WO2022135267A1 - 定位测量方法、装置、设备及可读存储介质 - Google Patents

定位测量方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2022135267A1
WO2022135267A1 PCT/CN2021/138766 CN2021138766W WO2022135267A1 WO 2022135267 A1 WO2022135267 A1 WO 2022135267A1 CN 2021138766 W CN2021138766 W CN 2021138766W WO 2022135267 A1 WO2022135267 A1 WO 2022135267A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
measurement window
positioning measurement
window
measurement
Prior art date
Application number
PCT/CN2021/138766
Other languages
English (en)
French (fr)
Inventor
王园园
邬华明
司晔
庄子荀
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023538092A priority Critical patent/JP2024500171A/ja
Priority to KR1020237025094A priority patent/KR20230122143A/ko
Priority to EP21909263.2A priority patent/EP4266708A1/en
Publication of WO2022135267A1 publication Critical patent/WO2022135267A1/zh
Priority to US18/333,989 priority patent/US20230328684A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/25Monitoring; Testing of receivers taking multiple measurements
    • H04B17/252Monitoring; Testing of receivers taking multiple measurements measuring signals from different transmission points or directions of arrival, e.g. in multi RAT or dual connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a positioning measurement method, apparatus, device, and readable storage medium.
  • the terminal can only perform Positioning Reference Signals (PRS) measurement within the measurement gap (measurement gap), which is affected by the period of the measurement gap and the correction time, and the positioning delay especially the physical layer. The delay far exceeds the demand, and it is impossible to locate the low-latency terminal.
  • PRS Positioning Reference Signals
  • Embodiments of the present application provide a positioning measurement method, apparatus, device, and readable storage medium to solve the problem of low-latency terminal positioning.
  • a positioning measurement method including:
  • the terminal measures multiple positioning reference signals in the first positioning measurement window
  • the terminal determines the location information of the terminal according to the measurement results of the multiple positioning reference signals.
  • a positioning measurement method including:
  • the network-side device is configured with a first positioning measurement window, where the first positioning measurement window is used by the terminal to measure multiple positioning reference signals.
  • a positioning measurement device including:
  • a measurement module for measuring multiple positioning reference signals in the first positioning measurement window
  • the first determining module is configured to determine the location information of the terminal according to the measurement results of the multiple positioning reference signals.
  • a positioning measurement device comprising:
  • the first configuration module is configured to configure a first positioning measurement window, where the first positioning measurement window is used for the terminal to measure multiple positioning reference signals.
  • a terminal including: a processor, a memory, and a program stored on the memory and executable on the processor, the program being executed by the processor as described in the first aspect steps of the method described.
  • a network-side device comprising: a processor, a memory, and a program stored on the memory and executable on the processor, the program implementing the first aspect when executed by the processor the steps of the method.
  • a readable storage medium stores programs or instructions, and when the programs or instructions are executed by a processor, implement the steps of the method according to the first aspect or the second aspect.
  • a computer program product is provided, the computer program product is stored in a non-transitory readable storage medium, the computer program product is executed by at least one processor to implement the first aspect or the second aspect the steps of the method.
  • a chip in a ninth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first aspect or the second aspect the method described.
  • the terminal may measure multiple positioning reference signals in the first positioning measurement window, and determine the location information of the terminal based on the measurement results. Since the transmission of data/control signaling does not need to be interrupted during measurement, the It can meet the demand for low-latency terminal positioning.
  • FIG. 1 is a schematic diagram of a comb-like structure 2 and a comb-like structure 4;
  • Fig. 2 is the schematic diagram of comb-like structure 2
  • FIG. 3 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG. 5 is the second flow chart of the positioning measurement method according to the embodiment of the present application.
  • FIG. 6 is one of the schematic diagrams of the positioning measurement device according to the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a terminal according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a network side device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specified order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation , 6G) communication system.
  • 6th generation 6th Generation
  • a terminal may also be called a terminal device or a user terminal (User Equipment, UE).
  • the terminal may be a mobile phone, an integrated access and backhaul mobile terminal (IABMT), a tablet computer (Tablet Personal Computer), Laptop Computer (Laptop Computer) or notebook computer, Personal Digital Assistant (PDA), Handheld Computer, Netbook, Ultra-Mobile Personal Computer (UMPC), Mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal.
  • the network side device may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (BasicServiceSet, BSS), Extended Service Set (ExtendedServiceSet, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmitting Point Receiving Point, TRP) or any other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to the specified technical vocabulary.
  • the base station is taken as an example, but the specific type of the base station is not limited.
  • the measurement gap can be understood as a periodic time interval. During the duration of the measurement gap, the terminal interrupts the transmission of data/control signaling, and only the corresponding signal can be measured, such as the signal used for positioning (such as PRS). Signals for radio resource management (Radio Resource Management, RRM) (such as synchronization signals (Synchronization Signal and PBCH block, SSB)) and so on.
  • RRM Radio Resource Management
  • the measurement gap configuration in the prior art is included in the measurement gap configuration (MeasGapConfig) of radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the period of the measurement gap is ⁇ 20, 40, 80, 160 ⁇ milliseconds (ms) and the duration is ⁇ 1.5, 3, 3.5, 4, 5.5, 6, 10, 20 ⁇ ms.
  • data transmission will be interrupted within the measurement gap.
  • the terminal Before receiving the measurement gap configuration, the terminal sends a measurement gap request to the serving new air interface node (NR Node B, gNB), and the auxiliary serving gNB configures the appropriate measurement gap for positioning measurement.
  • the request signaling includes information such as the period, period offset, length, and measurement frequency points of the measurement interval expected by the terminal.
  • the positioning reference signal includes a PRS, a tracking reference signal (TRS), or other reference signals evolved for positioning, and the PRS is used as an example in this document.
  • PRS tracking reference signal
  • the PRS is a downlink positioning reference signal used for positioning, and is used for the terminal to perform positioning measurement. In order to complete positioning, the terminal needs to measure the PRS sent by multiple cells.
  • the period of the PRS includes:
  • the comb structure refers to the number of subcarriers spaced in the frequency domain.
  • a comb 4 (comb4) structure and a comb 2 (comb2) structure are illustrated in FIG. 1 .
  • the full staggered pattern is to occupy all subcarriers, so the number of symbols of the PRS needs to support the full staggered structure according to the number of combs, such as the comb4 structure, each symbol occupies 3 subcarriers, to support full staggered, just It needs to occupy 3 symbols, and Figure 2 is a full staggered pattern of comb4.
  • the number of symbols supported by PRS is 2, 4, 6, and 12, the supported comb size is 2, 4, 6, and 12, and only full staggered pattern is supported.
  • the maximum period of the measurement gap is 160ms, and the terminal may need to wait for 160ms to perform the PRS measurement, which greatly limits the positioning delay.
  • the configuration of the measurement gap also limits the flexible configuration of the PRS (the period of the PRS is far more flexible than the measurement gap).
  • FIG. 3 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 31 and a network-side device 32 .
  • the terminal 31 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 31 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, Netbook, Ultra-Mobile Personal Computer (UMPC), Mobile Internet Device (Mobile Internet Device, MID), Wearable Device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 32 may be a base station or a core network side device, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic Service Set (BasicServiceSet, BSS), Extended Service Set (ExtendedServiceSet, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmit/Receive Point ( Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to the specified technical vocabulary. It should be noted that in the embodiment of this application, only the NR system is used The base station is taken as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides a positioning measurement method, which is executed by a terminal, and the method includes: step 401 and step 402 .
  • Step 401 The terminal measures multiple positioning reference signals in the first positioning measurement window
  • Step 402 The terminal determines the location information of the terminal according to the measurement results of the multiple positioning reference signals.
  • the location information of the terminal includes one or more of the following: (1) a signal measurement result; (2) an absolute location of the terminal; (3) a relative location of the terminal.
  • the first positioning measurement window is determined according to one or more of the following:
  • the configuration information of the positioning reference signal of each TRP in one or more TRPs is, the configuration information of the positioning reference signal of each TRP in one or more TRPs.
  • first request information where the first request information is used to request a first positioning measurement window
  • a first measurement interval where the first measurement interval is used for positioning reference signal measurement.
  • the first positioning measurement window may be configured by the network side, that is, determined according to (3) the configuration information of the first positioning measurement window, and the first positioning measurement window may also be measured as required
  • the positioning reference signal is determined by itself, such as according to (1) or (2); or the first positioning measurement window may also be determined by itself according to the configuration information on the network side, such as (1) (3).
  • the (3) configuration information of the first positioning measurement window may also be determined after (4) the first request information.
  • the first positioning measurement window is affected by a first measurement interval.
  • the terminal directly performs the positioning reference measurement in the measurement interval, the terminal needs to interrupt the transmission of data/control signaling and only measure the positioning reference signal, which will lead to a large transmission delay.
  • the terminal is in the first The measurement of multiple reference signals is performed in the positioning measurement window, and the transmission of data/control signaling does not need to be interrupted during the measurement, so as to meet the positioning requirements of low-latency terminals.
  • the positioning reference signal configuration information includes one or more of the following:
  • downlink positioning reference signal identification (dl-prs-id) (or cell/TRP identification), positioning reference signal resource set identification (PRS resource set ID), positioning reference signal resource identification (PRS resource ID).
  • period For example, period; slot offset; or, start symbol; or, symbol offset, etc.
  • frequency layer information For example, frequency layer information; bandwidth; point A (PointA); frequency domain position of common resource block 0 (Common Resource Block 0, CRB0); frequency domain offset, such as start position (Start PRB) ), offset to carrier (position relative to CRB0); or part of the bandwidth.
  • point A PointA
  • frequency domain position of common resource block 0 Common Resource Block 0, CRB0
  • frequency domain offset such as start position (Start PRB) ), offset to carrier (position relative to CRB0); or part of the bandwidth.
  • the plurality of first positioning search windows have at least one of the following features:
  • each TRP in a plurality of TRPs configures the same or different described first positioning search windows
  • the first positioning search window is configured for each TRP.
  • the first positioning search window includes at least one of the following:
  • Expected reference signal time difference (for example, the time difference between subframes where the downlink positioning reference signal (dl PRS) is expected to be received, or the time difference between two TRPs that are expected to be received).
  • Expected reference signal time difference uncertainty (ExpectedRSTD-Uncertainty) (eg, search window or uncertainty of ExpectedRSTD).
  • the number of the first positioning search windows of multiple TRPs is the number of TRP groups (that is, configured according to each TRP group);
  • the plurality of first positioning search windows include one or more maximum search ranges, and the maximum search ranges limit the range of the first positioning search windows.
  • the configuration information of the first positioning measurement window includes one or more of the following:
  • the method further includes: receiving configuration information of the first positioning measurement window.
  • the time domain information of the first positioning measurement window includes one or more of the following:
  • the time domain type includes one or more of the following:
  • the frequency domain information of the first positioning measurement window includes one or more of the following:
  • absolute frequency domain information including one of the following: PointA, CRB0), the starting point of a bandwidth part (Bandwidth Part, BWP), and the starting point of a carrier (carrier).
  • starting physical resource block (start PRB) is relative to the reference point A.
  • the first request information includes one or more of the following:
  • positioning reference signal frequency domain information and/or positioning reference signal time domain information.
  • the method further includes: sending the first request information through a first transmission mode;
  • the first transmission method includes one or more of the following:
  • UCI Uplink Control Information
  • LPP Long Term Evolution Positioning Protocol
  • New Radio Interface Positioning Protocol A (NR Positioning Protocol A, NRPPa).
  • the information of the first measurement interval includes one or more of the following:
  • the measurement of multiple positioning reference signals performed by the terminal in the first positioning measurement window includes:
  • the terminal In response to the first event, the terminal performs measurements of multiple positioning reference signals within the first positioning measurement window.
  • the method further includes:
  • the terminal In response to the second event, the terminal receives configuration information of the first positioning measurement window.
  • the first event or the second event includes one or more of the following:
  • the positioning response delay is less than the first threshold
  • the positioning service delay index is less than the second threshold
  • the location service is a specific location service
  • Ultra Reliable Low Latency Communication Ultra Reliable Low Latency Communication, URLLC
  • URLLC Ultra Reliable Low Latency Communication
  • low latency service the first type of service (low latency service).
  • One or more positioning reference signals are sent in the active bandwidth part (Bandwidth Part, BWP);
  • One or more positioning reference signals are sent in a specific frequency domain range
  • the terminal is not configured with the first positioning measurement window and the first measurement interval at the same time, or the terminal does not expect to configure the first positioning measurement window and the first measurement interval at the same time.
  • the method further includes:
  • the terminal If the terminal is configured with the first positioning measurement window, the terminal does not request the first measurement interval or is not configured with the first measurement interval.
  • the method further includes:
  • the terminal If the terminal is configured with the first positioning measurement window, and the terminal needs to perform radio resource management (Radio Resource Management, RRM) measurement, and the RRM measurement needs to be performed at a measurement interval, the terminal requests to configure the first position measurement window. Two measurement intervals.
  • RRM Radio Resource Management
  • the second measurement interval includes the first measurement interval; in another embodiment, the second measurement interval is a special case of the first measurement interval.
  • the second measurement interval is only used to measure the RRM.
  • the method further includes:
  • the first positioning measurement window is disabled
  • the second measurement interval and the priority of the first positioning measurement window determine that the second measurement interval or the first positioning measurement window is invalid
  • the terminal does not expect to perform PRS measurements
  • the terminal does not expect to perform PRS measurements or the first positioning measurement window fails
  • the terminal performs PRS measurements
  • the terminal performs RRM measurements
  • the terminal performs PRS measurements and RRM measurements.
  • the method further includes:
  • the terminal capabilities include one or more of the following:
  • the terminal may measure multiple positioning reference signals in the first positioning measurement window, and determine the location information of the terminal based on the measurement results. Since the transmission of data/control signaling does not need to be interrupted during the measurement, it satisfies Low-latency terminal positioning requirements.
  • an embodiment of the present application provides a positioning measurement method, which is performed by a network side device, and the network side device may be a base station, a TRP, or a core network device.
  • the specific steps include: step 501 .
  • Step 501 The network-side device configures a first positioning measurement window, where the first positioning measurement window is used for the terminal to measure multiple positioning reference signals.
  • the method further includes: the network-side device receiving the measurement result; and the network-side device determining the location information of the terminal according to the measurement result.
  • the first positioning measurement window is determined according to one or more of the following:
  • first request information where the first request information is used to request a first positioning measurement window
  • a first measurement interval where the first measurement interval is used for positioning reference signal measurement.
  • the positioning reference signal configuration information includes one or more of the following:
  • period For example, period; slot offset; or, start symbol offset, etc.
  • frequency layer information For example, frequency layer information; bandwidth; PointA; frequency domain position of CRB0; frequency domain offset, such as start position (Start PRB), offset to carrier (offset to carrier) (relative to CRB0 position); or part of bandwidth.
  • frequency domain offset such as start position (Start PRB), offset to carrier (offset to carrier) (relative to CRB0 position); or part of bandwidth.
  • the plurality of first positioning search windows have at least one of the following characteristics:
  • each TRP in the plurality of TRPs configures the same or different first positioning search windows
  • the number of the first positioning search window of described multiple TRPs is the number of TRP groups
  • the plurality of first positioning search windows include one or more maximum search ranges, and the maximum search ranges limit the range of the first positioning search windows.
  • the configuration information of the first positioning measurement window includes one or more of the following:
  • the time domain information of the first positioning measurement window includes one or more of the following:
  • the time domain type includes one or more of the following:
  • the frequency domain information of the first positioning measurement window includes one or more of the following:
  • the first request information includes one or more of the following:
  • positioning reference signal frequency domain information and/or positioning reference signal time domain information.
  • the method further includes: receiving the first request information through a first transmission mode; wherein the first transmission mode includes one or more of the following:
  • the information of the first measurement interval includes one or more of the following:
  • the method further includes: receiving, by the network side device, the terminal capability;
  • the terminal capabilities include one or more of the following:
  • the method further includes:
  • the network-side device determines the first PRS configuration information and/or the second PRS configuration information according to the first positioning measurement window.
  • the first PRS configuration information is periodic PRS configuration information.
  • the second PRS configuration information includes one or more of the following:
  • the first positioning reference signal configuration information, the second positioning reference signal configuration information, and/or the configuration information of the first positioning measurement window include one or more of the following:
  • the positioning reference signal sequence generation rule is determined by one or more of the following:
  • the network side device configures the terminal with a first positioning measurement window for the terminal to measure multiple positioning reference signals, so that the terminal can measure multiple positioning reference signals in the first positioning measurement window, And based on the measurement result, the location information of the terminal is determined to meet the requirement of low-latency terminal positioning.
  • an embodiment of the present application provides a positioning measurement device, and the device 600 includes:
  • a measurement module 601, configured to measure multiple positioning reference signals in the first positioning measurement window
  • the first determining module 602 is configured to determine the location information of the terminal according to the measurement results of the multiple positioning reference signals.
  • the first positioning measurement window is determined according to one or more of the following:
  • first request information where the first request information is used to request a first positioning measurement window
  • a first measurement interval where the first measurement interval is used for positioning reference signal measurement.
  • the positioning reference signal configuration information includes one or more of the following:
  • the positioning reference signal frequency domain information The positioning reference signal frequency domain information.
  • the plurality of first positioning search windows have at least one of the following features:
  • Each TRP in the plurality of TRPs configures the same or different first positioning search window
