realize the adjustment of the measurement status of the inter-frequency point measurement
  • the above-mentioned different system measurement It can adjust the measurement status of different systems.
  • the aforementioned neighbor cell measurement may include co-frequency neighbor cell measurement, other frequency point measurement, and other RAT measurement.
  • an instruction message is received, and the instruction message is used to indicate measurement adjustment information, wherein the measurement includes the measurement of at least one of RLM and BFD; according to the information, it is determined whether to adjust the measurement. Measurement status. This can support the terminal to adjust the measurement state, thereby improving the measurement capability of the terminal.
  • FIG. 3 is a flowchart of a method for sending indication information according to an embodiment of the present invention.
  • the method is applied to a network device. As shown in FIG. 3, it includes the following steps:
  • Step 301 Send an instruction message, the instruction message is used to indicate measurement adjustment information, where the measurement includes measurement of at least one of RLM and BFD, and the information is used to enable the terminal to determine whether to adjust the measurement of the measurement. status.
  • the adjusting the measurement state of the measurement includes adjusting between any two measurement states as follows:
  • the first measurement state, the second measurement state, and the third measurement state wherein the first measurement state refers to measurement relaxation, the second measurement state refers to normal measurement, and the third measurement state refers to measurement enhancement.
  • the first measurement state satisfies at least one of the following:
  • the measurement period is longer than the measurement period of the second measurement state
  • the number of measurement samples in the first time is less than the number of measurement samples in the second measurement state
  • the measurement indication interval is longer than the measurement indication interval of the second measurement state
  • the upper-layer indication for not performing the measurement within the third time, or the number of upper-layer indications measured during the third time is less than the upper-layer indication for the measurement in the second measurement state;
  • the number of the measured reference signals is less than the number of the measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes a difference in at least one of a period of the reference signal and a subcarrier interval.
  • the third measurement state satisfies at least one of the following:
  • the measurement period is shorter than the measurement period of the second measurement state
  • the number of measurement samples in the fourth time is greater than the number of measurement samples in the second measurement state
  • the measurement indication interval is shorter than the measurement indication interval of the second measurement state
  • the upper-layer indication of the measurement is performed within the sixth time, or the number of upper-layer indications measured during the sixth time is greater than the upper-layer indication of the measurement in the second measurement state;
  • the number of measured reference signals is greater than the number of measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes a difference in at least one of a period of the reference signal and a subcarrier interval.
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • Parameters of measurement status supported measurement status, first indication, second indication and third indication
  • the information is used to indicate at least one of the following:
  • Parameters of the measurement state whether the first measurement state is supported, whether the third measurement state is supported, the first indication, the second indication, and the third indication
  • the first indication is used to instruct to skip the measurement corresponding to at least one cycle
  • the second indication is used to instruct to perform measurement at least one cycle after the indication message
  • the cycle includes a measurement cycle and a non-continuous cycle.
  • the third indication is used to indicate to skip at least one upper-layer indication period.
  • the indication message indicates the information explicitly or implicitly.
  • the indication message uses at least one bit to explicitly indicate the information
  • the indication message implicitly indicates the information by instructing to skip the physical downlink control channel PDCCH monitoring or not to start the DRX duration timer.
  • the indication message includes system information or an advance indication message.
  • the method before the sending the instruction message, the method further includes:
  • the measurement state requesting the measurement adjustment and the parameter requesting the measurement adjustment
  • the measurement status for requesting the measurement adjustment includes at least one of the following:
  • the first measurement state, the second measurement state, and the third measurement state are the first measurement state, the second measurement state, and the third measurement state.
  • the parameter for requesting the measurement adjustment :
  • the period of the measurement the period indicating the upper layer, the threshold value related to the measurement, and the duration related to the measurement.
  • the information includes the following items:
  • the measurement includes at least one of the following:
  • Local cell measurement neighbor cell measurement, different frequency point measurement, different system measurement.
  • this embodiment is used as an implementation on the network device side corresponding to the embodiment shown in FIG. 2.
  • the measurement capability of the terminal can also be improved.
  • FIG. 4 is a structural diagram of a terminal provided by an embodiment of the present invention.
  • the terminal 400 includes:
  • the receiving module 401 is configured to receive an indication message, where the indication message is used to indicate measurement adjustment information, where the measurement includes measurement of at least one of radio link monitoring RLM and beam failure detection BFD;
  • the determining module 402 is configured to determine whether to adjust the measurement state of the measurement according to the information.
  • the adjusting the measurement state of the measurement includes adjusting between any two measurement states as follows:
  • the first measurement state, the second measurement state, and the third measurement state wherein the first measurement state refers to measurement relaxation, the second measurement state refers to normal measurement, and the third measurement state refers to measurement enhancement.
  • the first measurement state satisfies at least one of the following:
  • the measurement period is longer than the measurement period of the second measurement state
  • the number of measurement samples in the first time is less than the number of measurement samples in the second measurement state
  • the measurement indication interval is longer than the measurement indication interval of the second measurement state
  • the upper-layer indication for not performing the measurement within the third time, or the number of upper-layer indications measured during the third time is less than the upper-layer indication for the measurement in the second measurement state;
  • the number of the measured reference signals is less than the number of the measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the third measurement state satisfies at least one of the following:
  • the measurement period is shorter than the measurement period of the second measurement state
  • the number of measurement samples in the fourth time is greater than the number of measurement samples in the second measurement state
  • the measurement indication interval is shorter than the measurement indication interval of the second measurement state
  • the upper-layer indication of the measurement is performed within the sixth time, or the number of upper-layer indications measured during the sixth time is greater than the upper-layer indication of the measurement in the second measurement state;
  • the number of measured reference signals is greater than the number of measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • Parameters of measurement status supported measurement status, first indication, second indication and third indication
  • the information is used to indicate at least one of the following:
  • Parameters of the measurement state whether the first measurement state is supported, whether the third measurement state is supported, the first indication, the second indication, and the third indication
  • the first indication is used to instruct to skip the measurement corresponding to at least one cycle
  • the second indication is used to instruct to perform measurement at least one cycle after the indication message
  • the cycle includes a measurement cycle and a non-continuous cycle.
  • the third indication is used to indicate to skip at least one upper-layer indication period.
  • the indication message indicates the information explicitly or implicitly.
  • the indication message uses at least one bit to explicitly indicate the information
  • the indication message implicitly indicates the information by instructing to skip the physical downlink control channel PDCCH monitoring or not to start the DRX duration timer.
  • the indication message includes system information or an advance indication message.
  • the determining module 402 is configured to determine whether to adjust the measurement state of the measurement according to the information and the parameters of the terminal; or
  • the determining module 402 is configured to determine whether to adjust the measurement state of the measurement according to the information, the parameters of the terminal and the cell type; or
  • the determining module 402 is configured to determine whether to adjust the measurement state of the measurement according to the information and the cell type;
  • the parameter of the terminal includes at least one of a moving speed and a position of the terminal.
  • At least one of the moving speed and location of the terminal is determined according to a threshold configured on the network side and a measurement result of the terminal.
  • the parameter of the terminal has a corresponding relationship with the measured measurement state
  • the cell type has a corresponding relationship with the measured measurement state.
  • the terminal 400 further includes:
  • the sending module 403 is configured to send a request message to the network side, where the request message includes at least one of the following:
  • the measurement state requesting the measurement adjustment and the parameter requesting the measurement adjustment
  • the measurement status for requesting the measurement adjustment includes at least one of the following:
  • the first measurement state, the second measurement state, and the third measurement state are the first measurement state, the second measurement state, and the third measurement state.
  • the parameter requesting the measurement adjustment includes at least one of the following:
  • the period of the measurement the period indicating the upper layer, the threshold value related to the measurement, and the duration related to the measurement.
  • the information includes the following items:
  • the measurement includes at least one of the following:
  • Local cell measurement neighbor cell measurement, different frequency point measurement, different system measurement.
  • the terminal provided by the embodiment of the present invention can implement the various processes implemented by the terminal in the method embodiment of FIG. 2. To avoid repetition, details are not described herein again, and the measurement capability of the terminal can be improved.
  • FIG. 6 is a structural diagram of a network device provided by an embodiment of the present invention. As shown in FIG. 7, the network device 600 includes:
  • the sending module 601 is configured to send an indication message, where the indication message is used to indicate measurement adjustment information, where the measurement includes measurement of at least one of radio link monitoring RLM and beam failure detection BFD, and the information is used for The terminal is allowed to determine whether to adjust the measurement state of the measurement.
  • the adjusting the measurement state of the measurement includes adjusting between any two measurement states as follows:
  • the first measurement state, the second measurement state, and the third measurement state wherein the first measurement state refers to measurement relaxation, the second measurement state refers to normal measurement, and the third measurement state refers to measurement enhancement.
  • the first measurement state satisfies at least one of the following:
  • the measurement period is longer than the measurement period of the second measurement state
  • the number of measurement samples in the first time is less than the number of measurement samples in the second measurement state
  • the measurement indication interval is longer than the measurement indication interval of the second measurement state
  • the upper-layer indication for not performing the measurement within the third time, or the number of upper-layer indications measured during the third time is less than the upper-layer indication for the measurement in the second measurement state;
  • the number of the measured reference signals is less than the number of the measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the third measurement state satisfies at least one of the following:
  • the measurement period is shorter than the measurement period of the second measurement state
  • the number of measurement samples in the fourth time is greater than the number of measurement samples in the second measurement state
  • the measurement indication interval is shorter than the measurement indication interval of the second measurement state
  • the upper-layer indication of the measurement is performed within the sixth time, or the number of upper-layer indications measured during the sixth time is greater than the upper-layer indication of the measurement in the second measurement state;
  • the number of measured reference signals is greater than the number of measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, where the difference of the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • Parameters of measurement status supported measurement status, first indication, second indication and third indication
  • the information is used to indicate at least one of the following:
  • Parameters of the measurement state whether the first measurement state is supported, whether the third measurement state is supported, the first indication, the second indication, and the third indication
  • the first indication is used to instruct to skip the measurement corresponding to at least one cycle
  • the second indication is used to instruct to perform measurement at least one cycle after the indication message
  • the cycle includes a measurement cycle and a non-continuous cycle.
  • the third indication is used to indicate to skip at least one upper-layer indication period.
  • the indication message indicates the information explicitly or implicitly.
  • the indication message uses at least one bit to explicitly indicate the information
  • the indication message implicitly indicates the information by instructing to skip the physical downlink control channel PDCCH monitoring or not to start the DRX duration timer.
  • the indication message includes system information or an advance indication message.
  • the network device 600 further includes:
  • the receiving module 602 is configured to receive a request message, where the request message includes at least one of the following:
  • the measurement state requesting the measurement adjustment and the parameter requesting the measurement adjustment
  • the measurement status for requesting the measurement adjustment includes at least one of the following:
  • the first measurement state, the second measurement state, and the third measurement state are the first measurement state, the second measurement state, and the third measurement state.
  • the parameter for requesting the measurement adjustment :
  • the period of the measurement the period indicating the upper layer, the threshold value related to the measurement, and the duration related to the measurement.
  • the information includes the following items:
  • the measurement includes at least one of the following:
  • Local cell measurement neighbor cell measurement, different frequency point measurement, different system measurement.
  • the network device provided by the embodiment of the present invention can implement each process implemented by the terminal in the method embodiment of FIG. 3. To avoid repetition, details are not described herein again, and the measurement capability of the terminal can be improved.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present invention.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, and a power supply 811 and other components.
  • a radio frequency unit 801 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, and a power supply 811 and other components.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal,
  • the radio frequency unit 801 is configured to receive an indication message, where the indication message is used to indicate measurement adjustment information, where the measurement includes measurement of at least one of radio link monitoring RLM and beam failure detection BFD;
  • the processor 810 is configured to determine whether to adjust the measurement state of the measurement according to the information.
  • the adjusting the measurement state of the measurement includes adjusting between any two measurement states as follows:
  • the first measurement state, the second measurement state, and the third measurement state wherein the first measurement state refers to measurement relaxation, the second measurement state refers to normal measurement, and the third measurement state refers to measurement enhancement.
  • the first measurement state satisfies at least one of the following:
  • the measurement period is longer than the measurement period of the second measurement state
  • the number of measurement samples in the first time is less than the number of measurement samples in the second measurement state
  • the measurement indication interval is longer than the measurement indication interval of the second measurement state
  • the upper-layer indication for not performing the measurement within the third time, or the number of upper-layer indications measured during the third time is less than the upper-layer indication for the measurement in the second measurement state;
  • the number of the measured reference signals is less than the number of the measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the third measurement state satisfies at least one of the following:
  • the measurement period is shorter than the measurement period of the second measurement state
  • the number of measurement samples in the fourth time is greater than the number of measurement samples in the second measurement state
  • the measurement indication interval is shorter than the measurement indication interval of the second measurement state
  • the upper-layer indication of the measurement is performed within the sixth time, or the number of upper-layer indications measured during the sixth time is greater than the upper-layer indication of the measurement in the second measurement state;
  • the number of measured reference signals is greater than the number of measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • Parameters of measurement status supported measurement status, first indication, second indication and third indication
  • the information is used to indicate at least one of the following:
  • Parameters of the measurement state whether the first measurement state is supported, whether the third measurement state is supported, the first indication, the second indication, and the third indication
  • the first indication is used to instruct to skip the measurement corresponding to at least one cycle
  • the second indication is used to instruct to perform measurement at least one cycle after the indication message
  • the cycle includes a measurement cycle and a non-continuous cycle.
  • the third indication is used to indicate to skip at least one upper-layer indication period.
  • the indication message indicates the information explicitly or implicitly.
  • the indication message uses at least one bit to explicitly indicate the information
  • the indication message implicitly indicates the information by instructing to skip the physical downlink control channel PDCCH monitoring or not to start the DRX duration timer.
  • the indication message includes system information or an advance indication message.
  • the determining whether to adjust the measurement state of the measurement according to the information includes:
  • the parameter of the terminal includes at least one of a moving speed and a position of the terminal.
  • At least one of the moving speed and location of the terminal is determined according to a threshold configured on the network side and a measurement result of the terminal.
  • the parameter of the terminal has a corresponding relationship with the measured measurement state
  • the cell type has a corresponding relationship with the measured measurement state.
  • the radio frequency unit 801 is further configured to:
  • the measurement state requesting the measurement adjustment and the parameter requesting the measurement adjustment
  • the measurement status for requesting the measurement adjustment includes at least one of the following:
  • the first measurement state, the second measurement state, and the third measurement state are the first measurement state, the second measurement state, and the third measurement state.
  • the parameter requesting the measurement adjustment includes at least one of the following:
  • the period of the measurement the period indicating the upper layer, the threshold value related to the measurement, and the duration related to the measurement.
  • the information includes the following items:
  • the measurement includes at least one of the following:
  • Local cell measurement neighbor cell measurement, different frequency point measurement, different system measurement.
  • the radio frequency unit 801 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 810; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 801 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 802, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 803 may convert the audio data received by the radio frequency unit 801 or the network module 802 or stored in the memory 809 into audio signals and output them as sounds. Moreover, the audio output unit 803 may also provide audio output related to a specific function performed by the terminal 800 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 803 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 804 is used to receive audio or video signals.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042, and the graphics processor 8041 is used to capture images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame may be displayed on the display unit 806.
  • the image frame processed by the graphics processor 8041 may be stored in the memory 809 (or other storage medium) or sent via the radio frequency unit 801 or the network module 802.
  • the microphone 8042 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 801 for output in the case of a telephone call mode.
  • the terminal 800 also includes at least one sensor 805, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 8061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 8061 and/or when the terminal 800 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 805 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 806 is used to display information input by the user or information provided to the user.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 807 can be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072.
  • the touch panel 8071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 8071 or near the touch panel 8071. operating).
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 810, the command sent by the processor 810 is received and executed.
  • the touch panel 8071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 807 may also include other input devices 8072.
  • other input devices 8072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 8071 can be overlaid on the display panel 8061.
  • the touch panel 8071 detects a touch operation on or near it, it transmits it to the processor 810 to determine the type of the touch event, and then the processor 810 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 8061.
  • the touch panel 8071 and the display panel 8061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 8071 and the display panel 8061 can be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 808 is an interface for connecting an external device with the terminal 800.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 808 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 800 or can be used to communicate between the terminal 800 and the external device. Transfer data between.
  • the memory 809 can be used to store software programs and various data.
  • the memory 809 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 810 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 809 and calling data stored in the memory 809. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 810 may include one or more processing units; preferably, the processor 810 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc., the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 810.
  • the terminal 800 may also include a power supply 811 (such as a battery) for supplying power to various components.
  • a power supply 811 such as a battery
  • the power supply 811 may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 800 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 810, a memory 809, a computer program stored on the memory 809 and running on the processor 810, and the computer program is implemented when the processor 810 is executed.
  • a terminal including a processor 810, a memory 809, a computer program stored on the memory 809 and running on the processor 810, and the computer program is implemented when the processor 810 is executed.
  • FIG. 9 is a structural diagram of another network device provided by an embodiment of the present invention.
  • the network device 900 includes a processor 901, a transceiver 902, a memory 903, and a bus interface, where:
  • the transceiver 902 is configured to send an indication message, where the indication message is used to indicate measurement adjustment information, where the measurement includes measurement of at least one of radio link monitoring RLM and beam failure detection BFD, and the information is used for The terminal is allowed to determine whether to adjust the measurement state of the measurement.
  • the adjusting the measurement state of the measurement includes adjusting between any two measurement states as follows:
  • the first measurement state, the second measurement state, and the third measurement state wherein the first measurement state refers to measurement relaxation, the second measurement state refers to normal measurement, and the third measurement state refers to measurement enhancement.
  • the first measurement state satisfies at least one of the following:
  • the measurement period is longer than the measurement period of the second measurement state
  • the number of measurement samples in the first time is less than the number of measurement samples in the second measurement state
  • the measurement indication interval is longer than the measurement indication interval of the second measurement state
  • the upper-layer indication for not performing the measurement within the third time, or the number of upper-layer indications measured during the third time is less than the upper-layer indication for the measurement in the second measurement state;
  • the number of the measured reference signals is less than the number of the measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the third measurement state satisfies at least one of the following:
  • the measurement period is shorter than the measurement period of the second measurement state
  • the number of measurement samples in the fourth time is greater than the number of measurement samples in the second measurement state
  • the measurement indication interval is shorter than the measurement indication interval of the second measurement state
  • the upper-layer indication of the measurement is performed within the sixth time, or the number of upper-layer indications measured during the sixth time is greater than the upper-layer indication of the measurement in the second measurement state;
  • the number of measured reference signals is greater than the number of measured parameter signals in the second measurement state
  • the measured reference signal is different from the measured parameter signal in the second measurement state, wherein the difference in the reference signal includes that at least one of the period of the reference signal and the subcarrier interval is different.
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • the information is used to indicate at least one of the following:
  • Parameters of measurement status supported measurement status, first indication, second indication and third indication
  • the information is used to indicate at least one of the following:
  • Parameters of the measurement state whether the first measurement state is supported, whether the third measurement state is supported, the first indication, the second indication, and the third indication
  • the first indication is used to instruct to skip the measurement corresponding to at least one cycle
  • the second indication is used to instruct to perform measurement at least one cycle after the indication message
  • the cycle includes a measurement cycle and a non-continuous cycle.
  • the third indication is used to indicate to skip at least one upper-layer indication period.
  • the indication message indicates the information explicitly or implicitly.
  • the indication message uses at least one bit to explicitly indicate the information
  • the indication message implicitly indicates the information by instructing to skip the physical downlink control channel PDCCH monitoring or not to start the DRX duration timer.
  • the indication message includes system information or an advance indication message.
  • the transceiver 902 is further configured to:
  • the measurement state requesting the measurement adjustment and the parameter requesting the measurement adjustment
  • the measurement status for requesting the measurement adjustment includes at least one of the following:
  • the first measurement state, the second measurement state, and the third measurement state are the first measurement state, the second measurement state, and the third measurement state.
  • the parameter for requesting the measurement adjustment :
  • the period of the measurement the period indicating the upper layer, the threshold value related to the measurement, and the duration related to the measurement.
  • the information includes the following items:
  • the measurement includes at least one of the following:
  • Local cell measurement neighbor cell measurement, different frequency point measurement, different system measurement.
  • the above-mentioned network equipment can improve the measurement capability of the terminal.
  • the transceiver 902 is configured to receive and send data under the control of the processor 901, and the transceiver 902 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 901 and various circuits of the memory represented by the memory 903 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 902 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 904 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 903 can store data used by the processor 901 when performing operations.
  • the embodiment of the present invention also provides a network device, including a processor 901, a memory 903, a computer program stored in the memory 903 and running on the processor 901, when the computer program is executed by the processor 901
  • a network device including a processor 901, a memory 903, a computer program stored in the memory 903 and running on the processor 901, when the computer program is executed by the processor 901
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, the measurement processing method provided in the embodiment of the present invention is implemented, or the computer program is
  • the processor implements the instruction information sending method provided in the embodiment of the present invention when executed, and can achieve the same technical effect. To avoid repetition, details are not described herein again.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种测量处理方法、指示信息发送方法、终端和网络设备,该方法包括:接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括RLM和BFD中至少一项的测量;依据所述信息,确定是否调整所述测量的测量状态。

