WO2019101063A1 - 一种数据传输的方法及相关装置 - Google Patents

一种数据传输的方法及相关装置 Download PDF

Info

Publication number
WO2019101063A1
WO2019101063A1 PCT/CN2018/116399 CN2018116399W WO2019101063A1 WO 2019101063 A1 WO2019101063 A1 WO 2019101063A1 CN 2018116399 W CN2018116399 W CN 2018116399W WO 2019101063 A1 WO2019101063 A1 WO 2019101063A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseline value
base station
value
timing
uplink
Prior art date
Application number
PCT/CN2018/116399
Other languages
English (en)
French (fr)
Inventor
魏冬冬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18881944.5A priority Critical patent/EP3706478A4/en
Publication of WO2019101063A1 publication Critical patent/WO2019101063A1/zh
Priority to US16/881,531 priority patent/US11405876B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method for determining data transmission and related devices.
  • terrestrial mobile telecommunication infrastructure has been able to provide good mobile communication services for major terrestrial areas, but in remote, extreme areas at sea, in the air, on land, especially in emergency and major natural disasters, as well as military applications. Satellites are still the only reliable option under special conditions.
  • LTE long term evolution
  • NR new radio
  • UEs user equipments
  • the time-frequency resources remain orthogonal. Since the cell center user and the cell edge user have different transmission delays, in order to maintain the uplink orthogonal transmission, the cell edge user needs to transmit in advance, so that the uplink transmission signal of the cell edge user can be uplinked with the cell center user.
  • the transmitted signal arrives at the same time.
  • the timing advance adjustment is based on twice the transmission delay.
  • the transmission delay of satellite communication since the transmission delay of satellite communication is too long, using twice the transmission delay to notify the timing advance increases the signaling overhead.
  • the present application provides a data transmission method and related device.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value. Therefore, the method can effectively Reduce the overhead of time advances.
  • a first aspect of the embodiments of the present application provides a data transmission method, where the method is applied to a data transmission system, and the data transmission system includes a base station and at least one UE, and how to perform data transmission is described below:
  • the base station may obtain a baseline value, where the baseline value is not zero, and the baseline value is used to indicate a time interval between the downlink frame timing and the uplink frame timing.
  • the time interval is an integer multiple of the time unit, and the time is The unit is a subframe, a time slot, a non-slot or an orthogonal frequency division multiplexing OFDM symbol, and the non-slot is also called a non-slot.
  • the baseline value is related to the transmission delay value
  • the baseline value may be a number that is an integer multiple of the time unit
  • the time unit may be a subframe, a time slot, or an orthogonal frequency division multiplexing symbol.
  • the base station or the UE may determine the timing advance according to the baseline value and the transmission delay value, and the UE determines the difference between the UE side uplink timing and the downlink timing according to the timing advance, and the UE sends the uplink data based on the UE side uplink frame timing.
  • a method for data transmission is provided.
  • a baseline value is obtained by a base station, where the baseline value is used to indicate a difference between a downlink frame timing of a base station and an uplink frame timing of the base station, and a baseline value is used for determining.
  • the timing advance is used to determine the difference between the uplink frame timing and the downlink frame timing of the UE side, the UE sends uplink data based on the uplink timing, and then the base station receives the uplink data.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value. Therefore, the overhead of the time advance amount can be effectively reduced.
  • the specific step of obtaining the baseline value may include:
  • the satellite type of the target satellite is acquired by the base station, wherein the target satellite is a satellite that establishes communication with the UE, and then the base station can determine the baseline value according to the satellite type of the target satellite.
  • Satellite types include satellite altitude and satellite on-board processing capabilities. If the target satellites are classified by altitude, there may be low-orbit satellites, medium-orbit satellites, and high-orbit satellites. If classified according to on-board processing capability, it can be divided into satellites with satellite processing capability and satellites with elbow forwarding capability. The range of values of the baseline values can be adjusted according to the satellite height and on-board processing capability.
  • the base station in the process of acquiring the baseline value, the base station first needs to acquire the satellite type of the target satellite, and then determine the baseline value according to the satellite type of the target satellite. In this way, it can be known that the baseline value is related to the satellite type, and the closest baseline value can be determined according to different satellite types, thereby ensuring that the baseline value is more accurate.
  • the baseline value can also be related to the beam under the target satellite, and the baseline value can be determined according to the satellite type of the target satellite and the beam under the target satellite.
  • the time advance amount needs to be determined according to the baseline value and the transmission delay value, where The transmission delay value indicates the propagation delay of the data transmitted between the base station and the UE. After the base station calculates the time advance amount, the time advance is transmitted to the UE.
  • TA represents the amount of time advance
  • Delay represents the transmission delay value
  • Tbase represents the baseline value
  • both a and b represent coefficients that are not zero.
  • the base station may calculate the timing advance according to the baseline value and the transmission delay value, and then send the calculated timing advance to the UE, so that the UE sends the uplink data according to the corresponding timing advance.
  • the base station can actively determine the time advance of the UE, and the value of the time advance is smaller than the value of the transmission delay, thereby reducing the time advancement cost.
  • the measurement of quantity can reflect the practicability and feasibility of the scheme.
  • the method may further include the following steps:
  • the base station sends a baseline value to the UE, and then the UE determines the timing advance according to the baseline value and the transmission delay value.
  • the formula for calculating the timing advance can also satisfy:
  • TA is the amount of time advance
  • Delay is the transmission delay value
  • Tbase is the baseline value
  • both a and b are coefficients that are not zero.
  • the UE may calculate the timing advance according to the baseline value and the transmission delay value, and then determine the UE side uplink frame timing and the downlink frame timing according to the time advance amount. The difference is sent based on the uplink frame timing.
  • the time advance amount may be determined by the UE, where the value range of the time advance is smaller than the value range of the transmission delay value, thereby reducing the time advance amount overhead, and at the same time, the UE side performs the time advance measurement. In order to reflect the flexibility and feasibility of the program.
  • the base station sends a baseline value to the UE, which may specifically include:
  • the base station may send a broadcast message to the UE in the same cell (or within the beam range), that is, the baseline value is carried in the broadcast message.
  • the base station may send downlink control information, group downlink control information, and radio resource control to UEs in the same cell (or within the beam range).
  • At least one of the information and media access control elements, that is, the baseline value is carried in the downlink control information, the group downlink control information, the radio resource control information, and the media access control element.
  • the base station side sets a baseline value for each UE, and the adjustment of the timing advance of each subsequent UE is based on the baseline value.
  • the base station may further send a baseline value to the UE by using at least one of a broadcast message, downlink control information, group downlink control information, radio resource control information, and a medium access control element.
  • the base station may send the baseline value to all the UEs in the cell at the same time, or may send the baseline value to the single UE separately, so as to be applicable to different scenarios, thereby improving the flexibility and practicability of the solution.
  • a second aspect of the embodiments of the present application provides a data transmission method, where the method is applied to a data transmission system, and the data transmission system includes a base station and at least one UE, and how to perform data transmission is described below:
  • the base station can obtain a baseline value, and the baseline value can be expressed as a difference between the downlink frame timing of the base station and the uplink frame timing of the base station.
  • the baseline value is related to the transmission delay value
  • the baseline value is a number that is an integer multiple of the time unit
  • the time unit can be a subframe, a time slot, or an orthogonal frequency division multiplexing symbol.
  • the base station or the UE may determine the timing advance according to the baseline value and the transmission delay value, and the UE determines the difference between the UE side uplink timing and the downlink timing according to the timing advance, and the UE sends the uplink data based on the UE side uplink frame timing.
  • a method for data transmission is provided.
  • a baseline value is obtained by a UE, where the baseline value is used to indicate a difference between a downlink frame timing of a base station and an uplink frame timing of the base station, and a baseline value is used for determining.
  • the timing advance is used to determine the difference between the uplink frame timing and the downlink frame timing of the UE side, and then the UE sends the uplink data based on the uplink timing of the UE side.
  • the acquiring the baseline value by the UE may include:
  • the base station may send a broadcast message to the UE in the same cell (or within the beam range), that is, the baseline value is carried in the broadcast message.
  • the base station may send downlink control information, group downlink control information, and radio resource control to UEs in the same cell (or within the beam range).
  • At least one of the information and media access control elements, that is, the baseline value is carried in the downlink control information, the group downlink control information, the radio resource control information, and the media access control element.
  • the base station side sets a baseline value for each UE, and the adjustment of the timing advance of each subsequent UE is based on the baseline value.
  • the time advance amount may be determined according to the baseline value and the measured transmission delay value, where the transmission delay value indicates the propagation delay of the data transmitted between the base station and the user equipment UE.
  • the UE may further receive a baseline value sent by the base station by using at least one of a broadcast message, a DCI, a group DCI, an RRC information, and a MAC CE.
  • the base station may send the baseline value to all the UEs in the cell at the same time, or may send the baseline value to the single UE separately, so that the base station can be applied to different scenarios, thereby improving the flexibility and practicability of the solution.
  • the UE side can also measure the timing advance by itself, thereby reflecting the feasibility of the scheme.
  • a third aspect of the embodiments of the present application provides a data transmission method, where the method is applied to a data transmission system, and the data transmission system includes a base station and at least one UE, and how to perform data transmission is described below:
  • the UE measures the transmission delay value between the UE and the base station.
  • the transmission delay value indicates a propagation delay of data transmitted between the base station and the UE.
  • the UE can then determine the amount of time advance based on the baseline value and the transmission delay value.
  • the formula for calculating the timing advance can also be:
  • TA represents the amount of time advance
  • Delay represents the transmission delay value
  • Tbase represents the baseline value
  • both a and b represent coefficients that are not zero.
  • the UE reports to the base station the baseline value used in calculating the timing advance.
  • the manner in which the UE reports the baseline value to the base station is multiple, for example, reporting in the form of a media access control element or data, or reporting in the uplink transmission process of the random access.
  • the UE determines the difference between the UE side uplink timing and the UE side downlink timing according to the timing advance, and sends uplink data to the base station based on the UE side uplink timing.
  • a method for data transmission is provided.
  • a baseline value is obtained by a UE, where the baseline value is used to indicate a difference between a downlink frame timing of a base station and an uplink frame timing of the base station, and a baseline value is used for determining.
  • the timing advance, the timing advance is used for the transmission of the uplink data, and then the UE performs the uplink data transmission based on the timing advance.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value. Therefore, the overhead of the time advance amount can be effectively reduced.
  • a fourth aspect of the embodiments of the present application provides a communications apparatus, including:
  • the obtaining module is configured to obtain a baseline value, where the baseline value is used to indicate a time interval between a downlink frame timing and an uplink frame timing, where the time interval is an integer multiple of a time unit, and the time unit is a subframe, a time slot, and a non-time slot. Or orthogonal frequency division multiplexing OFDM symbols, a baseline value is used to determine a timing advance, and a timing advance is used for uplink data transmission;
  • the receiving module is configured to receive uplink data.
  • the above communication device may be a base station.
  • a fifth aspect of the embodiments of the present application provides a communications apparatus, including:
  • An acquiring module configured to obtain a baseline value, where the baseline value is used to indicate a time interval between a downlink frame timing and an uplink frame timing.
  • the time interval is an integer multiple of a time unit, where the time unit is For subframes, time slots, non-slots, or orthogonal frequency division multiplexing OFDM symbols, the baseline value is used to determine a timing advance, which is used for transmission of uplink data;
  • a sending module configured to send the uplink data by using the timing advance.
  • the above communication device may be a UE.
  • a sixth aspect of the embodiments of the present application provides a communication apparatus, including: a memory, a transceiver, a processor, and a bus system;
  • the memory is used to store programs and instructions
  • the transceiver is configured to receive or transmit information under control of the processor
  • the processor is configured to execute a program in the memory
  • the bus system is configured to connect the memory, the transceiver, and the processor to cause the memory, the transceiver, and the processor to communicate;
  • the processor is configured to invoke program instructions in the memory to perform any of the methods of the first aspect.
  • the above communication device may be a base station.
  • a seventh aspect of the embodiments of the present application provides a communication apparatus, including: a memory, a transceiver, a processor, and a bus system;
  • the memory is used to store programs and instructions
  • the transceiver is configured to receive or transmit information under control of the processor
  • the processor is configured to execute a program in the memory
  • the bus system is configured to connect the memory, the transceiver, and the processor to cause the memory, the transceiver, and the processor to communicate;
  • the processor is configured to invoke a program instruction in the memory to perform any one of the methods of the second aspect.
  • the above communication device may be a UE.
  • an embodiment of the present application provides a computer device, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when the server runs The processor executes the computer-executed instructions stored by the memory to cause the server to perform the method of any of the above aspects.
  • the embodiment of the present application provides a computer readable storage medium for storing computer software instructions used in the above method, and when executed on a computer, causes the computer to perform the method of any of the above aspects.
  • embodiments of the present application provide a computer program product comprising instructions that, when run on a computer, cause the computer to perform the method of any of the above aspects.
  • the present application has the following advantages:
  • a method for data transmission is provided.
  • a baseline value is obtained by a base station, where the baseline value is used to indicate a difference between a downlink frame timing of a base station and an uplink frame timing of the base station, and a baseline value is used for determining.
  • the time advance amount, the time advance amount is used for the transmission of the uplink data, and then the base station receives the uplink data.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value. Therefore, the signaling overhead of the notification time advance can be effectively reduced.
  • Figure 1 is a schematic diagram of an architecture of a long term evolution system
  • FIG. 2 is a schematic diagram of an embodiment of a method for data transmission in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a timing relationship between a base station and a user equipment according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a transmission delay relationship between a base station and a user equipment according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a baseline value of a user equipment according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a beam coverage range of satellite mobile communication in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an embodiment of a method for data transmission in an application scenario of the present application.
  • FIG. 8 is a schematic diagram of uplink frame timing and downlink frame timing of user equipment 1 in an application scenario of the present application;
  • FIG. 9 is a schematic diagram of uplink frame timing and downlink frame timing of user equipment 2 in an application scenario of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a method for data transmission in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of a method for data transmission in an application scenario of the present application.
  • FIG. 12 is a schematic diagram of another embodiment of a method for data transmission in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an embodiment of a base station according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another embodiment of a base station according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of an embodiment of a user equipment according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another embodiment of a user equipment according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a base station in an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a user equipment in an embodiment of the present application.
  • the present application provides a data transmission method and related device.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value. Therefore, the method can effectively Reduce the overhead of time advances.
  • FIG. 1 is a long term evolution system.
  • An architecture diagram, an evolved universal mobile telecommunications system (E-UTRAN) architecture is shown in FIG. 1 , and an evolved Node B (eNB) is embodied in E-UTRAN.
  • the relationship between the eNB and the eNB establishes a communication connection through the X2 interface.
  • the connection relationship between the eNB and the core network node is also embodied in the E-UTRAN, that is, the eNB and the core network node establish a communication connection through the S1 interface.
  • the core network node may be a mobility management entity (MME) and a serving gateway (SGW).
  • MME mobility management entity
  • SGW serving gateway
  • LTE system and the NR system are only one schematic and should not be construed as limiting the application.
  • the present application is mainly applied to a large transmission delay scenario, such as a satellite communication scenario.
  • a large transmission delay scenario such as a satellite communication scenario.
  • the satellite is very far from the ground, it will lead to a relatively large transmission delay.
  • the coverage radius of a single satellite is generally several hundred or even thousands of kilometers.
  • the distance between the central user and the edge user in the cell can reach several hundred kilometers (the transmission delay is several milliseconds), which is much larger than the 100 km cell radius in LTE.
  • the embodiment of the present application can also be applied to other scenarios with large transmission delays.
