WO2021147763A1 - 确定波束信息的方法、终端及网络设备 - Google Patents

确定波束信息的方法、终端及网络设备 Download PDF

Info

Publication number
WO2021147763A1
WO2021147763A1 PCT/CN2021/071719 CN2021071719W WO2021147763A1 WO 2021147763 A1 WO2021147763 A1 WO 2021147763A1 CN 2021071719 W CN2021071719 W CN 2021071719W WO 2021147763 A1 WO2021147763 A1 WO 2021147763A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam information
information
tci
channel
default
Prior art date
Application number
PCT/CN2021/071719
Other languages
English (en)
French (fr)
Inventor
杨宇
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21744464.5A priority Critical patent/EP4096325A4/en
Publication of WO2021147763A1 publication Critical patent/WO2021147763A1/zh
Priority to US17/866,812 priority patent/US20220352969A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0851Joint weighting using training sequences or error signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present invention relates to the field of communication technology, and in particular to a method for determining beam information.
  • each channel or reference signal is basically independently configured or indicated. Since there are more channels or reference signals, more signaling overhead is required to implement beam indication.
  • each channel or reference signal The performance goals of each channel or reference signal are different.
  • the control channel needs to ensure coverage and reliability, while the data channel needs to pursue a high transmission rate. Therefore, the control channel uses a wide beam and the data channel uses a narrow beam, which can better meet the performance goals of their respective channels. .
  • the present invention provides a method, a terminal and a network device for determining beam information to solve the problem that the prior art requires more signaling overhead to achieve beam indication and the need to distinguish different performance objectives of each channel or reference signal.
  • the present invention is implemented as follows:
  • an embodiment of the present invention provides a method for determining beam information, which is applied to a terminal, and includes:
  • the default beam information determine beam information of channels and/or reference signals included in a set corresponding to the default beam information; wherein the set includes at least one channel and/or at least one reference signal.
  • an embodiment of the present invention also provides a method for determining beam information, which is applied to the first TRP, and includes:
  • the default beam information determine beam information of channels and/or reference signals included in a set corresponding to the default beam information; wherein the set includes at least one channel and/or at least one reference signal.
  • an embodiment of the present invention also provides a terminal, including:
  • the first determining module is configured to determine at least two default beam information
  • the second determining module is configured to determine, according to the default beam information, channel and/or reference signal beam information included in a set corresponding to the default beam information; wherein the set includes at least one channel and/or At least one reference signal.
  • an embodiment of the present invention also provides a terminal, including: a memory, a processor, and a computer program stored in the memory and running on the processor.
  • a terminal including: a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the computer program is executed by the processor, the above is achieved.
  • an embodiment of the present invention also provides a network device, where the network device is a first TRP and includes:
  • the third determining module is configured to determine at least two default beam information
  • the fourth determining module is configured to determine, according to the default beam information, the channel and/or the beam information of the reference signal included in the set corresponding to the default beam information; wherein the set includes at least one channel and/or At least one reference signal.
  • the embodiments of the present invention also provide a network device.
  • the network device is a first TRP and includes: a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the computer When the program is executed by the processor, the steps of the method for determining beam information applied to the first TRP as described above are implemented.
  • an embodiment of the present invention also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the determination of beam information as described above is achieved Method steps.
  • At least two default beam information is determined, and the beam information of the channel and/or reference signal included in the set corresponding to the default beam information is determined according to the default beam information; wherein
  • the set includes at least one channel and/or at least one reference signal, which not only can reduce the signaling overhead of each channel and/or reference signal for beam indication, but also can use different default beam information for different sets to meet different requirements. The demand for performance goals.
  • FIG. 1 is one of the schematic flowcharts of a method for determining beam information according to an embodiment of the present invention
  • FIG. 2 is a second schematic flowchart of a method for determining beam information according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of modules of a terminal according to an embodiment of the present invention.
  • Figure 4 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of modules of a network device according to an embodiment of the present invention.
  • Fig. 6 is a structural block diagram of a network device according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • the dimensions of MIMO technology continue to expand.
  • LTE Rel-8 up to 4 layers of MIMO transmission can be supported.
  • the Multi-User MIMO (MU-MIMO) technology is enhanced, and MU-MIMO transmission in Transmission Mode (TM)-8 can support up to 4 downlink data layers.
  • MU-MIMO Multi-User MIMO
  • TM Transmission Mode
  • SU-MIMO single-user multiple-input multiple-output
  • Massive MIMO technology uses large-scale antenna arrays, which can greatly improve the efficiency of system frequency band utilization and support a larger number of access users. Therefore, major research organizations regard Massive MIMO technology as one of the most promising physical layer technologies in the next generation of mobile communication systems.
  • digital-analog hybrid beamforming technology came into being, that is, on the basis of traditional digital domain beamforming, near the front end of the antenna system, a first-level beamforming is added to the radio frequency signal. shape.
  • the analog shaping can make the transmitted signal and the channel achieve a relatively rough match through a relatively simple way.
  • the dimension of the equivalent channel formed after the analog shaping is smaller than the actual number of antennas, so the subsequent required AD/DA conversion devices, the number of digital channels, and the corresponding baseband processing complexity can be greatly reduced.
  • the residual interference of the analog shaped part can be processed again in the digital domain to ensure the quality of MU-MIMO transmission.
  • digital-analog hybrid beamforming is a compromise between performance and complexity, and has a higher practical prospect in systems with high frequency bands, large bandwidths or a large number of antennas.
  • the operating frequency band supported by the system is increased to above 6GHz, up to about 100GHz.
  • the high frequency band has relatively abundant idle frequency resources, which can provide greater throughput for data transmission.
  • 3GPP has completed the high-frequency channel modeling work.
  • the wavelength of the high-frequency signal is short.
  • more antenna elements can be arranged on the panel of the same size, and the beamforming technology is used to form stronger directivity.
  • the analog beamforming is a full-bandwidth transmission, and each polarization direction array element on the panel of each high-frequency antenna array can only transmit analog beams in a time-division multiplexing manner.
  • the shaping weight of the analog beam is realized by adjusting the parameters of the RF front-end phase shifter and other equipment.
  • the polling method is usually used for the training of analog beamforming vectors, that is, the array element of each polarization direction of each antenna panel sends the training signal in turn at the appointed time in the way of time division multiplexing ( That is, the candidate shaping vector), the terminal feeds back the beam report after measurement, so that the network side uses the training signal to implement analog beam transmission during the next service transmission.
  • the content of the beam report usually includes several optimal transmit beam identifiers and the measured received power of each transmit beam.
  • the network When doing beam measurement, the network will configure a reference signal resource set (Reference Signal resource set, RS resource set), which includes at least one reference signal resource, such as a synchronization signal (Synchronization Signal and PBCH block, SSB) resource or channel state information reference Signal (Channel State Information Reference Signal, CSI-RS) resource.
  • a reference signal resource set (Reference Signal resource set, RS resource set)
  • RS resource set includes at least one reference signal resource, such as a synchronization signal (Synchronization Signal and PBCH block, SSB) resource or channel state information reference Signal (Channel State Information Reference Signal, CSI-RS) resource.
  • the terminal measures the L1 reference signal received power (Layer 1 reference signal received power, L1-RSRP)/L1 Signal to Interference plus Noise Ratio (L1-SINR) of each RS resource, and sets the optimal at least A measurement result is reported to the network, and the reported content includes a synchronization signal resource indicator (SSB resource indicator, SSBRI) or a CSI-RS resource indicator (CSI-RS resource indicator, CRI), and L1-RSRP/L1-SINR.
  • the report content reflects at least one optimal beam and its quality for the network to determine the beam used to send a channel or signal to a user equipment (User Equipment, UE).
  • the network can make beam instructions for the downlink and uplink channels or reference signals, which are used to establish a beam link between the network and the terminal to realize the transmission of the channel or reference signal.
  • the network uses radio resource control (Radio Resource Control, RRC) signaling to configure K transmission configuration indications for each control resource set (CORESET) (Transmission Configuration Indication, TCI) state.
  • CORESET Control resource set
  • TCI Transmission Configuration Indication
  • K K>1
  • the Media Access Control (MAC) Control Element (CE) indicates or activates 1 TCI state.
  • the UE monitors the PDCCH, it uses the same quasi-colocation (QCL), that is, the same TCI state, to monitor the PDCCH for all search spaces in the CORESET.
  • QCL quasi-colocation
  • Reference signals in the TCI state (such as periodic CSI-RS resource, semi-persistent CSI-RS resource, synchronization signal block (SS block, Synchronization Signal block), etc.) and user-specific physical downlink control channel UE-specific PDCCH demodulation reference
  • the signal (DeModulation Reference Signal, DMRS) port is spatial QCL. The UE can learn which receiving beam to use to receive the PDCCH according to the TCI state.
  • the network For the beam indication of the Physical Downlink Shared Channel (PDSCH), the network configures M TCI states through RRC signaling, and then activates 2 N TCI states using the MAC CE command, and then uses Downlink Control Information (Downlink Control Information, The N-bit TCI field of the DCI) informs the TCI status.
  • the reference signal in the TCI status and the DMRS port of the PDSCH to be scheduled are QCL.
  • the UE can learn which receiving beam to use to receive the PDSCH according to the TCI state.
  • the network configures QCL information for the CSI-RS resource through RRC signaling.
  • the network uses the MAC CE command to activate a CSI-RS resource from the CSI-RS resource set configured by RRC and indicate its QCL information.
  • the network configures QCL for the CSI-RS resource through RRC signaling, and uses DCI to trigger the CSI-RS.
  • the network uses RRC signaling to configure the spatial relationship information for each PUCCH resource through the parameter PUCCH-spatial relationship information, which is the spatial relationship configured for the PUCCH resource.
  • PUCCH-spatial relationship information which is the spatial relationship configured for the PUCCH resource
  • the information contains multiple information, use MAC-CE to indicate or activate one of the spatial relation information.
  • the spatial relation information configured for PUCCH resource contains only one, no additional MAC CE command is required.
  • the spatial relationship information of the PUSCH is that when the DCI carried by the PDCCH schedules the PUSCH, each SRI codepoint codepoint in the SRI field in the DCI indicates an SRI, and the SRI Used to indicate the spatial relation information of PUSCH.
  • the network configures spatial relation information for the SRS resource through RRC signaling.
  • the SRS type is semi-persistent SRS
  • the network activates one from a set of spatial relation information configured by RRC through the MAC CE command.
  • the SRS type is aperiodic SRS
  • the network configures spatial relation information for the SRS resource through RRC signaling.
  • the aforementioned beam information, spatial relation information, TCI state information, QCL information, etc. may all mean beam information.
  • the downlink beam information can usually be represented by TCI state information and QCL information.
  • the uplink beam information can usually be represented by spatial relation information.
  • the embodiment of the present invention provides a method for determining beam information, which can solve the problem that the prior art requires a lot of signaling overhead to implement beam indication and the need to distinguish different performance targets of each channel or reference signal.
  • an embodiment of the present invention provides a method for determining beam information, which is applied to a terminal, and includes:
  • Step 11 Determine default beam information of at least two default beams.
  • the at least two default beam information may be the default beam information determined by the terminal, may also be the determined default beam information sent by the receiving network device, or the default beam information agreed by the protocol.
  • Step 12 According to the default beam information, determine beam information of channels and/or reference signals included in a set corresponding to the default beam information; wherein the set includes at least one channel and/or at least one reference signal .
  • the set here can be an explicit set, or it can only point to at least one channel and/or at least one reference signal, or it can be directly replaced with a specific at least one channel and/or at least one reference signal.
  • the set can also be Called the target audience.
  • the manner of determining the beam information may be a protocol agreement or a network device instruction.
  • different default beam information corresponds to different sets, and one set may include at least one channel and at least one reference signal, or the set may include at least two channels or at least two reference signals and other situations.
  • the set may be agreed upon by a protocol or configured by a network device; the way of dividing different sets may include:
  • control channels (PDCCH, PUCCH, etc.) and traffic channels (PDSCH, PUSCH, etc.) belong to different sets.
  • the second type: the source reference signal source RS of the channel and/or reference signal contained in different sets is different, for example, when the TCI state/spatial relation information of each channel is initially configured according to RRC, the source RS uses the first RS resource
  • the channel or reference signal corresponds to one default beam information
  • the source RS uses the channel or reference signal of the second RS resource, which corresponds to another default beam information.
  • the third type For the same channel, it can be divided into different sets according to different purposes. For example: public common PDCCH and unicast unicast PDCCH belong to different sets, or the SRS resource set where the SRS resource has different high-level parameter usage belongs to Different collections. Among them, the division of different sets is not limited to the above content, and no specific limitation is made here.
  • At least two default beam information is determined, and the beam information of the channel and/or reference signal included in the set corresponding to the default beam information is determined according to the default beam information; where
  • the set includes at least one channel and/or at least one reference signal, which can not only reduce the signaling overhead of beam indication for each channel and/or reference signal, but also use different default beam information for different sets to meet different performance goals Demand.
  • the step 11 may specifically include:
  • TRP Transmitting and Receiving Point
  • the TRP sends the two default beam information to the terminal, and the terminal uses the at least two default beam information.
  • the method may further include:
  • the beam information of the channel and/or the reference signal included in the set corresponding to the default beam information is determined.
  • the method for the terminal to determine the updated default beam information may include: determining the updated default beam information sent by the network device, or the terminal updates the default beam information.
  • the default beam information includes the first default beam information and the second default beam information
  • the set includes the first set and the second set
  • the first set corresponds to the first default beam information
  • the second set corresponds to the second default beam Information
  • the first set determines the channels and/or references included in the first set according to the updated first default beam information
  • the beam information of the signal when the MAC CE updates the corresponding TCI state in the preset codepoint of the TCI field in the DCI, the updated second default beam information is determined according to the method of determining the second default beam information, and the second set is based on the updated
  • the second default beam information of determines the beam information of the channel and/or reference signal included in the second set.
  • the method may further include:
  • the manner of determining the updated beam information of the first channel and/or the first reference signal may include: determining the updated beam information sent by the network device, or updating the beam information by the terminal.
  • the beam information of the first channel and/or the first reference signal in the first set is updated, the beam information of the other channels and/or other reference signals in the first set is updated correspondingly.
