KR20220162520A - 네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치 - Google Patents

네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치 Download PDF

Info

Publication number
KR20220162520A
KR20220162520A KR1020210071071A KR20210071071A KR20220162520A KR 20220162520 A KR20220162520 A KR 20220162520A KR 1020210071071 A KR1020210071071 A KR 1020210071071A KR 20210071071 A KR20210071071 A KR 20210071071A KR 20220162520 A KR20220162520 A KR 20220162520A
Authority
KR
South Korea
Prior art keywords
terminal
resource
trs
csi
base station
Prior art date
Application number
KR1020210071071A
Other languages
English (en)
Inventor
김재민
지형주
장영록
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020210071071A priority Critical patent/KR20220162520A/ko
Priority to PCT/KR2022/007434 priority patent/WO2022255721A1/ko
Priority to EP22816380.4A priority patent/EP4287725A1/en
Publication of KR20220162520A publication Critical patent/KR20220162520A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 개시는 무선 통신 시스템에서 기지국 간의 시간 및 위상 동기화 방법을 개시한다.

Description

네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치 {METHOD AND APPARATUS FOR TIME AND PHASE SYNCHRONIZATION BETWEEN BASE STATIONS IN NETWORK COOPERATIVE COMMUNICATIONS}
본 개시는 네트워크 협력 통신에서 단말과 기지국의 동작에 관한 것이다. 구체적으로, 본 개시는 네트워크 협력 통신에서 기지국간의 동기화 방법 및 이를 수행할 수 있는 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non-orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템 (5세대 통신 시스템 또는 New Radio (NR))을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술인 빔 포밍, MIMO 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 3eG 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
상술한 것과 무선통신 시스템의 발전에 따라 다양한 서비스를 제공할 수 있게 됨으로써, 이러한 서비스들을 원활하게 제공하기 위한 방안이 요구되고 있다.
본 개시의 실시예는 이동 통신 시스템에서 서비스를 효과적으로 제공할 수 있는 장치 및 방법을 제공 한다.
또한, 본 개시의 실시 예는 네트워크 협력 통신에서 기지국간의 동기화 방법 및 이를 수행할 수 있는 장치를 제공한다.
상기와 같은 문제점을 해결하기 위한 본 개시의 일 실시 예는 무선 통신 시스템에서 제어 신호 처리 방법에 있어서, 기지국으로부터 단말에게 참조 신호를 설정하는 단계; 상기 설정된 참조 신호를 단말에게 전송하는 단계; 기지국으로부터 상기 전송된 신호의 지연 시간 및 위상 차이를 단말이 측정하는 단계; 단말로부터 기지국에게 측정값을 보고하는 단계, 보고받은 측정값을 토대로 기지국이 사전 보상하여 시간 및 위상 동기를 맞추는 단계; 동기를 맞춘 기지국이 단말에게 하향링크 신호를 전송하는 단계를 포함하는 것을 특징으로 한다.
본 발명의 실시 예에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 다양한 실시 예에 따르면 이동통신 시스템에서 서비스를 효과적으로 제공할 수 있는 장치 및 방법을 제공할 수 있다.
또한, 본 개시의 다양한 실시 예에 따르면, 네트워크 협력 통신에서 기지국간의 동기화 방법 및 이를 수행할 수 있는 장치를 제공할 수 있다.
도 1은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 시간-주파수영역의 기본 구조를 도시한 도면이다.
도 2는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.
도 3는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 대역폭부분 설정의 일 예를 도시한 도면이다.
도 4은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역 설정의 일 예를 도시한 도면이다.
도 5a는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 제어채널의 구조를 도시한 도면이다.
도 5b는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 단말이 슬롯 내에서 복수 개의 PDCCH 모니터링 위치를 가질 수 있는 경우를 Span을 통해 도시한 도면이다.
도 6은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 DRX 동작의 일 예를 도시한 도면이다.
도 7은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 TCI state 설정에 따른 기지국 빔 할당의 일 예를 도시하는 도면이다.
도 8은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 PDCCH에 대한 TCI state 할당 방법의 일 예를 도시한 도면이다.
도 9는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 PDCCH DMRS를 위한 TCI indication MAC CE 시그날링 구조를 도시하는 도면이다.
도 10은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 제어자원 세트 및 탐색공간의 빔 설정 예시를 도시하는 도면이다.
도 11은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 단말이 하향링크 제어채널 수신 시 우선순위를 고려하여 수신 가능한 제어자원세트를 선택하는 방법을 설명하기 위한 도면이다.
도 12는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 기지국 및 단말이 하향링크 데이터 채널 및 레이트 매칭 자원을 고려하여 데이터를 송수신하는 방법을 설명하기 위한 도면이다.
도 13은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 PDSCH의 주파수 축 자원 할당 예를 도시하는 도면이다.
도 14는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 PDSCH의 시간 축 자원 할당 예를 도시하는 도면이다.
도 15a는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간 축 자원 할당 예를 도시하는 도면이다.
도 15b는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 PUSCH 반복 전송 타입 B의 일례를 도시하는 도면이다.
도 16은 본 개시의 일 실시예에 따른 비주기적 CSI 보고 방법의 일 예를 도시한 도면이다.
도 17은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 single cell, carrier aggregation, dual connectivity 상황에서 기지국과 단말의 무선 프로토콜 구조를 도시하는 도면이다.
도 18은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 협력 통신(cooperative communication)을 위한 안테나 포트 구성 및 자원 할당 예시를 도시하는 도면이다.
도 19는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 협력 통신을 위한 하향링크 제어 정보(downlink control information, DCI) 구성 예를 도시하는 도면이다.
도 20은 본 개시의 일 실시 예에 따른 D-MIMO(distributed-multiple input multiple output) 전송에 참여하는 복수 개의 기지국과 단말의 동작을 설명한 것이다.
도 21은 본 개시의 일 실시 예에 따른 TRP간의 시간 동기를 고려한 기지국과 단말의 동작을 나타낸 도면이다.
도 22는 본 개시의 일 실시 예에 따른 안테나 포트 개수가 동일한 복수의 TRS의 QCL 정보를 하나의 TRS에 설정하는 방법을 나타낸 도면이다.
도 23은 본 개시의 일 실시 예에 따른 TRP간의 위상 동기를 고려한 기지국과 단말의 동작을 나타낸 도면이다.
도 24는 본 개시의 일 실시 예에 따른 안테나 포트 개수가 서로 다른 복수의 TRS의 QCL 정보를 하나의 TRS에 설정하는 방법을 나타낸 도면이다.
도 25는 본 개시의 일 실시 예에 따른 단말의 TRS 수신에 대한 Power Delay Profile을 나타낸 도면이다.
도 26은 본 개시의 일 실시 예에 따른 하나의 TRS 내에 복수의 안테나 그룹간의 위상 차이를 나타낸 도면이다.
도 27은 본 개시의 일 시시 예에 따른 단말이 사전 보상된 TRS를 참조하여 하향링크 제어 및 데이터 채널을 수신하는 과정을 나타낸 도면이다.
도 28은 본 개시의 일 실시 예에 따른 단말이 사전 보상되지 않은 TRS#1, TRS#2, TRS#3을 참조하여 하향링크 제어 및 데이터 채널을 수신하는 과정을 나타낸 도면이다.
도 29는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 단말의 구조를 도시하는 도면이다.
도 30은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 기지국의 구조를 도시하는 도면이다.
이하, 본 개시의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성 요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한 본 개시를 설명함에 있어서 관련된 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 본 개시에서 하향링크(Downlink; DL)는 기지국이 단말에게 전송하는 신호의 무선 전송경로이고, 상향링크는(Uplink; UL)는 단말이 기국에게 전송하는 신호의 무선 전송경로를 의미한다. 또한, 이하에서 LTE 또는 LTE-A 시스템을 일예로서 설명할 수도 있지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시예가 적용될 수 있다. 예를 들어 LTE-A 이후에 개발되는 5세대 이동통신 기술(5G, new radio, NR)이 이에 포함될 수 있으며, 이하의 5G는 기존의 LTE, LTE-A 및 유사한 다른 서비스를 포함하는 개념일 수도 있다. 또한, 본 개시는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예를 들면, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.
상기 광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 또는 MS(Mobile Station))이 기지국(eNode B, 또는 base station(BS))으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 통상 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분할 수 있다.
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 동시에 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 향상된 모바일 광대역 통신(enhanced Mobile Broadband, eMBB), 대규모 기계형 통신(massive Machine Type Communication, mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communciation, URLLC) 등이 있다.
eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps의 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 또한 5G 통신시스템은 최대 전송 속도를 제공하는 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 안테나 (Multi Input Multi Output, MIMO) 전송 기술을 포함하여 다양한 송수신 기술의 향상을 요구한다. 또한 LTE가 사용하는 2GHz 대역에서 최대 20MHz 전송대역폭을 사용하여 신호를 전송하는 반면에, 5G 통신시스템은 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다.
동시에, 5G 통신시스템에서 사물 인터넷(Internet of Thing, IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구된다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 10~15년과 같이 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰라 기반 무선 통신 서비스이다. 예를 들어, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스 등을 고려할 수 있다. 따라서 URLLC가 제공하는 통신은 매우 낮은 저지연 및 매우 높은 신뢰도 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초 보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval, TTI)를 제공해야 하며, 동시에 통신 링크의 신뢰성을 확보하기 위해 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구될 수 있다.
5G의 세가지 서비스들, 즉 eMBB, URLLC, mMTC는 하나의 시스템에서 다중화되어 전송될 수 있다. 이 때, 각각의 서비스들이 갖는 상이한 요구사항을 만족시키기 위해 서비스간에 서로 다른 송수신 기법 및 송수신 파라미터를 사용할 수 있다. 물론 5G는 전술한 세가지 서비스들에 제한되지 않는다.
[NR 시간-주파수 자원]
이하에서는 5G 시스템의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명한다.
도 1은 5G 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다.
도 1의 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(Resource Element, RE, 101)로서 시간 축으로 1 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(102) 및 주파수 축으로 1 부반송파(Subcarrier)(103)로 정의될 수 있다. 주파수 영역에서
Figure pat00001
(일례로 12)개의 연속된 RE들은 하나의 자원 블록(Resource Block, RB, 104)을 구성할 수 있다. 시간 영역에서 14 개의 연속된 OFDM 심볼은 하나의 슬롯을 구성할 수 있으며, 1 ms 의 시간 간격을 하나의 서브프레임 (110)으로 구성할 수 있다.
도 2는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.
도 2에는 프레임(Frame, 200), 서브프레임(Subframe, 201), 슬롯(Slot, 202) 구조의 일 예가 도시되어 있다. 1 프레임(200)은 10ms로 정의될 수 있다. 1 서브프레임(201)은 1ms로 정의될 수 있으며, 따라서 1 프레임(200)은 총 10개의 서브프레임(201)으로 구성될 수 있다. 1 슬롯(202, 203)은 14개의 OFDM 심볼로 정의될 수 있다(즉 1 슬롯 당 심볼 수(
Figure pat00002
)=14). 1 서브프레임(201)은 하나 또는 복수 개의 슬롯(202, 203)으로 구성될 수 있으며, 1 서브프레임(201)당 슬롯(202, 203)의 개수는 부반송파 간격에 대한 설정 값 μ(204, 205)에 따라 다를 수 있다. 도 2의 일 예에서는 부반송파 간격 설정 값으로 μ=0(204)인 경우와 μ=1(205)인 경우가 도시되어 있다. μ=0(204)일 경우, 1 서브프레임(201)은 1개의 슬롯(202)으로 구성될 수 있고, μ=1(205)일 경우, 1 서브프레임(201)은 2개의 슬롯(203)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수(
Figure pat00003
)가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수(
Figure pat00004
)가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른
Figure pat00005
Figure pat00006
는 하기의 표 1로 정의될 수 있다.
[표 1]
Figure pat00007
[대역폭부분 (BWP)]
다음으로 5G 통신 시스템에서 대역폭부분(Bandwidth Part; BWP) 설정에 대하여 도면을 참조하여 구체적으로 설명하도록 한다.
도 3는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 대역폭부분 설정의 일 예를 도시한 도면이다.
도 3에는 단말 대역폭(UE bandwidth)(300)이 두 개의 대역폭부분, 즉, 대역폭부분#1(BWP#1)(301)과 대역폭부분#2(BWP#2)(302)로 설정된 일 예를 보여준다. 기지국은 단말에게 하나 또는 복수 개의 대역폭부분을 설정해줄 수 있으며, 각 대역폭부분에 대하여 하기의 정보들을 설정해 줄 수 있다.
[표 2]
Figure pat00008
물론 상기 예시에 제한되는 것은 아니며, 상기 설정 정보 외에도 대역폭부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상기 정보들은 상위 계층 시그널링, 예를 들면, RRC(Radio Resource Control) 시그널링을 통해 기지국이 단말에게 전달할 수 있다. 설정된 하나 또는 복수 개의 대역폭부분들 중에서 적어도 하나의 대역폭부분이 활성화(Activation)될 수 있다. 설정된 대역폭부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적으로 전달되거나 DCI(Downlink Control Information)를 통해 동적으로 전달될 수 있다.
일부 실시예에 따르면, RRC(Radio Resource Control) 연결 전의 단말은 초기 접속을 위한 초기 대역폭부분(Initial BWP)을 MIB(Master Information Block)를 통해 기지국으로부터 설정 받을 수 있다. 보다 구체적으로 설명하면, 단말은 초기 접속 단계에서 MIB를 통해 초기 접속에 필요한 시스템 정보(Remaining System Information; RMSI 또는 System Information Block 1; SIB1에 해당할 수 있음)를 수신을 위한 PDCCH가 전송될 수 있는 제어영역(Control Resource Set, CORESET)과 탐색 공간(Search Space)에 대한 설정 정보를 수신할 수 있다. MIB로 설정되는 제어영역과 탐색공간은 각각 식별자(Identity, ID) 0으로 간주될 수 있다. 기지국은 단말에게 MIB를 통해 제어영역#0에 대한 주파수 할당 정보, 시간 할당 정보, 뉴머롤로지(Numerology) 등의 설정 정보를 통지할 수 있다. 또한 기지국은 단말에게 MIB를 통해 제어영역#0에 대한 모니터링 주기 및 occasion에 대한 설정정보, 즉 탐색공간#0에 대한 설정 정보를 통지할 수 있다. 단말은 MIB로부터 획득한 제어영역#0으로 설정된 주파수 영역을 초기 접속을 위한 초기 대역폭부분으로 간주할 수 있다. 이때, 초기 대역폭부분의 식별자(ID)는 0으로 간주될 수 있다.
상기 5G에서 지원하는 대역폭부분에 대한 설정은 다양한 목적으로 사용될 수 있다.
일부 실시 예에 따르면, 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에 상기 대역폭부분 설정을 통해 이를 지원할 수 있다. 예를 들면, 기지국은 대역폭부분의 주파수 위치(설정정보 2)를 단말에게 설정함으로써 시스템 대역폭 내의 특정 주파수 위치에서 단말이 데이터를 송수신할 수 있다.
또한 일부 실시예에 따르면, 서로 다른 뉴머롤로지를 지원하기 위한 목적으로 기지국이 단말에게 복수 개의 대역폭부분을 설정할 수 있다. 예를 들면, 어떤 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분을 각각 15kHz와 30kHz의 부반송파 간격으로 설정할 수 있다. 서로 다른 대역폭 부분은 주파수 분할 다중화(Frequency Division Multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우, 해당 부반송파 간격으로 설정되어 있는 대역폭부분이 활성화 될 수 있다.
또한 일부 실시예에 따르면, 단말의 전력 소모 감소를 위한 목적으로 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭부분을 설정할 수 있다. 예를 들면, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모가 발생될 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 100MHz의 큰 대역폭으로 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율 적일 수 있다. 단말의 전력 소모를 줄이기 위한 목적으로, 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭부분, 예를 들면, 20MHz의 대역폭부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭부분으로 데이터를 송수신할 수 있다.
상기 대역폭부분을 설정하는 방법에 있어서, RRC 연결(Connected) 전의 단말들은 초기 접속 단계에서 MIB(Master Information Block)을 통해 초기 대역폭부분(Initial Bandwidth Part)에 대한 설정 정보를 수신할 수 있다. 보다 구체적으로 설명하면, 단말은 PBCH(Physical Broadcast Channel)의 MIB로부터 SIB(System Information Block)를 스케쥴링하는 DCI(Downlink Control Information)가 전송될 수 있는 하향링크 제어채널을 위한 제어영역(Control Resource Set, CORESET)을 설정 받을 수 있다. MIB로 설정된 제어영역의 대역폭이 초기 대역폭부분으로 간주될 수 있으며, 설정된 초기 대역폭부분을 통해 단말은 SIB가 전송되는 PDSCH(Physical Downlink Shared Channel)를 수신할 수 있다. 초기 대역폭부분은 SIB을 수신하는 용도 외에도, 다른 시스템 정보(Other System Information, OSI), 페이징(Paging), 랜덤 엑세스(Random Access) 용으로 활용될 수도 있다.
[대역폭부분 (BWP) 변경]
단말에게 하나 이상의 대역폭부분가 설정되었을 경우, 기지국은 단말에게 DCI 내의 대역폭부분 지시자(Bandwidth Part Indicator) 필드를 이용하여, 대역폭부분에 대한 변경 (또는, 스위칭 (switching), 천이)을 지시할 수 있다. 일 예로 도 3에서 단말의 현재 활성화된 대역폭부분이 대역폭부분#1(301)일 경우, 기지국은 단말에게 DCI 내의 대역폭부분 지시자로 대역폭부분#2(302)를 지시할 수 있고, 단말은 수신한 DCI 내의 대역폭부분 지시자로 지시된 대역폭부분#2(302)로 대역폭부분 변경을 수행할 수 있다.
전술한 바와 같이 DCI 기반 대역폭부분 변경은 PDSCH 또는 PUSCH를 스케줄링하는 DCI에 의해 지시될 수 있기 때문에, 단말은 대역폭부분 변경 요청을 수신하였을 경우, 해당 DCI가 스케줄링하는 PDSCH 또는 PUSCH를 변경된 대역폭부분에서 무리 없이 수신 또는 송신을 수행할 수 있어야 한다. 이를 위해, 표준에서는 대역폭부분 변경 시 요구되는 지연 시간(TBWP)에 대한 요구 사항을 규정하였으며, 예를 들어 하기와 같이 정의될 수 있다.
[표 3]
Figure pat00009
대역폭부분 변경 지연 시간에 대한 요구사항은 단말의 능력(Capability)에 따라 타입 1 또는 타입 2를 지원한다. 단말은 기지국에 지원 가능한 대역폭부분 지연 시간 타입을 보고할 수 있다.
전술한 대역폭부분 변경 지연시간에 대한 요구사항에 따라, 단말이 대역폭부분 변경 지시자를 포함하는 DCI를 슬롯 n에서 수신하였을 경우, 단말은 대역폭부분 변경 지시자가 가리키는 새로운 대역폭부분으로의 변경을 슬롯 n+TBWP보다 늦지 않은 시점에서 완료를 할 수 있고, 변경된 새로운 대역폭부분에서 해당 DCI가 스케줄링하는 데이터채널에 대한 송수신을 수행할 수 있다. 기지국은 새로운 대역폭부분으로 데이터채널을 스케줄링하고자 할 경우, 단말의 대역폭부분 변경 지연시간(TBWP)을 고려하여, 데이터채널에 대한 시간 도메인 자원할당을 결정할 수 있다. 즉, 기지국은 새로운 대역폭부분으로 데이터채널을 스케줄링 할 때, 데이터채널에 대한 시간 도메인 자원할당을 결정하는 방법에 있어서, 대역폭부분 변경 지연시간 이 후로 해당 데이터채널을 스케줄링할 수 있다. 이에 따라 단말은 대역폭부분 변경을 지시하는 DCI가, 대역폭부분 변경 지연 시간 (TBWP) 보다 작은 슬롯 오프셋 (K0 또는 K2) 값을 지시하는 것을 기대하지 않을 수 있다.
만약 단말이 대역폭부분 변경을 지시하는 DCI(예를 들어 DCI 포맷 1_1 또는 0_1)을 수신하였다면, 단말은 해당 DCI를 포함하는 PDCCH를 수신한 슬롯의 세번째 심볼에서부터, 해당 DCI 내의 시간도메인 자원할당 지시자 필드로 지시된 슬롯 오프셋(K0 또는 K2) 값으로 지시된 슬롯의 시작 지점까지에 해당하는 시간 구간 동안 어떠한 송신 또는 수신도 수행하지 않을 수 있다. 예를 들어, 단말이 슬롯 n에서 대역폭부분 변경을 지시하는 DCI를 수신하였고, 해당 DCI로 지시된 슬롯 오프셋 값이 K라고 한다면, 단말은 슬롯 n의 세번째 심볼에서부터 슬롯 n+K이전 심볼(즉 슬롯 n+K-1의 마지막 심볼)까지 어떠한 송신 또는 수신도 수행하지 않을 수 있다.
[SS/PBCH 블록]
다음으로 5G에서의 SS(Synchronization Signal)/PBCH 블록에 대하여 설명하도록 한다.
SS/PBCH 블록이란 PSS(Primary SS), SSS(Secondary SS), PBCH로 구성된 물리계층 채널 블록을 의미할 수 있다. 구체적으로는 하기와 같다.
- PSS: 하향링크 시간/주파수 동기의 기준이 되는 신호로 셀 ID 의 일부 정보를 제공한다.
- SSS: 하향링크 시간/주파수 동기의 기준이 되고, PSS 가 제공하지 않은 나머지 셀 ID 정보를 제공한다. 추가적으로 PBCH 의 복조를 위한 기준신호(Reference Signal) 역할을 할 수 있다.
- PBCH: 단말의 데이터채널 및 제어채널 송수신에 필요한 필수 시스템 정보를 제공한다. 필수 시스템 정보는 제어채널의 무선자원 매핑 정보를 나타내는 탐색공간 관련 제어정보, 시스템 정보를 전송하는 별도의 데이터 채널에 대한 스케쥴링 제어정보 등을 포함할 수 있다.
- SS/PBCH 블록: SS/PBCH 블록은 PSS, SSS, PBCH의 조합으로 이뤄진다. SS/PBCH 블록은 5ms 시간 내에서 하나 또는 복수 개가 전송될 수 있고, 전송되는 각각의 SS/PBCH 블록은 인덱스로 구별될 수 있다.
단말은 초기 접속 단계에서 PSS 및 SSS를 검출할 수 있고, PBCH를 디코딩할 수 있다. PBCH로부터 MIB를 획득할 수 있고 이로부터 제어영역(Control Resource Set; CORESET)#0 (제어영역 인덱스가 0인 제어영역에 해당할 수 있음)을 설정 받을 수 있다. 단말은 선택한 SS/PBCH 블록과 제어영역#0에서 전송되는 DMRS(Demodulation Reference signal)이 QCL(Quasi Co Location)되어 있다고 가정하고 제어영역#0에 대한 모니터링을 수행할 수 있다. 단말은 제어영역#0에서 전송된 하향링크 제어정보로 시스템 정보를 수신할 수 있다. 단말은 수신한 시스템 정보로부터 초기 접속에 필요한 RACH(Random Access Channel) 관련 설정 정보를 획득할 수 있다. 단말은 선택한 SS/PBCH 인덱스를 고려하여 PRACH(Physical RACH)를 기지국으로 전송할 수 있고, PRACH를 수신한 기지국은 단말이 선택한 SS/PBCH 블록 인덱스에 대한 정보를 획득할 수 있다. 기지국은 단말이 각각의 SS/PBCH 블록들 중에서 어떤 블록을 선택하였고 이와 연관되어 있는 제어영역#0을 모니터링하는 사실을 알 수 있다.
[PDCCH: DCI 관련]
다음으로 5G 시스템에서의 하향링크 제어 정보(Downlink Control Information, DCI)에 대해 구체적으로 설명한다.
5G 시스템에서 상향링크 데이터(또는 물리 상향링크 데이터 채널(Physical Uplink Shared Channel, PUSCH)) 또는 하향링크 데이터(또는 물리 하향링크 데이터 채널(Physical Downlink Shared Channel, PDSCH))에 대한 스케줄링 정보는 DCI를 통해 기지국으로부터 단말에게 전달된다. 단말은 PUSCH 또는 PDSCH에 대하여 대비책(Fallback)용 DCI 포맷과 비대비책(Non-fallback)용 DCI 포맷을 모니터링(Monitoring)할 수 있다. 대비책 DCI 포맷은 기지국과 단말 사이에서 선정의된 고정된 필드로 구성될 수 있고, 비대비책용 DCI 포맷은 설정 가능한 필드를 포함할 수 있다.
DCI는 채널코딩 및 변조 과정을 거쳐 물리 하향링크 제어 채널인 PDCCH(Physical Downlink Control Channel)을 통해 전송될 수 있다. DCI 메시지 페이로드(payload)에는 CRC(Cyclic Redundancy Check)가 부착되며 CRC는 단말의 신원에 해당하는 RNTI(Radio Network Temporary Identifier)로 스크램블링(scrambling) 될 수 있다. DCI 메시지의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력 제어 명령 또는 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI들이 사용될 수 있다. 즉, RNTI는 명시적으로 전송되지 않고 CRC 계산과정에 포함되어 전송된다. PDCCH 상으로 전송되는 DCI 메시지를 수신하면 단말은 할당 받은 RNTI를 사용하여 CRC를 확인하여 CRC 확인 결과가 맞으면 단말은 해당 메시지가 단말에게 전송된 것임을 알 수 있다.
예를 들면, 시스템 정보(System Information, SI)에 대한 PDSCH를 스케줄링하는 DCI는 SI-RNTI로 스크램블링될 수 있다. RAR(Random Access Response) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 RA-RNTI로 스크램블링 될 수 있다. 페이징(Paging) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 P-RNTI로 스크램블링 될 수 있다. SFI(Slot Format Indicator)를 통지하는 DCI는 SFI-RNTI로 스크램블링 될 수 있다. TPC(Transmit Power Control)를 통지하는 DCI는 TPC-RNTI로 스크램블링 될 수 있다. 단말-특정의 PDSCH 또는 PUSCH를 스케줄링하는 DCI는 C-RNTI(Cell RNTI)로 스크램블링 될 수 있다.
DCI 포맷 0_0은 PUSCH를 스케줄링하는 대비책 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_0은 예컨대 하기의 정보들을 포함할 수 있다.
[표 4]
- Identifier for DCI formats (DCI 포맷 식별자) - [1] bit
- Frequency domain resource assignment (주파수 도메인 자원 할당) -
Figure pat00010
bits
- Time domain resource assignment (시간 도메인 자원 할당) - X bits
- Frequency hopping flag (주파수 호핑 플래그) - 1 bit.
- Modulation and coding scheme (변조 및 코딩 스킴) - 5 bits
- New data indicator (새로운 데이터 지시자) - 1 bit
- Redundancy version (리던던시 버전) - 2 bits
- HARQ process number (HARQ 프로세스 번호) - 4 bits
- TPC command for scheduled PUSCH (스케줄링된 PUSCH를 위한 전송 전력 제어(transmit power control) 명령 - [2] bits
- UL/SUL indicator (상향링크/추가적 상향링크(supplementary UL) 지시자) - 0 or 1 bit