  • a base station as used in the present application refers to a network device for communicating with a mobile device, such as a device for communicating with a mobile device in satellite communication, or an access point (AP) in a WLAN, GSM or A base transceiver station (BTS) in code division multiple access (CDMA), which may also be a base station (node B, NB) in WCDMA, or an evolved base station in LTE (evolutional node B) , eNB or eNodeB), or a relay station or access point, or an in-vehicle device, a wearable device, and a base station in a future 5G network or a public land mobile network (PLMN) in a future evolution for use with mobile devices Communication equipment, etc.
  • a base station for communicating with a mobile device in satellite communication, or an access point (AP) in a WLAN, GSM or A base transceiver station (BTS) in code division multiple access (CDMA), which may also be a base station (node B
  • Embodiment 1 The base station determines a timing advance amount
  • FIG. 2 is a schematic diagram of an embodiment of a data transmission method according to an embodiment of the present disclosure.
  • the data transmission method is applied to a data transmission system, where the data transmission system includes a base station and a UE, and the data transmission method in the embodiment of the present application
  • One embodiment includes:
  • the base station obtains a baseline value, where the baseline value is used to indicate a time interval between the downlink frame timing and the uplink frame timing, the baseline value is used to determine the timing advance, and the time advance amount is used for sending the uplink data.
  • a baseline value is first set by the base station, where the baseline value is mainly used to indicate the difference between the downlink frame timing of the base station and the uplink frame timing of the base station.
  • the baseline value is associated with the transmission delay value, the baseline value is a value that is an integer multiple of the time unit, and the time unit can be a subframe, a time slot, or an OFDM symbol.
  • the meaning of the baseline value will be described below with reference to FIGS. 3, 4, and 5.
  • FIG. 3 is a schematic diagram of a timing relationship between a base station and a user equipment according to an embodiment of the present application.
  • a transmission delay value between a base station and a UE is usually smaller than a subroutine.
  • the frame length, the base station downlink frame timing and the user downlink frame timing have a certain deviation in absolute time.
  • the base station In the uplink transmission in the LTE system, different UEs have orthogonal multiple access in time-frequency.
  • the base station requires that signals from different UEs in the same subframe arrive at the base station at substantially the same time, in order to meet The requirement is that the uplink frame timing on the UE side has a certain advance amount compared to the downlink frame timing on the user side, and the size of the time advance is related to the transmission delay, and the downlink frame timing on the base station side and the uplink frame timing on the base station side. Align.
  • FIG. 4 is a schematic diagram of a transmission delay relationship between a base station and a user equipment according to an embodiment of the present application.
  • a transmission delay may be It is larger than the subframe length, which causes the downlink frame timing on the base station side and the downlink frame timing difference on the UE side to be greater than the subframe length in absolute time.
  • the timing advance is determined by the baseline value and the transmission delay, and the deviation between the uplink frame timing of the UE side and the downlink frame timing of the UE side is the timing advance.
  • the uplink frame timing on the base station side is not aligned with the downlink frame timing on the base station side, and the specific deviation is related to the baseline value.
  • the uplink frame timing of the base station side corresponding to different users is different.
  • FIG. 5 is a schematic diagram of a baseline value of a user equipment according to an embodiment of the present application.
  • the delay is 5 milliseconds (millisecond, ms), that is, 5 ms can be used as the baseline value of UE1.
  • the uplink timing of the base station relative to the UE2 is delayed by 7 ms compared with the downlink timing of the base station with respect to the UE2, that is, 7 ms can be used as the baseline value of the UE2.
  • 2.6ms indicates the transmission delay of UE1
  • 3.47ms indicates the transmission delay of UE2.
  • the process of obtaining the baseline value by the base station is specifically: first, the base station acquires the satellite type of the target satellite, wherein the target satellite is a satellite that establishes communication with the UE, and then the base station can determine the baseline value according to the satellite type of the target satellite.
  • Satellite types include satellite altitude and satellite on-board processing capabilities. If the target satellites are classified by altitude, there may be low-orbit satellites, medium-orbit satellites, and high-orbit satellites. If classified according to on-board processing capabilities, it can be divided into satellites with on-board processing capability and satellites with bent pipe forwarding capability (ie, satellites without star processing capability).
  • Table 1 shows an example of the relationship between satellites with on-board processing capability and satellites with elbow forwarding capability and baseline values for high-orbit satellites.
  • Satellite type Baseline value range On-board processing capability 120ms to 135ms Bend forwarding capability 240ms to 270ms
  • Table 1 is only an example of the relationship between the satellite type and the baseline value. In practical applications, the range of values of the baseline value can also be adjusted according to the satellite height and on-board processing capability.
  • the base station may send a broadcast message, that is, a baseline, to the UE in the same cell (or within the beam range).
  • the value is carried in the broadcast message.
  • the broadcast information includes but is not limited to a master information block (MIB), system information (SI), and other SIs.
  • MIB master information block
  • SI system information
  • One possible way to notify the baseline value is:
  • Tbase represents the baseline value
  • 7 represents 7 time units. If a time unit is a subframe and the length of each subframe is 1 ms, the baseline value is 7 ms.
  • the base station may send downlink control information to the UE in the same cell (or within the beam range).
  • DCI DCI
  • group DCI radio resource control (RRC) information
  • RRC radio resource control
  • MAC medium access control
  • CEs medium access control control elements
  • the base station side sets a baseline value for each UE, and the adjustment of the timing advance of each subsequent UE is based on the baseline value.
  • the DCI is UE-level, and each UE receives one DCI.
  • the group DCI notifies the UEs in one group.
  • One group of UEs has the same DCI, and one cell can be divided into multiple groups.
  • the base station determines a timing advance according to the baseline value and the transmission delay value, where the transmission delay value indicates a propagation delay of the data transmitted between the base station and the UE.
  • FIG. 6 is a schematic diagram of a beam coverage range of satellite mobile communication according to an embodiment of the present application, taking the comet system as an example, wherein the beam numbered 20 is as shown in FIG. 6, and the satellite height is 780 km.
  • the transmission time of the nearest point is 7.36 ms, that is, the transmission time between SBs in FIG. 6 is 7.36 ms.
  • the transmission time of the farthest point is 9.54 ms, that is, the transmission time between SAs in Fig. 6 is 9.54 ms.
  • the base station can calculate the timing advance corresponding to the UE by using the measured transmission delay value and the baseline value.
  • the baseline value in the cell may take a value of 7 ms, wherein 7 ms is obtained by rounding down the minimum one-way transmission delay of 7.36 ms. It is easy to see that the value of the baseline value is related to satellite height and satellite beam pointing.
  • the first optional time advance calculation formula can be:
  • Tbase represents the baseline value
  • the UE's time advance is:
  • the second optional time advance calculation formula can be:
  • Tbase represents the baseline value
  • the UE's time advance is:
  • the calculation is based on the example that the Tbase is 14 ms. It should be noted that the Tbase may also be a value between 14 ms and 20 ms, and the value is equal to the subframe. Integer multiple.
  • timing advance in practical applications, other formulas can also be used to calculate the timing advance.
  • these formulas include the transmission delay value and the baseline value.
  • the second calculation formula can further reduce the overhead of the timing advance.
  • the foregoing method for calculating the timing advance is performed based on the uniformity of the baseline values in the entire cell (or within the beam range), and in many cases, different baseline values may be set for different UEs, and each of each is utilized. The baseline value corresponding to the UE calculates a corresponding timing advance.
  • the base station sends a timing advance to the UE.
  • the base station may send the timing advance to the UE. Assuming that there are a total of 5 UEs in the cell (or within the beam range), regardless of whether the same baseline value is used by the 5 UEs or different baseline values, the base station calculates the timing advance for each UE. After the calculation is completed, the time advance corresponding to the five UEs is notified.
  • the UE sends the uplink data by using the advance time amount.
  • the UE determines the difference between the uplink frame timing and the downlink frame timing of the UE side according to the timing advance, and sends uplink data to the base station according to the UE side uplink timing.
  • the UE can use a physical uplink shared channel (PUSCH), a random access channel (RACH), a physical uplink control channel (PUCCH) (physical uplink control channel), and a sounding reference signal SRS (The sounding reference signal, the demodulation reference signal (DMRS), and the like, the uplink data is transmitted to the base station, and the uplink data is sent to the base station through other channels, which is not limited herein.
  • PUSCH physical uplink shared channel
  • RACH random access channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • a method for data transmission is provided.
  • a baseline value is obtained by a base station, where the baseline value is used to indicate a difference between a downlink frame timing of a base station and an uplink frame timing of the base station, and a baseline value is used for determining.
  • the time advance amount, the time advance amount is used for the transmission of the uplink data, and then the base station receives the uplink data.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value. Therefore, the overhead of the time advance amount can be effectively reduced.
  • FIG. 7 is a schematic diagram of an embodiment of a data transmission method in an application scenario of the present application, specifically:
  • K2 3 ms, that is, K2 represents a time interval between the scheduling information received by the UE and the uplink data sent by the UE.
  • the time interval between transmitting the uplink data and receiving the scheduling information is as follows. It is assumed that the K2 values configured by UE1 and UE2 are the same, the transmission delay value of UE1 is 2.6 ms, and the transmission delay value of UE2 is 3.47 ms.
  • the base station calculates the timing advances of UE1 and UE2, respectively, and the formula used is as follows:
  • TA_temp min[abs(2 ⁇ Delay-Tbase1), abs(2 ⁇ Delay-Tbase2)]
  • min() indicates the minimum value
  • abs() indicates the absolute value
  • floor() indicates the rounding down
  • ceil() indicates the rounding up
  • Delay indicates the transmission delay value
  • Tbase1 indicates the rounding down.
  • Baseline value, Tbase2 represents the baseline value when rounded up.
  • the base station calculates the baseline values of UE1 and UE2, respectively.
  • Tbase1 and Tbase2 are calculated as follows:
  • the time advance of UE1 is then calculated.
  • TA_temp(UE1) min[abs(2 ⁇ 2.6ms-5ms)), abs(2 ⁇ 2.6ms-6ms))]
  • Tbase1 and Tbase2 are calculated as follows:
  • the timing advance of UE2 is then calculated.
  • TA_temp(UE2) min[abs(2 ⁇ 3.47ms-6ms)), abs(2 ⁇ 3.47ms-7ms))]
  • the reason why the minimum value is selected when determining the timing advance is because the smaller the time advance range, the smaller the number of bits used to notify the timing advance, thereby reducing the signaling overhead.
  • the base station can determine that the uplink frame timing of the UE1 is different from the downlink frame timing of the UE1 by 0.2 ms, and the uplink frame timing of the UE2 is different from the downlink frame timing of the UE2 by -0.06 ms.
  • FIG. 8 and FIG. 9 is a schematic diagram of uplink frame timing and downlink frame timing of user equipment 2 in the application scenario of the application scenario. As shown in FIG. 8 and FIG. 9, UE1 and UE2 are both shown in FIG. 8 and FIG.
  • the scheduling information is first received on the downlink frame, and the uplink data is sent to the base station after receiving the scheduling information.
  • the downlink subframe 0 on the UE1 side is delayed by 2.6 ms in absolute time.
  • the base station transmits the downlink scheduling information of UE1 in the downlink subframe 0, and the UE1 is in the downlink of UE1.
  • the sub-frame 0 receives the downlink scheduling information, and the downlink subframe 0 of the UE1 is delayed by 2.6 ms in absolute time compared with the downlink subframe 0 of the base station side.
  • the frame transmits the uplink data
  • the UE2 transmits the uplink data in the uplink subframe 3 of the UE2 side
  • the base station receives the uplink data from the UE1 in the uplink subframe of the base station 3 in the uplink frame timing of the UE1 base station, and the uplink frame timing in the base station relative to the UE2.
  • the base station No. 3 uplink subframe in the middle receives uplink data from UE2. As shown in FIG.
  • the uplink timing of the base station side is not aligned with the downlink of the base station side.
  • the uplink frame timing of the base station side is delayed by 5 milliseconds compared with the downlink frame timing of the base station side
  • the timing advance TA can take a positive value or a negative value.
  • Embodiment 2 the UE determines a timing advance based on a baseline value sent by the base station;
  • FIG. 10 is a schematic diagram of an embodiment of a data transmission method according to an embodiment of the present disclosure.
  • the data transmission method is applied to a data transmission system, where the data transmission system includes a base station and a UE, and the data transmission method in the embodiment of the present application
  • One embodiment includes:
  • the base station acquires a baseline value, where the baseline value is used to indicate a time interval between a downlink frame timing and an uplink frame timing, a baseline value is used to determine a timing advance, and a time advance amount is used for sending uplink data.
  • the manner in which the base station obtains the baseline value is as described in step 101 in the first embodiment, and therefore is not described herein.
  • the base station sends a baseline value to the UE.
  • the base station after acquiring the baseline value, the base station needs to send a baseline value to the UE in the cell (or within the range of the beam). It can be understood that the UE within one cell (or within the beam range) can adopt the same baseline value. It is also possible to use different baseline values for different UEs.
  • the base station may send a broadcast message, that is, a baseline, to the UE in the same cell (or within the beam range).
  • the value is carried in the broadcast message.
  • the broadcast information includes but is not limited to MIB, SI, and other SIs.
  • Tbase represents the baseline value
  • 7 represents 7 time units. If a time unit is a subframe and each subframe has a duration of 1 ms, the baseline value is 7 ms.
  • the base station may send DCI, group DCI, and RRC information to the UE in the same cell (or within the beam range).
  • At least one of the MAC CEs, that is, the baseline value is carried in the DCI, the group DCI, the RRC information, or the MAC CE.
  • the base station side sets a baseline value for each UE, and the adjustment of the timing advance of each subsequent UE is based on the baseline value.
  • the DCI is UE-level, and each UE receives one DCI.
  • the group DCI notifies the UEs in one group.
  • One group of UEs has the same DCI, and one cell can be divided into multiple groups.
  • the downlink control indication information is used for notification. Specifically, if the UEs within the cell (or within the beam range) are divided into n groups, the baseline values of the different groups may be notified by the group DCI.
  • the UE determines a timing advance according to the baseline value and the transmission delay value, where the transmission delay value indicates a propagation delay of the data transmitted between the base station and the UE.
  • FIG. 6 is a schematic diagram of a beam coverage range of satellite mobile communication according to an embodiment of the present application, taking the comet system as an example, wherein the beam numbered 20 is as shown in FIG. 6.
  • the satellite height is 780 km, corresponding to the distance between SO in Figure 6, and the transmission time is 7.36 ms from the nearest point, that is, the transmission time between SBs in Figure 6 is 7.36 ms.
  • the transmission time of the farthest point is 9.54 ms, that is, the transmission time between SAs in Fig. 6 is 9.54 ms.
  • the baseline values of different UEs in the cell may take different values.
  • the value of the baseline value is still related to satellite height and satellite beam pointing.
  • the baseline value can be calculated using the following formula:
  • Tbase floor(2 ⁇ Delay);
  • Delay represents the transmission delay value
  • Tbase represents the baseline value
  • Tbase floor(2 ⁇ Delay);
  • the baseline value of the UE is:
  • Tbase floor(2 ⁇ Delay);
  • the base station can calculate the timing advance corresponding to the UE by using the measured transmission delay value and the baseline value.
  • the first optional time advance calculation formula can be:
  • Tbase represents the baseline value
  • the UE's time advance is:
  • the UE sends the uplink data by using a timing advance.
  • the UE determines the difference between the UE side uplink timing and the downlink timing according to the timing advance, and the UE sends the uplink data based on the UE side uplink frame timing.
  • the manner in which the UE sends the uplink data is as described in the foregoing step 104 in the first embodiment, and therefore is not described herein.
  • a method for data transmission is provided.
  • a baseline value is obtained by a base station, where the baseline value is used to indicate a difference between a downlink frame timing of a base station and an uplink frame timing of the base station, and a baseline value is used for determining.
  • the timing advance is used to determine the relationship between the uplink frame timing of the UE side and the downlink frame timing.
  • the UE sends uplink data based on the uplink frame timing, and then the base station receives the uplink data.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value. Therefore, the overhead of the time advance amount can be effectively reduced.
  • FIG. 11 is a schematic diagram of another embodiment of a method for data transmission in an application scenario of the present application, specifically:
  • the transmission delay value of UE1 is 2.6 ms
  • the transmission delay value of UE2 is 3.47 ms.
  • the base station will notify the UE1 and UE2 in the cell, and UE1 and UE2 will calculate the corresponding time advances.
  • the calculation formula of the time advance is as follows:
  • the timing advance of UE1 is:
  • TA(UE1) 2 ⁇ Delay-Tbase
  • the timing advance of UE2 is:
  • TA(UE2) 2 ⁇ Delay-Tbase
  • the uplink frame timing of UE1 is 0.2 ms earlier than the downlink frame timing of UE1, and the uplink frame timing of UE2 is 1.94 ms earlier than the downlink frame timing of UE2.
  • Both UE1 and UE2 receive scheduling information on the downlink frame, and can send uplink data to the base station after receiving the scheduling information.
  • the downlink subframe 0 of the UE1 side is delayed by 2.6 ms in absolute time with respect to the downlink subframe 0 of the base station side. It is assumed that the base station transmits the downlink scheduling information of the UE1 in the downlink subframe 0, and the UE1 is in the UE1.
  • the UE1 transmits the uplink subframe 3 on the UE1 side.
  • UE2 transmits uplink data in the uplink subframe 5 of the UE2 side
  • the base station receives the uplink data from the UE1 in the uplink subframe 3 of the base station in the uplink frame timing of the UE1 base station, and uplinks the base station in the uplink frame timing with respect to the UE2 base station.
  • Subframe 5 receives uplink data from UE2.
  • the uplink timing of the base station side is not aligned with the downlink of the base station side.
  • the uplink frame timing of the base station side is delayed by 5 milliseconds compared with the downlink frame timing of the base station side.
  • the UE determines a baseline value and a timing advance
  • FIG. 12 is a schematic diagram of an embodiment of a data transmission method according to an embodiment of the present application.
  • the data transmission method is applied to a data transmission system, where the data transmission system includes a base station and a UE, and the data transmission method in the embodiment of the present application
  • One embodiment includes:
  • the UE obtains a transmission delay value, where the transmission delay value indicates a propagation delay of data transmitted between the base station and the UE.
  • the UE measures a transmission delay value between the UE and the base station.
  • the transmission delay value indicates a propagation delay of data transmitted between the base station and the UE.