  • the first channel and/or the first reference signal may be a default channel corresponding to the first default beam information in the first set and/or a channel and/or reference signal other than the default reference signal.
  • the update method of other sets is similar to that of the first set, and will not be detailed here.
  • the method may further include:
  • the channel and/or reference signal included in the set corresponding to the default beam information is not configured with beam information.
  • the network equipment sends the first signaling (such as: start signaling), and the terminal receives the first signaling (such as: the network starts using at least two signals through RRC signaling).
  • the terminal activates at least two default beam mechanisms, and the network device also activates at least two default beam mechanisms, that is, the network device instructs the terminal to use at least two default beam information through the first signaling, and the network device itself At least two default beam mechanisms are also activated; or when the terminal determines that the channel and/or reference signal included in the set corresponding to the default beam information is not configured with beam information, the terminal uses at least two default beam information, and the network The device also uses at least two default beam information.
  • the step 12 may specifically include:
  • the downlink control information DCI corresponding to the preset channel does not include the TCI domain, or the DCI corresponding to the preset channel includes the TCI domain but the TCI domain is closed through network signaling, or, in the case of the preset channel
  • the corresponding DCI contains TCI domain indicating beam information, or when the DCI corresponding to the preset channel does not contain SRI information, or when the DCI corresponding to the preset channel contains SRI information indicating beam information
  • the beam information of the preset channel is determined according to the default beam information corresponding to the set in which the preset channel is located, in other words
  • the beam information of the preset channel is determined according to the default beam information corresponding to the set in which the preset channel is located, in other words
  • the method of determining beam information may also be: when DCI indicates the TCI state of the PDSCH, and the scheduling offset is greater than or equal to the preset threshold (that is, the indication is valid), the PDSCH is determined according to the TCI state indicated by the DCI Beam information.
  • the preset channel is PUSCH
  • the DCI corresponding to PUSCH does not contain SRI information, or when the DCI corresponding to PUSCH contains SRI information indicating beam information
  • the default beam information corresponding to the set is determined to determine the beam information of the preset channel.
  • the PUSCH is determined according to the default beam information corresponding to the set where the PUSCH is located Beam information.
  • the manner of determining the beam information may also be: when the DCI indicates the SRI information, the beam information of the PUSCH is determined according to the SRI information.
  • the SRS beam information can be determined according to protocol agreement or network device configuration, according to one of at least two default beam information; or the use of the SRS resource set configured through RRC signaling. , Determine the beam information of the SRS, that is, the SRS of different usage determines the beam information of the SRS according to the corresponding default beam information.
  • the step 11 may specifically include:
  • the at least two default beam information is determined according to the preset beam information on the first component carrier (Component Carrier, CC) and/or the first bandwidth Part (BWP).
  • Component Carrier Component Carrier, CC
  • BWP first bandwidth Part
  • the first CC may include any one of the following:
  • the first type the CC where the channel or reference signal included in the set corresponding to the default beam information is located.
  • the second type the channel or reference signal included in the set corresponding to the default beam information contains a CC with a preset index in the frequency band to which the CC belongs; for example, the CC with the smallest cell index.
  • the third type a CC with a preset index in the CC list or cell group where the channel or reference signal included in the set corresponding to the default beam information belongs to, such as the CC with the smallest cell index.
  • the first CC is not limited to one of the above three methods.
  • the first BWP may be an active BWP.
  • the preset beam information may include any one of the following:
  • the first type beam information of a preset channel; such as TCI state or QCL information of a CORESET with a preset CORESET identifier (Identifier, id).
  • the second type the transmission configuration of the first control resource set (for example: CORESET#0) indicates TCI status information or quasi co-located QCL information.
  • the third type TCI state information or QCL information of the second control resource set with the target control resource set identifier (minimum CORESET id).
  • the fourth type beam information other than TCI status information or QCL information of the control resource set.
  • the preset beam information may include any one of the first, second, and third types; in the single DCI scenario with multiple TRPs, the first three are sending The preset beam information corresponding to the TRP of the DCI, the fourth type is the preset beam information corresponding to the TRP that does not send DCI; in the scenario of multiple TRPs and multiple DCIs, the preset beam information corresponding to each TRP is the first three types Any kind of.
  • the preset beam information may include any one of the following:
  • the first type among the code points in the TCI field of the DCI sent by the first TRP, the first TCI status information corresponding to the first code point in the code points corresponding to one TCI status information.
  • the second type the second TCI status information corresponding to the second code point of the TCI field of the DCI sent by the first TRP; wherein, when the second code point corresponds to two or more TCI status information , The second TCI status information is one of the two or more TCI status information.
  • the first code point may be the lowest code point corresponding to one TCI state information among the code points in the TCI domain of the DCI. That is, the preset beam information may be the TCI state information corresponding to the lowest codepoint among the code points in the TCI domain of the DCI, which contains only one TCI state information.
  • the second code point may be the lowest code point among the code points in the TCI domain of DCI.
  • the preset beam information can be: in the lowest codepoint in the codepoint of the TCI field of DCI, if the lowest codepoint corresponds to two TCI states, the two TCI states are required to be the same; or, if these 2 If the two TCI states are different, the first TCI state is used or the second TCI state is used.
  • the preset beam information may include any one of the first type and the second type; in a multiple TRP and multiple DCI scenarios, the preset beam information corresponding to each TRP Either one of the above two.
  • the preset beam information corresponding to the first TRP may include:
  • the preset beam information corresponding to the other TRP includes:
  • the third code point corresponds to two or more TCI status information
  • the third TCI status information is any one of the two or more TCI status information
  • the information is TCI state information except for the third TCI state information in the two or more TCI state information.
  • the third code point may be the lowest code point among code points corresponding to two or more TCI state information in the TCI field of the DCI.
  • the codepoint in the TCI field of the DCI sent by the first TRP includes Among the two TCI state information corresponding to the lowest codepoint in the codepoint of the two TCI states, the third state information is one of the two TCI state information, and the preset beam information corresponding to the other TRP is another TCI state information.
  • the codepoint in the TCI field of the DCI sent by the first TRP includes 3 corresponding to the lowest codepoint in the codepoint of the 3 TCI state.
  • the third state information is one of the three TCI state information
  • the preset beam information corresponding to the second TRP in the other TRPs is one of the other two TCI state information
  • the other The preset beam information corresponding to the third TRP in the TRP is the other of the other two TCI state information.
  • the number of TRPs and the number of TCI state information corresponding to the third code point are not specifically limited here.
  • the signaling overhead of the respective beam indications of each channel or reference signal can be reduced; /Or the reference signal uses different default beam information to meet the requirements of different performance goals, such as the reliability of the control channel and the high-rate transmission of the traffic channel.
  • an embodiment of the present invention also provides a method for determining beam information, which is applied to the first TRP, and includes:
  • Step 21 Determine at least two default beam information.
  • the method for determining the default beam information may be: the network device determines multiple RS resources (such as two) according to the beam report sent by the terminal, and uses the beam information corresponding to the multiple RS resources as the default beam information. For example, the same source RS in the TCI state or spatial relation of each channel and/or reference signal may be determined as one of the multiple RS resources.
  • the beam report is a group-based beam report
  • the network device determines multiple RS resources according to the beam report, uses the beam information corresponding to the multiple RS resources as the default beam information, and according to the determined default beam information, It can be received simultaneously by the terminal.
  • Step 22 According to the default beam information, determine beam information of channels and/or reference signals included in a set corresponding to the default beam information; wherein the set includes at least one channel and/or at least one reference signal .
  • At least two default beam information is determined, and the beam information of the channel and/or reference signal included in the set corresponding to the default beam information is determined according to the default beam information; where
  • the set includes at least one channel and/or at least one reference signal, which can not only reduce the signaling overhead of beam indication for each channel and/or reference signal, but also use different default beam information for different sets to meet different performance goals Demand.
  • the method may further include:
  • the terminal After determining the at least two default beam information, send the at least two default beam information to the terminal, so that the terminal determines the set corresponding to the default beam information according to the default beam information
  • the method may further include:
  • the beam information of the channel and/or the reference signal included in the set corresponding to the default beam information is determined.
  • the updated default beam information may be sent to the terminal, so that the terminal can determine that the set corresponding to the default beam information contains Channel and/or reference signal beam information.
  • the method may further include:
  • the updated beam information may be sent to the terminal, so that the terminal can determine that the set contains Beam information of other channels and/or other reference signals.
  • the method may further include:
  • the first signaling is sent to the terminal to instruct the terminal to use the default beam information, and the first TRP also uses the default beam information; if the first TRP is not configured with a set corresponding to the default beam information When the beam information of the channel and/or reference signal is contained in the function, the first TRP uses the default beam information of the function.
  • the step 22 includes:
  • the downlink control information DCI corresponding to the preset channel does not include the TCI domain, or the DCI corresponding to the preset channel includes the TCI domain but the TCI domain is closed through network signaling, or in the case of the preset channel
  • the corresponding DCI contains TCI domain indicating beam information, or when the DCI corresponding to the preset channel does not contain SRI information, or when the DCI corresponding to the preset channel contains SRI information indicating beam information
  • the step 21 includes:
  • the at least two default beam information is determined according to the preset beam information on the first component carrier CC and/or the first bandwidth part BWP.
  • the first CC may include any one of the following:
  • the first type the CC where the channel or reference signal included in the set corresponding to the default beam information is located.
  • the second type the channel or reference signal included in the set corresponding to the default beam information contains a CC with a preset index in the frequency band to which the CC belongs; for example, the CC with the smallest cell index.
  • the third type a CC with a preset index in the CC list or cell group where the channel or reference signal included in the set corresponding to the default beam information belongs to, such as the CC with the smallest cell index.
  • the first CC is not limited to one of the above three methods.
  • the first BWP may be an active BWP.
  • the preset beam information may include any one of the following:
  • the first type beam information of a preset channel; such as TCI state or QCL information of a CORESET with a preset CORESET identifier (Identifier, id).
  • the second type the transmission configuration of the first control resource set (for example: CORESET#0) indicates TCI status information or quasi co-located QCL information.
  • the third type TCI state information or QCL information of the second control resource set with the target control resource set identifier (minimum CORESET id).
  • the fourth type beam information other than TCI status information or QCL information of the control resource set.
  • the preset beam information may include any one of the first, second, and third types; in the multiple TRP single DCI scenario , The first TRP sends DCI, the preset beam information corresponding to the first TRP is one of the first three types, the first TRP does not send DCI, and the preset beam information corresponding to the first TRP is the fourth type.
  • the preset beam information includes any one of the following:
  • the first type among the code points in the TCI field of the DCI sent by the first TRP, the first TCI status information corresponding to the first code point in the code points corresponding to one TCI status information.
  • the second type the second TCI status information corresponding to the second code point of the TCI field of the DCI sent by the first TRP; wherein, when the second code point corresponds to two or more TCI status information , The second TCI status information is one of the two or more TCI status information.
  • the first code point is the lowest code point corresponding to one TCI state information among the code points in the TCI domain of DCI.
  • the second code point is the lowest code point among the code points of the TCI domain of DCI.
  • the preset beam information corresponding to the first TRP includes:
  • the preset beam information corresponding to the other TRP includes:
  • the third code point corresponds to two or more TCI status information
  • the third TCI status information is any one of the two or more TCI status information
  • the information is TCI state information except for the third TCI state information in the two or more TCI state information.
  • the third code point is the lowest code point among code points corresponding to two or more TCI state information in the TCI field of the DCI.
  • the signaling overhead of the respective beam indications of each channel or reference signal can be reduced; /Or the reference signal uses different default beam information to meet the requirements of different performance goals, such as the reliability of the control channel and the high-rate transmission of the traffic channel.
  • an embodiment of the present invention also provides a terminal 300, including:
  • the first determining module 301 is configured to determine at least two default beam information
  • the second determining module 302 is configured to determine, according to the default beam information, the channel and/or the beam information of the reference signal included in the set corresponding to the default beam information; wherein the set includes at least one channel and/ Or at least one reference signal.
  • the first determining module 301 includes:
  • the receiving unit is configured to receive the at least two default beam information configured by the TRP of the sending and receiving node.
  • the terminal further includes:
  • the first update module is used to determine the updated default beam information
  • the second update module is configured to determine the beam information of the channel and/or reference signal included in the set corresponding to the default beam information according to the updated default beam information.
  • the terminal further includes:
  • a first processing module configured to determine the beam information of the first channel and/or the first reference signal included in the updated set corresponding to the default beam information
  • the second processing module is configured to determine beam information of other channels and/or other reference signals included in the set according to the updated beam information of the first channel and/or the first reference signal.
  • the terminal further includes:
  • a receiving module configured to receive first signaling, where the first signaling is used to instruct the terminal to use the default beam information
  • the third processing module is configured to determine the channel and/or reference signal unconfigured beam information included in the set corresponding to the default beam information.
  • the second determining module 302 includes:
  • the first determining unit is used for when the downlink control information DCI corresponding to the preset channel does not include the TCI domain, or when the DCI corresponding to the preset channel includes the TCI domain but the TCI domain is closed through network signaling , Or, when the DCI corresponding to the preset channel contains TCI domain indication beam information, or when the DCI corresponding to the preset channel does not contain SRI information, or when the DCI corresponding to the preset channel contains When the SRI information indicates beam information, the beam information of the preset channel is determined according to the default beam information corresponding to the set where the preset channel is located.
