WO2019001188A1 - 一种数据处理方法、终端以及基站 - Google Patents

一种数据处理方法、终端以及基站 Download PDF

Info

Publication number
WO2019001188A1
WO2019001188A1 PCT/CN2018/088408 CN2018088408W WO2019001188A1 WO 2019001188 A1 WO2019001188 A1 WO 2019001188A1 CN 2018088408 W CN2018088408 W CN 2018088408W WO 2019001188 A1 WO2019001188 A1 WO 2019001188A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell
uplink
terminal
frequency
Prior art date
Application number
PCT/CN2018/088408
Other languages
English (en)
French (fr)
Inventor
曾清海
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18823147.6A priority Critical patent/EP3637917B1/en
Publication of WO2019001188A1 publication Critical patent/WO2019001188A1/zh
Priority to US16/728,202 priority patent/US11089539B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present application relates to the field of communications, and in particular, to a data processing method, a terminal, and a base station.
  • the high frequency band has a large available bandwidth to meet the demand for high speed data transmission.
  • the signal in the high frequency band is attenuated relatively quickly during the propagation process, and in the case of the omnidirectional antenna, the coverage area is very small.
  • high-frequency transmission systems usually use beamforming technology for directional transmission, thereby extending the transmission distance, combined with the large bandwidth available in the high-frequency band, enabling extremely high-speed data transmission to meet the needs of mobile broadband for high-speed data transmission. .
  • a relatively small beam can be used to achieve longer-distance transmission, but the uplink direction of the high-frequency transmission system is usually unable to be generated due to limitations of terminal cost and capability.
  • a thinner beam cannot achieve a downlink equivalent transmission distance, so that the uplink coverage area of the high frequency transmission system is smaller than the downlink coverage area.
  • the embodiment of the present application provides a data processing method, a base station, and a terminal, which are used to improve uplink coverage of a high frequency transmission system.
  • an embodiment of the present application provides a data processing method, including:
  • the terminal acquires a downlink reference for the first cell of the first base station to perform uplink transmission, where the downlink reference is information of a downlink carrier of the second cell of the second base station, where a frequency of the downlink carrier of the first cell is higher than the downlink reference The frequency of the downlink carrier of the second cell.
  • the downlink reference is used to synchronize an uplink data transceiving frequency and/or an uplink data transceiving time between the terminal and the first base station in the first cell, where the downlink reference is also used to determine an uplink of the first cell. Carrier information.
  • the terminal When the terminal acquires the information for the uplink grant sent by the first base station in the first cell, the terminal determines, according to the information for the uplink grant, that the terminal sends the uplink carrier on the first cell. Uplink time-frequency resources of the uplink data; finally, the terminal sends the uplink data to the first base station by using the uplink time-frequency resource and the downlink reference in response to the uplink grant information.
  • the downlink frequency carrier of the first cell of the first base station and the downlink carrier of the second cell of the second base station may be compared with a center frequency, so that the downlink of the first cell of the first base station may be determined.
  • the center frequency of the carrier is higher than the center frequency of the downlink carrier of the second cell of the second base station, and the comparison manner is not limited herein.
  • the information about the uplink carrier of the first cell of the first base station that is determined according to the downlink reference may be the center frequency and the frequency bandwidth, as long as the data can be uploaded according to the information of the uplink carrier, and the specific information content is not limited herein. .
  • the downlink reference includes various parameters of the downlink carrier of the second cell of the second base station, for example, the downlink reference includes at least a center frequency of a downlink carrier of the second cell of the second base station, and the second base station The difference between the center frequency of the downlink carrier of the second cell and the center frequency of the uplink carrier of the second cell of the second base station, and the frequency bandwidth of the downlink carrier of the second cell of the second base station, and the like.
  • the terminal according to the center frequency of the downlink carrier of the second cell of the second base station in the downlink reference, the center frequency of the downlink carrier of the second cell of the second base station, and the second cell of the second base station
  • the difference between the center frequency of the uplink carrier determines the center frequency and the frequency bandwidth of the uplink carrier of the first cell, and determines the upper and lower of the second cell of the second base station according to the center frequency of the downlink carrier of the second cell of the second base station.
  • the uplink data transceiving frequency of the second cell is used as the uplink data transceiving frequency of the first cell of the first base station.
  • the downlink data receiving time of the second cell of the second base station is used as the downlink data receiving time of the first cell of the first base station.
  • the terminal may also determine a downlink data receiving time of the first cell in the first base station according to downlink carrier time synchronization information of the first cell of the first base station.
  • the uplink data transceiving frequency of the first cell of the first base station refers to the number of times the terminal and the first cell transmit data in a unit time.
  • the first base station and the terminal when the first base station sends the information for the uplink authorization to the terminal, the first base station and the terminal determine the downlink subframe carried by the first base station for uplink.
  • the uplink subframe of the terminal corresponding to the authorized information.
  • the terminal and the first base station also determine the corresponding uplink subframe that is sent by the terminal.
  • the mapping between the first base station and the terminal to determine the corresponding relationship between the downlink subframe and the uplink subframe may be implemented by using the protocol, or may be carried in real time by the uplink authorization information or the uplink data, and the specific implementation manner is not Make a limit.
  • the uplink subframe length of the first cell is greater than or equal to the downlink subframe of the first cell, and may generally have an integer multiple relationship.
  • the first base station and the terminal when the first base station sends the information for the uplink grant to the terminal, the first base station and the terminal determine, corresponding to the uplink grant information carried in the downlink subframe sent by the first base station, The uplink subframe of the terminal; similarly, when the terminal sends the uplink data to the first base station, the terminal and the first base station also determine the first base station corresponding to the uplink subframe sent by the terminal Downstream subframe. And determining, by the first base station, the corresponding relationship between the downlink subframe and the uplink subframe may be implemented by using the protocol, or may be carried in real time by the information used for the uplink authorization or the uplink data, and the specific implementation manner is There is no limit here.
  • the uplink subframe length of the first cell is greater than or equal to the downlink subframe of the first cell, and may generally have an integer multiple relationship.
  • the first cell of the first base station uses the downlink carrier information of the second cell of the second base station as a downlink reference, and determines that the terminal sends uplink data in the first cell of the first base station. Determining the downlink data transmission and reception frequency of the second cell of the second base station as the uplink data transmission and reception frequency between the terminal and the first base station, and determining the downlink data transmission and reception time of the second cell of the second base station as the information The uplink data transmission and reception time between the terminal and the first base station.
  • the center frequency of the downlink carrier of the second cell of the second base station is lower than the center frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first The downlink carrier of the first cell of a base station.
  • the uplink time-frequency resource scheduled by the first base station for the terminal is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • the terminal acquires system information of the first cell of the first base station, and then obtains a downlink reference of the first cell of the first base station from the indication information of the system information.
  • the manner in which the terminal acquires the system message of the first cell of the first base station includes but is not limited to the following manners:
  • the terminal detects a downlink high frequency beam of a first cell of the first base station that is broadcasted or sent by the first base station, where the downlink high frequency beam carries a system message of a first cell of the first base station And then the terminal performs the same frequency as the downlink high frequency beam according to the synchronization signal in the downlink high frequency beam; finally, the terminal reads the first base station carried by the downlink high frequency beam after synchronizing with the downlink high frequency beam System information of the first cell.
  • the terminal detects a broadcast message of the second cell of the second base station, where the broadcast message carries system information of the first cell of the first base station; and then the terminal reads the broadcast message. System information of the first cell of the first base station.
  • the terminal establishes a communication connection with the second base station in the second cell (that is, the terminal accesses the second cell); and then the terminal receives the second base station to send the first base station. System information of the first cell.
  • the second base station needs to send the system message of the first cell of the first base station to the terminal if the preset condition is met.
  • the second base station satisfies the preset according to the measurement result reported by the terminal, or the measurement result of the uplink signal of the terminal and the terminal location information.
  • the first cell of the first base station is configured for the terminal, and the second base station sends the system information of the first cell of the first base station to the terminal.
  • the terminal obtains system information of the first cell in multiple manners, which can effectively improve the flexibility of the terminal to access the first cell.
  • the indication information further includes identifier information of the second cell of the second base station.
  • the second cell that includes the second base station in the indication information may improve the speed at which the terminal determines the information of the uplink carrier of the first cell of the first base station, and speed up work efficiency.
  • the center frequency of the uplink carrier of the first cell is the same as the center frequency of the uplink carrier of the second cell.
  • the center frequency of the uplink carrier of the first cell is the same as the center frequency of the uplink carrier of the second cell, which may simplify the process of determining, by the terminal, the information of the uplink carrier of the first cell of the first base station.
  • the terminal acquires time information (also referred to as a timing advance), where the time information is used to indicate a timing advance of the uplink time-frequency resource starting time when the terminal sends the uplink data; the terminal responds to the The uplink grant information uses the uplink time-frequency resource, and the downlink reference and the time information send uplink data to the first base station.
  • time information also referred to as a timing advance
  • the time information is used to indicate a timing advance of the uplink time-frequency resource starting time when the terminal sends the uplink data.
  • the terminal determines that the time information can adopt the following scheme:
  • the terminal sends a random access preamble to the first base station; then, after receiving the random access preamble, the first base station obtains how much time the signal sent by the terminal is later than the expected time of the first base station, and then The time is used as the time information; and then the first base station sends the timing advance to the terminal by using the downlink carrier of the first cell of the first base station; finally, the terminal adjusts and sends the time according to the time information.
  • the time of the upstream data For example, the terminal sends a random access preamble according to the time determined by the downlink reference, and after receiving the random access preamble, the first base station finds that the random access preamble is 0.4 milliseconds later than the time that the first base station expects to receive.
  • the first base station can determine that the timing advance is 0.4 milliseconds.
  • the first base station sends the information with the timing advance of 0.4 milliseconds to the terminal, that is, the terminal needs to send the uplink data 0.4 milliseconds in
  • the use of time information can effectively improve data transmission consistency between the terminal and the first base station.
  • an embodiment of the present application provides a data processing method, including:
  • the first base station establishes a communication connection with the terminal, and the downlink reference for performing uplink transmission by the first cell of the first base station is information of a downlink carrier of the second cell of the second base station, where the downlink reference is used for synchronization in the first cell.
  • the downlink frequency carrier of the first cell of the first base station and the downlink carrier of the second cell of the second base station may be compared with a center frequency, so that the downlink of the first cell of the first base station may be determined.
  • the center frequency of the carrier is higher than the center frequency of the downlink carrier of the second cell of the second base station, and the comparison manner is not limited herein.
  • the information about the uplink carrier of the first cell of the first base station that is determined according to the downlink reference may be the center frequency and the frequency bandwidth, as long as the data can be uploaded according to the information of the uplink carrier, and the specific information content is not limited herein. .
  • the downlink reference includes various parameters of the downlink carrier of the second cell of the second base station, for example, the downlink reference includes at least a center frequency of a downlink carrier of the second cell of the second base station, and the second base station The difference between the center frequency of the downlink carrier of the second cell and the center frequency of the uplink carrier of the second cell of the second base station, and the frequency bandwidth of the downlink carrier of the second cell of the second base station, and the like.
  • the terminal is based on the center frequency of the downlink carrier of the second cell of the second base station in the downlink reference, and the center frequency of the downlink carrier of the second cell of the second base station and the second cell of the second base station.
  • the difference between the center frequency of the uplink carrier determines the center frequency and the frequency bandwidth of the uplink carrier of the first cell, and determines the second cell of the second base station according to the center frequency of the downlink carrier of the second cell of the second base station.
  • Up-and-down data transmission and reception frequency and uplink and downlink data transmission and reception time The uplink data transceiving frequency of the second cell is used as the uplink data transceiving frequency of the first cell of the first base station.
  • the downlink data receiving time of the second cell of the second base station is used as the downlink data receiving time of the first cell of the first base station.
  • the terminal may further determine a downlink data receiving time of the first cell in the first base station according to downlink carrier time synchronization information of the first cell of the first base station.
  • the uplink data transceiving frequency of the first cell of the first base station refers to the number of times the terminal and the first cell transmit data in a unit time.
  • the first base station and the terminal determine the uplink authorization information that is carried by the downlink subframe that is sent by the first base station.
  • the uplink subframe of the terminal for example, the number of the uplink subframe is the downlink subframe number plus 4; similarly, when the terminal sends the uplink data to the first base station, the terminal and the first base station are also determined with the terminal.
  • the downlink subframe of the first base station corresponding to the transmitted uplink subframe.
  • the mapping between the first base station and the terminal to determine the corresponding relationship between the downlink subframe and the uplink subframe may be implemented by using the protocol, or may be carried in real time by the uplink authorization information or the uplink data, and the specific implementation manner is not Make a limit.
  • the uplink subframe length of the first cell is greater than or equal to the downlink subframe of the first cell, and may generally have an integer multiple relationship.
  • the first cell of the first base station uses the downlink carrier of the second cell of the second base station as a downlink reference, and determines that the terminal sends the uplink carrier of the uplink data in the first cell of the first base station. Determining a downlink data transmission and reception frequency of the second cell of the second base station as an uplink data transmission and reception frequency between the terminal and the first base station, and determining a downlink data transmission and reception time of the second cell of the second base station As the uplink data transmission and reception time between the terminal and the first base station.
  • the center frequency of the downlink carrier of the second cell of the second base station is lower than the center frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first The downlink carrier of the first cell of a base station.
  • the uplink time-frequency resource scheduled by the first base station for the terminal is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • the center frequency of the uplink carrier of the first cell is the same as the center frequency of the uplink carrier of the second cell.
  • the first base station forwards the uplink data to the core network.
  • the manner in which the first base station forwards the uplink data to the core network is different according to the connection relationship between the first base station and the second base station, and the specific situation includes but is not limited to the following the way:
  • the first base station when the first base station is directly connected to the core network, the first base station directly sends the uplink data to the core network by using a first carrier, where a center frequency of the first carrier and the first The center frequency of the downlink carrier of the first cell of the same base station is the same, the frequency bandwidth of the first carrier is the same as the frequency bandwidth of the downlink carrier of the first cell of the first base station; or the center frequency of the first carrier and the first The center frequency of the uplink carrier of the first cell of a base station is the same, and the frequency bandwidth of the first carrier is the same as the frequency bandwidth of the uplink carrier of the first cell of the first base station.
  • the specific implementation manner is not limited herein.
  • the first base station is connected to the core network by using the second base station, and the radio link between the first base station and the second base station adopts an uplink carrier of the second cell of the second base station.