  • the UE determines a timing advance according to the baseline value and the transmission delay value, where the baseline value is used to indicate a time interval between the downlink frame timing and the uplink frame timing, and the baseline value is used to determine a timing advance, and the timing advance is used for Sending of uplink data;
  • the UE may determine the timing advance according to the baseline value and the transmission delay value.
  • One possible way to calculate the timing advance is:
  • TA represents the timing advance
  • Delay represents the transmission delay value
  • Tbase represents the baseline value.
  • the UE adjusts the data transmission time according to the calculated timing advance, that is, the start timing of the nth uplink frame on the UE side is advanced by a time advance amount compared to the nth downlink frame timing on the UE side.
  • the UE sends a baseline value to the base station.
  • the UE reports the baseline value used in calculating the timing advance to the base station.
  • the baseline value used in calculating the timing advance
  • the UE reports the baseline value to the base station, for example, reporting in the form of MAC CE or data, or reporting in the uplink transmission process of random access.
  • the random access preamble (RAP) or the message (message, Msg) 3 may be reported in the random access process.
  • the base station may determine a timing relationship between the base station and the UE according to the baseline value sent by the UE, and determine the uplink data receiving time of the user.
  • the UE sends the uplink data by using the advance time amount.
  • the UE determines the difference between the uplink timing and the downlink timing of the UE side according to the timing advance, and the UE sends the uplink data based on the uplink frame timing of the UE.
  • the manner in which the UE sends the uplink data is as described in the foregoing step 104 in the first embodiment, and therefore is not described herein.
  • a method for data transmission is provided.
  • a baseline value is obtained by a UE, where the baseline value is used to indicate a difference between a downlink frame timing of a base station and an uplink frame timing of the base station, and a baseline value is used for determining.
  • the timing advance the timing advance is used for the transmission of the uplink data, and then the UE transmits the uplink data using the timing advance.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value. Therefore, the overhead of the time advance amount can be effectively reduced.
  • FIG. 7 is a schematic diagram of an embodiment of a data transmission method in an application scenario of the present application, specifically:
  • K2 3ms
  • K2 indicates the time interval between the UE transmitting the uplink data and receiving the scheduling information. It is assumed that the K2 values configured by UE1 and UE2 are the same, and the transmission delay value of UE1 is 2.6ms. The delay is 3.47ms.
  • UE1 and UE2 will calculate their respective time advances respectively.
  • the formula used is as follows:
  • TA_temp min[abs(2 ⁇ Delay-Tbase1), abs(2 ⁇ Delay-Tbase2)]
  • min() indicates the minimum value
  • abs() indicates the absolute value
  • floor() indicates the rounding down
  • ceil() indicates the rounding up
  • Delay indicates the transmission delay value
  • Tbase1 indicates the rounding down.
  • Baseline value, Tbase2 represents the baseline value when rounded up.
  • UE1 and UE2 calculate corresponding baseline values, respectively.
  • Tbase1 and Tbase2 are calculated as follows:
  • the timing advances of UE1 and UE2 are then calculated.
  • TA_temp(UE1) min[abs(2 ⁇ 2.6ms-5ms)), abs(2 ⁇ 2.6ms-6ms))]
  • Tbase1 and Tbase2 are calculated as follows:
  • the timing advance of UE2 is then calculated.
  • TA_temp(UE2) min[abs(2 ⁇ 3.47ms-6ms)), abs(2 ⁇ 3.47ms-7ms))]
  • the reason why the minimum value is selected when determining the timing advance is because the smaller the time advance range, the smaller the number of bits used to notify the timing advance, thereby reducing the signaling overhead.
  • the base station can determine that the uplink frame timing of the UE1 is different from the downlink frame timing of the UE1 by 0.2 ms, and the uplink frame timing of the UE2 is different from the downlink frame timing of the UE2 by -0.06 ms.
  • Both UE1 and UE2 receive scheduling information on the downlink frame first. After receiving the scheduling information, the uplink data can be sent to the base station. With respect to the downlink subframe No. 0 on the base station side, the downlink subframe 0 on the UE1 side is delayed by 2.6 ms in absolute time. It is assumed that the base station transmits the downlink scheduling information of UE1 in the downlink subframe 0, and the UE1 is in the downlink of UE1.
  • Subframe 0 receives the downlink scheduling information.
  • the downlink subframe 0 of UE1 is delayed by 2.6 ms in absolute time compared to the downlink subframe 0 of the base station side.
  • TA(UE1) 0.2ms, so it is possible to determine the time when the UE1 sends the uplink data on the PUSCH, that is, the uplink data is transmitted on the uplink subframe 3 on the UE1 side, compared to the absolute time of the downlink subframe 0 on the base station side. The difference is:
  • the UE1 transmits uplink data to the base station on the uplink frame No. 3 on the UE1 side, and the base station receives the uplink data from the UE1 in the uplink subframe of the base station No. 3 in the uplink frame timing of the base station of the UE1.
  • the UE2 transmits the uplink data to the base station on the uplink frame No. 3 on the UE2 side, and receives the uplink data from the UE2 in the uplink subframe of the base station No. 3 in the uplink frame timing of the UE2 base station. Since both UE1 and UE2 transmit uplink data on the uplink subframe No. 3, the base station receives uplink data on the uplink subframe No.
  • the communication device corresponding to an embodiment of the present application is described in detail.
  • the communication device may be a base station, and the communication device is applied to a data transmission system.
  • the data transmission system further includes a UE.
  • the embodiment of the present application The communication device 40 in the middle includes:
  • the obtaining module 401 is configured to obtain a baseline value, where the baseline value is used to indicate a time interval between a downlink frame timing and an uplink frame timing, where the baseline value is used to determine a timing advance amount, where the timing advance amount is used for Sending of uplink data;
  • the receiving module 402 is configured to receive the uplink data.
  • the obtaining module 401 acquires a baseline value, where the baseline value is used to indicate a time interval between a downlink frame timing and an uplink frame timing, where the baseline value is used to determine a timing advance amount, and the timing advance amount
  • the receiving module 402 receives the uplink data.
  • a communication device is provided. First, a baseline value is obtained by a communication device, where the baseline value is used to indicate a difference between a downlink frame timing of a base station and an uplink frame timing of the base station, and a baseline value is used to determine a time. The advance amount, the time advance amount is used for the transmission of the uplink data, and then the base station receives the uplink data.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value, so that the time advance amount overhead can be effectively reduced.
  • the acquiring module 401 is specifically configured to acquire a satellite type of the target satellite, where the target satellite is a satellite that establishes communication with the user equipment UE;
  • the baseline value is determined according to a satellite type of the target satellite acquired by the acquisition unit.
  • the base station in the process of acquiring the baseline value, the base station first needs to acquire the satellite type of the target satellite, and then determine the baseline value according to the satellite type of the target satellite. In this way, it can be known that the baseline value is related to the satellite type, and the closest baseline value can be determined according to different satellite types, thereby ensuring that the baseline value is more accurate.
  • the communication device 40 further includes:
  • a determining module 403 configured to determine the time advance according to the baseline value and a transmission delay value, where the transmission delay value indicates a propagation delay of data transmitted between the base station and the UE;
  • the sending module 404 is configured to send, to the UE, the time advance amount determined by the determining module 403.
  • the base station may calculate the timing advance according to the baseline value and the transmission delay value, and then send the calculated timing advance to the UE, so that the UE sends the uplink data according to the corresponding timing advance.
  • the base station can actively determine the time advance of the UE, and the value of the time advance is smaller than the value of the transmission delay, thereby reducing the time advancement cost.
  • the measurement of quantity can reflect the practicability and feasibility of the scheme.
  • the communication device 40 further includes:
  • the sending module 404 is further configured to send the baseline value to the UE after the acquiring module 401 acquires a baseline value, where the baseline value is used for determining the time advance amount of the UE.
  • the UE may calculate the timing advance according to the baseline value and the transmission delay value, and then send the uplink data according to the timing advance.
  • the time advance amount may be determined by the UE, where the value range of the time advance is smaller than the value range of the transmission delay value, thereby reducing the time advance amount overhead, and at the same time, the UE side performs the time advance measurement. In order to reflect the flexibility and feasibility of the program.
  • the sending module 404 is specifically configured to send the baseline value to the UE by using at least one of a broadcast message, a downlink control information DCI, a group DCI, a radio resource control RRC information, and a media access control MAC unit.
  • the base station may further send a baseline value to the UE by using at least one of a broadcast message, a DCI, a group DCI, an RRC information, and a MAC CE.
  • the base station may send the baseline value to all the UEs in the cell at the same time, or may send the baseline value to the single UE separately, so as to be applicable to different scenarios, thereby improving the flexibility and practicability of the solution.
  • the base station in the present application has been described above.
  • the communication device corresponding to an embodiment of the present application is described in detail below.
  • the communication device may be a UE, and the UE is applied to a data transmission system, and the data transmission system further includes a base station.
  • the communication device 50 in the embodiment of the present application includes:
  • the obtaining module 501 is configured to acquire a baseline value, where the baseline value is used to indicate a time interval between a downlink frame timing and an uplink frame timing, where the baseline value is used to determine a timing advance amount, where the timing advance amount is used for Sending of uplink data;
  • the sending module 502 is configured to send the uplink data by using the timing advance.
  • the acquiring module 501 acquires a baseline value, where the baseline value is used to indicate a time interval between a downlink frame timing and an uplink frame timing, where the baseline value is used to determine a timing advance amount, and the timing advance amount
  • the sending module 502 sends the uplink data by using the timing advance.
  • a communication device is provided. First, a baseline value is obtained by a communication device, where the baseline value is used to indicate a difference between a downlink frame timing of a base station and an uplink frame timing of the base station, and a baseline value is used to determine a time. The advance amount, the time advance amount is used for the transmission of the uplink data, and then the UE transmits the uplink data using the timing advance.
  • the value of the time advance amount calculated by using the baseline value must be smaller than the value range of the transmission delay value, and therefore, the overhead of the time advance amount can be effectively reduced.
  • the acquiring module 501 is specifically configured to receive the baseline value by using at least one of a broadcast message, a downlink control information DCI, a group DCI, a radio resource control RRC information, and a media access control MAC unit;
  • the communication device 50 further includes a determining module 503;
  • the determining module 503 is configured to determine, according to the baseline value and the transmission delay value, the time advance amount after the acquiring module 501 acquires a baseline value, where the transmission delay value indicates the base station and the user equipment The propagation delay of data transmitted between UEs.
  • the UE may further receive a baseline value sent by the base station by using at least one of a broadcast message, a DCI, a group DCI, an RRC information, and a MAC CE.
  • the base station may send the baseline value to all the UEs in the cell at the same time, or may send the baseline value to the single UE separately, so as to be applicable to different scenarios, thereby improving the flexibility and practicability of the solution.
  • the UE side can also measure the timing advance by itself, thereby reflecting the feasibility of the scheme.
  • FIG. 17 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station 600 may generate a large difference due to different configurations or performances, and may include one or more central processing units (CPUs) 622 (for example, One or more processors and memory 632, one or more storage media 630 that store application 642 or data 644 (eg, one or one storage device in Shanghai).
  • the memory 632 and the storage medium 630 may be short-term storage or persistent storage.
  • the program stored on storage medium 630 may include one or more modules (not shown), each of which may include a series of instruction operations in the base station.
  • central processor 622 can be configured to communicate with storage medium 630 to perform a series of instruction operations in storage medium 630 on base station 600.
  • Base station 600 can also include one or more power sources 626, one or more wired or wireless network interfaces 650, one or more input and output interfaces 658, and/or one or more operating systems 641, such as Windows ServerTM, Mac OS. XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the steps performed by the base station in the above embodiments may be based on the base station structure shown in FIG.
  • the CPU 622 is configured to perform the following steps:
  • Obtaining a baseline value where the baseline value is used to indicate a time interval between a downlink frame timing and an uplink frame timing, where the baseline value is used to determine a timing advance, and the timing advance is used for sending uplink data;
  • the CPU 622 is specifically configured to perform the following steps:
  • the target satellite is a satellite that establishes communication with the user equipment UE;
  • the baseline value is determined based on the satellite type of the target satellite.
  • the CPU 622 is further configured to perform the following steps:
  • the timing advance Determining the timing advance according to the baseline value and the transmission delay value, where the transmission delay value indicates a propagation delay of data transmitted between the base station and the UE;
  • the CPU 622 is further configured to perform the following steps:
  • the baseline value is sent to the UE, wherein the baseline value is used for the determination of the timing advance of the UE.
  • the CPU 622 is specifically configured to perform the following steps:
  • the baseline value is transmitted to the UE by at least one of a broadcast message, downlink control information DCI, group DCI, radio resource control RRC information, and a medium access control MAC unit.
  • An embodiment of the present invention further provides another UE.
  • the UE may be any terminal device including a mobile phone, a tablet computer, a personal digital assistant (PDA), a point of sales (POS), a car computer, and the like, and the UE is used as a mobile phone as an example:
  • PDA personal digital assistant
  • POS point of sales
  • FIG. 18 is a block diagram showing a partial structure of a mobile phone related to a UE provided by an embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) circuit 710, a memory 720, an input unit 730, a display unit 740, a sensor 750, an audio circuit 760, a wireless fidelity (WiFi) module 770, and a processor 780. And power supply 790 and other components.
  • RF radio frequency
  • the RF circuit 710 can be used for transmitting and receiving information or during a call, and receiving and transmitting the signal. Specifically, after receiving the downlink information of the base station, the processor 780 processes the data. In addition, the uplink data is designed to be sent to the base station.
  • RF circuit 710 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • RF circuitry 710 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (code division) Multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short messaging service (SMS), and the like.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • SMS short messaging service
  • the memory 720 can be used to store software programs and modules, and the processor 780 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 720.
  • the memory 720 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 720 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 730 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 730 may include a touch panel 731 and other input devices 732.
  • the touch panel 731 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 731 or near the touch panel 731. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 731 can include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 780 is provided and can receive commands from the processor 780 and execute them.
  • the touch panel 731 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 730 may also include other input devices 732.
  • other input devices 732 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 740 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 740 can include a display panel 741.
  • the display panel 741 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 731 can cover the display panel 741. When the touch panel 731 detects a touch operation on or near the touch panel 731, it transmits to the processor 780 to determine the type of the touch event, and then the processor 780 according to the touch event. The type provides a corresponding visual output on display panel 741.
  • touch panel 731 and the display panel 741 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 18, in some embodiments, the touch panel 731 may be integrated with the display panel 741. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 750, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 741 according to the brightness of the ambient light, and the proximity sensor may close the display panel 741 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • An audio circuit 760, a speaker 761, and a microphone 762 can provide an audio interface between the user and the handset.
  • the audio circuit 760 can transmit the converted electrical data of the received audio data to the speaker 761 for conversion to the sound signal output by the speaker 761; on the other hand, the microphone 762 converts the collected sound signal into an electrical signal by the audio circuit 760. After receiving, it is converted into audio data, and then processed by the audio data output processor 780, sent to, for example, another mobile phone via the RF circuit 710, or outputted to the memory 720 for further processing.
  • WiFi is a short-range wireless transmission technology
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 770, which provides users with wireless broadband Internet access.
  • FIG. 18 shows the WiFi module 770, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 780 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 720, and invoking data stored in the memory 720, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 780 may include one or more processing units; optionally, the processor 780 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and an application. Etc.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 780.
  • the handset also includes a power supply 790 (such as a battery) that supplies power to the various components.
  • a power supply 790 (such as a battery) that supplies power to the various components.
  • the power supply can be logically coupled to the processor 780 through a power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processor 780 included in the terminal further has the following functions:
  • Obtaining a baseline value where the baseline value is used to indicate a time interval between a downlink frame timing and an uplink frame timing, where the baseline value is used to determine a timing advance, and the timing advance is used for sending uplink data;
  • the uplink data is transmitted using the timing advance.
  • processor 780 is specifically configured to perform the following functions:
  • the processor 780 is also configured to perform the following functions:
  • the timing advance is determined according to the baseline value and the transmission delay value, where the transmission delay value represents a propagation delay of data transmitted between the base station and the user equipment UE.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • wired eg coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless eg infrared, wireless, microwave, etc.
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more of the available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state disk (SSD)) or the like.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输的方法,包括:获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;接收所述上行数据。本申请还提供了一种基站和用户设备。本申请在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。