  • the first determining module 302 includes:
  • the second determining unit is configured to determine the at least two default beam information according to the preset beam information on the first component carrier CC and/or the first bandwidth part BWP.
  • the first CC includes any one of the following:
  • the channel or reference signal included in the set corresponding to the default beam information includes a CC with a preset index in a CC list or cell group to which the CC belongs.
  • the first BWP is an activated BWP.
  • the preset beam information includes any one of the following:
  • the transmission configuration of the first control resource set indicates TCI status information or quasi co-located QCL information
  • TCI status information or QCL information of the second control resource set with the target control resource set identifier
  • the preset beam information includes any one of the following:
  • the first TCI status information corresponding to the first code point in the code points corresponding to one TCI status information Among the code points in the TCI field of the DCI sent by the first TRP, the first TCI status information corresponding to the first code point in the code points corresponding to one TCI status information;
  • the second TCI status information corresponding to the second code point of the TCI field of the DCI sent by the first TRP; wherein, in the case that the second code point corresponds to two or more TCI status information, the first The second TCI status information is one of the two or more TCI status information.
  • the first code point is the lowest code point corresponding to one piece of TCI status information among the code points in the TCI domain of the DCI.
  • the second code point is the lowest code point in the code points of the TCI domain of the DCI.
  • the preset beam information corresponding to the first TRP includes:
  • the preset beam information corresponding to the other TRP includes:
  • the third code point corresponds to two or more TCI status information
  • the third TCI status information is any one of the two or more TCI status information
  • the information is TCI state information except for the third TCI state information in the two or more TCI state information.
  • the third code point is the lowest code point among code points corresponding to two or more TCI state information in the TCI field of the DCI.
  • this terminal embodiment is a terminal corresponding to the above-mentioned method for determining beam information applied to a terminal, and all implementations of the above-mentioned embodiment are applicable to this terminal embodiment, and the same technical effect can be achieved. .
  • Fig. 4 is a schematic diagram of the hardware structure of a terminal for implementing an embodiment of the present invention.
  • the terminal 40 includes, but is not limited to: a radio frequency unit 410, a network module 420, an audio output unit 430, an input unit 440, a sensor 450, a display unit 460, a user input unit 470, an interface unit 480, a memory 490, a processor 411, and a power supply 412 and other parts.
  • a radio frequency unit 410 includes, but is not limited to: a radio frequency unit 410, a network module 420, an audio output unit 430, an input unit 440, a sensor 450, a display unit 460, a user input unit 470, an interface unit 480, a memory 490, a processor 411, and a power supply 412 and other parts.
  • the terminal structure shown in FIG. 4 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a
  • the processor 410 is configured to determine at least two default beam information
  • the default beam information determine beam information of channels and/or reference signals included in a set corresponding to the default beam information; wherein the set includes at least one channel and/or at least one reference signal.
  • the radio frequency unit 410 can be used for receiving and sending signals during the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the network side device, it is processed by the processor 411; in addition, , Send the uplink data to the network side device.
  • the radio frequency unit 410 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 410 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 420, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 430 may convert the audio data received by the radio frequency unit 410 or the network module 420 or stored in the memory 490 into audio signals and output them as sounds. Moreover, the audio output unit 430 may also provide audio output related to a specific function performed by the terminal 40 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 430 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 440 is used to receive audio or video signals.
  • the input unit 440 may include a graphics processing unit (GPU) 441 and a microphone 442.
  • the graphics processor 441 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame may be displayed on the display unit 460.
  • the image frame processed by the graphics processor 441 may be stored in the memory 490 (or other storage medium) or sent via the radio frequency unit 410 or the network module 420.
  • the microphone 442 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication network side device via the radio frequency unit 410 for output in the case of a telephone call mode.
  • the terminal 40 also includes at least one sensor 450, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 461 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 461 and/or when the terminal 40 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 450 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 460 is used to display information input by the user or information provided to the user.
  • the display unit 460 may include a display panel 461, and the display panel 461 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 470 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 470 includes a touch panel 471 and other input devices 472.
  • the touch panel 471 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 471 or near the touch panel 471. operate).
  • the touch panel 471 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 411, the command sent by the processor 411 is received and executed.
  • the touch panel 471 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 470 may also include other input devices 472.
  • other input devices 472 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 471 can cover the display panel 461. When the touch panel 471 detects a touch operation on or near it, it transmits it to the processor 411 to determine the type of the touch event, and then the processor 411 determines the type of the touch event according to the touch The type of event provides corresponding visual output on the display panel 461.
  • the touch panel 471 and the display panel 461 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 471 and the display panel 461 may be integrated Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 480 is an interface for connecting an external device and the terminal 40.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 480 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 40 or may be used to communicate between the terminal 40 and the external device. Transfer data between.
  • the memory 490 may be used to store software programs and various data.
  • the memory 490 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 440 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 411 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal, and executes by running or executing software programs and/or modules stored in the memory 490, and calling data stored in the memory 490. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 411 may include one or more processing units; preferably, the processor 411 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs.
  • the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 411.
  • the terminal 40 may also include a power source 412 (such as a battery) for supplying power to various components.
  • a power source 412 such as a battery
  • the power source 412 may be logically connected to the processor 411 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. Function.
  • the terminal 40 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 411, a memory 490, a computer program stored in the memory 490 and running on the processor 411, and the computer program is executed when the processor 411 is executed.
  • a terminal including a processor 411, a memory 490, a computer program stored in the memory 490 and running on the processor 411, and the computer program is executed when the processor 411 is executed.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of the method embodiment for determining beam information applied to a terminal is implemented, and To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • an embodiment of the present invention also provides a network device 500, where the network device is a first TRP and includes:
  • the third determining module 501 is configured to determine at least two default beam information
  • the fourth determining module 502 is configured to determine, according to the default beam information, the channel and/or the beam information of the reference signal included in the set corresponding to the default beam information; wherein the set includes at least one channel and/ Or at least one reference signal.
  • it also includes:
  • the first sending module is configured to send the determined at least two default beam information.
  • it also includes:
  • the third update module is used to update the default beam information
  • the fourth update module is configured to determine the beam information of the channel and/or reference signal included in the set corresponding to the default beam information according to the updated default beam information.
  • it also includes:
  • a fifth update module configured to update the beam information of the first channel and/or the first reference signal included in the set corresponding to the default beam information
  • the sixth update module is configured to determine beam information of other channels and/or other reference signals included in the set according to the updated beam information of the first channel and/or the first reference signal.
  • it also includes:
  • the second sending module is configured to send first signaling, and the first signaling is used to instruct the terminal to use the default beam information.
  • the fourth determining module 502 includes:
  • the third determining unit is used when the downlink control information DCI corresponding to the preset channel does not contain the TCI domain, or when the DCI corresponding to the preset channel contains the TCI domain but the TCI domain is closed through network signaling , Or, when the DCI corresponding to the preset channel contains TCI domain indication beam information, or when the DCI corresponding to the preset channel does not contain SRI information, or when the DCI corresponding to the preset channel contains When the SRI information indicates beam information, the beam information of the preset channel is determined according to the default beam information corresponding to the set where the preset channel is located.
  • the third determining module 501 includes:
  • the fourth determining unit is configured to determine the at least two default beam information according to the preset beam information on the first component carrier CC and/or the first bandwidth part BWP.
  • the first CC includes any one of the following:
  • the channel or reference signal included in the set corresponding to the default beam information includes a CC with a preset index in a CC list or cell group to which the CC belongs.
  • the first BWP is an activated BWP.
  • the preset beam information includes any one of the following:
  • the transmission configuration of the first control resource set indicates TCI status information or quasi co-located QCL information
  • TCI status information or QCL information of the second control resource set with the target control resource set identifier
  • the preset beam information includes any one of the following:
  • the first TCI status information corresponding to the first code point in the code points corresponding to one TCI status information Among the code points in the TCI field of the DCI sent by the first TRP, the first TCI status information corresponding to the first code point in the code points corresponding to one TCI status information;
  • the second TCI status information corresponding to the second code point of the TCI field of the DCI sent by the first TRP; wherein, in the case that the second code point corresponds to two or more TCI status information, the first The second TCI status information is one of the two or more TCI status information.
  • the first code point is the lowest code point corresponding to one piece of TCI status information among the code points in the TCI domain of the DCI.
  • the second code point is the lowest code point in the code points of the TCI domain of the DCI.
  • the preset beam information corresponding to the first TRP includes:
  • the preset beam information corresponding to the other TRP includes:
  • the third code point corresponds to two or more TCI status information
  • the third TCI status information is any one of the two or more TCI status information
  • the information is TCI state information except for the third TCI state information in the two or more TCI state information.
  • the third code point is the lowest code point among code points corresponding to two or more TCI state information in the TCI field of the DCI.
  • this network device embodiment is a network device corresponding to the above-mentioned method for determining beam information applied to the first TRP. All the implementation modes of the above-mentioned embodiment are applicable to this network device embodiment, and can also achieve The same technical effect.
  • An embodiment of the present invention also provides a network device, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a network device including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the computer program is executed by the processor, the above-mentioned application to the network is realized.
  • Each process in the embodiment of the method for determining beam information of a device can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • An embodiment of the present invention further provides a computer-readable storage medium, wherein a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned determination of beam information applied to a network device is implemented.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned determination of beam information applied to a network device is implemented.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • Fig. 6 is a structural diagram of a network device according to an embodiment of the present invention, which can realize the above-mentioned details of determining beam information and achieve the same effect.
  • the network device 600 includes: a processor 601, a transceiver 602, a memory 603, and a bus interface, where:
  • the processor 601 is configured to read a program in the memory 603 and execute the following process:
  • the default beam information determine beam information of channels and/or reference signals included in a set corresponding to the default beam information; wherein the set includes at least one channel and/or at least one reference signal.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 601 and various circuits of the memory represented by the memory 603 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, which are all known in the art, and therefore, will not be further described in this article.
  • the bus interface provides the interface.
  • the transceiver 602 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 601 is further configured to:
  • the processor 601 is further configured to:
  • the beam information of the channel and/or the reference signal included in the set corresponding to the default beam information is determined.
  • the processor 601 is further configured to:
  • the processor 601 is further configured to:
  • the processor 601 determines the beam information of the channel and/or reference signal included in the set corresponding to the default beam information according to the default beam information, it is specifically configured to:
  • the downlink control information DCI corresponding to the preset channel does not include the TCI domain, or the DCI corresponding to the preset channel includes the TCI domain but the TCI domain is closed through network signaling, or, in the case of the preset channel
  • the corresponding DCI contains TCI domain indicating beam information, or when the DCI corresponding to the preset channel does not contain SRI information, or when the DCI corresponding to the preset channel contains SRI information indicating beam information
  • the processor 601 determines the at least two default beam information, it is specifically configured to:
  • the at least two default beam information is determined according to the preset beam information on the first component carrier CC and/or the first bandwidth part BWP.
  • the first CC includes any one of the following:
  • the channel or reference signal included in the set corresponding to the default beam information includes a CC with a preset index in a CC list or cell group to which the CC belongs.
  • the first BWP is an activated BWP.
  • the preset beam information includes any one of the following:
  • the transmission configuration of the first control resource set indicates TCI status information or quasi co-located QCL information
  • TCI status information or QCL information of the second control resource set with the target control resource set identifier
  • the preset beam information includes any one of the following:
  • the first TCI status information corresponding to the first code point in the code points corresponding to one TCI status information Among the code points in the TCI field of the DCI sent by the first TRP, the first TCI status information corresponding to the first code point in the code points corresponding to one TCI status information;
  • the second TCI status information corresponding to the second code point of the TCI field of the DCI sent by the first TRP; wherein, in the case that the second code point corresponds to two or more TCI status information, the first The second TCI status information is one of the two or more TCI status information.
  • the first code point is the lowest code point corresponding to one piece of TCI status information among the code points in the TCI domain of the DCI.
  • the second code point is the lowest code point in the code points of the TCI domain of the DCI.
  • the preset beam information corresponding to the first TRP includes:
  • the preset beam information corresponding to the other TRP includes:
  • the third code point corresponds to two or more TCI status information
  • the third TCI status information is any one of the two or more TCI status information
  • the information is TCI state information except for the third TCI state information in the two or more TCI state information.
  • the third code point is the lowest code point among code points corresponding to two or more TCI state information in the TCI field of the DCI.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Abstract