  • the second carrier having the same center frequency and the frequency bandwidth communicates, the first base station sends the uplink data to the second base station by using the center frequency and the frequency bandwidth of the uplink carrier of the second cell of the second base station, and then the The second base station sends the uplink data to the core network by using the center frequency and the frequency bandwidth of the uplink carrier of the second cell of the second base station.
  • the first base station is connected to the core network by using the second base station, and the wireless link between the first base station and the second base station is used by the first cell of the first base station.
  • the third carrier that has the same center frequency and the frequency bandwidth of the downlink carrier communicates, the first base station sends the uplink data to the second base station by using the center frequency and the frequency bandwidth of the carrier; and then the second base station uses the second The center frequency and the frequency bandwidth of the uplink carrier of the second cell of the base station send the uplink data to the core network.
  • the embodiment of the present application provides a terminal, where the terminal has the function of implementing the terminal in the foregoing method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal includes:
  • An acquiring module configured to acquire a downlink reference for uplink transmission in a first cell of the first base station, where the downlink reference is information about a downlink carrier of a second cell of the second base station, where the downlink reference is a second base station Information about a downlink carrier of the second cell, where the downlink reference is used to synchronize an uplink data transceiving frequency and/or an uplink data transceiving time between the terminal and the first base station in the first cell, The downlink reference is used to determine frequency information of the uplink carrier of the first cell, where a frequency of a downlink carrier of the first cell is higher than a frequency of a downlink carrier of the second cell, and a first cell of the first base station
  • the information for the uplink grant, the information for the uplink grant includes the information of the uplink time-frequency resource on the uplink carrier of the first cell;
  • a sending module configured to send, by using the downlink reference, uplink data to the first base station on the uplink time-frequency resource.
  • the obtaining module includes:
  • An acquiring unit configured to acquire system information of a first cell of the first base station, where the system information includes indication information, where the indication information includes the downlink reference.
  • the obtaining unit includes:
  • a detecting subunit configured to detect a downlink high frequency beam of the first cell of the first base station
  • a synchronization subunit configured to synchronize with the downlink high frequency beam
  • a first acquiring subunit configured to acquire system information of the first cell from the downlink high frequency beam.
  • the obtaining unit includes:
  • a second acquiring subunit configured to acquire a broadcast message of the second cell of the second base station
  • a reading subunit configured to read the broadcast message to obtain system information of the first cell.
  • the obtaining unit includes:
  • a receiving subunit configured to receive, by the second base station, system information of the first cell.
  • the terminal includes:
  • At least one processor memory, transceiver, and system bus;
  • the at least one processor, the memory, and the transceiver are coupled by the system bus;
  • the terminal communicates with the network side device by using the first transceiver device;
  • the memory stores program instructions, and the at least one processor invokes the program instructions stored in the memory to perform operations of the terminal in the method of any of claims 1-16.
  • the embodiment of the present application provides a system chip, where the system chip is applied to a terminal, where the system chip includes:
  • At least one processor memory, interface circuit and bus
  • the at least one processor, the memory, and the interface circuit are coupled by the bus;
  • the system chip interacts with the terminal through the interface circuit; the memory stores program instructions, and the at least one processor calls the program instruction stored in the memory to perform the terminal in the foregoing method Operation.
  • an embodiment of the present application provides a first base station, where the first base station has a function of implementing a first base station in the foregoing method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the first base station includes:
  • Establishing a module configured to establish a communication connection with the terminal, where the downlink reference of the first cell of the first base station is the information of the downlink carrier of the second cell of the second base station, where the downlink reference is used for Synchronizing an uplink data transceiving frequency and/or an uplink data transceiving time between the terminal and the first base station in a first cell, where the downlink reference is used to determine information of an uplink carrier of the first cell,
  • the frequency of the downlink carrier of the first cell is higher than the frequency of the downlink carrier of the second cell;
  • a sending module configured to send information for an uplink grant to the terminal, where the information for the uplink grant includes information of an uplink time-frequency resource on an uplink carrier of the first cell
  • a receiving module configured to receive The uplink data sent by the terminal, where the uplink data is sent by the terminal to the first base station by using the downlink reference on the uplink time-frequency resource.
  • the sending module is further configured to forward the uplink data to a core network.
  • the sending module is further configured to send the uplink data to the second base station by using a first uplink carrier, so that the second base station forwards the uplink data to a core network, where the first The frequency of the uplink carrier is the same as the frequency of the uplink carrier of the second base station.
  • the sending module is further configured to send the uplink data to the second base station by using a second uplink carrier, so that the second base station forwards the uplink data to a core network, where the second The frequency of the uplink carrier is greater than the frequency of the uplink carrier of the second base station.
  • the first base station includes:
  • At least one processor a memory, a first transceiver, a second transceiver, and a system bus;
  • the at least one processor, the memory, the first transceiver, and the second transceiver are coupled by the system bus;
  • the first base station communicates with the network side device by using the first transceiver, and the first base station communicates with the terminal device by using the second transceiver;
  • the memory stores program instructions, and the at least one processor invokes the program instructions stored in the memory to perform operations of the first base station in the method of any of claims 1-16.
  • the embodiment of the present application provides a system chip, where the system chip is applied to a first base station, where the system chip includes:
  • At least one processor memory, interface circuit and bus
  • the at least one processor, the memory, and the interface circuit are coupled by the bus;
  • the system chip interacts with the first base station through the interface circuit; the memory stores program instructions, and the at least one processor invokes the program instructions stored in the memory to perform the foregoing method The operation of the first base station.
  • the embodiment of the present application provides a data processing method, including:
  • the second base station sends the system information of the first cell of the first base station to the terminal, where the system information includes indication information, where the indication information includes a downlink reference, and the downlink reference is a downlink carrier of the second cell of the second base station.
  • the downlink reference is used to synchronize an uplink data transceiving frequency and/or an uplink data transceiving time between the terminal and the first base station in the first cell, where the downlink reference is used to determine
  • the frequency information of the uplink carrier of the first cell, the frequency of the downlink carrier of the first cell is higher than the frequency of the downlink carrier of the second cell, and the second base station receives the uplink data sent by the first base station
  • the uplink data is sent by the terminal to the first base station by using the downlink reference on the uplink time-frequency resource on the uplink carrier of the first cell, and the uplink time on the uplink carrier of the first cell
  • the frequency resource is included in the information that is sent by the first base station to the terminal for uplink authorization
  • the second base station sends the system information of the first cell of the first base station to the terminal, so that the terminal uses the downlink carrier information of the second cell of the second base station as a downlink reference, and determines
  • the terminal transmits a center frequency and a frequency bandwidth of the uplink carrier of the uplink data in the first cell of the first base station, and determines a downlink data transceiving frequency of the second cell of the second base station as a relationship between the terminal and the first base station.
  • the uplink data transmission and reception frequency determines the downlink data transmission and reception time of the second cell of the second base station as the uplink data transmission and reception time between the terminal and the first base station.
  • the frequency of the downlink carrier of the second cell of the second base station is lower than the frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first base station.
  • the downlink carrier of the first cell is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • the system information that the second base station sends the first cell of the first base station to the terminal includes, but is not limited to, the following methods:
  • the second base station sends a broadcast message to the terminal, where the broadcast message includes system information of a first cell of the first base station.
  • the second base station establishes a communication connection with the terminal
  • the second base station sends the message of the first cell of the first base station to the terminal in multiple manners, which can improve the flexibility of the terminal to access the first cell.
  • the receiving, by the second base station, the uplink data sent by the first base station includes, but is not limited to, the following methods:
  • the second base station receives, by using the first uplink carrier, the uplink data sent by the first base station, and the frequency of the first uplink carrier and the uplink of the first cell of the first base station.
  • the carrier frequency is the same.
  • the second base station receives the uplink data sent by the first base station by using a second uplink carrier, where a frequency of the second uplink carrier is different from a first cell of the first base station.
  • the frequency of the downlink carrier is the same.
  • the second base station receives the uplink data sent by the first base station in multiple manners, and increases the flexibility of data transmission between the second base station and the first base station.
  • the embodiment of the present application provides a second base station, where the second base station has the function of implementing the second base station in the foregoing method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the second base station includes:
  • a sending module configured to send system information of a first cell of the first base station to the terminal, where the system information includes indication information, where the indication information includes a downlink reference, where the downlink reference is a second cell of the second base station
  • the downlink reference information is used to synchronize an uplink data transceiving frequency and/or an uplink data transceiving time between the terminal and the first base station in the first cell, where the downlink reference is used. Determining the frequency information of the uplink carrier of the first cell, the frequency of the downlink carrier of the first cell is higher than the frequency of the downlink carrier of the second cell;
  • a receiving module configured to receive uplink data sent by the first base station, where the uplink data is used by the terminal to use the downlink reference on an uplink time-frequency resource on an uplink carrier of the first cell to the first
  • the uplink time-frequency resource on the uplink carrier of the first cell is sent by the base station to the information that is sent by the first base station to the terminal for uplink authorization.
  • the sending module is configured to send the uplink data to a core network.
  • the sending module includes:
  • a first sending unit configured to send a broadcast message to the terminal, where the broadcast message includes system information of a first cell of the first base station.
  • the sending module includes:
  • a second sending unit configured to send system information of the first cell of the first base station to the terminal.
  • the receiving module includes:
  • the first receiving unit is configured to receive, by using the first uplink carrier, the uplink data sent by the first base station, where a frequency of the first uplink carrier is the same as a frequency of an uplink carrier of a first cell of the first base station.
  • the receiving module includes:
  • the second receiving unit is configured to receive, by using the second uplink carrier, the uplink data that is sent by the first base station, where a frequency of the second uplink carrier is the same as a frequency of a downlink carrier of the first cell of the first base station.
  • the second base station includes:
  • At least one processor a memory, a first transceiver, a second transceiver, and a system bus;
  • the at least one processor, the memory, the first transceiver, and the second transceiver are coupled by the system bus;
  • the second base station communicates with the network side device by using the first transceiver, and the second base station communicates with the terminal device by using the second transceiver;
  • the memory stores program instructions, and the at least one processor invokes the program instructions stored in the memory to perform operations of the second base station in the above method.
  • the embodiment of the present application provides a system chip, where the system chip is applied to a second base station, where the system chip includes:
  • At least one processor memory, interface circuit and bus
  • the at least one processor, the memory, and the interface circuit are coupled by the bus;
  • the system chip interacts with the second base station through the interface circuit; the memory stores program instructions, and the at least one processor invokes the program instructions stored in the memory to perform the foregoing method The operation of the second base station.
  • the embodiment of the present application provides a computer readable storage medium, including instructions, when the instruction is run on a computer, the computer executes the foregoing method.
  • an embodiment of the present application provides a computer program product comprising instructions, when the computer program product runs on a computer, the computer executes the above method.
  • the first embodiment of the first base station uses the downlink carrier of the second cell of the second base station as a downlink reference, and determines that the terminal is in the first base station. Determining the center frequency and frequency bandwidth of the uplink carrier of the uplink data in a cell, determining the downlink data transceiving frequency of the second cell of the second base station as the uplink data transceiving frequency between the terminal and the first base station, and determining the second The downlink data transmission and reception time of the second cell of the base station is used as the uplink data transmission and reception time between the terminal and the first base station.
  • the center frequency of the downlink carrier of the second cell of the second base station is lower than the center frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first The downlink carrier of the first cell of a base station.
  • the uplink time-frequency resource scheduled by the first base station for the terminal is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • FIG. 1 is a schematic diagram of the architecture of a high frequency transmission system
  • FIG. 2 is a schematic diagram of an embodiment of a data processing method in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of uplink and downlink carriers of a first cell and a second cell in an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a terminal accessing the first base station according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of an embodiment of the first base station sending uplink data to a core network according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of another embodiment of the first base station transmitting uplink data to a core network according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram of another embodiment of the first base station transmitting uplink data to a core network according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of an embodiment of a terminal in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of a terminal in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an embodiment of a first base station according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of a first base station according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an embodiment of a second base station according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another embodiment of a second base station according to an embodiment of the present application.
  • the embodiment of the present application provides a data processing method, a base station, and a terminal, which are used to improve uplink coverage of a high frequency transmission system.
  • the high-frequency transmission system includes a base station and a terminal.
  • the base station In order to realize long-distance transmission, the base station usually adopts beamforming technology for directional transmission, thereby expanding the transmission distance, and combining the large bandwidth available in the high-frequency band to achieve a very high rate. Data transmission to meet the needs of mobile broadband for high-speed data transmission.
  • a relatively small beam can be used to achieve longer-distance transmission, but the uplink direction of the high-frequency transmission system is usually unable to be generated due to limitations of terminal cost and capability.
  • a thinner beam cannot achieve a downlink equivalent transmission distance, so that the uplink coverage area of the high frequency transmission system is smaller than the downlink coverage area.
  • the terminal acquires a downlink reference for uplink transmission of the first cell of the first base station, and the downlink reference is a downlink of the second cell of the second base station.
  • the carrier information, the frequency of the downlink carrier of the first cell is higher than the frequency of the downlink carrier of the second cell.
  • the downlink reference is used to synchronize an uplink data transceiving frequency and/or an uplink data transceiving time between the terminal and the first base station in the first cell, where the downlink reference is also used to determine an uplink of the first cell. Carrier information.
  • the terminal When the terminal acquires the information for the uplink grant sent by the first base station in the first cell, the terminal determines, according to the information for the uplink grant, that the terminal sends the uplink carrier on the first cell. Uplink time-frequency resources of the uplink data; finally, the terminal sends the uplink data to the first base station by using the uplink time-frequency resource and the downlink reference in response to the uplink grant information.
  • an implementation of the data processing method in the embodiment of the present application includes:
  • the terminal acquires a downlink reference of the first cell of the first base station.