Description

测量处理方法、指示信息发送方法、终端和网络设备
相关申请的交叉引用
本申请主张在2019年10月23日在中国提交的中国专利申请号No.201911014317.X的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种测量处理方法、指示信息发送方法、终端和网络设备。
背景技术
为了保证终端的通信的可靠性,终端往往需要进行一些测量,例如:通过无线链路监测(Radio Link Monitor,RLM)的测量来保证无线链路的可靠性,如通过波束失败检测(Beam Failure Detection,BFD)的测量来保证波束的可靠性。目前技术中终端往往是维持一种测量状态,即终端的测量状态不可调整,导致终端的测量能力比较差。
发明内容
本发明实施例提供一种测量处理方法、指示信息发送方法、终端和网络设备,以解决终端的测量状态不可调整导致的终端的测量能力比较差的问题。
第一方面,本发明实施例提供一种测量处理方法,应用于终端,包括:
接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括RLM和BFD中至少一项的测量;
依据所述信息,确定是否调整所述测量的测量状态。
第二方面,本发明实施例提供一种指示信息发送方法,应用于网络设备,包括:
发送指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括RLM和BFD中至少一项的测量,所述信息用于使得终端确定是否调整所述测量的测量状态。
第三方面,本发明实施例提供一种终端,包括:
接收模块,用于接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括RLM和BFD中至少一项的测量;
确定模块,用于依据所述信息,确定是否调整所述测量的测量状态。
第四方面,本发明实施例提供一种网络设备,包括:
发送模块,用于发送指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括RLM和BFD中至少一项的测量,所述信息用于使得终端确定是否调整所述测量的测量状态。
第五方面,本发明实施例提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本发明实施例提供的测量处理方法中的步骤。
第六方面,本发明实施例提供一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本发明实施例提供的指示信息发送方法中的步骤。
第七方面,本发明实施例提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例提供的测量处理方法中的步骤,或者所述计算机程序被处理器执行时实现本发明实施例提供的指示信息发送方法中的步骤。
本发明实施例中,接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括RLM和BFD中至少一项的测量;依据所述信息,确定是否调整所述测量的测量状态。这样可以支持终端调整测量状态,从而提高终端的测量能力。
附图说明
图1是本发明实施例可应用的一种网络系统的结构图;
图2是本发明实施例提供的一种测量处理方法的流程图;
图3是本发明实施例提供的一种指示信息发送方法的流程图;
图4是本发明实施例提供的一种终端的结构图;
图5是本发明实施例提供的另一种终端的结构图;
图6是本发明实施例提供的一种网络设备的结构图;
图7是本发明实施例提供的另一种网络设备的结构图;
图8是本发明实施例提供的另一种终端的结构图;
图9是本发明实施例提供的另一种网络设备的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本发明的实施例。本发明实施例提供的测量处理方法、指示信息发送方法、终端和网络设备可以应用于无线通信系统中。该无线通信系统可以为新空口(New Radio,NR)系统,或者其他系统,例如:演进型长期演进(Evolved Long Term Evolution,eLTE)系统或者长期演进(Long Term Evolution,LTE)系统,或者后续演进通信系统等。
请参见图1,图1是本发明实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络设备12,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital  assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或者机器人等终端侧设备,需要说明的是,在本发明实施例中并不限定终端11的具体类型。上述网络设备12可以是4G基站,或者5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者传输接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本发明实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图2,图2是本发明实施例提供的一种测量处理方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201、接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括RLM和BFD中至少一项的测量。
其中,上述指示消息可以是接收网络设备发送的,而上述测量可以是RLM测量或者BFD测量,或者可以是RLM测量和BFD测量。
需要说明的是,本发明实施例中,RLM测量也可以称作RLM监测,BFD测量也可以称作BFD监测。
另外,上述测量可以是非连续接收(Discontinuous reception,DRX)周期内测量。
而上述信息可以是与终端调整上述测量的测量状态的相关信息,例如:指示小区是否支持某一个或者多个测量状态的指示信息,从而终端可以确定是否从原测量状态调整到这些测量状态中的一个测量状态,或者可以是测量调整参数,从而终端可以依据该测量确定是否调整测量状态等等。
步骤202、依据所述信息,确定是否调整所述测量的测量状态。
上述依据所述信息,确定是否调整所述测量的测量状态可以是,在上述信息指示终端调整测量状态的情况下,确定调整测量的测量状态;或者上述依据所述信息,确定是否调整所述测量的测量状态可以是,在上述信息指示支持某一种或者多种测量状态的情况下,终端可以结合终端的感应器(Sensor) 信息或者小区信息来确定是否调整至该指示的一种或者多种测量状态中的一种测量状态;或者上述依据所述信息,确定是否调整所述测量的测量状态可以是,在上述信息指示调整参数的情况下,终端依据该调整参数确定调整测量的测量状态等等。具体的,可以是仅依据上述信息来确定是否调整测量状态,或者可以是依据信息并结合终端的其他信息,来确定是否调整测量状态。
本发明实施例中,通过上述步骤可以实现支持终端调整测量状态,从而提高终端的测量能力,进一步可以在测量放松时节省终端的功耗,在测量增强时提高终端的测量能力。
还需要说明的是,若确定调整上述测量的测量状态,上述方法还包括调整上述测量的测量状态,例如:从一个测量的能耗高的测量状态调整至另一个测量的能耗较低的测量状态,从而达到节约终端功耗的效果,即达到省电的目的。
作为一种可选的实施方式,上述指示消息包括系统信息或者提前指示消息。
其中,上述系统信息可以是系统信息块(System Information Block,SIB),而上述提前指示消息可以是如下至少一项:唤醒信号(wake-up-signaling,WUS)、睡眠信号(Go-to-sleep,GTS)和下行控制信息(Downlink Control Information,DCI),其中的DCI包括调度DCI或者其它新设计的DCI。
作为一种可选的实施方式,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
其中,在所述第一测量状态执行所述测量的能耗可以是低于在所述第二测量状态执行所述测量的能耗,在所述第二测量状态执行所述测量的能耗可以是低于在所述第三测量状态执行所述测量的能耗。其中,上述测量的能耗可以是终端在进行上述测量时的耗电。
例如:确定从第一测量状态调整至第二测量状态,或者确定从第二测量状态调整至第一测量状态,或者确定从第三测量状态调整至第二测量状态, 或者确定从第三测量状态调整至第一测量状态,或者确定从第一测量状态调整至第三测量状态等。
上述第一测量状态指测量放松可以是指,所述第一测量状态是指在所述第二测量状态的基础上进行测量放松的状态,上述第三测量状态指测量增强可以是指,所述第三测量状态是指在所述第二测量状态的基础上的进行测量增强的状态。
由于上述第一测量状态指测量放松,从而上述第一测量状态可以称作测量放松状态(简称测量放松);上述第二测量状态指正常测量,从而上述第二测量状态可以称作正常测量状态(简称正常测量)。需要说明的是,本发明实施例中,正常测量可以是指默认测量状态或者预配置的状态;由于上述第三测量状态指测量增强,从而上述第三测量状态可以称作测量增强状态(简称测量增强)。
可选的,所述第一测量状态满足如下至少一项:
测量周期长于所述第二测量状态的测量周期;
在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
测量指示间隔长于所述第二测量状态的测量指示间隔;
在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
在第三时间内不进行所述测量的上层指示(Upper layer indication),或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔(Subcarrier space,SCS)中至少一项不同。
其中,上述测量周期可以是上述测量在层一(L1)、层2(L2)和层3(L3)中至少一项的测量周期,而上述测量抽样数可以是测量抽样样本(sample)数。通过上述测量周期长于所述第二测量状态的测量周期,以及测量抽样数 小于所述第二测量状态的测量抽样数,可以实现在时域上实现上述测量(例如:RLM/BFD测量)放松,即上述测量的L1测量周期的扩长或者测量抽样样本(sample)数减少,以省电。
而上述测量指示间隔可以是上述测量在层2或者层3指示间隔,通过上述测量指示间隔长于所述第二测量状态的测量指示间隔可以实现在时域实现上述测量(例如:RLM/BFD测量)放松,即上述测量L2/L3指示间隔扩长,以省电。
上述第一时间、第二时间和第三时间可以是相同或者不同的时段,或者相同或者不同时长的时间段。通过上述在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数可以在一段时间内减少测量抽样数,以省电。
通过上述在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数可以实现,在一段时间内,不进行上述测量(例如:RLM/BFD测量)或者减少上述测量,以省电。
通过上述在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示可以实现,在一段时间内,不进行上层指示(例如:RLM/BFD上层指示),或者减少上层指示(例如:RLM/BFD上层指示),以省电。
通过上述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量可以实现,减少上述测量(例如:RLM/BFD测量)的参考信号的数量,以省电。
上述参考信号的周期不同,可以是第一测量状态下测量的参考信号的周期大于第二测量状态下测量的参考信号的周期,上述SCS不同可以是第一测量状态下测量的参考信号的SCS大于第二测量状态下测量的参考信号的SCS,这样可以省电。
该实施方式中,提供了多种方式使得在所述第一测量状态执行所述测量的能耗低于在所述第二测量状态执行所述测量的能耗,当然,本发明实施例中,并不限定上述方式,还可以是使得在所述第一测量状态执行所述测量的能耗低于在所述第二测量状态执行所述测量的能耗的方式。
可选的,所述第三测量状态满足如下至少一项:
测量周期短于所述第二测量状态的测量周期;
在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
测量指示间隔短于所述第二测量状态的测量指示间隔;
在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号的数量,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
其中,第三测量状态的相关描述可以参见上述第二测量状态的相关描述,此处不作赘述。
作为一种可选的实施方式,所述信息用于表示如下至少一项:
测量状态的参数、小区支持的测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、小区是否支持所述第一测量状态、小区是否支持所述第三测量状态和小区类型;
其中,上述信息用于表示上述至少一项可以是上述信息包括上述至少一项的内容。
其中,上述测量状态的参数可以是上述第一测量状态、第二测量状态和第三测量状态中的一个或者多个测量状态的参数,如第一测量状态的参数。且这里的测量状态的参数可以是与测量相关的参数,例如:测量相关的定时器和计数器中的至少一项,例如:用于判断波束失败或者无线链路失败的定时器T310、定时器T311、计数器N310和计数器N311中的至少一项的参数。进一步的,上述测量参数可以是本小区的测量状态的参数。
而上述小区支持的测量状态可以是本小区支持的测量状态,进一步的,上述小区支持的测量状态可以是小区支持上述第一测量状态、第二测量状态 和第三测量状态中的一个或者多个测量状态,如小区支持第一测量状态。
而上述小区的类型可以是本小区的类型,比如室内、室外宏小区、室外微小区等。
该实施方式中,上述信息包括上述至少一项可以使得终端依据该信息来判断是否调整测量的测量状态。如上述信息包括本小区支持第一测量状态时,终端可以确定调整到第一测量状态,如上述信息包括小区类型,如果小区类型为支持第一测量状态或者第三测量状态的小区类型,则可以确定调整到第一测量状态或者第三测量状态,如上述信息包括第一测量状态的参数,则终端可以确定调整到第一测量状态。
进一步,上述指示消息可以是广播的指示消息,例如:指示消息包括SIB消息。