本发明公开了一种确定波束信息的方法、终端及网络设备。该方法应用于终端,包括:确定至少两个默认波束信息;根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。

Description

确定波束信息的方法、终端及网络设备
相关申请的交叉引用
本申请主张在2020年1月21日在中国提交的中国专利申请号No.202010072792.9的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种确定波束信息的方法。
背景技术
目前,各信道或参考信号的波束信息基本都是独立配置或指示的。由于信道或参考信号较多,因此会需要较多的信令开销来实现波束指示。
各信道或参考信号的性能目标不同,如控制信道需要保证覆盖和可靠性,而数据信道需要追求高传输速率,因而控制信道使用宽波束,数据信道使用窄波束,能更加符合各自信道的性能目标。
发明内容
本发明提供了一种确定波束信息的方法、终端及网络设备,以解决现有技术需要较多的信令开销来实现波束指示,以及需要区分各信道或参考信号不同性能目标的需求的问题。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种确定波束信息的方法,应用于终端,包括:
确定至少两个默认波束信息;
根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
第二方面,本发明实施例还提供了一种确定波束信息的方法,应用于第一TRP,包括:
确定至少两个默认波束信息;
根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
第三方面,本发明实施例还提供了一种终端,包括:
第一确定模块,用于确定至少两个默认波束信息;
第二确定模块,用于根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
第四方面,本发明实施例还提供了一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的应用于终端的确定波束信息的方法的步骤。
第五方面,本发明实施例还提供了一种网络设备,所述网络设备为第一TRP,包括:
第三确定模块,用于确定至少两个默认波束信息;
第四确定模块,用于根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
第六方面,本发明实施例还提供了一种网络设备,所述网络设备为第一TRP,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的应用于第一TRP的确定波束信息的方法的步骤。
第七方面,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的确定波束信息的方法的步骤。
本发明实施例具有以下有益效果:
本发明实施例的上述技术方案,通过确定至少两个默认波束信息,并根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个 参考信号,不仅能够降低各信道和/或参考信号分别进行波束指示的信令开销,还能够对不同集合使用不同默认波束信息,以满足不同性能目标的需求。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的确定波束信息的方法的流程示意图之一;
图2为本发明实施例的确定波束信息的方法的流程示意图之二;
图3为本发明实施例的终端的模块示意图;
图4为本发明实施例的终端的结构框图;
图5为本发明实施例的网络设备的模块示意图;
图6为本发明实施例的网络设备的结构框图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在进行本发明实施例的说明时,首先对下面描述中所用到的一些概念进 行解释说明。
关于多天线:
长期演进技术(Long Term Evolution,LTE)/长期演进技术升级版(LTE-Advanced,LTE-A)等无线接入技术标准都是以多输入多输出(Multiple Input Multiple Output,MIMO)+正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术为基础构建起来的。其中,MIMO技术利用多天线系统所能获得的空间自由度,来提高峰值速率与系统频谱利用率。
在标准化发展过程中MIMO技术的维度不断扩展。在LTE Rel-8中,最多可以支持4层的MIMO传输。在Rel-9中增强多用户多输入输出(Multi-User MIMO,MU-MIMO)技术,传输模式(Transmission Mode,TM)-8的MU-MIMO传输中最多可以支持4个下行数据层。在Rel-10中将单用户多输入多输出(Single-User MIMO,SU-MIMO)的传输能力扩展至最多8个数据层。
产业界正在进一步地将MIMO技术向着三维化和大规模化的方向推进。目前,第三代伙伴组织计划(Third Generation Partnership Projects,3GPP)已经完成了3D信道建模的研究项目,并且正在开展增强型全维度多输入多输出(enhanced Full Dimension,eFD-MIMO)和新空口多输入多输出(New Radio MIMO,NR MIMO)的研究和标准化工作。在未来的5G移动通信系统中,更大规模、更多天线端口的MIMO技术将被引入。
大规模Massive MIMO技术使用大规模天线阵列,能够极大地提升系统频带利用效率,支持更大数量的接入用户。因此各大研究组织均将Massive MIMO技术视为下一代移动通信系统中最有潜力的物理层技术之一。
在Massive MIMO技术中如果采用全数字阵列,可以实现最大化的空间分辨率以及最优MU-MIMO性能,但是这种结构需要大量的模数转换(Analog-to-Digital,AD)/数模转换(Digital-to-Analog,DA)转换器件以及大量完整的射频-基带处理通道,无论是设备成本还是基带处理复杂度都将是巨大的负担。
为了避免上述的实现成本与设备复杂度,数模混合波束赋形技术应运而生,即在传统的数字域波束赋形基础上,在靠近天线系统的前端,在射频信 号上增加一级波束赋形。模拟赋形能够通过较为简单的方式,使发送信号与信道实现较为粗略的匹配。模拟赋形后形成的等效信道的维度小于实际的天线数量,因此其后所需的AD/DA转换器件、数字通道数以及相应的基带处理复杂度都可以大为降低。模拟赋形部分残余的干扰可以在数字域再进行一次处理,从而保证MU-MIMO传输的质量。相对于全数字赋形而言,数模混合波束赋形是性能与复杂度的一种折中方案,在高频段大带宽或天线数量很大的系统中具有较高的实用前景。
关于高频段:
在对4G以后的下一代通信系统研究中,将系统支持的工作频段提升至6GHz以上,最高约达100GHz。高频段具有较为丰富的空闲频率资源,可以为数据传输提供更大的吞吐量。目前3GPP已经完成了高频信道建模工作,高频信号的波长短,同低频段相比,能够在同样大小的面板上布置更多的天线阵元,利用波束赋形技术形成指向性更强、波瓣更窄的波束。因此,将大规模天线和高频通信相结合,也是未来的趋势之一。
关于波束测量和报告:
模拟波束赋形是全带宽发射的,并且每个高频天线阵列的面板上每个极化方向阵元仅能以时分复用的方式发送模拟波束。模拟波束的赋形权值是通过调整射频前端移相器等设备的参数来实现。
目前在学术界和工业界,通常是使用轮询的方式进行模拟波束赋形向量的训练,即每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间发送训练信号(即候选的赋形向量),终端经过测量后反馈波束报告,供网络侧在下一次传输业务时采用该训练信号来实现模拟波束发射。波束报告的内容通常包括最优的若干个发射波束标识以及测量出的每个发射波束的接收功率。
在做波束测量时,网络会配置参考信号资源集合(Reference Signal resource set,RS resource set),其中包括至少一个参考信号资源,例如同步信号(Synchronization Signal and PBCH block,SSB)resource或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)resource。终端测量每个RS resource的L1参考信号接收功率(Layer 1reference signal received  power,L1-RSRP)/L1信号与干扰加噪声比(L1Signal to Interference plus Noise Ratio,L1-SINR),并将最优的至少一个测量结果上报给网络,上报内容包括同步信号资源指示(SSB resource indicator,SSBRI)或CSI-RS资源指示(CSI-RS resource indicator,CRI)、及L1-RSRP/L1-SINR。该报告内容反映了至少一个最优的波束及其质量,供网络确定用来向用户设备(User Equipment,UE)发送信道或信号的波束。
关于波束指示机制:
在经过波束测量和波束报告后,网络可以对下行与上行链路的信道或参考信号做波束指示,用于网络与终端之间建立波束链路,实现信道或参考信号的传输。
对于物理下行控制信道(Physical Downlink Control Channel,PDCCH)的波束指示,网络使用无线资源控制(Radio Resource Control,RRC)信令为每个控制资源集(control resource set,CORESET)配置K个传输配置指示(Transmission Configuration Indication,TCI)状态state,当K>1时,由媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)指示或激活1个TCI state,当K=1时,不需要额外的MAC CE命令。UE在监听PDCCH时,对CORESET内全部搜索空间search space使用相同准共址(Quasi-colocation,QCL),即相同的TCI state来监听PDCCH。该TCI状态中的参考信号(例如周期CSI-RS resource、半持续CSI-RS resource、同步信号块(SS block,Synchronization Signal block)等)与用户特定物理下行控制信道UE-specific PDCCH的解调参考信号(DeModulation Reference Signal,DMRS)端口是空间QCL的。UE根据该TCI状态即可获知使用哪个接收波束来接收PDCCH。
对于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的波束指示,网络通过RRC信令配置M个TCI state,再使用MAC CE命令激活2 N个TCI state,然后通过下行控制信息(Downlink Control Information,DCI)的N位TCI域N-bit TCI field来通知TCI状态,该TCI状态中的参考信号与要调度的PDSCH的DMRS端口是QCL的。UE根据该TCI状态即可获知使用哪个接收波束来接收PDSCH。
对于CSI-RS的波束指示,当CSI-RS类型为周期CSI-RS时,网络通过RRC信令为CSI-RS resource配置QCL信息。当CSI-RS类型为半持续CSI-RS时,网络通过MAC CE命令来从RRC配置的CSI-RS resource set中激活一个CSI-RS resource时指示其QCL信息。当CSI-RS类型为非周期CSI-RS时,网络通过RRC信令为CSI-RS resource配置QCL,并使用DCI来触发CSI-RS。
对于物理上行控制信道(Physical Uplink Control Channel,PUCCH)的波束指示,网络使用RRC信令通过参数PUCCH-空间关系信息为每个PUCCH resource配置空间关系信息spatial relation information,当为PUCCH resource配置的spatial relation information包含多个时,使用MAC-CE指示或激活其中一个spatial relation information。当为PUCCH resource配置的spatial relation information只包含1个时,不需要额外的MAC CE命令。
对于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的波束指示,PUSCH的空间关系信息是当PDCCH承载的DCI调度PUSCH时,DCI中的SRI field的每个SRI码点codepoint指示一个SRI,该SRI用于指示PUSCH的spatial relation information。
对于SRS的波束指示,当SRS类型为周期SRS时,网络通过RRC信令为SRS resource配置spatial relation information。当SRS类型为半持续SRS时,网络通过MAC CE命令来从RRC配置的一组spatial relation information中激活一个。当SRS类型为非周期SRS时,网络通过RRC信令为SRS resource配置spatial relation information。
其中,上述波束信息、spatial relation信息、TCI state信息、QCL信息等,均可以是波束信息的意思。其中,下行波束信息通常可使用TCI state信息、QCL信息表示。上行波束信息通常可使用spatial relation信息表示。
因此,本发明实施例提供了一种确定波束信息的方法,能够解决现有技术需要较多的信令开销来实现波束指示,以及需要区分各信道或参考信号不同性能目标的需求的问题。
具体的,如图1所示,本发明实施例提供了一种确定波束信息的方法,应用于终端,包括:
步骤11,确定至少两个默认波束default beam信息。
具体的,所述至少两个默认波束信息可以为终端确定的默认波束信息,也可以为接收的网络设备发送的确定后的默认波束信息,或者是协议约定的默认波束信息。
步骤12,根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
可选的,此处集合可以是显式的集合,也可以仅是指向至少一个信道和/或至少一个参考信号,也直接替换为具体的至少一个信道和/或至少一个参考信号,集合也可以称为目标对象。
具体的,在确定默认波束信息之后,确定与该默认信息对应的集合中包含的信道和/或参考信号均使用默认波束信息。其中,确定所述波束信息的方式可以是协议约定或者网络设备指示。
具体的,不同的默认波束信息与不同的集合对应,一个集合可以包含至少一个信道和至少一个参考信号,或者所述集合可以包含至少两个信道或者至少两个参考信号等多种情况。
具体的,所述集合可以通过协议约定或者网络设备配置;不同集合的划分方式可以包括:
第一种:控制信道(PDCCH、PUCCH等)和业务信道(PDSCH、PUSCH等)等属于不同集合。
第二种:不同集合中包含的信道和/或参考信号的源参考信号source RS不同,例如:根据RRC初始配置各信道的TCI state/spatial relation信息时,其中的source RS使用第一个RS resource的信道或参考信号,对应一个默认波束信息,source RS使用第二个RS resource的信道或参考信号,对应另一个默认波束信息。
第三种:对于同一种信道,根据不同的用途可以划分为不同的集合,例如:例如:公共common PDCCH和单播unicast PDCCH属于不同集合,或者所在SRS resource set具有不同高层参数usage的SRS资源属于不同集合。其中,不同集合的划分方式不仅限于上述内容,在此不做具体限定。
本发明上述实施例中,通过确定至少两个默认波束信息,并根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号,不仅能够降低各信道和/或参考信号分别进行波束指示的信令开销,还能够对不同集合使用不同默认波束信息,以满足不同性能目标的需求。
优选的,所述步骤11具体可以包括:
接收发送接收节点(Transmitting and Receiving Point,TRP)配置的所述至少两个默认波束信息。
具体的,在TRP确定所述至少两个默认波束信息后,TRP将两个默认波束信息发送至终端,终端使用所述至少两个默认波束信息。
优选的,所述方法还可以包括:
确定更新后的默认波束信息;
根据更新后的默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
具体的,所述终端确定更新后的默认波束信息的方式可以包括:通过网络设备发送的更新后的默认波束信息确定,或者终端更新默认波束信息。
具体的,如果所述默认波束信息包括第一默认波束信息和第二默认波束信息,集合包括第一集合和第二集合,第一集合对应第一默认波束信息,第二集合对应第二默认波束信息,在MAC CE更新第一默认波束信息(如:更新预设CORESET的TCI state信息)时,则第一集合根据更新后的第一默认波束信息确定第一集合中包含的信道和/或参考信号的波束信息;在MAC CE更新DCI中TCI域的预设codepoint中对应的TCI state时,则根据确定第二默认波束信息的方式确定更新后的第二默认波束信息,第二集合根据更新后的第二默认波束信息确定第二集合中包含的信道和/或参考信号的波束信息。
优选的,所述方法还可以包括:
确定更新后的与所述默认波束信息对应的集合中包含的第一信道和/或第一参考信号的波束信息;
根据所述第一信道和/或第一参考信号的更新后的波束信息,确定所述集合中包含的其他信道和/或其他参考信号的波束信息。
具体的,确定更新后的第一信道和/或第一参考信号的波束信息的方式可以包括:通过网络设备发送的更新后的波束信息确定,或者终端更新波束信息。
具体的,如果第一集合中的第一信道和/或第一参考信号的波束信息更新,则第一集合中的其他信道和/或其他参考信号的波束信息对应更新。其中,所述第一信道和/或第一参考信号可以为第一集合中的第一默认波束信息对应的默认信道和/或默认参考信号之外的信道和/或参考信号。其他集合的更新方式与第一集合类似,在此不做具体赘述。