DCI 포맷 0_1은 PUSCH를 스케줄링하는 비대비책 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_1은 예컨대 하기의 정보들을 포함할 수 있다.
[표 5]
Figure pat00011
DCI 포맷 1_0은 PDSCH를 스케줄링하는 대비책 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_0은 예컨대 하기의 정보들을 포함할 수 있다.
[표 6]
Figure pat00012
DCI 포맷 1_1은 PDSCH를 스케줄링하는 비대비책 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_1은 예컨대 하기의 정보들을 포함할 수 있다.
[표 7]
Figure pat00013
[PDCCH: CORESET, REG, CCE, Search Space]
하기에서는 5G 통신 시스템에서의 하향링크 제어채널에 대하여 도면을 참조하여 보다 구체적으로 설명하고자 한다.
도 4는 5G 무선통신 시스템에서 하향링크 제어채널이 전송되는 제어영역(Control Resource Set, CORESET)에 대한 일 예를 도시한 도면이다. 도 4는 주파수 축으로 단말의 대역폭부분(UE bandwidth part)(410), 시간축으로 1 슬롯(420) 내에 2개의 제어영역(제어영역#1(401), 제어영역#2(402))이 설정되어 있는 일 예를 도시한다. 제어영역(401, 402)는 주파수 축으로 전체 단말 대역폭부분(410) 내에서 특정 주파수 자원(403)에 설정될 수 있다. 시간 축으로는 하나 또는 복수 개의 OFDM 심볼로 설정될 수 있고 이를 제어영역 길이(Control Resource Set Duration, 404)으로 정의할 수 있다. 도 4의 도시된 예를 참조하면, 제어영역#1(401)은 2 심볼의 제어영역 길이로 설정되어 있고, 제어영역#2(402)는 1 심볼의 제어영역 길이로 설정되어 있다.
전술한 5G에서의 제어영역은 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보(System Information), MIB(Master Information Block), RRC(Radio Resource Control) 시그널링)을 통해 설정될 수 있다. 단말에게 제어영역을 설정한다는 것은 제어영역 식별자(Identity), 제어영역의 주파수 위치, 제어영역의 심볼 길이 등의 정보를 제공하는 것을 의미한다. 예를 들면, 하기의 정보들을 포함할 수 있다.
[표 8]
Figure pat00014
표 8에서 tci-StatesPDCCH (간단히 TCI(Transmission Configuration Indication) state로 명명함) 설정 정보는, 대응되는 제어영역에서 전송되는 DMRS와 QCL(Quasi Co Located) 관계에 있는 하나 또는 복수 개의 SS(Synchronization Signal)/PBCH(Physical Broadcast Channel) 블록(Block) 인덱스 또는 CSI-RS(Channel State Information Reference Signal) 인덱스의 정보를 포함할 수 있다.
도 5a는 5G에서 사용될 수 있는 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본단위의 일 예를 보여주는 도면이다. 도 5a에 따르면 제어채널을 구성하는 시간 및 주파수 자원의 기본 단위를 REG(Resource Element Group, 503)라 할 수 있으며, REG(503)는 시간 축으로 1 OFDM 심볼(501), 주파수 축으로 1 PRB(Physical Resource Block, 502), 즉, 12개 서브캐리어(Subcarrier)로 정의될 수 있다. 기지국은 REG(503)를 연접하여 하향링크 제어채널 할당 단위를 구성할 수 있다.
도 5a에 도시된 바와 같이 5G에서 하향링크 제어채널이 할당되는 기본 단위를 CCE(Control Channel Element, 504)라고 할 경우, 1 CCE(504)는 복수의 REG(503)로 구성될 수 있다. 도 5a에 도시된 REG(503)를 예를 들어 설명하면, REG(503)는 12개의 RE로 구성될 수 있고, 1 CCE(504)가 6개의 REG(503)로 구성된다면 1 CCE(504)는 72개의 RE로 구성될 수 있다. 하향링크 제어영역이 설정되면 해당 영역은 복수의 CCE(504)로 구성될 수 있으며, 특정 하향링크 제어채널은 제어영역 내의 집성 레벨(Aggregation Level; AL)에 따라 하나 또는 복수의 CCE(504)로 매핑 되어 전송될 수 있다. 제어영역내의 CCE(504)들은 번호로 구분되며 이 때 CCE(504)들의 번호는 논리적인 매핑 방식에 따라 부여될 수 있다.
도 5a에 도시된 하향링크 제어채널의 기본 단위, 즉 REG(503)에는 DCI가 매핑되는 RE들과 이를 디코딩하기 위한 레퍼런스 신호인 DMRS(505)가 매핑되는 영역이 모두 포함될 수 있다. 도 5a에서와 같이 1 REG(503) 내에 3개의 DMRS(505)가 전송될 수 있다. PDCCH를 전송하는데 필요한 CCE의 개수는 집성 레벨(Aggregation Level, AL)에 따라 1, 2, 4, 8, 16개가 될 수 있으며, 서로 다른 CCE 개수는 하향링크 제어채널의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다. 예컨대 AL=L일 경우, 하나의 하향링크 제어채널이 L 개의 CCE를 통해 전송될 수 있다. 단말은 하향링크 제어채널에 대한 정보를 모르는 상태에서 신호를 검출해야 하는데, 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색공간(search space)를 정의하였다. 탐색공간은 주어진 집성 레벨 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 하향링크 제어채널 후보군(Candidate)들의 집합이며, 1, 2, 4, 8, 16 개의 CCE로 하나의 묶음을 만드는 여러 가지 집성 레벨이 있으므로 단말은 복수개의 탐색공간을 가질 수 있다. 탐색공간 세트(Set)는 설정된 모든 집성 레벨에서의 탐색공간들의 집합으로 정의될 수 있다.
탐색공간은 공통(Common) 탐색공간과 단말-특정(UE-specific) 탐색공간으로 분류될 수 있다. 일정 그룹의 단말들 또는 모든 단말들이 시스템정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 셀 공통의 제어정보를 수신하기 위해 PDCCH의 공통 탐색 공간을 조사할 수 있다. 예를 들어 셀의 사업자 정보 등을 포함하는 SIB의 전송을 위한 PDSCH 스케줄링 할당 정보는 PDCCH의 공통 탐색 공간을 조사하여 수신할 수 있다. 공통 탐색공간의 경우, 일정 그룹의 단말들 또는 모든 단말들이 PDCCH를 수신해야 하므로 기 약속된 CCE의 집합으로써 정의될 수 있다. 단말-특정적인 PDSCH 또는 PUSCH에 대한 스케쥴링 할당 정보는 PDCCH의 단말-특정 탐색공간을 조사함으로써 수신될 수 있다. 단말-특정 탐색공간은 단말의 신원(Identity) 및 다양한 시스템 파라미터의 함수로 단말-특정적으로 정의될 수 있다.
5G에서는 PDCCH에 대한 탐색공간에 대한 파라미터는 상위 계층 시그널링(예컨대, SIB, MIB, RRC 시그널링)으로 기지국으로부터 단말로 설정될 수 있다. 예를 들면, 기지국은 각 집성 레벨 L에서의 PDCCH 후보군 수, 탐색공간에 대한 모니터링 주기, 탐색공간에 대한 슬롯 내 심볼 단위의 모니터링 occasion, 탐색공간 타입(공통 탐색공간 또는 단말-특정 탐색공간), 해당 탐색공간에서 모니터링 하고자 하는 DCI 포맷과 RNTI의 조합, 탐색공간을 모니터링 하고자 하는 제어영역 인덱스 등을 단말에게 설정할 수 있다. 예를 들면, 하기의 정보들을 포함할 수 있다.
[표 9]
Figure pat00015
설정 정보에 따라 기지국은 단말에게 하나 또는 복수 개의 탐색공간 세트를 설정할 수 있다. 일부 실시예에 따르면, 기지국은 단말에게 탐색공간 세트 1과 탐색공간 세트 2를 설정할 수 있고, 탐색공간 세트 1에서 X-RNTI로 스크램블링된 DCI 포맷 A를 공통 탐색공간에서 모니터링 하도록 설정할 수 있고, 탐색공간 세트 2에서 Y-RNTI로 스크램블링된 DCI 포맷 B를 단말-특정 탐색공간에서 모니터링 하도록 설정할 수 있다.
설정 정보에 따르면, 공통 탐색공간 또는 단말-특정 탐색공간에 하나 또는 복수 개의 탐색공간 세트가 존재할 수 있다. 예를 들어 탐색공간 세트#1과 탐색공간 세트#2가 공통 탐색공간으로 설정될 수 있고, 탐색공간 세트#3과 탐색공간 세트#4가 단말-특정 탐색공간으로 설정될 수 있다.
공통 탐색공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI
- DCI format 2_0 with CRC scrambled by SFI-RNTI
- DCI format 2_1 with CRC scrambled by INT-RNTI
- DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI
- DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI
단말-특정 탐색공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
- DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
명시되어 있는 RNTI들은 하기의 정의 및 용도를 따를 수 있다.
C-RNTI (Cell RNTI): 단말-특정 PDSCH 스케쥴링 용도
TC-RNTI (Temporary Cell RNTI): 단말-특정 PDSCH 스케쥴링 용도
CS-RNTI(Configured Scheduling RNTI): 준정적으로 설정된 단말-특정 PDSCH 스케쥴링 용도
RA-RNTI (Random Access RNTI): 랜덤 엑세스 단계에서 PDSCH 스케쥴링 용도
P-RNTI (Paging RNTI): 페이징이 전송되는 PDSCH 스케쥴링 용도
SI-RNTI (System Information RNTI): 시스템 정보가 전송되는 PDSCH 스케쥴링 용도
INT-RNTI (Interruption RNTI): PDSCH에 대한 pucturing 여부를 알려주기 위한 용도
TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): PUSCH에 대한 전력 조절 명령 지시 용도
TPC-PUCCH-RNTI (Transmit Power Control for PUCCH RNTI): PUCCH에 대한 전력 조절 명령 지시 용도
TPC-SRS-RNTI (Transmit Power Control for SRS RNTI): SRS에 대한 전력 조절 명령 지시 용도
전술한 명시된 DCI 포맷들은 하기의 정의를 따를 수 있다.
[표 10]
Figure pat00016
5G에서 제어영역 p, 탐색공간 세트 s에서 집성 레벨 L의 탐색공간은 하기의 수학식 1과 같이 표현될 수 있다.
[수학식 1]
Figure pat00017
5G에서는 복수 개의 탐색공간 세트가 서로 다른 파라미터들(예컨대, 표 10의 파라미터들)로 설정될 수 있음에 따라, 매 시점에서 단말이 모니터링하는 탐색공간 세트의 집합이 달라질 수 있다. 예를 들면, 탐색공간 세트#1이 X-슬롯 주기로 설정되어 있고, 탐색공간 세트#2가 Y-슬롯 주기로 설정되어 있고 X와 Y가 다를 경우, 단말은 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2를 모두 모니터링 할 수 있고, 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2 중 하나를 모니터링 할 수 있다.
[PDCCH: span]
단말은 슬롯 내에서 복수 개의 PDCCH 모니터링 위치를 가지는 경우에 대한 단말 능력 보고를 각 서브캐리어 간격마다 수행할 수 있고, 이 때 Span이라는 개념을 사용할 수 있다. Span은 슬롯 내에서 단말이 PDCCH를 모니터링할 수 있는 연속적인 심볼들을 의미하고, 각 PDCCH 모니터링 위치는 1개의 Span 내에 있다. Span은 (X,Y)로 표현할 수 있는데, 여기서 x는 연속적인 두 Span의 첫 번째 심볼 간 떨어져야 하는 최소 심볼 개수를 의미하고, Y는 1개의 Span 내에서 PDCCH를 모니터링할 수 있는 연속적인 심볼 개수를 말한다. 이 때, 단말은 Span 내에서 Span의 첫 심볼부터 Y 심볼 내의 구간에서 PDCCH를 모니터링할 수 있다.
도 5b는 무선 통신 시스템에서 단말이 슬롯 내에서 복수 개의 PDCCH 모니터링 위치를 가질 수 있는 경우를 Span을 통해 도시한 도면이다. Span은 (X,Y) = (7,4), (4,3), (2,2)가 가능하며, 세 경우 각각이 도 5b 내의 (5-1-00), (5-1-05), (5-1-10)로 표현되어 있다. 일례로, (5-1-00)는 (7,4)로 표현할 수 있는 Span이 슬롯 내에서 2개가 존재하는 경우를 표현하였다. 2개의 Span의 첫 번째 심볼 간의 간격이 X=7로 표현되었고, 각 Span의 첫 번째 심볼부터 총 Y=3개의 심볼 내에서 PDCCH 모니터링 위치가 존재할 수 있으며, Y=3 심볼 내에 탐색공간 1과 2가 각각 존재하는 것을 나타내었다. 또 다른 일례로, (5-1-05)에서는 (4,3)로 표현할 수 있는 Span이 슬롯 내에서 총 3개가 존재하는 경우를 표현하였으며, 두 번째와 세 번째 Span 간 간격은 X=4보다 큰 X'=5 심볼만큼 떨어져 있는 것을 나타내었다.
[PDCCH: 단말 능력 보고]
상술한 공통 탐색공간 및 단말-특정 탐색공간이 위치하는 슬롯 위치는 표 11-1의 monitoringSymbolsWitninSlot 파라미터로 지시되며, 슬롯 내 심볼 위치는 표 9의 monitoringSymbolsWithinSlot 파라미터를 통해 비트맵으로 지시된다. 한편 단말이 탐색 공간 모니터링이 가능한 슬롯 내 심볼 위치는 다음의 단말 역량(UE capability)들을 통해 기지국으로 보고될 수 있다.
- 단말 역량 1 (이후 FG 3-1로 표현). 본 단말 역량은 다음의 표 9a와 같이, 타입 1 및 타입 3 공통 탐색공간 또는 단말-특정 탐색공간에 대한 모니터링 위치(MO: monitoring occasion)가 슬롯 내 하나 존재하는 경우, 해당 MO 위치가 슬롯 내 처음 3 심볼 내에 위치할 때 해당 MO를 모니터링 가능한 역량을 의미한다. 본 단말 역량은 NR을 지원하는 모든 단말이 지원해야 하는 의무적(mandatory) 역량으로써 본 역량의 지원 여부는 기지국에 명시적으로 보고되지 않는다.
[표 11-1]
Figure pat00018
- 단말 역량 2 (이후 FG 3-2로 표현). 본 단말 역량은 다음의 표 11-2와 같이, 공통 탐색공간 또는 단말-특정 탐색공간 대한 모니터링 위치(MO: monitoring occasion)가 슬롯 내 하나 존재하는 경우, 해당 MO의 시작 심볼 위치가 어디이던 관계 없이 모니터링 가능한 역량을 의미한다. 본 단말 역량은 단말이 선택적으로 지원 가능하며(optional), 본 역량의 지원 여부는 기지국에 명시적으로 보고된다.
[표 11-2]
Figure pat00019
- 단말 역량 3 (이후 FG 3-5, 3-5a, 3-5b로 표현). 본 단말 역량은 다음의 표 11-3와 같이, 공통 탐색공간 또는 단말-특정 탐색공간에 대한 모니터링 위치(MO: monitoring occasion)가 슬롯 내 복수 개 존재하는 경우, 단말이 모니터링 가능한 MO의 패턴을 지시한다. 상술한 패턴은 서로 다른 MO 간의 시작 심볼 간 간격 X, 및 한 MO에 대한 최대 심볼 길이 Y로 구성된다. 단말이 지원하는 (X,Y)의 조합은 {(2,2), (4,3), (7,3)} 중 하나 또는 복수 개일 수 있다. 본 단말 역량은 단말이 선택적으로 지원 가능하며(optional), 본 역량의 지원 여부 및 상술한 (X,Y) 조합은 기지국에 명시적으로 보고된다.
[표 11-3]
Figure pat00020
Figure pat00021
단말은 상술한 단말 역량 2 및/또는 단말 역량 3 지원 여부 및 관련 파라미터를 기지국에 보고할 수 있다. 기지국은 보고 받은 상기 단말 역량을 토대로 공통 탐색공간 및 단말-특정 탐색공간에 대한 시간 축 자원 할당을 수행할 수 있다. 상기 자원 할당 시 기지국은 단말이 모니터링 불가능한 위치에 MO를 위치시키지 않도록 할 수 있다.
[PDCCH: BD/CCE limit]
복수 개의 탐색공간 세트가 단말에게 설정되었을 경우, 단말이 모니터링해야 하는 탐색공간 세트를 결정하는 방법에 있어서 하기의 조건들이 고려될 수 있다.
만약 단말이 상위 레이어 시그널링인 monitoringCapabilityConfig-r16의 값을 r15monitoringcapability 로 설정 받았다면, 단말은 모니터링 할 수 있는 PDCCH 후보군의 수와 전체 탐색공간(여기서 전체 탐색공간이란 복수 개의 탐색공간 세트의 union 영역에 해당하는 전체 CCE 집합을 의미)을 구성하는 CCE의 개수에 대한 최대값을 슬롯 별로 정의하며, 만약 monitoringCapabilityConfig-r16의 값이 r16monitoringcapability 로 설정 받았다면, 단말은 모니터링 할 수 있는 PDCCH 후보군의 수와 전체 탐색공간(여기서 전체 탐색공간이란 복수 개의 탐색공간 세트의 union 영역에 해당하는 전체 CCE 집합을 의미)을 구성하는 CCE의 개수에 대한 최대값을 Span 별로 정의한다.
[조건 1: 최대 PDCCH 후보군 수 제한]
상기와 같이 상위 레이어 시그널링의 설정 값에 따라, 단말이 모니터링 할 수 있는 PDCCH 후보군의 최대 개수인 Mμ는 서브캐리어 간격 15·2μ kHz으로 설정된 셀에서 슬롯 기준으로 정의되는 경우 하기 표 12-1을 따르고, Span 기준으로 정의되는 경우 하기 표 12-2를 따를 수 있다.
[표 12-1]
Figure pat00022
[표 12-2]
Figure pat00023
[조건 2: 최대 CCE 수 제한]
상기와 같이 상위 레이어 시그널링의 설정 값에 따라, 전체 탐색공간(여기서 전체 탐색공간이란 복수 개의 탐색공간 세트의 union 영역에 해당하는 전체 CCE 집합을 의미)을 구성하는 CCE의 최대 개수인 Cμ는 서브캐리어 간격 15·2μ kHz으로 설정된 셀에서 슬롯 기준으로 정의되는 경우 하기 표 12-3을 따르고, Span 기준으로 정의되는 경우 하기 표 12-4를 따를 수 있다.
[표 12-3]
Figure pat00024
[표 12-4]
Figure pat00025
설명의 편의를 위해, 특정 시점에서 상기 조건 1, 2를 모두 만족시키는 상황을 "조건 A"로 정의하도록 한다. 따라서 조건 A를 만족시키지 않는 것은 상기 조건 1, 2 중에서 적어도 하나의 조건을 만족시키지 않는 것을 의미할 수 있다.
[PDCCH: Overbooking]
기지국의 탐색공간 세트들의 설정에 따라 특정 시점에서 조건 A를 만족하지 않는 경우가 발생할 수 있다. 특정 시점에서 조건 A를 만족하지 않을 경우, 단말은 해당 시점에서 조건 A를 만족하도록 설정된 탐색공간 세트들 중에서 일부만을 선택하여 모니터링 할 수 있고, 기지국은 선택된 탐색공간 세트로 PDCCH를 전송할 수 있다.
전체 설정된 탐색공간 세트 중에서 일부 탐색공간을 선택하는 방법으로 하기의 방법을 따를 수 있다.
특정 시점(슬롯)에서 PDCCH에 대한 조건 A를 만족시키지 못할 경우, 단말은(또는 기지국은) 해당 시점에 존재하는 탐색공간 세트들 중에서 탐색 공간 타입이 공통 탐색공간으로 설정되어 있는 탐색공간 세트를 단말-특정 탐색공간으로 설정된 탐색공간 세트보다 우선적으로 선택할 수 있다.
공통 탐색공간으로 설정되어 있는 탐색공간 세트들이 모두 선택되었을 경우(즉, 공통 탐색공간으로 설정되어 있는 모든 탐색공간을 선택한 후에도 조건 A를 만족할 경우), 단말은(또는 기지국은) 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트들을 선택할 수 있다. 이 때, 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트가 복수 개일 경우, 탐색공간 세트 인덱스(Index)가 낮은 탐색공간 세트가 더 높은 우선 순위를 가질 수 있다. 우선 순위를 고려하여 단말-특정 탐색공간 세트들을 조건 A가 만족되는 범위 내에서 선택할 수 있다.
[QCL, TCI state]
무선 통신 시스템에서 하나 이상의 서로 다른 안테나 포트들(혹은 하나 이상의 채널, 시그날 및 이들의 조합들로 대체되는 것도 가능하나 향후 본 개시의 설명에서는 편의를 위하여 서로 다른 안테나 포트들로 통일하여 지칭한다)은 아래 [표 13]과 같은 QCL (Quasi co-location) 설정에 의하여 서로 연결(associate)될 수 있다. TCI state는 PDCCH(혹은 PDCCH DMRS)와 다른 RS 혹은 채널 간 QCL 관계를 공지하기 위한 것으로, 어떤 기준 안테나 포트 A(reference RS #A)와 또 다른 목적 안테나 포트 B(target RS #B)가 서로 QCL되어있다(QCLed)고 함은 단말이 상기 안테나 포트 A에서 추정된 large-scale 채널 파라미터 중 일부 혹은 전부를 상기 안테나 포트 B로부터의 채널 측정에 적용하는 것이 허용됨을 의미한다. QCL은 1) average delay 및 delay spread에 영향을 받는 time tracking, 2) Doppler shift 및 Doppler spread에 영향을 받는 frequency tracking, 3) average gain에 영향을 받는 RRM (radio resource management), 4) spatial parameter에 영향을 받는 BM (beam management) 등 상황에 따라 서로 다른 파라미터를 연관시킬 필요가 있을 수 있다. 이에 따라 NR에서는 아래 표 13과 같은 네 가지 타입의 QCL 관계들을 지원한다.
[표 13]
Figure pat00026
상기 spatial RX parameter는 Angle of arrival (AoA), Power Angular Spectrum (PAS) of AoA, Angle of departure (AoD), PAS of AoD, transmit/receive channel correlation, transmit/receive beamforming, spatial channel correlation 등 다양한 파라미터들 중 일부 혹은 전부를 총칭할 수 있다.
상기 QCL 관계는 아래 표 14와 같이 RRC parameter TCI-State 및 QCL-Info를 통하여 단말에게 설정되는 것이 가능하다. 표 14를 참조하면 기지국은 단말에게 하나 이상의 TCI state를 설정하여 상기 TCI state의 ID를 참조하는 RS, 즉 target RS에 대한 최대 두 가지의 QCL 관계(qcl-Type1, qcl-Type2)를 알려줄 수 있다. 이때 각 상기 TCI state가 포함하는 각 QCL 정보(QCL-Info)들은 해당 QCL 정보가 가리키는 reference RS의 serving cell index 및 BWP index, 그리고 reference RS의 종류 및 ID, 그리고 상기 표 13과 같은 QCL type을 포함한다.
[표 14]
Figure pat00027
도 7은 TCI state 설정에 따른 기지국 빔 할당 예시를 도시하는 도면이다. 도 7을 참조하면 기지국은 서로 다른 N개의 빔에 대한 정보를 서로 다른 N개의 TCI state들을 통하여 단말에게 전달할 수 있다. 예를 들어 도 7과 같이 N=3인 경우 기지국은 세 개의 TCI states(700, 705, 710)에 포함되는 qcl-Type2 파라미터가 서로 다른 빔에 해당하는 CSI-RS 혹은 SSB에 연관되며 QCL type D로 설정되도록 하여 상기 서로 다른 TCI state 700, 705, 혹은 710을 참조하는 안테나 포트들이 서로 다른 spatial Rx parameter 즉 서로 다른 빔과 연관되어 있음을 공지할 수 있다.
하기 표 15-1 내지 15-5에서는 target 안테나 포트 종류에 따른 유효한 TCI state 설정들을 나타낸다.
표 15-1은 target 안테나 포트가 CSI-RS for tracking (TRS) 일 경우 유효한 TCI state 설정을 나타낸다. 상기 TRS는 CSI-RS 중 repetition 파라미터가 설정되지 않고 trs-Info가 true로 설정된 NZP CSI-RS를 의미한다. 표 15-1에서 3번 설정의 경우 aperiodic TRS를 위하여 사용될 수 있다.
[표 15-1] Target 안테나 포트가 CSI-RS for tracking (TRS) 일 경우 유효한 TCI state 설정
Figure pat00028
표 15-2는 target 안테나 포트가 CSI-RS for CSI 일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for CSI는 CSI-RS 중 반복을 나타내는 파라미터 (예를 들어, repetition 파라미터)가 설정되지 않고 trs-Info 또한 true로 설정되지 않은 NZP CSI-RS를 의미한다.
[표 15-2] Target 안테나 포트가 CSI-RS for CSI일 경우 유효한 TCI state 설정
Figure pat00029
표 15-3은 target 안테나 포트가 CSI-RS for beam management (BM, CSI-RS for L1 RSRP reporting과 동일한 의미)일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for BM은 CSI-RS 중 repetition 파라미터가 설정되어 On 또는 Off의 값을 가지며, trs-Info가 true로 설정되지 않은 NZP CSI-RS를 의미한다.
[표 15-3] Target 안테나 포트가 CSI-RS for BM (for L1 RSRP reporting)일 경우 유효한 TCI state 설정
Figure pat00030
표 15-4는 target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.
[표 15-4] Target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정
Figure pat00031
표 15-5는 target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.
[표 15-5] Target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정
Figure pat00032
상기 표 15-1 내지 15-5에 의한 대표적인 QCL 설정 방법은 각 단계 별 target 안테나 포트 및 reference 안테나 포트를 "SSB" -> "TRS" -> "CSI-RS for CSI, 또는 CSI-RS for BM, 또는 PDCCH DMRS, 또는 PDSCH DMRS"와 같이 설정하여 운용하는 것이다. 이를 통하여 SSB 및 TRS로부터 측정할 수 있는 통계적 특성들을 각 안테나 포트들까지 연계시켜 단말의 수신 동작을 돕는 것이 가능하다.
[PDCCH: TCI state 관련]
구체적으로 PDCCH DMRS 안테나 포트에 적용 가능한 TCI state 조합은 아래 표 15-6과 같다. 표 15-6에서 4번째 행은 RRC 설정 이전에 단말이 가정하게 되는 조합이며 RRC 이후 설정은 불가능하다.
[표 15-6]
Figure pat00033
NR에서는 PDCCH 빔에 대한 동적 할당을 위하여 도 8에 도시된 바와 같은 계층적 시그날링 방법을 지원한다. 도 8을 참조하면 기지국은 RRC 시그날링(800)을 통하여 N개의 TCI states(805, 810, ..., 820)들을 단말에게 설정할 수 있으며, 이 중 일부를 CORESET을 위한 TCI state로 설정할 수 있다(825). 이후 기지국은 CORESET을 위한 TCI states (830, 835, 840) 중 하나를 MAC CE 시그날링을 통하여 단말에게 지시할 수 있다 (845). 이후 단말은 상기 MAC CE 시그날링에 의해 지시되는 TCI state가 포함하는 빔 정보를 기반으로 PDCCH를 수신한다.
도 9는 상기 PDCCH DMRS를 위한 TCI indication MAC CE 시그날링 구조를 도시하는 도면이다. 도 9를 참조하면 상기 PDCCH DMRS를 위한 TCI indication MAC CE 시그날링은 2 byte(16 bits)로 구성되며 5 비트의 serving cell ID (915), 4 비트의 CORESET ID (920) 및 7 비트의 TCI state ID (925)를 포함한다.
도 10은 상기 설명에 따른 제어자원 세트 (CORESET) 및 탐색공간 (search space)의 빔 설정 예시를 도시하는 도면이다. 도 10을 참조하면 기지국은 CORESET(1000) 설정에 포함되는 TCI state list 중 하나를 MAC CE 시그날링을 통하여 지시할 수 있다(1005). 이후 또 다른 MAC CE 시그날링을 통하여 다른 TCI state가 해당 CORESET에 지시되기 전 까지, 단말은 상기 CORESET에 연결되는 하나 이상의 search space (1010, 1015, 1020)에는 모두 같은 QCL 정보 (beam #1, 1005)가 적용되는 것으로 간주한다. 상기 설명한 PDCCH beam 할당 방법은 MAC CE 시그날링 delay보다 빠른 빔 변경을 지시하는 것이 어려우며, 또한 search space 특성에 관계 없이 CORESET 별로 모두 같은 빔을 일괄 적용하게 되는 단점이 있어 유연한 PDCCH beam 운용을 어렵게 하는 문제가 있다. 이하 본 발명의 실시 예 들에서는 보다 유연한 PDCCH beam 설정 및 운용 방법을 제공한다. 이하 본 발명의 실시 예를 설명함에 있어 설명의 편의를 위하여 몇 가지 구분되는 예시들을 제공하나 이들은 서로 배타적인 것이 아니며 상황에 따라 서로 적절히 결합하여 적용이 가능하다.
기지국은 단말에게 특정 제어영역에 대하여 하나 또는 복수 개의 TCI state를 설정할 수 있고, 설정된 TCI state 중에서 하나를 MAC CE 활성화 명령을 통해 활성화할 수 있다. 예를 들어, 제어영역#1에 TCI state로 {TCI state#0, TCI state#1, TCI state#2}가 설정되어 있고, 기지국은 MAC CE를 통해 제어영역#1에 대한 TCI state로 TCI state#0을 가정하도록 활성화하는 명령을 단말에게 전송할 수 있다. 단말은 MAC CE로 수신한 TCI state에 대한 활성화 명령에 기반하여, 활성화된 TCI state 내의 QCL 정보에 기반하여 해당 제어영역의 DMRS를 올바르게 수신할 수 있다.
인덱스가 0으로 설정된 제어영역(제어영역#0)에 대하여, 만약 단말이 제어영역#0의 TCI state에 대한 MAC CE 활성화 명령을 수신하지 못하였다면, 단말은 제어영역#0에서 전송되는 DMRS에 대하여 초기 접속 과정 또는 PDCCH 명령으로 트리거(Trigger)되지 않은 비컨텐션(Non-contention) 기반 랜덤 엑세스 과정에서 식별된 SS/PBCH 블록과 QCL되었다고 가정할 수 있다.
인덱스가 0이 아닌 다른 값으로 설정된 제어영역(제어영역#X)에 대하여, 만약 단말이 제어영역#X에 대한 TCI state를 설정 받지 못했거나, 하나 이상의 TCI state를 설정 받았지만 이 중 하나를 활성화하는 MAC CE 활성화 명령을 수신하지 못하였다면, 단말은 제어영역#X에서 전송되는 DMRS에 대하여 초기 접속 과정에서 식별된 SS/PBCH 블록과 QCL되었다고 가정할 수 있다.
[PDCCH: QCL prioritization rule 관련]
하기에서는 PDCCH에 대한 QCL 우선순위 결정 동작에 대해 구체적으로 기술하도록 한다.
단말은 단일 셀 혹은 밴드 내 carrier aggregation로 동작하고, 단일 혹은 복수 개의 셀 내의 활성화된 대역폭부분 내에 존재하는 복수 개의 제어자원세트들이 특정 PDCCH 모니터링 구간에서 서로 같거나 다른 QCL-TypeD 특성을 가지면서 시간 상에서 겹치는 경우, 단말은 QCL 우선순위 결정 동작에 따라 특정 제어자원세트를 선택하고, 해당 제어자원세트와 동일한 QCL-TypeD 특성을 가지는 제어자원세트들을 모니터링할 수 있다. 즉, 시간 상에서 복수 개의 제어자원세트들이 겹칠 때, 오직 1개의 QCL-TypeD 특성만을 수신할 수 있다. 이 때 QCL 우선순위를 결정할 수 있는 기준은 아래와 같을 수 있다.
- 기준 1. 공통 탐색구간을 포함하는 셀 중 가장 낮은 인덱스에 대응되는 셀 내에서, 가장 낮은 인덱스의 공통탐색구간과 연결된 제어자원세트
- 기준 2. 단말 특정 탐색구간을 포함하는 셀 중 가장 낮은 인덱스에 대응되는 셀 내에서, 가장 낮은 인덱스의 단말 특정 탐색구간과 연결된 제어자원세트
상술한 바와 같이, 상기 각 기준들은 해당 기준이 충족되지 않는 경우 다음 기준을 적용한다. 예를 들어 특정 PDCCH 모니터링 구간에서 제어자원세트들이 시간 상으로 겹치는 경우, 만약 모든 제어자원세트들이 공통 탐색구간에 연결되어 있지 않고 단말 특정 탐색구간에 연결되어 있다면, 즉 기준 1이 충족되지 않는다면, 단말은 기준 1 적용을 생략하고 기준 2를 적용할 수 있다.
단말은 상술한 기준들에 의해 제어자원세트를 선택하는 경우, 제어자원세트에 설정된 QCL 정보에 대해 다음과 같이 두 가지 사항을 추가적으로 고려할 수 있다. 첫 번째로, 만약 제어자원세트 1이 QCL-TypeD의 관계를 가지는 기준 신호로서 CSI-RS 1을 가지고 있고, 이 CSI-RS 1이 QCL-TypeD의 관계를 가지는 기준 신호는 SSB 1이며, 또 다른 제어자원세트 2가 QCL-TypeD의 관계를 가지는 기준 신호가 SSB 1인 경우, 단말은 이 두 제어자원세트 1 및 2는 서로 다른 QCL-TypeD 특성을 가지는 것으로 고려할 수 있다. 두 번째로, 만약 제어자원세트 1이 QCL-TypeD의 관계를 가지는 기준 신호로서 셀 1에 설정되어 있는 CSI-RS 1을 가지고 있고, 이 CSI-RS 1이 QCL-TypeD의 관계를 가지는 기준 신호는 SSB 1이고, 제어자원세트 2가 QCL-TypeD의 관계를 가지는 기준 신호로서 셀 2에 설정되어 있는 CSI-RS 2를 가지고 있고, 이 CSI-RS 2가 QCL-TypeD의 관계를 가지는 기준 신호는 같은 SSB 1인 경우, 단말은 두 제어자원세트들이 같은 QCL-TypeD 특성을 가지는 것으로 고려할 수 있다.