Description

一种数据传输的方法及相关装置
本申请要求于2017年11月22日提交中国专利局、申请号为201711174646.1、发明名称为“一种数据传输的方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输的确定方法及相关装置。
背景技术
目前,地面移动通信基础设施已经能为陆地主要区域提供良好的移动通信服务,但在海上、空中、陆地偏远或极端区域,尤其是在应急和面对重大自然灾害的抢险救灾,以及军事应用等特殊条件下,卫星仍是唯一可靠的选择。
目前,在长期演进(long term evolution,LTE)或者新空口(new radio,NR)等通信系统的设计中,由于采用了正交多址接入,因此不同的用户终端(user equipment,UE)在时频资源上保持正交。由于小区中心用户与小区边缘用户具有不同的传输时延,为了保持上行正交传输,相比小区中心用户,小区边缘用户需要提前发送,使得小区边缘用户的上行传输信号可以与小区中心用户的上行传输信号同时到达。
在设定时间提前量时需要同时考虑下行和上行的传输时延,因此,时间提前量的调整均为基于两倍的传输时延。然而,在大传输时延场景,如卫星通信中,由于卫星通信的传输时延过长,采用两倍的传输时延通知时间提前量会增加信令的开销。
发明内容
本申请提供了一种数据传输的方法及相关装置,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。
本申请实施例的第一方面提供一种数据传输的方法,该方法应用于数据传输系统,且该数据传输系统包括基站和至少一个UE,下面将介绍如何进行数据传输:
首先,基站可以获取基线值,该基线值不为零,且基线值用于表示下行帧定时与上行帧定时之间的时间间隔,可选的,所述时间间隔为时间单元的整数倍,时间单元为子帧、时隙、非时隙或者正交频分复用OFDM符号,非时隙又称为non-slot。此外,基线值与传输时延值相关,基线值可以是时间单元整数倍的数字,而时间单元则可以为子帧、时隙或者正交频分复用符号。
基站或者UE都可以根据基线值以及传输时延值确定时间提前量,由UE根据时间提前量确定UE侧上行定时和下行定时之间的差值,UE基于UE侧上行帧定时发送上行数据。
本申请实施例中,提供了一种数据传输的方法,首先由基站获取基线值,其中,该基线值用于表示基站下行帧定时与所述基站上行帧定时的差值,基线值用于确定时间提前量, 时间提前量用于确定UE侧上行帧定时与下行帧定时之间的差值,UE基于上行定时发送上行数据,然后基站接收上行数据。通过上述方式,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。
在一种可能的设计中,在本申请实施例的第一方面的第一种实现方式中,获取基线值的具体步骤可以包括:
首先由基站获取目标卫星的卫星类型,其中,目标卫星是与UE建立通信的卫星,然后基站可以根据目标卫星的卫星类型确定基线值。卫星类型包括卫星高度、卫星星上处理能力。如果按照高度对目标卫星分类,可以有低轨卫星、中轨卫星和高轨卫星。如果按照星上处理能力分类,可以分为有星上处理能力的卫星和弯管转发能力的卫星,可以根据卫星高度以及星上处理能力调整基线值的可取值范围。
其次,本申请实施例中,基站在获取基线值的过程中,首先需要获取目标卫星的卫星类型,然后根据该目标卫星的卫星类型确定基线值。通过上述方式,可以了解基线值与卫星类型具有关联关系,也就可以根据不同的卫星类型确定最贴近的基线值,从而保证基线值的取值更准确。
此外,基线值还可以与目标卫星下的波束有关联关系,可以根据目标卫星的卫星类型和目标卫星下的波束确定基线值。
在一种可能的设计中,在本申请实施例的第一方面的第二种实现方式中,如果由基站计算时间提前量,则需要根据基线值以及传输时延值确定时间提前量,其中,传输时延值表示基站与UE之间传输数据的传播时延。基站计算得到时间提前量之后,将该时间提前量发送给UE。
此外,时间提前量的计算公式可以满足:
TA=a×Delay-b×Tbase;
其中,TA表示时间提前量,Delay表示传输时延值,Tbase表示基线值,a和b均表示不为零的系数。
再次,本申请实施例中,基站可以根据基线值以及传输时延值计算时间提前量,然后将计算得到的时间提前量下发至UE,使得UE根据对应的时间提前量来发送上行数据。通过上述方式,可以由基站主动确定UE的时间提前量,该时间提前量的取值范围小于传输时延值的取值范围,进而降低时间提前量的开销,与此同时,基站侧进行时间提前量的测量能够体现方案的实用性和可行性。
在一种可能的设计中,在本申请实施例的第一方面的第三种实现方式中,如果由UE计算时间提前量,则需要UE根据基线值以及传输时延值确定时间提前量,也就是基站获取基线值之后,还可以包括如下步骤:
即基站向UE发送基线值,然后UE根据基线值以及传输时延值确定时间提前量。类似地,时间提前量的计算公式同样可以满足:
TA=a×Delay-b×Tbase;
其中,TA表示时间提前量,Delay表示传输时延值,Tbase表示基线值,a和b均表示 不为零的系数。
再次,本申请实施例中,UE在接收到基站发送的基线值后,可以根据基线值和传输时延值计算时间提前量,然后按照时间提前量确定UE侧上行帧定时与下行帧定时之间的差值,基于上行帧定时发送上行数据。通过上述方式,可以由UE确定时间提前量,该时间提前量的取值范围小于传输时延值的取值范围,进而降低时间提前量的开销,与此同时,UE侧进行时间提前量的测量,从而能够体现方案的灵活性和可行性。
在一种可能的设计中,在本申请实施例的第一方面的第四种实现方式中,基站向UE发送基线值,具体可以包括:
对于同一个小区内(或波束范围内)的UE采用相同基线值的情况而言,基站可以向同一个小区内(或波束范围内)的UE发送广播消息,也就是基线值承载于广播消息。
对于同一个小区内(或波束范围内)的UE采用不同基线值的情况而言,基站可以向同一个小区内(或波束范围内)的UE发送下行控制信息、组下行控制信息、无线资源控制信息和媒体访问控制元素中的至少一种,也就是基线值承载于下行控制信息、组下行控制信息、无线资源控制信息和媒体访问控制元素中。基站侧为每个UE设定一个基线值,后续各UE的时间提前量的调整均基于此基线值。
进一步地,本申请实施例中,基站还可以通过广播消息、下行控制信息、组下行控制信息、无线资源控制信息和媒体访问控制元素中的至少一种向UE发送基线值。通过上述方式,基站可以向小区内所有UE同时发送基线值,也可以向单个UE分别发送基线值,从而能够应用于不同的场景,以此提升方案的灵活性和实用性。
本申请实施例的第二方面提供一种数据传输的方法,该方法应用于数据传输系统,且该数据传输系统包括基站和至少一个UE,下面将介绍如何进行数据传输:
首先,基站可以获取基线值,且基线值可以表示为基站下行帧定时与基站上行帧定时的差值。此外,基线值与传输时延值相关,基线值是时间单元整数倍的数字,而时间单元则可以为子帧、时隙或者正交频分复用符号。基站或者UE都可以根据基线值以及传输时延值确定时间提前量,由UE根据时间提前量确定UE侧上行定时和下行定时之间的差值,UE基于UE侧上行帧定时发送上行数据。
本申请实施例中,提供了一种数据传输的方法,首先由UE获取基线值,其中,该基线值用于表示基站下行帧定时与所述基站上行帧定时的差值,基线值用于确定时间提前量,时间提前量用于确定UE侧上行帧定时和下行帧定时的差值,,然后UE基于UE侧上行定时发送上行数据。采用上述UE,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。
在一种可能的设计中,在本申请实施例的第二方面的第一种实现方式中,UE获取基线值,具体可以包括:
对于同一个小区内(或波束范围内)的UE采用相同基线值的情况而言,基站可以向同一个小区内(或波束范围内)的UE发送广播消息,也就是基线值承载于广播消息。
对于同一个小区内(或波束范围内)的UE采用不同基线值的情况而言,基站可以向同一个小区内(或波束范围内)的UE发送下行控制信息、组下行控制信息、无线资源控制信 息和媒体访问控制元素中的至少一种,也就是基线值承载于下行控制信息、组下行控制信息、无线资源控制信息和媒体访问控制元素中。基站侧为每个UE设定一个基线值,后续各UE的时间提前量的调整均基于此基线值。
UE获取基线值之后,即可根据基线值以及自身测量得到的传输时延值确定时间提前量,其中,传输时延值表示基站与用户设备UE之间传输数据的传播时延。
其次,本申请实施例中,UE还可以通过广播消息、DCI、组DCI、RRC信息和MAC CE中的至少一种接收基站发送的基线值。通过上述方式,基站可以向小区内所有UE同时发送基线值,也可以向单个UE分别发送基线值,,从而能够应用于不同的场景,以此提升方案的灵活性和实用性。与此同时,UE侧还可以自身进行时间提前量的测量,从而体现方案的可行性。
本申请实施例的第三方面提供一种数据传输的方法,该方法应用于数据传输系统,且该数据传输系统包括基站和至少一个UE,下面将介绍如何进行数据传输:
首先,UE测量UE与基站之间的传输时延值。其中,传输时延值表示基站与UE之间传输数据的传播时延。然后,UE可以根据基线值和传输时延值确定时间提前量。类似地,时间提前量的计算公式同样可以为:
TA=a×Delay-b×Tbase;
其中,TA表示时间提前量,Delay表示传输时延值,Tbase表示基线值,a和b均表示不为零的系数。
接下来,UE向基站上报计算时间提前量过程中所采用的基线值。其中,UE向基站上报基线值的方式有多种,比如通过媒体访问控制元素或者数据的形式进行上报,或者在随机接入的上行传输过程中进行上报。
最后,UE在计算得到时间提前量之后,根据时间提前量确定UE侧上行定时和UE侧下行定时之间的差值,基于UE侧上行定时向基站发送上行数据。
本申请实施例中,提供了一种数据传输的方法,首先由UE获取基线值,其中,该基线值用于表示基站下行帧定时与所述基站上行帧定时的差值,基线值用于确定时间提前量,时间提前量用于上行数据的发送,然后UE基于时间提前量进行上行数据发送。通过上述方式,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。
本申请实施例的第四方面提供一种通信装置,包括:
获取模块,用于获取基线值,其中,基线值用于表示下行帧定时与上行帧定时之间的时间间隔,时间间隔为时间单元的整数倍,时间单元为子帧、时隙、非时隙或者正交频分复用OFDM符号,基线值用于确定时间提前量,时间提前量用于上行数据的发送;
接收模块,用于接收上行数据。
可选地,上述通信装置可以是一种基站。
本申请实施例的第五方面提供一种通信装置,包括:
获取模块,用于获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,可选的,所述时间间隔为时间单元的整数倍,所述时间单元为子帧、时隙、 非时隙或者正交频分复用OFDM符号,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;
发送模块,用于使用所述时间提前量发送所述上行数据。
可选地,上述通信装置可以是一种UE。
本申请实施例的第六方面提供一种通信装置,包括:存储器、收发器、处理器以及总线系统;
其中,所述存储器用于存储程序和指令;
所述收发器用于在所述处理器的控制下接收或发送信息;
所述处理器用于执行所述存储器中的程序;
所述总线系统用于连接所述存储器、所述收发器以及所述处理器,以使所述存储器、所述收发器以及所述处理器进行通信;
所述处理器用于调用所述存储器中的程序指令,执行如第一方面所述的任意一项方法。
可选地,上述通信装置可以是一种基站。
本申请实施例的第七方面提供一种通信装置,包括:存储器、收发器、处理器以及总线系统;
其中,所述存储器用于存储程序和指令;
所述收发器用于在所述处理器的控制下接收或发送信息;
所述处理器用于执行所述存储器中的程序;
所述总线系统用于连接所述存储器、所述收发器以及所述处理器,以使所述存储器、所述收发器以及所述处理器进行通信;
所述处理器用于调用所述存储器中的程序指令,执行如第二方面所述的任意一项方法。
可选地,上述通信装置可以是一种UE。
第八方面,本申请实施例提供一种计算机设备,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该服务器运行时,该处理器执行该存储器存储的该计算机执行指令,以使该服务器执行如上述任一方面的方法。
第九方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述方法所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述中任一方面的方法。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面的方法。
另外,第四方面至第十方面任一种设计方式所带来的技术效果可参见第一方面至第三方面中不同设计方式所带来的技术效果,此处不再赘述。
从以上技术方案可以看出,本申请具有以下优点:
本申请实施例中,提供了一种数据传输的方法,首先由基站获取基线值,其中,该基线值用于表示基站下行帧定时与所述基站上行帧定时的差值,基线值用于确定时间提前量,时间提前量用于上行数据的发送,然后基站接收上行数据。通过上述方式,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因 此,可以有效地降低通知时间提前量的信令开销。
附图说明
图1为长期演进系统的一个架构示意图;
图2为本申请实施例中数据传输的方法一个实施例示意图;
图3为本申请实施例中基站与用户设备之间的定时关系示意图;
图4为本申请实施例中基站与用户设备之间的传输时延关系示意图;
图5为本申请实施例中用户设备的基线值示意图;
图6为本申请实施例中卫星移动通信的一个波束覆盖范围示意图;
图7为本申请应用场景中数据传输的方法一个实施例示意图;
图8为本申请应用场景中用户设备1的上行帧定时和下行帧定时示意图;
图9为本申请应用场景中用户设备2的上行帧定时和下行帧定时示意图;
图10为本申请实施例中数据传输的方法另一个实施例示意图;
图11为本申请应用场景中数据传输的方法另一个实施例示意图;
图12为本申请实施例中数据传输的方法另一个实施例示意图;
图13为本申请实施例中基站一个实施例示意图;
图14为本申请实施例中基站另一个实施例示意图;
图15为本申请实施例中用户设备一个实施例示意图;
图16为本申请实施例中用户设备另一个实施例示意图;
图17为本申请实施例中基站一个结构示意图;
图18为本申请实施例中用户设备一个结构示意图。
具体实施方式
本申请提供了一种数据传输的方法及相关装置,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本申请可以应用于长期演进(long term evolution,LTE)系统或者新空口(new radio,NR)系统,下面以LTE系统为例进行介绍,请参阅图1,图1为长期演进系统的一个架构示意图,演进的通用移动通信系统陆地无线接入网(evolved universal  mobile telecommunications system,E-UTRAN)架构如图1所示,在E-UTRAN中体现了演进型基站(evolved Node B,eNB)之间的关系,即eNB与eNB之间通过X2接口建立通信连接。在E-UTRAN中还体现了eNB和核心网节点之间的连接关系,即eNB与核心网节点之间通过S1接口建立通信连接。其中,核心网节点可以为移动性管理实体(mobility management entity,MME)和业务网关(serving gateway,SGW)。
可以理解的是,本申请还可以应用于其他的通信系统,LTE系统和NR系统仅为一个示意,并不应理解为对本申请的限定。
应理解,本申请主要应用于大传输时延场景,如卫星通信场景等。对于卫星通信场景,由于卫星距离地面非常远,会导致比较大的传输时延.同时,为了增加卫星系统的整星容量,卫星侧会存在多个卫星波束,每个波束可对应一个小区,或者每颗卫星对应一个小区。但是,由于卫星距离地面高度在几百几千,甚至几万公里处,卫星单个小区的覆盖半径一般都在几百,甚至上千公里。此时,小区内的中心用户与边缘用户的距离可达几百公里(传输时延差几毫秒),远远大于LTE中的100公里小区半径。本申请实施例也可以应用于其他传输时延较大的场景。
本申请中所述的基站,是指用于与移动设备通信的网络设备,如卫星通信中用于与移动设备通信的设备,或者是WLAN中的接入点(access point,AP),GSM或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是WCDMA中的基站(node B,NB),还可以是LTE中的演进型基站(evolutional node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的基站或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的用于与移动设备通信的设备等。为了便于理解,下面将采用三个实施例对本申请中数据传输的方法进行详细介绍,具体为:
实施例一,基站确定时间提前量;
请参阅图2,图2为本申请实施例中数据传输的方法一个实施例示意图,该数据传输的方法应用于数据传输系统,数据传输系统包括基站以及UE,本申请实施例中数据传输的方法一个实施例包括:
101、基站获取基线值,其中,基线值用于表示下行帧定时与上行帧定时之间的时间间隔,基线值用于确定时间提前量,时间提前量用于上行数据的发送;
本实施例中,首先由基站设定一个基线值,其中,基线值主要用于表示基站下行帧定时与基站上行帧定时之间的差值。
基线值与传输时延值具有关联关系,基线值为时间单元整数倍的数值,时间单元可以为子帧、时隙或者OFDM符号。下面将通过图3、图4以及图5来说明基线值的含义。
请参阅图3,图3为本申请实施例中基站与用户设备之间的一种定时关系示意图,如图所示,在地面蜂窝LTE系统中,基站与UE间的传输时延值通常小于子帧长度,基站下行帧定时与用户下行帧定时在绝对时间上存在一定的偏差。
由于LTE系统中上行传输时,不同UE在时频上正交多址接入,为了保证上行传输的正交性,基站要求来自同一子帧的不同UE的信号到达基站的时间基本对齐,为了满足该要求, UE侧的上行帧定时相比用户侧的下行帧定时会有一定的提前量,时间提前量的大小与传输时延有关,并且,基站侧的下行帧定时与基站侧的上行帧定时对齐。
请参阅图4,图4为本申请实施例中基站与用户设备之间的一种传输时延关系示意图,如图所示,在大传输时延场景下,如卫星通信场景,传输时延可能大于子帧长度,这会导致,在绝对时间上,基站侧的下行帧定时与UE侧的下行帧定时差大于子帧长度。
为了降低通知时间提前量的信令开销,在大时延场景下,时间提前量由基线值与传输时延决定,UE侧的上行帧定时与UE侧的下行帧定时之间偏差为时间提前量,不同于地面蜂窝系统,在大时延场景下,基站侧的上行帧定时与基站侧的下行帧定时不对齐,具体的偏差与基线值有关。并且,由于基线值的不同,基站侧对应不同用户的上行帧定时是不同的。为了便于理解,请参阅图5,图5为本申请实施例中用户设备的一种基线值示意图,如图所示,针对UE1而言,基站相对于UE1的上行定时与基站相对于UE1的下行定时相比,延后了5毫秒(millisecond,ms),即可以将5ms作为UE1的基线值。针对UE2而言,基站相对于UE2的上行定时与基站相对于UE2的下行定时相比,延后了7ms,即可以将7ms作为UE2的基线值。其中,2.6ms表示UE1的传输时延,3.47ms表示UE2的传输时延。
基站获取基线值的过程具体为,首先由基站获取目标卫星的卫星类型,其中,目标卫星是与UE建立通信的卫星,然后基站可以根据目标卫星的卫星类型确定基线值。
卫星类型包括卫星高度、卫星星上处理能力。如果按照高度对目标卫星分类,可以有低轨卫星、中轨卫星和高轨卫星。如果按照星上处理能力分类,可以分为有星上处理能力的卫星和弯管(bent pipe)转发能力的卫星(即无星上处理能力的卫星)。
为了便于理解,请参阅表1,表1为以高轨卫星为例,有星上处理能力的卫星和有弯管转发能力的卫星与基线值之间关系的一个示意。