优选的,所述步骤12之前,所述方法还可以包括:
接收第一信令,所述第一信令用于指示终端使用所述默认波束信息;
或者,
确定与所述默认波束信息对应的集合中包含的信道和/或参考信号未被配置波束信息。
具体的,为了使网络设备与终端对应一致,在网络设备发送第一信令(如:启动信令),并且在终端接收到第一信令(如:网络通过RRC信令启动使用至少两个默认波束的机制)时,终端启动至少两个默认波束机制,并且网络设备也启动至少两个默认波束机制,即网络设备通过第一信令指示终端使用至少两个默认波束信息,并且网络设备自身也启动至少两个默认波束机制;或者在终端确定与所述默认波束信息对应的集合中包含的信道和/或参考信号未被配置波束信息时,则终端使用至少两个默认波束信息,并且网络设备也使用至少两个默认波束信息。
优选的,所述步骤12,具体可以包括:
在预设信道对应的下行控制信息DCI中不包含TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域但通过网络信令关闭TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域指示波束信息的情况下,或者,在预设信道对应的DCI中不包含SRI信息的情况下,或者,在预设信道对应的DCI中包含SRI信息指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息。
具体的,如果预设信道为PDSCH,在PDSCH对应的DCI中不包含TCI 域的情况下,或者在PDSCH对应的DCI中包含TCI域但通过网络信令(如RRC信令)关闭TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息,换句话说,对于PDSCH,无论是否DCI指示了PDSCH的TCI状态,或者DCI中不包含TCI域时,或者网络设备通过RRC信令关闭TCI域时,都根据PDSCH所在的集合对应的默认波束信息,确定所述PDSCH的波束信息。
具体的,对于PDSCH,确定波束信息的方式还可以为:当DCI指示了PDSCH的TCI state,且调度偏移大于或者等于预设门限(即指示生效)时,根据DCI所指示的TCI state确定PDSCH的波束信息。
具体的,如果预设信道为PUSCH,在PUSCH对应的DCI中不包含SRI信息的情况下,或者,在PUSCH对应的DCI中包含SRI信息指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息,换句话说,对于PUSCH,无论是否DCI指示了PUSCH的SRI信息,都根据PUSCH所在的集合对应的默认波束信息,确定所述PUSCH的波束信息。
具体的,对于PUSCH,确定波束信息的方式还可以为:当DCI指示了SRI信息时,根据该SRI信息确定PUSCH的波束信息。
对于SRS的波束信息的确定方式,可以根据协议约定或网络设备配置,根据至少两个默认波束信息中的其中之一,确定SRS的波束信息;或者通过RRC信令配置的SRS resource set的用途usage,确定SRS的波束信息,即不同的usage的SRS根据对应的默认波束信息,确定SRS的波束信息。
优选的,所述步骤11,具体可以包括:
根据第一成员载波(Component Carrier,CC)和/或第一带宽部分(bandwidth Part,BWP)上的预设波束信息,确定所述至少两个默认波束信息。
优选的,所述第一CC可以包括下述任意一种:
第一种:与所述默认波束信息对应的集合中包含的信道或参考信号所在CC。
第二种:与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的频带内具有预设索引的CC;如:最小小区索引的CC。
第三种:与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的CC列表或小区组内,具有预设索引的CC,如:最小小区索引的CC。其中,所述第一CC并不仅限于上述三种方式中的一种。
优选的,所述第一BWP可以为激活active BWP。
优选的,在所述默认波束信息包括第一TRP的第一默认波束信息的情况下,所述预设波束信息可以包括下述任意一种:
第一种:预设信道的波束信息;如具有预设CORESET标识(Identifier,id)的CORESET的TCI state或QCL信息。
第二种:第一控制资源集(如:CORESET#0)的传输配置指示TCI状态信息或准共址QCL信息。
第三种:具有目标控制资源集标识(最小CORESET id)的第二控制资源集的TCI状态信息或QCL信息。
第四种:除控制资源集的TCI状态信息或QCL信息之外的其他波束信息。
具体的,在单TRP的场景下,所述预设波束信息可以包括第一种、第二种和第三种中的任意一种;在多TRP的单DCI的场景下,前三种为发送DCI的TRP对应的预设波束信息,第四种为不发送DCI的TRP对应的预设波束信息;在多TRP的多DCI的场景下,每一TRP对应的预设波束信息为前三种中的任意一种。
优选的,在所述默认波束信息包含第一TRP的第二默认波束信息的情况下,所述预设波束信息可以包括下述任意一种:
第一种:在第一TRP发送的DCI的TCI域的码点中,对应于1个TCI状态信息的码点中的第一码点对应的第一TCI状态信息。
第二种:在第一TRP发送的DCI的TCI域的第二码点对应的第二TCI状态信息;其中,在所述第二码点对应两个或两个以上的TCI状态信息的情况下,所述第二TCI状态信息为所述两个或两个以上的TCI状态信息中的一个。
优选的,在第一种情况中,所述第一码点可以为DCI的TCI域的码点中对应于1个TCI状态信息的最低码点lowest codepoint。即预设波束信息可以为在DCI的TCI域的码点中,仅包含一个TCI状态信息的码点中的lowest codepoint对应的TCI状态信息。
优选的,在第二种情况中,所述第二码点可以为DCI的TCI域的码点中的最低码点。换句话说,预设波束信息可以为:在DCI的TCI域的codepoint中的lowest codepoint中,若该lowest codepoint对应2个TCI state,则要求这2个TCI state是相同的;或者,如果这2个TCI state不同,则使用第一个TCI state或使用第二使用第一个TCI state。
具体的,在单TRP的场景下,所述预设波束信息可以包括第一种和第二种中的任意一种;在多TRP的多DCI的场景下,每一TRP对应的预设波束信息为上述两种中的任意一种。
优选的,在所述默认波束信息包含第一TRP的第二默认波束信息和其他TRP的第二默认波束信息的情况下,所述第一TRP对应的预设波束信息可以包括:
在第一TRP发送的DCI的TCI域中第三码点对应的第三TCI状态信息;
所述其他TRP对应的预设波束信息包括:
在第一TRP发送的DCI的TCI域中第三码点对应的其他TCI状态信息;
其中,所述第三码点对应两个或两个以上的TCI状态信息,所述第三TCI状态信息为所述两个或两个以上的TCI状态信息中的任意一个,所述其他TCI状态信息为所述两个或两个以上的TCI状态信息中除所述第三TCI状态信息之外的TCI状态信息。
优选的,所述第三码点可以为DCI的TCI域中对应两个或两个以上的TCI状态信息的码点中的最低码点。
具体的,在多TRP的单DCI的场景下,如果TRP为两个,且所述第三码点对应两个TCI状态信息,则在第一TRP发送的DCI的TCI域中的codepoint中,包含2个TCI state的codepoint中的lowest codepoint对应的2个TCI state信息中,所述第三状态信息为这2个TCI state信息中的其中一个,其他TRP对应的预设波束信息为另一个TCI state信息。
如果TRP为三个,且所述第三码点对应三个TCI状态信息,则在第一TRP发送的DCI的TCI域中的codepoint中,包含3个TCI state的codepoint中的lowest codepoint对应的3个TCI state信息中,所述第三状态信息为这3个TCI state信息中的其中一个,其他TRP中的第二TRP对应的预设波束信息为另外两个TCI state信息中的其中一个,其他TRP中的第三TRP对应的预设波束信息为另外两个TCI state信息中的另一个。其中,所述TRP的数量和第三码点对应的TCI状态信息的数量在此不做具体限定。
本发明上述实施例中,通过确定至少两个默认波束信息和不同集合之间的关联关系,可以降低各信道或参考信号分别波束指示的信令开销;并且,通过对不同集合中包含的信道和/或参考信号使用不同的默认波束信息,以满足不同性能目标的需求,如控制信道的可靠性和业务信道的高速率传输等。
如图2所示,本发明实施例还提供了一种确定波束信息的方法,应用于第一TRP,包括:
步骤21,确定至少两个默认波束信息。
具体的,确定默认波束信息的方式可以为:网络设备根据终端发送的波束报告beam report确定多个RS resource(如2个),将这多个RS resource对应的波束信息作为默认波束信息。例如:可以将各信道和/或参考信号的TCI state或spatial relation中的同一source RS确定为所述多个RS resource之一。当beam report为基于组的波束报告group based beam report时,网络设备根据该beam report确定多个RS resource,将这多个RS resource对应的波束信息作为默认波束信息,根据所确定的默认波束信息,是可以由终端同时接收。
步骤22,根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
本发明上述实施例中,通过确定至少两个默认波束信息,并根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号,不仅能够降低各信道和/或参考信号分别进行波束指示的信令开销,还能够对不同集合使用不同默认波束信息,以满足不同性能目标的需求。
优选的,所述方法还可以包括:
发送确定的至少两个默认波束信息。
具体的,在确定所述至少两个默认波束信息之后,将所述至少两个默认波束信息发送至终端,以使所述终端根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
优选的,所述方法还可以包括:
更新所述默认波束信息;
根据更新后的默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
具体的,在第一TRP更新所述默认波束信息之后,可以将更新后的默认波束信息发送至终端,以使终端根据更新后的默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
优选的,所述方法还可以包括:
更新与所述默认波束信息对应的集合中包含的第一信道和/或第一参考信号的波束信息;
根据所述第一信道和/或第一参考信号的更新后的波束信息,确定所述集合中包含的其他信道和/或其他参考信号的波束信息。
具体的,在第一TRP更新第一信道和/或第一参考信号的波束信息之后,可以将更新后的波束信息发送至终端,以使终端根据更新后的波束信息,确定所述集合中包含的其他信道和/或其他参考信号的波束信息。
优选的,所述方法还可以包括:
发送第一信令,所述第一信令用于指示终端使用所述默认波束信息。
具体的,将第一信令发送至终端,用于指示终端使用所述默认波束信息,并且第一TRP也使用所述默认波束信息;如果第一TRP没有配置与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息时,第一TRP使用功能所述默认波束信息。
优选的,所述步骤22,包括:
在预设信道对应的下行控制信息DCI中不包含TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域但通过网络信令关闭TCI域的情况下, 或者,在预设信道对应的DCI中包含TCI域指示波束信息的情况下,或者,在预设信道对应的DCI中不包含SRI信息的情况下,或者,在预设信道对应的DCI中包含SRI信息指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息。
优选的,所述步骤21,包括:
根据第一成员载波CC和/或第一带宽部分BWP上的预设波束信息,确定所述至少两个默认波束信息。
优选的,所述第一CC可以包括下述任意一种:
第一种:与所述默认波束信息对应的集合中包含的信道或参考信号所在CC。
第二种:与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的频带内具有预设索引的CC;如:最小小区索引的CC。
第三种:与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的CC列表或小区组内,具有预设索引的CC,如:最小小区索引的CC。其中,所述第一CC并不仅限于上述三种方式中的一种。
优选的,所述第一BWP可以为激活active BWP。
优选的,在所述默认波束信息包括第一TRP的第一默认波束信息的情况下,所述预设波束信息可以包括下述任意一种:
第一种:预设信道的波束信息;如具有预设CORESET标识(Identifier,id)的CORESET的TCI state或QCL信息。
第二种:第一控制资源集(如:CORESET#0)的传输配置指示TCI状态信息或准共址QCL信息。
第三种:具有目标控制资源集标识(最小CORESET id)的第二控制资源集的TCI状态信息或QCL信息。
第四种:除控制资源集的TCI状态信息或QCL信息之外的其他波束信息。
具体的,在单TRP或者多TRP的多DCI的场景下,所述预设波束信息可以包括第一种、第二种和第三种中的任意一种;在多TRP的单DCI的场景下,第一TRP发送DCI,第一TRP对应的预设波束信息为前三种中的其中一 种,第一TRP不发送DCI,第一TRP对应的预设波束信息为第四种。
优选的,在所述默认波束信息包含第一TRP的第二默认波束信息的情况下,所述预设波束信息包括下述任意一种:
第一种:在第一TRP发送的DCI的TCI域的码点中,对应于1个TCI状态信息的码点中的第一码点对应的第一TCI状态信息。
第二种:在第一TRP发送的DCI的TCI域的第二码点对应的第二TCI状态信息;其中,在所述第二码点对应两个或两个以上的TCI状态信息的情况下,所述第二TCI状态信息为所述两个或两个以上的TCI状态信息中的一个。
优选的,所述第一码点为DCI的TCI域的码点中对应于1个TCI状态信息的最低码点。
优选的,所述第二码点为DCI的TCI域的码点中的最低码点。
优选的,在所述默认波束信息包含第一TRP的第二默认波束信息和其他TRP的第二默认波束信息的情况下,所述第一TRP对应的预设波束信息包括:
在第一TRP发送的DCI的TCI域中第三码点对应的第三TCI状态信息;
所述其他TRP对应的预设波束信息包括:
在第一TRP发送的DCI的TCI域中第三码点对应的其他TCI状态信息;
其中,所述第三码点对应两个或两个以上的TCI状态信息,所述第三TCI状态信息为所述两个或两个以上的TCI状态信息中的任意一个,所述其他TCI状态信息为所述两个或两个以上的TCI状态信息中除所述第三TCI状态信息之外的TCI状态信息。
优选的,所述第三码点为DCI的TCI域中对应两个或两个以上的TCI状态信息的码点中的最低码点。
需要说明的是,上述实施例中所有关于应用于终端的确定波束信息的方法的实施例的描述均适用于该应用于第一TRP的确定波束信息的方法的实施例中,也能达到与之相同的技术效果,在此不做具体赘述。
本发明上述实施例中,通过确定至少两个默认波束信息和不同集合之间的关联关系,可以降低各信道或参考信号分别波束指示的信令开销;并且,通过对不同集合中包含的信道和/或参考信号使用不同的默认波束信息,以满 足不同性能目标的需求,如控制信道的可靠性和业务信道的高速率传输等。
如图3所示,本发明实施例还提供了一种终端300,包括:
第一确定模块301,用于确定至少两个默认波束信息;
第二确定模块302,用于根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
可选的,所述第一确定模块301,包括:
接收单元,用于接收发送接收节点TRP配置的所述至少两个默认波束信息。
可选的,所述终端还包括:
第一更新模块,用于确定更新后的默认波束信息;
第二更新模块,用于根据更新后的默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
可选的,所述终端还包括:
第一处理模块,用于确定更新后的与所述默认波束信息对应的集合中包含的第一信道和/或第一参考信号的波束信息;
第二处理模块,用于根据所述第一信道和/或第一参考信号的更新后的波束信息,确定所述集合中包含的其他信道和/或其他参考信号的波束信息。
可选的,所述终端还包括:
接收模块,用于接收第一信令,所述第一信令用于指示终端使用所述默认波束信息;
或者,
第三处理模块,用于确定与所述默认波束信息对应的集合中包含的信道和/或参考信号未被配置波束信息。
可选的,所述第二确定模块302,包括:
第一确定单元,用于在预设信道对应的下行控制信息DCI中不包含TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域但通过网络信令关闭TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域指示波束信息的情况下,或者,在预设信道对应的DCI中不包含SRI信息的情况下,或 者,在预设信道对应的DCI中包含SRI信息指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息。
可选的,所述第一确定模块302,包括:
第二确定单元,用于根据第一成员载波CC和/或第一带宽部分BWP上的预设波束信息,确定所述至少两个默认波束信息。
可选的,所述第一CC包括下述任意一种:
与所述默认波束信息对应的集合中包含的信道或参考信号所在CC;
与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的频带内具有预设索引的CC;