  • the terminal Obtaining, by the terminal, a system message of the first cell of the first base station, where the system message includes indication information, where the indication information includes a downlink reference of the first cell, where the downlink reference is information about a downlink carrier of a second cell of the second base station
  • the downlink reference includes a center frequency of a downlink carrier of a second cell of the second base station, a center frequency of a downlink carrier of a second cell of the second base station, and a center frequency of an uplink carrier of a second cell of the second base station The difference.
  • the center frequency of the downlink carrier of the first cell of the first base station is greater than the center frequency of the downlink carrier of the second cell of the second base station.
  • the center frequency of the downlink carrier of the first cell of the first base station may be 60 GHz
  • the center frequency of the downlink carrier of the second cell of the second base station may be 400 MHz
  • the second base station The difference between the center frequency of the downlink carrier of the second cell and the center frequency of the uplink carrier of the second cell of the second base station is 50 MHz. In the following examples in this embodiment, this is taken as an example.
  • the manner in which the terminal acquires the system message of the first cell of the first base station includes but is not limited to the following manners:
  • the terminal detects a downlink high frequency beam of a first cell of the first base station that is broadcasted or sent by the first base station, where the downlink high frequency beam carries a system message of a first cell of the first base station And then the terminal performs the same frequency as the downlink high frequency beam according to the synchronization signal in the downlink high frequency beam; finally, the terminal reads the first base station carried by the downlink high frequency beam after synchronizing with the downlink high frequency beam System information of the first cell.
  • the terminal detects a broadcast message of the second cell of the second base station, where the broadcast message carries system information of the first cell of the first base station; and then the terminal reads the broadcast message. System information of the first cell of the first base station.
  • the terminal establishes a communication connection with the second base station in the second cell (that is, the terminal accesses the second cell); and then the terminal receives the second base station to send the first base station. System information of the first cell.
  • the second base station needs to send the system message of the first cell of the first base station to the terminal if the preset condition is met.
  • the second base station satisfies at least one of the measurement result reported by the terminal, or the measurement result of the uplink signal of the terminal and the terminal location information.
  • the first cell of the first base station is configured for the terminal, and the second base station sends the system information of the first cell of the first base station to the terminal.
  • the measurement result reported by the terminal, the measurement result of the uplink signal of the terminal and the terminal location information of the core network satisfying the preset condition that the measurement result reported by the terminal is poor or the measurement result of the uplink signal of the terminal is compared.
  • the difference is that the location of the terminal is far from the second cell of the second base station, and the specific situation is not limited herein.
  • the terminal determines, according to the downlink reference, information about an uplink carrier of the first cell of the first base station, and synchronizes, according to the downlink reference, the uplink data transmission and reception frequency of the terminal and the first base station in the first cell, and/or Uplink data transmission and reception time.
  • the terminal according to the center frequency of the downlink carrier of the second cell of the second base station in the downlink reference, the center frequency of the downlink carrier of the second cell of the second base station, and the uplink carrier of the second cell of the second base station Determining the center frequency and the frequency bandwidth of the uplink carrier of the first cell, and determining the uplink and downlink data transmission and reception of the second cell of the second base station according to the center frequency of the downlink carrier of the second cell of the second base station.
  • the uplink data transmission and reception frequency and the uplink data transmission and reception time of the second cell are used as the uplink data transmission and reception frequency and the uplink data transmission and reception time of the first cell of the first base station. For example, as shown in FIG.
  • the difference between the center frequency of the downlink carrier of the second cell of the second base station and the center frequency of the uplink carrier of the second cell of the second base station is 50 MHz, and the frequency bandwidth of the second cell of the second base station is 3 mega-M.
  • the terminal may further determine, according to the downlink data receiving time of the second cell of the second base station, the downlink data receiving time of the first cell, the terminal may also be according to the first base station.
  • the downlink carrier time synchronization information of the cell determines a downlink data reception time of the first cell of the first base station.
  • the information about the uplink carrier of the first cell may be the center frequency and the frequency bandwidth of the uplink carrier, or may be other information, as long as the uplink carrier can be used to upload data, and specific information is not used here. limited.
  • the first base station sends, to the terminal, information for an uplink grant, where the information for the uplink grant includes information about an uplink time-frequency resource on an uplink carrier of the first cell of the first base station.
  • the first base station After the first base station establishes a communication connection with the terminal (that is, the terminal accesses the first cell of the first base station), the first base station sends downlink data and information for uplink authorization to the terminal (which may be referred to as uplink).
  • the authorization information is used to indicate that the terminal sends uplink data to the first base station, and the uplink grant information includes information about uplink time-frequency resources on the uplink carrier of the first cell of the first base station.
  • the first base station and the terminal when the first base station sends the uplink grant information to the terminal, the first base station and the terminal determine the terminal corresponding to the uplink grant information carried in the downlink subframe sent by the first base station.
  • the terminal and the first base station when the terminal sends the uplink data to the first base station, the terminal and the first base station also determine the downlink subframe of the first base station corresponding to the uplink subframe that is sent by the terminal. .
  • the mapping between the first base station and the terminal to determine the corresponding relationship between the downlink subframe and the uplink subframe may be implemented by using the protocol, or may be carried in real time by the uplink authorization information or the uplink data, and the specific implementation manner is not Make a limit.
  • the uplink subframe length of the first cell is greater than or equal to the downlink subframe of the first cell, and may generally have an integer multiple relationship.
  • the terminal before the first base station sends the downlink data and the uplink grant information to the terminal, the terminal accesses the first cell of the first base station according to the system information of the first cell, as shown in FIG. 4 Show:
  • the terminal acquires system information of the first cell, and obtains configuration information of the uplink random access resource, preamble configuration information, and the downlink reference from the system information.
  • the terminal sends a random access request to the first base station by using the uplink random access resource and the downlink reference, where the random access request includes the preamble;
  • the first base station sends a random access response message to the terminal, where the random access response message includes the identifier information of the preamble, and uplink grant information for scheduling the terminal to perform uplink transmission;
  • the terminal sends a message 3 to the first base station by using the uplink time-frequency resource indicated in the uplink authorization information in response to the uplink authorization information (the message 3 here is a 3rd generation partnership project, Abbreviation: 3GPP) defines a message for sending the uplink, and the message 3 includes the terminal identifier information;
  • the first base station sends a message 4 to the terminal (the message 4 here is a definition message for sending the downlink in the 3GPP protocol), and the message 4 includes part of the content of the message 3, such as terminal identification information;
  • the terminal determines whether part of the content of the message 3 carried in the message 4 is positive. If yes, the terminal determines that the terminal has accessed the first cell of the first base station.
  • the first base station performs a process of configuring a secure, dedicated radio bearer to the terminal.
  • the first base station sends a radio resource control (radio resource control, RRC for short) connection configuration to the terminal.
  • RRC radio resource control
  • the first base station when the first base station sends the downlink data and the uplink grant information to the terminal, when the first base station sends downlink data to the terminal, the first base station and the terminal also need to be synchronized.
  • the data transmission and reception frequency and the downlink data transmission and reception time At this time, the first base station can use its own downlink carrier as a reference for synchronizing the downlink data transmission and reception frequency and the downlink data transmission and reception time with the terminal;
  • the downlink carrier of the two cells serves as a reference for synchronizing the downlink data transmission and reception frequency and the downlink data transmission and reception time with the terminal.
  • the specific method is not limited herein.
  • the terminal sends the uplink data to the first base station by using the downlink reference on the uplink time-frequency resource.
  • the terminal modulates the uplink data in the uplink time-frequency resource according to the center frequency and the frequency bandwidth of the uplink carrier of the first cell, and then uses the uplink data transmission and reception frequency and/or uplink according to the downlink reference synchronization.
  • the data transmission and reception time sends the uplink data to the first base station.
  • the terminal needs to send the uplink data.
  • the time information (which may be referred to as a timing advance) is determined before, and the timing advance is used to indicate a timing advance of the uplink time-frequency resource starting time when the terminal sends the uplink data.
  • the terminal determines the timing advance amount to adopt the following scheme:
  • the terminal sends a random access preamble to the first base station; then, after receiving the random access preamble, the first base station obtains how much time the signal sent by the terminal is later than the expected time of the first base station, and then The late time is used as the timing advance amount; then the first base station sends the timing advance amount to the terminal through the downlink carrier of the first cell of the first base station; finally, the terminal adjusts itself according to the timing advance amount The time at which the uplink data is sent. For example, the terminal sends a random access preamble according to the time determined by the downlink reference, and after receiving the random access preamble, the first base station finds that the random access preamble is 0.4 milliseconds later than the time that the first base station expects to receive. The first base station can determine that the timing advance is 0.4 milliseconds. The first base station sends the information with the timing advance of 0.4 milliseconds to the terminal, that is, the terminal needs to send the uplink data 0.4 milliseconds in advance.
  • the first base station sends the uplink data to a core network.
  • the first base station After receiving the uplink data sent by the terminal, the first base station forwards the uplink data to the core network.
  • the manner in which the first base station forwards the uplink data to the core network is different according to the connection relationship between the first base station and the second base station, and the specific situation includes but is not limited to the following the way:
  • the first base station when the first base station is directly connected to the core network, the first base station directly sends the uplink data to the core network by using a first carrier, where the first carrier
  • the center frequency of the downlink carrier is the same as the center frequency of the downlink carrier of the first cell of the first base station, and the frequency bandwidth of the first carrier is the same as the frequency bandwidth of the downlink carrier of the first cell of the first base station; or the first carrier
  • the center frequency of the first carrier is the same as the center frequency of the uplink carrier of the first cell of the first base station, and the frequency bandwidth of the first carrier is the same as the frequency bandwidth of the uplink carrier of the first cell of the first base station.
  • the specific implementation manner is not limited herein.
  • the first base station is connected to the core network by using a second base station, and the wireless link between the first base station and the second base station is used by the second base station. If the uplink carrier of the second cell has the second carrier with the same center frequency and the frequency bandwidth, the first base station sends the second carrier to the second base station by using the center frequency and the frequency bandwidth of the uplink carrier of the second cell of the second base station. Uplink data, and then the second base station sends the uplink data to the core network by using a center frequency and a frequency bandwidth of an uplink carrier of the second cell of the second base station.
  • the first base station is connected to the core network by using the second base station, and a wireless link between the first base station and the second base station is used with the first
  • the downlink carrier of the first cell of the base station communicates with the third carrier having the same center frequency and the frequency bandwidth, and the first base station sends the uplink data to the second base station by using the center frequency and the frequency bandwidth of the carrier; and then the second The base station sends the uplink data to the core network by using the center frequency and the frequency bandwidth of the uplink carrier of the second cell of the second base station.
  • the first cell of the first base station uses the downlink carrier of the second cell of the second base station as a downlink reference, and determines that the terminal transmits the center of the uplink carrier of the uplink data in the first cell of the first base station. a frequency and a frequency bandwidth, determining a downlink data transceiving frequency of the second cell of the second base station as an uplink data transceiving frequency between the terminal and the first base station, and determining a downlink data transceiving time of the second cell of the second base station as The uplink data transmission and reception time between the terminal and the first base station.
  • the center frequency of the downlink carrier of the second cell of the second base station is lower than the center frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first The downlink carrier of the first cell of a base station.
  • the uplink time-frequency resource scheduled by the first base station for the terminal is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • the data processing method in the embodiment of the present application is described above.
  • the terminal and the first base station in the embodiment of the present application are described below.
  • the terminal in the embodiment of the present application includes:
  • the obtaining module 801 is configured to obtain a downlink reference for uplink transmission in a first cell of the first base station, where the downlink reference is information about a downlink carrier of a second cell of the second base station, where the downlink reference is a second base station Information about a downlink carrier of the second cell, where the downlink reference is used to synchronize an uplink data transceiving frequency and/or an uplink data transmission and reception time between the terminal and the first base station in the first cell, where The downlink reference is used to determine frequency information of an uplink carrier of the first cell, where a frequency of a downlink carrier of the first cell is higher than a frequency of a downlink carrier of the second cell; Information for the uplink grant of the cell, where the information for the uplink grant includes information of the uplink time-frequency resource on the uplink carrier of the first cell;
  • the sending module 802 is configured to send, by using the downlink reference, uplink data to the first base station on the uplink time-frequency resource.
  • the obtaining module 801 includes:
  • the acquiring unit 8011 is configured to acquire system information of the first cell of the first base station, where the system information includes indication information, where the indication information includes the downlink reference.
  • the obtaining unit 8011 includes:
  • a detecting subunit configured to detect a downlink high frequency beam of the first cell of the first base station
  • a synchronization subunit configured to synchronize with the downlink high frequency beam
  • a first acquiring subunit configured to acquire system information of the first cell from the downlink high frequency beam.
  • the obtaining unit 8011 includes:
  • a second acquiring subunit configured to acquire a broadcast message of the second cell of the second base station
  • a reading subunit configured to read the broadcast message to obtain system information of the first cell.
  • the obtaining unit 8011 includes:
  • a receiving subunit configured to receive, by the second base station, system information of the first cell.
  • the first cell of the first base station uses the downlink carrier of the second cell of the second base station as a downlink reference, and determines that the terminal transmits the center of the uplink carrier of the uplink data in the first cell of the first base station. a frequency and a frequency bandwidth, determining a downlink data transceiving frequency of the second cell of the second base station as an uplink data transceiving frequency between the terminal and the first base station, and determining a downlink data transceiving time of the second cell of the second base station as The uplink data transmission and reception time between the terminal and the first base station.
  • the center frequency of the downlink carrier of the second cell of the second base station is lower than the center frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first The downlink carrier of the first cell of a base station.
  • the uplink time-frequency resource scheduled by the first base station for the terminal is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • the embodiment of the present application further provides another terminal.
  • FIG. 9 for the convenience of description, only the part related to the embodiment of the present application is shown. If the specific technical details are not disclosed, please refer to the method part of the embodiment of the present application.
  • the terminal may be any terminal device including a mobile phone, a tablet computer, a personal digital assistant (PDA), a point of sales (POS), a car computer, and the like, and the terminal is a mobile phone as an example:
  • FIG. 9 is a block diagram showing a partial structure of a mobile phone related to a terminal provided by an embodiment of the present application.
  • the mobile phone includes: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, and a wireless fidelity (WiFi) module 970. , processor 980, and power supply 990 and other components.
  • RF radio frequency