作为一种可选的实施方式,所述信息用于表示如下至少一项:
测量状态的参数、支持的测量状态、第一指示、第二指示和第三指示;
或者,所述信息用于表示如下至少一项:
测量状态的参数、是否支持所述第一测量状态、是否支持所述第三测量状态、第一指示、第二指示和第三指示;
其中,所述第一指示用于指示跳过至少一个周期对应的所述测量,所述第二指示用于指示在所述指示消息后至少一个周期进行测量,所述周期包括测量周期、非连续接收DRX周期或者上层指示周期;
所述第三指示用于指示跳过至少一个上层指示周期。
其中,上述测量状态的参数可以是上述第一测量状态、第二测量状态和第三测量状态中的一个或者多个测量状态的参数,如第一测量状态的参数。且这里的测量状态的参数可以是与测量相关的参数,例如:测量相关的定时器和计数器中的至少一项,例如:用于判断波束失败或者无线链路失败的定时器T310、定时器T311、计数器N310和计数器N311中的至少一项的参数。进一步,上述测量参数可以是上述终端的测量状态的参数。
上述支持的测量状态可以是上述终端或者网络设备支持的测量状态,进一步的,上述支持的测量状态可以是上述终端或者网络设备支持上述第一测量状态、第二测量状态和第三测量状态中的一个或者多个测量状态,如上述 终端或者网络设备支持第一测量状态。
上述第一指示用于指示跳过至少一个周期对应的所述测量可以是,上述信息用于指示跳过一个或者多个测量周期(例如:RLM/BFD测量周期)或者DRX周期对应的上述测量(例如:RLM/BFD测量),或者用于指示在后面若干个测量周期(例如:RLM/BFD测量周期)或者上层指示周期或DRX周期不进行上述测量(例如:RLM/BFD测量),以省电。
上述第二指示用于指示在至少一个周期进行测量可以是,上述信息用于指示在后面若干个测量周期(例如:RLM/BFD测量周期)测量周期或者上层指示周期或DRX周期进行上述测量(例如:RLM/BFD测量)。
而上述第三指示用于指示跳过至少一个上层指示周期可以是,上述信息用于指示跳过一个或者多个上层指示周期,即在这一个或者多个上层指示周期不进行上层指示,但可以测量,以省电。
该实施方式中,上述信息包括上述至少一项可以使得终端依据该信息来判断是否调整测量的测量状态,以及可以使得终端按照上述信息进行测量。
另外,上述实施方式中,上述指示消息可以是通过终端的专用消息发送的,例如:上述指示消息包括在提前指示消息。
需要说明的是,本发明实施例中并不限定上述信息包括上述内容,例如:上述信息可以包括网络侧配置的参数,如用于判断无线链路失败或者波束失败的相关参数,终端依据这些参数确定是否调整上述测量的测量状态。
作为一种可选的实施方式,所述信息包括如下一项:
网络侧为每个终端配置的信息;
网络侧为每个小区配置的信息;
网络侧为每个频率、每个载波、每个频段或者每个带宽部分(Bandwidth part,BWP)配置的信息;
网络侧为每个终端的每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个波束配置的信息。
其中,上述网络侧为每个终端配置的信息可以是Per-UE配置,即网络为每个终端配置单独的用于指示测量调整的信息。
上述网络侧为每个小区配置的信息可以是Per-cell配置,即网络在一个小区范围内配置的用于指示测量调整的信息一致,从而终端在小区范围内应用该信息。
上述网络侧为每个频率、每个载波、每个频段或者每个带宽部分配置的信息可以是,为每个频率单独配置用于指示测量调整的信息,或者为每个载波单独配置用于指示测量调整的信息,或者为每个频段单独配置用于指示测量调整的信息,或者为每个带宽部分单独配置用于指示测量调整的信息。例如:按照Per-frequency/carrier/band/BWP配置,即网络在一个frequency/carrier/band/BWP范围内配置的用于指示测量调整的信息一致。
上述网络侧为每个终端的每个频率、每个载波、每个频段或者每个带宽部分配置的信息可以是,为每个终端的每个频率单独配置用于指示测量调整的信息,或者为每个终端的每个载波单独配置用于指示测量调整的信息,或者为每个终端的每个频段单独配置用于指示测量调整的信息,或者为每个终端的每个带宽部分单独配置用于指示测量调整的信息。例如:按照Per-UE per-frequency/carrier/band/BWP配置,即网络对于每个终端在一个frequency/carrier/band/BWP范围内配置的用于指示测量调整的信息一致。
上述网络侧为每个波束配置的信息可以是,为每个波束单独配置用于指示测量调整的信息,即Per-Beam配置,从而终端在所述beam对应的测量应用对应的信息。
需要说明的是,每种情况配置的信息所表示的内容都可以参考上述信息表示的内容的实施方式,此处不作赘述。
作为一种可选的实施方式,上述指示消息通过显式或者隐式指示所述信息。
显式指示所述信息可以是通过若干个bit来指示上述信息,例如:指示消息通过至少一个比特显式指示所述信息。
而隐式指示可以是通过其他消息内容来隐式指示,例如:上述指示消息通过指示跳过物理下行控制信道(Physical downlink control channel,PDCCH)监听或者不启动DRX持续计时器来隐式指示所述信息,具体可以隐式指示上述信息包括的上述至少一项,这样可以节约信令开销。
作为一种可选的实施方式,上述依据所述信息,确定是否调整所述测量的测量状态,包括:
依据所述信息和所述终端的参数,确定是否调整所述测量的测量状态;或者
依据所述信息、所述终端的参数和小区类型,确定是否调整所述测量的测量状态;或者
依据所述信息和小区类型,确定是否调整所述测量的测量状态;
其中,所述终端的参数包括所述终端的移动速度和位置中的至少一项。
其中,上述终端的参数与所述测量的测量状态具有对应关系,这样可以依据该对应关系,确定终端适合的测量状态。而上述小区类型与所述测量的测量状态具有对应关系,这样可以依据小区类型确定适合的测量状态。这里的对应关系可以是预先配置的,或者网络设备配置给终端,或者协议中约定的等。例如:室内小区进行RLM/BFD测量放松或者测量增强,或者反之正常测量等等组合。
上述依据所述信息和所述终端的参数,确定是否调整所述测量的测量状态可以是,上述信息指示支持某一些测量状态,终端根据终端的参数判断终端当前适合哪种测量状态,从而决定是否调整测量状态;或者上述信息指示某一些测量状态的参数,终端根据终端的参数判断终端当前适合哪种测量状态,从而决定是否调整测量状态等。
而上述依据所述信息、所述终端的参数和小区类型,确定是否调整所述测量的测量状态可以是,依据所述信息和小区类型确定本小区所支持的测量状态,终端再根据终端的参数判断终端当前适合哪种测量状态,从而决定是否调整测量状态;或者信息指示支持某一些测量状态,终端根据终端的参数和小区类判断终端当前适合哪种测量状态,从而决定是否调整测量状态;或者上述信息指示某一些测量状态的参数,终端根据终端的参数和小区类判断终端当前适合哪种测量状态,从而决定是否调整测量状态等。
而上述依据所述信息和小区类型,确定是否调整所述测量的测量状态可以是,依据所述信息和小区类型确定本小区所支持的测量状态,从而终端确定是否调整到本小区所支持的测量状态,例如:比如室内小区可以调整到第 一测量状态(例如:RLM/BFD测量放松),反之可以调整到第二测量状态(例如:正常测量)或者第三测量状态(例如:增强测量)。
需要说明的是,在上述方式中,终端的移动速度和位置中的至少一项可以是根据网络侧配置的门限和终端的测量结果确定。如:小区中心或者移动速度低时,可以调整到第一测量状态(例如:RLM/BFD测量放松),反之可以调整到第二测量状态(例如:正常测量)或者第三测量状态(例如:增强测量)。当然,也可以根据预设时间确定终端的移动速度和位置中的至少一项。
该实施方式中,将上述信息与终端的参数,以及小区类型进行结合来确定是否调整测量状态,从而使得确定的结果更加准确,更加符合终端的实际情况,以进一步提高终端的测量性能。
进一步的,还可以根据网络侧配置的门限确定是否进行上述测量的调整,该门限值可以通过上述信息来配置。
在一种方案中,上述信息包括测量调整判断门限,则可以按如下规则判断是否进行RRM测量调整:
1.如果测量结果高于或者等于第一门限,则终端进行RLM/BFD测量放松,或当测量结果低于或者等于第二门限,则终端进行RLM/BFD正常测量;
2.如果测量结果高于或者等于第一门限,则终端进行RLM/BFD正常测量,或当测量结果低于或者等于第二门限,则终端进行RLM/BFD测量增强;
3.如果测量结果高于或者等于第一门限,则终端进行RLM/BFD测量放松,或当测量结果低于或者等于第二门限,则终端进行RLM/BFD测量增强。
其中,对于上述1、2和3中的第一门限或者第二门限可以相同或者不同,具体可以由网络进行配置。
进一步,第一门限和/或第二门限可以与协议中定义的S-measure门限(用于连接态和空闲态判断是否进行邻小区或其它频点测量的门限)相同或者不同。
另一种方案中,上述信息包括RLM/BFD测量调整判断门限和预设时间,则可以按如下规则判断是否进行RLM/BFD测量调整:
方法一:
1.如果测量结果在预设时间一内一直高于或者等于第一门限,则终端进行RLM/BFD测量放松,或当测量结果在预设时间二内一直低于或者等于第二门限,则终端进行RLM/BFD正常测量;
2.如果测量结果在预设时间一内一直高于或者等于第一门限,则终端进行RLM/BFD正常测量,或当测量结果在预设时间二内一直低于或者等于第二门限,则终端进行RLM/BFD测量增强;
3.如果测量结果在预设时间一内一直高于或者等于第一门限,则终端进行RLM/BFD测量放松,或当测量结果在预设时间二内一直低于或者等于第二门限,则终端进行RLM/BFD测量增强。
方法二:
1.如果测量结果高于或者等于第一门限,且在预设时间一内没有测量结果低于第二门限,则终端进行RLM/BFD测量放松,或当测量结果低于或者等于第二门限,且在预设时间二内没有测量结果高于第一门限,则终端进行RLM/BFD正常测量;
2.如果测量结果高于或者等于第一门限,且在预设时间一内没有测量结果低于第二门限,则终端进行普通RLM/BFD测量,或当测量结果低于或者等于第二门限,且在预设时间二内没有测量结果高于第一门限,则终端进行RLM/BFD测量增强;
3.如果测量结果高于或者等于第一门限,且在预设时间一内没有测量结果低于第二门限,则终端进行RLM/BFD测量放松,或当测量结果低于或者等于第二门限,且在预设时间二内没有测量结果高于第一门限,则终端进行RLM/BFD测量增强。
其中,对于上述1、2和3中的第一门限或者第二门限可以相同或者不同,具体可以由网络进行配置。
进一步,第一门限和/或第二门限可以与协议中定义的S-measure门限(用于连接态和空闲态判断是否进行邻小区或其它频点测量的门限)相同或者不同。
另一种方案中,上述信息包括RLM/BFD测量预设定时器或者预设时间或者计数器,则可以按如下规则判断是否进行RLM/BFD测量调整:
方法一:
1.在终端进行RLM/BFD测量放松或者测量增强后的预设时间后,自动回到RLM/BFD正常测量,或者在终端开始RLM/BFD测量放松/增强时,启动定时器,当定时器超时,则回到RLM/BFD正常测量。
方法二:
1.在终端进行RLM/BFD测量放松或者测量增强后的预设个测量周期、或者测量Sample后,自动回到RLM/BFD正常测量,或者在终端开始RLM/BFD测量放松/增强时,启动计数器,每个测量周期或者测量sample,计数器加1,当到达预设数量时,则回到RLM/BFD正常测量。
另一种方案中,上述信息包括RLM/BFD测量调整判断门限和预设时间,则可以按如下规则判断是否进行RLM/BFD测量调整:
方法一:
1.如果测量结果在预设时间一内的变化低于或者等于第一门限,则终端进行RLM/BFD测量放松,或当测量结果在预设时间二内的变化一直高于或者等于第二门限,则终端进行RLM/BFD正常测量;
2.如果测量结果在预设时间一内内的变化低于或者等于第一门限,则终端进行RLM/BFD正常测量,或当测量结果在预设时间二内的变化高于或者等于第二门限,则终端进行RLM/BFD测量增强。
3.如果测量结果在预设时间一内的变化低于或者等于第一门限,则终端进行RLM/BFD测量放松,或当测量结果在预设时间二内内的变化高于或者等于第二门限,则终端进行RLM/BFD测量增强。
方法二:
1.如果测量结果在预设时间一内的变化低于或者等于第一门限,则终端进行RLM/BFD测量放松,或当测量结果在预设时间二内的变化一直高于或者等于第二门限,则终端进行RLM/BFD正常测量;
2.如果测量结果在预设时间一内内的变化低于或者等于第一门限,则终端进行RLM/BFD正常测量,或当测量结果在预设时间二内的变化高于或者等于第二门限,则终端进行RLM/BFD测量增强。
3.如果测量结果在预设时间一内的变化低于或者等于第一门限,则终端 进行RLM/BFD测量放松,或当测量结果在预设时间二内内的变化高于或者等于第二门限,则终端进行RLM/BFD测量增强。
方法三:
1.如果测量结果在预设时间一内的变化低于或者等于第一门限,且在预设时间一内没有测量结果的变化高于或者等于第一门限,则终端进行RLM/BFD测量放松,或当测量结果在预设时间一内的变化高于或者等于第一门限,且在预设时间一内没有测量结果的变化低于或者等于第一门限,则终端进行RLM/BFD正常测量;
2.如果测量结果在预设时间一内的变化低于或者等于第一门限,且在预设时间一内没有测量结果的变化高于或者等于第一门限,则终端进行RLM/BFD正常测量,或当测量结果在预设时间一内的变化高于或者等于第一门限,且在预设时间一内没有测量结果的变化低于或者等于第一门限,则终端进行RLM/BFD测量增强;
3.如果测量结果在预设时间一内的变化低于或者等于第一门限,且在预设时间一内没有测量结果的变化高于或者等于第一门限,则终端进行RLM/BFD测量放松,或当测量结果在预设时间一内的变化高于或者等于第一门限,且在预设时间一内没有测量结果的变化低于或者等于第一门限,则终端进行RLM/BFD测量增强。
其中,对于上述1、2和3中的第一门限或者第二门限可以相同或者不同,具体可以由网络进行配置。
进一步,第一门限和/或第二门限可以与协议中定义的S-measure门限(用于连接态和空闲态判断是否进行邻小区或其它频点测量的门限)相同或者不同。
作为一种可选的实施方式,上述接收指示消息之前,所述方法还包括:
向网络侧发送请求消息,所述请求消息包括如下至少一项:
请求所述测量调整的测量状态和请求所述测量调整的参数;
其中,所述请求所述测量调整的测量状态包括如下至少一项:
所述第一测量状态、所述第二测量状态和所述第三测量状态。