与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的CC列表或小区组内,具有预设索引的CC。
可选的,所述第一BWP为激活BWP。
可选的,在所述默认波束信息包括第一发送接收节点TRP的第一默认波束信息的情况下,所述预设波束信息包括下述任意一种:
预设信道的波束信息;
第一控制资源集的传输配置指示TCI状态信息或准共址QCL信息;
具有目标控制资源集标识的第二控制资源集的TCI状态信息或QCL信息;
除控制资源集的TCI状态信息或QCL信息之外的其他波束信息。
可选的,在所述默认波束信息包含第一TRP的第二默认波束信息的情况下,所述预设波束信息包括下述任意一种:
在第一TRP发送的DCI的TCI域的码点中,对应于1个TCI状态信息的码点中的第一码点对应的第一TCI状态信息;
在第一TRP发送的DCI的TCI域的第二码点对应的第二TCI状态信息;其中,在所述第二码点对应两个或两个以上的TCI状态信息的情况下,所述第二TCI状态信息为所述两个或两个以上的TCI状态信息中的一个。
可选的,所述第一码点为DCI的TCI域的码点中对应于1个TCI状态信息的最低码点。
可选的,所述第二码点为DCI的TCI域的码点中的最低码点。
可选的,在所述默认波束信息包含第一TRP的第二默认波束信息和其他TRP的第二默认波束信息的情况下,所述第一TRP对应的预设波束信息包括:
在第一TRP发送的DCI的TCI域中第三码点对应的第三TCI状态信息;
所述其他TRP对应的预设波束信息包括:
在第一TRP发送的DCI的TCI域中第三码点对应的其他TCI状态信息;
其中,所述第三码点对应两个或两个以上的TCI状态信息,所述第三TCI状态信息为所述两个或两个以上的TCI状态信息中的任意一个,所述其他TCI状态信息为所述两个或两个以上的TCI状态信息中除所述第三TCI状态信息之外的TCI状态信息。
可选的,所述第三码点为DCI的TCI域中对应两个或两个以上的TCI状态信息的码点中的最低码点。
需要说明的是,该终端实施例是与上述应用于终端的确定波束信息的方法相对应的终端,上述实施例的所有实现方式均适用于该终端实施例中,也能达到与其相同的技术效果。
图4为实现本发明实施例的一种终端的硬件结构示意图。
该终端40包括但不限于:射频单元410、网络模块420、音频输出单元430、输入单元440、传感器450、显示单元460、用户输入单元470、接口单元480、存储器490、处理器411、以及电源412等部件。本领域技术人员可以理解,图4中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器410,用于确定至少两个默认波束信息;
根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
应理解的是,本发明实施例中,射频单元410可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自网络侧设备的下行数据接收后,给处理器411处理;另外,将上行的数据发送给网络侧设备。通常,射频单元 410包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元410还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块420为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元430可以将射频单元410或网络模块420接收的或者在存储器490中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元430还可以提供与终端40执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元430包括扬声器、蜂鸣器以及受话器等。
输入单元440用于接收音频或视频信号。输入单元440可以包括图形处理器(Graphics Processing Unit,GPU)441和麦克风442,图形处理器441对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元460上。经图形处理器441处理后的图像帧可以存储在存储器490(或其它存储介质)中或者经由射频单元410或网络模块420进行发送。麦克风442可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元410发送到移动通信网络侧设备的格式输出。
终端40还包括至少一种传感器450,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板461的亮度,接近传感器可在终端40移动到耳边时,关闭显示面板461和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器450还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元460用于显示由用户输入的信息或提供给用户的信息。显示单 元460可包括显示面板461,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板461。
用户输入单元470可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元470包括触控面板471以及其他输入设备472。触控面板471,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板471上或在触控面板471附近的操作)。触控面板471可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器411,接收处理器411发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板471。除了触控面板471,用户输入单元470还可以包括其他输入设备472。具体地,其他输入设备472可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板471可覆盖在显示面板461上,当触控面板471检测到在其上或附近的触摸操作后,传送给处理器411以确定触摸事件的类型,随后处理器411根据触摸事件的类型在显示面板461上提供相应的视觉输出。虽然在图4中,触控面板471与显示面板461是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板471与显示面板461集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元480为外部装置与终端40连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元480可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端40内的一个或多个元件或者可以用于在终端40和外部装置之间传输数据。
存储器490可用于存储软件程序以及各种数据。存储器490可主要包括 存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器440可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器411是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器490内的软件程序和/或模块,以及调用存储在存储器490内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器411可包括一个或多个处理单元;优选的,处理器411可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器411中。
终端40还可以包括给各个部件供电的电源412(比如电池),优选的,电源412可以通过电源管理系统与处理器411逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端40包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器411,存储器490,存储在存储器490上并可在所述处理器411上运行的计算机程序,该计算机程序被处理器411执行时实现应用于终端的确定波束信息的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现应用于终端的确定波束信息的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
如图5所示,本发明实施例还提供了一种网络设备500,所述网络设备为第一TRP,包括:
第三确定模块501,用于确定至少两个默认波束信息;
第四确定模块502,用于根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
可选的,还包括:
第一发送模块,用于发送确定的至少两个默认波束信息。
可选的,还包括:
第三更新模块,用于更新所述默认波束信息;
第四更新模块,用于根据更新后的默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
可选的,还包括:
第五更新模块,用于更新与所述默认波束信息对应的集合中包含的第一信道和/或第一参考信号的波束信息;
第六更新模块,用于根据所述第一信道和/或第一参考信号的更新后的波束信息,确定所述集合中包含的其他信道和/或其他参考信号的波束信息。
可选的,还包括:
第二发送模块,用于发送第一信令,所述第一信令用于指示终端使用所述默认波束信息。
可选的,所述第四确定模块502,包括:
第三确定单元,用于在预设信道对应的下行控制信息DCI中不包含TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域但通过网络信令关闭TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域指示波束信息的情况下,或者,在预设信道对应的DCI中不包含SRI信息的情况下,或者,在预设信道对应的DCI中包含SRI信息指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息。
可选的,所述第三确定模块501,包括:
第四确定单元,用于根据第一成员载波CC和/或第一带宽部分BWP上的预设波束信息,确定所述至少两个默认波束信息。
可选的,所述第一CC包括下述任意一种:
与所述默认波束信息对应的集合中包含的信道或参考信号所在CC;
与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的频带内具有预设索引的CC;
与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的CC列表或小区组内,具有预设索引的CC。
可选的,所述第一BWP为激活BWP。
可选的,在所述默认波束信息包括第一发送接收节点TRP的第一默认波束信息的情况下,所述预设波束信息包括下述任意一种:
预设信道的波束信息;
第一控制资源集的传输配置指示TCI状态信息或准共址QCL信息;
具有目标控制资源集标识的第二控制资源集的TCI状态信息或QCL信息;
除控制资源集的TCI状态信息或QCL信息之外的其他波束信息。
可选的,在所述默认波束信息包含第一TRP的第二默认波束信息的情况下,所述预设波束信息包括下述任意一种:
在第一TRP发送的DCI的TCI域的码点中,对应于1个TCI状态信息的码点中的第一码点对应的第一TCI状态信息;
在第一TRP发送的DCI的TCI域的第二码点对应的第二TCI状态信息;其中,在所述第二码点对应两个或两个以上的TCI状态信息的情况下,所述第二TCI状态信息为所述两个或两个以上的TCI状态信息中的一个。
可选的,所述第一码点为DCI的TCI域的码点中对应于1个TCI状态信息的最低码点。
可选的,所述第二码点为DCI的TCI域的码点中的最低码点。
可选的,在所述默认波束信息包含第一TRP的第二默认波束信息和其他TRP的第二默认波束信息的情况下,所述第一TRP对应的预设波束信息包括:
在第一TRP发送的DCI的TCI域中第三码点对应的第三TCI状态信息;
所述其他TRP对应的预设波束信息包括:
在第一TRP发送的DCI的TCI域中第三码点对应的其他TCI状态信息;
其中,所述第三码点对应两个或两个以上的TCI状态信息,所述第三TCI状态信息为所述两个或两个以上的TCI状态信息中的任意一个,所述其他TCI 状态信息为所述两个或两个以上的TCI状态信息中除所述第三TCI状态信息之外的TCI状态信息。
可选的,所述第三码点为DCI的TCI域中对应两个或两个以上的TCI状态信息的码点中的最低码点。
需要说明的是,该网络设备实施例是与上述应用于第一TRP的确定波束信息的方法相对应的网络设备,上述实施例的所有实现方式均适用于该网络设备实施例中,也能达到与其相同的技术效果。
本发明实施例还提供一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述的应用于网络设备的确定波束信息的方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的应用于网络设备的确定波束信息的方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
图6是本发明一实施例的网络设备的结构图,能够实现上述的确定波束信息的细节,并达到相同的效果。如图6所示,网络设备600包括:处理器601、收发机602、存储器603和总线接口,其中:
处理器601,用于读取存储器603中的程序,执行下列过程:
确定至少两个默认波束信息;
根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其 进行进一步描述。总线接口提供接口。收发机602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
可选的,所述处理器601还用于:
发送确定的至少两个默认波束信息。
可选的,所述处理器601还用于:
更新所述默认波束信息;
根据更新后的默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
可选的,所述处理器601还用于:
更新与所述默认波束信息对应的集合中包含的第一信道和/或第一参考信号的波束信息;
根据所述第一信道和/或第一参考信号的更新后的波束信息,确定所述集合中包含的其他信道和/或其他参考信号的波束信息。
可选的,所述处理器601还用于:
发送第一信令,所述第一信令用于指示终端使用所述默认波束信息。
可选的,所述处理器601执行根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息时,具体用于:
在预设信道对应的下行控制信息DCI中不包含TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域但通过网络信令关闭TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域指示波束信息的情况下,或者,在预设信道对应的DCI中不包含SRI信息的情况下,或者,在预设信道对应的DCI中包含SRI信息指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息。
可选的,所述处理器601执行确定所述至少两个默认波束信息时,具体用于:
根据第一成员载波CC和/或第一带宽部分BWP上的预设波束信息,确定所述至少两个默认波束信息。
可选的,所述第一CC包括下述任意一种:
与所述默认波束信息对应的集合中包含的信道或参考信号所在CC;
与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的频带内具有预设索引的CC;
与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的CC列表或小区组内,具有预设索引的CC。
可选的,所述第一BWP为激活BWP。
可选的,在所述默认波束信息包括第一发送接收节点TRP的第一默认波束信息的情况下,所述预设波束信息包括下述任意一种:
预设信道的波束信息;
第一控制资源集的传输配置指示TCI状态信息或准共址QCL信息;
具有目标控制资源集标识的第二控制资源集的TCI状态信息或QCL信息;
除控制资源集的TCI状态信息或QCL信息之外的其他波束信息。
可选的,在所述默认波束信息包含第一TRP的第二默认波束信息的情况下,所述预设波束信息包括下述任意一种:
在第一TRP发送的DCI的TCI域的码点中,对应于1个TCI状态信息的码点中的第一码点对应的第一TCI状态信息;
在第一TRP发送的DCI的TCI域的第二码点对应的第二TCI状态信息;其中,在所述第二码点对应两个或两个以上的TCI状态信息的情况下,所述第二TCI状态信息为所述两个或两个以上的TCI状态信息中的一个。
可选的,所述第一码点为DCI的TCI域的码点中对应于1个TCI状态信息的最低码点。
可选的,所述第二码点为DCI的TCI域的码点中的最低码点。
可选的,在所述默认波束信息包含第一TRP的第二默认波束信息和其他TRP的第二默认波束信息的情况下,所述第一TRP对应的预设波束信息包括:
在第一TRP发送的DCI的TCI域中第三码点对应的第三TCI状态信息;
所述其他TRP对应的预设波束信息包括:
在第一TRP发送的DCI的TCI域中第三码点对应的其他TCI状态信息;
其中,所述第三码点对应两个或两个以上的TCI状态信息,所述第三TCI状态信息为所述两个或两个以上的TCI状态信息中的任意一个,所述其他TCI 状态信息为所述两个或两个以上的TCI状态信息中除所述第三TCI状态信息之外的TCI状态信息。
可选的,所述第三码点为DCI的TCI域中对应两个或两个以上的TCI状态信息的码点中的最低码点。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (49)

  1. 一种确定波束信息的方法,应用于终端,包括:
    确定至少两个默认波束信息;
    根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
  2. 根据权利要求1所述的确定波束信息的方法,其中,所述确定至少两个默认波束信息,包括:
    接收发送接收节点TRP配置的所述至少两个默认波束信息。
  3. 根据权利要求1所述的确定波束信息的方法,还包括:
    确定更新后的默认波束信息;
    根据更新后的默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
  4. 根据权利要求1所述的确定波束信息的方法,还包括:
    确定更新后的与所述默认波束信息对应的集合中包含的第一信道和/或第一参考信号的波束信息;
    根据所述第一信道和/或第一参考信号的更新后的波束信息,确定所述集合中包含的其他信道和/或其他参考信号的波束信息。
  5. 根据权利要求1所述的确定波束信息的方法,其中,所述根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息之前,所述方法还包括:
    接收第一信令,所述第一信令用于指示终端使用所述默认波束信息;
    或者,
    确定与所述默认波束信息对应的集合中包含的信道和/或参考信号未被配置波束信息。
  6. 根据权利要求1所述的确定波束信息的方法,其中,所述根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息,包括:
    在预设信道对应的下行控制信息DCI中不包含TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域但通过网络信令关闭TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域指示波束信息的情况下,或者,在预设信道对应的DCI中不包含SRI信息的情况下,或者,在预设信道对应的DCI中包含SRI信息指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息。
  7. 根据权利要求1所述的确定波束信息的方法,其中,所述确定所述至少两个默认波束信息,包括:
    根据第一成员载波CC和/或第一带宽部分BWP上的预设波束信息,确定所述至少两个默认波束信息。
  8. 根据权利要求7所述的确定波束信息的方法,其中,所述第一CC包括下述任意一种:
    与所述默认波束信息对应的集合中包含的信道或参考信号所在CC;
    与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的频带内具有预设索引的CC;
    与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的CC列表或小区组内,具有预设索引的CC。
  9. 根据权利要求7所述的确定波束信息的方法,其中,所述第一BWP为激活BWP。
  10. 根据权利要求7所述的确定波束信息的方法,其中,在所述默认波束信息包括第一发送接收节点TRP的第一默认波束信息的情况下,所述预设波束信息包括下述任意一种:
    预设信道的波束信息;
    第一控制资源集的传输配置指示TCI状态信息或准共址QCL信息;
    具有目标控制资源集标识的第二控制资源集的TCI状态信息或QCL信息;
    除控制资源集的TCI状态信息或QCL信息之外的其他波束信息。
  11. 根据权利要求7所述的确定波束信息的方法,其中,在所述默认波束信息包含第一TRP的第二默认波束信息的情况下,所述预设波束信息包括 下述任意一种:
    在第一TRP发送的DCI的TCI域的码点中,对应于1个TCI状态信息的码点中的第一码点对应的第一TCI状态信息;
    在第一TRP发送的DCI的TCI域的第二码点对应的第二TCI状态信息;其中,在所述第二码点对应两个或两个以上的TCI状态信息的情况下,所述第二TCI状态信息为所述两个或两个以上的TCI状态信息中的一个。
  12. 根据权利要求11所述的确定波束信息的方法,其中,所述第一码点为DCI的TCI域的码点中对应于1个TCI状态信息的最低码点。
  13. 根据权利要求11所述的确定波束信息的方法,其中,所述第二码点为DCI的TCI域的码点中的最低码点。
  14. 根据权利要求7所述的确定波束信息的方法,其中,在所述默认波束信息包含第一TRP的第二默认波束信息和其他TRP的第二默认波束信息的情况下,所述第一TRP对应的预设波束信息包括:
    在第一TRP发送的DCI的TCI域中第三码点对应的第三TCI状态信息;
    所述其他TRP对应的预设波束信息包括:
    在第一TRP发送的DCI的TCI域中第三码点对应的其他TCI状态信息;
    其中,所述第三码点对应两个或两个以上的TCI状态信息,所述第三TCI状态信息为所述两个或两个以上的TCI状态信息中的任意一个,所述其他TCI状态信息为所述两个或两个以上的TCI状态信息中除所述第三TCI状态信息之外的TCI状态信息。
  15. 根据权利要求14所述的确定波束信息的方法,其中,所述第三码点为DCI的TCI域中对应两个或两个以上的TCI状态信息的码点中的最低码点。
  16. 一种确定波束信息的方法,应用于第一TRP,包括:
    确定至少两个默认波束信息;
    根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
  17. 根据权利要求16所述的确定波束信息的方法,还包括:
    发送确定的至少两个默认波束信息。
  18. 根据权利要求16所述的确定波束信息的方法,还包括:
    更新所述默认波束信息;
    根据更新后的默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
  19. 根据权利要求16所述的确定波束信息的方法,还包括:
    更新与所述默认波束信息对应的集合中包含的第一信道和/或第一参考信号的波束信息;
    根据所述第一信道和/或第一参考信号的更新后的波束信息,确定所述集合中包含的其他信道和/或其他参考信号的波束信息。
  20. 根据权利要求16所述的确定波束信息的方法,还包括:
    发送第一信令,所述第一信令用于指示终端使用所述默认波束信息。
  21. 根据权利要求16所述的确定波束信息的方法,其中,所述根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息,包括:
    在预设信道对应的下行控制信息DCI中不包含TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域但通过网络信令关闭TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域指示波束信息的情况下,或者,在预设信道对应的DCI中不包含SRI信息的情况下,或者,在预设信道对应的DCI中包含SRI信息指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息。
  22. 根据权利要求16所述的确定波束信息的方法,其中,所述确定所述至少两个默认波束信息,包括:
    根据第一成员载波CC和/或第一带宽部分BWP上的预设波束信息,确定所述至少两个默认波束信息。
  23. 根据权利要求22所述的确定波束信息的方法,其中,所述第一CC包括下述任意一种:
    与所述默认波束信息对应的集合中包含的信道或参考信号所在CC;
    与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属 的频带内具有预设索引的CC;
    与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的CC列表或小区组内,具有预设索引的CC。
  24. 根据权利要求22所述的确定波束信息的方法,其中,所述第一BWP为激活BWP。
  25. 根据权利要求22所述的确定波束信息的方法,其中,在所述默认波束信息包括第一发送接收节点TRP的第一默认波束信息的情况下,所述预设波束信息包括下述任意一种:
    预设信道的波束信息;
    第一控制资源集的传输配置指示TCI状态信息或准共址QCL信息;
    具有目标控制资源集标识的第二控制资源集的TCI状态信息或QCL信息;
    除控制资源集的TCI状态信息或QCL信息之外的其他波束信息。
  26. 根据权利要求22所述的确定波束信息的方法,其中,在所述默认波束信息包含第一TRP的第二默认波束信息的情况下,所述预设波束信息包括下述任意一种:
    在第一TRP发送的DCI的TCI域的码点中,对应于1个TCI状态信息的码点中的第一码点对应的第一TCI状态信息;
    在第一TRP发送的DCI的TCI域的第二码点对应的第二TCI状态信息;其中,在所述第二码点对应两个或两个以上的TCI状态信息的情况下,所述第二TCI状态信息为所述两个或两个以上的TCI状态信息中的一个。
  27. 根据权利要求26所述的确定波束信息的方法,其中,所述第一码点为DCI的TCI域的码点中对应于1个TCI状态信息的最低码点。
  28. 根据权利要求26所述的确定波束信息的方法,其中,所述第二码点为DCI的TCI域的码点中的最低码点。
  29. 根据权利要求22所述的确定波束信息的方法,其中,在所述默认波束信息包含第一TRP的第二默认波束信息和其他TRP的第二默认波束信息的情况下,所述第一TRP对应的预设波束信息包括:
    在第一TRP发送的DCI的TCI域中第三码点对应的第三TCI状态信息;
    所述其他TRP对应的预设波束信息包括:
    在第一TRP发送的DCI的TCI域中第三码点对应的其他TCI状态信息;
    其中,所述第三码点对应两个或两个以上的TCI状态信息,所述第三TCI状态信息为所述两个或两个以上的TCI状态信息中的任意一个,所述其他TCI状态信息为所述两个或两个以上的TCI状态信息中除所述第三TCI状态信息之外的TCI状态信息。
  30. 根据权利要求29所述的确定波束信息的方法,其中,所述第三码点为DCI的TCI域中对应两个或两个以上的TCI状态信息的码点中的最低码点。
  31. 一种终端,包括:
    第一确定模块,用于确定至少两个默认波束信息;
    第二确定模块,用于根据所述默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
  32. 根据权利要求31所述的终端,其中,所述第一确定模块包括:
    接收单元,用于接收发送接收节点TRP配置的所述至少两个默认波束信息。
  33. 根据权利要求31所述的终端,还包括:
    第一更新模块,用于确定更新后的默认波束信息;
    第二更新模块,用于根据更新后的默认波束信息,确定与所述默认波束信息对应的集合中包含的信道和/或参考信号的波束信息。
  34. 根据权利要求31所述的终端,还包括:
    第一处理模块,用于确定更新后的与所述默认波束信息对应的集合中包含的第一信道和/或第一参考信号的波束信息;
    第二处理模块,用于根据所述第一信道和/或第一参考信号的更新后的波束信息,确定所述集合中包含的其他信道和/或其他参考信号的波束信息。
  35. 根据权利要求31所述的终端,还包括:
    接收模块,用于接收第一信令,所述第一信令用于指示终端使用所述默认波束信息;
    或者,
    第三处理模块,用于确定与所述默认波束信息对应的集合中包含的信道和/或参考信号未被配置波束信息。
  36. 根据权利要求31所述的终端,其中,所述第二确定模块包括:
    第一确定单元,用于在预设信道对应的下行控制信息DCI中不包含TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域但通过网络信令关闭TCI域的情况下,或者,在预设信道对应的DCI中包含TCI域指示波束信息的情况下,或者,在预设信道对应的DCI中不包含SRI信息的情况下,或者,在预设信道对应的DCI中包含SRI信息指示波束信息的情况下,根据所述预设信道所在的集合对应的默认波束信息,确定所述预设信道的波束信息。
  37. 根据权利要求31所述的终端,其中,所述第一确定模块包括:
    第二确定单元,用于根据第一成员载波CC和/或第一带宽部分BWP上的预设波束信息,确定所述至少两个默认波束信息。
  38. 根据权利要求37所述的终端,其中,所述第一CC包括下述任意一种:
    与所述默认波束信息对应的集合中包含的信道或参考信号所在CC;
    与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的频带内具有预设索引的CC;
    与所述默认波束信息对应的集合中包含的信道或参考信号所在CC所属的CC列表或小区组内,具有预设索引的CC。
  39. 根据权利要求37所述的终端,其中,所述第一BWP为激活BWP。
  40. 根据权利要求37所述的终端,其中,在所述默认波束信息包括第一发送接收节点TRP的第一默认波束信息的情况下,所述预设波束信息包括下述任意一种:
    预设信道的波束信息;
    第一控制资源集的传输配置指示TCI状态信息或准共址QCL信息;
    具有目标控制资源集标识的第二控制资源集的TCI状态信息或QCL信息;
    除控制资源集的TCI状态信息或QCL信息之外的其他波束信息。
  41. 根据权利要求37所述的终端,其中,在所述默认波束信息包含第一TRP的第二默认波束信息的情况下,所述预设波束信息包括下述任意一种:
    在第一TRP发送的DCI的TCI域的码点中,对应于1个TCI状态信息的码点中的第一码点对应的第一TCI状态信息;
    在第一TRP发送的DCI的TCI域的第二码点对应的第二TCI状态信息;其中,在所述第二码点对应两个或两个以上的TCI状态信息的情况下,所述第二TCI状态信息为所述两个或两个以上的TCI状态信息中的一个。
  42. 根据权利要求41所述的终端,其中,所述第一码点为DCI的TCI域的码点中对应于1个TCI状态信息的最低码点。
  43. 根据权利要求41所述的终端,其中,所述第二码点为DCI的TCI域的码点中的最低码点。
  44. 根据权利要求37所述的终端,其中,在所述默认波束信息包含第一TRP的第二默认波束信息和其他TRP的第二默认波束信息的情况下,所述第一TRP对应的预设波束信息包括:
    在第一TRP发送的DCI的TCI域中第三码点对应的第三TCI状态信息;
    所述其他TRP对应的预设波束信息包括:
    在第一TRP发送的DCI的TCI域中第三码点对应的其他TCI状态信息;
    其中,所述第三码点对应两个或两个以上的TCI状态信息,所述第三TCI状态信息为所述两个或两个以上的TCI状态信息中的任意一个,所述其他TCI状态信息为所述两个或两个以上的TCI状态信息中除所述第三TCI状态信息之外的TCI状态信息。
  45. 根据权利要求44所述的终端,其中,所述第三码点为DCI的TCI域中对应两个或两个以上的TCI状态信息的码点中的最低码点。
  46. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至15中任一项所述的确定波束信息的方法的步骤。
  47. 一种网络设备,所述网络设备为第一TRP,包括:
    第三确定模块,用于确定至少两个默认波束信息;
    第四确定模块,用于根据所述默认波束信息,确定与所述默认波束信息 对应的集合中包含的信道和/或参考信号的波束信息;其中,所述集合中包含至少一个信道和/或至少一个参考信号。
  48. 一种网络设备,所述网络设备为第一TRP,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求16至30中任一项所述的确定波束信息的方法的步骤。
  49. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至30中任一项所述的确定波束信息的方法的步骤。
PCT/CN2021/071719 2020-01-21 2021-01-14 确定波束信息的方法、终端及网络设备 WO2021147763A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21744464.5A EP4096325A4 (en) 2020-01-21 2021-01-14 METHOD FOR DETERMINING BEAM INFORMATION, TERMINAL AND NETWORK DEVICE
US17/866,812 US20220352969A1 (en) 2020-01-21 2022-07-18 Beam information determining method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010072792.9A CN113225812B (zh) 2020-01-21 2020-01-21 一种确定波束信息的方法、终端及网络设备
CN202010072792.9 2020-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/866,812 Continuation US20220352969A1 (en) 2020-01-21 2022-07-18 Beam information determining method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2021147763A1 true WO2021147763A1 (zh) 2021-07-29