表1
卫星类型 基线值可取值范围
有星上处理能力 120ms至135ms
弯管转发能力 240ms至270ms
需要说明的是,表1仅为卫星类型与基线值之间关系的一个例子,在实际应用中,还可以根据卫星高度以及星上处理能力调整基线值的可取值范围。
可选地,对于同一个小区内(或波束范围内)的UE采用同一个基线值的情况而言,基站可以在向同一个小区内(或波束范围内)的UE发送广播消息,也就是基线值承载于广播消息中。其中,广播信息包含但不仅限于主信息块(master information block,MIB)、系统信息(system information,SI)以及其他SI。一种可能的基线值通知方式为:
Figure PCTCN2018116399-appb-000001
Figure PCTCN2018116399-appb-000002
其中,Tbase代表基线值,7即代表7个时间单位,若一个时间单元为子帧,每个子帧的时间长度为1ms,那么基线值为7ms。
可选的,对于同一个小区内(或波束范围内)的UE采用不同基线值的情况而言,基站可以在向同一个小区内(或波束范围内)的UE发送下行控制信息(downlink control information,DCI)、组DCI、无线资源控制(radio resource control,RRC)信息和媒体访问控制(medium access control,MAC)控制元素(control element,CE)中的至少一种,也就是基线值承载于DCI、组DCI、RRC信息或者MAC CE中。基站侧为每个UE设定一个基线值,后续各UE的时间提前量的调整均基于此基线值。
其中,DCI是UE级的,每个UE接收一个DCI,group DCI是对一个组内的UE进行通知,一组UE有一个相同的DCI,一个小区可以分为多个组。
102、基站根据基线值以及传输时延值确定时间提前量,其中,传输时延值表示基站与UE之间传输数据的传播时延;
本实施例中,基站测量得到基站与UE之间传输数据的时延,即得到传输时延值。然而一个小区或者一个波束范围内的各个UE可能具有不同的传输时延值。为了便于理解,请参阅图6,图6为本申请实施例中卫星移动通信的一个波束覆盖范围示意图,以铱星系统为例,其中编号为20的波束如图6所示,卫星高度780公里,对应图6中SO之间的距离,距离最近的点其传输时间为7.36ms,即图6中SB间传输时间为7.36ms。距离最远的点其传输时间为9.54ms,即图6中SA间传输时间为9.54ms。
接下来,基站利用测量得到的传输时延值和基线值可以计算UE所对应的时间提前量。此时,小区内(或波束范围内)的基线值可以取值为7ms,其中,7ms为最小单向传输时延7.36ms向下取整后得到的。不难看出,基线值的取值与卫星高度和卫星波束指向有关。第一种可选的时间提前量计算公式可以为:
TA=2×(Delay-Tbase);
其中,TA表示所述时间提前量,Delay表示传输时延值,Tbase表示基线值。
继续以图6为例,距离最近的点(B)处,UE的时间提前量即为:
2×(7.36-7)=0.72ms;
而距离最远的点(A)处,UE的时间提前量即为:
2×(9.54-7)=5.08ms。
可选地,如果小区内(或波束范围内)的基线值取值为14ms,同样地,基线值的取值与卫星高度和卫星波束指向有关。第二种可选的时间提前量计算公式可以为:
TA=2×Delay-Tbase;
其中,TA表示所述时间提前量,Delay表示传输时延值,Tbase表示基线值。
再次以图6为例,距离最近的点(B)处,UE的时间提前量即为:
2×7.36-14=0.72ms;
而距离最远的点(A)处,UE的时间提前量即为:
2×9.54-14=5.08ms。
在第二种可选的时间提前量计算公式中,是以Tbase为14ms为例进行计算的,需要说明的是,Tbase还可能是14ms至20ms之间某个值,且该值等于子帧的整数倍。
可以理解的是,在实际应用中,还可以采用其他公式计算时间提前量,当然,这些公式中包括传输时延值和基线值。采用第二种计算公式可以进一步降低时间提前量的开销。此外,上述计算时间提前量的方法是基于整个小区内(或波束范围内)的基线值统一的情况下进行的,很多时候还可以对不同的UE设定不同的基线值,并且分别利用每个UE所对应的基线值计算对应的时间提前量。
103、基站向UE发送时间提前量;
本实施例中,基站在计算得到UE的时间提前量之后,可以将时间提前量下发至UE。假设小区内(或波束范围内)一共有5个UE,无论这5个UE采用的同一个基线值亦或者分别采用不同的基线值,基站都会针对每个UE进行时间提前量的计算。计算完成后即通知这5个UE所对应的时间提前量。
104、UE使用时间提前量发送上行数据
本实施例中,UE在计算得到时间提前量之后,根据时间提前量确定UE侧上行帧定时和下行帧定时之间的差值,基于UE侧上行定时向基站发送上行数据。
可以理解的是,UE可以通过物理上行共享信道(physical uplink shared channel,PUSCH)、随机接入信道(random access channel,RACH)、物理上行控制信道PUCCH(physical uplink control channel)、探测参考信号SRS(Sounding Reference signal)、解调参考信号DMRS(demodulation Reference signal)等,向基站发送上行数据,还可以通过其他信道向基站发送上行数据,此处不做限定。
本申请实施例中,提供了一种数据传输的方法,首先由基站获取基线值,其中,该基线值用于表示基站下行帧定时与所述基站上行帧定时的差值,基线值用于确定时间提前量,时间提前量用于上行数据的发送,然后基站接收上行数据。通过上述方式,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。
为便于理解,下面以一个具体应用场景对本申请中一种数据传输的方法进行详细描述,请参阅图7,图7为本申请应用场景中数据传输的方法一个实施例示意图,具体为:
如图所示,假设一个子帧长度为1ms,UE1和UE2在同一个小区内。假设当前场景中UE的上行定时和UE下行定时是不对齐的,从而会产生定时提前,K2=3ms,即K2表示UE接收到上行的调度信息与UE发送上行数据之间的时间间隔。
发送上行数据与接收调度信息的时间间隔,假设UE1和UE2所配置的K2值相同,UE1的传输时延值为2.6ms,UE2的传输时延值为3.47ms。
基站分别计算UE1和UE2的时间提前量,所采用的公式如下:
TA_temp=min[abs(2×Delay-Tbase1),abs(2×Delay-Tbase2)]
=min[abs(2×Delay-floor(2×Delay)),abs(2×Delay-ceil(2×Delay))]
其中,min()表示取最小值,abs()表示取绝对值,floor()表示向下取整,ceil()表示向上取整,Delay表示传输时延值,Tbase1表示向下取整时的基线值,Tbase2表示向上取整时的基线值。
首先基站分别计算UE1和UE2的基线值。
对于UE1而言,Tbase1和Tbase2计算如下:
Tbase1(UE1)=floor(2×Delay)=floor(2×2.6ms)=5ms
Tbase2(UE1)=floor(2×Delay)=ceil(2×2.6ms)=6ms
然后计算UE1的时间提前量。
即,TA_temp(UE1)=min[abs(2×2.6ms-5ms)),abs(2×2.6ms-6ms))]
=min(0.2ms,0.8ms)
0.2ms<0.8ms,因此基线值Tbase1为5ms。
于是,TA(UE1)=2×Delay-Tbase1=0.2ms,即UE1的时间提前量为0.2ms,0.2ms表示提前了0.2ms。
对于UE2而言,Tbase1和Tbase2计算如下:
Tbase1(UE2)=floor(2×Delay)=floor(2×3.47ms)=6ms
Tbase2(UE2)=floor(2×Delay)=ceil(2×3.47ms)=7ms
然后计算UE2的时间提前量。
即,TA_temp(UE2)=min[abs(2×3.47ms-6ms)),abs(2×3.47ms-7ms))]
=min(0.94ms,0.06ms)
0.06ms<0.94ms,因此基线值Tbase2为7ms。
之所以选择在确定时间提前量时选择最小值,是因为时间提前量范围越小,通知时间提前量所采用的比特数也越小,从而降低信令开销。
于是,TA(UE2)=2×Delay-Tbase2=-0.06ms,即UE2的时间提前量为-0.06ms,-0.06ms表示UE的上行帧定时相对于UE的下行帧定时延后了0.06ms。
由此,基站可以确定UE1的上行帧定时与UE1的下行帧定时相差0.2ms,UE2的上行帧定时与UE2的下行帧定时相差-0.06ms,请参阅图8和图9,图8为本申请应用场景中用户设备1的上行帧定时和下行帧定时示意图,图9为本申请应用场景中用户设备2的上行帧定时和下行帧定时示意图,如图8和图9所示,UE1和UE2均先在下行帧上接收调度信息,收到调度信息后才能向基站发送上行数据。相对于基站侧的0号下行子帧而言,UE1侧的0号下行子帧在绝对时间上延后2.6ms,假设基站在下行子帧0发送UE1的下行调度信息,则UE1在UE1的下行子帧0接收到该下行调度信息,UE1的下行子帧0相比基站侧的下行子帧0,在绝对时间上延后2.6ms,假设UE1和UE2所配置的K2值相同,K2=3ms,由于K2=3ms,TA(UE1)=0.2ms,所以可以确定UE1在PUSCH上发送上行数据的时刻,即在UE1侧的3号上行子帧上发送上行数据,相比基站侧的下行子帧0的绝对时间相差为:
TIME(UE1)=2.6ms+3ms-0.2ms=5.4ms
同理,相对于基站侧的0号下行子帧而言,UE2侧的0号下行子帧在绝对时间上延后3.47ms,并在UE2对应的0号下行帧上接收到调度信息,由于K2=3ms,TA(UE2)=0.06ms, 所以可以确定UE2在PUSCH上发送上行数据的时刻,相比基站侧的下行子帧0,绝对时间相差为:
TIME(UE2)=3.47ms+3ms+0.06ms=6.53ms
如图7所示,由于基站在0号下行子帧给UE1和UE2发送了下行调度信息,并且给UE1配置的K2=3ms,给UE配置的K2=3ms,因此UE1在UE1侧3号上行子帧发送上行数据,UE2在UE2侧的3号上行子帧发送上行数据,基站在相对于UE1基站上行帧定时中的基站3号上行子帧接收来自UE1上行数据,在相对于UE2基站上行帧定时中的基站3号上行子帧接收来自UE2的上行数据。如图7所示,基站侧上行定时与基站侧的下行不对齐,对于UE1而言,基站侧的上行帧定时相比基站侧的下行帧定时延后5毫秒,对于UE2而言,基站侧的上行帧定时相比基站侧的下行帧定时延后7ms。由于UE1和UE2均在3号上行子帧上传输上行数据,因此,基站相对于UE1上行定时的3号上行子帧上接收上行数据,此时与基站0号下行子帧的绝对时间差为8ms(即3ms+5ms=8ms)。基站相对于UE2上行定时的3号上行子帧上接收上行数据,此时与基站0号下行子帧的绝对时间差为10ms(即3ms+7ms=10ms)。
可以理解的是,在目前的协议中,时间提前量TA是可以取正值,也可以取负值的。
实施例二,UE基于基站发送的基线值确定时间提前量;
请参阅图10,图10为本申请实施例中数据传输的方法一个实施例示意图,该数据传输的方法应用于数据传输系统,数据传输系统包括基站以及UE,本申请实施例中数据传输的方法一个实施例包括:
201、基站获取基线值,其中,基线值用于表示下行帧定时与上行帧定时之间的时间间隔,基线值用于确定时间提前量,时间提前量用于上行数据的发送;
本实施例中,基站获取基线值的方式如上述实施例一中步骤101所描述内容,故此处不做赘述。
202、基站向UE发送基线值;
本实施例中,基站在获取基线值之后需要向小区内(或波束范围内)的UE发送基线值,可以理解的是,一个小区内(或波束范围内)的UE可以采用同一个基线值,也可以不同的UE采用不同的基线值。
可选的,对于同一个小区内(或波束范围内)的UE采用同一个基线值的情况而言,基站可以在向同一个小区内(或波束范围内)的UE发送广播消息,也就是基线值承载于广播消息中。其中,广播信息包含但不仅限于MIB、SI以及其他SI。一种可能的基线值通知方式为:
Figure PCTCN2018116399-appb-000003
Figure PCTCN2018116399-appb-000004
其中,Tbase代表基线值,7即代表7个时间单位,若一个时间单元为子帧,每个子帧时长为1ms,那么基线值为7ms。
可选的,对于同一个小区内(或波束范围内)的UE采用不同基线值的情况而言,基站可以在向同一个小区内(或波束范围内)的UE发送DCI、组DCI、RRC信息和MAC CE中的至少一种,也就是基线值承载于DCI、组DCI、RRC信息或者MAC CE中。基站侧为每个UE设定一个基线值,后续各UE的时间提前量的调整均基于此基线值。
其中,DCI是UE级的,每个UE接收一个DCI,group DCI是对一个组内的UE进行通知,一组UE有一个相同的DCI,一个小区可以分为多个组。
可以理解的是,若小区内(或波束范围内)所有UE采用一个基线值,则采用广播通知的方式。若小区内(或波束范围内)并非所有都UE采用一个基线值,则采用下行控制指示信息通知。具体地,若小区内(或波束范围内)的UE被分为n个组,那么可以通过group DCI通知不同组的基线值。
203、UE根据基线值以及传输时延值确定时间提前量,其中,传输时延值表示基站与UE之间传输数据的传播时延;
本实施例中,UE测量得到基站与UE之间传输数据的时延,即得到传输时延值。为了便于理解,请再次参阅图6,请参阅图6,图6为本申请实施例中卫星移动通信的一个波束覆盖范围示意图,以铱星系统为例,其中编号为20的波束如图6所示,卫星高度780公里,对应图6中SO之间的距离,距离最近的点其传输时间为7.36ms,即图6中SB间传输时间为7.36ms。距离最远的点其传输时间为9.54ms,即图6中SA间传输时间为9.54ms。
此时,小区内(或波束范围内)不同UE的基线值可以取不同的值,当然,基线值的取值仍然与卫星高度和卫星波束指向有关。
具体地,可以采用如下公式计算基线值:
Tbase=floor(2×Delay);
其中,floor()表示向下取整计算,Delay表示传输时延值,Tbase表示基线值。
继续以图6为例,距离最近的点(B)处,UE的基线值即为:
Tbase=floor(2×Delay);
=floor(7.36ms×2)=14ms
距离最远的点(A)处,UE的基线值即为:
Tbase=floor(2×Delay);
=floor(9.54ms×2)=19ms
接下来,基站利用测量得到的传输时延值和基线值可以计算UE所对应的时间提前量。第一种可选的时间提前量计算公式可以为:
TA=2×Delay-Tbase;
其中,TA表示所述时间提前量,Delay表示传输时延值,Tbase表示基线值。
继续以图6为例,距离最近的点(B)处,UE的时间提前量即为:
2×7.36-14=0.72ms;
而距离最远的点(A)处,UE的时间提前量即为:
2×9.54-19=0.08ms。
可以理解的是,在实际应用中,还可以采用其他公式计算时间提前量,当然,这些公式包括传输时延值和基线值。
204、UE使用时间提前量发送上行数据。
本实施例中,UE在计算得到时间提前量之后,由UE根据时间提前量确定UE侧上行定时和下行定时之间的差值,UE基于UE侧上行帧定时发送上行数据。UE发送上行数据的方式如上述实施例一中步骤104所描述内容,故此处不做赘述。
本申请实施例中,提供了一种数据传输的方法,首先由基站获取基线值,其中,该基线值用于表示基站下行帧定时与所述基站上行帧定时的差值,基线值用于确定时间提前量,时间提前量用于确定UE侧上行帧定时与下行帧定时的关系,UE基于上行帧定时发送上行数据,然后基站接收上行数据。通过上述方式,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。
为便于理解,下面以一个具体应用场景对本申请中另一种数据传输的方法进行详细描述,请参阅图11,图11为本申请应用场景中数据传输的方法另一个实施例示意图,具体为:
如图所示,基站接收的上行帧和发送的下行帧均为1ms一帧,假设当前场景中UE的上行定时和UE下行定时是不对齐的,从而会产生定时提前,K2=3ms,即K2表示UE接收到上行的调度信息与UE发送上行数据之间的时间间隔。UE1的传输时延值为2.6ms,UE2的传输时延值为3.47ms。
假设基站将基线值设定为5ms,那么接下来基站将把该基线值通知到小区内的UE1和UE2,UE1和UE2将计算各自对应的时间提前量,所采用的时间提前量计算公式如下:
TA=2×Delay-Tbase;
于是,UE1的时间提前量为:
TA(UE1)=2×Delay-Tbase;
=2×2.6ms-5ms=0.2ms
UE2的时间提前量为:
TA(UE2)=2×Delay-Tbase;
=2×3.47ms-5ms=1.94ms
由此,UE1的上行帧定时相比UE1的下行帧定时提前0.2ms,UE2的上行帧定时相比UE2的下行帧定时提前1.94ms。UE1和UE2均先在下行帧上接收调度信息,收到调度信息后才能向基站发送上行数据。相对于基站侧的0号下行子帧而言,UE1侧的0号下行子帧在绝对时间上延后2.6ms,假设基站在0号下行子帧发送UE1的下行调度信息,则UE1在UE1的0号下行子帧接收到该下行调度信息,UE1的0号下行子帧相比基站侧的0号下行子帧,在绝对时间上延后2.6ms,假设UE1所配置的K2=3ms,TA(UE1)=0.2ms,所以可以确定UE1 在PUSCH上发送上行数据的时刻,相比基站侧的0号下行子帧的绝对时间为:
TIME(UE1)=2.6ms+3ms-0.2ms=5.4ms
同理,对于UE2而言,UE2的0号下行子帧相比基站侧的0号下行子帧,在绝对时间上延后3.47ms,,假设UE2所配置的K2=5m,,TA(UE2)=1.94ms,所以可以确定UE2在PUSCH上发送上行数据的时刻,相比基站侧的0号下行子帧绝对时间为:
TIME(UE2)=3.47ms+5ms-1.94ms=6.53ms
如图11所示,由于基站在下行子帧0给UE1和UE2发送了下行调度信息,并且给UE1配置的K2=3ms,给UE配置的K2=5ms,因此UE1在UE1侧上行子帧3发送上行数据,UE2在UE2侧的上行子帧5发送上行数据,基站在相对于UE1基站上行帧定时中的基站上行子帧3接收来自UE1上行数据,在相对于UE2基站上行帧定时中的基站上行子帧5接收来自UE2的上行数据。如图11所示,基站侧上行定时与基站侧的下行不对齐,对于所有用户而言,基站侧的上行帧定时相比基站侧的下行帧定时延后5毫秒。
实施例三,UE确定基线值和时间提前量;
请参阅图12,图12为本申请实施例中数据传输的方法一个实施例示意图,该数据传输的方法应用于数据传输系统,数据传输系统包括基站以及UE,本申请实施例中数据传输的方法一个实施例包括:
301、UE获取传输时延值,其中,传输时延值表示基站与UE之间传输数据的传播时延;
本实施例中,UE测量UE与基站之间的传输时延值。其中,传输时延值表示基站与UE之间传输数据的传播时延。
302、UE根据基线值以及传输时延值确定时间提前量,其中,基线值用于表示下行帧定时与上行帧定时之间的时间间隔,基线值用于确定时间提前量,时间提前量用于上行数据的发送;
本实施例中,UE可以根据基线值和传输时延值确定时间提前量。一种可能的时间提前量计算方式为:
TA=2×Delay-Tbase;
其中,TA表示时间提前量,Delay表示传输时延值,Tbase表示基线值。UE根据计算得到的时间提前量进行数据发送时间的调整,即UE侧的第n个上行帧的起始定时相比UE侧的第n个下行帧定时提前了一个时间提前量的大小。
303、UE向基站发送基线值;
本实施例中,UE向基站上报计算时间提前量过程中所采用的基线值。其中,UE向基站上报基线值的方式有多种,比如通过MAC CE或者数据的形式进行上报,或者在随机接入的上行传输过程中进行上报。具体地,在随机接入过程中可以通过随机接入前导(random access preamble,RAP)或者信息(message,Msg)3进行上报。