其中,上述请求所述测量调整的测量状态可以是终端在接收到上述指示 消息之前期望调整的测量状态。需要说明的是,上述请求所述测量调整的测量状态包括所述第一测量状态、所述第二测量状态和所述第三测量状态中的多项时,可以是终端期望调整到第一测量状态、所述第二测量状态和所述第三测量状态中的多项中的任一状态。例如:上述请求所述测量调整的测量状态包括所述第一测量状态和所述第二测量状态,则表示终端期望调整至第一测量状态和所述第二测量状态中的任一状态,这样网络侧进一步来配置终端具体调整至某一测量状态。或者,上述请求所述测量调整的测量状态包括所述第一测量状态、所述第二测量状态和所述第三测量状态中的多项时,可以是在多个波束、载波、BWP或者频段上请求的测量状态,例如:波束1上请求的测量状态为第一测量状态,波束2上请求的测量状态为第三测量状态,波束2上请求的测量状态为第二测量状态。
可选的,所述请求所述测量调整的参数包括如下至少一项:
所述测量的周期、指示上层的周期、所述测量相关的门限值和所述测量相关的持续时间。
所述测量的周期可以上述RLM测量、BFD测量的周期。
而上述测量相关的门限值可以是在执行RLM和BFD测量相关的计数器、定时器的门限值,例如:T310、T311、N310和N311等。
而上述测量相关的持续时间可以是,测量调整的持续时间,例如:上述实施方式描述的第一时间、第二时间、第三时间、第四时间、第五时间或者第六时间等。或者可以是上述确定调整后的测量状态的持续时间。
该实施方式中,请求所述测量调整的测量状态和请求所述测量调整的参数,这样可以通知网络侧终端期望调整的测量状态,以及期望调整的参数,从而使得网络侧与终端进行测量状态的协商,以提高终端的测量能力,例如:网络侧允许终端进行测量状态,或者网络侧进一步优化测量调整的参数。
作为一种可选的实施方式,上述测量包括如下至少一项:
本小区测量、邻小区测量、异频点测量(Inter-frequency measurement)、异系统测量(Inter-RAT measurement)。
其中,上述本小区测量可以实现调整本小区测量的测量状态,上述邻小区测量可以实现调整邻小区测量的测量状态,上述异频点测量可以实现调整 异频点测量的测量状态,上述异系统测量可以实现调整异系统测量的测量状态。进一步的,上述邻小区测量可以包括同频邻小区测量、其它频点测量、其它RAT测量。
例如:当有邻小区RLM/BFD测量时,则可以依据上述信息来确定是否调整本小区和邻小区中至少一项的RLM/BFD测量的测量状态,当没有邻小区RLM/BFD测量时,可以依据上述信息来确定是否调整本小区的RLM/BFD测量的测量状态。
本发明实施例中,接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括RLM和BFD中至少一项的测量;依据所述信息,确定是否调整所述测量的测量状态。这样可以支持终端调整测量状态,从而提高终端的测量能力。
请参见图3,图3是本发明实施例提供的一种指示信息发送方法的流程图,该方法应用于网络设备,如图3所示,包括以下步骤:
步骤301、发送指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括RLM和BFD中至少一项的测量,所述信息用于使得终端确定是否调整所述测量的测量状态。
可选的,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
可选的,所述第一测量状态满足如下至少一项:
测量周期长于所述第二测量状态的测量周期;
在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
测量指示间隔长于所述第二测量状态的测量指示间隔;
在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述第三测量状态满足如下至少一项:
测量周期短于所述第二测量状态的测量周期;
在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
测量指示间隔短于所述第二测量状态的测量指示间隔;
在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述信息用于表示如下至少一项:
测量状态的参数、小区支持的测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、小区是否支持所述第一测量状态、小区是否支持所述第三测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、支持的测量状态、第一指示、第二指示和第三指示;
或者,所述信息用于表示如下至少一项:
测量状态的参数、是否支持所述第一测量状态、是否支持所述第三测量状态、第一指示、第二指示和第三指示;
其中,所述第一指示用于指示跳过至少一个周期对应的所述测量,所述第二指示用于指示在所述指示消息后至少一个周期进行测量,所述周期包括测量周期、非连续接收DRX周期或者上层指示周期;
所述第三指示用于指示跳过至少一个上层指示周期。
可选的,所述指示消息通过显式或者隐式指示所述信息。
可选的,所述指示消息通过至少一个比特显式指示所述信息;或者
所述指示消息通过指示跳过物理下行控制信道PDCCH监听或者不启动DRX持续计时器隐式指示所述信息。
可选的,所述指示消息包括系统信息或者提前指示消息。
可选的,所述发送指示消息之前,所述方法还包括:
接收请求消息,所述请求消息包括如下至少一项:
请求所述测量调整的测量状态和请求所述测量调整的参数;
其中,所述请求所述测量调整的测量状态包括如下至少一项:
所述第一测量状态、所述第二测量状态和所述第三测量状态。
可选的,所述请求所述测量调整的参数:
所述测量的周期、指示上层的周期、所述测量相关的门限值和所述测量相关的持续时间。
可选的,所述信息包括如下一项:
网络侧为每个终端配置的信息;
网络侧为每个小区配置的信息;
网络侧为每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个终端的每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个波束配置的信息。
可选的,所述测量包括如下至少一项:
本小区测量、邻小区测量、异频点测量、异系统测量。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络设备侧的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,以避免重复说明,本实施例不再赘述。本实施例中,同样可以提高终端的测量能力。
请参见图4,图4是本发明实施例提供的一种终端的结构图,如图4所示,终端400包括:
接收模块401,用于接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量;
确定模块402,用于依据所述信息,确定是否调整所述测量的测量状态。
可选的,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
可选的,所述第一测量状态满足如下至少一项:
测量周期长于所述第二测量状态的测量周期;
在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
测量指示间隔长于所述第二测量状态的测量指示间隔;
在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述第三测量状态满足如下至少一项:
测量周期短于所述第二测量状态的测量周期;
在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
测量指示间隔短于所述第二测量状态的测量指示间隔;
在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述信息用于表示如下至少一项:
测量状态的参数、小区支持的测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、小区是否支持所述第一测量状态、小区是否支持所述第三测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、支持的测量状态、第一指示、第二指示和第三指示;
或者,所述信息用于表示如下至少一项:
测量状态的参数、是否支持所述第一测量状态、是否支持所述第三测量状态、第一指示、第二指示和第三指示;
其中,所述第一指示用于指示跳过至少一个周期对应的所述测量,所述第二指示用于指示在所述指示消息后至少一个周期进行测量,所述周期包括测量周期、非连续接收DRX周期或者上层指示周期;
所述第三指示用于指示跳过至少一个上层指示周期。
可选的,所述指示消息通过显式或者隐式指示所述信息。
可选的,所述指示消息通过至少一个比特显式指示所述信息;或者
所述指示消息通过指示跳过物理下行控制信道PDCCH监听或者不启动DRX持续计时器隐式指示所述信息。
可选的,所述指示消息包括系统信息或者提前指示消息。
可选的,确定模块402用于依据所述信息和所述终端的参数,确定是否调整所述测量的测量状态;或者
确定模块402用于依据所述信息、所述终端的参数和小区类型,确定是否调整所述测量的测量状态;或者
确定模块402用于依据所述信息和小区类型,确定是否调整所述测量的测量状态;
其中,所述终端的参数包括所述终端的移动速度和位置中的至少一项。
可选的,所述终端的移动速度和位置中的至少一项根据网络侧配置的门限和终端的测量结果确定。
可选的,所述终端的参数与所述测量的测量状态具有对应关系;
所述小区类型与所述测量的测量状态具有对应关系。
可选的,如图5所示,所述终端400还包括:
发送模块403,用于向网络侧发送请求消息,所述请求消息包括如下至少一项:
请求所述测量调整的测量状态和请求所述测量调整的参数;
其中,所述请求所述测量调整的测量状态包括如下至少一项:
所述第一测量状态、所述第二测量状态和所述第三测量状态。
可选的,所述请求所述测量调整的参数包括如下至少一项:
所述测量的周期、指示上层的周期、所述测量相关的门限值和所述测量相关的持续时间。
可选的,所述信息包括如下一项:
网络侧为每个终端配置的信息;
网络侧为每个小区配置的信息;
网络侧为每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个终端的每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个波束配置的信息。
可选的,所述测量包括如下至少一项:
本小区测量、邻小区测量、异频点测量、异系统测量。
本发明实施例提供的终端能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述,且可以提高终端的测量能力。
请参见图6,图6是本发明实施例提供的一种网络设备的结构图,如图7所示,网络设备600包括:
发送模块601,用于发送指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少 一项的测量,所述信息用于使得终端确定是否调整所述测量的测量状态。
可选的,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
可选的,所述第一测量状态满足如下至少一项:
测量周期长于所述第二测量状态的测量周期;
在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
测量指示间隔长于所述第二测量状态的测量指示间隔;
在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述第三测量状态满足如下至少一项:
测量周期短于所述第二测量状态的测量周期;
在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
测量指示间隔短于所述第二测量状态的测量指示间隔;
在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号, 其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述信息用于表示如下至少一项:
测量状态的参数、小区支持的测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、小区是否支持所述第一测量状态、小区是否支持所述第三测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、支持的测量状态、第一指示、第二指示和第三指示;
或者,所述信息用于表示如下至少一项:
测量状态的参数、是否支持所述第一测量状态、是否支持所述第三测量状态、第一指示、第二指示和第三指示;
其中,所述第一指示用于指示跳过至少一个周期对应的所述测量,所述第二指示用于指示在所述指示消息后至少一个周期进行测量,所述周期包括测量周期、非连续接收DRX周期或者上层指示周期;
所述第三指示用于指示跳过至少一个上层指示周期。
可选的,所述指示消息通过显式或者隐式指示所述信息。
可选的,所述指示消息通过至少一个比特显式指示所述信息;或者
所述指示消息通过指示跳过物理下行控制信道PDCCH监听或者不启动DRX持续计时器隐式指示所述信息。
可选的,所述指示消息包括系统信息或者提前指示消息。
可选的,如图7所示,网络设备600还包括:
接收模块602,用于接收请求消息,所述请求消息包括如下至少一项:
请求所述测量调整的测量状态和请求所述测量调整的参数;
其中,所述请求所述测量调整的测量状态包括如下至少一项:
所述第一测量状态、所述第二测量状态和所述第三测量状态。
可选的,所述请求所述测量调整的参数:
所述测量的周期、指示上层的周期、所述测量相关的门限值和所述测量相关的持续时间。
可选的,所述信息包括如下一项:
网络侧为每个终端配置的信息;
网络侧为每个小区配置的信息;
网络侧为每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个终端的每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个波束配置的信息。
可选的,所述测量包括如下至少一项:
本小区测量、邻小区测量、异频点测量、异系统测量。
本发明实施例提供的网络设备能够实现图3的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述,且可以提高终端的测量能力。
图8为实现本发明各个实施例的一种终端的硬件结构示意图,
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、处理器810、以及电源811等部件。本领域技术人员可以理解,图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、机器人、可穿戴设备、以及计步器等。
射频单元801,用于接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量;
处理器810,用于依据所述信息,确定是否调整所述测量的测量状态。
可选的,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
可选的,所述第一测量状态满足如下至少一项:
测量周期长于所述第二测量状态的测量周期;
在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
测量指示间隔长于所述第二测量状态的测量指示间隔;
在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述第三测量状态满足如下至少一项:
测量周期短于所述第二测量状态的测量周期;
在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
测量指示间隔短于所述第二测量状态的测量指示间隔;
在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述信息用于表示如下至少一项:
测量状态的参数、小区支持的测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、小区是否支持所述第一测量状态、小区是否支持所述第三测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、支持的测量状态、第一指示、第二指示和第三指示;
或者,所述信息用于表示如下至少一项:
测量状态的参数、是否支持所述第一测量状态、是否支持所述第三测量状态、第一指示、第二指示和第三指示;
其中,所述第一指示用于指示跳过至少一个周期对应的所述测量,所述第二指示用于指示在所述指示消息后至少一个周期进行测量,所述周期包括测量周期、非连续接收DRX周期或者上层指示周期;
所述第三指示用于指示跳过至少一个上层指示周期。
可选的,所述指示消息通过显式或者隐式指示所述信息。
可选的,所述指示消息通过至少一个比特显式指示所述信息;或者
所述指示消息通过指示跳过物理下行控制信道PDCCH监听或者不启动DRX持续计时器隐式指示所述信息。
可选的,所述指示消息包括系统信息或者提前指示消息。
可选的,所述依据所述信息,确定是否调整所述测量的测量状态,包括:
依据所述信息和所述终端的参数,确定是否调整所述测量的测量状态;或者
依据所述信息、所述终端的参数和小区类型,确定是否调整所述测量的测量状态;或者
依据所述信息和小区类型,确定是否调整所述测量的测量状态
其中,所述终端的参数包括所述终端的移动速度和位置中的至少一项。
可选的,所述终端的移动速度和位置中的至少一项根据网络侧配置的门限和终端的测量结果确定。
可选的,所述终端的参数与所述测量的测量状态具有对应关系;
所述小区类型与所述测量的测量状态具有对应关系。
可选的,所述接收指示消息之前,射频单元801还用于:
向网络侧发送请求消息,所述请求消息包括如下至少一项:
请求所述测量调整的测量状态和请求所述测量调整的参数;
其中,所述请求所述测量调整的测量状态包括如下至少一项:
所述第一测量状态、所述第二测量状态和所述第三测量状态。
可选的,所述请求所述测量调整的参数包括如下至少一项:
所述测量的周期、指示上层的周期、所述测量相关的门限值和所述测量相关的持续时间。
可选的,所述信息包括如下一项:
网络侧为每个终端配置的信息;
网络侧为每个小区配置的信息;
网络侧为每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个终端的每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个波束配置的信息。
可选的,所述测量包括如下至少一项:
本小区测量、邻小区测量、异频点测量、异系统测量。
应理解的是,本发明实施例中,射频单元801可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器810处理;另外,将上行的数据发送给基站。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元801还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块802为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元803可以将射频单元801或网络模块802接收的或者在存储器809中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元803还可以提供与终端800执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元803包括扬声器、蜂鸣器以及受话器等。
输入单元804用于接收音频或视频信号。输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元806上。经图形处理器8041处理后的图像帧可以存储在存储器809(或其它存储介质)中或者经由射频单元801或网络模块802进行发送。麦克风8042可以 接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元801发送到移动通信基站的格式输出。
终端800还包括至少一种传感器805,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板8061的亮度,接近传感器可在终端800移动到耳边时,关闭显示面板8061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器805还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元806用于显示由用户输入的信息或提供给用户的信息。显示单元806可包括显示面板8061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板8061。
用户输入单元807可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板8071上或在触控面板8071附近的操作)。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器810,接收处理器810发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板8071。除了触控面板8071,用户输入单元807还可以包括其他输入设备8072。具体地,其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板8071可覆盖在显示面板8061上,当触控面板8071检测到在其上或附近的触摸操作后,传送给处理器810以确定触摸事件的类型,随后处理器810根据触摸事件的类型在显示面板8061上提供相应的视觉输出。虽然在图8中,触控面板8071与显示面板8061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板8071与显示面板8061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元808为外部装置与终端800连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元808可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端800内的一个或多个元件或者可以用于在终端800和外部装置之间传输数据。
存储器809可用于存储软件程序以及各种数据。存储器809可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器810是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器809内的软件程序和/或模块,以及调用存储在存储器809内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器810可包括一个或多个处理单元;优选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
终端800还可以包括给各个部件供电的电源811(比如电池),优选的,电源811可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端800包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器810,存储器809,存储在存储器809上并可在所述处理器810上运行的计算机程序,该计算机程序被处理器810执行时实现上述测量处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图9,图9是本发明实施例提供的另一种网络设备的结构图,如图9所示,该网络设备900包括:处理器901、收发机902、存储器903和总线接口,其中:
收发机902,用于发送指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量,所述信息用于使得终端确定是否调整所述测量的测量状态。
可选的,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
可选的,所述第一测量状态满足如下至少一项:
测量周期长于所述第二测量状态的测量周期;
在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
测量指示间隔长于所述第二测量状态的测量指示间隔;
在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述第三测量状态满足如下至少一项:
测量周期短于所述第二测量状态的测量周期;
在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
测量指示间隔短于所述第二测量状态的测量指示间隔;
在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
可选的,所述信息用于表示如下至少一项:
测量状态的参数、小区支持的测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、小区是否支持所述第一测量状态、小区是否支持所述第三测量状态和小区类型;
或者,所述信息用于表示如下至少一项:
测量状态的参数、支持的测量状态、第一指示、第二指示和第三指示;
或者,所述信息用于表示如下至少一项:
测量状态的参数、是否支持所述第一测量状态、是否支持所述第三测量状态、第一指示、第二指示和第三指示;
其中,所述第一指示用于指示跳过至少一个周期对应的所述测量,所述第二指示用于指示在所述指示消息后至少一个周期进行测量,所述周期包括测量周期、非连续接收DRX周期或者上层指示周期;
所述第三指示用于指示跳过至少一个上层指示周期。
可选的,所述指示消息通过显式或者隐式指示所述信息。
可选的,所述指示消息通过至少一个比特显式指示所述信息;或者
所述指示消息通过指示跳过物理下行控制信道PDCCH监听或者不启动DRX持续计时器隐式指示所述信息。
可选的,所述指示消息包括系统信息或者提前指示消息。
可选的,所述发送指示消息之前,收发机902还用于:
接收请求消息,所述请求消息包括如下至少一项:
请求所述测量调整的测量状态和请求所述测量调整的参数;
其中,所述请求所述测量调整的测量状态包括如下至少一项:
所述第一测量状态、所述第二测量状态和所述第三测量状态。
可选的,所述请求所述测量调整的参数:
所述测量的周期、指示上层的周期、所述测量相关的门限值和所述测量相关的持续时间。
可选的,所述信息包括如下一项:
网络侧为每个终端配置的信息;
网络侧为每个小区配置的信息;
网络侧为每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个终端的每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
网络侧为每个波束配置的信息。
可选的,所述测量包括如下至少一项:
本小区测量、邻小区测量、异频点测量、异系统测量。
上述网络设备可以提高终端的测量能力。
其中,收发机902,用于在处理器901的控制下接收和发送数据,所述收发机902包括至少两个天线端口。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器903代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机902可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口904还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器901负责管理总线架构和通常的处理,存储器903可以存储处理器901在执行操作时所使用的数据。
优选的,本发明实施例还提供一种网络设备,包括处理器901,存储器903,存储在存储器903上并可在所述处理器901上运行的计算机程序,该计算机程序被处理器901执行时实现指示信息发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本发明实施例提供的测量处理方法,或者,该计算机程序被处理器执行时实现本发明实施例提供的指示信息发送方法,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (30)