도 11은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 단말이 하향링크 제어채널 수신 시 우선순위를 고려하여 수신 가능한 제어자원세트를 선택하는 방법을 설명하기 위한 도면이다. 일례로, 단말은 특정 PDCCH 모니터링 구간 (1110)에서 시간 상에서 겹치는 복수 개의 제어자원세트에 대한 수신을 설정받을 수 있고, 이러한 복수 개의 제어자원세트들은 복수 개의 셀에 대해 공통 탐색공간 혹은 단말 특정 탐색공간과 연결되어 있을 수 있다. 해당 PDCCH 모니터링 구간 내에서, 1번 셀의 1번 대역폭부분 (1100) 내에는 1번 공통 탐색구간과 연결된 1번 제어자원세트 (1115)가 존재할 수 있고, 2번 셀의 1번 대역폭부분 (1105) 내에는 1번 공통 탐색구간과 연결된 1번 제어자원세트 (1120)과 2번 단말 특정 탐색구간과 연결된 2번 제어자원세트 (1125)가 존재할 수 있다. 제어자원세트 (1115)와 (1120)는 1번 셀의 1번 대역폭부분 내에 설정된 1번 CSI-RS resource와 QCL-TypeD의 관계를 가지고, 제어자원세트 (1125)는 2번 셀의 1번 대역폭부분 내에 설정된 1번 CSI-RS resource와 QCL-TypeD의 관계를 가질 수 있다. 따라서 해당 PDCCH 모니터링 구간(1110)에 대해 기준 1을 적용하면 1번 제어자원세트 (1115)와 같은 QCL-TypeD의 기준신호를 가지는 모든 다른 제어자원세트를 수신할 수 있다. 따라서 단말은 해당 PDCCH 모니터링 구간(1110)에서 제어자원세트 (1115) 및 (1120)을 수신할 수 있다. 또다른 일례로, 단말은 특정 PDCCH 모니터링 구간 (1140)에서 시간 상에서 겹치는 복수 개의 제어자원세트에 대한 수신을 설정받을 수 있고, 이러한 복수 개의 제어자원세트들은 복수 개의 셀에 대해 공통 탐색공간 혹은 단말 특정 탐색공간과 연결되어 있을 수 있다. 해당 PDCCH 모니터링 구간 내에서, 1번 셀의 1번 대역폭부분 (1130) 내에는 1번 단말 특정 탐색구간과 연결된 1번 제어자원세트 (1145)와 2번 단말 특정 탐색구간과 연결된 2번 제어자원세트 (1150)가 존재할 수 있고, 2번 셀의 1번 대역폭부분 (1135) 내에는 1번 단말 특정 탐색구간과 연결된 1번 제어자원세트 (1155)와 3번 단말 특정 탐색구간과 연결된 2번 제어자원세트 (1160)이 존재할 수 있다. 제어자원세트 (1145)와 (1150)은 1번 셀의 1번 대역폭부분 내에 설정된 1번 CSI-RS resource와 QCL-TypeD의 관계를 가지고, 제어자원세트 (1155)는 2번 셀의 1번 대역폭부분 내에 설정된 1번 CSI-RS resource와 QCL-TypeD의 관계를 가지며, 제어자원세트 (1160)는 2번 셀의 1번 대역폭부분 내에 설정된 2번 CSI-RS resource와 QCL-TypeD의 관계를 가질 수 있다. 그런데 해당 PDCCH 모니터링 구간(1140)에 대해 기준 1을 적용하면 공통 탐색구간이 없으므로 다음 기준인 기준 2를 적용할 수 있다. 해당 PDCCH 모니터링 구간(1140)에 대해 기준 2를 적용하면 제어자원세트 (1145)와 같은 QCL-TypeD의 기준신호를 가지는 모든 다른 제어자원세트를 수신할 수 있다. 따라서 단말은 해당 PDCCH 모니터링 구간(1140)에서 제어자원세트 (1145) 및 (1150)을 수신할 수 있다.
[Rate matching/Puncturing 관련]
하기에서는 레이트 매칭(Rate Matching) 동작 및 펑쳐링(Puncturing) 동작에 대해 구체적으로 기술 하도록 한다.
임의의 심볼 시퀀스 A를 전송하고자 하는 시간 및 주파수 자원 A가 임의의 시간 및 주파수 자원 B와 겹쳤을 경우, 자원 A와 자원 B가 겹친 영역 자원 C를 고려한 채널 A의 송수신 동작으로 레이트 매칭 또는 펑쳐링 동작이 고려될 수 있다. 구체적인 동작은 하기의 내용을 따를 수 있다.
레이트 매칭 (Rate Matching) 동작
- 기지국은 단말로 심볼 시퀀스 A를 전송하고자하는 전체 자원 A 중에서 자원 B와 겹친 영역에 해당하는 자원 C를 제외한 나머지 자원 영역에 대해서만 채널 A를 매핑하여 전송할 수 있다. 예를 들어 심볼 시퀀스 A가 {심볼#1, 심볼#2, 심볼#3, 심볼4}로 구성되고, 자원 A가 {자원#1, 자원#2, 자원#3, 자원#4}이고, 자원 B가 {자원#3, 자원#5}일 경우, 기지국은 자원 A중에서 자원 C에 해당하는 {자원#3}을 제외한 나머지 자원인 {자원#1, 자원#2, 자원#4}에 심볼 시퀀스 A를 순차적으로 매핑하여 보낼 수 있다. 결과적으로 기지국은 심볼 시퀀스 {심볼#1, 심볼#2, 심볼#3}을 각각 {자원#1, 자원#2, 자원#4}에 매핑하여 전송할 수 있다.
단말은 기지국으로부터 심볼 시퀀스 A에 대한 스케쥴링 정보로부터 자원 A 및 자원 B를 판단할 수 있고, 이를 통해 자원 A와 자원 B가 겹친 영역인 자원 C를 판단할 수 있다. 단말은 심볼 시퀀스 A가 전체 자원 A 중에서 자원 C를 제외한 나머지 영역에서 매핑되어 전송되었다고 가정하고 심볼 시퀀스 A를 수신할 수 있다. 예를 들어 심볼 시퀀스 A가 {심볼#1, 심볼#2, 심볼#3, 심볼4}로 구성되고, 자원 A가 {자원#1, 자원#2, 자원#3, 자원#4}이고, 자원 B가 {자원#3, 자원#5}일 경우, 단말은 자원 A중에서 자원 C에 해당하는 {자원#3}을 제외한 나머지 자원인 {자원#1, 자원#2, 자원#4}에 심볼 시퀀스 A를 순차적으로 매핑되었다고 가정하고 수신할 수 있다. 결과적으로 단말은 심볼 시퀀스 {심볼#1, 심볼#2, 심볼#3}이 각각 {자원#1, 자원#2, 자원#4}에 매핑되어 전송되었다고 가정하고 이후의 일련의 수신 동작을 수행할 수 있다.
펑쳐링 (Puncturing) 동작
기지국은 단말로 심볼 시퀀스 A를 전송하고자하는 전체 자원 A 중에서 자원 B와 겹친 영역에 해당하는 자원 C가 존재할 경우, 심볼 시퀀스 A를 자원 A 전체에 매핑하지만, 자원 C에 해당하는 자원 영역에서는 전송을 수행하지 않고, 자원 A 중에서 자원 C를 제외한 나머지 자원 영역에 대해서만 전송을 수행할 수 있다. 예를 들어 심볼 시퀀스 A가 {심볼#1, 심볼#2, 심볼#3, 심볼4}로 구성되고, 자원 A가 {자원#1, 자원#2, 자원#3, 자원#4}이고, 자원 B가 {자원#3, 자원#5}일 경우, 기지국은 심볼 시퀀스 A {심볼#1, 심볼#2, 심볼#3, 심볼#4}를 자원 A {자원#1, 자원#2, 자원#3, 자원#4}에 각각 매핑할 수 있고, 자원 A중에서 자원 C에 해당하는 {자원#3}을 제외한 나머지 자원인 {자원#1, 자원#2, 자원#4}에 해당하는 심볼 시퀀스 {심볼#1, 심볼#2, 심볼#4}만 전송할 수 있고, 자원 C에 해당하는 {자원#3}에 매핑된 {심볼#3}은 전송하지 않을 수 있다. 결과적으로 기지국은 심볼 시퀀스 {심볼#1, 심볼#2, 심볼#4}를 각각 {자원#1, 자원#2, 자원#4}에 매핑하여 전송할 수 있다.-
단말은 기지국으로부터 심볼 시퀀스 A에 대한 스케쥴링 정보로부터 자원 A 및 자원 B를 판단할 수 있고, 이를 통해 자원 A와 자원 B가 겹친 영역인 자원 C를 판단할 수 있다. 단말은 심볼 시퀀스 A가 전체 자원 A에 매핑되되 자원 영역 A 중에서 자원 C를 제외한 나머지 영역에서만 전송되었다고 가정하고 심볼 시퀀스 A를 수신할 수 있다. 예를 들어 심볼 시퀀스 A가 {심볼#1, 심볼#2, 심볼#3, 심볼4}로 구성되고, 자원 A가 {자원#1, 자원#2, 자원#3, 자원#4}이고, 자원 B가 {자원#3, 자원#5}일 경우, 단말은 심볼 시퀀스 A {심볼#1, 심볼#2, 심볼#3, 심볼#4}가 자원 A {자원#1, 자원#2, 자원#3, 자원#4}에 각각 매핑되지만, 자원 C에 해당하는 {자원#3}에 매핑된 {심볼#3}은 전송되지 않는다고 가정할 수 있고, 자원 A중에서 자원 C에 해당하는 {자원#3}을 제외한 나머지 자원인 {자원#1, 자원#2, 자원#4}에 해당하는 심볼 시퀀스 {심볼#1, 심볼#2, 심볼#4}가 매핑되어 전송되었다고 가정하고 수신할 수 있다. 결과적으로 단말은 심볼 시퀀스 {심볼#1, 심볼#2, 심볼#4}이 각각 {자원#1, 자원#2, 자원#4}에 매핑되어 전송되었다고 가정하고 이후의 일련의 수신 동작을 수행할 수 있다.
하기에서는 5G 통신 시스템의 레이트 매칭의 목적으로 레이트 매칭 자원에 대한 설정 방법을 기술하도록 한다. 레이트 매칭이란 신호를 전송할 수 있는 자원의 양을 고려하여 그 신호의 크기가 조절되는 것을 의미한다. 예컨대 데이터 채널의 레이트 매칭이란 특정 시간 및 주파수 자원 영역에 대해서 데이터 채널을 매핑하여 전송하지 않고 이에 따라 데이터의 크기가 조절되는 것을 의미할 수 있다.
도 12는 기지국 및 단말이 하향링크 데이터 채널 및 레이트 매칭 자원을 고려하여 데이터를 송수신하는 방법을 설명하기 위한 도면이다.
도 12에는 하향링크 데이터 채널(PDSCH, 1201)과 레이트 매칭 자원(1202)이 도시되어 있다. 기지국은 단말에게 상위 계층 시그널링(예컨대 RRC 시그널링)을 통해 하나 또는 다수 개의 레이트 매칭 자원(1202)을 설정할 수 있다. 레이트 매칭 자원(1202) 설정 정보에는 시간축 자원 할당 정보(1203), 주파수축 자원 할당 정보(1204), 주기 정보 (1205)가 포함될 수 있다. 하기에서는 주파수축 자원 할당 정보(1204)에 해당하는 비트맵을 "제 1 비트맵", 시간축 자원 할당 정보(1203)에 해당하는 비트맵을 "제 2 비트맵", 주기 정보(1205)에 해당하는 비트맵을 "제 3 비트맵"으로 명명하도록 한다. 스케쥴링된 데이터 채널(1201)의 시간 및 주파수 자원의 전체 또는 일부가 설정된 레이트 매칭 자원(1102)과 겹칠 경우, 기지국은 레이트 매칭 자원(1202) 부분에서 데이터 채널(1201)을 레이트 매칭하여 전송할 수 있고, 단말은 레이트 매칭 자원(1202) 부분에서 데이터 채널(1201)이 레이트 매칭되었다고 가정한 후 수신 및 디코딩을 수행할 수 있다.
기지국은 추가적인 설정을 통해 상기 설정된 레이트 매칭 자원 부분에서 데이터채널을 레이트 매칭할지의 여부를 DCI를 통해 동적(Dynamic)으로 단말에게 통지할 수 있다 (전술한 DCI 포맷 내의 "레이트 매칭 지시자"에 해당함). 구체적으로, 기지국은 상기 설정된 레이트 매칭 자원들 중에서 일부를 선택하여 레이트 매칭 자원 그룹으로 그룹화할 수 있고, 각 레이트 매칭 자원 그룹에 대한 데이터채널의 레이트 매칭 여부를 비트맵 방식을 이용하여 DCI로 단말에게 지시할 수 있다. 예컨대 4개의 레이트 매칭 자원, RMR#1, RMR#2, RMR#3, RMR#4가 설정되어 있을 경우, 기지국은 레이트 매칭 그룹으로 RMG#1={RMR#1, RMR#2}, RMG#2={RMR#3, RMR#4}을 설정할 수 있으며, DCI 필드 내의 2 비트를 이용하여, 각각 RMG#1과 RMG#2에서의 레이트 매칭 여부를 비트맵으로 단말에게 지시할 수 있다. 예컨대 레이트 매칭을 해야 될 경우에는 "1"로 레이트 매칭을 하지 않아야될 경우에는 "0"으로 지시할 수 있다.
5G에서는 전술한 레이트 매칭 자원을 단말에 설정하는 방법으로 "RB 심볼 레벨" 및 "RE 레벨"의 granularity를 지원한다. 보다 구체적으로는 하기의 설정 방법을 따를 수 있다.
RB 심볼 레벨
단말은 대역폭부분 별로 최대 4개의 RateMatchPattern을 상위 계층 시그널링으로 설정 받을 수 있고, 하나의 RateMatchPattern은 하기의 내용을 포함할 수 있다.
- 대역폭부분 내의 예비 자원 (Reserved Resource)으로써, 주파수 축으로 RB 레벨의 비트맵과 심볼 레벨의 비트맵으로 조합으로 해당 예비 자원의 시간 및 주파수 자원 영역이 설정된 자원이 포함될 수 있다. 상기 예비 자원은 하나 또는 두개의 슬롯에 걸쳐 span될 수 있다. 각 RB 레벨 및 심볼 레벨 비트맵 pair로 구성된 시간 및 주파수 영역이 반복되는 시간 도메인 패턴(periodicityAndPattern)이 추가로 설정될 수 있다.
- 대역폭부분 내의 제어자원세트로 설정된 시간 및 주파수 도메인 자원영역과 해당 자원영역이 반복되는 탐색공간 설정으로 설정된 시간 도메인 패턴에 해당하는 자원 영역이 포함될 수 있다.
RE 레벨
단말은 하기의 내용을 상위 계층 시그널링을 통해 설정 받을 수 있다.
- LTE CRS (Cell-specific Reference Signal 또는 Common Reference Signal) 패턴에 해당하는 RE에 대한 설정 정보 (lte-CRS-ToMatchAround)로써 LTE CRS의 포트 수 (nrofCRS-Ports) 및 LTE-CRS-vshift(s) 값 (v-shift), 기준이 되는 주파수 지점 (예를 들어 reference point A)에서부터 LTE 캐리어의 센터 부반송파(Subcarrier) 위치 정보(carrierFreqDL), LTE 캐리어의 대역폭크기 (carrierBandwidthDL) 정보, MBSFN(Multicast-broadcast single-frequency network)에 해당하는 서브프레임 설정 정보 (mbsfn-SubframConfigList) 등을 포함할 수 있다. 단말은 전술한 정보들에 기반하여 LTE 서브프레임에 해당하는 NR 슬롯 내에서의 CRS의 위치를 판단할 수 있다.
- 대역폭부분 내의 하나 또는 다수 개의 ZP(Zero Power) CSI-RS에 해당하는 자원 세트에 대한 설정 정보를 포함할 수 있다.
[LTE CRS rate match 관련]
다음으로 상술한 LTE CRS에 대한 rate match 과정에 대해 상세히 설명한다. LTE(Long Term Evolution)와 NR(New RAT)의 공존을 위하여(LTE-NR Coexistence), NR에서는 NR 단말에게 LTE의 CRS(Cell Specific Reference Signal)의 패턴을 설정해 주는 기능을 제공한다. 보다 구체적으로, 상기 CRS 패턴은 ServingCellConfig IE(Information Element) 혹은 ServingCellConfigCommon IE 내의 적어도 한 개의 파라미터를 포함한 RRC 시그널링에 의해 제공될 수 있다. 상기 파라미터의 예를 들면, lte-CRS-ToMatchAround, lte-CRS-PatternList1-r16, lte-CRS-PatternList2-r16, crs-RateMatch-PerCORESETPoolIndex-r16 등이 있을 수 있다.
Rel-15 NR에서는 상기 lte-CRS-ToMatchAround 파라미터를 통해 서빙셀 당 한 개의 CRS 패턴이 설정될 수 있는 기능을 제공한다. Rel-16 NR에서는 서빙셀 당 복수의 CRS 패턴 설정이 가능하도록 상기 기능이 확장되었다. 보다 구체적으로, Single-TRP(transmission and reception point) 설정 단말에는 한 개의 LTE 캐리어(carrier) 당 한 개의 CRS 패턴이 설정될 수 있고, Multi-TRP 설정 단말에는 한 개의 LTE 캐리어 당 두 개의 CRS 패턴이 설정될 수 있게 되었다. 예를 들어, Single-TRP 설정 단말에는 상기 lte-CRS-PatternList1-r16 파라미터를 통하여 서빙셀당 최대 3개의 CRS 패턴을 설정할 수 있다. 또 다른 예를 들어, multi-TRP 설정 단말에는 TRP별로 CRS가 설정될 수 있다. 즉, TRP1에 대한 CRS 패턴은 lte-CRS-PatternList1-r16 파라미터를 통해 설정되고, TRP2에 대한 CRS 패턴은 lte-CRS-PatternList2-r16 파라미터를 통해 설정될 수 있다. 한편, 위와 같이 두 개의 TRP가 설정된 경우, 특정 PDSCH(Physical Downlink Shared Channel)에 상기 TRP1 및 TRP2의 CRS 패턴을 모두 적용하는지, 혹은 한 개의 TRP에 대한 CRS 패턴만을 적용하는지 여부는 crs-RateMatch-PerCORESETPoolIndex-r16 파라미터를 통해 결정되는데, 상기 crs-RateMatch-PerCORESETPoolIndex-r16 파라미터가 enabled로 설정되면 한 개의 TRP의 CRS 패턴만을 적용하고, 그 외의 경우에는 두 TRP의 CRS 패턴을 모두 적용한다.
표 16은 상기 CRS 패턴을 포함하는 ServingCellConfig IE를 나타낸 것이며, 표 17은 CRS 패턴에 대한 적어도 한 개의 파라미터를 포함하는 RateMatchPatternLTE-CRS IE를 나타낸 것이다.
[표 16]
Figure pat00034
Figure pat00035
[표 17]
Figure pat00036
[PDSCH: 주파수 자원할당 관련]
도 13은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel)의 주파수축 자원 할당 예를 도시하는 도면이다.
도 13은 NR 무선 통신 시스템에서 상위 레이어를 통하여 설정 가능한 type 0 (13-00), type 1 (13-05), 그리고 동적 변경(dynamic switch) (13-10)의 세 가지 주파수 축 자원 할당 방법들을 도시하는 도면이다.
도 13을 참조하면, 만약 상위 레이어 시그널링을 통하여 단말이 resource type 0 만을 사용하도록 설정된 경우(13-00), 해당 단말에게 PDSCH를 할당하는 일부 하향링크 제어 정보(downlink control information, DCI)는 NRBG개의 비트로 구성되는 비트맵을 포함한다. 이를 위한 조건은 차후 다시 설명한다. 이때 NRBG는 BWP 지시자(indicator)가 할당하는 BWP 크기(size) 및 상위 레이어 파라미터 rbg-Size에 따라 아래 [표 18]과 같이 결정되는 RBG(resource block group)의 수를 의미하며, 비트맵에 의하여 1로 표시되는 RBG에 데이터가 전송되게 된다.
[표 18]
Figure pat00037
만약 상위 레이어 시그널링을 통하여 단말이 resource type 1 만을 사용하도록 설정된 경우(13-05), 해당 단말에게 PDSCH를 할당하는 일부 DCI는
Figure pat00038
개의 비트들로 구성되는 주파수 축 자원 할당 정보를 포함한다. 이를 위한 조건은 차후 다시 설명된다. 기지국은 이를 통하여 starting VRB(13-20)와 이로부터 연속적으로 할당되는 주파수 축 자원의 길이(13-25)를 설정할 수 있다.
만약 상위 레이어 시그널링을 통하여 단말이 resource type 0과 resource type 1를 모두 사용하도록 설정된 경우(13-10), 해당 단말에게 PDSCH를 할당하는 일부 DCI는 resource type 0을 설정하기 위한 payload(13-15)와 resource type 1을 설정하기 위한 payload(13-20, 13-25)중 큰 값(13-35)의 비트들로 구성되는 주파수 축 자원 할당 정보를 포함한다. 이를 위한 조건은 차후 다시 설명된다. 이때, DCI 내 주파수 축 자원 할당 정보의 제일 앞 부분(MSB)에 한 비트가 추가될 수 있고(13-30), 해당 비트가 '0'의 값인 경우 resource type 0이 사용됨이 지시되고, '1'의 값인 경우 resource type 1이 사용됨이 지시될 수 있다.
[PDSCH/PUSCH: 시간 자원할당 관련]
아래에서는 차세대 이동통신 시스템(5G 또는 NR 시스템)에서의 데이터 채널에 대한 시간 도메인 자원할당 방법이 설명된다.
기지국은 단말에게 하향링크 데이터채널(Physical Downlink Shared Channel, PDSCH) 및 상향링크 데이터채널(Physical Uplink Shared Channel, PUSCH)에 대한 시간 도메인 자원할당 정보에 대한 테이블(Table)을, 상위 계층 시그널링 (예를 들어 RRC 시그널링)으로 설정할 수 있다. PDSCH에 대해서는 최대 maxNrofDL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있고, PUSCH에 대해서는 최대 maxNrofUL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있다. 일 실시예에서, 시간 도메인 자원할당 정보에는 PDCCH-to-PDSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K0로 표기함), PDCCH-to-PUSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케쥴링하는 PUSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K2로 표기함), 슬롯 내에서 PDSCH 또는 PUSCH가 스케쥴링된 시작 심볼의 위치 및 길이에 대한 정보, PDSCH 또는 PUSCH의 매핑 타입 등이 포함될 수 있다. 예를 들면, 아래의 [표 19] 또는 [표 20]과 같은 정보가 기지국으로부터 단말에게 전송될 수 있다.
[표 19]
Figure pat00039
[표 20]
Figure pat00040
기지국은 상술된 시간 도메인 자원할당 정보에 대한 테이블의 엔트리 중 하나를, L1 시그널링(예를 들어 DCI)를 통해 단말에게 통지할 수 있다 (예를 들어 DCI 내의 '시간 도메인 자원할당' 필드로 지시될 수 있음). 단말은 기지국으로부터 수신한 DCI에 기초하여 PDSCH 또는 PUSCH에 대한 시간 도메인 자원할당 정보를 획득할 수 있다.
도 14는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH의 시간 축 자원 할당 예를 도시하는 도면이다.
도 14을 참조하면, 기지국은 상위 레이어를 이용하여 설정되는 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격(subcarrier spacing, SCS)(μ PDSCH , μ PDCCH ), 스케줄링 오프셋(scheduling offset)(K0) 값, 그리고 DCI를 통하여 동적으로 지시되는 한 slot(14-10) 내 OFDM symbol 시작 위치(14-00)와 길이(14-05)에 따라 PDSCH 자원의 시간 축 위치를 지시할 수 있다.
도 15a는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간축 자원 할당 예를 도시하는 도면이다.
도 15a를 참조하면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 같은 경우 (15-00, μ PDSCH = μ PDCCH ), 데이터와 제어를 위한 슬롯 번호(slot number)가 같으므로, 기지국 및 단말은 미리 정해진 슬롯 오프셋(slot offset) K0에 맞추어, 스케줄링 오프셋(scheduling offset)을 생성할 수 있다. 반면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 다른 경우 (15-05, μ PDSCH
Figure pat00041
μ PDCCH ), 데이터와 제어를 위한 슬롯 번호(slot number)가 다르므로, 기지국 및 단말은 PDCCH의 서브캐리어 간격을 기준으로 하여, 미리 정해진 슬롯 오프셋(slot offset) K0에 맞추어 스케줄링 오프셋(scheduling offset)을 생성할 수 있다.
[PDSCH: 프로세싱 시간]
다음으로 PDSCH 프로세싱 시간 (PDSCH processing procedure time)에 대해 설명한다. 기지국이 단말에 DCI format 1_0, 1_1, 또는 1_2를 사용하여 PDSCH를 전송하도록 스케줄링 하는 경우, 단말은 DCI를 통해 지시된 전송 방법 (변복조 및 코딩 지시 인덱스 (MCS), 복조 기준 신호 관련 정보, 시간 및 주파수 자원 할당 정보 등)을 적용하여 PDSCH를 수신하기 위한 PDSCH 프로세싱 시간이 필요할 수 있다. NR에서는 이를 고려하여 PDSCH 프로세싱 시간을 정의하였다. 단말의 PDSCH 프로세싱 시간은 하기의 [수학식 3]를 따를 수 있다.
[수학식 3]
Figure pat00042
수학식 3으로 전술한 Tproc,1에서 각 변수는 하기와 같은 의미를 가질 수 있다.
- N 1 : 단말의 capability에 따른 단말 처리 능력 (UE processing capability) 1 또는 2와 뉴머롤로지 μ에 따라 정해지는 심볼 수. 단말의 capability 보고에 따라 단말 처리 능력 1로 보고된 경우 [표 x2-2]의 값을 가지고, 단말 처리 능력 2로 보고되고 단말 처리 능력 2를 사용할 수 있다는 것이 상위 레이어 시그널링을 통해 설정된 경우 [표 21]의 값을 가질 수 있다. 뉴머롤로지 μ는 상기 T proc,1 를 최대화하도록 μPDCCH, μPDSCH, μUL 중 최소값에 대응될 수 있고, μPDCCH, μPDSCH, μUL는 각각 PDSCH를 스케줄한 PDCCH의 뉴머롤로지, 스케줄된 PDSCH의 뉴머롤로지, HARQ-ACK이 전송될 상향링크 채널의 뉴머롤로지를 의미할 수 있다.
[표 21] PDSCH processing capability 1인 경우 PDSCH 프로세싱 시간
Figure pat00043
[표 22] PDSCH processing capability 2인 경우 PDSCH 프로세싱 시간
Figure pat00044
-
Figure pat00045
: 64
- Text: 단말이 공유 스펙트럼 채널 접속 방식을 사용하는 경우, 단말은 Text를 계산하여 PDSCH 프로세싱 시간에 적용할 수 있다. 그렇지 않으면 Text는 0으로 가정한다.
- 만약 PDSCH DMRS 위치 값을 나타내는 l1이 12이면 상기 [표 x2-2]의 N1,0 는 14의 값을 가지고, 그렇지 않은 경우에는 13의 값을 가진다.
- PDSCH mapping type A에 대해서, PDSCH의 마지막 심볼이 PDSCH가 전송되는 슬롯에서의 i번째 심볼이고, i < 7이면 d1,1은 7-i이고, 그렇지 않으면 d1,1은 0이다.
- d2: 높은 priority index를 갖는 PUCCH와 낮은 priority index를 갖는 PUCCH 또는 PUSCH가 시간 상에서 겹치는 경우, 높은 priority index를 갖는 PUCCH의 d2는 단말로부터 리포팅된 값으로 설정될 수 있다. 그렇지 않으면 d2는 0이다.
- 단말 processing capability 1에 대해 PDSCH mapping type B가 사용된 경우 d1,1 값은 하기와 같이 스케줄된 PDSCH의 심볼 개수인 L과 PDSCH를 스케줄하는 PDCCH와 스케줄된 PDSCH 간 겹친 심볼의 개수 d에 따라 결정될 수 있다.
- L
Figure pat00046
7이면 d1,1 = 0이다.
- L
Figure pat00047
4이고 L
Figure pat00048
6이면, d1,1 = 7 - L이다.
- L = 3이면, d1,1 = min (d, 1)이다.
- L = 2이면, d1,1 = 3 + d이다.
- 단말 processing capability 2에 대해 PDSCH mapping type B가 사용된 경우 d1,1 값은 하기와 같이 스케줄된 PDSCH의 심볼 개수인 L과 PDSCH를 스케줄하는 PDCCH와 스케줄된 PDSCH 간 겹친 심볼의 개수 d에 따라 결정될 수 있다.
- L
Figure pat00049
7이면 d1,1 = 0이다.
- L
Figure pat00050
4이고 L
Figure pat00051
6이면, d1,1 = 7 - L이다.
- L = 2인 경우,
- 만약 스케줄하는 PDCCH가 3개 심볼로 이루어진 CORESET 내에 존재하고, 해당 CORESET과 스케줄된 PDSCH가 같은 시작 심볼을 가지는 경우, d1,1 = 3이다.
- 그렇지 않은 경우, d1,1 = d이다.
- 주어진 서빙 셀 내에서 capability 2를 지원하는 단말의 경우, 단말 processing capability 2에 따른 PDSCH 프로세싱 시간은 단말이 해당 셀에 대해 상위 레이어 시그널링인 processingType2Enabled가 enable로 설정된 경우 적용할 수 있다.
만약 HARQ-ACK 정보를 포함하는 PUCCH의 첫 번째 상향 링크 전송 심볼의 위치가 (해당 위치는 HARQ-ACK의 전송 시점으로 정의되는 K 1 -, HARQ-ACK 전송을 위해 사용되는 PUCCH 자원, 그리고 타이밍 어드밴스 효과가 고려될 수 있다) PDSCH의 마지막 심볼 이후부터 T proc,1 만큼의 시간 이후에 나오는 첫 번째 상향 링크 전송 심볼보다 먼저 시작되지 않는다면, 단말은 유효한 HARQ-ACK 메시지를 전송해야 한다. 즉, 단말은 PDSCH 프로세싱 시간이 충분한 경우에 한해 HARQ-ACK을 포함하는 PUCCH를 전송해야 한다. 그렇지 않으면 단말은 스케줄된 PDSCH에 대응되는 유효한 HARQ-ACK 정보를 기지국에게 제공할 수 없다. 상기 T-proc,1은 일반 혹은 확장된 CP의 경우 모두에 대해 사용될 수 있다. 만약 1개 슬롯 내에서 PDSCH 전송 위치가 2개로 구성된 PDSCH의 경우, d1,1은 해당 슬롯 내의 첫 번째 PDSCH 전송 위치를 기준으로 계산한다.
[PDSCH: Cross-carrier scheduling 시 수신 준비 시간]
다음으로 스케줄하는 PDCCH가 전송되는 뉴머롤로지인 μPDCCH와 해당 PDCCH를 통해 스케줄되는 PDSCH가 전송되는 뉴머롤로지인 μPDSCH가 서로 상이한 cross-carrier scheduling의 경우, PDCCH와 PDSCH 간에 시간 간격에 대해 정의된 단말의 PDSCH 수신 준비 시간인 N-pdsch에 대해 설명한다.
만약 μPDCCH < μPDSCH 인 경우, 스케줄된 PDSCH는 해당 PDSCH를 스케줄한 PDCCH의 마지막 심볼로부터 Npdsch 심볼 이후에 나오는 슬롯의 첫 번째 심볼보다 먼저 전송될 수 없다. 해당 PDSCH의 전송 심볼은 DM-RS를 포함할 수 있다.
만약 μPDCCH > μPDSCH 인 경우, 스케줄된 PDSCH는 해당 PDSCH를 스케줄한 PDCCH의 마지막 심볼로부터 Npdsch 심볼 이후부터 전송될 수 있다. 해당 PDSCH의 전송 심볼은 DM-RS를 포함할 수 있다.
[표 23] 스케줄링된 PDCCH 부반송파 간격에 따른 Npdsch
Figure pat00052
[SRS 관련]
다음으로 단말의 Sounding Reference Signal (SRS) 전송을 이용한 상향링크 채널 추정 방법에 대해 기술한다. 기지국은 단말에게 SRS 전송을 위한 설정 정보를 전달하기 위해 상향링크 BWP마다 적어도 하나의 SRS configuration을 설정할 수 있고, 또한 SRS configuration마다 적어도 하나의 SRS resource set을 설정할 수 있다. 일례로, 기지국과 단말은 SRS resource set에 관한 정보를 전달하기 위해 하기와 같은 상위 시그널링 정보를 주고 받을 수 있다.
- srs-ResourceSetId: SRS resource set 인덱스
- srs-ResourceIdList: SRS resource set에서 참조하는 SRS resource 인덱스의 집합
- resourceType: SRS resource set에서 참조하는 SRS resource의 시간 축 전송 설정으로, 'periodic', 'semi-persistent', 'aperiodic' 중 하나로 설정될 수 있다. 만약 'periodic' 또는 'semi-persistent'로 설정될 경우, SRS resource set의 사용처에 따라 associated CSI-RS 정보가 제공될 수 있다. 만약 'aperiodic'으로 설정될 경우, 비주기적 SRS resource 트리거 리스트, 슬롯 오프셋 정보가 제공될 수 있고, SRS resource set의 사용처에 따라 associated CSI-RS 정보가 제공될 수 있다.
- usage: SRS resource set에서 참조하는 SRS resource의 사용처에 대한 설정으로, 'beamManagement', 'codebook', 'nonCodebook', 'antennaSwitching' 중 하나로 설정될 수 있다.
- alpha, p0, pathlossReferenceRS, srs-PowerControlAdjustmentStates: SRS resource set에서 참조하는 SRS resource의 송신 전력 조절을 위한 파라미터 설정을 제공한다.
단말은 SRS resource set에서 참조하는 SRS resource 인덱스의 집합에 포함된 SRS resource는 SRS resource set에 설정된 정보를 따른다고 이해할 수 있다.
또한, 기지국과 단말은 SRS resource에 대한 개별 설정 정보를 전달하기 위해 상위 레이어 시그널링 정보를 송수신할 수 있다. 일례로, SRS resource에 대한 개별 설정 정보는 SRS resource의 슬롯 내 시간-주파수 축 맵핑 정보를 포함할 수 있고, 이는 SRS resource의 슬롯 내 또는 슬롯 간 주파수 호핑(hopping)에 대한 정보를 포함할 수 있다. 또한, SRS resource에 대한 개별 설정 정보는 SRS resource의 시간 축 전송 설정을 포함할 수 있고, 'periodic', 'semi-persistent', 'aperiodic' 중 하나로 설정될 수 있다. 이는 SRS resource가 포함된 SRS resource set과 같은 시간 축 전송 설정을 가지도록 제한될 수 있다. 만일 SRS resource의 시간 축 전송 설정이 'periodic' 또는 'semi-persistent'로 설정되는 경우, 추가적으로 SRS resource 전송 주기 및 슬롯 오프셋(예를 들어, periodicityAndOffset)가 시간 축 전송 설정에 포함될 수 있다.
기지국은 RRC 시그널링 또는 MAC CE 시그널링을 포함한 상위 레이어 시그널링, 또는 L1 시그널링 (예를 들어, DCI)을 통해 단말에게 SRS 전송을 활성화(activation) 또는 비활성화(deactivation)하거나 트리거 할 수 있다.예를 들어, 기지국은 단말에 상위 레이어 시그널링을 통해 주기적 SRS 전송을 활성화하거나 비활성화할 수 있다. 기지국은 상위 레이어 시그널링을 통해 resourceType이 periodic으로 설정된 SRS resource set을 활성화하도록 지시할 수 있고, 단말은 활성화된 SRS resource set에서 참조하는 SRS resource를 전송할 수 있다. 전송되는 SRS resource의 슬롯 내 시간-주파수 축 자원 맵핑은 SRS resource에 설정된 자원 맵핑 정보를 따르며, 전송 주기 및 슬롯 오프셋을 포함한 슬롯 맵핑은 SRS resource에 설정된 periodicityAndOffset을 따른다. 또한, 전송하는 SRS resource에 적용하는 spatial domain transmission filter는 SRS resource에 설정된 spatial relation info를 참조할 수 있고, 또는 SRS resource가 포함된 SRS resource set에 설정된 associated CSI-RS 정보를 참조할 수 있다. 단말은 상위 레이어 시그널링을 통해 활성화된 주기적 SRS resource에 대해 활성화된 상향링크 BWP 내에서 SRS resource를 전송할 수 있다.