  • FIG. 9 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the RF circuit 910 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. Specifically, after receiving the downlink information of the base station, it is processed by the processor 980. In addition, the uplink data is designed to be sent to the base station. Generally, RF circuit 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like. In addition, RF circuitry 910 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), and code division. Code division multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short message service (short messaging) Service, referred to as: SMS).
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • CDMA Code
  • the memory 920 can be used to store software programs and modules, and the processor 980 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 920.
  • the memory 920 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 920 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 930 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 930 may include a touch panel 931 and other input devices 932.
  • the touch panel 931 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 931 or near the touch panel 931. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 931 can include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 980 is provided and can receive commands from the processor 980 and execute them.
  • the touch panel 931 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 930 may also include other input devices 932.
  • other input devices 932 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 940 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 940 can include a display panel 941.
  • the display panel 941 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 931 can cover the display panel 941. When the touch panel 931 detects a touch operation on or near it, the touch panel 931 transmits to the processor 980 to determine the type of the touch event, and then the processor 980 according to the touch event. The type provides a corresponding visual output on display panel 941.
  • touch panel 931 and the display panel 941 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 9, in some embodiments, the touch panel 931 and the display panel 941 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 950, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 941 according to the brightness of the ambient light, and the proximity sensor may close the display panel 941 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • An audio circuit 960, a speaker 961, and a microphone 962 can provide an audio interface between the user and the handset.
  • the audio circuit 960 can transmit the converted electrical data of the received audio data to the speaker 961, and convert it into a sound signal output by the speaker 961.
  • the microphone 962 converts the collected sound signal into an electrical signal, and the audio circuit 960 After receiving, it is converted into audio data, and then processed by the audio data output processor 980, sent to the other mobile phone via the RF circuit 910, or outputted to the memory 920 for further processing.
  • WiFi is a short-range wireless transmission technology
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 970, which provides users with wireless broadband Internet access.
  • FIG. 9 shows the WiFi module 970, it can be understood that it does not belong to the essential configuration of the mobile phone, and can be omitted as needed within the scope of not changing the essence of the application.
  • the processor 980 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 920, and invoking data stored in the memory 920, executing The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 980 may include one or more processing units; preferably, the processor 980 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 980.
  • the handset also includes a power source 990 (such as a battery) that supplies power to the various components.
  • a power source 990 such as a battery
  • the power source can be logically coupled to the processor 980 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processor 980 included in the terminal further has the following functions:
  • Obtaining a downlink reference for performing uplink transmission by the first cell of the first base station where the downlink reference is a downlink carrier of the second cell of the second base station, where the downlink reference is used for frequency and frequency of data transmission and reception between the terminal and the first base station
  • the data transmission and reception time is at least one synchronization
  • the center frequency of the downlink carrier of the first cell is higher than the center frequency of the downlink carrier of the second cell
  • the uplink authorization information of the first base station is obtained, where the uplink authorization information includes the uplink auxiliary resource.
  • the configuration information is sent to the first base station by using the uplink auxiliary resource and the downlink reference in response to the uplink authorization information.
  • the first cell of the first base station uses the downlink carrier of the second cell of the second base station as a downlink reference, and determines that the terminal transmits the center of the uplink carrier of the uplink data in the first cell of the first base station. a frequency and a frequency bandwidth, determining a downlink data transceiving frequency of the second cell of the second base station as an uplink data transceiving frequency between the terminal and the first base station, and determining a downlink data transceiving time of the second cell of the second base station as The uplink data transmission and reception time between the terminal and the first base station.
  • the center frequency of the downlink carrier of the second cell of the second base station is lower than the center frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first The downlink carrier of the first cell of a base station.
  • the uplink time-frequency resource scheduled by the first base station for the terminal is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • an embodiment of a first base station in the embodiment of the present application includes:
  • the establishing module 1001 is configured to establish a communication connection with the terminal, where the downlink reference of the first cell of the first base station is the information of the downlink carrier of the second cell of the second base station, and the downlink reference is used for Synchronizing an uplink data transceiving frequency and/or an uplink data transceiving time between the terminal and the first base station in the first cell, where the downlink reference is used to determine information about an uplink carrier of the first cell, where The frequency of the downlink carrier of the first cell is higher than the frequency of the downlink carrier of the second cell;
  • the sending module 1002 is configured to send, to the terminal, information for an uplink grant, where the information for the uplink grant includes information about an uplink time-frequency resource on an uplink carrier of the first cell;
  • the receiving module 1003 is configured to receive uplink data sent by the terminal, where the uplink data is sent by the terminal to the first base station by using the downlink reference on the uplink time-frequency resource.
  • the sending module 1002 is further configured to forward the uplink data to a core network.
  • the sending module 1002 is further configured to send the uplink data to the second base station by using a first uplink carrier, so that the second base station forwards the uplink data to a core network, where the The frequency of an uplink carrier is the same as the frequency of the uplink carrier of the second base station.
  • the sending module 1002 is further configured to send, by using the second uplink carrier, the uplink data to the second base station, so that the second base station forwards the uplink data to a core network, where the The frequency of the two uplink carriers is greater than the frequency of the uplink carrier of the second base station.
  • the first cell of the first base station uses the downlink carrier of the second cell of the second base station as a downlink reference, and determines that the terminal transmits the center of the uplink carrier of the uplink data in the first cell of the first base station.
  • the center frequency of the downlink carrier of the second cell of the second base station is lower than the center frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first The downlink carrier of the first cell of a base station.
  • the uplink time-frequency resource scheduled by the first base station for the terminal is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. . Further, in order to avoid the uplink signal of the first cell of the first base station and the uplink signal of the second cell of the second base station, the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • FIG. 11 another embodiment of the first base station in this embodiment of the present application includes:
  • transceiver 1101 a transceiver 1101, a processor 1102, and a bus 1103;
  • the transceiver 1101 is connected to the processor 1102 via the bus 1103;
  • the bus 1103 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the processor 1102 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor 1102 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), and a general array logic (GAL). Or any combination thereof.
  • the first base station may further include a memory 1104.
  • the memory 1104 may include a volatile memory, such as a random-access memory (RAM); the memory may also include a non-volatile memory, such as a flash memory ( A flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); the memory 1104 may also include a combination of the above types of memories.
  • RAM random-access memory
  • non-volatile memory such as a flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory 1104 may also include a combination of the above types of memories.
  • the memory 1104 can also be used to store program instructions, and the processor 1102 calls the program instructions stored in the memory 1104, and can perform one or more steps in the embodiments shown in FIG. 2 to FIG. 7, or
  • the selected implementation implements the function of the behavior of the first base station in the above method.
  • the processor 1102 performs the following steps:
  • the downlink reference of the first cell of the first base station for uplink transmission is information of a downlink carrier of the second cell of the second base station, and the downlink reference is used for synchronization in the first cell
  • the frequency of the carrier is higher than the frequency of the downlink carrier of the second cell;
  • the transceiver 1101 performs the following steps:
  • the receiving module configured to receive the uplink sent by the terminal Data, the uplink data is sent by the terminal to the first base station by using the downlink reference on the uplink time-frequency resource.
  • the transceiver 1101 performs the step of transmitting and receiving information by the first base station in the foregoing embodiment.
  • the processor 1102 performs the step of processing the information by the first base station in the foregoing embodiment.
  • the first cell of the first base station uses the downlink carrier of the second cell of the second base station as a downlink reference, and determines that the terminal transmits the center of the uplink carrier of the uplink data in the first cell of the first base station. a frequency and a frequency bandwidth, determining a downlink data transceiving frequency of the second cell of the second base station as an uplink data transceiving frequency between the terminal and the first base station, and determining a downlink data transceiving time of the second cell of the second base station as The uplink data transmission and reception time between the terminal and the first base station.
  • the center frequency of the downlink carrier of the second cell of the second base station is lower than the center frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first The downlink carrier of the first cell of a base station.
  • the uplink time-frequency resource scheduled by the first base station for the terminal is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • an embodiment of the second base station in this embodiment of the present application includes:
  • the sending module 1201 is configured to send system information of the first cell of the first base station to the terminal, where the system information includes indication information, where the indication information includes a downlink reference, and the downlink reference is a second cell of the second base station
  • the downlink reference information is used to synchronize an uplink data transceiving frequency and/or an uplink data transceiving time between the terminal and the first base station in the first cell, where the downlink reference is And determining frequency information of the uplink carrier of the first cell, where a frequency of a downlink carrier of the first cell is higher than a frequency of a downlink carrier of the second cell;
  • the receiving module 1202 is configured to receive uplink data sent by the first base station, where the uplink data is used by the terminal to use the downlink reference on an uplink time-frequency resource on an uplink carrier of the first cell to the The uplink time-frequency resource on the uplink carrier of the first cell is included in the information that is sent by the first base station to the terminal for uplink authorization.
  • the sending module 1201 is configured to send the uplink data to a core network.
  • the sending module 1201 includes:
  • a first sending unit configured to send a broadcast message to the terminal, where the broadcast message includes system information of a first cell of the first base station.
  • the sending module 1201 includes:
  • a second sending unit configured to send system information of the first cell of the first base station to the terminal.
  • the receiving module 1202 includes:
  • the first receiving unit is configured to receive, by using the first uplink carrier, the uplink data sent by the first base station, where a frequency of the first uplink carrier is the same as a frequency of an uplink carrier of a first cell of the first base station.
  • the receiving module 1202 includes:
  • the second receiving unit is configured to receive, by using the second uplink carrier, the uplink data that is sent by the first base station, where a frequency of the second uplink carrier is the same as a frequency of a downlink carrier of the first cell of the first base station.
  • the second base station sends the system information of the first cell of the first base station to the terminal, so that the terminal uses the downlink carrier information of the second cell of the second base station as a downlink reference, and determines the
  • the terminal transmits the center frequency and the frequency bandwidth of the uplink carrier of the uplink data in the first cell of the first base station, and determines the downlink data transmission and reception frequency of the second cell of the second base station as the uplink between the terminal and the first base station.
  • the data transmission and reception frequency determines the downlink data transmission and reception time of the second cell of the second base station as the uplink data transmission and reception time between the terminal and the first base station.
  • the frequency of the downlink carrier of the second cell of the second base station is lower than the frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first base station.
  • the downlink carrier of the first cell is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • the second base station includes:
  • the transceiver 1301 is connected to the processor 1302 through the bus 1303;
  • the bus 1303 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor 1302 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor 1302 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), and a general array logic (GAL). Or any combination thereof.
  • the second base station may further include a memory 1304.
  • the memory 1304 can include a volatile memory, such as a random-access memory (RAM); the memory can also include a non-volatile memory, such as a flash memory ( A flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); the memory 1304 may also include a combination of the above types of memories.
  • RAM random-access memory
  • non-volatile memory such as a flash memory ( A flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); the memory 1304 may also include a combination of the above types of memories.
  • the memory 1304 can also be used to store program instructions, and the processor 1302 can call the program instructions stored in the memory 1304, and can perform one or more steps in the embodiment shown in FIG. 2 to FIG. 7, or
  • the selected implementation implements the function of the behavior of the second base station in the above method.
  • the second base station sends the system information of the first cell of the first base station to the terminal, so that the terminal uses the downlink carrier information of the second cell of the second base station as a downlink reference, and determines the
  • the terminal transmits the center frequency and the frequency bandwidth of the uplink carrier of the uplink data in the first cell of the first base station, and determines the downlink data transmission and reception frequency of the second cell of the second base station as the uplink between the terminal and the first base station.
  • the data transmission and reception frequency determines the downlink data transmission and reception time of the second cell of the second base station as the uplink data transmission and reception time between the terminal and the first base station.
  • the frequency of the downlink carrier of the second cell of the second base station is lower than the frequency of the downlink carrier of the first cell of the first base station, that is, the center frequency of the uplink carrier of the first cell of the first base station is smaller than the first base station.
  • the downlink carrier of the first cell is a time-frequency resource on an uplink carrier of the first cell of the first base station. That is, the data transmission between the terminal and the first base station realizes high-frequency downlink and low-frequency uplink, and the terminal can satisfy long-distance transmission when using low-frequency signals to upload uplink data, thereby improving the uplink coverage of the high-frequency transmission system. .
  • the first base station and the second base station need to coordinate resources of the uplink carrier, for example, by time division multiplexing.
  • the (TDM) or Frequency Division Multiplexing (FDM) mode uses the resources of the uplink carrier in a time or frequency staggered manner.
  • the coordination may be implemented by signaling interaction between the first base station and the second base station, or may be implemented by configuring different uplink carrier resources for the first base station and the second base station by using a network.
  • upstream and downstream appearing in this application are used in some scenarios to describe the direction of data/information transmission.
  • the "upstream” direction is the direction in which data/information is transmitted from the terminal device to the core network device.
  • the “downstream” direction is the direction in which data/information is transmitted from the core network device to the terminal device, and the “upstream” and “downlink” are only used to describe the direction, and the specific device for starting the data/information transmission is not limited.
  • the term “and/or” appearing in this patent application is merely an association describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, while A exists. And B, there are three cases of B alone.
  • the character "/" in the present application generally indicates that the context of the context is an "or" relationship.
  • Various objects such as various messages/information/device/network elements/systems/devices/actions/operations/processes/concepts may be named in this application, but these specific names do not constitute related objects.
  • the definition of the name can be changed according to factors such as scene, context or usage habits.
  • the understanding of the technical meaning of the related object should be determined mainly from the functions and technical effects embodied/executed in the technical solution.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown or discussed herein may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据处理方法、终端以及基站,用于提高高频传输系统的上行覆盖范围。本申请实施例方法包括:终端获取用于在第一基站的第一小区进行上行传输的下行参考,下行参考为第二基站的第二小区的下行载波的信息,下行参考被用于在第一小区内同步终端和第一基站之间的上行数据收发频率和/或上行数据收发时间,下行参考被用于确定第一小区的上行载波的频率信息,第一小区的下行载波的频率高于第二小区的下行载波的频率;终端获取第一基站的第一小区的用于上行授权的信息,用于上行授权的信息包括第一小区的上行载波上的上行时频资源的信息;终端使用下行参考,在上行时频资源上向第一基站发送上行数据。