基站接收UE所发送的基线值之后,可以根据UE所发送的基线值确定基站与UE间的定时关系,进而确定用户上行数据接收时刻。
304、UE使用时间提前量发送上行数据。
本实施例中,UE在计算得到时间提前量之后,由UE根据时间提前量确定UE侧上行定 时和下行定时之间的差值,UE基于UE侧上行帧定时发送上行数据。UE发送上行数据的方式如上述实施例一中步骤104所描述内容,故此处不做赘述。
本申请实施例中,提供了一种数据传输的方法,首先由UE获取基线值,其中,该基线值用于表示基站下行帧定时与所述基站上行帧定时的差值,基线值用于确定时间提前量,时间提前量用于上行数据的发送,然后UE使用时间提前量发送上行数据。通过上述方式,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。
为便于理解,下面以一个具体应用场景对本申请中另一种数据传输的方法进行详细描述,请再次参阅图7,图7为本申请应用场景中数据传输的方法一个实施例示意图,具体为:
如图所示,假设子帧长度为1ms,UE1和UE2在同一个小区内。假设当前场景具有定时提前,K2=3ms,K2表示UE发送上行数据与接收调度信息的时间间隔,假设UE1和UE2所配置的K2值相同,UE1的传输时延值为2.6ms,UE2的传输时延值为3.47ms。
UE1和UE2将分别计算自身所对应的时间提前量,所采用的公式如下:
TA_temp=min[abs(2×Delay-Tbase1),abs(2×Delay-Tbase2)]
=min[abs(2×Delay-floor(2×Delay)),abs(2×Delay-ceil(2×Delay))]
其中,min()表示取最小值,abs()表示取绝对值,floor()表示向下取整,ceil()表示向上取整,Delay表示传输时延值,Tbase1表示向下取整时的基线值,Tbase2表示向上取整时的基线值。
首先UE1和UE2分别计算对应的基线值。
对于UE1而言,Tbase1和Tbase2计算如下:
Tbase1(UE1)=floor(2×Delay)=floor(2×2.6ms)=5ms
Tbase2(UE1)=floor(2×Delay)=ceil(2×2.6ms)=6ms
然后计算UE1和UE2的时间提前量。
即,TA_temp(UE1)=min[abs(2×2.6ms-5ms)),abs(2×2.6ms-6ms))]
=min(0.2ms,0.8ms)
0.2ms<0.8ms,因此基线值Tbase1为5ms。
于是,TA(UE1)=2×Delay-Tbase1=0.2ms,即UE1的时间提前量为0.2ms,0.2ms表示提前了0.2ms。
对于UE2而言,Tbase1和Tbase2计算如下:
Tbase1(UE2)=floor(2×Delay)=floor(2×3.47ms)=6ms
Tbase2(UE2)=floor(2×Delay)=ceil(2×3.47ms)=7ms
然后计算UE2的时间提前量。
即,TA_temp(UE2)=min[abs(2×3.47ms-6ms)),abs(2×3.47ms-7ms))]
=min(0.94ms,0.06ms)
0.06ms<0.94ms,因此基线值Tbase2为7ms。
于是,TA(UE2)=2×Delay-Tbase2=-0.06ms,即UE2的时间提前量为-0.06ms。
之所以选择在确定时间提前量时选择最小值,是因为时间提前量范围越小,通知时间提前量所采用的比特数也越小,从而降低信令开销。
由此,基站可以确定UE1的上行帧定时与UE1的下行帧定时相差0.2ms,UE2的上行帧定时与UE2的下行帧定时相差-0.06ms,UE1和UE2均先在下行帧上接收调度信息,收到调度信息后才能向基站发送上行数据。相对于基站侧的0号下行子帧而言,UE1侧的0号下行子帧在绝对时间上延后2.6ms,假设基站在下行子帧0发送UE1的下行调度信息,则UE1在UE1的下行子帧0接收到该下行调度信息,UE1的下行子帧0相比基站侧的下行子帧0,在绝对时间上延后2.6ms,假设UE1和UE2所配置的K2值相同,由于K2=3ms,TA(UE1)=0.2ms,所以可以确定UE1在PUSCH上发送上行数据的时刻,,即在UE1侧的3号上行子帧上发送上行数据,相比基站侧的下行子帧0的绝对时间相差为:
TIME(UE1)=2.6ms+3ms-0.2ms=5.4ms
同理,相对于基站侧的0号下行子帧而言,UE2侧的0号下行子帧在绝对时间上延后3.47ms,并在UE2对应的0号下行帧上接收到调度信息,由于K2=3ms,TA(UE2)=0.06ms,所以可以确定UE2在PUSCH上发送上行数据的时刻,相比基站侧的下行子帧0,绝对时间相差为:
TIME(UE2)=3.47ms+3ms+0.06ms=6.53ms
假设UE1在UE1侧的3号上行帧上向基站发送上行数据,则基站在相对于UE1基站上行帧定时中的基站3号上行子帧接收来自UE1上行数据。UE2在UE2侧的3号上行帧上向基站发送上行数据,则在相对于UE2基站上行帧定时中的基站3号上行子帧接收来自UE2上行数据。由于UE1和UE2均在3号上行子帧上传输上行数据,因此,基站相对于UE1上行定时的3号上行子帧上接收上行数据,此时与基站0号下行子帧的绝对时间差为8ms(即3ms+5ms=8ms)。基站相对于UE2上行定时的3号上行子帧上接收上行数据,此时与基站0号下行子帧的绝对时间差为10ms(即3ms+7ms=10ms)。
下面对本申请中一个实施例对应的通信装置进行详细描述,该通信装置可以是基站,所述通信装置应用于数据传输系统,所述数据传输系统还包括UE,请参阅图13,本申请实施例中的通信装置40包括:
获取模块401,用于获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;
接收模块402,用于接收所述上行数据。
本实施例中,获取模块401获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送,接收模块402接收所述上行数据。
本申请实施例中,提供了一种通信装置,首先由通信装置获取基线值,其中,该基线值用于表示基站下行帧定时与所述基站上行帧定时的差值,基线值用于确定时间提前量,时间提前量用于上行数据的发送,然后基站接收上行数据。采用上述基站,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因 此,可以有效地降低时间提前量的开销。
可选地,在上述图13所对应的实施例的基础上,本申请实施例提供的通信装置40的另一实施例中,
所述获取模块401,具体用于获取目标卫星的卫星类型,其中,所述目标卫星是与用户设备UE建立通信的卫星;
根据所述获取单元获取的所述目标卫星的卫星类型确定所述基线值。
其次,本申请实施例中,基站在获取基线值的过程中,首先需要获取目标卫星的卫星类型,然后根据该目标卫星的卫星类型确定基线值。通过上述方式,可以了解基线值与卫星类型具有关联关系,也就可以根据不同的卫星类型确定最贴近的基线值,从而保证基线值的取值更准确。
可选地,在上述图13所对应的实施例的基础上,请参阅图14,本申请实施例提供的通信装置40的另一实施例中,所述通信装置40还包括:
确定模块403,用于根据所述基线值以及传输时延值确定所述时间提前量,其中,所述传输时延值表示所述基站与UE之间传输数据的传播时延;
发送模块404,用于向所述UE发送所述确定模块403确定的所述时间提前量。
再次,本申请实施例中,基站可以根据基线值以及传输时延值计算时间提前量,然后将计算得到的时间提前量下发至UE,使得UE根据对应的时间提前量来发送上行数据。通过上述方式,可以由基站主动确定UE的时间提前量,该时间提前量的取值范围小于传输时延值的取值范围,进而降低时间提前量的开销,与此同时,基站侧进行时间提前量的测量能够体现方案的实用性和可行性。
可选地,在上述图13或图14所对应的实施例的基础上,本申请实施例提供的通信装置40的另一实施例中,所述通信装置40还包括:
所述发送模块404,还用于所述获取模块401获取基线值之后,向所述UE发送所述基线值,其中,所述基线值用于所述UE的所述时间提前量的确定。
再次,本申请实施例中,UE在接收到基站发送的基线值后,可以根据基线值和传输时延值计算时间提前量,然后按照时间提前量来发送上行数据。通过上述方式,可以由UE确定时间提前量,该时间提前量的取值范围小于传输时延值的取值范围,进而降低时间提前量的开销,与此同时,UE侧进行时间提前量的测量,从而能够体现方案的灵活性和可行性。
可选地,在上述图13或14所对应的实施例的基础上,本申请实施例提供的通信装置40的另一实施例中,
所述发送模块404,具体用于通过广播消息、下行控制信息DCI、组DCI、无线资源控制RRC信息和媒体访问控制MAC单元中的至少一种向所述UE发送所述基线值。
进一步地,本申请实施例中,基站还可以通过广播消息、DCI、组DCI、RRC信息和MAC CE中的至少一种向UE发送基线值。通过上述方式,基站可以向小区内所有UE同时发送基线值,也可以向单个UE分别发送基线值,从而能够应用于不同的场景,以此提升方案的灵活性和实用性。
上面已对本申请中的基站进行描述,下面对本申请中一个实施例对应的通信装置进行 详细描述,该通信装置可以为UE,所述UE应用于数据传输系统,所述数据传输系统还包括基站,请参阅图15,本申请实施例中的通信装置50包括:
获取模块501,用于获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;
发送模块502,用于使用所述时间提前量发送所述上行数据。
本实施例中,获取模块501获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送,发送模块502使用所述时间提前量发送所述上行数据。
本申请实施例中,提供了一种通信装置,首先由通信装置获取基线值,其中,该基线值用于表示基站下行帧定时与所述基站上行帧定时的差值,基线值用于确定时间提前量,时间提前量用于上行数据的发送,然后UE使用时间提前量发送上行数据。采用上述UE,在大传输时延场景中,利用基线值计算得到的时间提前量取值范围一定小于传输时延值的取值范围,因此,可以有效地降低时间提前量的开销。
可选地,在上述图15所对应的实施例的基础上,请参阅图16,本申请实施例提供的通信装置50的另一实施例中,
所述获取模块501,具体用于通过广播消息、下行控制信息DCI、组DCI、无线资源控制RRC信息和媒体访问控制MAC单元中的至少一种接收所述基线值;
所述通信装置50还包括确定模块503;
所述确定模块503,用于所述获取模块501获取基线值之后,根据所述基线值以及传输时延值确定所述时间提前量,其中,所述传输时延值表示所述基站与用户设备UE之间传输数据的传播时延。
其次,本申请实施例中,UE还可以通过广播消息、DCI、组DCI、RRC信息和MAC CE中的至少一种接收基站发送的基线值。通过上述方式,基站可以向小区内所有UE同时发送基线值,也可以向单个UE分别发送基线值,从而能够应用于不同的场景,以此提升方案的灵活性和实用性。与此同时,UE侧还可以自身进行时间提前量的测量,从而体现方案的可行性。
图17是本发明实施例提供的一种基站结构示意图,该基站600可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)622(例如,一个或一个以上处理器)和存储器632,一个或一个以上存储应用程序642或数据644的存储介质630(例如一个或一个以上海量存储设备)。其中,存储器632和存储介质630可以是短暂存储或持久存储。存储在存储介质630的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对基站中的一系列指令操作。更进一步地,中央处理器622可以设置为与存储介质630通信,在基站600上执行存储介质630中的一系列指令操作。
基站600还可以包括一个或一个以上电源626,一个或一个以上有线或无线网络接口650,一个或一个以上输入输出接口658,和/或,一个或一个以上操作系统641,例如Windows  ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中由基站所执行的步骤可以基于该图17所示的基站结构。
CPU 622用于执行如下步骤:
获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;
接收所述上行数据。
可选地,CPU 622具体用于执行如下步骤:
获取目标卫星的卫星类型,其中,所述目标卫星是与用户设备UE建立通信的卫星;
根据所述目标卫星的卫星类型确定所述基线值。
可选地,CPU 622还用于执行如下步骤:
根据所述基线值以及传输时延值确定所述时间提前量,其中,所述传输时延值表示所述基站与UE之间传输数据的传播时延;
向所述UE发送所述时间提前量。
可选地,CPU 622还用于执行如下步骤:
向所述UE发送所述基线值,其中,所述基线值用于所述UE的所述时间提前量的确定。
可选地,CPU 622具体用于执行如下步骤:
通过广播消息、下行控制信息DCI、组DCI、无线资源控制RRC信息和媒体访问控制MAC单元中的至少一种向所述UE发送所述基线值。
本发明实施例还提供了另一种UE,如图18所示,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该UE可以为包括手机、平板电脑、个人数字助理(personal digital assistant,PDA)、销售终端(point of sales,POS)、车载电脑等任意终端设备,以UE为手机为例:
图18示出的是与本发明实施例提供的UE相关的手机的部分结构的框图。参考图18,手机包括:射频(radio frequency,RF)电路710、存储器720、输入单元730、显示单元740、传感器750、音频电路760、无线保真(wireless fidelity,WiFi)模块770、处理器780、以及电源790等部件。本领域技术人员可以理解,图18中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图18对手机的各个构成部件进行具体的介绍:
RF电路710可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器780处理;另外,将设计上行的数据发送给基站。通常,RF电路710包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路710还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term  evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器720可用于存储软件程序以及模块,处理器780通过运行存储在存储器720的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器720可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器720可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元730可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元730可包括触控面板731以及其他输入设备732。触控面板731,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板731上或在触控面板731附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板731可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器780,并能接收处理器780发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板731。除了触控面板731,输入单元730还可以包括其他输入设备732。具体地,其他输入设备732可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元740可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元740可包括显示面板741,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板741。进一步的,触控面板731可覆盖显示面板741,当触控面板731检测到在其上或附近的触摸操作后,传送给处理器780以确定触摸事件的类型,随后处理器780根据触摸事件的类型在显示面板741上提供相应的视觉输出。虽然在图18中,触控面板731与显示面板741是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板731与显示面板741集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器750,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板741的亮度,接近传感器可在手机移动到耳边时,关闭显示面板741和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路760、扬声器761,传声器762可提供用户与手机之间的音频接口。音频电路 760可将接收到的音频数据转换后的电信号,传输到扬声器761,由扬声器761转换为声音信号输出;另一方面,传声器762将收集的声音信号转换为电信号,由音频电路760接收后转换为音频数据,再将音频数据输出处理器780处理后,经RF电路710以发送给比如另一手机,或者将音频数据输出至存储器720以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块770可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图18示出了WiFi模块770,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器780是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器720内的软件程序和/或模块,以及调用存储在存储器720内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器780可包括一个或多个处理单元;可选的,处理器780可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器780中。
手机还包括给各个部件供电的电源790(比如电池),可选的,电源可以通过电源管理系统与处理器780逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本发明实施例中,该终端所包括的处理器780还具有以下功能:
获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;
使用所述时间提前量发送所述上行数据。
可选地,处理器780具体用于执行如下功能:
通过广播消息、DCI、组DCI、RRC信息和MAC CE中的至少一种接收所述基线值;
处理器780还用于执行如下功能:
根据所述基线值以及传输时延值确定所述时间提前量,其中,所述传输时延值表示所述基站与用户设备UE之间传输数据的传播时延。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集 成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (18)