예를 들어, 기지국은 단말에 상위 레이어 시그널링을 통해 semi-persistent SRS 전송을 활성화하거나 비활성화할 수 있다. 기지국은 MAC CE 시그널링을 통해 SRS resource set을 활성화하도록 지시할 수 있고, 단말은 활성화된 SRS resource set에서 참조하는 SRS resource를 전송할 수 있다. MAC CE 시그널링을 통해 활성화되는 SRS resource set은 resourceType이 semi-persistent로 설정된 SRS resource set으로 한정될 수 있다. 전송하는 SRS resource의 슬롯 내 시간-주파수 축 자원 맵핑은 SRS resource에 설정된 자원 맵핑 정보를 따르며, 전송 주기 및 슬롯 오프셋을 포함한 슬롯 맵핑은 SRS resource에 설정된 periodicityAndOffset을 따른다. 또한, 전송하는 SRS resource에 적용하는 spatial domain transmission filter는 SRS resource에 설정된 spatial relation info를 참조할 수 있고, 또는 SRS resource가 포함된 SRS resource set에 설정된 associated CSI-RS 정보를 참조할 수 있다. 만일 SRS resource에 spatial relation info가 설정되어 있는 경우, 이를 따르지 않고 반지속적 SRS 전송을 활성화하는 MAC CE 시그널링을 통해 전달되는 spatial relation info에 대한 설정 정보를 참조하여 spatial domain transmission filter가 결정될 수 있다. 단말은 상위 레이어 시그널링을 통해 활성화된 반지속적 SRS resource에 대해 활성화된 상향링크 BWP 내에서 SRS resource를 전송할 수 있다.
예를 들어, 기지국은 단말에 DCI를 통해 비주기적 SRS 전송을 트리거 할 수 있다. 기지국은 DCI의 SRS request 필드를 통해 비주기적 SRS resource 트리거(aperiodicSRS-ResourceTrigger) 중 하나를 지시할 수 있다. 단말은 SRS resource set의 설정 정보 중, 비주기적 SRS resource 트리거 리스트에서 DCI를 통해 지시된 비주기적 SRS resource 트리거를 포함하는 SRS resource set이 트리거 되었다고 이해할 수 있다. 단말은 트리거 된 SRS resource set에서 참조하는 SRS resource를 전송할 수 있다. 전송하는 SRS resource의 슬롯 내 시간-주파수 축 자원 맵핑은 SRS resource에 설정된 자원 맵핑 정보를 따른다. 또한, 전송하는 SRS resource의 슬롯 맵핑은 DCI를 포함하는 PDCCH과 SRS resource 간의 슬롯 오프셋을 통해 결정될 수 있으며, 이는 SRS resource set에 설정된 slot offset 집합에 포함된 값(들)을 참조할 수 있다. 구체적으로, DCI를 포함하는 PDCCH과 SRS resource 간의 슬롯 오프셋은 SRS resource set에 설정된 slot offset 집합에 포함된 오프셋 값(들) 중에 DCI의 time domain resource assignment 필드에서 지시한 값을 적용할 수 있다. 또한, 전송하는 SRS resource에 적용하는 spatial domain transmission filter는 SRS resource에 설정된 spatial relation info를 참조할 수 있고, 또는 SRS resource가 포함된 SRS resource set에 설정된 associated CSI-RS 정보를 참조할 수 있다. 단말은 DCI를 통해 트리거 된 비주기적 SRS resource에 대해 활성화된 상향링크 BWP 내에서 SRS resource를 전송할 수 있다.
기지국이 단말에 DCI를 통해 aperiodic SRS 전송을 트리거 하는 경우, 단말이 SRS resource에 대한 설정 정보를 적용하여 SRS를 전송하기 위해, aperiodic SRS 전송을 트리거 하는 DCI를 포함하는 PDCCH와 전송하는 SRS 사이의 최소한의 타임 인터벌 (minimum time interval)이 필요할 수 있다. 단말의 SRS 전송을 위한 time interval은 aperiodic SRS 전송을 트리거 하는 DCI를 포함하는 PDCCH의 마지막 심볼부터 전송하는 SRS resource(s) 중에 가장 먼저 전송되는 SRS resource가 맵핑된 첫 번째 심볼 사이의 심볼 수로 정의할 수 있다. Minimum time interval은 단말이 PUSCH 전송을 준비하기 위해 필요한 PUSCH preparation procedure time을 참조하여 정해질 수 있다. 또한, minimum time interval은 전송하는 SRS resource를 포함한 SRS resource set의 사용처에 따라 다른 값을 가질 수 있다. 예를 들어, minimum time interval은 단말의 PUSCH preparation procedure time을 참조하여 단말의 capability에 따른 단말 처리 능력을 고려하여 정의된 N2 심볼로 정해질 수 있다. 또한, 전송하는 SRS resource를 포함한 SRS resource set의 사용처를 고려하여 SRS resource set의 사용처가 'codebook' 또는 'antennaSwitching'으로 설정된 경우 minimum time interval을 N2 심볼로 정하고, SRS resource set의 사용처가 'nonCodebook' 또는 'beamManagement'로 설정된 경우 minimum time interval을 N2+14 심볼로 정할 수 있다. 단말은 비주기적 SRS 전송을 위한 time interval이 minimum time interval보다 크거나 같은 경우 비주기적 SRS를 전송하고, 비주기적 SRS 전송을 위한 time interval이 minimum time interval보다 작은 경우 비주기적 SRS를 트리거하는 DCI를 무시할 수 있다.
[표 24]
Figure pat00053
상기 [표 24]의 spatialRelationInfo 설정 정보는 하나의 reference signal을 참조하여 해당 reference signal의 빔 정보 해당 SRS 전송에 사용되는 빔에 대해 적용하게 하는 것이다. 예를 들면, spatialRelationInfo의 설정은 아래의 [표 25]와 같은 정보를 포함할 수 있다.
[표 25]
Figure pat00054
상기 spatialRelationInfo 설정을 참조하면, 특정 reference signal의 빔 정보를 이용하기 위해 참조하고자 하는 reference signal의 인덱스로 즉 SS/PBCH 블록 인덱스, CSI-RS 인덱스 또는 SRS 인덱스를 설정할 수 있다. 상위 시그널링 referenceSignal은 어떤 reference signal의 빔 정보를 해당 SRS 전송에 참조할 지 가리키는 설정 정보이며, ssb-Index는 SS/PBCH 블록의 인덱스, csi-RS-Index는 CSI-RS의 인덱스, srs는 SRS의 인덱스를 각각 의미한다. 만약 상위 시그널링 referenceSignal의 값이 'ssb-Index'로 설정되면, 단말은 ssb-Index에 해당하는 SS/PBCH 블록의 수신 시 이용했던 수신 빔을 해당 SRS 전송의 송신 빔으로 적용할 수 있다. 만약 상위 시그널링 referenceSignal의 값이 'csi-RS-Index'로 설정되면, 단말은 csi-RS-Index에 해당하는 CSI-RS의 수신 시 이용했던 수신 빔을 해당 SRS 전송의 송신 빔으로 적용할 수 있다. 만약 상위 시그널링 referenceSignal의 값이 'srs'로 설정되면, 단말은 srs에 해당하는 SRS의 송신 시 이용했던 송신 빔을 해당 SRS 전송의 송신 빔으로 적용할 수 있다.
[PUSCH: 전송 방식 관련]
다음으로 PUSCH 전송의 스케줄링 방식에 대해 설명한다. PUSCH 전송은 DCI 내의 UL grant에 의해 동적으로 스케줄링 되거나, configured grant Type 1 또는 Type 2에 의해 동작할 수 있다. PUSCH 전송에 대한 동적 스케줄링 지시는 DCI format 0_0 또는 0_1으로 가능하다.
Configured grant Type 1 PUSCH 전송은 DCI 내의 UL grant에 대한 수신을 하지 않고, 상위 시그널링을 통한 [표 26]의 rrc-ConfiguredUplinkGrant를 포함하는 configuredGrantConfig의 수신을 통해 준정적으로 설정될 수 있다. Configured grant Type 2 PUSCH 전송은 상위 시그널링을 통한 [표 26]의 rrc-ConfiguredUplinkGrant를 포함하지 않는 configuredGrantConfig의 수신 이후, DCI 내의 UL grant에 의해 반지속적으로 스케줄링 될 수 있다. PUSCH 전송이 configured grant에 의해 동작하는 경우, PUSCH 전송에 적용되는 파라미터들은 상위 시그널링인 [표 27]의 pusch-Config 로 제공되는 dataScramblingIdentityPUSCH, txConfig, codebookSubset, maxRank, scaling of UCI-OnPUSCH를 제외하고는 [표 33]의 상위 시그널링인 configuredGrantConfig을 통해 적용된다. 단말이 [표 26]의 상위 시그널링인 configuredGrantConfig 내의 transformPrecoder를 제공받았다면, 단말은 configured grant에 의해 동작하는 PUSCH 전송에 대해 [표 27]의 pusch-Config 내의 tp-pi2BPSK를 적용한다.
[표 26]
Figure pat00055
다음으로 PUSCH 전송 방법에 대해 설명한다. PUSCH 전송을 위한 DMRS 안테나 포트는 SRS 전송을 위한 안테나 포트와 동일하다. PUSCH 전송은 상위 시그널링인 [표 x2-4]의 pusch-Config 내의 txConfig의 값이 'codebook' 혹은 'nonCodebook'인지에 따라 codebook 기반의 전송 방법과 non-codebook 기반의 전송 방법을 각각 따를 수 있다.
상술한 바와 같이, PUSCH 전송은 DCI format 0_0 또는 0_1을 통해 동적으로 스케줄링 될 수 있고, configured grant에 의해 준정적으로 설정될 수 있다. 만약 단말이 PUSCH 전송에 대한 스케줄링을 DCI format 0_0을 통해 지시받았다면, 단말은 serving cell 내 활성화된 상향링크 BWP 내에서 최소 ID에 대응되는 단말 특정적인 PUCCH resource에 대응되는 pucch-spatialRelationInfoID를 이용하여 PUSCH 전송을 위한 빔 설정을 수행하고, 이 때 PUSCH 전송은 단일 안테나 포트를 기반으로 한다. 단말은 pucch-spatialRelationInfo를 포함하는 PUCCH resource가 설정되지 않은 BWP 내에서, DCI format 0_0을 통해 PUSCH 전송에 대한 스케줄링을 기대하지 않는다. 만약 단말이 [표 27]의 pusch-Config 내의 txConfig를 설정받지 않았다면, 단말은 DCI format 0_1로 스케줄링 받는 것을 기대하지 않는다.
[표 27]
Figure pat00056
다음으로 codebook 기반의 PUSCH 전송에 대해 설명한다. Codebook 기반의 PUSCH 전송은 DCI format 0_0 또는 0_1을 통해 동적으로 스케줄링 될 수 있고, configured grant에 의해 준정적으로 동작할 수 있다. Codebook 기반의 PUSCH가 DCI format 0_1에 의해 동적으로 스케줄링 되거나 또는 configured grant에 의해 준정적으로 설정되면, 단말은 SRS Resource Indicator (SRI), Transmission Precoding Matrix Indicator (TPMI), 그리고 전송 rank (PUSCH 전송 레이어의 수)에 기반해서 PUSCH 전송을 위한 precoder를 결정한다.
이 때, SRI는 DCI 내의 필드 SRS resource indicator를 통해 주어지거나 상위 시그널링인 srs-ResourceIndicator를 통해 설정될 수 있다. 단말은 codebook 기반 PUSCH 전송 시 적어도 1개의 SRS resource를 설정받으며, 최대 2개까지 설정 받을 수 있다. 단말이 DCI를 통해 SRI를 제공받는 경우, 해당 SRI가 가리키는 SRS resource는 해당 SRI를 포함하는 PDCCH보다 이전에 전송된 SRS resource들 중에, SRI에 대응되는 SRS resource를 의미한다. 또한, TPMI 및 전송 rank 는 DCI 내의 필드 precoding information and number of layers를 통해 주어지거나, 상위 시그널링인 precodingAndNumberOfLayers를 통해 설정될 수 있다. TPMI는 PUSCH 전송에 적용되는 precoder를 지시하는 데 사용된다. 만약 단말이 1개의 SRS resource를 설정 받았을 때에는, TPMI는 설정된 1개의 SRS resource에서 적용될 precoder를 지시하는 데 사용된다. 만약 단말이 복수 개의 SRS resource들을 설정 받았을 때에는, TPMI는 SRI를 통해 지시되는 SRS resource에서 적용될 precoder를 지시하는 데 사용된다.
PUSCH 전송에 사용될 precoder는 상위 시그널링인 SRS-Config 내의 nrofSRS-Ports 값과 같은 수의 안테나 포트 수를 갖는 상향링크 코드북에서 선택된다. Codebook 기반의 PUSCH 전송에서, 단말은 TPMI와 상위 시그널링인 pusch-Config 내의 codebookSubset에 기반하여 codebook subset을 결정한다. 상위 시그널링인 pusch-Config 내의 codebookSubset은 단말이 기지국에게 보고하는 UE capability에 근거하여 'fullyAndPartialAndNonCoherent', 'partialAndNonCoherent', 또는 'nonCoherent' 중 하나로 설정 받을 수 있다. 만약 단말이 UE capability로 'partialAndNonCoherent'를 보고했다면, 단말은 상위 시그널링인 codebookSubset의 값이 'fullyAndPartialAndNonCoherent'로 설정 되는 것을 기대하지 않는다. 또한, 만약 단말이 UE capability로 'nonCoherent'를 보고했다면, 단말은 상위 시그널링인 codebookSubset의 값이 'fullyAndPartialAndNonCoherent' 또는 'partialAndNonCoherent'로 설정 되는 것을 기대하지 않는다. 상위 시그널링인 SRS-ResourceSet 내의 nrofSRS-Ports가 2개의 SRS 안테나 포트를 가리키는 경우, 단말은 상위 시그널링인 codebookSubset의 값이 'partialAndNonCoherent'로 설정되는 것을 기대하지 않는다.
단말은 상위 시그널링인 SRS-ResourceSet 내의 usage의 값이 'codebook'으로 설정된 SRS resource set을 1개 설정 받을 수 있고, 해당 SRS resource set 내에서 1개의 SRS resource 가 SRI를 통해 지시될 수 있다. 만약 상위 시그널링인 SRS-ResourceSet 내의 usage 값이 'codebook'으로 설정된 SRS resource set 내에 여러 SRS resource들이 설정되면, 단말은 상위 시그널링인 SRS-Resource 내의 nrofSRS-Ports의 값이 모든 SRS resource들에 대해 같은 값이 설정되는 것을 기대한다.
단말은 상위 시그널링에 따라 usage의 값이 'codebook'으로 설정된 SRS resource set 내에 포함된 1개 또는 복수 개의 SRS resource를 기지국으로 전송하고, 기지국은 단말이 전송한 SRS resource 중 1개를 선택하여 해당 SRS resource의 송신 빔 정보를 이용하여 단말이 PUSCH 전송을 수행할 수 있도록 지시한다. 이 때, codebook 기반 PUSCH 전송에서는 SRI가 1개의 SRS resource의 인덱스를 선택하는 정보로 사용되며 DCI 내에 포함된다. 추가적으로, 기지국은 단말이 PUSCH 전송에 사용할 TPMI와 rank를 지시하는 정보를 DCI에 포함시킨다. 단말은 상기 SRI가 지시하는 SRS resource를 이용하여, 해당 SRS resource의 송신 빔을 기반으로 지시된 rank와 TPMI가 지시하는 precoder를 적용하여 PUSCH 전송을 수행한다.
다음으로 non-codebook 기반의 PUSCH 전송에 대해 설명한다. Non-codebook 기반의 PUSCH 전송은 DCI format 0_0 또는 0_1을 통해 동적으로 스케줄링 될 수 있고, configured grant에 의해 준정적으로 동작할 수 있다. 상위 시그널링인 SRS-ResourceSet 내의 usage의 값이 'nonCodebook'으로 설정된 SRS resource set 내에 적어도 1개의 SRS resource가 설정된 경우, 단말은 DCI format 0_1을 통해 non-codebook 기반 PUSCH 전송을 스케줄링 받을 수 있다.
상위 시그널링인 SRS-ResourceSet 내의 usage의 값이 'nonCodebook'으로 설정된 SRS resource set에 대해, 단말은 1개의 연결되어 있는 NZP CSI-RS resource(non-zero power CSI-RS)를 설정 받을 수 있다. 단말은 SRS resource set과 연결되어 있는 NZP CSI-RS resource에 대한 측정을 통해 SRS 전송을 위한 precoder에 대한 계산을 수행할 수 있다. 만약 SRS resource set과 연결되어 있는 aperiodic NZP CSI-RS resource의 마지막 수신 심볼과 단말에서의 aperiodic SRS 전송의 첫번째 심볼 간의 차이가 42 심볼보다 적게 차이나면, 단말은 SRS 전송을 위한 precoder에 대한 정보가 갱신되는 것을 기대하지 않는다.
상위 시그널링인 SRS-ResourceSet 내의 resourceType의 값이 'aperiodic'으로 설정되면, 연결되어 있는 NZP CSI-RS는 DCI format 0_1 또는 1_1 내의 필드인 SRS request로 지시된다. 이 때, 연결되어 있는 NZP CSI-RS resource가 비주기적 NZP CSI-RS resource라면, DCI format 0_1 또는 1_1 내의 필드 SRS request의 값이 '00'이 아닌 경우에 대해 연결되어 있는 NZP CSI-RS가 존재함을 가리키게 된다. 이 때, 해당 DCI는 cross carrier 또는 cross BWP 스케줄링을 지시하지 않아야 한다. 또한, SRS request의 값이 만약 NZP CSI-RS의 존재를 가리키게 된다면, 해당 NZP CSI-RS는 SRS request 필드를 포함한 PDCCH가 전송된 슬롯에 위치하게 된다. 이 때, 스케줄링된 부반송파에 설정된 TCI state들은 QCL-TypeD로 설정되지 않는다.
만약 주기적 혹은 반지속적 SRS resource set이 설정되었다면, 연결되어 있는 NZP CSI-RS는 상위 시그널링인 SRS-ResourceSet 내의 associatedCSI-RS를 통해 지시될 수 있다. Non-codebook 기반 전송에 대해, 단말은 SRS resource에 대한 상위 시그널링인 spatialRelationInfo와 상위 시그널링인 SRS-ResourceSet 내의 associatedCSI-RS 가 함께 설정되는 것을 기대하지 않는다.
단말은 복수 개의 SRS resource들을 설정 받은 경우, PUSCH 전송에 적용할 precoder와 전송 rank를 기지국이 지시하는 SRI에 기반하여 결정할 수 있다. 이 때, SRI 는 DCI 내의 필드 SRS resource indicator를 통해 지시 받거나 또는 상위 시그널링인 srs-ResourceIndicator를 통해 설정 받을 수 있다. 상술한 codebook 기반의 PUSCH 전송과 마찬가지로, 단말이 DCI를 통해 SRI를 제공받는 경우, 해당 SRI가 가리키는 SRS resource는 해당 SRI를 포함하는 PDCCH보다 이전에 전송된 SRS resourc중에, SRI에 대응되는 SRS resource를 의미한다. 단말은 SRS 전송에 1개 또는 복수 개의 SRS resource들을 사용할 수 있고, 1개의 SRS resource set 내에 같은 심볼에서 동시 전송이 가능한 최대 SRS resource 개수와 최대 SRS resource 개수는 단말이 기지국으로 보고하는 UE capability에 의해 결정된다. 이 때, 단말이 동시에 전송하는 SRS resource들은 같은 RB를 차지한다. 단말은 각 SRS resource 별로 1개의 SRS 포트를 설정한다. 상위 시그널링인 SRS-ResourceSet 내의 usage의 값이 'nonCodebook'으로 설정된 SRS resource set은 1개만 설정될 수 있으며, non-codebook 기반 PUSCH 전송을 위한 SRS resource는 최대 4개까지 설정이 가능하다.
기지국은 SRS resource set과 연결된 1개의 NZP-CSI-RS를 단말로 전송하며, 단말은 해당 NZP-CSI-RS 수신 시 측정한 결과를 기반으로 하여, 해당 SRS resource set 내의 1개 또는 복수 개의 SRS resource 전송 시 사용할 precoder를 계산한다. 단말은 usage가 'nonCodebook'으로 설정된 SRS resource set 내의 1개 또는 복수 개의 SRS resource를 기지국으로 전송할 때 상기 계산된 precoder를 적용하고, 기지국은 수신한 1개 또는 복수 개의 SRS resource 중 1개 또는 복수 개의 SRS resource를 선택한다. 이 때, non-codebook 기반 PUSCH 전송에서는 SRI가 1개 또는 복수 개의 SRS resource의 조합을 표현할 수 있는 인덱스를 나타내며 상기 SRI는 DCI 내에 포함된다. 이 때, 기지국이 전송한 SRI가 지시하는 SRS resource의 수는 PUSCH의 송신 레이어의 수가 될 수 있으며, 단말은 각 레이어에 SRS resource 전송에 적용된 precoder를 적용해 PUSCH를 전송한다.
[PUSCH: 준비 과정 시간]
다음으로 PUSCH 준비 과정 시간 (PUSCH preparation procedure time)에 대해 설명한다. 기지국이 단말에 DCI format 0_0, 0_1, 또는 0_2를 사용하여 PUSCH를 전송하도록 스케줄링 하는 경우, 단말은 DCI를 통해 지시된 전송 방법 (SRS resource의 전송 프리코딩 방법, 전송 레이어 수, spatial domain transmission filter)을 적용하여 PUSCH를 전송하기 위한 PUSCH 준비 과정 시간이 필요할 수 있다. NR에서는 이를 고려하여 PUSCH 준비 과정 시간을 정의하였다. 단말의 PUSCH 준비 과정 시간은 하기의 [수학식 4]를 따를 수 있다.
[수학식 4]
Figure pat00057
수학식 4으로 전술한 Tproc,2에서 각 변수는 하기와 같은 의미를 가질 수 있다.
- N2: 단말의 capability에 따른 단말 처리 능력 (UE processing capability) 1 또는 2와 뉴머롤로지 μ에 따라 정해지는 심볼 수. 단말의 capability 보고에 따라 단말 처리 능력 1로 보고된 경우 [표 28]의 값을 가지고, 단말 처리 능력 2로 보고되고 단말 처리 능력 2를 사용할 수 있다는 것이 상위 레이어 시그널링을 통해 설정된 경우 [표 29]의 값을 가질 수 있다.
[표 28]
Figure pat00058
[표 29]
Figure pat00059
- d2,1: PUSCH 전송의 첫 번째 OFDM 심볼의 resource element들이 모두 DM-RS만으로 이루어지도록 설정된 경우 0, 아닌 경우 1로 정해지는 심볼 수.
-
Figure pat00060
: 64
- μ:
Figure pat00061
또는
Figure pat00062
중, Tproc,2이 더 크게 되는 값을 따른다.
Figure pat00063
은 PUSCH를 스케줄링 하는 DCI가 포함된 PDCCH가 전송되는 하향링크의 뉴머롤로지를 뜻하고,
Figure pat00064
은 PUSCH가 전송되는 상향링크의 뉴머롤로지를 뜻한다.
- Tc:
Figure pat00065
,
Figure pat00066
,
Figure pat00067
를 가진다.
- d2,2: PUSCH를 스케줄링하는 DCI가 BWP 스위칭을 지시하는 경우 BWP 스위칭 시간을 따르고, 그렇지 않은 경우 0을 가진다.
- d2: PUCCH와 높은 priority index를 갖는 PUSCH와 낮은 priority index를 갖는 PUCCH의 OFDM 심볼끼리 시간 상에서 겹치는 경우, 높은 priority index를 갖는 PUSCH의 d2 값이 사용된다. 그렇지 않으면 d2는 0이다.
- Text: 단말이 공유 스펙트럼 채널 접속 방식을 사용하는 경우, 단말은 Text를 계산하여 PUSCH 준비 과정 시간에 적용할 수 있다. 그렇지 않으면 Text는 0으로 가정한다.
- Tswitch: 상향링크 스위칭 간격이 트리거된 경우 Tswitch는 스위칭 간격 시간으로 가정한다. 그렇지 않으면 0으로 가정한다.
기지국과 단말은 DCI를 통해 스케줄링 한 PUSCH의 시간 축 자원 맵핑 정보와 상향링크-하향링크 간 타이밍 어드밴스의 영향을 고려하였을 때, PUSCH를 스케줄링 한 DCI를 포함한 PDCCH의 마지막 심볼부터 T proc,2 이후에 CP가 시작하는 첫 상향링크 심볼보다 PUSCH의 첫 심볼이 먼저 시작하는 경우 PUSCH 준비 과정 시간이 충분하지 않다고 판단한다. 만일 그렇지 않은 경우 기지국과 단말은 PUSCH 준비 과정 시간이 충분하다고 판단한다. 단말은 PUSCH 준비 과정 시간이 충분한 경우에 한해 PUSCH를 전송하고, PUSCH 준비 과정 시간이 충분하지 않은 경우 PUSCH를 스케줄링 하는 DCI를 무시할 수 있다.
[PUSCH: 반복 전송 관련]
하기에서는 5G 시스템에서 상향링크 데이터 채널의 반복 전송에 대해 구체적으로 설명한다. 5G 시스템에서는 상향링크 데이터 채널의 반복 전송 방법으로 두 가지 타입, PUSCH 반복 전송 타입 A, PUSCH 반복 전송 타입 B를 지원한다. 단말은 상위 레이어 시그널링으로 PUSCH 반복 전송 타입 A 혹은 B 중 하나를 설정 받을 수 있다.
PUSCH 반복 전송 타입 A
- 전술한 바와 같이, 하나의 슬롯 안에서 시간 도메인 자원 할당방법으로 상향링크 데이터 채널의 심볼 길이와 시작 심볼의 위치가 결정되고 기지국은 반복 전송 횟수를 상위 계층 시그널링(예를 들어 RRC 시그널링) 혹은 L1 시그널링 (예를 들어 DCI)를 통해 단말에게 통지할 수 있다.
- 단말은 기지국으로부터 수신한 반복 전송 횟수를 기반으로 설정 받은 상향링크 데이터 채널의 길이와 시작 심볼이 동일한 상향링크 데이터 채널을 연속된 슬롯에서 반복 전송할 수 있다. 이 때, 기지국이 단말에게 하향링크로 설정한 슬롯 혹은 단말이 설정 받은 상향링크 데이터 채널의 심볼 중 적어도 하나 이상의 심볼이 하향링크로 설정 된 경우, 단말은 상향링크 데이터 채널 전송을 생략하지만, 상향링크 데이터 채널의 반복 전송 횟수는 카운트한다.
PUSCH 반복 전송 타입 B
- 전술한 바와 같이, 하나의 슬롯 안에서 시간 도메인 자원 할당방법으로 상향링크 데이터 채널의 시작 심볼과 길이가 결정되고 기지국은 반복 전송 횟수 numberofrepetitions 를 상위 시그널링(예를 들어 RRC 시그널링) 혹은 L1 시그널링 (예를 들어 DCI)를 통해 단말에게 통지할 수 있다.
먼저 설정 받은 상향링크 데이터 채널의 시작 심볼과 길이를 기반으로 상향링크 데이터 채널의 nominal repetition이 하기와 같이 결정된다. n번째 nominal repetition이 시작하는 슬롯은
Figure pat00068
에 의해 주어지고 그 슬롯에서 시작하는 심볼은
Figure pat00069
에 의해 주어진다. n번째 nominal repetition이 끝나는 슬롯은
Figure pat00070
에 의해 주어지고 그 슬롯에서 끝나는 심볼은
Figure pat00071
에 의해 주어진다. 여기서 n=0,..., numberofrepetitions-1 이고 S는 설정 받은 상향링크 데이터 채널의 시작 심볼 L은 설정 받은 상향링크 데이터 채널의 심볼 길이를 나타낸다.
Figure pat00072
는 PUSCH 전송이 시작하는 슬롯을 나타내고
Figure pat00073
슬롯당 심볼의 수를 나타낸다.
- 단말은 PUSCH 반복 전송 타입 B를 위하여 invalid symbol을 결정한다. tdd-UL-DL-ConfigurationCommon 또는 tdd-UL-DL-ConfigurationDedicated에 의해 하향링크로 설정된 심볼은 PUSCH 반복 전송 타입 B를 위한 invalid 심볼로 결정된다. 추가적으로, 상위계층 파라미터 (예를 들어 InvalidSymbolPattern)에서 invalid 심볼이 설정 될 수 있다. 상위 계층 파라미터 (예를 들어 InvalidSymbolPattern)는 한 슬롯 혹은 두 슬롯에 걸친 심볼 레벨 비트맵을 제공하여 invalid 심볼이 설정 될 수 있다. 비트맵에서 1은 invalid 심볼을 나타낸다. 추가적으로, 상위 계층 파라미터(예를 들어 periodicityAndPattern)를 통해 비트맵의 주기와 패턴이 설정 될 수 있다. 만약 상위 계층 파라미터 (예를 들어 InvalidSymbolPattern)가 설정되고 InvalidSymbolPatternIndicator-ForDCIFormat0_1 또는 InvalidSymbolPatternIndicator-ForDCIFormat0_2 파라미터가 1을 나타내면 단말은 invalid 심볼 패턴을 적용하고, 상기 파라미터가 0을 나타내면 단말은 invalid 심볼 패턴을 적용하지 않는다. 만약 상위 계층 파라미터 (예를 들어 InvalidSymbolPattern)가 설정되고 InvalidSymbolPatternIndicator-ForDCIFormat0_1 또는 InvalidSymbolPatternIndicator-ForDCIFormat0_2 파라미터가 설정되지 않는다면 단말은 invalid 심볼 패턴을 적용한다.
Invalid 심볼이 결정된 후, 각각의 Nominal repetition에 대해 단말은 invalid 심볼 이외의 심볼들을 valid 심볼로 고려할 수 있다. 각각의 nominal repetition에서 valid 심볼이 하나 이상이 포함되면, nominal repetition은 하나 또는 더 많은 actual repetition들을 포함할 수 있다. 여기서 각 actual repetition은 하나의 슬롯 안에서 PUSCH 반복 전송 타입 B를 위해 사용될 수 있는 valid 심볼들의 연속적인 세트를 포함하고 있다.
도 15b는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 PUSCH 반복 전송 타입 B의 일례를 도시하는 도면이다. 단말은 상향링크 데이터 채널의 시작 심볼 S를 0과 상향링크 데이터 채널의 길이 L을 14로 설정 받고 반복 전송 횟수를 15으로 설정 받을 수 있다. 이 경우 Nominal repetition은 연속된 16개의 슬롯에서 나타낸다(1501). 그 후 단말은 각 nominal repetition(1501)에서 하향링크 심볼로 설정된 심볼은 invalid 심볼로 결정할 수 있다. 또한, 단말은 invalid symbol pattern(1502)에서 1로 설정된 심볼들을 invalid 심볼로 결정한다. 각 nominal repetition에서 invalid 심볼이 아닌 valid 심볼들이 하나의 슬롯에서 연속된 1개 이상의 심볼로 구성되는 경우 actual repetition으로 설정되어 전송된다(1503).
또한, PUSCH 반복 전송에 대해, NR Release 16에서는 슬롯 경계를 넘는 UL grant 기반 PUSCH 전송 및 configured grant 기반 PUSCH 전송에 대해 다음과 같은 추가적인 방법들을 정의할 수 있다.
- 방법 1 (mini-slot level repetition): 1개의 UL grant를 통해, 1개의 슬롯 내에서 혹은 연속된 슬롯들의 경계를 넘는 2개 이상의 PUSCH 반복 전송이 스케줄링된다. 또한, 방법 1에 대해, DCI 내의 시간 영역 자원 할당 정보는 첫 번째 반복 전송의 자원을 가리킨다. 또한, 첫 번째 반복 전송의 시간 영역 자원 정보와, 각 슬롯의 각 심볼 별로 결정되어 있는 상향링크 또는 하향링크 방향에 따라 나머지 반복 전송의 시간 영역 자원 정보를 결정할 수 있다. 각 반복 전송은 연속된 심볼들을 차지한다.
- 방법 2 (multi-segment transmission): 1개의 UL grant를 통해 연속된 슬롯들에서 2개 이상의 PUSCH 반복 전송이 스케줄링된다. 이 때, 각 슬롯 별로 1번의 전송이 지정되며 각 전송 별로 서로 다른 시작 지점 혹은 반복 길이가 다를 수 있다. 또한, 방법 2에서, DCI 내의 시간 영역 자원 할당 정보는 모든 반복 전송들의 시작 지점과 반복 길이를 가리킨다. 또한, 방법 2를 통해 단일 슬롯 내에서 반복 전송을 수행하는 경우, 해당 슬롯 내에 연속된 상향링크 심볼들의 묶음이 여러 개 존재한다면, 각 반복 전송은 각 상향링크 심볼 묶음 별로 수행된다. 만약 해당 슬롯 내에 연속된 상향링크 심볼들의 묶음이 유일하게 존재한다면, NR Release 15의 방법에 따라서 1번의 PUSCH 반복 전송이 수행된다.