Description

一种数据处理方法、终端以及基站
本申请要求于2017年06月30日提交中国专利局、申请号为201710524141.7、申请名称为“一种数据处理方法、终端以及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数据处理方法、终端以及基站。
背景技术
为了满足移动宽带对高速数据传输的需求,人们将目光投向了6GHz以上的高频频段。高频频段具有很大的可用带宽可以满足人们对于高速数据传输的需求。
但是高频频段信号在传播过程中衰减比较快,在全向天线的情况下,覆盖区域非常小。为了实现远距离传输,高频传输系统通常采用波束成型技术进行定向传输,从而扩展传输距离,结合高频频段可用的大带宽,实现极高速率的数据传输,满足移动宽带对高速数据传输的需求。
在高频传输系统的下行方向,即基站到终端的方向,可以采用较细的波束实现较远距离的传输,但高频传输系统的上行方向,由于受终端成本和能力的限制,通常无法生成较细的波束,无法实现下行相当的传输距离,从而造成高频传输系统的上行覆盖区域小于下行覆盖区域。
发明内容
本申请实施例提供了一种数据处理方法、基站以及终端,用于提高高频传输系统的上行覆盖范围。
第一方面,本申请实施例提供一种数据处理方法,包括:
该终端获取用于该第一基站的第一小区进行上行传输的下行参考,该下行参考为该第二基站的第二小区的下行载波的信息,该第一小区的下行载波的频率高于该第二小区的下行载波的频率。该下行参考被用于在该第一小区内同步该终端与该第一基站之间的上行数据收发频率和/或上行数据收发时间,该下行参考同时还被用于确定该第一小区的上行载波的信息。然后该终端在获取到该第一基站在该第一小区内发送的用于上行授权的信息时,该终端根据该用于上行授权的信息中确定该终端在该第一小区的上行载波上发送的上行数据的上行时频资源;最后该终端响应该上行授权信息利用该上行时频资源和该下行参考向该第一基站发送上行数据。
本申请实施例中,该第一基站的第一小区的下行载波与该第二基站的第二小区的下行载波之间可以中心频率进行比较,即可以确定该第一基站的第一小区的下行载波的中心频率高于该第二基站的第二小区的下行载波的中心频率,比较方式此处不做限定。同时根据该下行参考确定的第一基站的第一小区的上行载波的信息可以为中心频率和频率带宽,只要可以根据该上行载波的信息进行数据上传即可,具体信息内容,此处不做限定。在实际应用中,该下行参考包括该第二基站的第二小区的下行载波的各种参数,比如该下行参考至少包括该第二基站的第二小区的下行载波的中心频率,该第二基站的第二小区的下行载波的中心频率与该第二基站的第二小区的上行载波的中心频率的差值和该第二基站的第二 小区的下行载波的频率带宽等等。这时,该终端根据该下行参考中的该第二基站的第二小区的下行载波的中心频率,该第二基站的第二小区的下行载波的中心频率与该第二基站的第二小区的上行载波的中心频率的差值确定该第一小区的上行载波的中心频率和频率带宽,同时根据该第二基站的第二小区的下行载波的中心频率确定该第二基站的第二小区的上下行数据收发频率和上下行数据收发时间。该第二小区的上行数据收发频率作为该第一基站的第一小区的上行数据收发频率。该第二基站的第二小区的下行数据接收时间作为该第一基站的第一小区的下行数据接收时间。该终端也可以根据该第一基站的第一小区的下行载波时间同步信息确定在该第一基站的第一小区的下行数据接收时间。本实施例中,该第一基站的第一小区的上行数据收发频率是指单位时间内该终端与该第一小区发送数据的次数。
本申请实施例中,该第一基站在向该终端发送该用于上行授权的信息时,该第一基站与该终端之间会确定与该第一基站发送的下行子帧携带的用于上行授权的信息对应的该终端的上行子帧;同理,该终端向该第一基站发送上行数据时,该终端与该第一基站之间也会确定与该终端发送的上行子帧对应的该第一基站的下行子帧。而该第一基站与该终端之间确定下行子帧与上行子帧之间的对应关系可以采用协议约定也可以是由该上行授权信息或上行数据中实时携带,具体的实现方式,此处不做限定。同时,该第一小区的上行子帧长度大于或等于该第一小区的下行子帧,通常可以有整数倍的关系。
本实施例中,该第一基站在向该终端发送该用于上行授权的信息时,该第一基站与该终端之间会确定与该第一基站发送的下行子帧携带的上行授权信息对应的该终端的上行子帧;同理,该终端向该第一基站发送上行数据时,该终端与该第一基站之间也会确定与该终端发送的上行子帧对应的该第一基站的下行子帧。而该第一基站与该终端之间确定下行子帧与上行子帧之间的对应关系可以采用协议约定也可以是由该用于上行授权的信息或上行数据中实时携带,具体的实现方式,此处不做限定。同时,该第一小区的上行子帧长度大于或等于该第一小区的下行子帧,通常可以有整数倍的关系。
本申请实施例中,该第一基站的第一小区以该第二基站的第二小区的下行载波的信息作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的信息,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的中心频率低于该第一基站的第一小区的下行载波的中心频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现, 也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
可选的,该终端在获取该第一基站的第一小区的系统信息,然后从该系统信息的指示信息中获取该第一基站的第一小区的下行参考。
而本申请实施例中,该终端获取该第一基站的第一小区的系统消息的方式包括但不限于如下几种方式:
一种可能实现方式中,该终端检测该第一基站广播或者发送的该第一基站的第一小区的下行高频波束,该下行高频波束携带有该第一基站的第一小区的系统消息;然后该终端根据该下行高频波束中的同步信号与该下行高频波束进行同频;最后该终端在与该下行高频波束同步之后读取该下行高频波束携带的该第一基站的第一小区的系统信息。
另一种可能实现方式中,该终端检测该第二基站的第二小区的广播消息,该广播消息中携带有该第一基站的第一小区的系统信息;然后该终端读取该广播消息获取该第一基站的第一小区的系统信息。
另一种可能实现方式中,该终端与该第二基站在第二小区内建立通信连接(即该终端接入该第二小区内);然后该终端接收该第二基站发送该第一基站的第一小区的系统信息。
在此实现方式中,该第二基站需要在满足预设条件的情况才向该终端发送该第一基站的第一小区的系统消息。在该终端接入该第二小区并进行通信的过程中,该第二基站根据该终端上报的测量结果,或在该终端的上行信号的测量结果和该终端位置信息其中至少一项满足预设条件时,为该终端配置该第一基站的第一小区,这时该第二基站向该终端发送该第一基站的第一小区的系统信息。该终端上报的测量结果,该终端的上行信号的测量结果和该终端位置信息其中至少一项满足预设条件包括该终端上报的测量结果较差或者第二基站对该终端的上行信号的测量结果较差或者该终端位置离该第二基站的第二小区较远等,具体情况,此处不做限定。
本申请实施例提供的技术方案中,该终端采用多种方式获取该第一小区的系统信息,可以有效提高该终端接入该第一小区的灵活性。
可选的,所述指示信息还包括所述第二基站的第二小区的标识信息。
本申请实施例中该指示信息中包含该第二基站的第二小区可以提高该终端确定该第一基站的第一小区的上行载波的信息的速度,加快工作效率。
可选的,所述第一小区的上行载波的中心频率与所述第二小区的上行载波的中心频率相同。
本申请实施例中该第一小区的上行载波的中心频率与该第二小区的上行载波的中心频率相同,可以简化终端确定该第一基站的第一小区的上行载波的信息的过程。
可选的,该终端获取时间信息(也可以说是定时提前量),该时间信息用于指示该终端发送该上行数据时相对该上行时频资源起始时刻的时间提前量;该终端响应该上行授权信息利用该上行时频资源,该下行参考和该时间信息向该第一基站发送上行数据。
该时间信息用于指示该终端发送该上行数据时相对该上行时频资源起始时刻的时间提前量。该终端确定该时间信息可以采用如下方案:
该终端向该第一基站发送随机接入前导码;然后该第一基站在接收到该随机接入前导 码后得到该终端发送的信号相比该第一基站预期到达的时间晚了多少,然后将在晚了的时间作为该时间信息;再然后该第一基站将该定时提前量通过该第一基站的第一小区的下行载波发送给该终端;最后该终端根据该时间信息调整自身发送该上行数据的时刻。比如,该终端根据下行参考确定的时间发送随机接入前导码,该第一基站在接收到该随机接入前导码后发现该随机接入前导码比第一基站期待接收的时间晚到了0.4毫秒,则该第一基站可以确定该定时提前量为0.4毫秒。该第一基站再将该定时提前量为0.4毫秒的信息发送给该终端,即该终端需要提前0.4毫秒发送该上行数据。
本申请实施例中,使用时间信息可以有效的提高终端与该第一基站之间的数据传输一致性。
第二方面,本申请实施例提供一种数据处理方法,包括:
第一基站与终端建立通信连接,该第一基站的第一小区进行上行传输的下行参考为第二基站的第二小区的下行载波的信息,该下行参考被用于在该第一小区内同步该终端和该第一基站之间的上行数据收发频率和/或上行数据收发时间,该下行参考用于确定该第一小区的上行载波的信息,该第一小区的下行载波的频率高于该第二小区的下行载波的频率;该第一基站向该终端发送用于上行授权的信息,该用于上行授权的信息包括该第一小区的上行载波上的上行时频资源的信息;该第一基站接收该终端发送的上行数据,该上行数据为该终端利用该上行时频资源和该下行参考向该第一基站发送。
本申请实施例中,该第一基站的第一小区的下行载波与该第二基站的第二小区的下行载波之间可以中心频率进行比较,即可以确定该第一基站的第一小区的下行载波的中心频率高于该第二基站的第二小区的下行载波的中心频率,比较方式此处不做限定。同时根据该下行参考确定的第一基站的第一小区的上行载波的信息可以为中心频率和频率带宽,只要可以根据该上行载波的信息进行数据上传即可,具体信息内容,此处不做限定。在实际应用中,该下行参考包括该第二基站的第二小区的下行载波的各种参数,比如该下行参考至少包括该第二基站的第二小区的下行载波的中心频率,该第二基站的第二小区的下行载波的中心频率与该第二基站的第二小区的上行载波的中心频率的差值和该第二基站的第二小区的下行载波的频率带宽等等。这时,该终端根据该下行参考中的该第二基站的第二小区的下行载波的中心频率,以及该第二基站的第二小区的下行载波的中心频率与该第二基站的第二小区的上行载波的中心频率的差值确定该第一小区的上行载波的中心频率和频率带宽,同时根据该第二基站的第二小区的下行载波的中心频率确定该第二基站的第二小区的上下行数据收发频率和上下行数据收发时间。该第二小区的上行数据收发频率作为该第一基站的第一小区的上行数据收发频率。该第二基站的第二小区的下行数据接收时间作为该第一基站的第一小区的下行数据接收时间。同时该终端还可以根据该第一基站的第一小区的下行载波时间同步信息确定在该第一基站的第一小区的下行数据接收时间。本实施例中,该第一基站的第一小区的上行数据收发频率是指单位时间内该终端与该第一小区发送数据的次数。
本申请实施例中,该第一基站在向该终端发送该上行授权信息时,该第一基站与该终端之间会确定与该第一基站发送的下行子帧携带的上行授权信息对应的该终端的上行子 帧,比如上行子帧的编号为下行子帧编号加4;同理,该终端向该第一基站发送上行数据时,该终端与该第一基站之间也会确定与该终端发送的上行子帧对应的该第一基站的下行子帧。而该第一基站与该终端之间确定下行子帧与上行子帧之间的对应关系可以采用协议约定也可以是由该上行授权信息或上行数据中实时携带,具体的实现方式,此处不做限定。同时,该第一小区的上行子帧长度大于或等于该第一小区的下行子帧,通常可以有整数倍的关系。
本申请实施例中,该第一基站的第一小区以该第二基站的第二小区的下行载波作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的中心频率低于该第一基站的第一小区的下行载波的中心频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
可选的,所述第一小区的上行载波的中心频率与所述第二小区的上行载波的中心频率相同。
可选的,该第一基站在接收到该终端发送的该上行数据之后,该第一基站将该上行数据转发给核心网。
在本实施例中,根据该第一基站与该第二基站之间的连接关系的不同,该第一基站向该核心网转发该上行数据的方式也不同,具体情况包括但不限于如下几种方式:
一种可能实现方式中,该第一基站与该核心网直接相连的情况下,该第一基站直接以第一载波向该核心网发送该上行数据,其中该第一载波的中心频率与该第一基站的第一小区的下行载波的中心频率相同,该第一载波的频率带宽与该第一基站的第一小区的下行载波的频率带宽相同;或者,该第一载波的中心频率与该第一基站的第一小区的上行载波的中心频率相同,该第一载波的频率带宽与该第一基站的第一小区的上行载波的频率带宽相同。具体实现方式,此处不做限定。
另一种可能实现方式,该第一基站通过第二基站与该核心网相连,且该第一基站与该第二基站之间的无线链路采用与该第二基站的第二小区的上行载波具有相同中心频率和频率带宽的第二载波进行通信,则该第一基站以该第二基站的第二小区的上行载波的中心频率和频率带宽向该第二基站发送该上行数据,然后该第二基站再以该第二基站的第二小区的上行载波的中心频率和频率带宽向该核心网发送该上行数据。
另一种可能实现方式中,该第一基站通过该第二基站与该核心网相连,且该第一基站与该第二基站之间的无线链路采用与该第一基站的第一小区的下行载波具有相同中心频率和频率带宽的第三载波进行通信,则该第一基站以该载波的中心频率和频率带宽向该第二基站发送该上行数据;然后该第二基站再以该第二基站的第二小区的上行载波的中心频率和频率带宽向该核心网发送该上行数据。
第三方面,本申请实施例提供一种终端,该终端具有实现上述方法中终端的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能实现方式中,该终端包括:
获取模块,用于获取用于在第一基站的第一小区进行上行传输的下行参考,所述下行参考为第二基站的第二小区的下行载波的信息,所述下行参考为第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的频率信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;所述第一基站的第一小区的用于上行授权的信息,所述用于上行授权的信息包括所述第一小区的上行载波上的上行时频资源的信息;
发送模块,用于使用所述下行参考,在所述上行时频资源上向所述第一基站发送上行数据。
可选的,所述获取模块包括:
获取单元,用于获取所述第一基站的第一小区的系统信息,所述系统信息包括指示信息,所述指示信息包括所述下行参考。
可选的,所述获取单元包括:
检测子单元,用于检测所述第一基站的第一小区的下行高频波束;
同步子单元,用于与所述下行高频波束同步;
第一获取子单元,用于从所述下行高频波束获取所述第一小区的系统信息。
可选的,所述获取单元包括:
第二获取子单元,用于获取所述第二基站的第二小区的广播消息;
读取子单元,用于读取所述广播消息获取所述第一小区的系统信息。
可选的,所述获取单元包括:
建立子单元,用于与所述第二基站建立通信连接;
接收子单元,用于接收所述第二基站发送所述第一小区的系统信息。
另一种可能实现方式中,该终端包括:
至少一个处理器,存储器,收发装置和系统总线;
所述至少一个处理器,存储器,收发装置通过所述系统总线耦合;
所述终端通过所述第一收发装置,与网络侧设备相通信;
所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求1-16任一所述方法中所述终端的操作。
第四方面,本申请实施例提供一种系统芯片,所述系统芯片应用在终端,其特征在于,所述系统芯片包括:
至少一个处理器,存储器,接口电路和总线;
所述至少一个处理器,存储器,接口电路通过所述总线耦合;
所述系统芯片通过所述接口电路和所述终端交互;所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行上述方法中所述终端的操作。
第五方面,本申请实施例提供一种第一基站,该第一基站具有实现上述方法中第一基站的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能实现方式中,该第一基站包括:
建立模块,用于与终端建立通信连接,所述第一基站的第一小区进行上行传输的下行参考为第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;
发送模块,用于向所述终端发送用于上行授权的信息,所述用于上行授权的信息包括所述第一小区的上行载波上的上行时频资源的信息;接收模块,用于接收所述终端发送的上行数据,所述上行数据为所述终端使用所述下行参考在所述上行时频资源上向所述第一基站发送。
可选的,所述发送模块,还用于将所述上行数据转发给核心网。
可选的,所述发送模块,还用于通过第一上行载波向所述第二基站发送所述上行数据,以使得所述第二基站将所述上行数据转发给核心网,所述第一上行载波的频率与所述第二基站的上行载波的频率相同。
可选的,所述发送模块,还用于通过第二上行载波向所述第二基站发送所述上行数据,以使得所述第二基站将所述上行数据转发给核心网,所述第二上行载波的频率大于所述第二基站的上行载波的频率。
另一种可能实现方式中,该第一基站包括:
至少一个处理器,存储器,第一收发装置,第二收发装置和系统总线;
所述至少一个处理器,存储器,第一收发装置和第二收发装置通过所述系统总线耦合;
所述第一基站通过所述第一收发装置,与网络侧设备相通信,所述第一基站通过所述第二收发装置,与终端设备相通信;
所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求1-16任一所述方法中所述第一基站的操作。
第六方面,本申请实施例提供一种系统芯片,所述系统芯片应用在第一基站,其特征在于,所述系统芯片包括:
至少一个处理器,存储器,接口电路和总线;
所述至少一个处理器,存储器,接口电路通过所述总线耦合;
所述系统芯片通过所述接口电路和所述第一基站交互;所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行上述方法中所述第一基站的操作。
第七方面,本申请实施例提供一种数据处理方法,包括:
第二基站向终端发送第一基站的第一小区的系统信息,所述系统信息包括指示信息,所述指示信息包括下行参考,所述下行参考为所述第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的频率信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;所述第二基站接收所述第一基站发送的上行数据,所述上行数据由所述终端使用所述下行参考在所述第一小区的上行载波上的上行时频资源上向所述第一基站发送,所述第一小区的上行载波上的上行时频资源包含于所述第一基站向所述终端发送的用于上行授权的信息里;所述第二基站将所述上行数据发送给核心网。
本申请实施例中,该第二基站将该第一基站的第一小区的系统信息发送给该终端,以使得该终端以该第二基站的第二小区的下行载波的信息作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的频率低于该第一基站的第一小区的下行载波的频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
可选的,所述第二基站向终端发送第一基站的第一小区的系统信息包括但不限于如下几种方式:
一种可能实现方式中,所述第二基站向所述终端发送广播消息,所述广播消息包括所述第一基站的第一小区的系统信息。
另一种可能实现方式中,所述第二基站与所述终端建立通信连接;
所述第二基站向所述终端发送所述第一基站的第一小区的系统信息。
本申请实施例中,该第二基站采用多种方式向该终端发送该第一基站的第一小区的消息,可以提高该终端接入该第一小区的灵活性。
可选的,所述第二基站接收所述第一基站发送的上行数据包括但不限于如下几种方式:
一种可能实现方式中,所述第二基站以第一上行载波接收所述第一基站发送的所述上行数据,所述第一上行载波的频率与所述第一基站的第一小区的上行载波的频率相同。
另一种可能实现方式中,所述第二基站以第二上行载波接收所述第一基站发送的所述上行数据,所述第二上行载波的频率与所述第一基站的第一小区的下行载波的频率相同。
本申请实施例中,该第二基站采用多种方式接收该第一基站发送的上行数据,增加了该第二基站与该第一基站之间数据传输的灵活性。
第七方面,本申请实施例提供一种第二基站,该第二基站具有实现上述方法中第二基站的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能实现方式中,该第二基站包括:
发送模块,用于向终端发送第一基站的第一小区的系统信息,所述系统信息包括指示信息,所述指示信息包括下行参考,所述下行参考为所述第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的频率信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;
接收模块,用于接收所述第一基站发送的上行数据,所述上行数据由所述终端使用所述下行参考在所述第一小区的上行载波上的上行时频资源上向所述第一基站发送,所述第一小区的上行载波上的上行时频资源包含于所述第一基站向所述终端发送的用于上行授权的信息里;
所述发送模块,用于将所述上行数据发送给核心网。
可选的,所述发送模块包括:
第一发送单元,用于向所述终端发送广播消息,所述广播消息包括所述第一基站的第一小区的系统信息。
可选的,所述发送模块包括:
建立单元,用于与所述终端建立通信连接;
第二发送单元,用于向所述终端发送所述第一基站的第一小区的系统信息。
可选的,所述接收模块包括:
第一接收单元,用于以第一上行载波接收所述第一基站发送的所述上行数据,所述第一上行载波的频率与所述第一基站的第一小区的上行载波的频率相同。
可选的,所述接收模块包括:
第二接收单元,用于以第二上行载波接收所述第一基站发送的所述上行数据,所述第二上行载波的频率与所述第一基站的第一小区的下行载波的频率相同。
另一种可能实现方式中,该第二基站包括:
至少一个处理器,存储器,第一收发装置,第二收发装置和系统总线;
所述至少一个处理器,存储器,第一收发装置和第二收发装置通过所述系统总线耦合;
所述第二基站通过所述第一收发装置,与网络侧设备相通信,所述第二基站通过所述 第二收发装置,与终端设备相通信;
所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行上述方法中所述第二基站的操作。
第八方面,本申请实施例提供一种系统芯片,所述系统芯片应用在第二基站,其特征在于,所述系统芯片包括:
至少一个处理器,存储器,接口电路和总线;
所述至少一个处理器,存储器,接口电路通过所述总线耦合;
所述系统芯片通过所述接口电路和所述第二基站交互;所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行上述所述方法中所述第二基站的操作。
第九方面,本申请实施例提供一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,该计算机执行上述方法。
第十方面,本申请实施例提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,该计算机执行上述方法。
从以上技术方案可以看出,本申请实施例具有以下优点:该第一基站的第一小区以该第二基站的第二小区的下行载波作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的中心频率低于该第一基站的第一小区的下行载波的中心频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
附图说明
图1为高频传输系统的架构示意图;
图2为本申请实施例中数据处理方法的一个实施例示意图;
图3为本申请实施例中第一小区与第二小区的上下行载波示意图;
图4为本申请实施例中终端接入该第一基站的流程示意图;
图5为本申请实施例中该第一基站向核心网发送上行数据的一个实施例示意图;
图6为本申请实施例中该第一基站向核心网发送上行数据的另一个实施例示意图;
图7为本申请实施例中该第一基站向核心网发送上行数据的另一个实施例示意图;
图8为本申请实施例中终端的一个实施例示意图;
图9为本申请实施例中终端的另一个实施例示意图;
图10为本申请实施例中第一基站的一个实施例示意图;
图11为本申请实施例中第一基站的另一个实施例示意图;
图12为本申请实施例中第二基站的一个实施例示意图;
图13为本申请实施例中第二基站的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种数据处理方法、基站以及终端,用于提高高频传输系统的上行覆盖范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了满足移动宽带对高速数据传输的需求,人们将目光投向了6GHz以上的高频频段。高频频段具有很大的可用带宽可以满足人们对于高速数据传输的需求。但是高频频段信号在传播过程中衰减比较快,在全向天线的情况下,覆盖区域非常小。如图1所示,该高频传输系统包括基站和终端,为了实现远距离传输,基站通常采用波束成型技术进行定向传输,从而扩展传输距离,结合高频频段可用的大带宽,实现极高速率的数据传输,满足移动宽带对高速数据传输的需求。在高频传输系统的下行方向,即基站到终端的方向,可以采用较细的波束实现较远距离的传输,但高频传输系统的上行方向,由于受终端成本和能力的限制,通常无法生成较细的波束,无法实现下行相当的传输距离,从而造成高频传输系统的上行覆盖区域小于下行覆盖区域。
为了解决这一问题,本申请实施例中提供如下技术方案:该终端获取用于该第一基站的第一小区进行上行传输的下行参考,该下行参考为该第二基站的第二小区的下行载波的信息,该第一小区的下行载波的频率高于该第二小区的下行载波的频率。该下行参考被用于在该第一小区内同步该终端与该第一基站之间的上行数据收发频率和/或上行数据收发时间,该下行参考同时还被用于确定该第一小区的上行载波的信息。然后该终端在获取到该第一基站在该第一小区内发送的用于上行授权的信息时,该终端根据该用于上行授权的信息中确定该终端在该第一小区的上行载波上发送的上行数据的上行时频资源;最后该终端响应该上行授权信息利用该上行时频资源和该下行参考向该第一基站发送上行数据。
具体情况请参阅图2所示,本申请实施例中数据处理方法的一个实施包括:
201、终端获取第一基站的第一小区的下行参考。
该终端获取该第一基站的第一小区的系统消息,该系统消息包括指示信息,该指示信息包括该第一小区的下行参考,该下行参考为第二基站的第二小区的下行载波的信息,比 如该下行参考包括该第二基站的第二小区的下行载波的中心频率,该第二基站的第二小区的下行载波的中心频率与该第二基站的第二小区的上行载波的中心频率的差值。其中,该第一基站的第一小区的下行载波的中心频率大于该第二基站的第二小区的下行载波的中心频率。
比如,该第一基站的第一小区的下行载波的中心频率可以为60吉赫兹GHz,该第二基站的第二小区的下行载波的中心频率可以为400兆赫兹MHz,而该第二基站的第二小区的下行载波的中心频率与该第二基站的第二小区的上行载波的中心频率的差值为50MHz。本实施例中的下述示例中,皆以此为例。
在本实施例中,该终端获取该第一基站的第一小区的系统消息的方式包括但不限于如下几种方式:
一种可能实现方式中,该终端检测该第一基站广播或者发送的该第一基站的第一小区的下行高频波束,该下行高频波束携带有该第一基站的第一小区的系统消息;然后该终端根据该下行高频波束中的同步信号与该下行高频波束进行同频;最后该终端在与该下行高频波束同步之后读取该下行高频波束携带的该第一基站的第一小区的系统信息。
另一种可能实现方式中,该终端检测该第二基站的第二小区的广播消息,该广播消息中携带有该第一基站的第一小区的系统信息;然后该终端读取该广播消息获取该第一基站的第一小区的系统信息。
另一种可能实现方式中,该终端与该第二基站在第二小区内建立通信连接(即该终端接入该第二小区内);然后该终端接收该第二基站发送该第一基站的第一小区的系统信息。
在此实现方式中,该第二基站需要在满足预设条件的情况才向该终端发送该第一基站的第一小区的系统消息。在该终端接入该第二小区并进行通信的过程中,当该第二基站根据该终端上报的测量结果,或在该终端的上行信号的测量结果和该终端位置信息其中至少一项满足预设条件时,为该终端配置该第一基站的第一小区,这时该第二基站向该终端发送该第一基站的第一小区的系统信息。该终端上报的测量结果,核心网对该终端的上行信号的测量结果和该终端位置信息其中至少一项满足预设条件包括该终端上报的测量结果较差或者该终端的上行信号的测量结果较差或者该终端位置离该第二基站的第二小区较远等,具体情况,此处不做限定。
202、该终端根据该下行参考确定该第一基站的第一小区的上行载波的信息,并根据该下行参考在该第一小区内同步该终端与该第一基站的上行数据收发频率和/或上行数据收发时间。
该终端根据该下行参考中的该第二基站的第二小区的下行载波的中心频率,该第二基站的第二小区的下行载波的中心频率与该第二基站的第二小区的上行载波的中心频率的差值确定该第一小区的上行载波的中心频率和频率带宽,同时根据该第二基站的第二小区的下行载波的中心频率确定该第二基站的第二小区的上下行数据收发频率和上下行数据收发时间,该第二小区的上行数据收发频率和上行数据收发时间作为该第一基站的第一小区的上行数据收发频率和上行数据收发时间。比如,如图3所示,假设该第一基站的第一小区的下行载波的中心频率为f1=60GHz;该第一基站的第一小区的上行载波的中心频率为f2; 该第二基站的第二小区的下行载波的中心频率为f3=400MHz;该第二基站的第二小区的上行载波的中心频率为f4。该第二基站的第二小区的下行载波的中心频率与该第二基站的第二小区的上行载波的中心频率的差值为50MHz,该第二基站的第二小区的频率带宽3兆M。则该终端可以确定该第二基站的第二小区的上行载波的中心频率为f4=350MHz(假定该第二小区的上行载波的中心频率低于该第二小区的下行载波中心频率)。同时,该终端以该第二小区的上行载波的中心频率作为该第一小区的上行载波的中心频率(即f2=f4),则该第一基站的第一小区的上行载波的中心频率f2=350MHz,该第一小区的上行载波的频率带宽为3M。同时该终端还可以根据该终端可以根据该第二基站的第二小区的下行数据接收时间确定该第一基站的第一小区的下行数据接收时间,该终端也可以根据该第一基站的第一小区的下行载波时间同步信息确定在该第一基站的第一小区的下行数据接收时间。
本实施例中,该第一小区的上行载波的信息可以为该上行载波的中心频率和频率带宽,也可以为其他信息,只要可以利用该上行载波上传数据即可,具体信息,此处不做限定。
203、该第一基站向该终端发送用于上行授权的信息,该用于上行授权的信息包括该第一基站的第一小区的上行载波上的上行时频资源的信息。
在该第一基站与该终端建立通信连接(即该终端接入该第一基站的第一小区)之后,该第一基站向该终端发送下行数据和用于上行授权的信息(可称为上行授权信息),该上行授权信息用于指示该终端向该第一基站发送上行数据,同时该上行授权信息中包括该第一基站的第一小区的上行载波上的上行时频资源的信息。
本实施例中,该第一基站在向该终端发送该上行授权信息时,该第一基站与该终端之间会确定与该第一基站发送的下行子帧携带的上行授权信息对应的该终端的上行子帧;同理,该终端向该第一基站发送上行数据时,该终端与该第一基站之间也会确定与该终端发送的上行子帧对应的该第一基站的下行子帧。而该第一基站与该终端之间确定下行子帧与上行子帧之间的对应关系可以采用协议约定也可以是由该上行授权信息或上行数据中实时携带,具体的实现方式,此处不做限定。同时,该第一小区的上行子帧长度大于或等于该第一小区的下行子帧,通常可以有整数倍的关系。
本实施例中,该第一基站向该终端发送下行数据和该上行授权信息之前,该终端会根据该第一小区的系统信息接入该第一基站的第一小区,具体情况如图4所示:
第一步,该终端获取该第一小区的系统信息,从该系统信息中获取上行随机接入资源的配置信息,前导码配置信息以及该下行参考;
第二步,该终端利用该上行随机接入资源和该下行参考向该第一基站发送随机接入请求,该随机接入请求包括该前导码;
第三步,该第一基站向该终端发送随机接入响应消息,该随机接入响应消息包含该前导码的标识信息,以及调度该终端进行上行传输的上行授权信息;
第四步,该终端响应该上行授权信息利用该上行授权信息中指示的上行时频资源向该第一基站发送消息3(此处的消息3为第三代合作伙伴计划(3rd generation partnership project,简称:3GPP)协议中对将该上行发送的定义消息),该消息3中包括该终端标识信息;
第五步,该第一基站向该终端发送消息4(此处的消息4为3GPP协议中对将该下行发送的定义消息),该消息4包含该消息3的部分内容,比如终端标识信息;
第六步,该终端判断该消息4中携带的该消息3中的部分内容是否正确定,若正确,则所述终端确定自身已接入该第一基站的第一小区。
在本实施例中,该终端在接入该第一基站的第一小区的过程中,该第一基站对该终端还进行安全、专用无线承载进行配置等过程。比如,该第一基站给该终端发送安全密钥,无线承载建立等无线资源控制(radio resource control,简称:RRC)连接配置。
本实施例中,该第一基站向该终端发送该下行数据和该上行授权信息时,该第一基站在向该终端发送下行数据时,该第一基站与该终端之间的也需要同步下行数据收发频率和下行数据收发时间,此时该第一基站可以以其自身的下行载波作为与该终端之间同步下行数据收发频率和下行数据收发时间的参考;也可以以该第二基站的第二小区的下行载波作为与该终端之间同步下行数据收发频率和下行数据收发时间的参考。具体方式,此处不做限定。
204、该终端使用该下行参考在该上行时频资源上向该第一基站发送上行数据。
该终端响应该上行授权信息将该上行数据调制在该上行时频资源上按照该第一小区的上行载波的中心频率和频率带宽,然后以根据该下行参考同步的上行数据收发频率和/或上行数据收发时间向该第一基站发送该上行数据。
本实施例中,若该终端与该第一基站之间的距离大预设阈值(即该终端与该第一基站之间数据传输的时长超过系统要求),则该终端需要在发送该上行数据之前确定时间信息(可以称为定时提前量),该定时提前量用于指示该终端发送该上行数据时相对该上行时频资源起始时刻的时间提前量。该终端确定该定时提前量可以采用如下方案:
该终端向该第一基站发送随机接入前导码;然后该第一基站在接收到该随机接入前导码后得到该终端发送的信号相比该第一基站预期到达的时间晚了多少,然后将在晚了的时间作为该定时提前量;再然后该第一基站将该定时提前量通过该第一基站的第一小区的下行载波发送给该终端;最后该终端根据该定时提前量调整自身发送该上行数据的时刻。比如,该终端根据下行参考确定的时间发送随机接入前导码,该第一基站在接收到该随机接入前导码后发现该随机接入前导码比第一基站期待接收的时间晚到了0.4毫秒,则该第一基站可以确定该定时提前量为0.4毫秒。该第一基站再将该定时提前量为0.4毫秒的信息发送给该终端,即该终端需要提前0.4毫秒发送该上行数据。
205、该第一基站将该上行数据发送给核心网。
该第一基站在接收到该终端发送的该上行数据之后,该第一基站将该上行数据转发给核心网。
在本实施例中,根据该第一基站与该第二基站之间的连接关系的不同,该第一基站向该核心网转发该上行数据的方式也不同,具体情况包括但不限于如下几种方式:
一种可能实现方式中,如图5所示,该第一基站与该核心网直接相连的情况下,该第一基站直接以第一载波向该核心网发送该上行数据,其中该第一载波的中心频率与该第一基站的第一小区的下行载波的中心频率相同,该第一载波的频率带宽与该第一基站的第一 小区的下行载波的频率带宽相同;或者,该第一载波的中心频率与该第一基站的第一小区的上行载波的中心频率相同,该第一载波的频率带宽与该第一基站的第一小区的上行载波的频率带宽相同。具体实现方式,此处不做限定。
另一种可能实现方式,如图6所示,该第一基站通过第二基站与该核心网相连,且该第一基站与该第二基站之间的无线链路采用与该第二基站的第二小区的上行载波具有相同中心频率和频率带宽的第二载波进行通信,则该第一基站以该第二基站的第二小区的上行载波的中心频率和频率带宽向该第二基站发送该上行数据,然后该第二基站再以该第二基站的第二小区的上行载波的中心频率和频率带宽向该核心网发送该上行数据。
另一种可能实现方式中,如图7所示,该第一基站通过该第二基站与该核心网相连,且该第一基站与该第二基站之间的无线链路采用与该第一基站的第一小区的下行载波具有相同中心频率和频率带宽的第三载波进行通信,则该第一基站以该载波的中心频率和频率带宽向该第二基站发送该上行数据;然后该第二基站再以该第二基站的第二小区的上行载波的中心频率和频率带宽向该核心网发送该上行数据。
本实施例中,该第一基站的第一小区以该第二基站的第二小区的下行载波作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的中心频率低于该第一基站的第一小区的下行载波的中心频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。上面对本申请实施例中的数据处理方法进行了描述,下面对本申请实施例中的终端和第一基站进行描述。
具体请参阅图8所示,本申请实施例中的终端包括:
获取模块801,用于获取用于在第一基站的第一小区进行上行传输的下行参考,所述下行参考为第二基站的第二小区的下行载波的信息,所述下行参考为第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的频率信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;所述第一基站的第一小区的用于上行授权的信息,所述用于上行授权的信息包括所述第一小区的上行载波上的上行时频资源的信息;
发送模块802,用于使用所述下行参考,在所述上行时频资源上向所述第一基站发送 上行数据。
可选的,所述获取模块801包括:
获取单元8011,用于获取所述第一基站的第一小区的系统信息,所述系统信息包括指示信息,所述指示信息包括所述下行参考。
可选的,所述获取单元8011包括:
检测子单元,用于检测所述第一基站的第一小区的下行高频波束;
同步子单元,用于与所述下行高频波束同步;
第一获取子单元,用于从所述下行高频波束获取所述第一小区的系统信息。
可选的,所述获取单元8011包括:
第二获取子单元,用于获取所述第二基站的第二小区的广播消息;
读取子单元,用于读取所述广播消息获取所述第一小区的系统信息。
可选的,所述获取单元8011包括:
建立子单元,用于与所述第二基站建立通信连接;
接收子单元,用于接收所述第二基站发送所述第一小区的系统信息。
本实施例中,该第一基站的第一小区以该第二基站的第二小区的下行载波作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的中心频率低于该第一基站的第一小区的下行载波的中心频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
本申请实施例还提供了另一种终端,如图9所示,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。该终端可以为包括手机、平板电脑、个人数字助理(personal digital assistant,简称:PDA)、销售终端(point of sales,简称:POS)、车载电脑等任意终端设备,以终端为手机为例:
图9示出的是与本申请实施例提供的终端相关的手机的部分结构的框图。参考图9,手机包括:射频(radio frequency,简称:RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(wireless fidelity,简称:WiFi)模块970、处理器980、以及电源990等部件。本领域技术人员可以理解,图9中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件, 或者不同的部件布置。
下面结合图9对手机的各个构成部件进行具体的介绍:
RF电路910可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器980处理;另外,将设计上行的数据发送给基站。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,简称:LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,简称:GSM)、通用分组无线服务(general packet radio service,简称:GPRS)、码分多址(code division multiple access,简称:CDMA)、宽带码分多址(wideband code division multiple access,简称:WCDMA)、长期演进(long term evolution,简称:LTE)、电子邮件、短消息服务(short messaging service,简称:SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括触控面板931以及其他输入设备932。触控面板931,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上或在触控面板931附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器980,并能接收处理器980发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示面板941,可选的,可以采用液晶显示器(liquid crystal display,简称:LCD)、有机发光二极管(organic light-emitting diode,简称:OLED)等形式来配置显示面板941。进一步的,触控面板931可覆盖显示面板941,当触控面板931检测到在其上或附近的触摸操作后,传送给处理器980以确定触摸事件的类型,随后处理器980根据触摸事件的类型在显示面板941上提供相应的视觉输出。虽然在图9中, 触控面板931与显示面板941是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板931与显示面板941集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板941的亮度,接近传感器可在手机移动到耳边时,关闭显示面板941和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号输出;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据输出处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据输出至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图9示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变申请的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;优选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本实施例中,该终端所包括的处理器980还具有以下功能:
获取第一基站的第一小区进行上行传输的下行参考,该下行参考为第二基站的第二小区的下行载波,该下行参考用于将该终端和该第一基站之间的数据收发频率和数据收发时间至少一项同步,该第一小区的下行载波的中心频率高于该第二小区的下行载波的中心频率;获取该第一基站的上行授权信息,该上行授权信息包括上行辅助资源的配置信息;响应该上行授权信息利用该上行辅助资源和该下行参考向该第一基站发送上行数据。