  1. 一种数据传输的方法,其特征在于,包括:
    获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;
    接收所述上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述获取基线值,包括:
    获取目标卫星的卫星类型,其中,所述目标卫星是与用户设备UE建立通信的卫星;
    根据所述目标卫星的卫星类型确定所述基线值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    根据所述基线值以及传输时延值确定所述时间提前量,其中,所述传输时延值表示所述基站与UE之间传输数据的传播时延;
    向所述UE发送所述时间提前量。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    向所述UE发送所述基线值,其中,所述基线值用于所述UE的所述时间提前量的确定。
  5. 根据权利要求4所述的方法,其特征在于,所述向所述UE发送所述基线值,包括:
    通过广播消息、下行控制信息DCI、组DCI、无线资源控制RRC信息和媒体访问控制MAC单元中的至少一种向所述UE发送所述基线值。
  6. 一种数据传输的方法,其特征在于,包括:
    获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;
    使用所述时间提前量发送所述上行数据。
  7. 根据权利要求6所述的方法,其特征在于,所述获取基线值,包括:
    通过广播消息、下行控制信息DCI、组DCI、无线资源控制RRC信息和媒体访问控制MAC单元中的至少一种接收所述基线值;
    所述获取基线值之后,所述方法还包括:
    根据所述基线值以及传输时延值确定所述时间提前量,其中,所述传输时延值表示所述基站与用户设备UE之间传输数据的传播时延。
  8. 一种通信装置,其特征在于,包括:
    获取模块,用于获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;
    接收模块,用于接收所述上行数据。
  9. 根据权利要求8所述的通信装置,其特征在于,
    所述获取模块,具体用于获取目标卫星的卫星类型,其中,所述目标卫星是与用户设备UE建立通信的卫星;
    根据所述获取单元获取的所述目标卫星的卫星类型确定所述基线值。
  10. 根据权利要求8或9所述的通信装置,其特征在于,所述通信装置还包括确定模块和发送模块;
    所述确定模块,用于根据所述基线值以及传输时延值确定所述时间提前量,其中,所述传输时延值表示所述基站与UE之间传输数据的传播时延;
    所述发送模块,用于向所述UE发送所述时间提前量。
  11. 根据权利要求8或9所述的通信装置,其特征在于,
    所述发送模块,还用于所述获取模块获取基线值之后,向所述UE发送所述基线值,其中,所述基线值用于所述UE的所述时间提前量的确定。
  12. 根据权利要求11所述的通信装置,其特征在于,
    所述发送模块,具体用于通过广播消息、下行控制信息DCI、组DCI、无线资源控制RRC信息和媒体访问控制MAC单元中的至少一种向所述UE发送所述基线值。
  13. 一种通信装置,其特征在于,包括:
    获取模块,用于获取基线值,其中,所述基线值用于表示下行帧定时与上行帧定时之间的时间间隔,所述基线值用于确定时间提前量,所述时间提前量用于上行数据的发送;
    发送模块,用于使用所述时间提前量发送所述上行数据。
  14. 根据权利要求13所述的通信装置,其特征在于,
    所述获取模块,具体用于通过广播消息、下行控制信息DCI、组DCI、无线资源控制RRC信息和媒体访问控制MAC单元中的至少一种接收所述基线值;
    所述通信装置还包括确定模块;
    所述确定模块,用于所述获取模块获取基线值之后,根据所述基线值以及传输时延值确定所述时间提前量,其中,所述传输时延值表示所述基站与用户设备UE之间传输数据的传播时延。
  15. 一种通信装置,其特征在于,包括:存储器、收发器以及处理器;
    其中,所述存储器用于存储程序和指令;
    所述收发器用于在所述处理器的控制下接收或发送信息;
    所述处理器用于执行所述存储器中的程序;
    所述处理器用于调用所述存储器中的程序指令,使得所述通信装置执行如权利要求1至5中任一项所述的方法。
  16. 一种通信装置,其特征在于,包括:存储器、收发器以及处理器;
    其中,所述存储器用于存储程序和指令;
    所述收发器用于在所述处理器的控制下接收或发送信息;
    所述处理器用于执行所述存储器中的程序;
    所述处理器用于调用所述存储器中的程序指令,使得所述通信装置执行如权利要求6或7中任一项所述的方法。
  17. 一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至5中任一项所述的方法,或执行如权利要求6或7中任一项所述的方法。
  18. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行如权利要求1至5任一项所述的方法,或执行如权利要求6或7中任一项所述的方法。
PCT/CN2018/116399 2017-11-22 2018-11-20 一种数据传输的方法及相关装置 WO2019101063A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18881944.5A EP3706478A4 (en) 2017-11-22 2018-11-20 DATA TRANSMISSION PROCESS AND RELEVANT APPARATUS
US16/881,531 US11405876B2 (en) 2017-11-22 2020-05-22 Data transmission method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711174646.1 2017-11-22
CN201711174646.1A CN109819511B (zh) 2017-11-22 2017-11-22 一种数据传输的方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/881,531 Continuation US11405876B2 (en) 2017-11-22 2020-05-22 Data transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2019101063A1 true WO2019101063A1 (zh) 2019-05-31

Family

ID=66599767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116399 WO2019101063A1 (zh) 2017-11-22 2018-11-20 一种数据传输的方法及相关装置

Country Status (4)

Country Link
US (1) US11405876B2 (zh)
EP (1) EP3706478A4 (zh)
CN (1) CN109819511B (zh)
WO (1) WO2019101063A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890208A1 (en) * 2020-03-20 2021-10-06 Nokia Technologies Oy Group timing adjustment for uplink transmission and command activation in non-terrestrial networks
WO2022001173A1 (zh) * 2020-07-02 2022-01-06 凯睿星通信息科技(南京)股份有限公司 一种卫星通信系统星地协同寻呼方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021042379A1 (en) * 2019-09-06 2021-03-11 Qualcomm Incorporated Gc-dci resource reallocation for sps pusch
US20210105732A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Clarification on cumulative timing advance (ta)
CN112887004B (zh) * 2019-11-29 2023-04-07 华为技术有限公司 一种通信方法及装置
CN114070376A (zh) * 2020-07-30 2022-02-18 华为技术有限公司 确定终端设备定时提前量的方法和通信装置
CN112203349A (zh) * 2020-10-12 2021-01-08 海能达通信股份有限公司 数据的接收方法、装置、电子设备及计算机存储介质
WO2022087886A1 (zh) * 2020-10-28 2022-05-05 北京小米移动软件有限公司 上行调度方法及装置、存储介质
KR20220135947A (ko) * 2021-03-31 2022-10-07 삼성전자주식회사 통신 시스템에서 상향링크 타이밍을 조정하는 방법 및 장치
CN117639881A (zh) * 2022-08-10 2024-03-01 华为技术有限公司 通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036364A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 一种终端的上行信息发送定时方法、设备和系统
CN102201856A (zh) * 2010-03-22 2011-09-28 上海无线通信研究中心 包含中继站的通信系统的上下行链路帧同步通信方法
CN102695264A (zh) * 2011-03-25 2012-09-26 北京新岸线无线技术有限公司 一种实现时间同步的方法及无线通信系统
WO2015066872A1 (zh) * 2013-11-07 2015-05-14 华为技术有限公司 一种时间提前量ta值的指示方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809397A (en) * 1996-02-29 1998-09-15 Motorola, Inc. Method and apparatus for system synchronization in a messaging system
KR101350441B1 (ko) * 2007-09-27 2014-01-23 삼성전자주식회사 무선 통신 시스템에서 상향링크 송신 타이밍 추정 방법 및장치
CN101998614B (zh) * 2009-08-17 2015-07-22 中兴通讯股份有限公司 一种上行信号同步的方法及系统
CN103037496B (zh) * 2011-09-29 2016-09-28 华为技术有限公司 上行信号的发送时间确定方法及设备
WO2017072745A1 (en) * 2015-10-30 2017-05-04 Paris Michaels Mobile satellite communication system
WO2017150453A1 (ja) * 2016-02-29 2017-09-08 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN107046447B (zh) * 2016-08-31 2020-08-11 中国人民解放军装备学院 一种针对低轨卫星遥感数传的自适应调制编码方法
KR20210005004A (ko) * 2018-04-03 2021-01-13 아이디에이씨 홀딩스, 인크. 비-지상 네트워크 통신에 대한 타이밍 어드밴스

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036364A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 一种终端的上行信息发送定时方法、设备和系统
CN102201856A (zh) * 2010-03-22 2011-09-28 上海无线通信研究中心 包含中继站的通信系统的上下行链路帧同步通信方法
CN102695264A (zh) * 2011-03-25 2012-09-26 北京新岸线无线技术有限公司 一种实现时间同步的方法及无线通信系统
WO2015066872A1 (zh) * 2013-11-07 2015-05-14 华为技术有限公司 一种时间提前量ta值的指示方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706478A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890208A1 (en) * 2020-03-20 2021-10-06 Nokia Technologies Oy Group timing adjustment for uplink transmission and command activation in non-terrestrial networks
US11469815B2 (en) 2020-03-20 2022-10-11 Nokia Technolgies Oy Group timing adjustment for uplink transmission and command activation in non-terrestrial networks
WO2022001173A1 (zh) * 2020-07-02 2022-01-06 凯睿星通信息科技(南京)股份有限公司 一种卫星通信系统星地协同寻呼方法和装置

Also Published As

Publication number Publication date
CN109819511A (zh) 2019-05-28
US20200288422A1 (en) 2020-09-10
EP3706478A4 (en) 2020-12-30
EP3706478A1 (en) 2020-09-09
CN109819511B (zh) 2021-09-21
US11405876B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2019101063A1 (zh) 一种数据传输的方法及相关装置
US10999103B2 (en) Sounding reference signal configuration for high-band transmission
US12015944B2 (en) Information reporting method and terminal
WO2021155793A1 (zh) 定位方法、终端及网络设备
WO2018228429A1 (zh) 一种测量上报的方法及设备
CN114422937B (zh) 按需定位参考信号的配置和管理系统及方法
KR20210039435A (ko) 기준 신호의 동적 구성을 위한 방법
CN110719154B (zh) 一种波束失败恢复请求传输方法及设备
WO2019029353A1 (zh) 一种信号强度测量的方法、相关装置以及系统
US20240196347A1 (en) Measurement processing method, parameter configuration method, terminal, and network device
WO2019214601A1 (zh) 处理csi处理单元、资源的方法、装置及系统
US20210045156A1 (en) Channel access method, user equipment, base station, and related device
CN109803417B (zh) 确定参考信号的方法、上行探测参考信号发送方法和设备
WO2022135267A1 (zh) 定位测量方法、装置、设备及可读存储介质
EP3817430A1 (en) Method and apparatus for recovery from beam failure in multi-carrier system
EP3322230A1 (en) Communication method and device, terminal and base station
US20230350003A1 (en) Positioning measurement method, terminal device, network device
CN112005609B (zh) 用于pusch和msg3的时域表
US20230337175A1 (en) Method for reporting positioning capability, terminal device, and network device
CN112787780A (zh) Srs发射设置方法、信息配置方法、定位方法和相关设备
WO2022006909A1 (zh) 测量间隔的配置方法、网络设备及终端设备
WO2018137512A1 (zh) 前导资源分组方法、前导选择方法,网络设备及终端设备
JP2017152758A (ja) 装置及び方法
EP4178236A1 (en) Information transmission method and apparatus, and terminal and network-side device
CN111800861A (zh) 功率控制方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881944

Country of ref document: EP

Effective date: 20200602