- 방법 3: 2개 이상의 UL grant를 통해 연속된 슬롯들에서 2개 이상의 PUSCH 반복 전송이 스케줄링된다. 이 때, 각 슬롯 별로 1번의 전송이 지정되며, n 번째 UL grant는 n-1 번째 UL grant로 스케줄링된 PUSCH 전송이 끝나기 전에 수신할 수 있다.
- 방법 4: 1개의 UL grant 또는 1개의 configured grant를 통해, 단일 슬롯 내에서 1개 또는 여러 개의 PUSCH 반복 전송, 또는 연속된 슬롯들의 경계에 걸쳐서 2개 혹은 그 이상의 PUSCH 반복 전송이 지원될 수 있다. 기지국이 단말에게 지시하는 반복 횟수는 명목 상의 값일 뿐이며, 단말이 실제로 수행하는 PUSCH 반복 전송 횟수는 명목 상의 반복 횟수보다 많을 수도 있다. DCI 내 혹은 configured grant 내의 시간 영역 자원 할당 정보는 기지국이 지시하는 첫 번째 반복 전송의 자원을 의미한다. 나머지 반복 전송의 시간 영역 자원 정보는 적어도 첫 번째 반복 전송의 자원 정보와 심볼들의 상향링크 또는 하향링크 방향을 참조하여 결정될 수 있다. 만약 기지국이 지시하는 반복 전송의 시간 영역 자원 정보가 슬롯 경계에 걸치거나 상향링크/하향링크 전환 지점을 포함한다면, 해당 반복 전송은 복수 개의 반복 전송으로 나눠질 수 있다. 이 때, 1개의 슬롯 내에 각 상향링크 기간 별로 1개의 반복 전송을 포함할 수 있다.
[PUSCH: 주파수 호핑 과정]
하기에서는 5G 시스템에서 상향링크 데이터 채널(Physical Uplink Shared Channel;PUSCH)의 주파수 호핑(frequency hopping)에 대해 구체적으로 설명한다.
5G에서는 상향링크 데이터 채널의 주파수 호핑 방법으로, 각 PUSCH 반복 전송 타입마다 두가지 방법을 지원한다. 먼저 PUSCH 반복 전송 타입 A에서는 intra-slot 주파수 호핑과 inter-slot 주파수 호핑을 지원하고, PUSCH 반복 전송 타입 B에서는 inter-repetition 주파수 호핑과 inter-slot 주파수 호핑을 지원한다.
PUSCH 반복 전송 타입 A에서 지원하는 intra-slot 주파수 호핑 방법은, 단말이 하나의 슬롯 내 두개의 홉(hop)에서 주파수 도메인의 할당된 자원을 설정된 주파수 오프셋만큼 변경하여 전송 하는 방법이다. Intra-slot 주파수 호핑에서 각 홉의 시작 RB는 수학식 5를 통해 나타낼 수 있다.
[수학식 5]
Figure pat00074
수학식 5에서, i=0과 i=1은 각각 첫번째 홉과 두번째 홉을 나타내며,
Figure pat00075
는 UL BWP안에서 시작 RB를 나타내고 주파수 자원 할당 방법으로부터 계산된다.
Figure pat00076
은 상위 계층 파라미터를 통해 두개의 홉 사이에 주파수 오프셋을 나타난다. 첫번째 홉의 심볼 수는
Figure pat00077
로 나타낼 수 있고, 두번째 홉의 심볼 수는
Figure pat00078
으로 나타낼 수 있다.
Figure pat00079
은 한 슬롯 내에서의 PUSCH 전송의 길이로, OFDM 심볼 수로 나타난다.
다음으로 PUSCH 반복 전송 타입 A와 B에서 지원하는 inter-slot 주파수 호핑 방법은, 단말이 각 슬롯마다 주파수 도메인의 할당된 자원을 설정된 주파수 오프셋만큼 변경하여 전송 하는 방법이다. Inter-slot 주파수 호핑에서
Figure pat00080
슬롯 동안 시작 RB는 수학식 6을 통해 나타낼 수 있다.
[수학식 6]
Figure pat00081
수학식 6에서,
Figure pat00082
는 multi-slot PUSCH 전송에서 현재 슬롯 번호,
Figure pat00083
는 UL BWP안에서 시작 RB를 나타내고 주파수 자원 할당 방법으로부터 계산된다.
Figure pat00084
은 상위 계층 파라미터를 통해 두개의 홉 사이에 주파수 오프셋을 나타낸다.
다음으로 PUSCH 반복 전송 타입 B에서 지원하는 inter-repetition 주파수 호핑 방법은 각 nominal repetition 내의 1개 혹은 복수 개의 actual repetition들에 대한 주파수 도메인 상에서 할당된 자원을, 설정된 주파수 오프셋만큼 이동하여 전송하는 것이다. n번째 nominal repetition 내의 1개 혹은 복수 개의 actual repetition들에 대한 주파수 도메인 상에서 시작 RB의 index인 RBstart(n) 은 하기 수학식 7을 따를 수 있다.
[수학식 7]
Figure pat00085
수학식 7에서, n은 nominal repetition의 인덱스,
Figure pat00086
은 상위 계층 파라미터를 통해 두 개의 홉 사이에 RB 오프셋을 나타낸다.
[PUSCH: AP/SP CSI reporting 시 multiplexing rule]
하기에서는 5G 통신 시스템에서의 채널 상태 측정 및 보고하는 방법에 대하여 구체적으로 기술하도록 한다. 채널 상태 정보(channel state information, CSI)에는 채널품질지시자 (channel quality information, CQI), 프리코딩 행렬 인덱스 (precoding matric indicator, PMI), CSI-RS 자원 지시자 (CSI-RS resource indicator, CRI), SS/PBCH 블록 자원 지시자 (SS/PBCH block resource indicator, SSBRI), 레이어 지시자 (layer indicator, LI), 랭크 지시자 (rank indicator,RI), 및/또는 L1-RSRP(Reference Signal Received Power) 등이 포함될 수 있다. 기지국은 단말의 전술한 CSI 측정 및 보고를 위한 시간 및 주파수 자원을 제어할 수 있다.
전술한 CSI 측정 및 보고를 위하여, 단말은 N(
Figure pat00087
)개의 CSI 보고를 위한 세팅(Setting) 정보 (CSI-ReportConfig), M(
Figure pat00088
) 개의 RS 전송 자원에 대한 세팅 정보 (CSI-ResourceConfig), 하나 또는 두 개의 트리거(Trigger) 상태 (CSI-AperiodicTriggerStateList, CSI-SemiPersistentOnPUSCH-TriggerStateList) 리스트(List) 정보를 상위 계층 시그널링을 통해 설정 받을 수 있다. 전술한 CSI 측정 및 보고를 위한 설정 정보는 보다 구체적으로 [표 30] 내지 [표 36]에 기재된 하기와 같을 수 있다.
[표 30] CSI-ReportConfig
The IE CSI-ReportConfig is used to configure a periodic or semi-persistent report sent on PUCCH on the cell in which the CSI-ReportConfig is included, or to configure a semi-persistent or aperiodic report sent on PUSCH triggered by DCI received on the cell in which the CSI-ReportConfig is included (in this case, the cell on which the report is sent is determined by the received DCI). See TS 38.214 [19], clause 5.2.1.
CSI-ReportConfig information element
Figure pat00089
Figure pat00090
Figure pat00091
Figure pat00092
Figure pat00093
Figure pat00094
[표 31] CSI-ResourceConfig
The IE CSI-ResourceConfig defines a group of one or more NZP-CSI-RS-ResourceSet, CSI-IM-ResourceSet and/or CSI-SSB-ResourceSet.
CSI-ResourceConfig information element
Figure pat00095
Figure pat00096
[표 32] NZP-CSI-RS-ResourceSet
The IE NZP-CSI-RS-ResourceSet is a set of Non-Zero-Power (NZP) CSI-RS resources (their IDs) and set-specific parameters.
NZP-CSI-RS-ResourceSet information element
Figure pat00097
Figure pat00098
[표 33] CSI-SSB-ResourceSet
The IE CSI-SSB-ResourceSet is used to configure one SS/PBCH block resource set which refers to SS/PBCH as indicated in ServingCellConfigCommon.
CSI-SSB-ResourceSet information element
Figure pat00099
[표 34] CSI-IM-ResourceSet
The IE CSI-IM-ResourceSet is used to configure a set of one or more CSI Interference Management (IM) resources (their IDs) and set-specific parameters.
CSI-IM-ResourceSet information element
Figure pat00100
Figure pat00101
[표 35] CSI-AperiodicTriggerStateList
The CSI-AperiodicTriggerStateList IE is used to configure the UE with a list of aperiodic trigger states. Each codepoint of the DCI field "CSI request" is associated with one trigger state. Upon reception of the value associated with a trigger state, the UE will perform measurement of CSI-RS (reference signals) and aperiodic reporting on L1 according to all entries in the associatedReportConfigInfoList for that trigger state.
CSI-AperiodicTriggerStateList information element
Figure pat00102
Figure pat00103
Figure pat00104
[표 36] CSI-SemiPersistentOnPUSCH-TriggerStateList
The CSI-SemiPersistentOnPUSCH-TriggerStateList IE is used to configure the UE with list of trigger states for semi-persistent reporting of channel state information on L1. See also TS 38.214 [19], clause 5.2.
CSI-SemiPersistentOnPUSCH-TriggerStateList information element
Figure pat00105
전술한 CSI 보고 세팅(CSI-ReportConfig)에 대하여, 각 보고 세팅 CSI-ReportConfig은 해당 보고 세팅과 연관(Association)된 CSI 자원 세팅, CSI-ResourceConfig로 주어지는 상위 계층 파라미터 대역폭 부분 식별자(bwp-id)로 식별되는 하나의 하향링크(downlink, DL) 대역폭부분과 연관될 수 있다. 각 보고 세팅 CSI-ReportConfig에 대한 시간 도메인 보고 동작으로, '비주기적(Aperiodic)', '반영구적(Semi-Persistent)', '주기적(Periodic)' 방식을 지원하며, 이는 상위 계층으로부터 설정된 reportConfigType 파라미터에 의해 기지국으로부터 단말로 설정될 수 있다. 반영구적 CSI 보고 방법은 'PUCCH 기반 반영구적 (semi-PersistentOnPUCCH)', 'PUSCH 기반 반영구적 (semi-PersistentOnPUSCH)'을 지원한다. 주기적 또는 반영구적 CSI 보고 방법의 경우, 단말은 CSI를 전송할 PUCCH 또는 PUSCH 자원을 기지국으로부터 상위 계층 시그널링을 통해 설정 받을 수 있다. CSI를 전송할 PUCCH 또는 PUSCH 자원의 주기와 슬롯 오프셋은 CSI 보고가 전송되도록 설정된 상향링크(uplink, UL) 대역폭부분의 뉴머롤로지(Numerology)로 주어질 수 있다. 비주기적 CSI 보고 방법의 경우, 단말은 CSI를 전송할 PUSCH 자원을 기지국으로부터 L1 시그널링(전술한 DCI 포맷 0_1)을 통해 스케쥴링 받을 수 있다.
전술한 CSI 자원 세팅(CSI-ResourceConfig)에 대하여, 각 CSI 자원 세팅 CSI-ReportConfig은 S(
Figure pat00106
) 개의 CSI 자원 세트 (상위 계층 파라미터 csi-RS-ResourceSetList로 주어지는)를 포함할 수 있다. CSI 자원 세트 리스트는 논-제로 파워 (non-zero power, NZP) CSI-RS 자원 세트와 SS/PBCH 블록 세트로 구성되거나 또는 CSI 간섭 측정 (CSI-interference measurement, CSI-IM) 자원 세트로 구성될 수 있다. 각 CSI 자원 세팅은 상위 계층 파라미터 bwp-id로 식별되는 하향링크(downlink, DL) 대역폭부분에 위치할 수 있고, CSI 자원 세팅은 동일한 하향링크 대역폭부분의 CSI 보고 세팅과 연결될 수 있다. CSI 자원 세팅 내의 CSI-RS 자원의 시간 도메인 동작은 상위 계층 파라미터 resourceType으로부터 '비주기적', '주기적' 또는 '반영구적' 중 하나로 설정될 수 있다. 주기적 또는 반영구적 CSI 자원 세팅에 대해서, CSI-RS 자원 세트의 수는 S=1로 제한될 수 있고, 설정된 주기와 슬롯 오프셋은 bwp-id로 식별되는 하향링크 대역폭부분의 뉴머롤로지로 주어질 수 있다. 단말은 기지국으로부터 상위 계층 시그널링을 통해 채널 또는 간섭 측정을 위한 하나 또는 하나 이상의 CSI 자원 세팅을 설정받을 수 있고, 예를 들어 하기의 CSI 자원을 포함할 수 있다.
- 간섭 측적을 위한 CSI-IM 자원
- 간섭 측정을 위한 NZP CSI-RS 자원
- 채널 측정을 위한 NZP CSI-RS 자원
상위 계층 파라미터 resourceType이 '비주기', '주기', 또는 '반영구적'으로 설정된 자원 세팅과 연관되어 있는 CSI-RS 자원 세트들에 대하여, reportType이 '비주기'로 설정되어 있는 CSI 보고 세팅에 대한 트리거(Trigger) 상태(State)와 하나 또는 다수 개의 컴포넌트 셀 (Component Cell, CC)에 대한 채널 또는 간섭 측정에 대한 자원 세팅이 상위 계층 파라미터 CSI-AperiodicTriggerStateList로 설정될 수 있다.
단말의 비주기적 CSI 보고는 PUSCH를 이용할 수 있고, 주기적 CSI 보고는 PUCCH를 이용할 수 있고, 반영구적 CSI 보고는 DCI로 트리거링(triggering) 또는 활성화(Activated)되었을 경우 PUSCH, MAC 제어요소 (MAC control element, MAC CE) 로 활성화(Activated)된 이후에는 PUCCH를 이용하여 수행될 수 있다. 전술한 바와 같이 CSI 자원 세팅 또한 비주기적, 주기적, 반영구적으로 설정될 수 있다. CSI 보고 세팅과 CSI 자원 설정간의 조합은 하기의 [표 37] 에 기반하여 지원될 수 있다.
[표 37]
Figure pat00107
비주기적 CSI 보고는 PUSCH에 대한 스케쥴링 DCI에 해당하는 전술한 DCI 포맷 0_1의 "CSI 요청(request)" 필드로 트리거 될 수 있다. 단말은 PDCCH을 모니터링 할 수 있고, DCI 포맷 0_1을 획득할 수 있고, PUSCH에 대한 스케쥴링 정보 및 CSI 요청 지시자를 획득할 수 있다. CSI 요청 지시자는 NTS (=0, 1, 2, 3, 4, 5, 또는 6) 비트로 설정될 수 있으며, 상위 계층 시그널링(reportTriggerSize)에 의해 결정될 수 있다. 상위 계층 시그널링(CSI-AperiodicTriggerStateList)으로 설정될 수 있는 하나 또는 다수개의 비주기적 CSI 보고 트리거 상태 중에서 하나의 트리거 상태가 CSI 요청 지시자에 의해 트리거될 수 있다.
- CSI 요청 필드의 모든 비트가 0일 경우, 이는 CSI 보고를 요청하지 않는 것을 의미할 수 있다.
- 만약 설정된 CSI-AperiodicTriggerStateLite 내의 CSI 트리거 상태의 수(M)가 2NTs-1보다 크다면, 선정의되어 있는 매핑 관계에 따라, M개의 CSI 트리거 상태가 2NTs-1로 매핑될 수 있고, 2NTs-1의 트리거 상태 중 하나의 트리거 상태가 CSI 요청 필드로 지시될 수 있다.
- 만약 설정된 CSI-AperiodicTriggerStateLite 내의 CSI 트리거 상태의 수(M)가 2NTs-1와 작거나 같다면, M개의 CSI 트리거 상태 중 하나가 CSI 요청 필드로 지시될 수 있다.
하기 [표 38]는 CSI 요청 지시자와 해당 지시자로 지시될 수 있는 CSI 트리거 상태 사이의 관계에 대한 일 예를 나타낸다.
Figure pat00108
CSI 요청 필드로 트리거된 CSI 트리거 상태 내의 CSI 자원에 대하여 단말은 측정을 수행할 수 있고, 이로부터 CSI(전술한 CQI, PMI, CRI, SSBRI, LI, RI, 또는 L1-RSRP 등 중 적어도 하나 이상을 포함함)를 생성할 수 있다. 단말은 획득한 CSI를 해당 DCI 포맷 0_1이 스케쥴링 하는 PUSCH를 이용하여 전송할 수 있다. DCI 포맷 0_1 내의 상향링크 데이터 지시자(UL-SCH indicator)에 해당하는 1비트가 "1"을 지시할 경우, DCI 포맷 0_1이 스케쥴링한 PUSCH 자원에 상향링크 데이터(UL-SCH)와 획득한 CSI를 다중화(Multiplexing)하여 전송할 수 있다. DCI 포맷 0_1 내의 상향링크 데이터 지시자(UL-SCH indicator)에 해당하는 1비트가 "0"을 지시할 경우, DCI 포맷 0_1이 스케쥴링한 PUSCH 자원에 상향링크 데이터(UL-SCH)없이 CSI만을 매핑하여 전송할 수 있다.
도 16은 비주기적 CSI 보고 방법의 일 예를 도시한 도면이다.
도 16의 일 예(1600)에서 단말은 PDCCH(1601)를 모니터링하여 DCI 포맷 0_1을 획득할 수 있으며, 이로부터 PUSCH(1605)에 대한 스케쥴링 정보 및 CSI 요청 정보를 획득할 수 있다. 단말은 수신한 CSI 요청 지시자로부터 측정할 CSI-RS(1602)에 대한 자원 정보를 획득할 수 있다. 단말은 DCI 포맷 0_1을 수신한 시점과 CSI 자원 세트 설정 (예를 들어 NZP CSI-RS 자원 세트 설정(NZP-CSI-RS-ResourceSet) 내의 오프셋에 대한 파라미터(전술한 aperiodicTriggeringOffset)에 기반하여 어느 시점에서 전송되는 CSI-RS(1602) 자원에 대한 측정을 수행해야 하는지 판단할 수 있다. 보다 구체적으로 설명하면, 단말은 기지국으로부터 상위 계층 시그널링으로 NZP-CSI-RS 자원 세트 설정 내의 파라미터 aperiodicTriggeringOffset의 오프셋 값 X를 설정 받을 수 있고, 설정된 오프셋 값 X는 비주기적 CSI 보고를 트리거 하는 DCI를 수신한 슬롯과 CSI-RS 자원이 전송되는 슬롯 사이의 오프셋을 의미할 수 있다. 예를 들어 aperiodicTriggeringOffset 파라미터 값과 오프셋 값 X는 하기의 [표 39]에 기재된 매핑 관계를 가질 수 있다.
[표 39]
Figure pat00109
도 16의 일 예(1600)에서는 전술한 오프셋 값이 X=0으로 설정된 일 예를 보여준다. 이 경우, 단말은 비주기적 CSI 보고를 트리거 하는 DCI 포맷 0_1을 수신한 슬롯(도 16의 슬롯 0(1606)에 해당)에서 CSI-RS(1602)를 수신할 수 있고, 수신한 CSI-RS로 측정한 CSI 정보를 PUSCH(1605)를 통해 기지국으로 보고할 수 있다. 단말은 DCI 포맷 0_1로부터 CSI 보고를 위한 PUSCH(1605)에 대한 스케쥴링 정보(전술한 DCI 포맷 0_1의 각 필드에 해당하는 정보들)를 획득할 수 있다. 일 예로 단말은 DCI 포맷 0_1은 PUSCH(1605)에 대한 전술한 시간 도메인 자원할당 정보부터 PUSCH(1605)를 전송할 슬롯에 대한 정보를 획득할 수 있다. 도 16의 일 예(1600)에서 단말은 PDCCH-to-PUSCH 대한 슬롯 오프셋 값에 해당하는 K2 값을 3으로 획득하였으며, 이에 따라 PUSCH(1605)가 PDCCH(1601)를 수신한 시점, 슬롯 0(1606)에서 3 슬롯 떨어진 슬롯 3(1609)에서 전송될 수 있다.
도 16의 일 예(1610)에서 단말은 PDCCH(1611)를 모니터링하여 DCI 포맷 0_1을 획득할 수 있으며, 이로부터 PUSCH(1615)에 대한 스케쥴링 정보 및 CSI 요청 정보를 획득할 수 있다. 단말은 수신한 CSI 요청 지시자로부터 측정할 CSI-RS(1612)에 대한 자원 정보를 획득할 수 있다. 도 16의 일 예(1610)에서는 전술한 CSI-RS에 대한 오프셋 값이 X=1으로 설정된 일 예를 보여준다. 이 경우, 단말은 비주기적 CSI 보고를 트리거 하는 DCI 포맷 0_1을 수신한 슬롯(도 16의 슬롯 0(1616)에 해당)에서 CSI-RS(1612)를 수신할 수 있고, 수신한 CSI-RS로 측정한 CSI 정보를 PUSCH(1615)를 통해 기지국으로 보고할 수 있다.
비주기적 CSI 보고는 CSI part 1 혹은 CSI part 2 중 적어도 하나 혹은 둘 모두를 포함할 수 있으며, 비주기적 CSI 보고가 PUSCH를 통해 전송될 경우, transport block과 multiplexing될 수 있다. Multiplexing을 위해 비주기적 CSI의 input bit에 CRC 가 삽입된 후, 인코딩, rate matching을 거친 후 PUSCH 내 resource element에 특정 패턴으로 매핑되어 전송될 수 있다. 상기 CRC 삽입은 코딩 방법 혹은 input bits의 길이에 따라 생략 될 수 있다. 비주기적 CSI 보고에 포함되는 CSI Part 1 혹은 CSI part 2의 multiplexing 시 rate matching을 위해 계산되는 변조 심볼의 개수는 하기 [표 40]과 같이 계산 될 수 있다.
[표 40]
Figure pat00110
Figure pat00111
Figure pat00112
Figure pat00113
Figure pat00114
특히, PUSCH 반복 전송 방식 A와 B의 경우에는, 단말은 비주기적 CSI 보고를 PUSCH 반복 전송 중 첫 번째 반복 전송에만 multiplexing하여 전송할 수 있다. 이는 multiplexing되는 비주기적 CSI 보고 정보가 polar code 방식으로 인코딩되는데, 이 때 여러 PUSCH repetition에 multiplexing되려면 각 PUSCH repetition이 같은 주파수 및 시간 자원할당을 가져야 하기 때문이고, 특히 PUSCH repetition type B의 경우 각 actual repetition이 서로 다른 OFDM 심볼 길이를 가질 수 있으므로, 첫 번째 PUSCH repetition에만 비주기적 CSI 보고가 multiplexing되어 전송될 수 있다.
또한, PUSCH 반복 전송 방식 B에 대해, 단말이 transport block에 대한 스케줄링 없이 비주기적 CSI 보고를 스케줄하거나 또는 반영구적 CSI 보고를 활성화하는 DCI를 수신하는 경우, 상위 레이어 시그널링으로 설정된 PUSCH 반복 전송 횟수가 1보다 크더라도 nominal repetition의 값을 1로 가정할 수 있다. 또한, 단말이 PUSCH 반복 전송 방식 B를 기반으로 transport block에 대한 스케줄링 없이 비주기적 혹은 반영구적 CSI 보고를 스케줄 혹은 활성화한 경우, 단말은 첫 번째 nominal repetition이 첫 번째 actual repetition과 같을 것을 기대할 수 있다. DCI로 반영구적 CSI 보고가 활성화된 후 DCI에 대한 스케줄 없이 PUSCH 반복 전송 방식 B를 기반으로 반영구적 CSI를 포함하여 전송되는 PUSCH에 대해, 만약 첫 번째 nominal repetition이 첫 번째 actual repetition과 다르다면, 첫 번째 nominal repetition에 대한 전송은 무시될 수 있다.
[단말 능력 보고 관련]
LTE 및 NR에서 단말은 서빙 기지국에 연결된 상태에서 해당 기지국에게 단말이 지원하는 능력(capability)를 보고하는 절차를 수행할 수 있다. 아래 설명에서 이를 단말 능력 보고(UE capability report) 로 지칭한다.
기지국은 연결 상태의 단말에게 능력 보고를 요청하는 단말 능력 문의(UE capability enquiry) 메시지를 전달할 수 있다. 상기 메시지에는 기지국의 RAT(radio access technology) type 별 단말 능력 요청을 포함할 수 있다. 상기 RAT type 별 요청에는 지원하는 주파수 밴드 조합 정보 등이 포함될 수 있다. 또한, 상기 단말 능력 문의 메시지의 경우 기지국이 전송하는 하나의 RRC 메시지 container를 통해 복수의 RAT type 별 UE capability가 요청될 수 있으며, 또는 기지국은 각 RAT type 별 단말 능력 요청을 포함한 단말 능력 문의 메시지를 복수번 포함시켜 단말에게 전달할 수 있다. 즉, 한 메시지 내에서 단말 능력 문의가 복수회 반복 되고 단말은 이에 해당하는 단말 능력 정보(UE capability information) 메시지를 구성하여 복수회 보고할 수 있다. 차세대 이동 통신 시스템에서는 NR, LTE, EN-DC(E-UTRA - NR dual connectivity)를 비롯한 MR-DC(Multi-RAT dual connectivity)에 대한 단말 능력 요청을 할 수 있다. 또한, 상기 단말 능력 문의 메시지는 일반적으로 단말이 기지국과 연결된 이후, 초기에 전송되는 것이 일반적이지만, 기지국이 필요할 때 어떤 조건에서도 요청할 수 있다.
상기 단계에서 기지국으로부터 UE capability 보고 요청을 받은 단말은 기지국으로부터 요청받은 RAT type 및 밴드 정보에 따라 단말 capability를 구성한다. 아래에 NR 시스템에서 단말이 UE capability를 구성하는 방법을 정리하였다.
1. 만약 단말이 기지국으로부터 UE capability 요청으로 LTE 그리고/혹은 NR 밴드에 대한 리스트를 제공받으면, 단말은 EN-DC 와 NR stand alone (SA)에 대한 band combination (BC)를 구성한다. 즉, 기지국에 FreqBandList로 요청한 밴드들을 바탕으로 EN-DC 와 NR SA에 대한 BC의 후보 리스트를 구성한다. 또한, 밴드의 우선순위는 FreqBandList에 기재된 순서대로 우선순위를 가진다.
2. 만약 기지국이 "eutra-nr-only" flag 혹은 "eutra" flag를 세팅하여 UE capability 보고를 요청한 경우, 단말은 상기의 구성된 BC의 후보 리스트 중에서 NR SA BC들에 대한 것은 완전히 제거한다. 이러한 동작은 LTE 기지국(eNB)이 "eutra" capability를 요청하는 경우에만 일어날 수 있다.
3. 이후 단말은 상기 단계에서 구성된 BC의 후보 리스트에서 fallback BC들을 제거한다. 여기서 fallback BC는 임의의 BC에서 최소 하나의 SCell에 해당하는 밴드를 제거함으로써 얻을 수 있는 BC를 의미하며, 최소 하나의 SCell에 해당하는 밴드를 제거하기 전의 BC가 이미 fallback BC를 커버할 수 있기 때문에 생략이 가능하다. 이 단계는 MR-DC에서도 적용되며, 즉 LTE 밴드들도 적용된다. 이 단계 이후에 남아있는 BC는 최종 "후보 BC 리스트"이다.
4. 단말은 상기의 최종 "후보 BC 리스트"에서 요청받은 RAT type에 맞는 BC들을 선택하여 보고할 BC들을 선택한다. 본 단계에서는 정해진 순서대로 단말이 supportedBandCombinationList를 구성한다. 즉, 단말은 미리 설정된 rat-Type의 순서에 맞춰서 보고할 BC 및 UE capability를 구성하게 된다. (nr -> eutra-nr -> eutra). 또한 구성된 supportedBandCombinationList에 대한 featureSetCombination을 구성하고, fallback BC (같거나 낮은 단계의 capability를 포함하고 있는)에 대한 리스트가 제거된 후보 BC 리스트에서 "후보 feature set combination"의 리스트를 구성한다. 상기의 "후보 feature set combination"은 NR 및 EUTRA-NR BC에 대한 feature set combination을 모두 포함하며, UE-NR-Capabilities와 UE-MRDC-Capabilities 컨테이너의 feature set combination으로부터 얻을 수 있다.
5. 또한, 만약 요청된 rat Type이 eutra-nr이고 영향을 준다면, featureSetCombinations은 UE-MRDC-Capabilities 와 UE-NR-Capabilities 의 두 개의 컨테이너에 전부 포함된다. 하지만 NR의 feature set은 UE-NR-Capabilities만 포함된다.
단말 능력이 구성되고 난 이후, 단말은 단말 능력이 포함된 단말 능력 정보 메시지를 기지국에 전달한다. 기지국은 단말로부터 수신한 단말 능력을 기반으로 이후 해당 단말에게 적당한 스케줄링 및 송수신 관리를 수행한다.
[CA/DC 관련]
도 17은 본 개시의 일 실시 예에 따른 single cell, carrier aggregation, dual connectivity 상황에서 기지국과 단말의 무선 프로토콜 구조를 도시하는 도면이다.
도 17을 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR SDAP(Service Data Adaptation Protocol S25, S70), NR PDCP(Packet Data Convergence Protocol S30, S65), NR RLC(Radio Link Control S35, S60), NR MAC(Medium Access Control S40, S55)으로 이루어진다.
NR SDAP(S25, S70)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID의 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향 링크 SDAP PDU들에 대해서 reflective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
상기 SDAP 계층 장치에 대해 단말은 RRC 메시지로 각 PDCP 계층 장치 별로 혹은 베어러 별로 혹은 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 혹은 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있으며, SDAP 헤더가 설정된 경우, SDAP 헤더의 NAS QoS 반영 설정 1비트 지시자(NAS reflective QoS)와 AS QoS 반영 설정 1비트 지시자(AS reflective QoS)에게 단말이 상향 링크와 하향 링크의 QoS flow와 데이터 베어러에 대한 맵핑 정보를 갱신 혹은 재설정할 수 있도록 지시할 수 있다. 상기 SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. 상기 QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케쥴링 정보 등으로 사용될 수 있다.
NR PDCP (S30, S65)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상기에서 NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기초로 순서대로 재정렬하는 기능을 말하며, 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있다. 또는, NR PDCP 장치의 순서 재정렬 기능(reordering)은 순서를 고려하지 않고, 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있고, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC(S35, S60)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
상기에서 NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 의미한다. NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들을 RLC SN(sequence number) 혹은 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있고, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있고, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다. NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또는, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한 상기에서 RLC PDU들을 수신하는 순서대로 (일련번호, Sequence number의 순서와 상관없이, 도착하는 순으로) 처리하여 PDCP 장치로 순서와 상관없이(Out-of sequence delivery) 전달할 수도 있으며, segment 인 경우에는 버퍼에 저장되어 있거나 추후에 수신될 segment들을 수신하여 온전한 하나의 RLC PDU로 재구성한 후, 처리하여 PDCP 장치로 전달할 수 있다. 상기 NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 상기 기능을 NR MAC 계층에서 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