  1. 一种测量处理方法,应用于终端,其特征在于,包括:
    接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量;
    依据所述信息,确定是否调整所述测量的测量状态。
  2. 如权利要求1所述的方法,其特征在于,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
    第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
  3. 如权利要求2所述的方法,其特征在于,所述第一测量状态满足如下至少一项:
    测量周期长于所述第二测量状态的测量周期;
    在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
    测量指示间隔长于所述第二测量状态的测量指示间隔;
    在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
    在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
    所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
    所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
  4. 如权利要求2所述的方法,其特征在于,所述第三测量状态满足如下至少一项:
    测量周期短于所述第二测量状态的测量周期;
    在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
    测量指示间隔短于所述第二测量状态的测量指示间隔;
    在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
    在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
    所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
    所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
  5. 如权利要求2所述的方法,其特征在于,所述信息用于表示如下至少一项:
    测量状态的参数、小区支持的测量状态和小区类型;
    或者,所述信息用于表示如下至少一项:
    测量状态的参数、小区是否支持所述第一测量状态、小区是否支持所述第三测量状态和小区类型;
    或者,所述信息用于表示如下至少一项:
    测量状态的参数、支持的测量状态、第一指示、第二指示和第三指示;
    或者,所述信息用于表示如下至少一项:
    测量状态的参数、是否支持所述第一测量状态、是否支持所述第三测量状态、第一指示、第二指示和第三指示;
    其中,所述第一指示用于指示跳过至少一个周期对应的所述测量,所述第二指示用于指示在所述指示消息后至少一个周期进行测量,所述周期包括测量周期、非连续接收DRX周期或者上层指示周期;
    所述第三指示用于指示跳过至少一个上层指示周期。
  6. 如权利要求1所述的方法,其特征在于,所述指示消息通过至少一个比特显式指示所述信息;或者
    所述指示消息通过指示跳过物理下行控制信道PDCCH监听或者不启动DRX持续计时器隐式指示所述信息。
  7. 如权利要求1所述的方法,其特征在于,所述指示消息包括系统信息或者提前指示消息。
  8. 如权利要求1所述的方法,其特征在于,所述依据所述信息,确定是否调整所述测量的测量状态,包括:
    依据所述信息和所述终端的参数,确定是否调整所述测量的测量状态;或者
    依据所述信息、所述终端的参数和小区类型,确定是否调整所述测量的测量状态;或者
    依据所述信息和小区类型,确定是否调整所述测量的测量状态
    其中,所述终端的参数包括所述终端的移动速度和位置中的至少一项。
  9. 如权利要求8所述的方法,其特征在于,所述终端的移动速度和位置中的至少一项根据网络侧配置的门限和终端的测量结果确定。
  10. 如权利要求8所述的方法,其特征在于,所述终端的参数与所述测量的测量状态具有对应关系;
    所述小区类型与所述测量的测量状态具有对应关系。
  11. 如权利要求2所述的方法,其特征在于,所述接收指示消息之前,所述方法还包括:
    向网络侧发送请求消息,所述请求消息包括如下至少一项:
    请求所述测量调整的测量状态和请求所述测量调整的参数;
    其中,所述请求所述测量调整的测量状态包括如下至少一项:
    所述第一测量状态、所述第二测量状态和所述第三测量状态。
  12. 如权利要求11所述的方法,其特征在于,所述请求所述测量调整的参数包括如下至少一项:
    所述测量的周期、指示上层的周期、所述测量相关的门限值和所述测量相关的持续时间。
  13. 如权利要求1所述的方法,其特征在于,所述信息包括如下一项:
    网络侧为每个终端配置的信息;
    网络侧为每个小区配置的信息;
    网络侧为每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
    网络侧为每个终端的每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
    网络侧为每个波束配置的信息。
  14. 如权利要求1所述的方法,其特征在于,所述测量包括如下至少一项:
    本小区测量、邻小区测量、异频点测量、异系统测量。
  15. 一种指示信息发送方法,应用于网络设备,其特征在于,包括:
    发送指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量,所述信息用于使得终端确定是否调整所述测量的测量状态。
  16. 如权利要求15所述的方法,其特征在于,所述调整所述测量的测量状态包括在如下任意两种测量状态之间进行调整:
    第一测量状态、第二测量状态和第三测量状态,其中,所述第一测量状态指测量放松,所述第二测量状态指正常测量,所述第三测量状态指测量增强。
  17. 如权利要求16所述的方法,其特征在于,所述第一测量状态满足如下至少一项:
    测量周期长于所述第二测量状态的测量周期;
    在第一时间内的测量抽样数小于所述第二测量状态的测量抽样数;
    测量指示间隔长于所述第二测量状态的测量指示间隔;
    在第二时间内不进行所述测量,或者在所述第二时间内测量次数少于所述第二测量状态的测量次数;
    在第三时间内不进行所述测量的上层指示,或者在所述第三时间内所述测量的上层指示次数少于所述第二测量状态的所述测量的上层指示;
    所述测量的参考信号的数量少于所述第二测量状态下所述测量的参数信号的数量;
    所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
  18. 如权利要求16所述的方法,其特征在于,所述第三测量状态满足如下至少一项:
    测量周期短于所述第二测量状态的测量周期;
    在第四时间内的测量抽样数大于所述第二测量状态的测量抽样数;
    测量指示间隔短于所述第二测量状态的测量指示间隔;
    在第五时间内进行所述测量,或者在所述第五时间内测量次数大于所述第二测量状态的测量次数;
    在第六时间内进行所述测量的上层指示,或者在所述第六时间内所述测量的上层指示次数大于所述第二测量状态的所述测量的上层指示;
    所述测量的参考信号的数量大于所述第二测量状态下所述测量的参数信号的数量;
    所述测量的参考信号不同于所述第二测量状态下所述测量的参数信号,其中,所述参考信号不同包括参考信号的周期和子载波间隔中至少一项不同。
  19. 如权利要求16所述的方法,其特征在于,所述信息用于表示如下至少一项:
    测量状态的参数、小区支持的测量状态和小区类型;
    或者,所述信息用于表示如下至少一项:
    测量状态的参数、小区是否支持所述第一测量状态、小区是否支持所述第三测量状态和小区类型;
    或者,所述信息用于表示如下至少一项:
    测量状态的参数、支持的测量状态、第一指示、第二指示和第三指示;
    或者,所述信息用于表示如下至少一项:
    测量状态的参数、是否支持所述第一测量状态、是否支持所述第三测量状态、第一指示、第二指示和第三指示;
    其中,所述第一指示用于指示跳过至少一个周期对应的所述测量,所述第二指示用于指示在所述指示消息后至少一个周期进行测量,所述周期包括测量周期、非连续接收DRX周期或者上层指示周期;
    所述第三指示用于指示跳过至少一个上层指示周期。
  20. 如权利要求15所述的方法,其特征在于,所述指示消息通过至少一个比特显式指示所述信息;或者
    所述指示消息通过指示跳过物理下行控制信道PDCCH监听或者不启动DRX持续计时器隐式指示所述信息。
  21. 如权利要求15所述的方法,其特征在于,所述指示消息包括系统信息或者提前指示消息。
  22. 如权利要求16所述的方法,其特征在于,所述发送指示消息之前,所述方法还包括:
    接收请求消息,所述请求消息包括如下至少一项:
    请求所述测量调整的测量状态和请求所述测量调整的参数;
    其中,所述请求所述测量调整的测量状态包括如下至少一项:
    所述第一测量状态、所述第二测量状态和所述第三测量状态。
  23. 如权利要求22所述的方法,其特征在于,所述请求所述测量调整的参数:
    所述测量的周期、指示上层的周期、所述测量相关的门限值和所述测量相关的持续时间。
  24. 如权利要求15所述的方法,其特征在于,所述信息包括如下一项:
    网络侧为每个终端配置的信息;
    网络侧为每个小区配置的信息;
    网络侧为每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
    网络侧为每个终端的每个频率、每个载波、每个频段或者每个带宽部分配置的信息;
    网络侧为每个波束配置的信息。
  25. 如权利要求15所述的方法,其特征在于,所述测量包括如下至少一项:
    本小区测量、邻小区测量、异频点测量、异系统测量。
  26. 一种终端,其特征在于,包括:
    接收模块,用于接收指示消息,所述指示消息用于指示测量调整的信息,其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量;
    确定模块,用于依据所述信息,确定是否调整所述测量的测量状态。
  27. 一种网络设备,其特征在于,包括:
    发送模块,用于发送指示消息,所述指示消息用于指示测量调整的信息, 其中,所述测量包括无线链路监测RLM和波束失败检测BFD中至少一项的测量,所述信息用于使得终端确定是否调整所述测量的测量状态。
  28. 一种终端,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至14中任一项所述的测量处理方法中的步骤。
  29. 一种网络设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求15至25中任一项所述的指示信息发送方法中的步骤。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至14中任一项所述的测量处理方法中的步骤,或者所述计算机程序被处理器执行时实现如权利要求15至25中任一项所述的指示信息发送方法中的步骤。
PCT/CN2020/123091 2019-10-23 2020-10-23 测量处理方法、指示信息发送方法、终端和网络设备 WO2021078235A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112022007703A BR112022007703A2 (pt) 2019-10-23 2020-10-23 Método de processamento de medição, método de envio de informações indicativas, terminal e dispositivo de rede.
KR1020227016604A KR20220084364A (ko) 2019-10-23 2020-10-23 측정 처리 방법, 지시 정보 송신 방법, 단말 및 네트워크 장비
EP20878205.2A EP4050927A4 (en) 2019-10-23 2020-10-23 METHOD FOR PROCESSING MEASUREMENTS, METHOD FOR SENDING INDICATION INFORMATION, TERMINAL AND NETWORK DEVICE
US17/724,766 US20220248244A1 (en) 2019-10-23 2022-04-20 Measurement processing method, indication information sending method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911014317.XA CN112702750B (zh) 2019-10-23 2019-10-23 测量处理方法、指示信息发送方法、终端和网络设备
CN201911014317.X 2019-10-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/724,766 Continuation US20220248244A1 (en) 2019-10-23 2022-04-20 Measurement processing method, indication information sending method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2021078235A1 true WO2021078235A1 (zh) 2021-04-29

Family

ID=75505400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123091 WO2021078235A1 (zh) 2019-10-23 2020-10-23 测量处理方法、指示信息发送方法、终端和网络设备

Country Status (6)

Country Link
US (1) US20220248244A1 (zh)
EP (1) EP4050927A4 (zh)
KR (1) KR20220084364A (zh)
CN (1) CN112702750B (zh)
BR (1) BR112022007703A2 (zh)
WO (1) WO2021078235A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023077393A1 (zh) * 2021-11-05 2023-05-11 Oppo广东移动通信有限公司 基于双连接网络的通信方法及装置
WO2023247299A1 (en) * 2022-06-23 2023-12-28 Nokia Technologies Oy Relaxed measurement based on wake-up signal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115623526A (zh) * 2021-07-16 2023-01-17 夏普株式会社 执行无线链路监测的方法及用户设备
CN117941403A (zh) * 2021-12-06 2024-04-26 Oppo广东移动通信有限公司 测量放松方法、装置、终端设备及存储介质
WO2023133694A1 (zh) * 2022-01-11 2023-07-20 北京小米移动软件有限公司 一种测量放松方法、设备、存储介质及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014169A (zh) * 2007-02-14 2007-08-08 北京天碁科技有限公司 一种移动终端省电的实现方法及装置
CN102595478A (zh) * 2011-01-14 2012-07-18 华为技术有限公司 小区节能信息处理方法、网络侧设备和用户设备
CN104602265A (zh) * 2015-01-09 2015-05-06 杭州华三通信技术有限公司 一种rtt测量定位系统中的测量报文发送方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237936B (zh) * 2010-04-30 2015-01-21 华为技术有限公司 一种去激活状态载波的测量方法、装置
US9521567B2 (en) * 2012-07-11 2016-12-13 Lg Electronics Inc. Method for performing measurement of terminal in wireless communication system and apparatus therefor
WO2018174806A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Rlm and beam failure detection based on a mix of different reference signals
CN109587707B (zh) * 2017-09-28 2021-09-03 维沃移动通信有限公司 一种测量控制方法、用户终端及基站
RU2746889C1 (ru) * 2017-11-16 2021-04-21 Телефонактиеболагет Лм Эрикссон (Пабл) Способ для выполнения контроля линии радиосвязи
CN109802814B (zh) * 2017-11-17 2021-07-23 展讯通信(上海)有限公司 控制资源集和pdcch监测时机的配置方法、装置及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014169A (zh) * 2007-02-14 2007-08-08 北京天碁科技有限公司 一种移动终端省电的实现方法及装置
CN102595478A (zh) * 2011-01-14 2012-07-18 华为技术有限公司 小区节能信息处理方法、网络侧设备和用户设备
CN104602265A (zh) * 2015-01-09 2015-05-06 杭州华三通信技术有限公司 一种rtt测量定位系统中的测量报文发送方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023077393A1 (zh) * 2021-11-05 2023-05-11 Oppo广东移动通信有限公司 基于双连接网络的通信方法及装置
WO2023247299A1 (en) * 2022-06-23 2023-12-28 Nokia Technologies Oy Relaxed measurement based on wake-up signal

Also Published As

Publication number Publication date
EP4050927A4 (en) 2023-01-25
EP4050927A1 (en) 2022-08-31
US20220248244A1 (en) 2022-08-04
CN112702750A (zh) 2021-04-23
BR112022007703A2 (pt) 2022-07-12
CN112702750B (zh) 2022-11-22
KR20220084364A (ko) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2020221042A1 (zh) Prs资源配置方法、测量间隔配置方法和相关设备
WO2020221302A1 (zh) 测量方法、配置方法、终端及网络侧设备
WO2021078235A1 (zh) 测量处理方法、指示信息发送方法、终端和网络设备
US20210329483A1 (en) Information reporting method and terminal
WO2020156436A1 (zh) 测量方法、终端、测量指示方法及网络侧设备
US11382160B2 (en) Method of processing radio link failure, user terminal and network device
WO2021109955A1 (zh) 邻小区csi报告发送方法、接收方法及相关设备
WO2020164594A1 (zh) 测量处理方法、参数配置方法、终端和网络设备
WO2020001530A1 (zh) 测量方法、终端和网络侧设备
WO2021078240A1 (zh) 测量处理方法和终端
US20230247468A1 (en) Measurement control method, terminal, and network-side device
WO2020156433A1 (zh) 辅助信息上报方法和终端
WO2020063344A1 (zh) 配置方法、接收方法、终端及网络侧设备
US20210092630A1 (en) Method for cell management, terminal, and network-side device
WO2019223684A1 (zh) 测量上报方法、测量配置方法、终端和网络侧设备
WO2021129478A1 (zh) 小区拥塞的处理方法、终端及网络侧设备
US11812281B2 (en) Measuring method, terminal and network side device
WO2020249116A1 (zh) 测量方法、设备及系统
WO2019242678A1 (zh) 测量方法及终端
WO2021197191A1 (zh) 冲突资源确定方法和终端
WO2021160027A1 (zh) 参考信号的确定方法和通信设备
US11445399B2 (en) Indication method for measurement result, terminal, and base station
US20220264399A1 (en) Handover method, configuration method, terminal, and network device
WO2021190477A1 (zh) 接收方法、发送方法、终端及网络侧设备
WO2021121114A1 (zh) 辅小区休眠指示方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007703

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227016604

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020878205

Country of ref document: EP

Effective date: 20220523

ENP Entry into the national phase

Ref document number: 112022007703

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220422