本实施例中,该第一基站的第一小区以该第二基站的第二小区的下行载波作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带 宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的中心频率低于该第一基站的第一小区的下行载波的中心频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
具体请参阅图10,本申请实施例中第一基站的一个实施例,包括:
建立模块1001,用于与终端建立通信连接,所述第一基站的第一小区进行上行传输的下行参考为第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;
发送模块1002,用于向所述终端发送用于上行授权的信息,所述用于上行授权的信息包括所述第一小区的上行载波上的上行时频资源的信息;
接收模块1003,用于接收所述终端发送的上行数据,所述上行数据为所述终端使用所述下行参考在所述上行时频资源上向所述第一基站发送。
可选的,所述发送模块1002,还用于将所述上行数据转发给核心网。
可选的,所述发送模块1002,还用于通过第一上行载波向所述第二基站发送所述上行数据,以使得所述第二基站将所述上行数据转发给核心网,所述第一上行载波的频率与所述第二基站的上行载波的频率相同。
可选的,所述发送模块1002,还用于通过第二上行载波向所述第二基站发送所述上行数据,以使得所述第二基站将所述上行数据转发给核心网,所述第二上行载波的频率大于所述第二基站的上行载波的频率。本实施例中,该第一基站的第一小区以该第二基站的第二小区的下行载波作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的中心频率低于该第一基站的第一小区的下行载波的中心频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上 行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
具体请参阅图11所示,本申请实施例中第一基站的另一个实施例包括:
收发器1101,处理器1102以及总线1103;
所述收发器1101与所述处理器1102通过所述总线1103相连;
该总线1103可以是外设部件互连标准(peripheral component interconnect,简称:PCI)总线或扩展工业标准结构(extended industry standard architecture,简称:EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
该处理器1102可以是中央处理器(central processing unit,简称:CPU),网络处理器(network processor,简称:NP)或者CPU和NP的组合。
该处理器1102还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,简称:ASIC),可编程逻辑器件(programmable logic device,简称:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,简称:CPLD),现场可编程逻辑门阵列(field-programmable gate array,简称:FPGA),通用阵列逻辑(generic array logic,简称:GAL)或其任意组合。
参见图11所示,该第一基站还可以包括存储器1104。该存储器1104可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,简称RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid-state drive,简称SSD);存储器1104还可以包括上述种类的存储器的组合。
可选地,存储器1104还可以用于存储程序指令,处理器1102调用该存储器1104中存储的程序指令,可以执行图2至图7中所示实施例中的一个或多个步骤,或其中可选的实施方式,实现上述方法中第一基站行为的功能。
所述处理器1102,执行如下步骤:
与终端建立通信连接,所述第一基站的第一小区进行上行传输的下行参考为第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;
所述收发器1101,执行如下步骤:
向所述终端发送用于上行授权的信息,所述用于上行授权的信息包括所述第一小区的 上行载波上的上行时频资源的信息;接收模块,用于接收所述终端发送的上行数据,所述上行数据为所述终端使用所述下行参考在所述上行时频资源上向所述第一基站发送。
本实施例中,该收发器1101执行上述实施例中该第一基站收发信息的步骤;该处理器1102执行上述实施例中该第一基站处理信息的步骤。
本实施例中,该第一基站的第一小区以该第二基站的第二小区的下行载波作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的中心频率低于该第一基站的第一小区的下行载波的中心频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
具体请参阅图12所示,本申请实施例中该第二基站的一个实施例包括:
发送模块1201,用于向终端发送第一基站的第一小区的系统信息,所述系统信息包括指示信息,所述指示信息包括下行参考,所述下行参考为所述第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的频率信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;
接收模块1202,用于接收所述第一基站发送的上行数据,所述上行数据由所述终端使用所述下行参考在所述第一小区的上行载波上的上行时频资源上向所述第一基站发送,所述第一小区的上行载波上的上行时频资源包含于所述第一基站向所述终端发送的用于上行授权的信息里;
所述发送模块1201,用于将所述上行数据发送给核心网。
可选的,所述发送模块1201包括:
第一发送单元,用于向所述终端发送广播消息,所述广播消息包括所述第一基站的第一小区的系统信息。
可选的,所述发送模块1201包括:
建立单元,用于与所述终端建立通信连接;
第二发送单元,用于向所述终端发送所述第一基站的第一小区的系统信息。
可选的,所述接收模块1202包括:
第一接收单元,用于以第一上行载波接收所述第一基站发送的所述上行数据,所述第 一上行载波的频率与所述第一基站的第一小区的上行载波的频率相同。
可选的,所述接收模块1202包括:
第二接收单元,用于以第二上行载波接收所述第一基站发送的所述上行数据,所述第二上行载波的频率与所述第一基站的第一小区的下行载波的频率相同。
本实施例中,该第二基站将该第一基站的第一小区的系统信息发送给该终端,以使得该终端以该第二基站的第二小区的下行载波的信息作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的频率低于该第一基站的第一小区的下行载波的频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
具体请参阅图13所示,本申请实施例中,该第二基站的另一实施例包括:
收发器1301,处理器1302以及总线1303;
所述收发器1301与所述处理器1302通过所述总线1303相连;
该总线1303可以是外设部件互连标准(peripheral component interconnect,简称:PCI)总线或扩展工业标准结构(extended industry standard architecture,简称:EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
该处理器1302可以是中央处理器(central processing unit,简称:CPU),网络处理器(network processor,简称:NP)或者CPU和NP的组合。
该处理器1302还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,简称:ASIC),可编程逻辑器件(programmable logic device,简称:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,简称:CPLD),现场可编程逻辑门阵列(field-programmable gate array,简称:FPGA),通用阵列逻辑(generic array logic,简称:GAL)或其任意组合。
参见图13所示,该第二基站还可以包括存储器1304。该存储器1304可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,简称RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid-state drive,简称SSD);存储器1304还可以包括上述种类的存储器的组合。
可选地,存储器1304还可以用于存储程序指令,处理器1302调用该存储器1304中存储的程序指令,可以执行图2至图7中所示实施例中的一个或多个步骤,或其中可选的实施方式,实现上述方法中第二基站行为的功能。
本实施例中,该第二基站将该第一基站的第一小区的系统信息发送给该终端,以使得该终端以该第二基站的第二小区的下行载波的信息作为下行参考,确定该终端在该第一基站的第一小区内发送上行数据的上行载波的中心频率和频率带宽,确定该第二基站的第二小区的下行数据收发频率作为该终端与该第一基站之间的上行数据收发频率,确定该第二基站的第二小区的下行数据收发时间作为该终端与该第一基站之间的上行数据收发时间。由于该第二基站的第二小区的下行载波的频率低于该第一基站的第一小区的下行载波的频率,即该第一基站的第一小区的上行载波的中心频率小于该第一基站的第一小区的下行载波。同时该第一基站为该终端调度的上行时频资源为该第一基站的第一小区的上行载波上的时频资源。即该终端与该第一基站之间的数据传输实现了高频下行,低频上行,而该终端采用低频信号上传上行数据时可以满足远距离传输,进而提高了该高频传输系统的上行覆盖范围。进一步地,为了避免第一基站的第一小区的上行信号与第二基站的第二小区的上行信号冲突,第一基站和第二基站需要对上行载波的资源进行协调,比如,通过时分复用(TDM)或频分复用(FDM)的方式以时间或频率错开的方式使用该上行载波的资源。该协调可以通过第一基站和第二基站之间的信令交互实现,也可以通过网络对第一基站和第二基站配置不同的上行载波资源实现。
本申请中出现的术语“上行”和“下行”,在某些场景用于描述数据/信息传输的方向,比如,“上行”方向为数据/信息从终端设备向核心网设备传输的方向,“下行”方向为数据/信息从核心网设备向终端设备传输的方向,“上行”和“下行”仅用于描述方向,对数据/信息传输起止的具体设备都不作限定。在本专利申请中出现的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,但这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对相关客体的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种数据处理方法,其特征在于,包括:
    终端获取用于在第一基站的第一小区进行上行传输的下行参考,所述下行参考为第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的频率信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;
    所述终端获取所述第一基站的第一小区的用于上行授权的信息,所述用于上行授权的信息包括所述第一小区的上行载波上的上行时频资源的信息;
    所述终端使用所述下行参考,在所述上行时频资源上向所述第一基站发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,终端获取第一基站的第一小区进行上行传输的下行参考包括:
    终端获取所述第一基站的第一小区的系统信息,所述系统信息包括指示信息,所述指示信息包括所述下行参考。
  3. 根据权利要求2所述的方法,其特征在于,终端获取所述第一基站的第一小区的系统信息包括:
    所述终端获取所述第二基站的第二小区的广播消息;
    所述终端读取所述广播消息获取所述第一小区的系统信息。
  4. 根据权利要求2所述的方法,其特征在于,终端获取所述第一基站的第一小区的系统信息包括:
    所述终端与所述第二基站建立通信连接;
    所述终端接收所述第二基站发送的所述第一小区的系统信息。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述指示信息还包括所述第二基站的第二小区的标识信息。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一小区的上行载波的中心频率与所述第二小区的上行载波的中心频率相同。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端使用所述下行参考,在所述上行时频资源上向所述第一基站发送上行数据包括:
    所述终端获取时间信息,所述时间信息用于指示所述终端发送所述上行数据时相对所述上行时频资源起始时刻的时间提前量;
    所述终端使用所述下行参考和所述定时提前量,在所述上行时频资源上向所述第一基站发送上行数据。
  8. 一种数据处理方法,其特征在于,包括:
    第一基站与终端建立通信连接,所述第一基站的第一小区进行上行传输的下行参考为第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的信息,所述第一小区的下行载波的频率高于所述第二小 区的下行载波的频率;
    所述第一基站向所述终端发送用于上行授权的信息,所述用于上行授权的信息包括所述第一小区的上行载波上的上行时频资源的信息;
    所述第一基站接收所述终端发送的上行数据,所述上行数据为所述终端使用所述下行参考在所述上行时频资源上向所述第一基站发送。
  9. 根据权利要求8所述的方法,其特征在于,所述第一小区的上行载波的中心频率与所述第二小区的上行载波的中心频率相同。
  10. 根据权利要求8至9中任一项所述的方法,其特征在于,所述第一基站接收所述终端发送的上行数据之后,所述方法还包括:
    所述第一基站通过第一上行载波向所述第二基站发送所述上行数据,以使得所述第二基站将所述上行数据转发给核心网,所述第一上行载波的频率与所述第一基站的第一小区的上行载波的频率相同。
  11. 根据权利要求8至9中任一项所述的方法,其特征在于,所述第一基站接收所述终端发送的上行数据之后,所述方法还包括:
    所述第一基站通过第二上行载波向所述第二基站发送所述上行数据,以使得所述第二基站将所述上行数据转发给核心网,所述第二上行载波的频率与所述第一基站的第一小区的下行载波的频率相同。
  12. 一种数据处理方法,其特征在于,包括:
    第二基站向终端发送第一基站的第一小区的系统信息,所述系统信息包括指示信息,所述指示信息包括下行参考,所述下行参考为所述第二基站的第二小区的下行载波的信息,所述下行参考被用于在所述第一小区内同步所述终端和所述第一基站之间的上行数据收发频率和/或上行数据收发时间,所述下行参考被用于确定所述第一小区的上行载波的频率信息,所述第一小区的下行载波的频率高于所述第二小区的下行载波的频率;所述第二基站接收所述第一基站发送的上行数据,所述上行数据由所述终端使用所述下行参考在所述第一小区的上行载波上的上行时频资源上向所述第一基站发送,所述第一小区的上行载波上的上行时频资源包含于所述第一基站向所述终端发送的用于上行授权的信息里;
    所述第二基站将所述上行数据发送给核心网。
  13. 根据权利要求12所述的方法,其特征在于,所述第二基站向终端发送第一基站的第一小区的系统信息包括:
    所述第二基站向所述终端发送广播消息,所述广播消息包括所述第一基站的第一小区的系统信息。
  14. 根据权利要求12所述的方法,其特征在于,所述第二基站向终端发送第一基站的第一小区的系统信息包括:
    所述第二基站与所述终端建立通信连接;
    所述第二基站向所述终端发送所述第一基站的第一小区的系统信息。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述第二基站接收所述第一基站发送的上行数据包括:
    所述第二基站以第一上行载波接收所述第一基站发送的所述上行数据,所述第一上行载波的频率与所述第一基站的第一小区的上行载波的频率相同。
  16. 根据权利要求12至14中任一项所述的方法,其特征在于,所述第二基站接收所述第一基站发送的上行数据包括:
    所述第二基站以第二上行载波接收所述第一基站发送的所述上行数据,所述第二上行载波的频率与所述第一基站的第一小区的下行载波的频率相同。
  17. 一种终端,其特征在于,所述终端包括:
    至少一个处理器,存储器,收发装置和系统总线;
    所述至少一个处理器,存储器,收发装置通过所述系统总线耦合;
    所述终端通过所述第一收发装置,与网络侧设备相通信;
    所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求1-16任一所述方法中所述终端的操作。
  18. 一种系统芯片,所述系统芯片应用在终端,其特征在于,所述系统芯片包括:
    至少一个处理器,存储器,接口电路和总线;
    所述至少一个处理器,存储器,接口电路通过所述总线耦合;
    所述系统芯片通过所述接口电路和所述终端交互;所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求1-10任一所述方法中所述终端的操作。
  19. 一种第一基站,其特征在于,所述第一基站包括:
    至少一个处理器,存储器,第一收发装置,第二收发装置和系统总线;
    所述至少一个处理器,存储器,第一收发装置和第二收发装置通过所述系统总线耦合;
    所述第一基站通过所述第一收发装置,与网络侧设备相通信,所述第一基站通过所述第二收发装置,与终端设备相通信;
    所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求1-16任一所述方法中所述第一基站的操作。
  20. 一种系统芯片,所述系统芯片应用在第一基站,其特征在于,所述系统芯片包括:
    至少一个处理器,存储器,接口电路和总线;
    所述至少一个处理器,存储器,接口电路通过所述总线耦合;
    所述系统芯片通过所述接口电路和所述第一基站交互;所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求1-16任一所述方法中所述第一基站的操作。
  21. 一种第二基站,其特征在于,所述第二基站包括:
    至少一个处理器,存储器,第一收发装置,第二收发装置和系统总线;
    所述至少一个处理器,存储器,第一收发装置和第二收发装置通过所述系统总线耦合;
    所述第二基站通过所述第一收发装置,与网络侧设备相通信,所述第二基站通过所述第二收发装置,与终端设备相通信;
    所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程 序指令,以进行根据权利要求1-16任一所述方法中所述第二基站的操作。
  22. 一种系统芯片,所述系统芯片应用在第二基站,其特征在于,所述系统芯片包括:
    至少一个处理器,存储器,接口电路和总线;
    所述至少一个处理器,存储器,接口电路通过所述总线耦合;
    所述系统芯片通过所述接口电路和所述第二基站交互;所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求1-16中任一所述方法中所述第二基站的操作。
  23. 一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,执行上述权利要求1-16中任一所述的方法。
  24. 一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,执行上述权利要求1-16中任一所述的方法。
PCT/CN2018/088408 2017-06-30 2018-05-25 一种数据处理方法、终端以及基站 WO2019001188A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18823147.6A EP3637917B1 (en) 2017-06-30 2018-05-25 Data processing method, terminal and base station
US16/728,202 US11089539B2 (en) 2017-06-30 2019-12-27 Data processing method, terminal, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710524141.7 2017-06-30
CN201710524141.7A CN109217995B (zh) 2017-06-30 2017-06-30 一种数据处理方法、终端以及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,202 Continuation US11089539B2 (en) 2017-06-30 2019-12-27 Data processing method, terminal, and base station

Publications (1)

Publication Number Publication Date
WO2019001188A1 true WO2019001188A1 (zh) 2019-01-03

Family

ID=64741026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088408 WO2019001188A1 (zh) 2017-06-30 2018-05-25 一种数据处理方法、终端以及基站

Country Status (4)

Country Link
US (1) US11089539B2 (zh)
EP (1) EP3637917B1 (zh)
CN (1) CN109217995B (zh)
WO (1) WO2019001188A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491390B (zh) * 2019-01-21 2021-05-04 华为技术有限公司 上行传输方法及设备
CN110913491B (zh) * 2019-12-17 2023-07-18 惠州Tcl移动通信有限公司 信道分配方法、装置及存储介质
CN113260018B (zh) * 2020-02-07 2023-01-24 维沃移动通信有限公司 系统信息传输方法、终端设备和网络设备
US11659599B2 (en) * 2020-04-28 2023-05-23 Qualcomm Incorporated Random access preamble transmission timing offset
CN115696501B (zh) * 2022-10-25 2023-05-30 上海山源电子科技股份有限公司 小区接入方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498463A (zh) * 2001-03-19 2004-05-19 ����ɭ�绰�ɷ����޹�˾ 点到多点混合频带系统体系
CN102802243A (zh) * 2011-05-24 2012-11-28 中兴通讯股份有限公司 一种终端载波配置的方法及系统
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法
US20170142632A1 (en) * 2015-11-18 2017-05-18 Verizon Patent And Licensing Inc. Managing carrier restrictions in a wireless network
WO2017082780A1 (en) * 2015-11-10 2017-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Uplink and/or downlink signaling related to different radio access technologies

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998640B (zh) * 2009-08-14 2015-06-03 中兴通讯股份有限公司 资源分配方法及基站
EP2678964B1 (en) * 2011-02-23 2014-12-31 Telefonaktiebolaget LM Ericsson (PUBL) Communication of data using independent downlink and uplink connections
US9191180B2 (en) * 2011-03-21 2015-11-17 Lg Electronics Inc. Method and device for executing HARQ in TDD-based wireless communication system
WO2012162353A1 (en) * 2011-05-23 2012-11-29 Interdigital Patent Holdings, Inc. Apparatus and methods for group wireless transmit/receive unit (wtru) handover
US9819442B2 (en) * 2012-03-16 2017-11-14 Intel Deutschland Gmbh Internal interference signaling
US20140004861A1 (en) * 2012-03-29 2014-01-02 Yang-seok Choi Dual Mode System for Wireless Communication
KR101689490B1 (ko) * 2012-10-19 2016-12-23 후지쯔 가부시끼가이샤 셀 핸드오버 및 재구성을 위한 방법 및 장치
US9503935B2 (en) * 2013-01-28 2016-11-22 Blackberry Limited Handover mechanism in cellular networks
KR20160108309A (ko) * 2014-01-10 2016-09-19 엘지전자 주식회사 무선통신 시스템에서 수신확인 전송 방법 및 장치
CN105323776A (zh) * 2014-05-29 2016-02-10 普天信息技术有限公司 一种上行干扰协调方法
CN107534992B (zh) * 2015-03-24 2020-11-03 Lg 电子株式会社 上行链路数据发送方法和用户设备以及上行链路数据接收方法和基站
WO2017041211A1 (zh) * 2015-09-07 2017-03-16 华为技术有限公司 一种数据传输方法、设备和系统
CN113328836A (zh) * 2015-11-13 2021-08-31 北京三星通信技术研究有限公司 一种双工通信方法、基站及终端
WO2017207614A1 (en) * 2016-05-31 2017-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatuses for providing parameter coordination for base stations and wireless devices
CN110999481A (zh) * 2017-06-26 2020-04-10 诺基亚技术有限公司 减少无线网络中上行链路信道与相邻信道的tdd传输之间干扰的技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498463A (zh) * 2001-03-19 2004-05-19 ����ɭ�绰�ɷ����޹�˾ 点到多点混合频带系统体系
CN102802243A (zh) * 2011-05-24 2012-11-28 中兴通讯股份有限公司 一种终端载波配置的方法及系统
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法
WO2017082780A1 (en) * 2015-11-10 2017-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Uplink and/or downlink signaling related to different radio access technologies
US20170142632A1 (en) * 2015-11-18 2017-05-18 Verizon Patent And Licensing Inc. Managing carrier restrictions in a wireless network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637917A4

Also Published As

Publication number Publication date
EP3637917B1 (en) 2022-01-26
CN109217995B (zh) 2021-01-12
US11089539B2 (en) 2021-08-10
EP3637917A1 (en) 2020-04-15
US20200137668A1 (en) 2020-04-30
CN109217995A (zh) 2019-01-15
EP3637917A4 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
CN110166192B (zh) 小区处理方法、终端设备及网络设备
CN109587789B (zh) 随机接入方法、移动终端及网络设备
WO2020140935A1 (zh) 信息上报方法及终端
WO2019001188A1 (zh) 一种数据处理方法、终端以及基站
WO2019076171A1 (zh) 非授权频段下的信息传输方法、终端及网络设备
US11729680B2 (en) Cell management method, trigger condition configuration method, terminal device, and network-side device
CN110719628B (zh) 传输方法、终端设备及网络设备
WO2019052554A1 (zh) 减少ue能力信令结构体内容的方法、存储介质及手机
WO2018223975A1 (zh) 一种数据传输方法和终端
WO2018049971A1 (zh) 热点网络切换方法及终端
CN110868240A (zh) Pusch重复传输时的跳频方法、终端及网络设备
WO2019076170A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
WO2018049970A1 (zh) 热点网络切换方法及终端
US20210105651A1 (en) Measurement gap processing method, terminal, and network node
WO2015154223A1 (zh) 通信控制方法及相关装置
CN111106909B (zh) 数据传输方法、数据传输配置方法、终端及网络侧设备
CN111800794A (zh) 解调参考信号位置的确定方法及设备
WO2017049933A1 (zh) 一种直通呼叫通信方法及终端
WO2018049968A1 (zh) 热点建立方法及终端
CN111836311B (zh) 能力协商方法、终端及网络设备
WO2019071593A1 (zh) 一种长短信发送方法及终端
CN111106914B (zh) 确定控制资源集的准共址的方法、终端和存储介质
WO2020221125A1 (zh) 配置信息获取、发送方法、终端及网络侧设备
WO2017049930A1 (zh) 一种资源使用方法及终端
WO2016179773A1 (zh) 信号传输方法、基站及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018823147

Country of ref document: EP

Effective date: 20200107