상기에서 NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들의 RLC SN 혹은 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC(S40, S55)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
NR PHY 계층(S45, S50)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
상기 무선 프로토콜 구조는 캐리어 (혹은 셀) 운영 방식에 따라 세부 구조가 다양하게 변경될 수 있다. 일례로 기지국이 단일 캐리어(혹은 셀)을 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S00과 같이 각 계층 별 단일 구조를 가지는 프로토콜 구조를 사용하게 된다. 반면 기지국이 단일 TRP에서 다중 캐리어를 사용하는 CA(carrier aggregation)를 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S10과 같이 RLC 까지는 단일 구조를 가지지만 MAC layer를 통하여 PHY layer를 multiplexing 하는 프로토콜 구조를 사용하게 된다. 또 다른 예시로 기지국이 다중 TRP에서 다중 캐리어를 사용하는 DC(dual connectivity)를 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S20과 같이 RLC 까지는 단일 구조를 가지지만 MAC layer를 통하여 PHY layer를 multiplexing 하는 프로토콜 구조를 사용하게 된다.
상술한 PDCCH 및 빔 설정 관련 설명들을 참조하면, 현재 Rel-15 및 Rel-16 NR에서는 PDCCH 반복 전송이 지원되지 않아 URLLC 등 고신뢰도가 필요한 시나리오에서 요구 신뢰도를 달성하기 어렵다. 본 발명에서는 다수 전송 지점(TRP)을 통한 PDCCH 반복 전송 방법을 제공하여 단말의 PDCCH 수신 신뢰도를 향상시킨다. 구체적인 방법은 하기 실시예들에서 구체적으로 서술한다.
이하 본 개시의 실시 예를 첨부한 도면과 함께 상세히 설명한다. 본 개시에서의 내용은 FDD 및 TDD 시스템에서 적용이 가능한 것이다. 이하 본 개시에서 상위 시그널링(또는 상위 레이어 시그널링)은 기지국에서 물리계층의 하향링크 데이터 채널을 이용하여 단말로, 혹은 단말에서 물리계층의 상향링크 데이터 채널을 이용하여 기지국으로 전달되는 신호 전달 방법이며, RRC 시그널링, 혹은 PDCP 시그널링, 혹은 MAC(medium access control) 제어요소(MAC control element; MAC CE)라고 언급될 수도 있다.
이하 본 개시에서 단말은 협력 통신 적용 여부를 판단함에 있어 협력 통신이 적용되는 PDSCH를 할당하는 PDCCH(들)이 특정 포맷을 가지거나, 또는 협력 통신이 적용되는 PDSCH를 할당하는 PDCCH(들)이 협력 통신 적용 여부를 알려주는 특정 지시자를 포함하거나, 또는 협력 통신이 적용되는 PDSCH를 할당하는 PDCCH(들)이 특정 RNTI로 스크램블링 되거나, 또는 상위레이어로 지시되는 특정 구간에서 협력 통신 적용을 가정하거나 하는 등 다양한 방법들을 사용하는 것이 가능하다. 이후 설명의 편의를 위하여 단말이 상기와 유사한 조건들을 기반으로 협력 통신이 적용된 PDSCH를 수신하는 것을 NC-JT(non-coherent joint transmission) case로 지칭하도록 하겠다.
이하 본 개시에서 A 와 B 간 우선순위를 결정한다 함은 미리 정해진 우선순위 규칙(priority rule)에 따라 더 높은 우선순위를 가지는 것을 선택하여 그에 해당하는 동작을 수행하거나 또는 더 낮은 우선순위를 가지는 것에 대한 동작을 생략(omit or drop)하는 등 다양하게 언급될 수 있다.
이하 본 개시에서는 다수의 실시예를 통하여 상기 예시들을 설명하나 이는 독립적인 것들이 아니며 하나 이상의 실시 예가 동시에 또는 복합적으로 적용되는 것이 가능하다.
[NC-JT 관련]
본 개시의 일 실시예에 따르면, 단말이 다수의 TRP 들로부터 PDSCH를 수신하기 위해 비-코히런트 합동 전송(NC-JT, Non-Coherent Joint Transmission)이 사용될 수 있다.
5G 무선 통신 시스템은 기존과는 달리 높은 전송속도를 요구하는 서비스뿐만 아니라 매우 짧은 전송 지연을 갖는 서비스 및 높은 연결 밀도를 요구하는 서비스를 모두 지원할 수 있다. 다수의 셀들, TRP(transmission and reception point)들, 또는 빔들을 포함하는 무선통신 네트워크에서 각 셀, TRP 또는/및 빔 간의 협력 통신(coordinated transmission)은 단말이 수신하는 신호의 세기를 늘리거나 각 셀, TRP 또는/및 빔 간 간섭 제어를 효율적으로 수행하여 다양한 서비스 요구조건을 만족시킬 수 있다.
합동 전송(Joint Transmission: JT)은 상술한 협력 통신을 위한 대표적인 전송 기술로서 하나의 단말에게 다수의 서로 다른 셀들, TRP들 또는/및 빔들을 통해 신호를 전송함으로써 단말이 수신하는 신호의 세기 또는 처리율을 증가시키는 기술이다. 이 때 각 셀, TRP 또는/및 빔과 단말 간 채널은 그 특성이 크게 다를 수 있으며, 특히 각 셀, TRP 또는/및 빔 간 비-코히런트(Non-coherent) 프리코딩(precoding)을 지원하는 비-코히런트 합동 전송(NC-JT, Non-Coherent Joint Transmission)의 경우 각 셀, TRP 또는/및 빔과 단말 간 링크 별 채널 특성에 따라 개별적인 프리코딩, MCS, 자원 할당, TCI 지시 등이 필요할 수 있다.
상술한 NC-JT 전송은 하향링크 데이터 채널(PDSCH: physical downlink shared channel), 하향링크 제어 채널(PDCCH: physical downlink control channel), 상향링크 데이터 채널(PUSCH: physical uplink shared channel), 상향링크 제어 채널(PUCCH: physical uplink control channel) 중 적어도 한 채널에 적용될 수 있다. PDSCH 전송 시 프리코딩, MCS, 자원 할당, TCI 등의 전송 정보는 DL DCI로 지시되며, NC-JT 전송을 위해서는 상기 전송 정보가 셀, TRP 또는/및 빔 별로 독립적으로 지시되어야 한다. 이는 DL DCI 전송에 필요한 페이로드(payload)를 증가시키는 주요 요인이 되며, 이는 DCI를 전송하는 PDCCH의 수신 성능에 악영향을 미칠 수 있다. 따라서 PDSCH의 JT 지원을 위하여 DCI 정보량과 제어 정보 수신 성능 간 트레이드 오프(tradeoff)를 주의 깊게 설계할 필요가 있다.
도 18은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 협력 통신(cooperative communication)을 사용하여 PDSCH를 전송하기 위한 위한 안테나 포트 구성 및 자원 할당 예시를 도시하는 도면이다.
도 18을 참조하면, PDSCH 전송을 위한 예시가 합동 전송(JT, Joint Transmission)의 기법 별로 설명되며, TRP별로 무선자원을 할당하기 위한 예시들이 도시된다.
도 18을 참조하면, 각 셀, TRP 또는/및 빔 간 코히런트(Coherent) 프리코딩을 지원하는 코히런트 합동 전송(C-JT, Coherent Joint Transmission)에 대한 예시(N000)가 도시된다.
C-JT의 경우에, TRP A(N005) 및 TRP B(N010)가 단일 데이터(PDSCH)를 단말(N015)에게 전송하며, 다수의 TRP들에서 합동(joint) 프리코딩을 수행할 수 있다. 이는 TRP A(N005) 및 TRP B(N010)가 동일한 PDSCH을 전송하기 위해 동일한 DMRS 포트들을 통해 DMRS가 전송되는 것을 의미할 수 있다. 예를 들어 TRP A(N005) 및 TRP B(N010) 각각은 DMRS port A 및 DMRS B를 통해 단말에게 DRMS를 전송할 수 있다. 이 경우에, 단말은 DMRS port A 및 DMRS B를 통해 전송되는 DMRS에 기초하여 복조되는 하나의 PDSCH를 수신하기 위한 하나의 DCI 정보를 수신할 수 있다.
도 18은 PDSCH 전송을 위해 각 셀, TRP 또는/및 빔 간 비-코히런트(Non-coherent) 프리코딩을 지원하는 비-코히런트 합동 전송(NC-JT, Non-Coherent Joint Transmission)의 예시(N020)를 나타낸다.
NC-JT의 경우 각 셀, TRP 또는/및 빔 별로 PDSCH를 단말(N035)에게 전송하며, 각 PDSCH에는 개별 프리코딩이 적용될 수 있다. 각 셀, TRP 또는/및 빔이 각기 다른 PDSCH 또는 각기 다른 PDSCH 레이어를 단말에게 전송하여 단일 셀, TRP 또는/및 빔 전송 대비 처리율을 향상시킬 수 있다. 또한, 각 셀, TRP 또는/및 빔이 동일 PDSCH를 단말에게 반복 전송하여 단일 셀, TRP 또는/및 빔 전송 대비 신뢰도를 향상시킬 수 있다. 설명의 편의를 위해 셀, TRP 또는/및 빔을 이하 TRP로 통칭한다.
이 때 PDSCH 전송을 위해 다수의 TRP들에서 사용하는 주파수 및 시간 자원이 모두 동일한 경우(N040), 다수의 TRP들에서 사용하는 주파수 및 시간 자원이 전혀 겹치지 않는 경우(N045), 다수의 TRP들에서 사용하는 주파수 및 시간 자원의 일부가 겹치는 경우(N050)와 같이 다양한 무선 자원 할당이 고려될 수 있다.
NC-JT 지원을 위하여, 하나의 단말에게 동시에 다수의 PDSCH들을 할당하기 위해서는 다양한 형태, 구조 및 관계의 DCI들이 고려될 수 있다.
도 19는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 각 TRP가 서로 다른 PDSCH 또는 서로 다른 PDSCH 레이어를 단말에게 전송하는 NC-JT를 위한 하향링크 제어 정보(downlink control information, DCI)의 구성에 대한 예를 도시하는 도면이다.
도 19를 참고하면, case #1(N100)은 단일 PDSCH 전송 시 사용되는 serving TRP (TRP#0) 이외에 (N-1)개의 추가적인 TRP(TRP#1 내지 TRP#(N-1))로부터 서로 다른 (N-1)개의 PDSCH가 전송되는 상황에서, (N-1)개의 추가적인 TRP들에서 전송되는 PDSCH들에 대한 제어 정보가 serving TRP에서 전송되는 PDSCH에 대한 제어 정보와 독립적으로 전송되는 예시이다. 즉, 단말은 독립적인 DCI들(DCI#0 내지 DCI#(N-1))을 통하여 서로 다른 TRP들(TRP#0 내지 TRP#(N-1))로부터 전송되는 PDSCH들에 대한 제어 정보를 획득할 수 있다. 상기 독립적인 DCI들 간 포맷(format)은 서로 동일하거나 서로 다를 수 있으며, DCI들 간 페이로드 역시 서로 동일하거나 다를 수 있다. 전술한 case #1은 각 PDSCH 제어 또는 할당 자유도가 완전히 보장될 수 있으나, 각 DCI가 서로 다른 TRP들에서 전송되는 경우 DCI 별 커버리지(coverage) 차이가 발생하여 수신 성능이 열화될 수 있다.
case #2(N105)은 단일 PDSCH 전송 시 사용되는 serving TRP (TRP#0) 이외에 (N-1)개의 추가적인 TRP들(TRP#1 내지 TRP#(N-1))로부터 서로 다른 (N-1)개의 PDSCH가 전송되는 상황에서, (N-1)개의 추가적인 TRP들의 PDSCH에 대한 제어 정보(DCI)가 각각 전송되며 이들 DCI들 각각이 serving TRP로부터 전송되는 PDSCH에 대한 제어 정보에 종속적인 예시를 보인다.
예를 들어, serving TRP(TRP#0)으로부터 전송되는 PDSCH에 대한 제어 정보인 DCI#0의 경우 DCI format 1_0, DCI format 1_1, DCI format 1_2의 모든 정보 요소(information element)들을 포함하지만, 협력 TRP들(TRP#1 내지 TRP#(N-1))으로부터 전송되는 PDSCH들에 대한 제어 정보인 shortened DCI(이하, sDCI)(sDCI#0 내지 sDCI#(N-2))들의 경우 DCI format 1_0, DCI format 1_1, DCI format 1_2의 정보 요소들 중 일부만을 포함할 수 있다. 따라서 협력 TRP들로부터 전송되는 PDSCH들에 대한 제어 정보를 전송하는 sDCI의 경우에, serving TRP로부터 전송되는 PDSCH 관련 제어 정보를 전송하는 normal DCI (nDCI) 대비 페이로드(payload)가 작으므로 nDCI와 비교하여 reserved bit들을 포함하는 것이 가능하다.
전술한 case #2은 sDCI에 포함되는 정보 요소의 컨텐츠(content)에 따라 각 PDSCH 제어 또는 할당 자유도가 제한될 수 있으나, sDCI의 수신 성능이 nDCI 대비 우수해지므로 DCI 별 커버리지(coverage) 차이가 발생할 확률이 낮아질 수 있다.
case #3(N110)은 단일 PDSCH 전송 시 사용되는 serving TRP (TRP#0) 이외 (N-1)개의 추가적인 TRP들(TRP#1 내지 TRP#(N-1))로부터 서로 다른 (N-1)개의 PDSCH가 전송되는 상황에서, (N-1)개의 추가적인 TRP들의 PDSCH에 대한 하나의 제어 정보가 전송되며, 이 DCI가 serving TRP로부터 전송되는 PDSCH에 대한 제어 정보에 종속적인 예시를 나타낸다.
예를 들어, serving TRP(TRP#0)로부터 전송되는 PDSCH에 대한 제어 정보인 DCI#0의 경우 DCI format 1_0, DCI format 1_1, DCI format 1_2의 모든 정보 요소(information element)들을 포함하고, 협력 TRP들(TRP#1~TRP#(N-1))로부터 전송되는 PDSCH들에 대한 제어 정보의 경우 DCI format 1_0, DCI format 1_1, DCI format 1_2의 정보 요소들 중 일부만을 하나의 'secondary' DCI(sDCI)에 모아서 전송하는 것이 가능하다. 예를 들어, 상기 sDCI는 협력 TRP들의 주파수 영역 자원 할당(frequency domain resource assignment), 시간 영역 자원 할당(time domain resource assignment), MCS 등 HARQ 관련 정보 중 적어도 하나의 정보를 포함할 수 있다. 이외에, BWP(bandwidth part) 지시자(indicator) 또는 캐리어 지시자(carrier indicator) 등 sDCI 내 포함되지 않은 정보의 경우 serving TRP의 DCI(DCI#0, normal DCI, nDCI)를 따를 수 있다.
case #3(N110)은 sDCI에 포함되는 정보 요소의 컨텐츠(content)에 따라 각 PDSCH 제어 또는 할당 자유도가 제한될 수 있으나, sDCI의 수신 성능 조절이 가능하고 case #1(N100) 또는 case #2(N105)와 비교하여 단말의 DCI 블라인드 디코딩(blind decoding)의 복잡도가 감소할 수 있다.
case #4(N115)는 단일 PDSCH 전송 시 사용되는 serving TRP (TRP#0) 이외에 (N-1)개의 추가적인 TRP들(TRP#1~TRP#(N-1))로부터 서로 다른 (N-1)개의 PDSCH가 전송되는 상황에서, (N-1)개의 추가적인 TRP들로부터 전송되는 PDSCH에 대한 제어 정보를 serving TRP로부터 전송되는 PDSCH에 대한 제어 정보와 동일한 DCI(Long DCI)에서 전송하는 예시이다. 즉, 단말은 단일 DCI를 통하여 서로 다른 TRP들(TRP#0~TRP#(N-1))로부터 전송되는 PDSCH들에 대한 제어 정보를 획득할 수 있다. case #4(N115)의 경우, 단말의 DCI 블라인드 디코딩(blind decoding)의 복잡도가 증가하지 않을 수 있으나, long DCI payload 제한에 따라 협력 TRP들의 수가 제한되는 등 PDSCH 제어 또는 할당 자유도가 낮을 수 있다.
이후의 설명 및 실시 예들에서 sDCI는 shortened DCI, secondary DCI, 또는 협력 TRP에서 전송되는 PDSCH 제어 정보를 포함하는 normal DCI (상기 설명한 DCI format 1_0 내지 1_1) 등 다양한 보조 DCI들을 지칭할 수 있으며 특별한 제한이 명시되지 않은 경우 해당 설명은 상기 다양한 보조 DCI들에 유사하게 적용이 가능한 것이다.
이후의 설명 및 실시예들에서는 NC-JT 지원을 위하여 하나 이상의 DCI (PDCCH)가 사용되는 전술한 case #1(N100), case #2(N105), case #3(N110)의 경우를 multiple PDCCH 기반 NC-JT로 구분하고(제1 유형), NC-JT 지원을 위하여 단일 DCI (PDCCH)가 사용되는 전술한 case #4(N115)의 경우를 single PDCCH 기반 NC-JT로 구분할 수 있다(제2 유형). Multiple PDCCH 기반의 PDSCH 전송에서는 serving TRP(TRP#0)의 DCI가 스케쥴링되는 CORESET과 협력 TRP들(TRP#1 내지 TRP#(N-1))의 DCI가 스케쥴링되는 CORESET이 구분될 수 있다. CORESET들을 구분하기 위한 방법으로, CORESET별 상위 레이어 지시자를 통해 구분하는 방법, CORESET별 빔 설정을 통해 구분하는 방법 등이 있을 수 있다. 또한, single PDCCH 기반 NC-JT에서는 단일 DCI가 복수 개의 PDSCH를 스케쥴링하는 대신, 복수 개의 레이어들을 갖는 단일 PDSCH를 스케쥴링하며, 상술한 복수 개의 레이어들은 다수의 TRP들로부터 전송될 수 있다. 이 때, 레이어와 해당 레이어를 전송하는 TRP 간의 연결 관계는 레이어에 대한 TCI(Transmission Configuration Indicator) indication 을 통해 지시될 수 있다.
본 개시의 실시예들에서 "협력 TRP"는 실제 적용 시 "협력 패널(panel)" 또는 "협력 빔(beam)" 등 다양한 용어로 대체될 수 있다.
본 개시의 실시예들에서 "NC-JT가 적용되는 경우"라 함은 "단말이 하나의 BWP에서 동시에 하나 이상의 PDSCH를 수신하는 경우", "단말이 하나의 BWP에서 동시에 두 개 이상의 TCI(Transmission Configuration Indicator) indication을 기초로 PDSCH를 수신하는 경우", "단말이 수신한 PDSCH가 하나 이상의 DMRS 포트 그룹(port group)에 연관(association) 된 경우" 등 상황에 맞게 다양하게 해석되는 것이 가능하나 설명의 편의상 한 가지 표현으로 사용하였다.
본 발명에서 NC-JT를 위한 무선 프로토콜 구조는 TRP 전개 시나리오에 따라 다양하게 사용될 수 있다. 일례로 협력 TRP 간 backhaul 지연이 없거나 작은 경우 도 17의 S10과 유사하게 MAC layer multiplexing에 기초한 구조를 사용하는 방법(CA-like method)이 가능하다. 반면에, 협력 TRP들 간 backhaul 지연이 무시할 수 없을 만큼 큰 경우 (예를 들어 협력 TRP들 간 CSI, scheduling, HARQ-ACK 등의 정보 교환에 2 ms 이상의 시간이 필요한 경우) 도 17의 S20과 유사하게 RLC layer 부터 TRP 별 독립적인 구조를 사용하여 지연에 강인한 특성을 확보하는 방법(DC-like method)이 가능하다.
C-JT / NC-JT를 지원하는 단말은 상위 레이어 설정으로부터 C-JT / NC-JT 관련 파라미터 또는 세팅 값 등을 수신하고, 이를 기초로 단말의 RRC 파라미터를 세팅할 수 있다. 상위 레이어 설정을 위해 단말은 UE capability 파라미터, 예를 들어 tci-StatePDSCH를 활용할 수 있다. 여기서 UE capability 파라미터, 예를 들어 tci-StatePDSCH는 PDSCH 전송을 목적으로 TCI states를 정의할 수 있으며, TCI states의 개수는 FR1에서 4, 8, 16, 32, 64, 128로, FR2에서는 64, 128로 설정될 수 있고, 설정된 개수 중에 MAC CE 메시지를 통해 DCI의 TCI 필드 3 bits로 지시될 수 있는 최대 8개의 상태가 설정될 수 있다. 최대값 128은 단말의 capability signaling에 포함되어 있는 tci-StatePDSCH 파라미터 내 maxNumberConfiguredTCIstatesPerCC가 지시하는 값을 의미한다. 이와 같이, 상위 레이어 설정부터 MAC CE 설정까지 일련의 설정 과정은 1개의 TRP에서의 적어도 하나의 PDSCH를 위한 빔포밍 지시 또는 빔포밍 변경 명령에 적용될 수 있다.
[D-MIMO]
본 개시의 분산 다중입력다중출력(distributed-multiple input multiple output, D-MIMO)은 모든 주파수 대역에서 동작하지만 그 중 1GHz 이하의 저주파 대역에서 다중입력다중출력 환경에서 동작하는 것을 고려한다. 일반적으로 저주파 환경에서는 고주파에 비해 신호의 전력 감쇠가 적기 때문에 Cell의 크기가 상대적으로 클 수 있다. 또한 기지국 안테나 포트 간의 간격은 동작 주파수와 반비례 관계를 가진다. 따라서 저주파 대역에서 D-MIMO를 구현하기 위해서는 안테나가 Cell 중앙의 단일 배열로 배치되는 경우 그 형상이 매우 커지기 때문에 지리적으로 분산되어 설치가 가능하다[도 20]. 이렇게 분산되어 있는 전송지점(이하 TRP(Transmission Reception Point))들로부터 전송된 신호는 넓은 영역의 셀 내의 단말의 위치에 따라 수신 시간 지연(Time delay)이나 위상 차이(Phase difference)가 크게 발생하여 수신 신뢰도가 하락하는 문제가 발생할 수 있다. 또한 상기 수신 신호로부터 각 지연 확산(delay spread)를 검출하고 데이터를 복호화하는 데에는 단말의 높은 수신 복잡도가 요구되며, 특히 단말이 셀 내의 특정 위치에 따라 시간 지연(Time delay) 및 위상 차이(Phase difference)가 큰 환경에서는 더욱 높은 단말 수신 복잡도가 필요하다.
상기 문제를 해결하기 위하여, 전송에 참여하는 다수의 기지국, 셀, 또는 TRP들이 송신 time difference 및 phase difference를 사전 보상 후 TRP간의 동기가 맞춰진 상태에서 신호를 전송함으로써 단말의 수신 복잡도를 낮추는 방법이 필요하다. TRP간의 동기를 맞추기 위해서는 전통적인 동기화 방식 중 하나인 기지국의 참조 신호(Reference Signal(이하 RS)) 전송과 단말의 보고를 토대로 TRP간의 동기를 맞추는 방법을 도입할 수 있는데, 해당 방식은 채널 호환성(Channel Reciprocity)이 보장되는 시간 분할(이하 TDD)시스템에서는 유용하나, 그렇지 않는 주파수 분할(이하 FDD) 시스템에서 적용하는 경우 성능 저하가 발생할 수 있다. 따라서 본 개시에서는 FDD 시스템에서 단말의 TRS(동기화를 위한 RS) 수신에 대한 보고를 기반으로 TRP간의 동기를 맞추는 방법을 제안한다. 또한 TRP간의 동기가 맞춰진 이후 기지국은 새로운 TRS에 다중 QCL을 연결하여 단말에게 전송함으로서 단말이 각 TRP로부터 전송되는 TRS를 모두 참조하지 않고, 해당 TRS 내의 QCL 관계를 이용하여 이후에 수신할 PDSCH나 PDCCH를 복호화하는 방법을 제안한다.
<제 1실시예 : SFN(single frequency network) 전송 TRP의 TRS 설정 방법>
제안하는 제 1실시예는 D-MIMO 전송에 참여하는 TRP가 하나 혹은 그룹의 단말들을 위해서 TRS를 구성하는 방법에 관한 것으로, TRP들이 동일 시간 및 주파수 자원에서 전송하는 방식인 Single-Frequency Network(이하 SFN) 방식으로 TRS를 구성하는 방법이다. 제안하는 TRS구성 방법을 통해 단말은 사전에 각 TRP 별로 사전 보상된 하나의 TRS 자원을 높은 신호 품질로 수신할 수 있다.
본 실시예1에서는 도 21과 같이 단말이 안테나 포트 개수가 모두 동일한 n-port-TRP들로부터 TRS를 SFN 방식으로 구성하고 이를 수신하는 방법을 제공한다. 설명의 편의를 위해 도 21에서는 SFN 전송에 참여하는 TRP를 TRP#1, TRP#2, TRP#3 총 3개로 가정하나 이는 일례일 뿐이며, 임의의 TRP 개수인 경우에 대하여도 본 실시예가 적용될 수 있다. 여기서 동일한 수의 안테나 포트는 실제로 TRP의 물리적인 안테나 수가 동일한 것을 의미하는 것은 아니며 논리적인 안테나 포트 수를 의미한다. 가령, TRP#1, #2가 물리적인 안테나 포트 수가 2개이고, TRP#3이 4개인 경우 TRP#3는 4개의 물리적인 안테나 포트를 2개의 논리적인 안테나로 가상화(virtualization)시킬 수 있으며 이 경우 단말은 세 개의 TRP 모두 2개의 포트로 인지하게 된다.
도 21은 안테나 포트 개수가 동일한 3개의 TRP들이 시간 동기를 맞추는 방법을 도시한 시퀀스도이다. 해당 방법은 각 기지국이 단말에게 시간 동기를 위한 참조 신호인 TRS를 전송하고(21-00), 단말이 TRS 간의 시간 지연을 계산하여 기지국에게 보고하는 과정을 포함한다(21-03). 여기서 TRS간의 지연의 기준은 serving TRS를 기준으로 하거나 기지국이 상위 레이어 시그널링을 통해 어떤 TRS를 기준으로 할지 지시하는 것을 포함한다.
본 실시예는 단말이 기지국으로부터 Time delay difference가 보상되지 않은 n-port-TRS#1, n-port-TRS#2, n-port-TRS#3를 수신하는 단계(21-00), 각 기지국이 단말로부터 보고 받은 Time delay difference를 사전 보상한 TRS#4를 구성하는 단계(21-04)를 포함한다.
<제 1-1 실시예 : TCI-stateID 내의 Physical Cell 정보로 TRS 구성하는 방법>
제안하는 제 1-1실시예에서는 TCI-stateID내의 Physical Cell 정보에 기반하여 TRS를 구성하고, 단말이 수신한 TRS를 구분하는 방법이다. 먼저, 단말은 기지죽으로부터 상위 시그널링(예를 들어, RRC Reconfiguration 메시지)를 수신할 수 있다. 단말은 상위 레이어 시그널링인 NZP-CSI-RS-ResourceSet 내의 trs-Info가 true로 설정된 NZP-CSI-RS 설정 정보를 기지국으로부터 수신할 수 있다[21-00]. 기지국은 상위 시그널링을 통해 설정된 설정 정보를 기반으로 단말에게 TRS를 전송할 수 있다[21-01]. 이 때 TRP#1에서 전송하는 TRS#1과 TRP#2에서 전송하는 TRS#2와 TRP#3에서 전송하는 TRS#3은 서로 독립적인 NZP-CSI-RS-ResourceId를 가지는 nzp-CSI-RS-Resources 일 수 있다(
Figure pat00115
). 이 때, 단말은 TRS#1 내지 TRS#3의 수신 시 상위 레이어 시그널링인 NZP-CSI-RS-Resource 내의 TCI-StateId에 대응되는 TCI state 정보를 사용할 수 있다. 만약 TCI-StateId에 대응되는 상위 레이어 시그널링인 TCI-State 내에 Physical Cell ID (PCID)에 대한 정보가 추가적으로 존재하고, TCI-State 내에 설정된 QCL-Info 내의 referenceSignal이 ssb로 설정된 경우, 단말은 해당 TCI-StateId를 기반으로 수신한 특정 TRS가 어떤 PCID의 SSB와 QCL 관계를 갖는 지에 대해 인지할 수 있다. 즉 단말은 referenceSignal에 설정된 SSB가 어느 Physical cell에서 전송되었는지 알 수 있다. 이를 이용하여 단말은 수신한 TRS에 QCL Type-C 또는 D를 적용하여 측정할 수 있는 통계적 특성들을 SSB와 각 안테나 포트들까지 연계시켜 수신 동작을 용이하게 하는 것이 가능하다. 예를 들어, 단말은 TRP#1로부터 TRS#1을 수신하는 경우, TCI state 정보(TCI#1)에 설정된 QCL source인 SSB#1을 기반으로 TRS#1을 수신할 수 있다. 이 때, SSB#1 정보와 TCI state 내에 설정된 PCID 정보를 바탕으로, TRS#1이 어느 기지국(해당 예시의 경우 TRP#1)으로부터 전송된 신호인지 구별할 수 있다. 마찬가지로 단말은 TRS#2와 TRS#3에 각각 설정된 TCI state (즉 TCI#2, TCI#3)의 QCL source가 SSB로 설정되고 TCI state 내에 추가적으로 PCID가 설정된 경우, TRS#2와 TRS#3이 어떤 기지국으로부터 전송된 신호인지 구별할 수 있다.
한편, 단말은 상위 레이어 시그널링을 통해 설정된 TCI-State내에 QCL-Info 내의 NZP-CSI-RS-ResourceId와 ServCell Index 각각에 CSI-RS for Tracking 신호와 Cell 정보를 확인할 수 있다. 단말은 해당 설정 정보를 참조하여 각각의 TRS가 어느 Cell로부터 전송되었는지 알 수 있다.
<제 1-2 실시예 : 단말의 Time delay difference 보고를 위한 TRS report quantity 설정 방법>
제안하는 1-2 실시예에서는 단말이 기지국으로부터 수신한 TRS간의 Time delay difference를 측정하고 보고하기 위한 CSI report를 설정하는 방법이다. 단말은 기지국이 전송하는 TRS#1, TRS#2, TRS#3에 대한 CSI report 정보를 기지국으로부터 수신할 수 있다. 단말은 상기 CSI report 정보를 기지국으로부터 수신할 수 있는 상위 레이어 시그널링을 통해 획득할 수 있다[21-02]. 단말은 TRS#1, TRS#2, TRS#3이 포함된 상위 레이어 시그널링인 CSI-ResourceConfig와 연결된 CSI-ReportConfig 내의 reportQuantity의 값을 기지국으로부터 enable 혹은 timeDelayDifference 혹은 timeDelayReference로 설정 받을 수 있다. 상기 reportQuantity에 해당하는 용어는 enable 혹은 timeDelayDifference 혹은 timeDelayReference에 한정되는 것은 아니며, 동일한 의미의 다른 형태로도 설정이 가능하다. 여기서 timeDelayReference는 기준이 되는 TRS를 의미하며 timeDelayDifference는 reference TRS 대비 offset값을 계산하는 것을 의미하는 것을 포함한다. 해당 설정 정보를 기반으로, 단말은 수신한 TRS#1, TRS#2, TRS#3으로부터 TRS간의 Time delay difference를 계산하여 기지국에게 보고할 수 있다[21-03]. 단말이 Time delay difference를 계산하고 보고하는 과정은 제 3-1실시예에서 구체적으로 서술한다.
기지국은 단말로부터 보고 받은 Time delay difference 값을 사전 보상한 TRS#4를 단말에게 전송함으로써[21-04], TRP 간의 전송 시간 동기를 맞추고, 이후에 단말이 수신할 PDSCH/PDCCH의 average delay에 대한 추정 정확도를 향상시킬 수 있다[21-05]. 그러나 네트워크 내의 단말 위치에 따라 단말 별 TRP와의 average delay가 모두 다를 수 있다. 이는 단말 별로 사전 보상해야 하는 Time delay difference 값이 모두 다름을 의미하며, 사전 보상된 TRS#4가 단말 개별적 혹은 단말 그룹으로 전송되는 것을 포함한다. 여기서 사전 보상된 TRS#4가 더 이상의 단말 보고가 필요하지 않는 경우 CSI-ReportCofig 내의 reportQuantity가 none으로 설정되어 있을 수 있으며 안테나 포트 수는 여전히 TRS#1, TRS#2, TRS#3와 동일한 n-port일 수 있다.
<제 1-3 실시예 : 기지국의 사전 보상된 TRS 지시 방법>
  제안하는 1-3 실시예는 기지국이 단말의 TRS 수신 복잡도 감소를 위해, Time delay difference가 사전 보상된 TRS를 단말에게 통지하는 방법이다. 상기 예시에서 사전 보상된 TRS#4는 사전 보상되지 않은 TRS#1,2,3과 각각 특정한 채널 특성은 공유하되, (예컨대 average delay, delay spread, Doppler spread, Spatial Rx parameter 중 적어도 하나 이상을 공유하되) 공유되지 않는 특정한 채널 특성 (예컨대 average delay)이 있을 수 있다. 따라서 기지국은 사전 보상된 TRS#4에 대하여 사전 보상되지 않은 TRS#1,2,3과 상기 공유되는 채널 특성에 대한 QCL 관계(도 22의 [22-01], [22-02], [22-03])를 지시함으로써 단말에게 상기 TRS#4가 사전 보상되었음 및 상기 TRS#4 측정을 위한 채널 특성을 함께 알려줄 수 있고, 상세한 방법은 다음과 같다.
[방법 1-3-1] : 사전 보상된 주기적 TRS 지시 방법
제안하는 방법은 단말이 기지국으로부터 주기적 TRS를 수신하고, 해당 TRS의 QCL reference가 다른 TRS로 지시된 경우 해당 주기적 전송 TRS는 사전 보상된 TRS라고 판단하는 방법이다. 이 때 함께 지시되는 QCL type은 상술한 채널 특성, 예를 들면 average delay, delay spread, Doppler spread, Spatial Rx parameter 중 적어도 하나 이상을 포함할 수 있다.
  또한 상기 사전 보상된 TRS가 SFN 기반으로 전송되는 TRS인 경우, 해당 TRS에 대한 QCL reference로 2개 이상의 다른 TRS 자원들이 지시될 수 있다. 이 때 상기한 2개 이상의 QCL reference 자원은 서로 다른 TRP로부터 전송되는 TRS 자원, 예컨대 TRS#1, TRS#2, TRS#3 일 수 있다. 단말은 2개 이상의 QCL reference 자원이 지시된 경우, QCL target이 되는 사전 보상된 TRS#4의 측정을 위해 상술한 QCL reference 자원들의 채널 특성들을 적절히 조합할 수 있다.
[방법 1-3-2] : 사전 보상된 비주기적 TRS 지시 방법