  • the number of the first positioning search window of the multiple TRPs is the number of the TRP group
  • the plurality of first positioning search windows include one or more maximum search ranges that limit the range of the first positioning search windows.
  • the configuration information of the first positioning measurement window includes one or more of the following:
  • First positioning search window information of multiple TRPs relative to the first positioning measurement window is
  • the time domain information of the first positioning measurement window includes one or more of the following:
  • the time interval between repetitions of the first positioning measurement window is the time interval between repetitions of the first positioning measurement window.
  • the time domain type includes one or more of the following:
  • the frequency domain information of the first positioning measurement window includes one or more of the following:
  • the frequency domain offset of the first positioning measurement window is the frequency domain offset of the first positioning measurement window.
  • the first request information includes one or more of the following:
  • the priority of the first positioning measurement window is the priority of the first positioning measurement window.
  • the first request information is transmitted in one or more of the following ways:
  • the information of the first measurement interval includes one or more of the following:
  • the priority of the first measurement interval is the priority of the first measurement interval.
  • the measurement module is further configured to: in response to the first event, the terminal performs measurement of multiple positioning reference signals within the first positioning measurement window.
  • the device further includes:
  • the first receiving module is configured to receive the configuration information of the first positioning measurement window in response to the second event.
  • the first event or the second event includes one or more of the following:
  • the positioning response delay is less than the first threshold
  • the positioning service delay index is less than the second threshold
  • the location service is a specific location service
  • the first measurement interval cannot meet the requirements
  • One or more positioning reference signals are sent in the active BWP;
  • One or more positioning reference signals are sent in a specific frequency domain range
  • the first measurement interval configuration fails.
  • the device further includes:
  • the first processing module is configured to not expect to configure the first positioning measurement window and the first measurement interval at the same time.
  • the device further includes:
  • the second processing module is configured to, if the terminal is configured with the first positioning measurement window, do not request the first measurement interval or do not expect to configure the first measurement interval.
  • the device further includes:
  • the third processing module is configured to request to configure a second measurement interval if the terminal is configured with the first positioning measurement window and the terminal needs to perform RRM measurement, and the RRM measurement needs to be performed under a measurement interval.
  • the device further includes:
  • the fourth processing module is configured to perform any one of the following processing if the terminal is configured with the second measurement interval and the first positioning measurement window:
  • the first positioning measurement window is disabled
  • the second measurement interval and the priority of the first positioning measurement window determine that the second measurement interval or the first positioning measurement window is invalid
  • PRS measurements are not expected to be performed
  • PRS measurements and RRM measurements are performed.
  • the device further includes:
  • the reporting module is used to report the terminal capability to the network side device
  • the terminal capabilities include one or more of the following:
  • the maximum measurement duration supported within the first positioning measurement window is the maximum measurement duration supported within the first positioning measurement window.
  • the apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application provides a positioning measurement device, and the device 700 includes:
  • the first configuration module 701 is configured to configure a first positioning measurement window, where the first positioning measurement window is used for the terminal to measure multiple positioning reference signals.
  • the device further includes: a second receiving module, configured to receive the measurement result;
  • the second determining module is configured to determine the location information of the terminal according to the measurement result.
  • the first positioning measurement window is determined according to one or more of the following:
  • first request information where the first request information is used to request a first positioning measurement window
  • a first measurement interval where the first measurement interval is used for positioning reference signal measurement.
  • the positioning reference signal configuration information includes one or more of the following:
  • the plurality of first positioning search windows have at least one of the following characteristics:
  • Each TRP in the plurality of TRPs configures the same or different first positioning search window
  • the number of the first positioning search window of the multiple TRPs is the number of the TRP group
  • the plurality of first positioning search windows include one or more maximum search ranges that limit the range of the first positioning search windows.
  • the configuration information of the first positioning measurement window includes one or more of the following:
  • First positioning search window information of multiple TRPs relative to the first positioning measurement window is
  • the time domain information of the first positioning measurement window includes one or more of the following:
  • the time interval between repetitions of the first positioning measurement window is the time interval between repetitions of the first positioning measurement window.
  • the time domain type includes one or more of the following:
  • the frequency domain information of the first positioning measurement window includes one or more of the following:
  • the frequency domain offset of the first positioning measurement window is the frequency domain offset of the first positioning measurement window.
  • the first request information includes one or more of the following:
  • the priority of the first positioning measurement window is the priority of the first positioning measurement window.
  • the first request information is transmitted in one or more of the following ways:
  • the information of the first measurement interval includes one or more of the following:
  • the priority of the first measurement interval is the priority of the first measurement interval.
  • the device further includes:
  • the third receiving module is used to receive the terminal capability
  • the terminal capabilities include one or more of the following:
  • the maximum measurement duration supported within the first positioning measurement window is the maximum measurement duration supported within the first positioning measurement window.
  • the device further includes:
  • the second configuration module is configured to configure the first PRS configuration information and/or the second PRS configuration information according to the configuration information of the first positioning measurement window.
  • the first PRS configuration information is periodic PRS configuration information.
  • the second PRS configuration information includes one or more of the following:
  • the apparatus further includes a sending module, used for the network-side device to send one or more of the following to neighboring cells:
  • the first positioning reference signal configuration information, the second positioning reference signal configuration information, and/or the configuration information of the first positioning measurement window include one or more of the following: frame offset information;
  • the positioning reference signal sequence generation rule is determined by one or more of the following:
  • Time domain location relative to the serving cell or reference cell is mapped to the serving cell or reference cell.
  • the apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user Input unit 807, interface unit 808, memory 809, processor 810 and other components.
  • the terminal 800 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 804 may include a graphics processor (Graphics Processing Unit, GPU) 8041 and a microphone 8042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 806 may include a display panel 8061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072 .
  • the touch panel 8071 is also called a touch screen.
  • the touch panel 8071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 8072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 801 receives the downlink data from the network side device, and then processes it to the processor 810; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 809 may be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a storage program or instruction area and a storage data area, wherein the storage program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 810.
  • the terminal provided in the embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the network-side device 900 includes: an antenna 901 , a radio frequency device 902 , and a baseband device 903 .
  • the antenna 901 is connected to the radio frequency device 902 .
  • the radio frequency device 902 receives information through the antenna 901, and sends the received information to the baseband device 903 for processing.
  • the baseband device 903 processes the information to be sent and sends it to the radio frequency device 902
  • the radio frequency device 902 processes the received information and sends it out through the antenna 901 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 903 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 903 .
  • the baseband apparatus 903 includes a processor 904 and a memory 905 .
  • the baseband device 903 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 9 , one of the chips is, for example, the processor 904 and is connected to the memory 905 to call the program in the memory 905 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 903 may further include a network interface 906 for exchanging information with the radio frequency device 902, the interface being, for example, Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 905 and run on the processor 904, and the processor 904 invokes the instructions or programs in the memory 905 to execute the modules shown in FIG. 7 .
  • the embodiments of the present application further provide a program product, the program product is stored in a non-transitory readable storage medium, and the program product is executed by at least one processor to realize the positioning as described in FIG. 4 or FIG. 5 The steps of the method of measurement.
  • the embodiments of the present application further provide a readable storage medium, the readable storage medium may be non-volatile or volatile, and a program or an instruction is stored on the readable storage medium, and the program or instruction is stored in the readable storage medium.
  • the processor executes, each process of the method embodiment shown in FIG. 4 or FIG. 5 is implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer ROM, a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 4 or
  • the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 4 or
  • Each process of the method embodiment shown in FIG. 5 can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a computer program product, wherein the computer program product is stored in a non-transitory readable storage medium, and the computer program product is executed by at least one processor to implement the above-mentioned FIG. 4 or
  • Each process of the method embodiment shown in FIG. 5 can achieve the same technical effect. To avoid repetition, details are not repeated here.