Family

ID=76992955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071719 WO2021147763A1 (zh) 2020-01-21 2021-01-14 确定波束信息的方法、终端及网络设备

Country Status (4)

Country Link
US (1) US20220352969A1 (zh)
EP (1) EP4096325A4 (zh)
CN (1) CN113225812B (zh)
WO (1) WO2021147763A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023137654A1 (en) * 2022-01-20 2023-07-27 Lenovo (Beijing) Limited Single-dci multi-trp based ul transmission in unified tci framework

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677028B (zh) * 2021-08-20 2023-09-29 哲库科技(北京)有限公司 Pdcch监测方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019183125A1 (en) * 2018-03-19 2019-09-26 Qualcomm Incorporated Techniques for determining beams for beamforming wireless communications
WO2019199084A1 (ko) * 2018-04-12 2019-10-17 삼성전자 주식회사 무선 통신 시스템에서 단말 및 이의 제어 방법
CN110535597A (zh) * 2018-11-02 2019-12-03 中兴通讯股份有限公司 准共址参考信号确定方法、装置、网络设备和存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9900891B1 (en) * 2016-12-20 2018-02-20 Qualcomm Incorporated Fallback beam selection procedure during failure of beam change instruction reception
US10506587B2 (en) * 2017-05-26 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in next generation wireless systems
ES2861202T3 (es) * 2018-05-10 2021-10-06 Asustek Comp Inc Procedimiento y aparato para la indicación de haz para la transmisión de enlace ascendente en un sistema de comunicación inalámbrica

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019183125A1 (en) * 2018-03-19 2019-09-26 Qualcomm Incorporated Techniques for determining beams for beamforming wireless communications
WO2019199084A1 (ko) * 2018-04-12 2019-10-17 삼성전자 주식회사 무선 통신 시스템에서 단말 및 이의 제어 방법
CN110535597A (zh) * 2018-11-02 2019-12-03 中兴通讯股份有限公司 准共址参考信号确定方法、装置、网络设备和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Enhancements on Multiple TRP or Panel Transmission", 3GPP DRAFT; R1-1911217 ENHANCEMENTS ON MULTIPLE TRP OR PANEL TRANSMISSION, vol. RAN WG1, 4 October 2019 (2019-10-04), Chongqing, China, pages 1 - 3, XP051789988 *
See also references of EP4096325A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023137654A1 (en) * 2022-01-20 2023-07-27 Lenovo (Beijing) Limited Single-dci multi-trp based ul transmission in unified tci framework

Also Published As

Publication number Publication date
EP4096325A4 (en) 2024-02-21
EP4096325A1 (en) 2022-11-30
CN113225812B (zh) 2023-04-07
CN113225812A (zh) 2021-08-06
US20220352969A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US20210336664A1 (en) Uplink channel configuration method, uplink channel transmission method, network-side device, and terminal
US11937253B2 (en) Method for determining scheduling parameter, method for configuring scheduling parameter, terminal, and network-side device
US11968705B2 (en) Channel and signal transmission method and communication device
WO2020207378A1 (zh) 确定波束信息的方法及装置、通信设备
US11552686B2 (en) Beam reporting based on detection of a trigger event
US11742915B2 (en) Method and apparatus for information processing, terminal, and communications device
WO2021013007A1 (zh) 测量方法、资源配置方法、终端和网络侧设备
US20220352969A1 (en) Beam information determining method, terminal, and network device
WO2020216244A1 (zh) 终端天线面板信息的指示方法、网络侧设备和终端
US11950102B2 (en) Method for beam management in unlicensed band, terminal device, and network device
WO2021155762A1 (zh) 确定波束信息的方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021744464

Country of ref document: EP

Effective date: 20220822