  제안하는 방법은 단말이 기지국으로부터 비주기적 TRS를 수신하고, 해당 TRS의 QCL reference가 다른 TRS로 지시되었을 때, 해당하는 QCL type에 average delay가 제외된 경우에는 해당 비주기적 TRS가 사전 보상된 TRS(상기 예시에서는 TRS#4)라고 판단하는 방법이다. 비주기적(aperiodic) TRS 자원은 다른 TRS가 QCL reference로 반드시 지시되나, 이 때의 QCL type은 QCL-typeA, 및 spatial Rx parameter가 사용되는 경우 QCL-TypeD만이 사용 가능할 수 있다. 상술한 바와 같이 사전 보상되는 TRS는 사전 보상되지 않는 TRS와는 다른 average delay 값을 가지므로, 두 TRS 간 QCL 관계를 지시할 때는 average delay가 제외된 QCL type이 사용되어야 한다. 이때 QCL type은 상기 주기적 TRS 자원 기술 시 상술한 채널 특성, 예를 들면 average delay, delay spread, Doppler spread, Spatial Rx parameter 중 적어도 하나 이상을 포함할 수 있다. 또한 상기 사전 보상된 TRS가 SFN 전송되는 TRS인 경우, 해당 TRS에 대한 QCL reference로 2개 이상의 다른 TRS 자원들이 지시될 수 있으며, 상세한 지시 방법은 상기 주기적 TRS 자원에 대한 지시 방법과 같을 수 있다.
    본 방법1-3-2는 상기한 바와 같이 사전 보상 TRS에 대한 오버헤드 감소를 위해, 사전 보상 TRS는 비주기적 TRS에 대해서만 허용하는 것을 포함한다. 예를 들면, TRS#4 자원에 대한 QCL reference가 다른 TRS 하나 또는 다수 개로 지시되며 해당하는 QCL type에 average delay가 제외되는 QCL 관계는 상기한 'TRS 자원'이 비주기적 TRS인 경우에만 허용하는 방법이다.
상기 사전 보상 TRS 지시 방법 이외에도 반지속적(semi-persistent) TRS를 사용하고, 해당 반지속적 TRS에 대해서만 상기 사전 보상이 허용하는 것도 가능하다. 이 때 반지속적 사전 보상 TRS의 QCL 관계는 상기한 비주기적 TRS의 QCL 관계와 같을 수 있다.
상술한 방법들은 예시에 불과하며 이에 한정되는 것은 아니다. 따라서 나열된 방법에 기반한 변형 또는 나열된 방법들의 조합 등 다양한 방법들이 가능할 수 있다.
<제 2실시예 : Non-SFN 전송 TRP의 TRS 설정 방법>
제안하는 제 2 실시예는 D-MIMO 에 참여하는 TRP가 하나 혹은 그룹의 단말들을 위해서 TRS를 구성하는 방법에 관한 것으로, TRP들 간에 서로 다른 시간 및 주파수 자원에서 전송하는 방식인 Non-Single-Frequency Network (Non-SFN) 방식을 통해 TRS를 구성하는 방법이다. 제안하는 TRS 구성 방법을 통해 단말은 서로 다른 개수의 안테나 포트를 가지고 있는 TRP로부터 TRS를 수신하고 이를 기반으로 TRP간 동기를 위한 정보를 피드백하여 이후 동기가 맞춰진 상태에서 데이터 채널을 수신할 수 있다.
단말이 TRP로부터 TRS를 수신할 때, TRS 간의 Time delay offset은 매우 적을 수 있으나, phase offset이 크게 발생할 수 있다. 설명의 편의를 위해 본 도면에서는 Non-SFN 전송에 참여하는 TRP를 TRP#1, TRP#2, TRP#3 총 3개로 가정하나 이는 일례일 뿐이며, 임의의 TRP 개수인 경우에도 본 실시예가 적용될 수 있다.
도 23은 안테나 포트 개수가 서로 다른 3개의 TRP들이 Non-SFN 방식으로 위상 동기를 맞추는 방법을 도시한 시퀀스도이다. 본 실시예에서는 기지국간의 위상 동기를 맞추기 위하여 각 기지국이 단말에게 서로 다른 안테나 포트 개수를 가진 TRS#1, TRS#2, TRS#3을 전송하는 단계(23-01), 기지국이 단말로부터 보고 받은 위상 차이를 사전 보상한 TRS#4를 구성하는 단계(23-04)를 포함한다.
<제 2-1 실시예 : 단말의 Phase difference 보고를 위한 TRS report quantity 설정 방법>
제안하는 2-1 실시예에서는 단말이 기지국으로부터 수신한 TRS 간의 위상 차이를 측정하고 보고하기 위한 CSI report를 설정하는 방법이다. 단말은 기지국이 전송하는 TRS#1, TRS#2, TRS#3에 대한 CSI report 정보를 수신한다. 단말은 기지국으로부터 수신할 수 있는 상위 레이어 시그널링을 통해 상기 CSI report 정보를 획득할 수 있다[23-02]. 단말은 TRS#1, TRS#2, TRS#3이 포함된 상위 레이어 시그널링인 CSI-ResourceConfig와 연결된 CSI-ReportConfig 내의 reportQuantity의 값을 기지국으로부터 enable 혹은 phaseDifference 혹은 phaseDifferenceReference로 설정 받을 수 있다. 상기 reportQuantity에 해당하는 용어는 enable 혹은 phaseDifference 혹은 phaseDifferenceReference에 한정되는 것은 아니며, 동일한 의미의 다른 형태로도 설정이 가능하다. 여기서 phaseDifferenceReference는 기준이 되는 TRS를 의미하며 phaseDifference는 기준 TRS 대비 offset 값을 계산하는 것을 의미하는 것을 포함한다. 23-02 동작에서 수신한 설정 정보를 기반으로, 단말은 수신한 TRS#1, TRS#2, TRS#3으로부터 TRS간의 Phase difference를 계산하여 기지국에게 보고할 수 있다[23-03]. 단말이 Phase difference를 계산하고 보고하는 과정은 제 3-2실시예에서 구체적으로 서술한다.
기지국은 단말로부터 보고 받은 Phase difference값들을 사전 보상하여 TRS#4를 단말에게 전송함으로써[23-04], TRP 간의 phase 동기를 맞추고, 이후 단말이 수신할 PDSCH/PDCCH의 average delay에 대한 추정 정확도를 향상시킬 수 있다. 그러나 네트워크 내의 단말 위치에 따라 단말 별 TRP와의 average delay가 모두 다를 수 있다. 이는 단말 별로 사전 보상해야 하는 Phase difference 값이 모두 다름을 의미하며, 사전 보상된 TRS#4가 단말 개별적 혹은 단말 그룹으로 전송되는 것을 포함한다. 여기서 사전 보상된 TRS#4는 더 이상의 단말 보고가 필요하지 않는 경우 CSI-ReportCofig 내의 reportQuantity가 none으로 설정되어 있을 수 있으며, 안테나 포트 수는 TRS#1, TRS#2, TRS#3의 안테나 포트 수를 모두 합한 것과 같을 수 있다.
<제 2-2 실시예 : 서로 다른 TRP들의 TRS를 포함하는 하나의 TRS를 구성하는 방법>
제안하는 2-2 실시예에서는 서로 다른 TRP가 전송하는 TRS들을 포함하는 하나의 TRS를 구성하는 방법에 대해 서술한다. 가령, 기지국은 사전 보상되지 않은 TRS#1, TRS#2, TRS#3과 별개로, Phase difference가 사전 보상된 TRS#4를 단말로 전송할 수 있다. 이 때 TRS#4는 각 TRP에서 서로 다른 시간 및 주파수 자원에서 TRS를 전송하는 Non-SFN 방식으로 전송하는 것일 수 있다. 기지국은 상위 레이어 시그널링에 의해 TCI state 설정을 통하여 TRS#1, TRS#2, TRS#3의 안테나 포트를 하나의 TRS#4 내의 포트 그룹#1, 포트 그룹#2, 포트 그룹#3에 각각 대응되도록 설정 혹은 지시할 수 있다. 이 때, TRS#1, TRS#2, TRS#3의 안테나 포트수가 각각 2,3,4개라면, TRS#4의 안테나 포트 개수는 9개가 될 수 있다[도 24]. 또한 각각의 안테나 포트 그룹#1, #2, #3에 각 TRS의 QCL 설정 정보인 QCL#1, QCL#2, QCL#3이 대응되도록 설정하는 것이 가능하다. 따라서 단말은 TRS#1, #2, #3를 참조하지 않고 TRS#4 내의 서로 다른 QCL 정보를 이후에 수신할 하향링크 제어 및 데이터 신호를 복호화하는 데에 적용하는 것이 가능하다. 자세한 내용은 실시예4에서 상세히 서술한다.
<제 3실시예 : 단말의 TRS 수신에 대한 보고 방법>
제안하는 제 3실시예는 D-MIMO에 참여하는 TRP들 중 Reference TRP 대비 다른 TRP들이 단말에게 전송하는 TRS에 대한 시간 지연(Time delay difference) 또는 위상 차이(Phase offset)를 단말이 계산하여 기지국에게 보고하는 방법이다. 제안하는 단말의 시간 지연 및 위상 차이 보고 방법을 통해 기지국은 각 TRP별로 시간 및 위상 차이를 보상하여 동기를 맞출 수 있으며, 단말은 사전 보상을 통해 동기화 된 하향링크 신호를 높은 신호 품질로 수신할 수 있다.
먼저, 단말은 상위 레이어 시그널링인 NZP-CSI-RS-ResourceSet 내의 trs-Info가 true로 설정된 NZP-CSI-RS 설정 정보를 기지국으로부터 수신할 수 있고, 기지국은 해당 설정 정보를 기반으로 단말에게 TRS#1, TRS#2, TRS#3을 전송할 수 있다. 단말은 기지국이 전송하는 TRS#1, TRS#2, TRS#3에 대한 CSI report 정보를 기지국으로부터 수신할 수 있다. 단말은 기지국으로부터 수신할 수 있는 상위 레이어 시그널링을 통해 상기 CSI report 정보를 획득할 수 있다. 상기 1-2실시예와 2-1 실시예에서 서술한 것과 같이, 단말은 TRS#1, TRS#2, TRS#3이 포함된 상위 레이어 시그널링인 CSI-ResourceConfig와 연결된 CSI-ReportConfig 내의 reportQuantity의 값을 기지국으로부터 enable 또는 timeDelayDifference 혹은 timeDelayReference, 또는 phaseDifference 혹은 phaseDifferenceReference로 설정 받을 수 있다. 상기 reportQuantity에 해당하는 용어는 상기에 한정되는 것은 아니며, 동일한 의미의 다른 형태로도 설정이 가능하다. 해당 설정 정보를 기반으로, 단말은 각 TRP로부터 TRS#1, TRS#2, TRS#3을 수신하고, Reference TRS 대비 Time delay difference 또는 Phase difference를 계산하여 기지국에게 보고하는 것이 가능하다.
<제 3-1실시예 : SFN 전송 TRP의 TRS 전송에 대한 단말의 time delay difference 보고 방법>
단말은 TRS#1, TRS#2, TRS#3이 포함된 상위 레이어 시그널링인 CSI-ResourceConfig와 연결된 CSI-ReportConfig 내의 reportQuantity의 값을 기지국으로부터 enable 혹은 timeDelayDifference 혹은 timeDelayReference로 설정 받을 수 있다. 이 때, 단말은 n-port-TRP#1, n-port-TRP#2, n-port-TRP#3로부터 각각 n-port-TRS#1, n-port-TRS#2, n-port-TRS#3를 수신하고, 해당 TRS간의 Time delay difference를 계산할 수 있다. 예를 들어, 단말의 TRS#1, TRS#2, TRS#3의 수신 시간이 각각 T1, T2, T3(T1<T2<T3)라고 한다면, 가장 먼저 수신한 TRS#1을 참조 TRS로 가정할 수 있다. 본 예시에서는 단말이 수신한 TRS 중 가장 빠르게 수신한 신호인 TRS#1을 참조 신호로 설정하였지만, 참조 TRS설정 정보를 상위 레이어 시그널링으로부터 지시받을 수 있으며 이에 한정되지 않는다. 단말은 수신 각 TRP로부터 수신한 TRS의 PDP(Power Delay Profile)를 통해 T2-T1, T3-T1 계산을 수행하여 TRS#1 대비 TRS#2, TRS#1 대비 TRS#3의 Time delay difference 값을 측정할 수 있다[도 25]. 한편 단말은 계산한 참조 TRS 대비 Time delay difference를 기지국에게 보고해 줄 수 있다. 기지국은 RRC (Radio Resource Control) 시그날링 또는 MAC(Medium Access Control) CE(Control Element) 시그날링을 포함한 상위레이어 시그날링, 또는 L1 시그날링(예컨대 공통 DCI, 그룹-공통 DCI, 단말-특정 DCI)을 통해 단말에게 Time delay difference 보고를 지시할 수 있다. 기지국으로부터 보고 지시를 받은 단말이 기지국에게 Time delay difference를 보고하는 방법은 다음과 같다.
[방법 3-1-1] : 모든 TRP에게 일괄적으로 Time delay difference 값을 보고하는 방법
제안하는 방법3-1-1은 단말이 참조 TRS 대비 다른 TRS의 Time delay difference 값을 모든 TRP에 일괄적으로 보고하는 방법이다. 단말은 TRS#1 내지 TRS#3 수신 시 상위 레이어 시그널링인 NZP-CSI-RS-Resource 내의 TCI-StateId에 대응되는 TCI state 정보를 사용할 수 있다. 만약 TCI-StateId에 대응되는 상위 레이어 시그널링인 TCI-State 내에 Physical Cell ID (PCID)에 대한 정보가 추가적으로 존재하고, TCI-State 내에 설정된 QCL-Info 내의 referenceSignal이 ssb로 설정된 경우, 단말은 해당 TCI-StateId를 기반으로 수신한 특정 TRS가 어떤 PCID의 SSB와 QCL 관계를 갖는 지에 대해 인지할 수 있다. 즉 단말은 referenceSignal에 설정된 SSB가 어느 Physical cell에서 전송되었는지 알 수 있다. 이 경우 단말은 TRP#2가 속한 Cell ID와 상기 3-1실시예에서 계산한 T2-T1 값과 TRP#3이 속한 Cell ID와 T3-T1 값을 TRP#1, TRP#2, TRP#3에게 일괄적으로 보고하는 것이 가능하다. 이 때, TRP#2의 경우 보고받은 T2-T1값을, TRP#3의 경우 T3-T1값을 사전 보상하여 기지국 간의 시간 동기를 맞출 수 있다. 상기 단말 보고는 RRC 설정 기반으로 단말 보고를 지시하는 주기적 보고 방식, MAC CE 시그날링을 기반으로 단말 보고를 지시하는 반영구적 보고 방식, DCI 혹은 MAC CE 시그날링을 기반으로 단말 보고를 지시하는 비주기적 방식으로 지시받을 수 있으며, 단말은 PUCCH 또는 PUSCH로 보고하는 것이 가능하고 상기 서술한 내용에 한정되지 않는다.
[방법 3-1-2] : 기준 TRP를 제외한 나머지 TRP에게 Time delay difference 값을 개별적으로 보고하는 방법
제안하는 방법3-1-2는 단말이 참조 TRS 대비 다른 TRS의 Time delay difference 값을 각 TRP에게 개별적으로 보고하는 방법이다. 단말은 참조(Serving) TRS 대비 Time delay difference를 계산하여 해당 값을 보상해야 하는 TRP에게 개별적으로 보고해줄 수 있다. 상기 방법3-1-1과 같이, 단말은 수신한 특정 TRS가 어느 Physical Cell에서 전송되었는지 알 수 있다. 이 경우 단말은 TRP#2가 속한 Cell ID와 T2-T1 값을 TRP#2에게, TRP#3이 속한 Cell ID와 T3-T1 값을 TRP#3에게 개별적으로 보고해줄 수 있다. 단말 보고 이후에는TRP#2의 경우 T2-T1값을, TRP#3의 경우 T3-T1값을 이후에 전송할 하향링크 신호에 보상하여 최종적으로 TRP간의 전송 시간 동기를 맞출 수 있다. 상기 단말 보고 방식도 주기적, 반영구적, 비주기적 방식으로 보고하는 것이 가능하고 이에 한정되지 않는다.
<제 3-2실시예 : Non-SFN 전송 TRP의 TRS 전송에 대한 단말의 Phase offset 보고 방법>
본 실시예에서는 Non-SFN 전송 TRP의 TRS 전송에 대한 단말의 Phase offset 보고 방법을 서술한다. 단말은 TRS#1, TRS#2, TRS#3이 포함된 상위 레이어 시그널링인 CSI-ResourceConfig와 연결된 CSI-ReportConfig 내의 reportQuantity의 값을 기지국으로부터 enable 혹은 phaseDifference로 설정 받을 수 있다.
이 때, 단말은 n-port-TRP#1, m-port-TRP#2, k-port-TRP#3(
Figure pat00116
)로부터 각각 n-port-TRS#1, m-port-TRS#2, k-port-TRS#3(
Figure pat00117
)를 수신하고, 해당 TRS간의 phase difference를 계산할 수 있다. 예를 들어, 2port-TRS#1, 3port-TRS#2, 4port-TRS#3의 안테나 포트 그룹이 포트 그룹#1, 포트 그룹#2, 포트 그룹#3 인 경우, 포트 그룹#1을 참조 포트 그룹으로 정할 수 있다. 단말은 포트 그룹#1과 포트 그룹#2의 Phase difference인
Figure pat00118
을 측정하고, 포트 그룹#1과 포트 그룹#3의 Phase difference인
Figure pat00119
를 측정할 수 있다[도 26]. 상기 예시에서는 TRS#1(안테나 포트 그룹#1)을 Serving TRS(참조 TRS)로 설정하였지만, 참조 TRS를 RRC 시그날링으로 별도로 설정받을 수 있으며 이에 한정되지 않는다.
또한 상기 제안하는 실시예에서 포트 그룹 간의 Phase difference를 측정하기 위해 기준 port를 지시하는 방법을 포함한다. 가령, 포트 그룹의 lowest index port를 기준으로 Phase difference를 구하거나, 상위 레이어 시그널링으로 port index를 그룹 별로 지시하거나, 그룹에 공통으로 적용하는 port index를 시그널링하는 방법을 포함하며, 이에 한정되지 않는다.
한편 단말은 계산한 참조 TRS 대비 Phase difference를 기지국에게 보고해 줄 수 있다. 기지국은 RRC (Radio Resource Control) 시그날링 또는 MAC(Medium Access Control) CE(Control Element) 시그날링을 포함한 상위레이어 시그날링, 또는 L1 시그날링(예컨대 공통 DCI, 그룹-공통 DCI, 단말-특정 DCI)을 통해 단말에게 Phase difference 보고를 지시할 수 있다. 기지국으로부터 보고 지시를 받은 단말이 기지국에게 Phase difference를 보고하는 방법은 다음과 같다.
[방법 3-2-1] : 모든 TRP에게 일괄적으로 Phase difference 값을 보고하는 방법
제안하는 방법3-2-1은 단말이 참조 TRS 대비 다른 TRS의 Phase difference 값을 모든 TRP에 일괄적으로 보고하는 방법이다. 단말은 TRS#1 내지 TRS#3 수신 시 상위 레이어 시그널링인 NZP-CSI-RS-Resource 내의 TCI-StateId에 대응되는 TCI state 정보를 사용할 수 있다. 만약 TCI-StateId에 대응되는 상위 레이어 시그널링인 TCI-State 내에 Physical Cell ID (PCID)에 대한 정보가 추가적으로 존재하고, TCI-State 내에 설정된 QCL-Info 내의 referenceSignal이 ssb로 설정된 경우, 단말은 해당 TCI-StateId를 기반으로 수신한 특정 TRS가 어떤 PCID의 SSB와 QCL 관계를 갖는 지에 대해 인지할 수 있다. 즉 단말은 referenceSignal에 설정된 SSB가 어느 Physical cell에서 전송되었는지 알 수 있다. 이 경우 단말은 TRP#2가 속한 Cell ID와 상기 3-2실시예에서 계산한
Figure pat00120
값과 TRP#3이 속한 Cell ID와
Figure pat00121
값을 TRP#1, TRP#2, TRP#3에게 일괄적으로 보고하는 것이 가능하다. 이 때, TRP#2의 경우 보고받은
Figure pat00122
값을, TRP#3의 경우
Figure pat00123
값을 사전 보상하여 기지국 간의 시간 동기를 맞출 수 있다. 상기 단말 보고는 RRC 설정 기반으로 단말 보고를 지시하는 주기적 보고 방식, MAC CE 시그날링을 기반으로 단말 보고를 지시하는 반영구적 보고 방식, DCI 혹은 MAC CE 시그날링을 기반으로 단말 보고를 지시하는 비주기적 방식으로 지시받을 수 있으며, 단말은 PUCCH 또는 PUSCH로 보고하는 것이 가능하며 상기 서술한 내용에 한정되지 않는다.
[방법 3-2-2] : 기준 TRP를 제외한 나머지 TRP에게 Phase difference 값을 개별적으로 보고하는 방법
제안하는 방법3-2-2는 단말이 참조 TRS 대비 다른 TRS의 Phase difference 값을 각 TRP에게 개별적으로 보고하는 방법이다. 단말은 참조(Serving) TRS 대비 Phase difference를 계산하여 해당 값을 보상해야 하는 TRP에게 개별적으로 보고해줄 수 있다. 상기 방법3-2-1과 같이, 단말은 수신한 특정 TRS가 어느 Physical Cell에서 전송되었는지 알 수 있다. 이 경우 단말은 TRP#2가 속한 Cell ID와
Figure pat00124
값을 TRP#2에게, TRP#3이 속한 Cell ID와
Figure pat00125
값을 TRP#3에게 개별적으로 보고해줄 수 있다. 단말 보고 이후에는TRP#2의 경우
Figure pat00126
값을, TRP#3의 경우
Figure pat00127
값을 이후에 전송할 하향링크 신호에 보상하여 최종적으로 TRP간의 위상 동기를 맞출 수 있다. 상기 단말 보고 방식도 주기적, 반영구적, 비주기적 방식으로 보고하는 것이 가능하며, 이에 한정되지 않는다.
제안하는 phase difference의 피드백을 위해서 단말은 phase의 range 0에서 360에 해당하는 각도를 n-bit로 양자화하여 피드백할 수 있다. 또한, 이를 위해 양자화 level을 지시하는 상위 시그널링이 단말에 RRC로 지시되는 것을 포함한다.
상기 3-2실시예에서 제안하는 phase difference는 time difference와 대응되는 값으로 동일한 의미를 가지는 다른 형식을 값으로 피드백하는 것을 포함한다. 가령, delay profile의 mean delay 값의 차이, delay profile의 first cluster의 mean delay 값의 차이, delay profile의 first tap의 차이등의 값으로 보고 될 수 있다.
동기 측정의 정확도를 확보하기 위해 제안하는 방법에서 비주기적 혹은 semi-static TRS를 사용하는 경우 일정 시간 내지는 주파수 window에서 일정 자원 이상의 TRS를 수신하도록 하는 구성 정보가 단말에 상위 시그널링으로 지시되는 것을 포함한다.
또한, 본 발명의 바람직한 실시로 TRS 전송에 사용된 구성 정보를 CSI report를 위한 구성에 지시할 수 있으며 이 경우 기지국은 단말의 채널 피드백을 기반으로 동기의 성공 여부를 간접적으로 판단할 수 있다.
<제 4실시예 : TRP에서 Time delay difference 및 Phase difference가 사전 보상된 PDCCH/PDSCH 전송 방법>
제안하는 실시예4는 상기 실시예3에서 기지국의 TRS 전송에 대해 단말이 보고한 Time/Phase difference를 기지국이 사전 보상한 PDCCH/PDSCH를 전송하는 방법을 서술한다.
<제 4-1실시예 : 사전 보상된 TRS 전송 이후 사전 보상된 PDCCH 또는 PDSCH 전송 방법>
제안하는 4-1실시예에서는 상기 실시예2에서 단말이 보고한 Time delay difference 또는 Phase difference가 사전 보상된 TRS#4가 전송된 이후 사전 보상된 PDCCH 또는 PDSCH를 전송하는 방법을 서술한다. 상기 사전 보상된 PDCCH 또는 PDSCH에 대해서 앞서 사전 보상되어 전송된 TRS#4와의QCL 관계가 지시될 수 있다[27-02]. 예컨대, 사전 보상된 PDCCH 또는 PDSCH에 대한 QCL reference가 상기 사전 보상된 TRS#4 자원으로 지시될 수 있으며, 이 때 QCL type은 QCL-typeA 및 QCL-typeD 중 적어도 하나를 포함할 수 있다. 또한 Non-SFN 전송 TRP의 경우 TRS#4 내에 세 개의 서로 다른 QCL이 연결되어 있을 수 있기 때문에 TRS#4 내의 안테나 포트 그룹 별로 서로 다른 QCL-type이 지시되는 것이 가능하다. 상기 실시예에서는 TRS를 예시로 들었지만, CSI-RS for CSI, CSI-RS for BM 등의 다른 형태로도 전송 가능하다.
<제 4-2실시예 : 사전 보상된 TRS를 전송하지 않고 사전 보상된 PDCCH 또는 PDSCH 전송 방법>
제안하는 4-2 실시예에서는 상기 실시예3에서 단말이 보고한 Time/Phase difference를 기지국이 사전 보상한 TRS#4가 전송되지 않는 경우 사전 보상된 PDCCH 또는 PDSCH를 전송하는 방법을 서술한다. 기지국이 사전 보상한 TRS#4가 전송되지 않는 경우, 사전 보상된 PDCCH 또는 PDSCH의 average delay 특성을 참조할 TRS 자원이 설정되지 않을 수 있다. 따라서 상기 PDCCH 또는 PDSCH의 QCL reference로 상기 실시예 1의 첫 번째 단계에서 전송된, 사전 보상되지 않은 TRS#1 또는 TRS#2 또는 TRS#3이 사용된다면 함께 참조되는 채널 정보 특성에는 average delay 채널 특성은 포함되지 않을 수 있다. 예컨대 상기 TRS#1, #2, #3과 함께 지시되는 QCL type에는 average delay, delay spread, Doppler spread, Spatial Rx parameter 중 적어도 하나 이상의 채널 특성이 지시되며, 상기 QCL type에는 average delay가 포함되지 않을 수 있다. 또한 상기 QCL type은 종래에는 정의되지 않은 QCL-typeE 또는 QCL-typeF와 같은 새로운 type일 수 있다.
도 28은 본4-2실시예에 따라 사전 보상된 PDCCH 또는 PDSCH의 QCL relation 지시 방법을 도시한 시퀀스도이다. 만일 상기 예에서 사전 보상된 TRS#4가 전송되지 않는 경우, 사전 보상된 PDCCH 또는 PDSCH에 대해서 상기 세 TRS#1, TRS#2, TRS#3 중 하나 또는 여러 TRS가 QCL reference[28-01]로 지시될 수 있다. 이 때 상기 PDCCH 또는 PDSCH의 average delay를 TRS#1에 기반하여 사전 보상한 경우, PDCCH 또는 PDSCH 와 TRS#1과는 average delay 특성이 공유되나, PDCCH 또는 PDSCH 와 TRS#2, TRS#3과는 average delay를 제외한 다른 채널 특성만 공유될 수 있다. PDCCH 또는 PDSCH 수신을 위한 QCL 관계 지시 시 상기한 채널 특성을 공유하는 방법으로 다음 중 적어도 하나를 고려할 수 있다.
[방법 4-2-1] : TRS 별로 서로 다른 QCL type 지시
제안하는 방법4-2-1은 기지국이 전송한 서로 다른 TRS 별로 QCL 관계를 지시하는 법이다. 가령, 상위 레이어 시그널링에 의해 기지국이 단말에게 QCL reference로 TRS#1, TRS#2, TRS#3을 지시하는 경우 각 TRS#1, TRS#2, TRS#3별로 서로 다른 QCL type이 지시될 수 있다. 이 때, Serving TRP가 TRP#1인 경우, TRS#1에는 QCL-typeA를 지시하되, TRS#2와 TRS#3에는 average delay가 제외된 QCL-typeB 또는 새로운 QCL type을 지시할 수 있다.
[방법 4-2-2] : Serving TRP의 TRS에서 측정된 average delay 가정
제안하는 방법4-2-2은 기지국이 전송한 서로 다른 TRS 중 Sercing TRP에서 전송된 TRS의 QCL 관계를 참조하는 방법이다. 가령, 상위 레이어 시그널링에 의해 기지국이 단말에게 QCL reference로 TRS#1과 TRS#2를 지시하는 경우, 단말은 average delay의 reference로 상기 예시에서 Serving TRP로부터 전송된 TRS#1에서 측정된 값을 가정할 수 있다. 상기 TRS#1은 첫 번째로 지시된 QCL reference RS 또는 TRS with lower index 등으로도 달리 지시될 수 있으며 동일 의미의 다양한 형태로 지시될 수 있다.
상술한 방법들과 전송 신호는 예시에 불과하며 이에 한정되는 것은 아니다. 가령, 상기 예시들에서는 기지국이 단말로부터 보고 받은 시간 지연 및 위상 차이를 사전 보상한 신호를 TRS(CSI-RS for Tracking)로 가정하였지만, CSI-RS for CSI, CSI-RS for BM 등이 단말에게 전송될 수 있고, 단말은 기지국으로부터 수신한 CSI-RS의 QCL 관계를 이용하여 PDSCH, PDCCH, DMRS 등의 하향링크 신호를 수신하는 것도 가능하다.
상기 예시와 같이, 나열된 방법에 기반한 변형 또는 나열된 방법들의 조합 등 다양한 실시예들이 가능할 수 있다.
도 29는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 단말의 구조를 도시하는 도면이다.
도 29를 참조하면, 단말은 단말기 수신부(29-00)와 단말기 송신부(29-10)를 일컫는 송수신부(transceiver), 메모리(미도시) 및 단말기 처리부(29-05, 또는 단말기 제어부 또는 프로세서)를 포함할 수 있다. 전술한 단말의 통신 방법에 따라, 단말의 송수신부(29-00, 29-10), 메모리 및 단말기 처리부(29-05) 가 동작할 수 있다. 다만, 단말의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 단말은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라, 송수신부, 메모리, 및 프로세서가 하나의 칩(chip) 형태로 구현될 수도 있다.
송수신부는 기지국과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부의 일 실시 예일뿐이며, 송수신부의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부는 무선 채널을 통해 신호를 수신하여 프로세서로 출력하고, 프로세서로부터 출력되는 신호를 무선 채널을 통해 전송할 수 있다.
메모리는 단말의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리는 단말이 송수신하는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 메모리는 복수 개일 수 있다.
또한 프로세서는 전술한 실시 예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 프로세서는 두 가지 계층으로 구성되는 DCI를 수신하여 동시에 다수의 PDSCH를 수신하도록 단말의 구성 요소를 제어할 수 있다. 프로세서는 복수 개일 수 있으며, 프로세서는 메모리에 저장된 프로그램을 실행함으로써 단말의 구성 요소 제어 동작을 수행할 수 있다.
도 30는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 기지국의 구조를 도시하는 도면이다.
도 30를 참조하면, 기지국은 기지국 수신부(30-00)와 기지국 송신부(30-10)를 일컫는 송수신부, 메모리(미도시) 및 기지국 처리부(30-05, 또는 기지국 제어부 또는 프로세서)를 포함할 수 있다. 전술한 기지국의 통신 방법에 따라, 기지국의 송수신부(30-00, 30-10), 메모리 및 기지국 처리부(30-05) 가 동작할 수 있다. 다만, 기지국의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 기지국은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 송수신부, 메모리, 및 프로세서가 하나의 칩(chip) 형태로 구현될 수도 있다.
송수신부는 단말과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부의 일 실시예일뿐이며, 송수신부의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부는 무선 채널을 통해 신호를 수신하여 프로세서로 출력하고, 프로세서로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.
메모리는 기지국의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리는 기지국이 송수신하는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 메모리는 복수 개일 수 있다.
프로세서는 전술한 본 개시의 실시 예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 프로세서는 다수의 PDSCH에 대한 할당 정보를 포함하는 두 가지 계층의 DCI들을 구성하고 이를 전송하기 위해 기지국의 각 구성 요소를 제어할 수 있다. 프로세서는 복수 개일 수 있으며, 프로세서는 메모리에 저장된 프로그램을 실행함으로써 기지국의 구성 요소 제어 동작을 수행할 수 있다.
본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.
상술한 본 개시의 구체적인 실시 예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 일 실시 예와 다른 일 실시 예의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 예를 들면, 본 개시의 제1 실시 예와 제2 실시 예의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 또한 상기 실시 예들은 FDD LTE 시스템을 기준으로 제시되었지만, TDD LTE 시스템, 5G 혹은 NR 시스템 등 다른 시스템에도 상기 실시 예의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능할 것이다.
한편, 본 발명의 방법을 설명하는 도면에서 설명의 순서가 반드시 실행의 순서와 대응되지는 않으며, 선후 관계가 변경되거나 병렬적으로 실행 될 수도 있다.
또는, 본 발명의 방법을 설명하는 도면은 본 발명의 본질을 해치지 않는 범위 내에서 일부의 구성 요소가 생략되고 일부의 구성요소만을 포함할 수 있다.
또한, 본 발명의 방법은 발명의 본질을 해치지 않는 범위 내에서 각 실시예에 포함된 내용의 일부 또는 전부가 조합되어 실행될 수도 있다.
본 개시의 다양한 실시예들이 전술되었다. 전술한 본 개시의 설명은 예시를 위한 것이며, 본 개시의 실시예들은 개시된 실시예들에 한정되는 것은 아니다. 본 개시가 속하는 기술분야의 통상의 지식을 가진 자는 본 개시의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 본 개시의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 개시의 범위에 포함되는 것으로 해석되어야 한다.