Abstract

本申请公开了一种定位测量方法、装置、设备及可读存储介质,该方法包括:终端在第一定位测量窗内进行多个定位参考信号的测量;所述终端根据所述多个定位参考信号的测量结果,确定所述终端的位置信息。

Description

定位测量方法、装置、设备及可读存储介质
相关申请的交叉引用
本申请主张在2020年12月21日在中国提交的中国专利申请号No.202011520590.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,尤其涉及一种定位测量方法、装置、设备及可读存储介质。
背景技术
在现有通信系统的定位中,终端只能在测量间隔(measurement gap)内执行定位参考信号(Positioning Reference Signals,PRS)测量,受measurement gap的周期和校正时间影响,定位延时尤其是物理层延时,远超过需求,无法对低时延终端定位。
发明内容
本申请实施例提供一种定位测量方法、装置、设备及可读存储介质,解决低时延终端定位的问题。
第一方面,提供一种定位测量方法,包括:
终端在第一定位测量窗内进行多个定位参考信号的测量;
所述终端根据所述多个定位参考信号的测量结果,确定所述终端的位置信息。
第二方面,提供一种定位测量方法,包括:
网络侧设备配置第一定位测量窗,所述第一定位测量窗用于终端进行多个定位参考信号的测量。
第三方面,提供一种定位测量装置,包括:
测量模块,用于在第一定位测量窗内进行多个定位参考信号的测量;
第一确定模块,用于根据所述多个定位参考信号的测量结果,确定所述 终端的位置信息。
第四方面,提供一种定位测量装置,包括:
第一配置模块,用于配置第一定位测量窗,所述第一定位测量窗用于终端进行多个定位参考信号的测量。
第五方面,提供一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现第一方面所述的方法的步骤。
第七方面,提供一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第八方面,提供一种计算机程序产品,所述计算机程序产品被存储在非瞬态的可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的方法。
在本申请实施例中,终端可以在第一定位测量窗内进行多个定位参考信号的测量,基于测量结果确定终端的位置信息,由于在测量时不需要中断数据/控制信令的传输,从而可以满足对低时延终端定位的需求。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是梳状结构2和梳状结构4的示意图;
图2是梳状结构2的示意图;
图3是本申请实施例可应用的一种无线通信系统的框图;
图4是本申请实施例的定位测量方法的流程图之一;
图5是本申请实施例的定位测量方法的流程图之二;
图6是本申请实施例的定位测量装置的示意图之一;
图7是本申请实施例的定位测量装置的示意图之二;
图8是本申请实施例的终端的示意图;
图9是本申请实施例的网络侧设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述指定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以 上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
本文中终端也可以称作终端设备或者用户终端(User Equipment,UE),终端可以是手机、接取与回传移动终端(Integrated Access And Backhaul Mobile Termination,IABMT)、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端的具体类型。
本文中网络侧设备可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base TransceiverStation,BTS)、无线电基站、无线电收发机、基本服务集(BasicServiceSet,BSS)、扩展服务集(ExtendedServiceSet,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于指定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为了便于理解本申请实施例,下面介绍以下技术点:
(1)关于measurement gap
终端若想要执行PRS测量,需要在measurement gap内测量。否则终端不期待执行PRS测量。measurement gap可以理解为1个周期性的时间间隔,在measurement gap持续时间内,终端中断进行数据/控制信令的传输,只可测量相应的信号,如用于定位的信号(比如PRS),用于无线资源管理(Radio Resource Management,RRM)的信号(比如同步信号(Synchronization Signal and PBCH block,SSB))等等。
比如,现有技术中的measurement gap配置包含在无线资源控制(Radio Resource Control,RRC)信令的测量间隔配置(MeasGapConfig)中。
measurement gap的周期为{20,40,80,160}毫秒(ms),持续时间为{1.5,3,3.5,4,5.5,6,10,20}ms。当配置measurement gap后,在measurement gap内,数据传输将会中断。
在接收measurement gap配置前,终端向服务新空口节点(NR Node B,gNB)发送measurement gap请求,辅助服务gNB配置合适的measurement gap用于定位测量。在请求信令中,包含终端期望的测量间隔的周期,周期偏移,长度,以及测量频点等信息。
二、关于定位参考信号
定位参考信号包括PRS、跟踪参考信号(tracking reference signal,TRS)、或其它演进用于定位的参考信号,本文以PRS为例。
PRS是一种用于定位的下行定位参考信号,用于终端进行定位测量。为了完成定位,终端需要测量多个小区发送的PRS。
可选地,PRS的周期包括:
Figure PCTCN2021138766-appb-000001
梳状(Comb)结构是指频域上间隔的子载波数,例如,图1中示意梳状4(comb4)结构和梳状2(comb2)结构。满交错图样(full staggered pattern)就是要占满所有子载波,因此PRS的符号数需要根据comb数来支持满交错结构,比如comb4结构,每个符号上占3个子载波,要支持满交错,就需要占据3个符号,图2中就是一种comb4的full staggered pattern。目前PRS支持的符号数为2,4,6,12,支持的梳状大小(comb size)为2,4,6,12,只支持full staggered pattern。
根据相关技术可以发现,measurement gap的周期最大为160ms,终端可能需要等待160ms才能执行PRS测量,极大的限制了定位的时延。此外,measurement gap的配置也限制了PRS的灵活配置(PRS的周期远比measurement gap更灵活)。
图3示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端31和网络侧设备32。其中,终端31也可以称作终端设备或者用 户终端(User Equipment,UE),终端31可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端31的具体类型。网络侧设备32可以是基站或核心网侧设备,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base TransceiverStation,BTS)、无线电基站、无线电收发机、基本服务集(BasicServiceSet,BSS)、扩展服务集(ExtendedServiceSet,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于指定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种定位测量、装置、设备及可读存储介质进行详细地说明。
参见图4,本申请实施例提供一种定位测量方法,由终端执行,该方法包括:步骤401和步骤402。
步骤401:终端在第一定位测量窗内进行多个定位参考信号的测量;
步骤402:终端根据所述多个定位参考信号的测量结果,确定所述终端的位置信息。
可选地,终端的位置信息包括以下一项或多项:(1)信号测量结果;(2)终端绝对位置;(3)终端相对位置。
在本申请实施例中,所述第一定位测量窗根据以下一项或多项确定:
(1)一个或多个TRP的定位参考信号配置信息;
也就是,一个或多个TRP中每个TRP的定位参考信号的配置信息。
(2)多个第一定位搜索窗;
(3)第一定位测量窗的配置信息;
(4)第一请求信息,所述第一请求信息用于请求第一定位测量窗;
(5)第一测量间隔,所述第一测量间隔用于定位参考信号测量。
值得注意的是,所述第一定位测量窗可以是由网络侧配置的,即根据(3)第一定位测量窗的配置信息确定的,所述第一定位测量窗还可以是根据需要测量的定位参考信号自行决定的,比如根据(1)或(2);或者所述第一定位测量窗还可以是根据网络侧的配置信息,比如(1)(3),自行决定的。在另一个实施例中,所述(3)第一定位测量窗的配置信息还可以是在(4)第一请求信息后确定的。在又一个实施例中,所述第一定位测量窗受第一测量间隔的影响。
如果终端直接在测量间隔中进行定位参考测量,该终端需要中断数据/控制信令的传输,只测量定位参考信号,会导致传输时延较大,而本申请实施例中,终端是在第一定位测量窗中进行多个参考信号的测量,在测量时不需要中断数据/控制信令的传输,从而满足低时延终端的定位需求。
在本申请实施中,所述定位参考信号配置信息包括以下一项或多项:
(1)定位参考信号的标识信息;
比如,下行定位参考信号标识(dl-prs-id)(或小区/TRP标识),定位参考信号资源集标识(PRS resource set ID),定位参考信号资源标识(PRS resource ID)。
(2)符号数;
(3)梳状结构大小(comb size)数;
(4)定位参考信号时域信息;
比如,周期;时隙偏移(slot offset);或者,起始符号(start symbol);或者,符号偏移(symbol offset)等。
(5)定位参考信号频域信息。
比如,频率层信息;带宽;点A(PointA);公共资源块0(Common Resource Block 0,CRB0)的频域位置;频域偏移,如起始位置(起始物理资源块(Start PRB)),与载波的偏移(offset to carrier)(相对于CRB0的位置);或者部分带宽。
在本申请实施例中,所述多个第一定位搜索窗具备以下特征至少之一:
(1)多个TRP中的每个TRP配置相同或不同的所述第一定位搜索窗;
也就是,第一定位搜索窗按照每个TRP配置。所述第一定位搜索窗至少包括以下之一:
预期参考信号时间差(ExpectedRSTD)(比如,预期接收下行定位参考信号(dl PRS)的子帧时间差,或者也可以是预期接收两个TRP之间的时间差)。
预期参考信号时间差不确定性(ExpectedRSTD-Uncertainty)(比如,ExpectedRSTD的搜索窗或不确定)。
(2)多个TRP的第一定位搜索窗的数目为TRP组的个数(即,按照每个TRP组配置);
(3)所述多个第一定位搜索窗包括一个或多个最大搜索范围,所述最大搜索范围限制所述第一定位搜索窗的范围。
在本申请实施例中,所述第一定位测量窗的配置信息包括以下一项或多项:
(1)所述第一定位测量窗的识别信息;
(2)所述第一定位测量窗的时域信息;
(3)所述第一定位测量窗的频域信息;
(4)所述第一定位测量窗的优先级;
(5)一个或多个TRP相对于所述第一定位测量窗的定位参考信号配置信息;
(6)多个TRP的相对于所述第一定位测量窗的第一定位搜索窗信息。
在本申请实施例中,所述方法还包括:接收所述第一定位测量窗的配置信息。
在本申请实施例中,所述第一定位测量窗的时域信息包括以下一项或多项:
(1)所述第一定位测量窗的起始时间;
(2)所述第一定位测量窗的窗口长度;
(3)所述第一定位测量窗的时域类型;
(4)所述第一定位测量窗的重复参数;
(5)重复的所述第一定位测量窗之间的时间间隔。
在本申请实施例中,所述时域类型包括以下一项或多项:
(1)周期的;
(2)半静态的;
(3)非周期的。
在本申请实施例中,所述第一定位测量窗的频域信息包括以下一项或多项:
(1)所述第一定位测量窗的频域起点;
比如,绝对频域信息(包括以下之一:PointA,CRB0),带宽部分(Bandwidth Part,BWP)的起点,载波(carrier)的起点。
(2)所述第一定位测量窗的带宽信息;
(3)所述第一定位测量窗的频域粒度;
(4)所述第一定位测量窗的子载波间隔;
(5)所述第一定位测量窗的频域偏移;
比如,起始物理资源块(start PRB)相对于参考点A的。
在本申请实施例中,所述第一请求信息包括以下一项或多项:
(1)所述第一定位测量窗的识别信息;
(2)所述第一定位测量窗的配置信息;
(3)一个或多个定位参考信号的测量配置信息;
比如,定位参考信号频域信息和/或定位参考信号时域信息。
(4)所述第一定位测量窗的优先级。
在本申请实施例中,方法还包括:通过第一传输方式发送所述第一请求信息;
所述第一传输方式包括以下一项或多项:
(1)上行控制信息(Uplink Control Information,UCI);
(2)无线资源控制(Radio Resource Control,RRC)信令;
(3)媒体接入控制-控制单元(Media Access Control control element,MAC CE);
(4)长期演进定位协议(LTE Positioning Protocol,LPP);
(5)新空口定位协议A(NR Positioning Protocol A,NRPPa)。
在本申请实施例中,所述第一测量间隔的信息包括以下一项或多项:
(1)所述第一测量间隔的配置信息;
(2)所述第一测量间隔的优先级。
在本申请实施例中,所述终端在第一定位测量窗内进行多个定位参考信号的测量包括:
响应第一事件,所述终端在所述第一定位测量窗内进行多个定位参考信号的测量。
在本申请实施例中,所述方法还包括:
响应第二事件,所述终端接收所述第一定位测量窗的配置信息。
在本申请实施例中,所述第一事件或所述第二事件包括以下一项或多项:
(1)定位响应时延小于第一阈值;
(2)定位服务时延指标小于第二阈值;
(3)所述定位服务为特定定位服务;
比如,超可靠低延迟通信(Ultra Reliable Low Latency Communication,URLLC)服务,第一类型服务(低时延服务)。
(4)所述第一测量间隔无法满足要求;
(5)所述第一测量间隔请求失败;
(6)一个或多个定位参考信号在激活带宽部分(Bandwidth Part,BWP)中发送;
(7)一个或多个定位参考信号在特定频域范围中发送;
(8)所述第一测量间隔配置失败。
在本申请实施例中,
所述终端未被同时配置所述第一定位测量窗和所述第一测量间隔,或者说终端不期望同时配置所述第一定位测量窗和所述第一测量间隔。
在本申请实施例中,所述方法还包括:
如果所述终端被配置了所述第一定位测量窗,所述终端不请求所述第一测量间隔或不被配置所述第一测量间隔。
在本申请实施例中,所述方法还包括:
如果所述终端配置了所述第一定位测量窗,且所述终端需要执行无线资源管理(Radio Resource Management,RRM)测量,所述RRM测量需要在测量间隔下执行,则所述终端请求配置第二测量间隔。
值得注意的是,在一种实施例中,所述第二测量间隔包括第一测量间隔;在另一种实施例中,所述第二测量间隔是第一测量间隔的特例。比如,第二测量间隔仅用于测量所述RRM。
在本申请实施例中,若所述终端配置了第二测量间隔和第一定位测量窗,所述方法还包括:
在配置了所述第二测量间隔之后,所述第一定位测量窗失效;
或者,
根据所述第二测量间隔和所述第一定位测量窗的优先级,确定所述第二测量间隔或者所述第一定位测量窗失效;
或者,
在配置所述第二测量间隔的过程中,所述终端不期待执行PRS测量;
或者,
在所述第二测量间隔内,所述终端不期待执行PRS测量或第一定位测量窗失效;
或者,
在所述第二测量间隔外且所述第一定位测量窗内,所述终端执行PRS测量;
或者,
在所述第二测量间隔内,所述终端执行RRM测量;
或者,
在所述第二测量间隔内,所述终端执行PRS测量和RRM测量。
在本申请实施例中,所述方法还包括:
向网络侧设备上报终端能力;
其中,所述终端能力包括以下一项或多项:
(1)是否支持所述第一定位测量窗;
(2)是否同时支持所述第一定位测量窗和第一测量间隔;
(3)是否支持在所述第一定位测量窗内测量PRS;
(4)所述第一定位测量窗的窗长;
(5)所述第一定位测量窗的周期;
(6)所述第一定位测量窗内支持的最大TRP数目;
(7)所述第一定位测量窗内支持的最大资源数目;
(8)所述第一定位测量窗内支持的最大资源集数目;
(9)所述第一定位测量窗内的测量能力;
(10)所述第一定位测量窗内PRS波束切换之间的间隔;
(11)所述第一定位测量窗内支持的最大测量持续时间。
在本申请实施例中,终端可以在第一定位测量窗内进行多个定位参考信号的测量,基于测量结果确定终端的位置信息,由于在测量时不需要中断数据/控制信令的传输,满足低时延终端定位的需求。
参见图5,本申请实施例提供一种定位测量方法,由网络侧设备执行,该网络侧设备可以是基站、TRP或者核心网设备,具体步骤包括:步骤501。
步骤501:网络侧设备配置第一定位测量窗,所述第一定位测量窗用于终端进行多个定位参考信号的测量。
在本申请实施例中,可选地,该方法还包括:所述网络侧设备接收所述测量结果;所述网络侧设备根据所述测量结果,确定所述终端的位置信息。
在本申请实施例中,所述第一定位测量窗根据以下一项或多项确定:
(1)一个或多个TRP的定位参考信号配置信息;
(2)多个第一定位搜索窗;
(3)第一定位测量窗的配置信息;
(4)第一请求信息,所述第一请求信息用于请求第一定位测量窗;
(5)第一测量间隔,所述第一测量间隔用于定位参考信号测量。
在本申请实施例中,所述定位参考信号配置信息包括以下一项或多项:
(1)定位参考信号的标识信息;
(2)符号数;
(3)comb size数;
(4)所述定位参考信号时域信息;
比如,周期;时隙偏移(slot offset);或者,起始符号偏移(start symbol offset)等。
(5)所述定位参考信号频域信息。
比如,频率层信息;带宽;PointA;CRB0的频域位置;频域偏移,如起始位置(Start PRB),与载波的偏移(offset to carrier)(相对于CRB0的位置);或者部分带宽。
在本申请实施例中,所述多个第一定位搜索窗具备以下特征至少之一:
(1)所述多个TRP中的每个TRP配置相同或不同的所述第一定位搜索窗;
(2)所述多个TRP的第一定位搜索窗的数目为TRP组的个数;
(3)所述多个第一定位搜索窗包括一个或多个最大搜索范围,所述最大搜索范围限制所述第一定位搜索窗的范围。
在本申请实施例中,
所述第一定位测量窗的配置信息包括以下一项或多项:
(1)所述第一定位测量窗的识别信息;
(2)所述第一定位测量窗的时域信息;
(3)所述第一定位测量窗的频域信息;
(4)所述第一定位测量窗的优先级;
(5)多个TRP相对于所述第一定位测量窗的定位参考信号配置信息;
(6)多个TRP的相对于所述第一定位测量窗的第一定位搜索窗信息。
在本申请实施例中,所述第一定位测量窗的时域信息包括以下一项或多项:
(1)所述第一定位测量窗的起始时间;
(2)所述第一定位测量窗的窗口长度;
(3)所述第一定位测量窗的时域类型;
(4)所述第一定位测量窗的重复参数;
(5)重复的所述第一定位测量窗之间的时间间隔。
在本申请实施例中,所述时域类型包括以下一项或多项:
(1)周期的;
(2)半静态的;
(3)非周期的。
在本申请实施例中,所述第一定位测量窗的频域信息包括以下一项或多项:
(1)所述第一定位测量窗的频域起点;
(2)所述第一定位测量窗的带宽信息;
(3)所述第一定位测量窗的频域粒度;
(4)所述第一定位测量窗的子载波间隔;
(5)所述第一定位测量窗的频域偏移。
在本申请实施例中,所述第一请求信息包括以下一项或多项:
(1)所述第一定位测量窗的识别信息;
(2)所述第一定位测量窗的配置信息;
(3)一个或多个定位参考信号的测量配置信息;
比如,定位参考信号频域信息和/或定位参考信号时域信息。
(4)所述第一定位测量窗的优先级。
在本申请实施例中,所述方法还包括:通过第一传输方式接收所述第一请求信息;其中,所述第一传输方式包括以下一项或多项:
(1)上行控制信息;
(2)无线资源控制信令;
(3)媒体接入控制层控制单元;
(4)长期演进定位协议;
(5)新空口定位协议A。
在本申请实施例中,所述第一测量间隔的信息包括以下一项或多项:
(1)所述第一测量间隔的配置信息;
(2)所述第一测量间隔的优先级。
在本申请实施例中,所述方法还包括:所述网络侧设备接收终端能力;
其中,所述终端能力包括以下一项或多项:
(1)是否支持所述第一定位测量窗;
(2)是否同时支持所述第一定位测量窗和第一测量间隔;
(3)是否支持在所述第一定位测量窗内测量PRS;
(4)所述第一定位测量窗的窗长;
(5)所述第一定位测量窗的周期;
(6)所述第一定位测量窗内支持的最大TRP数目;
(7)所述第一定位测量窗内支持的最大资源数目;
(8)所述第一定位测量窗内支持的最大资源集数目;
(9)所述第一定位测量窗内的测量能力;
(10)所述第一定位测量窗内PRS波束切换之间的间隔;
(11)所述第一定位测量窗内支持的最大测量持续时间。
在本申请实施例中,所述方法还包括:
所述网络侧设备根据第一定位测量窗,确定第一PRS配置信息和/或第二PRS配置信息。
在本申请实施例中,所述第一PRS配置信息为周期性的PRS的配置信息。
在本申请实施例中,所述第二PRS配置信息包括以下一项或多项:
(1)周期性的PRS的配置信息;
(2)相对于第一定位测量窗的PRS的配置信息;
(3)半静态的PRS的配置信息;
(4)非周期的PRS的配置信息。
在本申请实施例中,所述第一定位参考信号配置信息、第二定位参考信号配置信息和/或第一定位测量窗的配置信息包括以下一项或多项:
(1)帧偏移信息;
(2)绝对时间信息。
在本申请实施例中,定位参考信号序列生成规则由以下一项或多项确定:
(1)相对于各小区的时域位置;
(2)相对于第一定位测量窗的时域位置;
(3)相对于服务小区或参考小区的时域位置。
在本申请实施例中,网络侧设备给终端配置用于终端进行多个定位参考信号的测量的第一定位测量窗,这样终端可以在第一定位测量窗内进行多个定位参考信号的测量,并基于测量结果确定终端的位置信息,满足低时延终 端定位的需求。
参见图6,本申请实施例提供一种定位测量装置,该装置600包括:
测量模块601,用于在第一定位测量窗内进行多个定位参考信号的测量;
第一确定模块602,用于根据所述多个定位参考信号的测量结果,确定所述终端的位置信息。
在本申请实施例中,所述第一定位测量窗根据以下一项或多项确定:
一个或多个发送接收点TRP的定位参考信号配置信息;
多个第一定位搜索窗;
第一定位测量窗的配置信息;
第一请求信息,所述第一请求信息用于请求第一定位测量窗;
第一测量间隔,所述第一测量间隔用于定位参考信号测量。
在本申请实施例中,所述定位参考信号配置信息包括以下一项或多项:
定位参考信号的标识信息;
符号数;
comb size数;
所述定位参考信号时域信息;
所述定位参考信号频域信息。
在本申请实施例中,所述多个第一定位搜索窗具备以下特征至少之一:
所述多个TRP中的每个TRP配置相同或不同的所述第一定位搜索窗;
所述多个TRP的第一定位搜索窗的数目为TRP组的个数;
所述多个第一定位搜索窗包括一个或多个最大搜索范围,所述最大搜索范围限制所述第一定位搜索窗的范围。
在本申请实施例中,所述第一定位测量窗的配置信息包括以下一项或多项:
所述第一定位测量窗的识别信息;
所述第一定位测量窗的时域信息;
所述第一定位测量窗的频域信息;
所述第一定位测量窗的优先级;
一个或多个TRP相对于所述第一定位测量窗的定位参考信号配置信息;
多个TRP的相对于所述第一定位测量窗的第一定位搜索窗信息。
在本申请实施例中,所述第一定位测量窗的时域信息包括以下一项或多项:
所述第一定位测量窗的起始时间;
所述第一定位测量窗的窗口长度;
所述第一定位测量窗的时域类型;
所述第一定位测量窗的重复参数;
重复的所述第一定位测量窗之间的时间间隔。
在本申请实施例中,所述时域类型包括以下一项或多项:
周期的;
半静态的;
非周期的。
在本申请实施例中,所述第一定位测量窗的频域信息包括以下一项或多项:
所述第一定位测量窗的频域起点;
所述第一定位测量窗的带宽信息;
所述第一定位测量窗的频域粒度;
所述第一定位测量窗的子载波间隔;
所述第一定位测量窗的频域偏移。
在本申请实施例中,所述第一请求信息包括以下一项或多项:
所述第一定位测量窗的识别信息;
所述第一定位测量窗的配置信息;
一个或多个定位参考信号的测量配置信息;
所述第一定位测量窗的优先级。
在本申请实施例中,所述第一请求信息通过以下一项或多项方式传输:
上行控制信息;
无线资源控制信令;
媒体接入控制层控制单元;
长期演进定位协议;
新空口定位协议A。
在本申请实施例中,所述第一测量间隔的信息包括以下一项或多项:
所述第一测量间隔的配置信息;
所述第一测量间隔的优先级。
在本申请实施例中,测量模块进一步用于:响应第一事件,所述终端在所述第一定位测量窗内进行多个定位参考信号的测量。
在本申请实施例中,所述装置还包括:
第一接收模块,用于响应第二事件,接收所述第一定位测量窗的配置信息。
在本申请实施例中,所述第一事件或所述第二事件包括以下一项或多项:
定位响应时延小于第一阈值;
定位服务时延指标小于第二阈值;
所述定位服务为特定定位服务;
所述第一测量间隔无法满足要求;
所述第一测量间隔请求失败;
一个或多个定位参考信号在激活BWP中发送;
一个或多个定位参考信号在特定频域范围中发送;
所述第一测量间隔配置失败。
在本申请实施例中,所述装置还包括:
第一处理模块,用于不期待同时配置所述第一定位测量窗和所述第一测量间隔。
在本申请实施例中,所述装置还包括:
第二处理模块,用于如果所述终端被配置了所述第一定位测量窗,不请求所述第一测量间隔或不期待配置所述第一测量间隔。
在本申请实施例中,所述装置还包括:
第三处理模块,用于如果所述终端配置了所述第一定位测量窗,且所述终端需要执行RRM测量,所述RRM测量需要在测量间隔下执行,则请求配置第二测量间隔。
在本申请实施例中,所述装置还包括:
第四处理模块,用于若所述终端配置了第二测量间隔和第一定位测量窗,进行以下任意一项处理:
在配置了所述第二测量间隔之后,所述第一定位测量窗失效;
根据所述第二测量间隔和所述第一定位测量窗的优先级,确定所述第二测量间隔或者所述第一定位测量窗失效;
在配置所述第二测量间隔的过程中,不期待执行PRS测量;
在所述第二测量间隔内,不期待执行PRS测量或第一定位测量窗失效;
在所述第二测量间隔外且所述第一定位测量窗内,执行PRS测量;
在所述第二测量间隔内,执行RRM测量;
在所述第二测量间隔内,执行PRS测量和RRM测量。
在本申请实施例中,所述装置还包括:
上报模块,用于向网络侧设备上报终端能力;
其中,所述终端能力包括以下一项或多项:
是否支持所述第一定位测量窗;
是否同时支持所述第一定位测量窗和第一测量间隔;
是否支持在所述第一定位测量窗内测量PRS;
所述第一定位测量窗的窗长;
所述第一定位测量窗的周期;
所述第一定位测量窗内支持的最大TRP数目;
所述第一定位测量窗内支持的最大资源数目;
所述第一定位测量窗内支持的最大资源集数目;
所述第一定位测量窗内的测量能力;
所述第一定位测量窗内PRS波束切换之间的间隔;
所述第一定位测量窗内支持的最大测量持续时间。
本申请实施例提供的装置能够实现图3所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参见图7,本申请实施例提供一种定位测量装置,该装置700包括:
第一配置模块701,用于配置第一定位测量窗,所述第一定位测量窗用于终端进行多个定位参考信号的测量。
在本申请实施例中,该装置还包括:第二接收模块,用于接收测量结果;
第二确定模块,用于根据所述测量结果,确定所述终端的位置信息。
在本申请实施例中,所述第一定位测量窗根据以下一项或多项确定:
一个或多个TRP的定位参考信号配置信息;
多个第一定位搜索窗;
第一定位测量窗的配置信息;
第一请求信息,所述第一请求信息用于请求第一定位测量窗;
第一测量间隔,所述第一测量间隔用于定位参考信号测量。
在本申请实施例中,所述定位参考信号配置信息包括以下一项或多项:
定位参考信号的标识信息;
符号数;
comb size数;
定位参考信号时域信息;
定位参考信号频域信息。
在本申请实施例中,所述多个第一定位搜索窗具备以下特征至少之一:
所述多个TRP中的每个TRP配置相同或不同的所述第一定位搜索窗;
所述多个TRP的第一定位搜索窗的数目为TRP组的个数;
所述多个第一定位搜索窗包括一个或多个最大搜索范围,所述最大搜索范围限制所述第一定位搜索窗的范围。
在本申请实施例中,所述第一定位测量窗的配置信息包括以下一项或多项:
所述第一定位测量窗的识别信息;
所述第一定位测量窗的时域信息;
所述第一定位测量窗的频域信息;
所述第一定位测量窗的优先级;
多个TRP相对于所述第一定位测量窗的定位参考信号配置信息;
多个TRP的相对于所述第一定位测量窗的第一定位搜索窗信息。
在本申请实施例中,所述第一定位测量窗的时域信息包括以下一项或多项:
所述第一定位测量窗的起始时间;
所述第一定位测量窗的窗口长度;
所述第一定位测量窗的时域类型;
所述第一定位测量窗的重复参数;
重复的所述第一定位测量窗之间的时间间隔。
在本申请实施例中,所述时域类型包括以下一项或多项:
周期的;
半静态的;
非周期的。
在本申请实施例中,所述第一定位测量窗的频域信息包括以下一项或多项:
所述第一定位测量窗的频域起点;
所述第一定位测量窗的带宽信息;
所述第一定位测量窗的频域粒度;
所述第一定位测量窗的子载波间隔;
所述第一定位测量窗的频域偏移。
在本申请实施例中,所述第一请求信息包括以下一项或多项:
所述第一定位测量窗的识别信息;
所述第一定位测量窗的配置信息;
一个或多个定位参考信号的测量配置信息;
所述第一定位测量窗的优先级。
在本申请实施例中,所述第一请求信息通过以下一项或多项方式传输:
上行控制信息;
无线资源控制信令;
媒体接入控制层控制单元;
长期演进定位协议;
新空口定位协议A。
在本申请实施例中,所述第一测量间隔的信息包括以下一项或多项:
所述第一测量间隔的配置信息;
所述第一测量间隔的优先级。
在本申请实施例中,所述装置还包括:
第三接收模块,用于接收终端能力;
其中,所述终端能力包括以下一项或多项:
是否支持所述第一定位测量窗;
是否同时支持所述第一定位测量窗和第一测量间隔;
是否支持在所述第一定位测量窗内测量PRS;
所述第一定位测量窗的窗长;
所述第一定位测量窗的周期;
所述第一定位测量窗内支持的最大TRP数目;
所述第一定位测量窗内支持的最大资源数目;
所述第一定位测量窗内支持的最大资源集数目;
所述第一定位测量窗内的测量能力;
所述第一定位测量窗内PRS波束切换之间的间隔;
所述第一定位测量窗内支持的最大测量持续时间。
在本申请实施例中,所述装置还包括:
第二配置模块,用于根据第一定位测量窗的配置信息,配置第一PRS配置信息和/或第二PRS配置信息。
在本申请实施例中,所述第一PRS配置信息为周期性的PRS的配置信息。
在本申请实施例中,所述第二PRS配置信息包括以下一项或多项:
周期性的PRS的配置信息;
相对于第一定位测量窗的PRS的配置信息;
半静态的PRS的配置信息;
非周期的PRS的配置信息。
在本申请实施例中,装置还包括发送模块,用于所述网络侧设备向邻小区发送以下一项或多项:
所述第一定位测量窗的配置信息;
第一定位参考信号配置信息;
第二定位参考信号配置信息。
在本申请实施例中,所述第一定位参考信号配置信息、第二定位参考信号配置信息和/或第一定位测量窗的配置信息包括以下一项或多项:帧偏移信息;
绝对时间信息。
在本申请实施例中,定位参考信号序列生成规则由以下一项或多项确定:
相对于各小区的时域位置;
相对于第一定位测量窗的时域位置;
相对于服务小区或参考小区的时域位置。
本申请实施例提供的装置能够实现图4所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图8为实现本申请实施例的一种终端的硬件结构示意图,该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、以及处理器810等部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801将来自网络侧设备的下行数据接收后, 给处理器810处理;另外,将上行的数据发送给网络侧设备。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
本申请实施例提供的终端能够实现图4所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备900包括:天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收信息,将接收的信息发送给基带装置903进行处理。在下行方向上,基带装置903对要发送的信息进行处理,并发送给射频装置902,射频装置902对收到的信息进行处理后经过天线901发送出去。
上述频带处理装置可以位于基带装置903中,以上实施例中网络侧设备执行的方法可以在基带装置903中实现,该基带装置903包括处理器904和存储器905。
基带装置903例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为处理器904,与存储器905连接,以 调用存储器905中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置903还可以包括网络接口906,用于与射频装置902交互信息,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器905上并可在处理器904上运行的指令或程序,处理器904调用存储器905中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种程序产品,所述程序产品被存储在非瞬态的可读存储介质中,所述程序产品被至少一个处理器执行以实现如图4或图5所述的定位测量的方法的步骤。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是非易失的,也可以是易失的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图4或图5所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述图4或图5所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态的可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述图4或图5所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或 者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (45)

  1. 一种定位测量方法,包括:
    终端在第一定位测量窗内进行多个定位参考信号的测量;
    所述终端根据所述多个定位参考信号的测量结果,确定所述终端的位置信息。
  2. 根据权利要求1所述的方法,其中,所述第一定位测量窗根据以下一项或多项确定:
    一个或多个发送接收点TRP的定位参考信号配置信息;
    多个第一定位搜索窗;
    第一定位测量窗的配置信息;
    第一请求信息,所述第一请求信息用于请求所述第一定位测量窗;
    第一测量间隔,所述第一测量间隔用于定位参考信号测量。
  3. 根据权利要求2所述的方法,其中,所述定位参考信号配置信息包括以下一项或多项:
    所述定位参考信号的标识信息;
    符号数;
    梳状结构大小comb size数;
    所述定位参考信号时域信息;
    所述定位参考信号频域信息。
  4. 根据权利要求2所述的方法,其中,所述多个第一定位搜索窗具备以下特征至少之一:
    多个TRP中的每个TRP配置相同或不同的所述第一定位搜索窗;
    多个TRP的第一定位搜索窗的数目为TRP组的个数;
    所述多个第一定位搜索窗包括一个或多个最大搜索范围,所述最大搜索范围限制所述第一定位搜索窗的范围。
  5. 根据权利要求2所述的方法,其中,所述第一定位测量窗的配置信息包括以下一项或多项:
    所述第一定位测量窗的识别信息;
    所述第一定位测量窗的时域信息;
    所述第一定位测量窗的频域信息;
    所述第一定位测量窗的优先级;
    一个或多个TRP相对于所述第一定位测量窗的定位参考信号配置信息;
    多个TRP的相对于所述第一定位测量窗的第一定位搜索窗信息。
  6. 根据权利要求1或5所述的方法,其中,所述方法还包括:
    接收所述第一定位测量窗的配置信息。
  7. 根据权利要求5所述的方法,其中,所述第一定位测量窗的时域信息包括以下一项或多项:
    所述第一定位测量窗的起始时间;
    所述第一定位测量窗的窗口长度;
    所述第一定位测量窗的时域类型;
    所述第一定位测量窗的重复参数;
    重复的所述第一定位测量窗之间的时间间隔。
  8. 根据权利要求5所述的方法,其中,所述第一定位测量窗的频域信息包括以下一项或多项:
    所述第一定位测量窗的频域起点;
    所述第一定位测量窗的带宽信息;
    所述第一定位测量窗的频域粒度;
    所述第一定位测量窗的子载波间隔;
    所述第一定位测量窗的频域偏移。
  9. 根据权利要求2所述的方法,其中,所述第一请求信息包括以下一项或多项:
    所述第一定位测量窗的识别信息;
    所述第一定位测量窗的配置信息;
    一个或多个定位参考信号的测量配置信息;
    所述第一定位测量窗的优先级。
  10. 根据权利要求2所述的方法,其中,所述方法还包括:
    通过第一传输方式发送所述第一请求信息;
    所述第一传输方式包括以下一项或多项:
    上行控制信息;
    无线资源控制信令;
    媒体接入控制层控制单元;
    长期演进定位协议;
    新空口定位协议A。
  11. 根据权利要求2所述的方法,其中,所述第一测量间隔的信息包括以下一项或多项:
    所述第一测量间隔的识别信息
    所述第一测量间隔的配置信息;
    所述第一测量间隔的优先级。
  12. 根据权利要求2所述的方法,其中,所述终端在第一定位测量窗内进行多个定位参考信号的测量包括:
    响应第一事件,所述终端在所述第一定位测量窗内进行多个定位参考信号的测量。
  13. 根据权利要求1所述的方法,其中,所述方法还包括:
    响应第二事件,所述终端接收所述第一定位测量窗的配置信息或终端发送第一请求信息。
  14. 根据权利要求12或13所述的方法,其中,第一事件或第二事件包括以下一项或多项:
    定位响应时延小于第一阈值;
    定位服务时延指标小于第二阈值;
    所述定位服务为特定定位服务;
    第一测量间隔无法满足要求;
    所述第一测量间隔请求失败;
    一个或多个定位参考信号在激活带宽部分BWP中发送;
    一个或多个定位参考信号在特定频域范围中发送;
    所述第一测量间隔配置失败。
  15. 根据权利要求2所述的方法,其中,所述终端未被同时配置所述第 一定位测量窗和所述第一测量间隔。
  16. 根据权利要求2所述的方法,其中,所述方法还包括:
    如果所述终端被配置了所述第一定位测量窗,所述终端不请求所述第一测量间隔或不被配置所述第一测量间隔。
  17. 根据权利要求5所述的方法,其中,所述方法还包括:
    如果所述终端配置了所述第一定位测量窗,且所述终端需要执行无线资源管理RRM测量,所述RRM测量需要在测量间隔下执行,则所述终端请求配置第二测量间隔。
  18. 根据权利要求1或17所述的方法,其中,若所述终端配置了第二测量间隔和第一定位测量窗,所述方法还包括:
    在配置了所述第二测量间隔之后,所述第一定位测量窗失效;
    或者,
    根据所述第二测量间隔和所述第一定位测量窗的优先级,确定所述第二测量间隔或者所述第一定位测量窗失效;
    或者,
    在配置所述第二测量间隔的过程中,所述终端不期待执行定位参考信号测量;
    或者,
    在所述第二测量间隔内,所述终端不期待执行定位参考信号测量或第一定位测量窗失效;
    或者,
    在所述第二测量间隔外且所述第一定位测量窗内,所述终端执行定位参考信号测量;
    或者,
    在所述第二测量间隔内,所述终端执行RRM测量;
    或者,
    在所述第二测量间隔内,所述终端执行定位参考信号测量和RRM测量。
  19. 根据权利要求1所述的方法,其中,所述方法还包括:
    向网络侧设备上报终端能力;
    其中,所述终端能力包括以下一项或多项:
    是否支持所述第一定位测量窗;
    是否同时支持所述第一定位测量窗和第一测量间隔;
    是否支持在所述第一定位测量窗内测量定位参考信号;
    所述第一定位测量窗的窗长;
    所述第一定位测量窗的周期;
    所述第一定位测量窗内支持的最大TRP数目;
    所述第一定位测量窗内支持的最大资源数目;
    所述第一定位测量窗内支持的最大资源集数目;
    所述第一定位测量窗内的测量能力;
    所述第一定位测量窗内定位参考信号波束切换之间的间隔;
    所述第一定位测量窗内支持的最大测量持续时间。
  20. 一种定位测量方法,包括:
    网络侧设备配置第一定位测量窗,所述第一定位测量窗用于终端进行多个定位参考信号的测量。
  21. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述网络侧设备接收所述测量结果;
    所述网络侧设备根据所述测量结果,确定所述终端的位置信息。
  22. 根据权利要求20所述的方法,其中,所述第一定位测量窗根据以下一项或多项确定:
    一个或多个TRP的定位参考信号配置信息;
    多个第一定位搜索窗;
    第一定位测量窗的配置信息;
    第一请求信息,所述第一请求信息用于请求所述第一定位测量窗;
    第一测量间隔,所述第一测量间隔用于定位参考信号测量。
  23. 根据权利要求22所述的方法,其中,所述定位参考信号配置信息包括以下一项或多项:
    定位参考信号的标识信息;
    符号数;
    comb size数;
    所述定位参考信号时域信息;
    所述定位参考信号频域信息。
  24. 根据权利要求22所述的方法,其中,所述多个第一定位搜索窗具备以下特征至少之一:
    所述多个TRP中的每个TRP配置相同或不同的所述第一定位搜索窗;
    所述多个TRP的第一定位搜索窗的数目为TRP组的个数;
    所述多个第一定位搜索窗包括一个或多个最大搜索范围,所述最大搜索范围限制所述第一定位搜索窗的范围。
  25. 根据权利要求22所述的方法,其中,所述第一定位测量窗的配置信息包括以下一项或多项:
    所述第一定位测量窗的识别信息;
    所述第一定位测量窗的时域信息;
    所述第一定位测量窗的频域信息;
    所述第一定位测量窗的优先级;
    一个或多个TRP相对于所述第一定位测量窗的定位参考信号配置信息;
    多个TRP的相对于所述第一定位测量窗的第一定位搜索窗信息。
  26. 根据权利要求25所述的方法,其中,所述第一定位测量窗的时域信息包括以下一项或多项:
    所述第一定位测量窗的起始时间;
    所述第一定位测量窗的窗口长度;
    所述第一定位测量窗的时域类型;
    所述第一定位测量窗的重复参数;
    重复的所述第一定位测量窗之间的时间间隔。
  27. 根据权利要求25所述的方法,其中,所述第一定位测量窗的频域信息包括以下一项或多项:
    所述第一定位测量窗的频域起点;
    所述第一定位测量窗的带宽信息;
    所述第一定位测量窗的频域粒度;
    所述第一定位测量窗的子载波间隔;
    所述第一定位测量窗的频域偏移。
  28. 根据权利要求22所述的方法,其中,所述第一请求信息包括以下一项或多项:
    所述第一定位测量窗的识别信息;
    所述第一定位测量窗的配置信息;
    一个或多个定位参考信号的测量配置信息;
    所述第一定位测量窗的优先级。
  29. 根据权利要求22所述的方法,其中,所述方法还包括:
    通过第一传输方式接收所述第一请求信息;
    其中,所述第一传输方式包括以下一项或多项:
    上行控制信息;
    无线资源控制信令;
    媒体接入控制层控制单元;
    长期演进定位协议;
    新空口定位协议A。
  30. 根据权利要求22所述的方法,其中,所述第一测量间隔的信息包括以下一项或多项:
    所述第一测量间隔的配置信息;
    所述第一测量间隔的优先级。
  31. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述网络侧设备接收终端能力;
    其中,所述终端能力包括以下一项或多项:
    是否支持所述第一定位测量窗;
    是否同时支持所述第一定位测量窗和第一测量间隔;
    是否支持在所述第一定位测量窗内测量定位参考信号;
    所述第一定位测量窗的窗长;
    所述第一定位测量窗的周期;
    所述第一定位测量窗内支持的最大TRP数目;
    所述第一定位测量窗内支持的最大资源数目;
    所述第一定位测量窗内支持的最大资源集数目;
    所述第一定位测量窗内的测量能力;
    所述第一定位测量窗内定位参考信号波束切换之间的间隔;
    所述第一定位测量窗内支持的最大测量持续时间。
  32. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述网络侧设备根据第一定位测量窗,确定第一定位参考信号配置信息和/或第二定位参考信号配置信息。
  33. 根据权利要求32所述的方法,其中,所述第一定位参考信号配置信息为周期性的定位参考信号的配置信息。
  34. 根据权利要求32所述的方法,其中,所述第二定位参考信号配置信息包括以下一项或多项:
    周期性的定位参考信号的配置信息;
    相对于第一定位测量窗的定位参考信号的配置信息;
    半静态的定位参考信号的配置信息;
    非周期的定位参考信号的配置信息;
    按需的定位参考信号的配置信息。
  35. 根据权利要求22或32所述的方法,其中,所述方法还包括
    所述网络侧设备向邻小区发送以下一项或多项:
    所述第一定位测量窗的配置信息;
    第一定位参考信号配置信息;
    第二定位参考信号配置信息。
  36. 根据权利要求22或32所述的方法,其中,所述第一定位参考信号配置信息、第二定位参考信号配置信息和/或第一定位测量窗的配置信息包括以下一项或多项:
    帧偏移信息;
    绝对时间信息。
  37. 根据权利要求20所述的方法,其中,所述定位参考信号序列生成规则由以下一项或多项确定:
    相对于各小区的时域位置;
    相对于所述第一定位测量窗的时域位置;
    相对于服务小区或参考小区的时域位置。
  38. 一种定位测量装置,包括:
    测量模块,用于在第一定位测量窗内进行多个定位参考信号的测量;
    第一确定模块,用于根据所述多个定位参考信号的测量结果,确定终端的位置信息。
  39. 一种定位测量装置,包括:
    第一配置模块,用于配置第一定位测量窗,所述第一定位测量窗用于终端进行多个定位参考信号的测量。
  40. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至19中任一项所述的定位测量方法的步骤。
  41. 一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求20至37中任一项所述的定位测量方法的步骤。
  42. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至37中任一项所述的定位测量方法的步骤。
  43. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至19中任一项所述的定位测量方法的步骤,或者实现如权利要求20至37中任一项所述的定位测量方法的步骤。
  44. 一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态的可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至19中任一项所述的定位测量方法的步骤,或者实现如权利要求20至37中任一项所述的定位测量方法的步骤。
  45. 一种通信设备,被配置为执行如权利要求1至19中任一项所述的定位测量方法的步骤,或者,执行如权利要求20至37中任一项所述的定位测 量方法的步骤。
PCT/CN2021/138766 2020-12-21 2021-12-16 定位测量方法、装置、设备及可读存储介质 WO2022135267A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023538092A JP2024500171A (ja) 2020-12-21 2021-12-16 ポジショニング測定方法、装置、機器及び可読記憶媒体
KR1020237025094A KR20230122143A (ko) 2020-12-21 2021-12-16 측위 측정 방법, 장치, 장비 및 판독 가능한 저장 매체
EP21909263.2A EP4266708A1 (en) 2020-12-21 2021-12-16 Positioning measurement method and apparatus, device and readable storage medium
US18/333,989 US20230328684A1 (en) 2020-12-21 2023-06-13 Positioning measurement method and apparatus, device and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011520590.2A CN114650499B (zh) 2020-12-21 2020-12-21 定位测量方法、装置、设备及可读存储介质
CN202011520590.2 2020-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/333,989 Continuation US20230328684A1 (en) 2020-12-21 2023-06-13 Positioning measurement method and apparatus, device and readable storage medium

Publications (1)

Publication Number Publication Date
WO2022135267A1 true WO2022135267A1 (zh) 2022-06-30

Family

ID=81990714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138766 WO2022135267A1 (zh) 2020-12-21 2021-12-16 定位测量方法、装置、设备及可读存储介质

Country Status (6)

Country Link
US (1) US20230328684A1 (zh)
EP (1) EP4266708A1 (zh)
JP (1) JP2024500171A (zh)
KR (1) KR20230122143A (zh)
CN (1) CN114650499B (zh)
WO (1) WO2022135267A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374987A (zh) * 2020-10-15 2022-04-19 维沃移动通信有限公司 定位方法、终端及网络侧设备
CN117545066A (zh) * 2022-08-02 2024-02-09 维沃移动通信有限公司 定位处理方法、装置及终端
CN117640025A (zh) * 2022-08-09 2024-03-01 华为技术有限公司 通信方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160295374A1 (en) * 2015-03-30 2016-10-06 Sony Corporation Apparatus, systems and methods for mobile network positioning of mtc devices using common reference or synchronization signals
CN111356075A (zh) * 2018-12-22 2020-06-30 华为技术有限公司 一种多站点的定位方法及装置
WO2020191646A1 (en) * 2019-03-27 2020-10-01 Nokia Shanghai Bell Co., Ltd. Wireless positioning measurement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106538001B (zh) * 2014-10-20 2020-03-31 华为技术有限公司 协作定位方法及无线终端
CN108366379A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 测量能力上报和配置的方法、用户设备和基站
CN110381528B (zh) * 2018-04-13 2023-04-07 华为技术有限公司 载波测量的方法、终端设备和网络设备
US20200235877A1 (en) * 2019-01-21 2020-07-23 Qualcomm Corporated Bandwidth part operation and downlink or uplink positioning reference signal scheme
CN110602670A (zh) * 2019-09-25 2019-12-20 中兴通讯股份有限公司 一种信息指示方法、装置及计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160295374A1 (en) * 2015-03-30 2016-10-06 Sony Corporation Apparatus, systems and methods for mobile network positioning of mtc devices using common reference or synchronization signals
CN111356075A (zh) * 2018-12-22 2020-06-30 华为技术有限公司 一种多站点的定位方法及装置
WO2020191646A1 (en) * 2019-03-27 2020-10-01 Nokia Shanghai Bell Co., Ltd. Wireless positioning measurement

Also Published As

Publication number Publication date
EP4266708A1 (en) 2023-10-25
US20230328684A1 (en) 2023-10-12
JP2024500171A (ja) 2024-01-04
CN114650499B (zh) 2023-09-15
KR20230122143A (ko) 2023-08-22
CN114650499A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US10999103B2 (en) Sounding reference signal configuration for high-band transmission
WO2022135267A1 (zh) 定位测量方法、装置、设备及可读存储介质
US20210250991A1 (en) Random access resource determining method, terminal, and network device
WO2022089565A1 (zh) 辅小区组信息的配置、获取方法及通信设备
WO2022007930A1 (zh) 一种载波切换处理方法、装置及终端
WO2022007931A1 (zh) 定位测量方法、装置及通信设备
US20230126936A1 (en) Measurement indication method, terminal, and network-side device
WO2021249476A1 (zh) Srs资源指示方法、srs资源确定方法及相关设备
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022028475A1 (zh) 参考信号测量方法、终端及网络侧设备
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
WO2019095783A1 (zh) 一种同步块与寻呼调度信令关联方法、指示方法及装置
WO2022143808A1 (zh) 速率匹配方法和设备
WO2022017466A1 (zh) 消息发送、消息接收方法、装置及通信设备
WO2022057828A1 (zh) 测量方法、测量装置、终端及网络设备
WO2022068755A1 (zh) 信息传输方法、终端及网络侧设备
WO2022028404A1 (zh) 信号传输的方法、终端设备和网络设备
WO2022218202A1 (zh) 测量间隔模式的配置方法及装置、终端及网络侧设备
WO2022214024A1 (zh) 信息获取、配置方法、装置及通信设备
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2022179498A1 (zh) 初始下行bwp的scs的指示方法和设备
WO2023280100A1 (zh) 初始带宽部分确定方法、装置及相关设备
WO2022033424A1 (zh) 资源传输方法、装置及通信设备
WO2022242677A1 (zh) 波束应用时间的确定方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538092

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237025094

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021909263

Country of ref document: EP

Effective date: 20230721