Claims (1)

  1. 무선 통신 시스템에서 기지국의 방법에 있어서,
    단말에게 기준 신호를 설정하기 위한 설정 정보를 전송하는 단계;
    상기 설정 정보에 기반하여 기준 신호를 상기 단말에게 전송하는 단계;
    상기 단말로부터 기준 신호의 지연 시간 및 위상 차이를 포함하는 측정 보고를 수신하는 단계;
    상기 지연 시간 및 상기 위상 차이에 기반하여 시간 및 위상 동기를 조정하는 단계; 및
    상기 시간 및 위상 동기의 조정에 기반하여 상기 단말에게 하향링크 신호를 전송하는 단계를 포함하는 방법.
KR1020210071071A 2021-06-01 2021-06-01 네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치 KR20220162520A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210071071A KR20220162520A (ko) 2021-06-01 2021-06-01 네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치
PCT/KR2022/007434 WO2022255721A1 (ko) 2021-06-01 2022-05-25 네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치
EP22816380.4A EP4287725A1 (en) 2021-06-01 2022-05-25 Method and device for time and phase synchronization between base stations in network cooperative communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210071071A KR20220162520A (ko) 2021-06-01 2021-06-01 네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20220162520A true KR20220162520A (ko) 2022-12-08

Family

ID=84323412

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210071071A KR20220162520A (ko) 2021-06-01 2021-06-01 네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치

Country Status (3)

Country Link
EP (1) EP4287725A1 (ko)
KR (1) KR20220162520A (ko)
WO (1) WO2022255721A1 (ko)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664591B (zh) * 2015-03-26 2020-06-30 Lg 电子株式会社 在无线通信系统中报告用于确定位置的测量结果的方法及其设备
GB2581480B (en) * 2019-02-14 2022-11-09 Samsung Electronics Co Ltd Position of user equipment
WO2020167057A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
CN112448783B (zh) * 2019-08-30 2022-09-02 华为技术有限公司 一种数据传输的时延补偿方法、终端设备以及trp

Also Published As

Publication number Publication date
EP4287725A1 (en) 2023-12-06
WO2022255721A1 (ko) 2022-12-08

Similar Documents

Publication Publication Date Title
US20210028823A1 (en) Method for measurement and report of channel state information for network cooperative communication
KR20220050597A (ko) 네트워크 협력통신을 위한 채널상태정보 보고 방법 및 장치
KR20210083845A (ko) 네트워크 협력통신을 위한 상향링크 데이터 반복 전송 방법 및 장치
KR20220103569A (ko) 네트워크 협력 통신 시스템을 위한 상향링크 위상 추적 기준 신호 송수신 방법 및 장치
KR20220049988A (ko) 무선 통신 시스템에서 고속 이동 단말을 위한 신호 전송 방법 및 장치
KR20220015839A (ko) 무선 협력 통신 시스템에서 제어 정보 송수신 방법 및 장치
KR20220161089A (ko) 무선 통신 시스템에서 간섭 신호 측정 및 보고를 위한 방법 및 장치
KR20220136788A (ko) 네트워크 협력 통신에서 하향링크 제어정보 반복 전송 방법 및 장치
KR20220151301A (ko) 네트워크 협력 통신에서 데이터 전송 방법 및 장치
KR20210103882A (ko) 네트워크 협력통신을 위한 기본 빔 설정 방법 및 장치
US20230344569A1 (en) Method and apparatus transmitting signal for high speed mobile terminal in wireless communication system
KR20230112427A (ko) 무선 통신 시스템에서 상향링크 데이터 채널 전송을 위한 방법 및 장치
KR20220166656A (ko) 네트워크 협력 통신에서 하향링크 데이터 송수신 방법 및 장치
KR20220168917A (ko) 무선 통신 시스템에서 파워 헤드룸 보고를 수행하는 방법 및 장치
KR20230062221A (ko) 무선 통신 시스템에서 다중 공유 채널 스케줄링을 위한 방법 및 장치
KR20220138879A (ko) 무선 통신 시스템에서 상향링크 전력 헤드룸 보고 방법 및 장치
KR20220053933A (ko) 무선 통신 시스템에서 하향링크 제어정보 반복 송수신 방법 및 장치
KR20220162520A (ko) 네트워크 협력 통신에서 기지국간의 시간 및 위상 동기 방법 및 장치
KR20220151928A (ko) 네트워크 협력 통신 시스템을 위한 상향링크 제어 신호의 공간 관계 활성화 방법 및 장치
KR20220166614A (ko) 네트워크 협력 통신에서 링크 모니터링 기준 신호 선택 방법 및 장치
KR20220151476A (ko) 네트워크 협력 통신에서 데이터를 전송하는 방법 및 장치
KR20230049389A (ko) 무선 통신 시스템에서 사운딩 기준 신호 전송 방법 및 장치
KR20220150754A (ko) 무선 통신 시스템에서 하향링크 제어정보 전송 빔의 동시 활성화를 위한 방법 및 장치
KR20230105978A (ko) 무선 통신 시스템에서 하향링크 데이터 채널 송수신 기법 간 동적 스위칭을 위한 방법 및 장치
KR20220144706A (ko) 네트워크 협력 통신에서 하향링크 제어정보 반복 전송 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination