WO2019029353A1 - 一种信号强度测量的方法、相关装置以及系统 - Google Patents

一种信号强度测量的方法、相关装置以及系统 Download PDF

Info

Publication number
WO2019029353A1
WO2019029353A1 PCT/CN2018/096766 CN2018096766W WO2019029353A1 WO 2019029353 A1 WO2019029353 A1 WO 2019029353A1 CN 2018096766 W CN2018096766 W CN 2018096766W WO 2019029353 A1 WO2019029353 A1 WO 2019029353A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
indication information
terminal device
information
time unit
Prior art date
Application number
PCT/CN2018/096766
Other languages
English (en)
French (fr)
Inventor
费永强
郭志恒
谢信乾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18844733.8A priority Critical patent/EP3661255B1/en
Publication of WO2019029353A1 publication Critical patent/WO2019029353A1/zh
Priority to US16/786,696 priority patent/US11115140B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a method, a related apparatus, and a system for measuring signal strength.
  • each network device needs to know in advance the cross-link interference (CLI) information that the terminal devices served in its coverage area may be subjected to.
  • CLI cross-link interference
  • the network device cannot directly obtain the link information between the terminal devices in the coverage of different cells, the CLI information measurement between the terminal devices is required, and each terminal device obtains its own CLI information, and then reports the measurement result to the network device.
  • Network equipment for an indoor hotspot scene or a small station dense coverage scenario, the distance between terminal devices within the coverage of different cells may be relatively small, so that the cross-link interference may seriously affect the terminal devices in the adjacent cell. Receive the performance of the downstream signal.
  • CLI cross-link interference
  • the network device may configure a received signal strength indication (RSSI) measurement for the terminal device, and the RSSI measurement is a power measurement.
  • the network device configures the RSSI measurement parameters for the terminal device through high layer signaling, and the parameters may include a period in the time domain, a measurement subframe offset, a measurement duration, and a measurement bandwidth in the frequency domain.
  • the terminal device can determine which subframe to start the RSSI measurement on.
  • the duration configuration the terminal device can determine to perform power measurement from the first symbol of the above subframe.
  • the network device configures the bandwidth measured by the RSSI for the terminal device, which is usually the downlink bandwidth or the maximum allowed bandwidth of the network device.
  • the RSSI measurement only has a sub-frame level offset, and the measurement duration less than one sub-frame length also has only one symbol configurable value. Therefore, the current measurement scheme cannot accurately measure one subframe. Signal power over several symbols within.
  • Embodiments of the present application provide a method, a related apparatus, and a system for measuring signal strength, which are used to improve measurement accuracy of signal strength measurement in coordinated scheduling.
  • the first aspect of the embodiments of the present application provides a method for measuring signal strength, which may include:
  • the terminal device can receive the first indication information sent by the network device, and the network device can be a 5G base station, or can be another similar network device.
  • the first indication information includes a first sub-information, a second sub-information, and a third sub-information, where the first sub-information is used to indicate a measured measurement period, where the measurement period includes at least one second time unit, and the second
  • the time unit contains at least two first time units.
  • the first time unit may be a sampling point, or a half symbol, or a symbol
  • the second time unit may be a time slot or a minislot or the like.
  • the second sub-information is used to indicate an offset of a starting position of the first time unit measured during the measurement period relative to a measured starting position of the second time unit.
  • the third sub-information is used to indicate an offset of the measured start position of the second time unit relative to the start position of the measurement period.
  • the second time unit belongs to a non-downstream time unit.
  • the so-called “non-downstream time unit” includes three types of "uplink time unit”, “empty time unit” and “uplinkable downlink time unit”, and "empty time unit” means neither transmitting uplink data nor transmitting downlink data.
  • the "uplinkable downlink time unit” indicates a time unit defined in the NR that can transmit uplink data or downlink data.
  • the second sub-information and the third sub-information may be two parameters (or two messages), or two fields of the same parameter (or the same message), or the same parameter ( Or the same message) Two information obtained after interpretation in a predefined way.
  • the terminal device may determine the measurement resource according to the first indication information, where the measurement resource is determined according to the start position of the first time unit and the start position of the second time unit in the measurement period. Then, the terminal device performs signal strength measurement on the signal on the measurement resource, that is, performs power measurement, and finally reports the measurement result to the network device, and thus completes the process of signal strength measurement.
  • a method for measuring signal strength including: first, a terminal device receives first indication information that is sent by a network device, where the first indication information includes a first sub-information, a second sub-information, and a third sub-information, the first sub-information is used to indicate a measured measurement period, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the third sub-information is used to indicate the measurement
  • the offset of the start position of the second time unit relative to the start position of the measurement period the second sub-information being used to indicate the start position of the first time unit measured during the measurement period relative to the start of the measured second time unit
  • the terminal device determines the measurement resource according to the first indication information, where the measurement resource is determined according to the start position of the first time unit and the start position of the second time unit in the measured period, and then the terminal device pairs The signal on the measurement resource is used to measure the signal strength, and the measurement result is obtained. Finally, the terminal device sends the measurement result to the network device.
  • the network device can more flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure the signal strength on several symbols in the subframe, so that more accurate CLI information can be obtained for use in Improve the quality and transmission rate of network transmission in coordinated scheduling.
  • the first indication information further includes measurement duration indication information, where the measurement duration indication information indicates a measurement duration, where The value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units. Therefore, the measurement resource is within the measurement period, and according to the first The starting position of the time unit, the starting position of the second time unit, and the measurement duration are determined.
  • measurement duration indication information may be added to the first indication information, where the measurement duration indication information indicates a measurement duration, where the available value of the measurement duration includes a first time unit Two first time units, four first time units or six first time units.
  • the terminal device may further include: receiving measurement band indication information sent by the network device, where the measurement frequency band indication information indicates the measurement frequency band indication Information, the measurement band indication information indicates the measurement band.
  • the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain position, or the measurement frequency band only includes the measured bandwidth portion and the measurement bandwidth.
  • the measurement bandwidth is less than or equal to the bandwidth of the bandwidth portion, and the bandwidth portion includes multiple frequency domain units.
  • the frequency domain resource size of each frequency domain unit is consistent, and the frequency domain unit may be one subcarrier, or several. Continuous subcarriers.
  • the frequency domain location can be determined in some manner for indicating at least one target frequency domain unit for measurement in the bandwidth portion.
  • the target frequency domain unit may be a plurality of consecutive frequency domain units, or may be a plurality of frequency domain units in the shape of a comb.
  • the measurement resource is determined jointly according to the start position of the first time unit, the start position of the second time unit, and the measurement frequency band in the measurement period.
  • the first indication information may further include measurement frequency band indication information, where the measurement frequency band indication information indicates the measurement frequency band, the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain location, or the measurement frequency band includes The measured bandwidth portion and the measurement bandwidth. According to the above indication information, the effect of the measurement resource is determined faster and more accurately by the terminal device, thereby improving the practicability of the solution.
  • the signal strength measurement may also be performed by using multiple sets of measurement parameters on the same measurement frequency band.
  • the terminal device receives multiple first indication information sent by the network device, and each first indication information corresponds to a set of measurement parameters.
  • the terminal device determines a plurality of measurement resources according to the plurality of first indication information, where each first indication information corresponds to one measurement resource.
  • the terminal device separately performs signal strength measurement on the signals on the respective measurement resources, and separately obtains the measurement results.
  • each measurement result also corresponds to one measurement resource.
  • the terminal device transmits a plurality of measurement results to the network device.
  • the terminal device may send a part of the plurality of measurement results to the network device. Specifically, when the measurement result satisfies certain conditions, such as when the measured signal strength exceeds a predefined threshold, the terminal device transmits the measurement result to the network device.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, and The results of the measurements on the various configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the network device may further send the second indication information to the terminal device, that is, the terminal device receives the second indication sent by the network device.
  • Information wherein the second indication information is mainly used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the second indication information may be represented as “00”, “01”, “10”, and “11”, where “00” indicates that no measurement is performed on the measurement resource and no report is performed, and “01” indicates that the measurement is performed. The measurement is performed on the resource, but is not reported. “10” indicates that the measurement is performed on the measurement resource, but not measured, and "11” indicates that both the measurement and the report are performed on the measurement resource.
  • the content indicated by the foregoing second indication information and the second indication information is a schematic one.
  • the second indication information and the indication content may be other forms, which are not limited herein.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • the terminal device sends the at least one measurement result to the network device, which may include the following steps:
  • the network device may configure the reporting period and the reporting resource for the terminal device by using the radio resource control signaling and/or the medium access control signaling, where the reporting period is greater than or equal to the measurement period.
  • the radio resource control signaling and the medium access control signaling belong to the high layer signaling, and the terminal device can send the measured measurement result by using the high layer reporting manner.
  • the network device may trigger the terminal device to report the downlink control information, and configure the reporting resource for the terminal device.
  • the terminal device can send the measured measurement result by means of reporting by the physical layer.
  • the terminal device may report the measurement result to the network device periodically or semi-periodically or non-periodically.
  • the measurement result may be reported periodically, and if the downlink control information is used, the measurement result may be reported aperiodically.
  • the terminal device performs signal strength measurement on each measurement resource by using each set of measurement parameters, to obtain corresponding to each set of measurement parameters.
  • the measurement result may specifically include the following steps:
  • the terminal device performs signal strength measurement on the measurement resource by using each set of measurement parameters, and then calculates a linear average power value corresponding to each set of measurement parameters according to the signal strength on the measurement resource.
  • the first time unit is an OFDM symbol
  • the measurement resource occupies 4 OFDM symbols in the time domain, and occupies 6 resource blocks in the frequency domain
  • the signal strengths measured in the 4 OFDM symbols are respectively W1 and W2. , W3 and W4, then the linear average of the signal strength is (W1 + W2 + W3 + W4) / (4 ⁇ 6).
  • the terminal device determines the measurement result corresponding to the linear average power value according to the preset power mapping relationship, and then reports the measurement result to the network device.
  • the terminal device can obtain the average situation of the received interference, and perform measurement and analysis on the stable random process by using the foregoing manner, and increasing the average number of times can also reduce the deviation, thereby improving the feasibility of the solution. And practicality.
  • the terminal device performs signal strength measurement on each measurement resource by using each set of measurement parameters, to obtain corresponding to each set of measurement parameters.
  • the measurement result may specifically include the following steps:
  • the preferred terminal device uses each set of measurement parameters to measure the received signal strength of each preset granularity resource in the measurement resource, and the preset granularity resource is a predefined granularity resource. Then, the terminal device acquires the signal power corresponding to each preset granularity resource, and then selects the maximum value as the target signal power from the signal power corresponding to each preset granularity resource, and finally determines the target signal power value according to the preset power mapping relationship. Corresponding measurement results are reported to the network device.
  • the first time unit is an OFDM symbol
  • the measurement resource occupies 4 OFDM symbols in the time domain
  • the preset granularity resource is 1 OFDM ⁇ 1 RB
  • 6 RBs are occupied in the frequency domain.
  • there are 4 ⁇ 6 24 specified granular resources.
  • the terminal device can select the maximum value of the 24 granular resources as the processing result.
  • the terminal device can obtain the strongest interference.
  • the measurement of the signal strength for the case of the strongest interference can save the measurement resources and time, and at the same time improve the practicability and feasibility of the scheme.
  • a second aspect of the embodiments of the present application provides a method for measuring signal strength, which may include:
  • the network device sends the first indication information to the terminal device, so that the terminal device determines the measurement resource according to the first indication information, where the first indication information includes the first sub information, the second sub information, and the third sub information, A sub-information is used to indicate a measurement period of the measurement, the measurement period includes at least one second time unit, and the second time unit includes at least two first time units.
  • the first time unit may be a sampling point, or a half symbol, or a symbol
  • the second time unit may be a time slot or a micro time slot or the like.
  • the third sub-information is used to indicate an offset of the measured start position of the second time unit relative to the start position of the measurement period, and the second sub-information is used to indicate that the start position of the first time unit measured during the measurement period is relative
  • the offset of the starting position of the measured second time unit typically the second time unit belongs to the non-downstream time unit.
  • the so-called “non-downstream time unit” includes three types of "uplink time unit”, “empty time unit” and “uplinkable downlink time unit”, and "empty time unit” means neither transmitting uplink data nor transmitting downlink data.
  • the "uplinkable downlink time unit” indicates a time unit defined in the NR that can transmit uplink data or downlink data.
  • the second sub-information and the third sub-information may be two parameters (or two messages), or two fields of the same parameter (or the same message), or the same parameter ( Or the same message) Two information obtained after interpretation in a predefined way.
  • the terminal device may determine the measurement resource according to the first indication information, where the measurement resource is determined according to the start position of the first time unit and the start position of the second time unit in the measurement period. Then, the terminal device performs signal strength measurement on the signal on the measurement resource, that is, performs power measurement, and finally reports the measurement result to the network device, and thus completes the process of signal strength measurement.
  • a method for measuring signal strength is provided.
  • the network device can more flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure signal strength on several symbols in a subframe, thereby More accurate CLI information can be obtained for improving the quality and transmission rate of network transmissions in coordinated scheduling.
  • the first indication information further includes measurement duration indication information, where the measurement duration indication information indicates a measurement duration, where The value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units. Therefore, the measurement resource is within the measurement period, and according to the first The starting position of the time unit, the starting position of the second time unit, and the measurement duration are determined.
  • measurement duration indication information may be added to the first indication information, where the measurement duration indication information indicates a measurement duration, where the available value of the measurement duration includes a first time unit Two first time units, four first time units or six first time units.
  • the network device may further include: sending, by the network device, measurement band indication information, where the measurement band indication information indicates measurement band indication information
  • the measurement band indication information indicates the measurement band.
  • the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain position, or the measurement frequency band only includes the measured bandwidth portion and the measurement bandwidth.
  • the measurement bandwidth is less than or equal to the bandwidth of the bandwidth portion, and the bandwidth portion includes multiple frequency domain units.
  • the frequency domain resource size of each frequency domain unit is consistent.
  • the frequency domain location can be determined in some manner for indicating at least one target frequency domain unit for measurement in the bandwidth portion.
  • the target frequency domain unit may be a continuous number of frequency domain units, or may be a plurality of frequency domain units in a comb shape.
  • the measurement resource is determined jointly according to the start position of the first time unit, the start position of the second time unit, and the measurement frequency band in the measurement period.
  • the first indication information may further include measurement frequency band indication information, where the measurement frequency band indication information indicates the measurement frequency band, the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain location, or the measurement frequency band includes The measured bandwidth portion and the measurement bandwidth. According to the above indication information, the effect of the measurement resource is determined faster and more accurately by the terminal device, thereby improving the practicability of the solution.
  • the signal strength measurement may also be performed by using multiple sets of measurement parameters on the same measurement frequency band.
  • the network device sends a plurality of first indication information to the terminal device, where each first indication information corresponds to a set of measurement parameters.
  • the terminal device determines a plurality of measurement resources according to the plurality of first indication information, where each first indication information corresponds to one measurement resource.
  • the terminal device performs signal strength measurement on each measurement resource separately, and separately obtains measurement results. Of course, each measurement result also corresponds to one measurement resource.
  • the terminal device sends multiple measurement results to the network device, that is, the network device receives multiple measurement results sent by the terminal device.
  • the terminal device may send a part of the plurality of measurement results to the network device. Specifically, when the measurement result satisfies certain conditions, such as when the measured signal strength exceeds a predefined threshold, the terminal device transmits the measurement result to the network device.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, and The results of the measurements on the various configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the network device may further send the second indication information to the terminal device, that is, the terminal device receives the second indication information sent by the network device.
  • the second indication information is mainly used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the second indication information may be represented as “00”, “01”, “10”, and “11”, where “00” indicates that no measurement is performed on the measurement resource and no report is performed, and “01” indicates that the measurement is performed. The measurement is performed on the resource, but is not reported. “10” indicates that the measurement is performed on the measurement resource, but not measured, and "11” indicates that both the measurement and the report are performed on the measurement resource.
  • the content indicated by the second indication information and the second indication information is a schematic.
  • the second indication information and the indication content may be other forms, which are not limited herein.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • the network device receiving the at least one measurement result sent by the terminal device may include the following steps:
  • the network device sends one or more of radio resource control signaling, media access control signaling, and downlink control information to the terminal device, and then the terminal device according to the radio resource control signaling or the media access control signaling and the downlink control information
  • the measurement result corresponding to each first indication information is sent to the network device.
  • the network device may configure the reporting period and the reporting resource for the terminal device by using the radio resource control signaling and/or the medium access control signaling, where the reporting period is greater than or equal to the measurement period.
  • the radio resource control signaling and the medium access control signaling belong to the high layer signaling, and the terminal device can send the measured measurement result by using the high layer reporting manner.
  • the network device may trigger the terminal device to report the downlink control information, and configure the reporting resource for the terminal device.
  • the terminal device can send the measured measurement result by means of reporting by the physical layer.
  • the terminal device may report the measurement result to the network device periodically or semi-periodically or non-periodically.
  • the measurement result may be reported periodically, and if the downlink control information is used, the measurement result may be reported aperiodically.
  • a third aspect of the embodiments of the present application provides a method for measuring signal strength, which may include:
  • the terminal device may receive the first indication information that is sent by the network device, where the first indication information includes the first sub-information and the second sub-information, where the first sub-information is used to indicate the measurement period of the measurement, and the measurement period includes at least one A second time unit, the second time unit comprising at least two first time units.
  • the first time unit can be a sampling point, or a half symbol, or a symbol
  • the second time unit can be a time slot or a micro time slot.
  • the second sub-information is used to indicate a starting position of the time resource corresponding to the measurement resource within the measurement period.
  • the measurement resource can be directly and accurately indicated in the measurement period, in other words, the measurement resource is determined according to the starting position of the first time unit during the measurement period.
  • the terminal device determines the measurement resource according to the first indication information, and then performs signal strength measurement on the signal on the measurement resource, that is, performs power measurement, and finally reports the measurement result to the network device, and thus completes the signal strength measurement. Process.
  • a method for measuring a signal strength including: first, a terminal device receives first indication information sent by a network device, where the first indication information includes a first sub-information and a second sub-information, A sub-information is used to indicate a measurement period of the measurement, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the second sub-information is used to indicate that the time resource corresponding to the measurement resource is in the measurement period The starting position inside.
  • the terminal device determines the measurement resource according to the first indication information, where the measurement resource is determined according to the start position of the first time unit in the measurement period, and then the terminal device performs signal strength measurement on the measurement resource to obtain the measurement result.
  • the terminal device sends the measurement result to the network device.
  • the network device can more flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure the signal strength on several symbols in the subframe, so that more accurate CLI information can be obtained for use in Improve the quality and transmission rate of network transmission in coordinated scheduling.
  • the first indication information further includes measurement duration indication information, where the measurement duration indication information indicates a measurement duration, where The value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units. Therefore, the measurement resource is within the measurement period, and according to the first The starting position of the time unit, the starting position of the second time unit, and the measurement duration are determined.
  • measurement duration indication information may be added to the first indication information, where the measurement duration indication information indicates a measurement duration, where the available value of the measurement duration includes a first time unit Two first time units, four first time units or six first time units.
  • the method may further include: receiving, by the terminal device, measurement frequency band indication information sent by the network device, where the measurement frequency band indication information indicates the measurement frequency band indication Information, the measurement band indication information indicates the measurement band.
  • the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain position, or the measurement frequency band only includes the measured bandwidth portion and the measurement bandwidth.
  • the measurement bandwidth is less than or equal to the bandwidth of the bandwidth portion, and the bandwidth portion includes multiple frequency domain units.
  • the frequency domain resource size of each frequency domain unit is consistent.
  • the frequency domain location can be determined in some manner for indicating at least one target frequency domain unit for measurement in the bandwidth portion.
  • the target frequency domain unit may be a continuous number of frequency domain units, or may be a plurality of frequency domain units in a comb shape.
  • the measurement resource is determined jointly according to the start position of the first time unit, the start position of the second time unit, and the measurement frequency band in the measurement period.
  • the first indication information may further include measurement frequency band indication information, where the measurement frequency band indication information indicates the measurement frequency band, the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain location, or the measurement frequency band includes The measured bandwidth portion and the measurement bandwidth. According to the above indication information, the effect of the measurement resource is determined faster and more accurately by the terminal device, thereby improving the practicability of the solution.
  • the terminal device receives multiple first indication information that is sent by the network device, where each first indication information corresponds to a set of measurement parameters. .
  • the terminal device determines a plurality of measurement resources according to the plurality of first indication information, where each first indication information corresponds to one measurement resource.
  • the terminal device performs signal strength measurement on each measurement resource separately, and separately obtains measurement results. Of course, each measurement result also corresponds to one measurement resource.
  • the terminal device transmits a plurality of measurement results to the network device.
  • the terminal device may send a part of the plurality of measurement results to the network device. Specifically, when the measurement result satisfies certain conditions, such as when the measured signal strength exceeds a predefined threshold, the terminal device transmits the measurement result to the network device.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, and The results of the measurements on the various configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the network device may further send the second indication information to the terminal device, that is, the terminal device receives the second indication sent by the network device.
  • Information wherein the second indication information is mainly used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the second indication information may be represented as “00”, “01”, “10”, and “11”, where “00” indicates that no measurement is performed on the measurement resource and no report is performed, and “01” indicates that the measurement is performed. The measurement is performed on the resource, but is not reported. “10” indicates that the measurement is performed on the measurement resource, but not measured, and "11” indicates that both the measurement and the report are performed on the measurement resource.
  • the content indicated by the second indication information and the second indication information is a schematic.
  • the second indication information and the indication content may be other forms, which are not limited herein.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • the terminal device sends the at least one measurement result to the network device, which may include the following steps:
  • the network device may configure the reporting period and the reporting resource for the terminal device by using the radio resource control signaling and/or the medium access control signaling, where the reporting period is greater than or equal to the measurement period.
  • the radio resource control signaling and the medium access control signaling belong to the high layer signaling, and the terminal device can send the measured measurement result by using the high layer reporting manner.
  • the network device may trigger the terminal device to report the downlink control information, and configure the reporting resource for the terminal device.
  • the terminal device can send the measured measurement result by means of reporting by the physical layer.
  • the terminal device may report the measurement result to the network device periodically or semi-periodically or non-periodically.
  • the measurement result may be reported periodically, and if the downlink control information is used, the measurement result may be reported aperiodically.
  • the terminal device performs signal strength measurement on each measurement resource by using each set of measurement parameters, to obtain corresponding to each set of measurement parameters.
  • the measurement result may specifically include the following steps:
  • the terminal device performs signal strength measurement on the measurement resource by using each set of measurement parameters, and then calculates a linear average power value corresponding to each set of measurement parameters according to the signal strength on the measurement resource.
  • the first time unit is an OFDM symbol
  • the measurement resource occupies 4 OFDM symbols in the time domain, and occupies 6 resource blocks in the frequency domain
  • the signal strengths measured in the 4 OFDM symbols are respectively W1 and W2. , W3 and W4, then the linear average of the signal strength is (W1 + W2 + W3 + W4) / (4 ⁇ 6).
  • the terminal device determines the measurement result corresponding to the linear average power value according to the preset power mapping relationship, and then reports the measurement result to the network device.
  • the terminal device can obtain the average situation of the received interference, and perform measurement and analysis on the stable random process by using the foregoing manner, and increasing the average number of times can also reduce the deviation, thereby improving the feasibility of the solution. And practicality.
  • the terminal device performs signal strength measurement on each measurement resource by using each set of measurement parameters, to obtain corresponding to each set of measurement parameters.
  • the measurement result may specifically include the following steps:
  • the preferred terminal device uses each set of measurement parameters to measure the received signal strength of each preset granularity resource in the measurement resource, and the preset granularity resource is a predefined granularity resource. Then, the terminal device acquires the signal power corresponding to each preset granularity resource, and then selects the maximum value as the target signal power from the signal power corresponding to each preset granularity resource, and finally determines the target signal power value according to the preset power mapping relationship. Corresponding measurement results are reported to the network device.
  • the first time unit is an OFDM symbol
  • the measurement resource occupies 4 OFDM symbols in the time domain
  • the preset granularity resource is 1 OFDM ⁇ 1 RB
  • 6 RBs are occupied in the frequency domain.
  • there are 4 ⁇ 6 24 specified granular resources.
  • the terminal device can select the maximum value of the 24 granular resources as the processing result.
  • the terminal device can obtain the strongest interference.
  • the measurement of the signal strength for the case of the strongest interference can save the measurement resources and time, and at the same time improve the practicability and feasibility of the scheme.
  • a fourth aspect of the embodiments of the present application provides a method for measuring signal strength, which may include:
  • the network device sends the first indication information to the terminal device, so that the terminal device determines the measurement resource according to the first indication information, where the first indication information includes the first sub-information and the second sub-information, where the first sub-information is used.
  • the measurement period includes at least one second time unit, and the second time unit includes at least two first time units.
  • the first time unit can be a sampling point, or a half symbol, or a symbol
  • the second time unit can be a time slot or a micro time slot.
  • the second sub-information is used to indicate the starting position of the time resource corresponding to the measurement resource in the measurement period, and the second sub-information can directly and accurately indicate the measurement resource in the measurement period, in other words, the measurement resource is in the measurement period. It is determined according to the starting position of the first time unit.
  • the terminal device determines the measurement resource according to the first indication information, and then performs signal strength measurement on the signal on the measurement resource, that is, performs power measurement, and finally reports the measurement result to the network device, and thus completes the signal strength measurement. Process.
  • a method for measuring signal strength is provided.
  • the network device can more flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure signal strength on several symbols in a subframe, thereby More accurate CLI information can be obtained for improving the quality and transmission rate of network transmissions in coordinated scheduling.
  • the first indication information further includes measurement duration indication information, where the measurement duration indication information indicates a measurement duration, where The value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units. Therefore, the measurement resource is within the measurement period, and according to the first The starting position of the time unit, the starting position of the second time unit, and the measurement duration are determined.
  • measurement duration indication information may be added to the first indication information, where the measurement duration indication information indicates a measurement duration, where the available value of the measurement duration includes a first time unit Two first time units, four first time units or six first time units.
  • the network device may further include sending, by the network device, measurement band indication information, where the measurement band indication information indicates measurement band indication information.
  • the measurement band indication information indicates the measurement band.
  • the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain position, or the measurement frequency band only includes the measured bandwidth portion and the measurement bandwidth.
  • the measurement bandwidth is less than or equal to the bandwidth of the bandwidth portion, and the bandwidth portion includes multiple frequency domain units.
  • the frequency domain resource size of each frequency domain unit is consistent.
  • the frequency domain location can be determined in some manner for indicating at least one target frequency domain unit for measurement in the bandwidth portion.
  • the target frequency domain unit may be a continuous number of frequency domain units, or may be a plurality of frequency domain units in a comb shape.
  • the measurement resource is determined jointly according to the start position of the first time unit, the start position of the second time unit, and the measurement frequency band in the measurement period.
  • the first indication information may further include measurement frequency band indication information, where the measurement frequency band indication information indicates the measurement frequency band, where the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain location, or the measurement frequency band includes The measured bandwidth portion and the measurement bandwidth.
  • the measurement frequency band indication information indicates the measurement frequency band, where the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain location, or the measurement frequency band includes The measured bandwidth portion and the measurement bandwidth.
  • the signal strength measurement may also be performed by using multiple sets of measurement parameters on the same measurement frequency band.
  • the network device sends a plurality of first indication information to the terminal device, where each first indication information corresponds to a set of measurement parameters.
  • the terminal device determines a plurality of measurement resources according to the plurality of first indication information, where each first indication information corresponds to one measurement resource.
  • the terminal device separately performs signal strength measurement on the signals on the respective measurement resources, and separately obtains the measurement results.
  • each measurement result also corresponds to one measurement resource.
  • the terminal device sends multiple measurement results to the network device, that is, the network device receives multiple measurement results sent by the terminal device.
  • the terminal device may send a part of the plurality of measurement results to the network device. Specifically, when the measurement result satisfies certain conditions, such as when the measured signal strength exceeds a predefined threshold, the terminal device transmits the measurement result to the network device.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, and The results of the measurements on the various configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the network device may further send the second indication information to the terminal device, that is, the terminal device receives the second indication sent by the network device.
  • Information wherein the second indication information is mainly used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the second indication information may be represented as “00”, “01”, “10”, and “11”, where “00” indicates that no measurement is performed on the measurement resource and no report is performed, and “01” indicates that the measurement is performed. The measurement is performed on the resource, but is not reported. “10” indicates that the measurement is performed on the measurement resource, but not measured, and "11” indicates that both the measurement and the report are performed on the measurement resource.
  • the content indicated by the second indication information and the second indication information is a schematic.
  • the second indication information and the indication content may be other forms, which are not limited herein.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • the network device receiving the at least one measurement result sent by the terminal device may include the following steps:
  • the network device sends one or more of radio resource control signaling, media access control signaling, and downlink control information to the terminal device, and then the terminal device according to the radio resource control signaling or the media access control signaling and the downlink control information
  • the measurement result corresponding to each first indication information is sent to the network device.
  • the network device may configure the reporting period and the reporting resource for the terminal device by using the radio resource control signaling and/or the medium access control signaling, where the reporting period is greater than or equal to the measurement period.
  • the radio resource control signaling and the medium access control signaling belong to the high layer signaling, and the terminal device can send the measured measurement result by using the high layer reporting manner.
  • the network device may trigger the terminal device to report the downlink control information, and configure the reporting resource for the terminal device.
  • the terminal device can send the measured measurement result by means of reporting by the physical layer.
  • the terminal device may report the measurement result to the network device periodically or semi-periodically or non-periodically.
  • the measurement result may be reported periodically, and if the downlink control information is used, the measurement result may be reported aperiodically.
  • a fifth aspect of the embodiment of the present disclosure provides a terminal device, which may include:
  • a receiving module configured to receive first indication information that is sent by the network device, where the first indication information includes a first sub-information, a second sub-information, and a third sub-information, where the first sub-information is used to indicate a measurement period of the measurement,
  • the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the third sub-information is used to indicate a starting position of the measured second time unit relative to a starting position of the measurement period Offset, the second sub-information is used to indicate an offset of the start position of the first time unit measured during the measurement period relative to the measured start position of the second time unit;
  • a determining module configured to determine, according to the first indication information received by the receiving module, the measurement resource, where the measurement resource is determined according to a start position of the first time unit and a start position of the second time unit in the measurement period;
  • An acquiring module configured to perform signal strength measurement on a signal on a measurement resource determined by the determining module, to obtain a measurement result
  • a sending module configured to send, to the network device, a measurement result obtained by the acquiring module.
  • the first indication information further includes measurement duration indication information, where the measurement duration indication information indicates a measurement duration, where The value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement duration within the measurement period.
  • the receiving module is further configured to receive measurement frequency band indication information, where the measurement frequency band indication information indicates a measurement frequency band;
  • the measurement band includes a measured bandwidth portion, a measurement bandwidth, and a frequency domain position, wherein the measurement bandwidth is less than or equal to a bandwidth portion of the bandwidth portion, the bandwidth portion includes a plurality of frequency domain units, and the frequency domain position indicates a target frequency for measurement in the bandwidth portion
  • the domain unit, or, the measurement band includes the measured bandwidth portion and the measurement bandwidth;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement band within the measurement period.
  • the receiving module is specifically configured to receive multiple first indication information sent by the network device
  • a determining module configured to determine a plurality of measurement resources according to the plurality of first indication information received by the receiving module, where each first indication information has a one-to-one correspondence with each measurement resource;
  • the acquiring module is configured to perform signal strength measurement on the signals on the plurality of measurement resources determined by the determining module, and obtain multiple measurement results, where each measurement result has a one-to-one correspondence with each measurement resource;
  • the sending module is specifically configured to send, to the network device, multiple measurement results obtained by the acquiring module.
  • the receiving module is further configured to receive second indication information that is sent by the network device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • a sixth aspect of the embodiments of the present application provides a network device, which may include:
  • a sending module configured to send first indication information to the terminal device, where the first indication information is used by the terminal device to determine a measurement resource, where the first indication information includes a first sub information, a second sub information, and a third Sub-information, the first sub-information is used to indicate a measured measurement period, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the third sub-information is used to indicate the second time of the measurement An offset of a start position of the unit relative to a start position of the measurement period, the second sub-information being used to indicate a start position of the first time unit measured during the measurement period relative to a start of the measured second time unit Offset of position;
  • the receiving module is configured to receive the measurement result sent by the terminal device, where the measurement result is obtained by the terminal device performing signal strength measurement on the measurement resource.
  • the first indication information further includes measurement duration indication information, where the measurement duration indication information indicates a measurement duration, where The value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement duration within the measurement period.
  • the sending module is further configured to send measurement frequency band indication information, where the measurement frequency band indication information indicates a measurement frequency band;
  • the measurement band includes a measured bandwidth portion, a measurement bandwidth, and a frequency domain position, wherein the measurement bandwidth is less than or equal to a bandwidth portion of the bandwidth portion, the bandwidth portion includes a plurality of frequency domain units, and the frequency domain position indicates a target frequency for measurement in the bandwidth portion
  • the domain unit, or, the measurement band includes the measured bandwidth portion and the measurement bandwidth;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement band within the measurement period.
  • the sending module is configured to send the first indication information to the terminal device, so that the terminal device determines multiple measurement resources according to the multiple first indication information, where each first indication information has one by one with each measurement resource. Corresponding relationship;
  • the receiving module is configured to receive multiple measurement results sent by the terminal device, where the multiple measurement results are obtained by the terminal device performing signal strength measurement on multiple measurement resources, and each measurement result has one by one with each measurement resource. Corresponding relationship.
  • the sending module is further configured to send the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the seventh aspect of the embodiment of the present application provides a terminal device, which may include:
  • a receiving module configured to receive first indication information that is sent by the network device, where the first indication information includes a first sub-information and a second sub-information, where the first sub-information is used to indicate a measurement period of the measurement, and the measurement period includes at least one a second time unit, where the second time unit includes at least two first time units, where the second sub-information is used to indicate a starting position of the time resource corresponding to the measurement resource in the measurement period;
  • a determining module configured to determine, according to the first indication information received by the receiving module, the measurement resource, where the measurement resource is determined according to a starting position of the first time unit in the measurement period;
  • An acquiring module configured to perform signal strength measurement on a signal on a measurement resource determined by the determining module, to obtain a measurement result
  • a sending module configured to send, to the network device, a measurement result obtained by the acquiring module.
  • the first indication information further includes measurement duration indication information, where the measurement duration indication information indicates a measurement duration, where The value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement duration within the measurement period.
  • the receiving module is further configured to receive measurement frequency band indication information, where the measurement frequency band indication information indicates a measurement frequency band;
  • the measurement band includes a measured bandwidth portion, a measurement bandwidth, and a frequency domain position, wherein the measurement bandwidth is less than or equal to a bandwidth portion of the bandwidth portion, the bandwidth portion includes a plurality of frequency domain units, and the frequency domain position indicates a target frequency for measurement in the bandwidth portion
  • the domain unit, or, the measurement band includes the measured bandwidth portion and the measurement bandwidth;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement band within the measurement period.
  • the receiving module is specifically configured to receive multiple first indication information sent by the network device
  • a determining module configured to determine a plurality of measurement resources according to the plurality of first indication information received by the receiving module, where each first indication information has a one-to-one correspondence with each measurement resource;
  • the acquiring module is configured to perform signal strength measurement on the signals on the plurality of measurement resources determined by the determining module, and obtain multiple measurement results, where each measurement result has a one-to-one correspondence with each measurement resource;
  • the sending module is specifically configured to send, to the network device, multiple measurement results obtained by the acquiring module.
  • the receiving module is further configured to receive second indication information that is sent by the network device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • An eighth aspect of the embodiments of the present application provides a network device, which may include:
  • a sending module configured to send first indication information to the terminal device, where the first indication information is used by the terminal device to determine a measurement resource, where the first indication information includes a first sub-information and a second sub-information, the first The sub-information is used to indicate the measured measurement period, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the second sub-information is used to indicate that the time resource corresponding to the measurement resource is within the measurement period.
  • the starting position, the measurement resource is determined according to the starting position of the first time unit within the measurement period;
  • the receiving module is configured to receive the measurement result sent by the terminal device, where the measurement result is obtained by the terminal device performing signal strength measurement on the measurement resource.
  • the first indication information further includes measurement duration indication information, where the measurement duration indication information indicates a measurement duration, where The value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement duration within the measurement period.
  • the sending module is further configured to send measurement frequency band indication information, where the measurement frequency band indication information indicates a measurement frequency band;
  • the measurement band includes a measured bandwidth portion, a measurement bandwidth, and a frequency domain position, wherein the measurement bandwidth is less than or equal to a bandwidth portion of the bandwidth portion, the bandwidth portion includes a plurality of frequency domain units, and the frequency domain position indicates a target frequency for measurement in the bandwidth portion
  • the domain unit, or, the measurement band includes the measured bandwidth portion and the measurement bandwidth;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement band within the measurement period.
  • the sending module is configured to send the first indication information to the terminal device, so that the terminal device determines multiple measurement resources according to the multiple first indication information, where each first indication information has one by one with each measurement resource. Corresponding relationship;
  • the receiving module is specifically configured to receive multiple measurement results sent by the terminal device, where the multiple measurement results are obtained by the terminal device performing signal strength measurement on the signals on the multiple measurement resources, and each measurement result and each measurement resource are obtained. Have a one-to-one relationship.
  • the sending module is further configured to send the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • a ninth aspect of the embodiments of the present application provides a terminal device, which may include: a memory, a transceiver, a processor, and a bus system;
  • the memory is used to store programs and instructions
  • the transceiver is configured to receive or transmit information under control of the processor
  • the processor is configured to execute a program in the memory
  • the bus system is configured to connect the memory, the transceiver, and the processor to cause the memory, the transceiver, and the processor to communicate;
  • the processor is operative to invoke program instructions in the memory to perform the method of any of the first aspects above.
  • a tenth aspect of the embodiments of the present application provides a network device, including: a memory, a transceiver, a processor, and a bus system;
  • the memory is used to store programs and instructions
  • the transceiver is configured to receive or transmit information under the control of the processor
  • the processor is configured to execute a program in the memory
  • a bus system is used to connect the memory, the transceiver, and the processor to enable the memory, the transceiver, and the processor to communicate;
  • the processor is operative to invoke a program instruction in a memory to perform the method of any of the above second aspects.
  • An eleventh aspect of the embodiments of the present application provides a terminal device, including: a memory, a transceiver, a processor, and a bus system;
  • the memory is used to store programs and instructions
  • the transceiver is configured to receive or transmit information under the control of the processor
  • the processor is configured to execute a program in the memory
  • a bus system is used to connect the memory, the transceiver, and the processor to enable the memory, the transceiver, and the processor to communicate;
  • the processor is operative to invoke a program instruction in a memory to perform the method of any of the above third aspects.
  • a twelfth aspect of the embodiments of the present application provides a network device, including: a memory, a transceiver, a processor, and a bus system;
  • the memory is used to store programs and instructions
  • the transceiver is configured to receive or transmit information under the control of the processor
  • the processor is configured to execute a program in the memory
  • a bus system is used to connect the memory, the transceiver, and the processor to enable the memory, the transceiver, and the processor to communicate;
  • the processor is operative to invoke a program instruction in a memory to perform the method of any of the above fourth aspects.
  • a thirteenth aspect of the embodiments of the present application provides a signal strength measurement system, which may include a terminal device and a network device;
  • the terminal device is the terminal device according to any one of the fifth aspect, and the first to fourth possible implementation manners of the fifth aspect;
  • the network device is the network device according to any one of the above-mentioned sixth aspect, and the first to fourth possible implementation manners of the sixth aspect.
  • a fourteenth aspect of the embodiments of the present application provides a signal strength measurement system, which may include a terminal device and a network device;
  • the terminal device is the terminal device according to any one of the seventh aspect, and the first to fourth possible implementation manners of the seventh aspect;
  • the network device is the network device according to any one of the above eighth aspect, and the first to fourth possible implementation manners of the eighth aspect.
  • the embodiment of the present application provides a computer device, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when the server In operation, the processor executes the computer-executable instructions stored by the memory to cause the server to perform the method of any of the above aspects.
  • the embodiment of the present application provides a computer readable storage medium for storing computer software instructions used in the above method, when the computer is running on a computer, enabling the computer to perform the method of any of the above aspects. .
  • embodiments of the present application provide a computer program product comprising instructions that, when run on a computer, cause the computer to perform the method of any of the above aspects.
  • the embodiments of the present application have the following advantages:
  • a method for measuring signal strength including: first, a terminal device receives first indication information that is sent by a network device, where the first indication information includes a first sub-information, a second sub-information, and a third sub-information, the first sub-information is used to indicate a measured measurement period, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the third sub-information is used to indicate the measurement
  • the offset of the start position of the second time unit relative to the start position of the measurement period the second sub-information being used to indicate the start position of the first time unit measured during the measurement period relative to the start of the measured second time unit The offset of the position.
  • the terminal device determines the measurement resource according to the first indication information, where the measurement resource is determined according to the start position of the first time unit and the start position of the second time unit in the measured period, and then the terminal device pairs The measurement resource performs signal strength measurement, obtains the measurement result, and finally the terminal device sends the measurement result to the network device.
  • the network device can more flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure the signal strength on several symbols in the subframe, so that more accurate CLI information can be obtained for use in Improve the quality and transmission rate of network transmission in coordinated scheduling.
  • FIG. 1 is a schematic diagram of uplink transmission of a serving cell in a downlink transmission of a neighboring cell in the embodiment of the present application;
  • FIG. 2 is a schematic diagram of an embodiment of a method for measuring signal strength in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a measurement cycle in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first time unit and a second time unit in the embodiment of the present application;
  • FIG. 5 is another schematic diagram of a first time unit and a second time unit in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of an embodiment of a secondary indication measurement resource in Embodiment 1 of the present application.
  • FIG. 7 is a schematic diagram of a measurement frequency band in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a bandwidth portion of a measurement frequency band in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of measurement bandwidth and frequency domain location in different configurations in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of coordinate signal transmission and signal strength measurement between two cells in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a signal strength measurement system in an application scenario of the present application.
  • FIG. 12 is a schematic diagram of a secondary indication measurement resource in an application scenario of the present application.
  • FIG. 13 is another schematic diagram of a secondary indication measurement resource in an application scenario of the present application.
  • FIG. 14 is a schematic diagram of another embodiment of a method for measuring signal strength in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of an embodiment of a first-level indication measurement resource in Embodiment 2 of the present application.
  • 16 is another schematic structural diagram of a signal strength measurement system in an application scenario of the present application.
  • 17 is a schematic diagram of a first-level indication measurement resource in an application scenario of the present application.
  • FIG. 18 is another schematic diagram of a first-level indication measurement resource in an application scenario of the present application.
  • FIG. 19 is a schematic diagram of an embodiment of a terminal device according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of an embodiment of a network device according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of an embodiment of a terminal device according to an embodiment of the present application.
  • FIG. 22 is a schematic diagram of an embodiment of a network device according to an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a network device in an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • 26 is a schematic structural diagram of a network device in an embodiment of the present application.
  • FIG. 27 is a schematic diagram of an embodiment of a signal strength measurement system according to an embodiment of the present application.
  • FIG. 28 is a schematic diagram of an embodiment of a signal strength measurement system according to an embodiment of the present application.
  • the embodiment of the present application provides a method, a related device, and a system for measuring signal strength.
  • the network device can flexibly instruct the terminal device to measure and report signal strength, and can accurately measure signals on several symbols in a subframe. Intensity, so that more accurate CLI information can be obtained for improving the quality and transmission rate of network transmission in coordinated scheduling.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation mobile communication technology
  • FIG. 1 is a schematic diagram of an uplink transmission interference of a serving cell in a downlink transmission of a neighboring cell according to an embodiment of the present application.
  • communication points may be For different types.
  • transmitting information to a terminal device by a network device is referred to as downlink (DL) communication
  • transmitting information to the network device by the terminal device is referred to as uplink (UL) communication.
  • LTE and long term evolution advanced (LTE-A) communication system for an area covered by a network device that uses the same working frequency band and is geographically close, all cells in the area must be uplink at the same time.
  • LTE and long term evolution advanced (LTE-A) communication system for an area covered by a network device that uses the same working frequency band and is geographically close, all cells in the area must be uplink at the same time.
  • each cell may determine the ratio of the uplink communication time end and the downlink communication time period of the current cell according to the proportion of the current downlink service on the respective cell, or dynamically adjust the communication in each time period. Types of.
  • the uplink signal sent by the terminal equipment in the serving cell interferes with the terminal equipment received by the neighboring cell.
  • the downlink signal that is, the CLI between the terminal devices.
  • two or more adjacent network devices may adopt a coordinated scheduling method, for example, when the first network device schedules downlink transmission of one or more terminal devices it serves, The neighboring second network device does not schedule the second terminal device that is subject to the terminal device strong CLI within the range of the first network device.
  • the second terminal device is scheduled to the second network device in the same time-frequency resource as the first network device, so as to avoid the CLI.
  • each network device In order to enable coordinated scheduling between network devices, each network device needs to know in advance the CLI information that the terminal devices served in its coverage may receive. Considering that the network device cannot directly obtain the link information between the terminal devices in the coverage of different cells, the CLI measurement is required between the terminal devices, and each terminal obtains its own CLI information, and then reports the measurement result to the network device. . In order to accurately obtain the CLI information that the terminal may receive between the terminals, the network device should be able to configure its terminal to measure the transmittable reference signals of the terminals of other cells, such as a sounding reference signal (SRS) or a solution. Demodulation reference signal (DMRS).
  • SRS sounding reference signal
  • DMRS Demodulation reference signal
  • the SRS may be transmitted on the first symbol of the last digit in the last slot, the last two symbols of the last number, or the last four symbols. Therefore, the network device needs to configure the terminal device in the above possible Location for CLI measurements.
  • the network terminal may configure the terminal device to periodically measure the received signal strength in a period of time and a frequency band, and perform feedback, that is, measure RSSI, and the RSSI measurement is power.
  • the network device can configure the RSSI measurement related parameters for the terminal device through high layer signaling, including the period in the time domain, the measurement subframe offset in the time domain, and the measurement duration in the time domain. And the measurement bandwidth in the frequency domain.
  • the RSSI measurement only has the sub-frame level offset, and the measurement duration less than one sub-frame length also has only one symbol configurable value. Therefore, the current measurement scheme cannot accurately measure several sub-frames. Signal power on the symbols. From the frequency domain, the existing RSSI measurement cannot specify the bandwidth part (BP) or the frequency domain position in the system band under one cell. Therefore, the current measurement scheme cannot accurately measure a specific BP in a frequency band or Signal power at a specific frequency domain location.
  • BP bandwidth part
  • this application will introduce a mechanism for signal strength measurement. It should be noted that the present application can be applied not only to the measurement of CLI information, but also to the measurement of the same-link interference and the measurement of noise. The present application introduces the measurement of CLI information as an example. However, this should not constitute Limitations of this application.
  • Embodiment 1 Secondary indication
  • FIG. 2 is a schematic diagram of a method for measuring signal strength in an embodiment of the present application.
  • One embodiment of a method for measuring signal strength in an embodiment of the present application includes:
  • the network device sends the first indication information to the terminal device, where the terminal device receives the first indication information that is sent by the network device, where the first indication information includes the first sub-information, the second sub-information, and the third sub-information, the first
  • the sub-information is used to indicate a measured measurement period, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the third sub-information is used to indicate a measured start position of the second time unit
  • the second sub-information is used to indicate an offset of the start position of the first time unit measured during the measurement period relative to the measured start position of the second time unit with respect to the offset of the start position of the measurement period;
  • the network device first sends first indication information including the first sub-information, the second sub-information, and the third sub-information to the terminal device, and the terminal device may be configured according to the received first sub-information, second sub-information, and The third sub-information determines the resources that need to be measured.
  • the first sub-information may indicate a measured measurement period
  • the measurement period includes at least one second time unit
  • the second time unit includes at least two first time units.
  • one measurement period generally includes at least Two second time units, in this way, can facilitate the completion of the process of the secondary indication.
  • FIG. 3 is a schematic diagram of a measurement period in the embodiment of the present application. As shown in the figure, one measurement period may be 640 milliseconds (ms), and the time of one subframe is seen from the time domain. The length is 1ms, that is, one measurement period can include 640 subframes. Each subframe includes at least one second time unit, and the second time unit includes at least two first time units.
  • the third indication information indicates from the start position of the measurement period to the start position of the second time unit.
  • the offset (where the count unit of the offset is the second time unit), taking the second time unit labeled 2 as an example, then the third indication information is "2".
  • the second sub-information indicates the offset of the start position of the first time unit relative to the start position of the second time unit being measured during the measurement period (where the count unit of the offset is the first time unit), Taking the first time unit corresponding to the black grid as an example, the second time unit measured is the second time unit indicated by the label 2, then the first time unit is just in the second time unit, and is the second time unit.
  • the first first time unit in the middle, that is, the second indication information is “0”.
  • the first time unit indicated by the second sub information may be in the second time unit indicated by the third sub information, or may not be in the second time unit indicated by the third sub information.
  • one measurement period includes four second time units, and each second time unit includes three first time units, and that for the second time unit, the offset may take a value of 0 or 2, for For a time unit, the offset may be 0, 1, 2, 3, 4 or 5, then, if the second time unit offset value indicated by the third sub-information is 0, the second sub-information indicates The first time unit offset value is 4, and the first time unit indicated by the second sub information is in the second time unit with the second time unit offset value of 1, instead of the third sub information
  • the second time unit has a second time unit offset value of 0.
  • the second time unit offset value indicated by the third sub information is 0, and the first time unit offset value indicated by the second sub information is 1, the first time unit indicated by the second sub information
  • the second time unit indicated by the third sub-information has a second time unit offset value of 0.
  • At least one RSSI measurement period needs to be configured to be the same as at least one SRS period, and the SRS is periodic or semi-periodic, so that the terminal device can be sent from other terminal devices in each measurement period.
  • the reference information obtains signal strength information generated by the other terminal device for the terminal device.
  • the value range of the second time unit corresponds to the time unit in which the interference source terminal device sends the SRS.
  • the value range of the second time unit is the time slot position corresponding to the uplink time slot in the system.
  • the second time unit may be a slot or a mini-slot.
  • the second time unit belongs to the non-downstream time unit, and the so-called “non-downstream time unit” includes three types: “uplink time unit”, “empty time unit” and “uplinkable downlink time unit”, and “empty time unit” indicates that The time unit that does not transmit the uplink data and does not transmit the downlink data.
  • the "uplinkable downlink time unit” indicates a time unit defined in the NR that can transmit uplink data or downlink data.
  • the first time unit may be an orthogonal frequency division multiplexing (OFDM) symbol or a half OFDM symbol. It can be understood that one OFDM symbol occupies a plurality of sampling points in the time domain, and multiple sampling points constitute one OFDM symbol, so theoretically, the first time unit in the time domain in the NR system can also be one. The sampling point, which is smaller in the time domain than an OFDM symbol.
  • OFDM orthogonal frequency division multiplexing
  • the second sub-information and the third sub-information may be two parameters (or two messages), or two fields of the same parameter (or the same message), or the same parameter ( Or the same message) Two information obtained after interpretation in a predefined way.
  • An example of two pieces of information obtained by interpreting the same parameter (or the same message) in a predefined manner may be, for example, assuming that a parameter (or message) I is transmitted to the user, which can be interpreted as follows.
  • Second sub-information and third sub-information :
  • the terminal device determines, according to the first indication information, the measurement resource, where the measurement resource is determined according to a start position of the first time unit and a start position of the second time unit in the measurement period;
  • the terminal device determines, according to the first indication information, a measurement resource that needs to be measured next, and the measurement resource is determined according to the start position of the first time unit and the start position of the second time unit in the measurement period. of.
  • the terminal device performs signal strength measurement on the signal on the measurement resource, and obtains the measurement result.
  • the terminal device can obtain the signal strength measured on the indicated measurement resource.
  • the terminal device can process the measured signal strength, and the specific processing manner is as follows.
  • the first type of processing linear averaging
  • One possible way is to linearly average the measured signal strengths over a plurality of first time units and a plurality of resource block (RB) frequency ranges.
  • the first time unit is an OFDM symbol
  • one RB occupies 12 subcarriers in the frequency domain
  • the measurement resource occupies 2 OFDM symbols in the time domain, and 4 RBs in the frequency domain, in 2 OFDM symbols.
  • the measured signal intensities are W1 and W2, respectively, then the linear average of the signal strength is (W1+W2)/(2 ⁇ 4). This method can obtain an average of the interference of the terminal equipment.
  • the second processing method the maximum value method
  • Another feasible way is to select a maximum value on a certain granularity resource from the signal strengths measured by the plurality of first time units and the plurality of RB frequency ranges.
  • the first time unit is an OFDM symbol
  • one RB occupies 12 subcarriers in the frequency domain
  • the granularity resource is 1 OFDM ⁇ 1 RB
  • the measurement resource occupies 2 OFDM symbols in the time domain
  • the terminal device can select the maximum value of the eight granular resources as the processing result. This method can obtain the strongest interference experienced by the terminal device.
  • a mapping relationship between the network device and the terminal device may be predefined to indicate the relationship between the measured signal strength and the reported measurement result. Please refer to Table 2, which is a specific example of reporting using 4-bit binary bit measurement results.
  • mapping relationship in Table 2 is only one indication. In actual applications, other configuration manners may also be used, which are not limited herein.
  • the binary bit of Table 1 is the measurement result. This is because the terminal device communicates with the network device usually by using binary bits.
  • the mapping relationship shown in Table 1 is maintained on both sides of the terminal device and the network device. When both parties can obtain the information transmitted by the peer according to the same mapping relationship. For example, if the signal strength measured by the terminal device is -85 dBm, the terminal device determines to report RSSI_02 according to the result, that is, sends a binary bit of 0010 to the network device.
  • the terminal device sends the measurement result to the network device, where the network device receives the measurement result sent by the terminal device, where the measurement result is obtained by the terminal device performing signal strength measurement on the signal on the measurement resource.
  • the terminal device may send the measurement result to the network device, where the network device may be a 5G base station (g Node B, gNB), and the process of measuring the signal strength is completed.
  • the network device may be a 5G base station (g Node B, gNB)
  • the process of measuring the signal strength is completed.
  • the terminal device can send measurement results to the network device periodically or non-periodically.
  • the network device may be a terminal by radio resource control (RRC) and/or media access control (MAC) signaling.
  • RRC radio resource control
  • MAC media access control
  • the device is configured with a reporting period and a reporting resource.
  • the reporting period is greater than or equal to the measurement period.
  • the radio resource control signaling and the medium access control signaling belong to the high layer signaling, and the terminal device can send the measured measurement result by using the high layer reporting manner.
  • the network device may trigger the terminal device to report the downlink control information (DCI), and configure the reporting resource for the terminal device.
  • DCI downlink control information
  • the terminal device can send the measured measurement result by means of reporting by the physical layer.
  • a method for measuring signal strength including: first, a terminal device receives first indication information that is sent by a network device, where the first indication information includes a first sub-information, a second sub-information, and a third sub-information, the first sub-information is used to indicate a measured measurement period, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the third sub-information is used to indicate the measurement
  • the offset of the start position of the second time unit relative to the start position of the measurement period the second sub-information being used to indicate the start position of the first time unit measured during the measurement period relative to the start of the measured second time unit The offset of the position.
  • the terminal device determines the measurement resource according to the first indication information, where the measurement resource is determined according to the start position of the first time unit and the start position of the second time unit in the measured period, and then the terminal device pairs The measurement resource performs signal strength measurement, obtains the measurement result, and finally the terminal device sends the measurement result to the network device.
  • the network device can more flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure the signal strength on several symbols in the subframe, so that more accurate CLI information can be obtained for use in Improve the quality and transmission rate of network transmission in coordinated scheduling.
  • the first indication information may further include measurement duration indication information, and the measurement duration.
  • the indication information indicates a measurement duration, wherein the value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement duration within the measurement period.
  • the measurement duration indication information may be added to the first indication information, where the measurement duration indication information is mainly used to indicate the duration required for the measurement, and the measurement duration may include a first time unit or two. First time unit, or four time units,
  • FIG. 4 is a schematic diagram of a first time unit and a second time unit according to an embodiment of the present application.
  • one second time unit includes seven first time units.
  • the first time unit is an OFDM symbol
  • the SRS is used to measure the signal strength between the terminal devices
  • the OFDM symbol offset is indicated by the physical layer or the upper layer
  • the OFDM symbol offset is the OFDM symbol.
  • Starting position by measuring the duration indication information indicating the measurement duration, at least one of the last 0th of the slot, the first of the last, the second of the last, and the third OFDM symbol of the last may be included.
  • the manner of the reciprocal indication may be unaffected by the slot configuration or the cyclic prefix (CP) length compared to the positive number indicating the starting position.
  • CP cyclic prefix
  • FIG. 5 is another schematic diagram of a first time unit and a second time unit in the embodiment of the present application.
  • a second time unit includes 14 first time units, assuming that The second time unit is a slot, and the first time unit is an OFDM symbol, and the signal strength measurement between the terminal devices is performed by using the SRS, and the OFDM symbol offset is indicated by the physical layer or the upper layer, and the OFDM symbol offset is the starting position of the OFDM symbol.
  • the duration indication information indicating the measurement duration
  • the SRS area shown in FIG. 4 and FIG. 5 is only one indication.
  • the measurement duration may also include other numbers of first time units, and the location for transmitting the SRS is not limited. this.
  • FIG. 6 is a schematic diagram of an embodiment of a secondary indication measurement resource according to Embodiment 1 of the present application.
  • a measurement period is 100 ms
  • each 10 ms is a second time unit, that is,
  • Each of the second time units includes 10 first time units.
  • the first time unit may be an OFDM symbol. If the starting position of the measurement is desired to be the 13th symbol of the 100 symbols, the secondary indication requires two steps to complete the indication.
  • the first step is that the start time of the indication measurement is located in the second time slot, that is, corresponding to the second time unit 1; the second step is that the measurement start time is located in the third OFDM symbol of the second time slot, That is, it corresponds to the time unit 2 in the second time unit 2.
  • the measurement duration indication information is added, it may further indicate that several OFDM symbols are occupied for measurement. For example, if the measurement duration is 4 symbols, it means that the time domain of the measurement resource is 4 consecutive symbols.
  • the measurement duration indication information may be added to the first indication information, where the measurement duration indication information indicates the measurement duration, wherein the available value of the measurement duration includes a first time unit Two first time units, four first time units or six first time units.
  • the second optional embodiment of the method for measuring signal strength provided by the embodiment of the present disclosure may further include: Measurement band indication information, the measurement band indication information indicating the measurement band;
  • the measurement band includes a measured bandwidth portion, a measurement bandwidth, and a frequency domain position, wherein the measurement bandwidth is less than or equal to a bandwidth portion of the bandwidth portion, the bandwidth portion includes a plurality of frequency domain units, and the frequency domain position indicates a target frequency for measurement in the bandwidth portion
  • the domain unit, or, the measurement band includes the measured bandwidth portion and the measurement bandwidth;
  • the measurement resource is determined according to the start position of the first time unit, the start position of the second time unit, and the measurement band within the measurement period.
  • the terminal device may further receive the measurement band indication information indicating the measurement band, wherein the measurement band includes the measured bandwidth part (BP), the measurement bandwidth, and the frequency domain position, or the measurement band only includes the measurement BP and BW.
  • the measurement resource is determined jointly by the start position of the first time unit, the start position of the second time unit, and the measurement frequency band in the measurement period.
  • the measurement band indication information may be included in the first indication information, and the measurement band indication information may be carried in other information, which is not limited herein.
  • FIG. 7 is a schematic diagram of a measurement frequency band in the embodiment of the present application.
  • the terminal device 1 and the terminal device 2 can perform signal strength measurement on different measurement frequency bands, and the terminal device performs signal strength measurement.
  • BP is equal to the DL BP of the terminal device. If the terminal device works with multiple DL BPs, multiple BPs of signal strength measurements can be configured, and the time domain configuration between multiple BPs can also be different.
  • the first frequency domain location indication manner is that the frequency band of one BP is first divided into several frequency domain units. Generally, the frequency domain resource size of each frequency domain unit is consistent.
  • the frequency domain location can be determined in some manner for indicating at least one target frequency domain unit for measurement in the bandwidth portion.
  • the target frequency domain unit may be a continuous number of frequency domain units, or may be a plurality of frequency domain units in a comb shape. For example, if the comb level is 2, one of the frequency domain units in each of the two frequency domain units belongs to the target frequency domain unit, and the frequency domain units of the target frequency domain unit are arranged at equal intervals. As another example, assuming that the comb level is 4, one of the four frequency domain units belongs to the target frequency domain unit. Generally, the frequency domain units of the target frequency domain unit are arranged at equal intervals.
  • FIG. 8 is a schematic diagram of a bandwidth portion of a measurement frequency band according to an embodiment of the present application. As shown in the figure, a BP is divided into four frequency domain units, and then a mapping relationship between a predefined index and a frequency domain unit is performed. The mapping relationship is shown in Table 3.
  • FIG. 9 is a schematic diagram of measurement bandwidth and frequency domain location in different configurations according to an embodiment of the present application. Referring to Table 3, if the configuration index indicates that the index value is “6”, the frequency domain is indicated. Unit 2 and frequency domain unit 3. Assuming that the configuration 2 indicates that the index value is "10", the frequency domain unit 0, the frequency domain unit 1, and the frequency domain unit 2 are indicated.
  • the second frequency domain position indication manner is to determine the measurement frequency band by indicating the starting position of the measurement frequency band in the BP and indicating the measurement bandwidth of the measurement frequency band in the BP.
  • the starting position is equivalent to the frequency domain unit 2
  • the measurement bandwidth is two frequency domain units.
  • the starting position is the frequency domain unit 0
  • the measurement bandwidth is 3 frequency domain units.
  • the measurement band is always continuous, unlike the first frequency domain indication mode, which can indicate discontinuous measurement bandwidth, such as frequency domain unit 0 and frequency domain unit 1.
  • the third frequency domain position indication manner is that the position of the measurement frequency band is predefined, and only the bandwidth of the measurement frequency band in the BP is indicated.
  • the position of the predefined measurement frequency band is the center frequency point position of BP.
  • the starting position of the predefined measurement frequency band is the lowest frequency position of BP, indicating a measurement bandwidth.
  • the end position of the predefined measurement band is the highest frequency position of BP, indicating a measurement bandwidth.
  • the first indication information may further include measurement frequency band indication information, where the measurement frequency band indication information indicates the measurement frequency band, the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain location, or the measurement frequency band includes The measured bandwidth portion and the measurement bandwidth. According to the above indication information, the effect of the measurement resource is determined faster and more accurately by the terminal device, thereby improving the practicability of the solution.
  • the receiving network device sends, according to the foregoing first or second embodiment corresponding to FIG. 2 and FIG.
  • the first indication information may include:
  • Determining measurement resources according to the first indication information may include:
  • Performing signal strength measurement on the signal on the measurement resource and obtaining the measurement result may include:
  • Sending measurement results to the network device may include:
  • the measurement bandwidth indication information may be included in the first An indication in the message.
  • Measurement parameter 1 Measurement parameter 2 Measurement cycle 100ms 150ms First time unit offset OFDM symbol 2 No. 1 OFDM symbol Second time unit offset 14slot 10slot Measurement duration 4 OFDM symbols 2 OFDM symbols Measurement bandwidth BW1 BW2
  • the measurement results corresponding to each set of measurement parameters can be reported on the respective BPs or reported on the same designated BP, which is not limited herein. That is, the terminal device reports the measurement result to the network device, and the measurement results of each set of measurement parameter specified resources are independently reported, that is, the measurement results on each measurement resource are not averaged or summed, which is beneficial to the network device. Judging the degree of interference of the terminal equipment on each measurement resource for coordinated scheduling.
  • the terminal device may send a part of the plurality of measurement results to the network device. Specifically, when the measurement result satisfies certain conditions, such as when the measured signal strength exceeds a predefined threshold, the terminal device transmits the measurement result to the network device.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, The results of the measurements on the various configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the fourth optional embodiment of the method for measuring signal strength provided by the embodiment of the present application, based on any one of the foregoing first to third embodiments corresponding to FIG. 2 and FIG. 2, It can also include:
  • the network device sends the second indication information to the terminal device, where the terminal device receives the second indication information that is sent by the network device, where the second indication information is used to indicate whether the measurement and/or the report is performed on the measurement resource.
  • the network device may further send the second indication information to the terminal device.
  • the second indication information is used to indicate whether measurement and/or reporting is required on the measurement resource.
  • Table 5 is an indication of the second indication information.
  • Second indication Indicating content 00 Do not measure on measurement resources and do not report 01 Measure on measurement resources, but not report 10 Reporting on measurement resources, but not measuring 11 Perform measurement and report on measurement resources
  • the second indication information and the indication content in the table 5 are both an indication.
  • the second indication information and the indication content in other forms may also be used, which is not limited herein.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • FIG. 10 is a schematic diagram of reference signal transmission and signal strength measurement coordinated between two cells according to an embodiment of the present application.
  • a measurement period includes a plurality of second time units, and one The second time unit contains seven first time units.
  • the cell 1 configures the terminal device in the cell 1 to send the SRS
  • the cell 2 configures the terminal device in the cell 2 to acquire the RSSI on the resource, thereby causing the cell
  • the terminal device of 2 measures the CLI that may be generated by the terminal device in the cell 1.
  • the cell 2 configures the terminal device in the cell 2 to send the SRS, and the cell 1 configures the terminal device in the cell 1 to acquire the RSSI on the resource, so that the cell
  • the terminal device of 1 measures the CLI that may be generated by the terminal device in the cell 2.
  • FIG. 11 is a schematic structural diagram of a signal strength measurement system in an application scenario of the present application.
  • a first terminal device exists in a coverage area of the first network device (a terminal device in FIG. 11 is taken as an example).
  • a plurality of terminal devices where the second network device and the third network device exist in the vicinity of the first network device, and the second terminal device in the coverage of the second network device, and the coverage of the third network device Third terminal device.
  • FIG. 11 It is only one indication and should not be construed as limiting the application scenario.
  • the network device refers to an entity used by the network to transmit signals or receive signals.
  • the gNB is used as an example here.
  • the terminal device is an entity for receiving signals or transmitting signals on the user side.
  • the user equipment (UE) is used as an example. The following is a description of the first UE in the first gNB, and the second UE in the second gNB and the third UE in the third gNB.
  • the first gNB sends two first indication information to the first UE, where each first indication information includes a set of measurement parameters, respectively indicating that the first UE performs measurement on two BPs of the multiple downlink BPs.
  • the two BPs of the first UE are BP1 and BP2, respectively, the measurement period configured on BP1 and BP2, the first time unit offset, the second time unit offset, the measurement duration, and the measurement bandwidth.
  • Table 6 shows two sets of measurement parameters carried in the two first indication information, and the measurement bandwidth indication information may be included in the first indication information.
  • Measurement parameter 1 Measurement parameter 2 Measurement cycle P1 P2 First time unit offset SyO1 SyO2 Second time unit offset SlO1 SlO2 Measurement duration MD1 MD2 Measurement bandwidth BW1 BW2
  • the configurable value of the measurement period should have at least one of at least one of a period in which the second UE or the third UE can transmit a reference signal (such as SRS), which can cause other gNBs (such as the second gNB and the third gNB) to be Other UEs within the coverage (such as the second UE and the third UE) configure a reference signal (such as SRS) of the same period as the measurement period of the first UE, so that the first UE can be measured from other periods in each period.
  • the reference signal sent by other UEs in the gNB acquires CLI strength information generated by the UE from other gNBs for the first UE. Among them, after defining the period in which the SRS can be transmitted, all UEs using this definition are subject to the configuration of the gNB.
  • the period of the SRS of the UE in the standard may be ⁇ 10 ms, 80 ms, 320 ms ⁇ , and the UE may configure the above three SRS periods. It is assumed that the first network device may be configured for the first UE for 80 ms, the second network device may be configured with the second UE for 80 ms, and so on. Therefore, making the configurable period of the RSSI equal to the SRS period is a prerequisite for accurately measuring the interference size each time, in addition to the coordinated configuration, such as the same period, the subframe offset, the same frequency domain position, etc. . The best case is naturally that the measurement period of the first UE is equal to the transmission period of the second UE and the transmission period of the third UE.
  • the measurement period of the second UE is equal to the transmission period of the first UE and the third UE.
  • the measurement period of the third UE is equal to the transmission period of the first UE1 and the second UE.
  • the respective transmission period and measurement period of the first UE and the second UE are determined by the respective gNBs, so the first gNB, the second gNB, and the third gNB should be negotiated.
  • the first time unit is a symbol
  • the first time unit offset is a Symbol Offset, which may also be other time units.
  • the first time unit is smaller than the second time unit offset.
  • the offset indicates the starting position of the Symbol level at which the first UE performs measurements within one slot. For example, SyO1 in BP1 indicates that the first UE starts measurement at the penultimate Symbol of the Slot, and SyO2 in BP2 indicates that the first UE starts measurement at the last fourth symbol of the Slot.
  • the second time unit is slot
  • the second time unit offset is Slot Offset, which may also be a subframe or other time unit; the offset indicates the starting position of the Slot level that the UE performs measurement in one measurement period.
  • S10 in BP1 indicates that the first UE starts measurement at the second Slot of the measurement period
  • S10 in BP2 indicates that the first UE starts measurement at the third Slot of the measurement period.
  • the configurable range of the Slot Offset can be limited to measuring the non-DL Slot of the UE, which can reduce the Slot position of the indicated indication and save the indication overhead. This is because, on the DL Slot, the UE does not perform uplink transmission, so the CLI strength information measured on the DL Slot is not from the CLI of other UEs.
  • the unit of measurement duration can be Symbol, and the unit can be other time units. This duration indicates the length of time that the first UE is taking measurements from the starting position. For example, MD1 in BP1 indicates that the measurement duration of the first UE is 1 Symbol, and MD2 in BP2 indicates that the measurement duration of the first UE is 2 Symbols. The measurement duration includes 1, 2, 4, 7 or 14 Symbols.
  • the measurement bandwidth BW1 is the bandwidth of BP1
  • the measurement bandwidth BW2 is the bandwidth of BP2.
  • the optional value of the measurement bandwidth should be a limited amount of bandwidth that does not exceed the BP bandwidth. It should be noted that BP1 and BP2 in FIG. 13 are disjoint in the frequency domain, but BP1 and BP2 are likely to intersect, depending on the configuration of the first UE by the first gNB. However, whether or not the BP of one UE intersects does not affect the implementation of this scheme.
  • the first gNB may indicate that multiple UEs under its coverage are measured on the same resource (eg, the first gNB indicates that multiple UEs measure UEs from the second gNB and the third gNB coverage on the same resource of BP1) CLI), or multiple gNBs may indicate that multiple UEs in the respective coverage are measured on the same resource (eg, the first gNB and the second gNB indicate that multiple UEs in the respective coverage are measured on the same resource of BP1 from the same resource The CLI of the UE under the third gNB coverage area).
  • the first UE can obtain the signal power measured in the indicated resources.
  • the first UE can process the measurement results.
  • a mapping relationship between the gNB and the UE may be predefined to indicate the relationship between the power value of the measurement result and the reported value.
  • the processed measurement result of the first UE is reported to the first gNB, and the measurement results of each set of measurement parameter specified resources are independently reported (that is, the measurement results on each resource are not averaged or summed, etc.) In order to facilitate the first gNB to determine the degree of interference of the first UE on each resource, in order to perform coordinated scheduling).
  • the network devices such as the first gNB, the second gNB, and the third gNB should be coordinated in advance.
  • the other one or more gNBs of the non-first gNB configure one or more UEs to transmit reference signals (such as SRS) on the coordinated determined resources, and the first gNB configures its first UE to be on the same measurement resource by the above manner Identify resources and make measurements.
  • reference signals such as SRS
  • the first gNB may further send multiple first indication information to the first UE, and one set of measurement parameters corresponds to one indication information.
  • FIG. 13 is another schematic diagram of the secondary indication measurement resource in the application scenario of the present application.
  • two sets of measurement parameters indicate that the first UE performs measurement in the same BP (such as BP1), and the measurement period is P1.
  • BW1 and BW2 are different for measuring twice the period P2.
  • multiple sets of parameters can be configured to achieve measurements on different resources. In this way, the interference measurement can be made more flexible.
  • the first gNB, the second gNB, and the third gNB are negotiated, and the first gNB configures the first UE to perform the resources indicated by the configuration 1 and the configuration 2 respectively.
  • the second gNB configures the second UE to send a reference signal (such as SRS) on the resource of the configuration 1 above.
  • the third gNB configures the third UE to send a reference signal (such as SRS) on the resource of the foregoing configuration 2.
  • the first gNB can separately learn the CLI of the second UE from the second gNB received by the first UE on the BP, and the CLI of the third UE from the third gNB, so that More efficient interference coordination scheduling.
  • Embodiment 2 Level 1 indication
  • FIG. 14 is a schematic diagram of another embodiment of a method for measuring signal strength according to an embodiment of the present application.
  • Another embodiment of a method for measuring signal strength in the embodiment of the present application includes:
  • the network device sends the first indication information to the terminal device, where the terminal device receives the first indication information that is sent by the network device, where the first indication information includes the first sub-information and the second sub-information, where the first sub-information is used to indicate
  • the measured measurement period includes at least one second time unit, the second time unit includes at least two first time units, the second time unit belongs to the non-downstream time unit, and the second sub-information is used to indicate the time corresponding to the measurement resource The starting position of the resource during the measurement period;
  • the network device first sends, to the terminal device, first indication information that includes the first sub-information and the second sub-information, so that the terminal device determines, according to the received first sub-information and the second sub-information, that measurement is required. Resources.
  • the first sub-information may indicate a measured measurement period, one measurement period includes at least one second time unit, and one second time unit includes at least two first time units.
  • one measurement period may be 640 ms. From the time domain, the length of one subframe is 1 ms, that is, one measurement period may include 640 subframes. At least one second time unit is included in each subframe.
  • At least one RSSI measurement period needs to be configured to be the same as at least one SRS period, and the SRS is periodic or semi-periodic, so that the terminal device can be sent from other terminal devices in each measurement period.
  • the reference information obtains signal strength information generated by the other terminal device for the terminal device.
  • the value range of the second time unit corresponds to the time unit in which the interference source terminal device sends the SRS.
  • the value range of the second time unit is the slot position corresponding to the uplink slot in the system.
  • the second time unit may be a slot or a mini-slot.
  • the second time unit belongs to the non-downstream time unit, and the so-called “non-downstream time unit” includes three types: “uplink time unit”, “empty time unit” and “upstream down time unit”.
  • the first time unit can be one OFDM symbol or half an OFDM symbol. It can be understood that one OFDM symbol occupies a plurality of sampling points in the time domain, and multiple sampling points constitute one OFDM symbol, so theoretically, the first time unit in the time domain in the NR system can also be one. The sampling point, which is smaller in the time domain than an OFDM symbol.
  • the second sub-information is used to indicate the starting position of the time resource corresponding to the measurement resource in the measurement period, and specifically may directly indicate the starting position of the first time unit in the measurement period. In other words, it is not necessary to first determine the starting position of the measurement resource on the second time unit, and then find the position of the first time unit from the second time unit, but locate the first time unit at one time. position.
  • the terminal device determines, according to the first indication information, the measurement resource, where the measurement resource is determined according to a start position of the first time unit in the measurement period;
  • the terminal device determines, according to the first indication information, a measurement resource that needs to be measured next, and the measurement resource is determined only according to the starting position of the first time unit in the measurement period.
  • the terminal device performs signal strength measurement on the signal on the measurement resource, and obtains a measurement result.
  • the terminal device can obtain the signal power measured in the indicated measurement resource.
  • the terminal device can process the measured signal power, and the specific processing manner is similar to the content of the step 103 in the first embodiment, and details are not described herein.
  • the terminal device sends the measurement result to the network device, where the network device receives the measurement result sent by the terminal device.
  • the terminal device may send the measurement result to the network device, where the network device may be a gNB, and the process of measuring the signal strength is completed.
  • Step 204 is similar to the content of step 104 in the first embodiment, and is not used here.
  • a method for measuring signal strength including: first, a terminal device receives first indication information that is sent by a network device, where the first indication information includes a first sub-information and a second sub-information, The first sub-information is used to indicate the measured measurement period, the measurement period includes at least one second time unit, the second time unit may include at least two first time units, and the second sub-information is used to indicate that the time resource corresponding to the measurement resource is a starting position in the measurement period, next, the terminal device determines a measurement resource according to the first indication information, wherein the measurement resource is determined according to a starting position of the first time unit in the measurement period, and then the terminal device pairs The signal on the measurement resource is used to measure the signal strength, obtain the measurement result, and finally send the measurement result to the network device.
  • the network device can more flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure the signal strength on several symbols in the subframe, so that more accurate CLI information can be obtained for use in Improve the quality and transmission rate of network transmission in coordinated scheduling.
  • the first indication information may further include measurement duration indication information, and the measurement duration is performed.
  • the indication information indicates a measurement duration, wherein the value of the measurement duration includes a first time unit, two first time units, four first time units, or six first time units;
  • the measurement resource is determined according to the starting position of the first time unit and the measurement duration within the measurement period.
  • the measurement duration indication information may be added to the first indication information, where the measurement duration indication information is mainly used to indicate the duration required for the measurement, and the measurement duration may include a first time unit or two.
  • the first time unit or four time units.
  • the first alternative embodiment corresponding to the first embodiment is similar to the first embodiment, and is not described herein.
  • FIG. 15 is a schematic diagram of an embodiment of a first-level indication measurement resource according to Embodiment 2 of the present application.
  • a measurement period is 100 ms, and one measurement period includes 100 first time units.
  • the first time unit may be an OFDM symbol. If the starting position of the measurement is desired to be the 13th symbol of the 100 symbols, then the first level indication only needs to complete the indication in one step, that is, the measurement indicates that the thirteenth OFDM symbol located in the measurement period corresponds to FIG. 15 Position 13 in the middle. If the measurement duration indication information is added, it may further indicate that several OFDM symbols are occupied for measurement. For example, "13 4" can be considered as starting from the thirteenth OFDM symbol and continuously measuring four OFDM symbols.
  • the measurement duration indication information may be added to the first indication information, where the measurement duration indication information indicates the measurement duration, wherein the available value of the measurement duration includes a first time unit Two first time units, four first time units or six first time units.
  • the second optional embodiment of the method for measuring signal strength provided by the embodiment of the present application may further include receiving measurement of the network by the terminal device.
  • the measurement band includes a measured bandwidth portion, a measurement bandwidth, and a frequency domain position, wherein the measurement bandwidth is less than or equal to a bandwidth portion of the bandwidth portion, the bandwidth portion includes a plurality of frequency domain units, and the frequency domain position indicates a target frequency for measurement in the bandwidth portion
  • the domain unit, or, the measurement band includes the measured bandwidth portion and the measurement bandwidth;
  • the measurement resource is determined according to the starting position of the first time unit and the measurement band within the measurement period.
  • the first indication information may further include measurement band indication information indicating a measurement band, wherein the measurement band includes a measured bandwidth part (BP), a measurement bandwidth (BW), and a frequency domain.
  • the position, or measurement band contains only the measured BP and BW.
  • the measurement resource is determined jointly by the start position of the first time unit, the start position of the second time unit, and the measurement frequency band in the measurement period.
  • the second alternative embodiment corresponding to the first embodiment is similar to the first embodiment, and is not described herein.
  • the first indication information may further include measurement frequency band indication information, where the measurement frequency band indication information indicates the measurement frequency band, the measurement frequency band includes the measured bandwidth portion, the measurement bandwidth, and the frequency domain location, or the measurement frequency band includes The measured bandwidth portion and the measurement bandwidth. According to the above indication information, the effect of the measurement resource is determined faster and more accurately by the terminal device, thereby improving the practicability of the solution.
  • the receiving network device sends, according to the foregoing first or second embodiment corresponding to FIG. 14 and FIG.
  • the first indication information may include:
  • Determining measurement resources according to the first indication information may include:
  • Performing signal strength measurement on measurement resources and obtaining measurement results may include:
  • Sending measurement results to the network device may include:
  • the terminal device receives multiple first indication information sent by the network device, and each first indication information corresponds to a set of measurement parameters.
  • the terminal device determines a plurality of measurement resources according to the plurality of first indication information, where each first indication information corresponds to one measurement resource.
  • the terminal device performs signal strength measurement on each measurement resource separately, and separately obtains measurement results.
  • each measurement result also corresponds to one measurement resource.
  • the terminal device transmits a plurality of measurement results to the network device.
  • the third alternative embodiment corresponding to the first embodiment is similar to the first embodiment, and details are not described herein.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, The results of the measurements on the various configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the fourth to third embodiments corresponding to FIG. 14 and FIG. can also include:
  • the network device sends the second indication information to the terminal device, where the terminal device receives the second indication information that is sent by the network device, where the second indication information is used to indicate whether the measurement and/or the report is performed on the measurement resource.
  • the network device may further send the second indication information to the terminal device.
  • the second indication information is used to indicate whether measurement and/or reporting is required on the measurement resource.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • FIG. 16 is another schematic structural diagram of a signal strength measurement system in an application scenario of the present application.
  • a first terminal device exists in a coverage area of the first network device (a terminal in FIG. 16).
  • the device may be a plurality of terminal devices, where the second network device and the third network device exist in the vicinity of the first network device, and the second terminal device in the coverage of the second network device, and the third network device coverage.
  • the third terminal device in the range.
  • FIG. 16 It is only one indication and should not be construed as limiting the application scenario.
  • the network device refers to an entity used by the network to transmit signals or receive signals.
  • the gNB is used as an example here.
  • the terminal device is an entity for receiving signals or transmitting signals on the user side.
  • the user equipment (UE) is used as an example. The following is a description of the first UE in the first gNB, and the second UE in the second gNB and the third UE in the third gNB.
  • the first gNB sends two first indication information to the first UE, where each first indication information includes a set of measurement parameters, respectively indicating that the first UE performs measurement on two BPs of the multiple downlink BPs.
  • each first indication information includes a set of measurement parameters, respectively indicating that the first UE performs measurement on two BPs of the multiple downlink BPs.
  • the two BPs of the first UE are BP1 and BP2 respectively, and the measurement period, the first time unit offset, the measurement duration, and the measurement bandwidth configured on BP1 and BP2 are shown in Table 7, and Table 7 is the first two. Indicates the two sets of measurement parameters carried in the information.
  • Measurement parameter 1 Measurement parameter 2 Measurement cycle P1 P2 First time unit offset SyO1 SyO2 Measurement duration MD1 MD2 Measurement bandwidth BW1 BW2
  • the configurable value of the measurement period should have at least one of at least one of a period in which the second UE or the third UE can transmit a reference signal (such as SRS), which can cause other gNBs (such as the second gNB and the third gNB) to be Other UEs within the coverage (such as the second UE and the third UE) configure a reference signal (such as SRS) of the same period as the measurement period of the first UE, so that the first UE can be measured from other periods in each period.
  • the reference signal sent by other UEs in the gNB acquires CLI strength information generated by the UE from other gNBs for the first UE.
  • the first time unit is a symbol
  • the first time unit offset is a Symbol Offset, which may also be other time units.
  • the first time unit is smaller than the second time unit offset.
  • the offset indicates the starting position of the Symbol level at which the first UE performs measurements within one slot. For example, SyO1 in BP1 indicates that the first UE starts measuring at the thirteenth Symphony, and SyO2 in BP2 indicates that the thirteenth Symbol of the first UE starts to perform measurement.
  • the unit of measurement duration can be Symbol, and the unit can be other time units. This duration indicates the length of time that the first UE is taking measurements from the starting position. For example, MD1 in BP1 indicates that the measurement duration of the first UE is 1 Symbol, and MD2 in BP2 indicates that the measurement duration of the first UE is 2 Symbols. The measurement duration includes 1, 2, 4, 7 or 14 Symbols.
  • the measurement bandwidth BW1 is the bandwidth of BP1
  • the measurement bandwidth BW2 is the bandwidth of BP2.
  • the optional value of the measurement bandwidth should be a limited amount of bandwidth that does not exceed the BP bandwidth. It should be noted that BP1 and BP2 in FIG. 13 are disjoint in the frequency domain, but BP1 and BP2 are likely to intersect, depending on the configuration of the first UE by the first gNB. However, whether or not the BP of one UE intersects does not affect the implementation of this scheme.
  • the first UE can obtain the signal power measured in the indicated resources.
  • the first UE can process the measurement results.
  • a mapping relationship between the gNB and the UE may be predefined to indicate the relationship between the power value of the measurement result and the reported value.
  • the processed measurement result of the first UE is reported to the first gNB, and the measurement results of each set of measurement parameter specified resources are independently reported (that is, the measurement results on each resource are not averaged or summed, etc.) In order to facilitate the first gNB to determine the degree of interference of the first UE on each resource, in order to perform coordinated scheduling).
  • the first gNB may further send multiple first indication information to the first UE, and one set of measurement parameters corresponds to one indication information.
  • FIG. 18 is another schematic diagram of a first-level indication measurement resource in an application scenario of the present application.
  • two sets of measurement parameters indicate that the first UE performs measurement on the same BP (such as BP1), and the measurement period is P1.
  • BW1 and BW2 are different for measuring twice the period P2.
  • multiple sets of parameters can be configured to achieve measurements on different resources. In this way, the interference measurement can be made more flexible.
  • the first gNB, the second gNB, and the third gNB are negotiated, and the first gNB configures the first UE to perform the resources indicated by the configuration 1 and the configuration 2 respectively.
  • the second gNB configures the second UE to send a reference signal (such as SRS) on the resource of the configuration 1 above.
  • the third gNB configures the third UE to send a reference signal (such as SRS) on the resource of the foregoing configuration 2.
  • the first gNB can separately learn the CLI of the second UE from the second gNB received by the first UE on the BP, and the CLI of the third UE from the third gNB, so that More efficient interference coordination scheduling.
  • the terminal device 30 in the embodiment of the present application includes:
  • the receiving module 301 is configured to receive first indication information that is sent by the network device, where the first indication information includes a first sub-information, a second sub-information, and a third sub-information, where the first sub-information is used to indicate a measured measurement period, the measurement period comprising at least one second time unit, the second time unit comprising at least two first time units, the third sub-information being used to indicate a start of the measured second time unit An offset of the position relative to a starting position of the measurement period, the second sub-information being used to indicate a start position of the first time unit measured during the measurement period relative to a start of the measured second time unit Offset of position;
  • a determining module 302 configured to determine, according to the first indication information received by the receiving module 301, a measurement resource, where the measurement resource is a start position and a location according to the first time unit in the measurement period Determined by the starting position of the second time unit;
  • the obtaining module 303 is configured to perform signal strength measurement on the signal on the measurement resource determined by the determining module 302, and obtain a measurement result;
  • the sending module 304 is configured to send the measurement result obtained by the obtaining module 303 to the network device.
  • the receiving module 301 receives the first indication information that is sent by the network device, where the first indication information includes the first sub-information, the second sub-information, and the third sub-information, where the first sub-information is used to indicate the measurement.
  • a measurement period the measurement period comprising at least one second time unit, the second time unit comprising at least two first time units, the third sub-information being used to indicate a measured start position of the second time unit relative to the measurement
  • An offset of a start position of the period the second sub-information being used to indicate an offset of a start position of the first time unit measured during the measurement period with respect to a measured start position of the second time unit
  • the module 302 determines the measurement resource according to the first indication information received by the receiving module 301, where the measurement resource is determined according to the start position of the first time unit and the start position of the second time unit in the measurement period, and the obtaining module 303
  • the signal strength measurement is performed on the signal on the measurement resource determined by the determining module 302, and the measurement result is obtained.
  • the receiving module 301 is further configured to perform the steps of step 101 and the like performed by the terminal device in FIG. 2 .
  • the determining module 302 can also perform the steps of step 102 and the like performed by the terminal device in FIG. 2.
  • the obtaining module 303 is further configured to perform steps 103 and the like performed by the terminal device in FIG. 2 .
  • the sending module 304 is further configured to perform the steps of step 104 and the like performed by the terminal device in FIG.
  • a terminal device receives the first indication information sent by the network device, and the network device can flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure the subframe.
  • the signal strength on several symbols within, so that more accurate CLI information can be obtained for improving the quality and transmission rate of network transmission in coordinated scheduling.
  • the receiving module 301 is specifically configured to receive multiple pieces of the first indication information sent by the network device.
  • the determining module 302 is configured to determine, according to the plurality of the first indication information received by the receiving module 301, a plurality of the measurement resources, where each of the first indication information and each of the measurement resources Have a one-to-one relationship;
  • the obtaining module 303 is specifically configured to perform signal strength measurement on the signals on the plurality of measurement resources determined by the determining module 302, and obtain a plurality of the measurement results, where each of the measurement results and each The measurement resources have a one-to-one correspondence;
  • the sending module 304 is specifically configured to send, to the network device, the plurality of the measurement results obtained by the acquiring module 303.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, and The results of the measurements on each set of configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the receiving module 301 is further configured to receive the second indication information that is sent by the network device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • the network device 40 in this embodiment of the present application includes:
  • the sending module 401 is configured to send the first indication information to the terminal device, where the first indication information is used by the terminal device to determine a measurement resource, where the first indication information includes a first sub-information and a second sub-information And a third sub-information, where the first sub-information is used to indicate a measured measurement period, the measurement period includes at least one second time unit, and the second time unit includes at least two first time units, where The three sub-information is used to indicate an offset of the measured start position of the second time unit relative to the start position of the measurement period, the second sub-information being used to indicate the first time unit measured during the measurement period The offset of the starting position relative to the measured starting position of the second time unit;
  • the receiving module 402 is configured to receive the measurement result sent by the terminal device, where the measurement result is obtained by the terminal device performing signal strength measurement on the signal on the measurement resource.
  • the sending module 401 sends the first indication information to the terminal device, where the first indication information is used by the terminal device to determine the measurement resource, where the first indication information includes the first sub information, the second sub information, and the third sub Information, the first sub-information is used to indicate a measured measurement period, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the third sub-information is used to indicate the second measurement An offset of a start position of the time unit relative to a start position of the measurement period, the second sub-information being used to indicate a start position of the first time unit measured during the measurement period relative to the second measured
  • the receiving module 402 receives the measurement result sent by the terminal device, where the measurement result is obtained by the terminal device performing signal strength measurement on the signal on the measurement resource.
  • the sending module 401 is further configured to perform the steps of step 101 and the like performed by the network device in FIG. 2.
  • the receiving module 402 can also perform steps 102 and the like performed by the network device in FIG. The embodiments of the present application are not described in detail herein.
  • a network device which can more flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure signal strength on several symbols in a subframe, thereby obtaining More accurate CLI information for improving the quality and transmission rate of network transmissions in coordinated scheduling.
  • the sending module 401 is specifically configured to send a plurality of the first indication information to the terminal device, so that the terminal device determines, according to the plurality of the first indication information, a plurality of the measurement resources, where each The first indication information has a one-to-one correspondence with each of the measurement resources;
  • the receiving module 402 is configured to receive, by the terminal device, a plurality of the measurement results, where the plurality of the measurement results are that the terminal device performs signal strength measurement on signals on the plurality of measurement resources.
  • Each of the measurement results obtained has a one-to-one correspondence with each of the measurement resources.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, and The results of the measurements on each set of configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the sending module 401 is further configured to send the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • the terminal device 50 in this embodiment of the present application includes:
  • the receiving module 501 is configured to receive first indication information that is sent by the network device, where the first indication information includes a first sub-information and a second sub-information, where the first sub-information is used to indicate a measurement period of the measurement,
  • the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the second sub-information is used to indicate that a time resource corresponding to the measurement resource is within the measurement period.
  • a determining module 502 configured to determine, according to the first indication information received by the receiving module 501, a measurement resource, where the measurement resource is determined according to a starting position of the first time unit in the measurement period of;
  • the obtaining module 503 is configured to perform signal strength measurement on the signal on the measurement resource determined by the determining module 502, and obtain a measurement result;
  • the sending module 504 is configured to send the measurement result obtained by the acquiring module 503 to the network device.
  • the receiving module 501 receives the first indication information that is sent by the network device, where the first indication information includes the first sub-information and the second sub-information, where the first sub-information is used to indicate the measurement period of the measurement, and the measurement period. At least one second time unit is included, the second time unit includes at least two first time units, and the second sub-information is used to indicate a starting position of the time resource corresponding to the measurement resource in the measurement period, and the determining module 502 is configured according to the receiving module 501.
  • the received first indication information determines a measurement resource, wherein the measurement resource is determined according to a start position of the first time unit in the measurement period, and the acquisition module 503 performs signal strength measurement on the signal on the measurement resource determined by the determination module 502.
  • the measurement result is obtained, and the sending module 504 sends the measurement result acquired by the obtaining module 503 to the network device.
  • the receiving module 501 is further configured to perform the steps of step 201 and the like performed by the terminal device in FIG. 14.
  • the determining module 502 can also perform steps 202 and the like performed by the terminal device in FIG.
  • the obtaining module 503 is further configured to perform steps 203 and the like performed by the terminal device in FIG. 14.
  • the sending module 504 is further configured to perform the steps 504 and the like performed by the terminal device in FIG. The embodiments of the present application are not described in detail herein.
  • a terminal device receives the first indication information sent by the network device, and the network device can flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure the subframe.
  • the signal strength on several symbols within, so that more accurate CLI information can be obtained for improving the quality and transmission rate of network transmission in coordinated scheduling.
  • the receiving module 501 is specifically configured to receive multiple pieces of the first indication information sent by the network device.
  • the determining module 502 is specifically configured to determine, according to the plurality of the first indication information received by the receiving module 501, a plurality of the measurement resources, where each of the first indication information and each of the measurement resources Have a one-to-one relationship;
  • the obtaining module 503 is specifically configured to perform signal strength measurement on the signals on the plurality of measurement resources determined by the determining module 502, and obtain a plurality of the measurement results, where each of the measurement results and each The measurement resources have a one-to-one correspondence;
  • the sending module 504 is specifically configured to send, to the network device, the plurality of the measurement results obtained by the acquiring module 503.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, The results of the measurements on the various configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the receiving module 501 is further configured to receive the second indication information that is sent by the network device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • the network device 60 in this embodiment of the present application includes:
  • the sending module 601 is configured to send the first indication information to the terminal device, where the first indication information is used by the terminal device to determine a measurement resource, where the first indication information includes a first sub-information and a second sub-information
  • the first sub-information is used to indicate a measured measurement period, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the second sub-information is used And indicating a starting position of the time resource corresponding to the measurement resource in the measurement period, where the measurement resource is determined according to a starting position of the first time unit in the measurement period;
  • the receiving module 602 is configured to receive the measurement result sent by the terminal device, where the measurement result is obtained by the terminal device performing signal strength measurement on the measurement resource.
  • the sending module 601 sends the first indication information to the terminal device, where the first indication information is used by the terminal device to determine the measurement resource, where the first indication information includes the first sub information and the second sub information, the first sub The information is used to indicate a measurement period of the measurement, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the second sub-information is used to indicate that the time resource corresponding to the measurement resource is within the measurement period.
  • the starting position, the measurement resource is determined according to the starting position of the first time unit in the measurement period, and the receiving module 602 receives the measurement result sent by the terminal device, wherein the measurement result is that the terminal device signals the signal on the measurement resource The intensity measurement is obtained.
  • the sending module 601 is further configured to perform the step 201 and the like performed by the network device in FIG.
  • the receiving module 602 can also perform the steps of step 202 and the like performed by the network device in FIG. The embodiments of the present application are not described in detail herein.
  • a network device which can more flexibly instruct the terminal device to perform signal strength measurement and reporting, and can accurately measure signal strength on several symbols in a subframe, thereby obtaining More accurate CLI information for improving the quality and transmission rate of network transmissions in coordinated scheduling.
  • the sending module 601 is specifically configured to send, by the terminal device, a plurality of the first indication information, so that the terminal device determines, according to the plurality of the first indication information, a plurality of the measurement resources, where each The first indication information has a one-to-one correspondence with each of the measurement resources;
  • the receiving module 602 is specifically configured to receive a plurality of the measurement results sent by the terminal device, where the plurality of the measurement results are that the terminal device performs signal strength measurement on signals on the plurality of measurement resources.
  • Each of the measurement results obtained has a one-to-one correspondence with each of the measurement resources.
  • the network device may configure multiple sets of parameters for the terminal device, indicating that the terminal device performs measurement on one or more measurement frequency bands, and the terminal device may receive and measure in the resources configured by the network device, The results of the measurements on the various configuration parameters are reported to the network device.
  • multiple sets of parameters can be configured for measurement, and the measurement results corresponding to each parameter are independently reported, thereby improving the practicability and flexibility of signal strength measurement.
  • the sending module 601 is further configured to send the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the network device can further control the reporting and/or measurement of the terminal device, thereby facilitating the operability and feasibility of the enhanced solution.
  • the embodiment of the present application further provides another terminal device.
  • the terminal device may be any terminal device including a mobile phone, a tablet computer, a personal digital assistant (PDA), a point of sales (POS), a vehicle-mounted computer, and the like, and the terminal device is used as a mobile phone as an example:
  • PDA personal digital assistant
  • POS point of sales
  • vehicle-mounted computer and the like, and the terminal device is used as a mobile phone as an example:
  • FIG. 23 is a block diagram showing a part of the structure of a mobile phone related to the terminal device provided by the embodiment of the present application.
  • the mobile phone includes: a radio frequency (RF) circuit 710, a memory 720, an input unit 730, a display unit 740, a sensor 750, an audio circuit 760, a wireless fidelity (WiFi) module 770, and a processor 780. And power supply 790 and other components.
  • RF radio frequency
  • the structure of the handset shown in FIG. 23 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
  • the RF circuit 710 can be used for transmitting and receiving information or during a call, and receiving and transmitting the signal. Specifically, after receiving the downlink information of the base station, the processor 780 processes the data. In addition, the uplink data is designed to be sent to the base station.
  • RF circuit 710 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • LNA low noise amplifier
  • RF circuitry 710 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol, including but not limited to GSM, GPRS, CDMA, WCDMA, LTE, email, short messaging service (SMS), and the like.
  • the memory 720 can be used to store software programs and modules, and the processor 780 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 720.
  • the memory 720 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 720 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 730 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 730 may include a touch panel 731 and other input devices 732.
  • the touch panel 731 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 731 or near the touch panel 731. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 731 can include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 780 is provided and can receive commands from the processor 780 and execute them.
  • the touch panel 731 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 730 may also include other input devices 732.
  • other input devices 732 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 740 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 740 can include a display panel 741.
  • the display panel 741 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 731 can cover the display panel 741. When the touch panel 731 detects a touch operation on or near the touch panel 731, it transmits to the processor 780 to determine the type of the touch event, and then the processor 780 according to the touch event. The type provides a corresponding visual output on display panel 741.
  • the touch panel 731 and the display panel 741 are two independent components to implement the input and input functions of the mobile phone, in some embodiments, the touch panel 731 can be integrated with the display panel 741. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 750, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 741 according to the brightness of the ambient light, and the proximity sensor may close the display panel 741 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • An audio circuit 760, a speaker 761, and a microphone 762 can provide an audio interface between the user and the handset.
  • the audio circuit 760 can transmit the converted electrical data of the received audio data to the speaker 761 for conversion to the sound signal output by the speaker 761; on the other hand, the microphone 762 converts the collected sound signal into an electrical signal by the audio circuit 760. After receiving, it is converted into audio data, and then processed by the audio data output processor 780, sent to, for example, another mobile phone via the RF circuit 710, or outputted to the memory 720 for further processing.
  • WiFi is a short-range wireless transmission technology
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 770, which provides users with wireless broadband Internet access.
  • FIG. 23 shows the WiFi module 770, it can be understood that it does not belong to the essential configuration of the mobile phone, and can be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 780 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 720, and invoking data stored in the memory 720, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 780 may include one or more processing units; optionally, the processor 780 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and an application. Etc.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 780.
  • the handset also includes a power supply 790 (such as a battery) that supplies power to the various components.
  • a power supply 790 (such as a battery) that supplies power to the various components.
  • the power supply can be logically coupled to the processor 780 through a power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processor 780 included in the terminal device further has the following functions:
  • first indication information sent by the network device, where the first indication information includes a first sub-information, a second sub-information, and a third sub-information, where the first sub-information is used to indicate a measurement period of the measurement, where The measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the third sub-information is used to indicate a measured start position of the second time unit relative to the measurement An offset of a start position of the period, the second sub-information being used to indicate an offset of a start position of the first time unit measured during the measurement period with respect to a measured start position of the second time unit;
  • processor 780 is specifically configured to perform the following steps:
  • processor 780 is further configured to perform the following steps:
  • FIG. 24 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device 800 may have a large difference due to different configurations or performances, and may include one or more central processing units (CPUs) 822. (e.g., one or more processors) and memory 832, one or more storage media 830 storing application 842 or data 844 (e.g., one or one storage device in Shanghai).
  • the memory 832 and the storage medium 830 may be short-term storage or persistent storage.
  • Programs stored on storage medium 830 may include one or more modules (not shown), each of which may include a series of instruction operations in a network device.
  • central processor 822 can be configured to communicate with storage medium 830, executing a series of instruction operations in storage medium 830 on network device 800.
  • Network device 800 may also include one or more power sources 826, one or more wired or wireless network interfaces 850, one or more input and output interfaces 858, and/or one or more operating systems 841, such as Windows ServerTM, Mac. OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 841 such as Windows ServerTM, Mac. OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the steps performed by the network device in the above embodiments may be based on the network device structure shown in FIG.
  • the CPU 822 included in the network device further has the following functions:
  • the first indication information is used by the terminal device to determine a measurement resource, where the first indication information includes a first sub-information, a second sub-information, and a third sub-information,
  • the first sub-information is used to indicate a measured measurement period, where the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the third sub-information is used to indicate a deviation of a measured start position of the second time unit relative to a start position of the measurement period, the second sub-information being used to indicate a start position of the first time unit measured during the measurement period relative to The offset of the measured starting position of the second time unit;
  • the CPU 822 is specifically configured to perform the following steps:
  • the CPU 822 is further configured to perform the following steps:
  • Second indication information Sending, to the terminal device, second indication information, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • the embodiment of the present application further provides another terminal device.
  • the terminal device may be any terminal device including a mobile phone, a tablet computer, a PDA, a POS, an in-vehicle computer, and the terminal device is used as a mobile phone as an example:
  • FIG. 25 is a block diagram showing a partial structure of a mobile phone related to the terminal device provided by the embodiment of the present application.
  • the mobile phone includes components such as an RF circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, a WiFi module 970, a processor 980, and a power source 990.
  • the structure of the handset shown in FIG. 25 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
  • the RF circuit 910 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. Specifically, after receiving the downlink information of the base station, it is processed by the processor 980. In addition, the uplink data is designed to be sent to the base station. Generally, RF circuit 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, an LNA, a duplexer, and the like. In addition, RF circuitry 910 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol including, but not limited to, GSM, GPRS, CDMA, WCDMA, LTE, email, SMS, and the like.
  • the memory 920 can be used to store software programs and modules, and the processor 980 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 920.
  • the memory 920 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 920 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 930 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 930 may include a touch panel 931 and other input devices 932.
  • the touch panel 931 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 931 or near the touch panel 931. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 931 can include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 980 is provided and can receive commands from the processor 980 and execute them.
  • the touch panel 931 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 930 may also include other input devices 932.
  • other input devices 932 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 940 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 940 may include a display panel 941.
  • the display panel 941 may be configured in the form of an LCD, an OLED, or the like.
  • the touch panel 931 can cover the display panel 941. When the touch panel 931 detects a touch operation on or near it, the touch panel 931 transmits to the processor 980 to determine the type of the touch event, and then the processor 980 according to the touch event. The type provides a corresponding visual output on display panel 941.
  • the touch panel 931 and the display panel 941 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 25, in some embodiments, the touch panel 931 and the display panel 941 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 950, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 941 according to the brightness of the ambient light, and the proximity sensor may close the display panel 941 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • An audio circuit 960, a speaker 961, and a microphone 962 can provide an audio interface between the user and the handset.
  • the audio circuit 960 can transmit the converted electrical data of the received audio data to the speaker 961, and convert it into a sound signal output by the speaker 961.
  • the microphone 962 converts the collected sound signal into an electrical signal, and the audio circuit 960 After receiving, it is converted into audio data, and then processed by the audio data output processor 980, sent to the other mobile phone via the RF circuit 910, or outputted to the memory 920 for further processing.
  • WiFi is a short-range wireless transmission technology
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 970, which provides users with wireless broadband Internet access.
  • FIG. 25 shows the WiFi module 970, it can be understood that it does not belong to the essential configuration of the mobile phone, and can be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 980 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 920, and invoking data stored in the memory 920, executing The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 980 may include one or more processing units; optionally, the processor 980 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and an application. Etc.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 980.
  • the handset also includes a power supply 990 (such as a battery) that supplies power to the various components.
  • a power supply 990 (such as a battery) that supplies power to the various components.
  • the power supply can be logically coupled to the processor 980 via a power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processor 980 included in the terminal device further has the following functions:
  • first indication information where the first indication information includes a first sub-information and a second sub-information, where the first sub-information is used to indicate a measured measurement period, where the measurement period includes at least a second time unit, where the second time unit includes at least two first time units, where the second sub-information is used to indicate a starting position of a time resource corresponding to the measurement resource in the measurement period;
  • processor 980 is specifically configured to perform the following steps:
  • processor 980 is further configured to perform the following steps:
  • FIG. 26 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device 1000 may generate a large difference due to different configurations or performances, and may include one or more CPUs 1022 (eg, one or more processors). And memory 1032, one or more storage media 1030 that store application 1042 or data 1044 (eg, one or one storage device in Shanghai). Among them, the memory 1032 and the storage medium 1030 may be short-term storage or persistent storage. Programs stored on storage medium 1030 may include one or more modules (not shown), each of which may include a series of instruction operations in a network device. Still further, the central processor 1022 can be configured to communicate with the storage medium 1030 to perform a series of instruction operations in the storage medium 1030 on the network device 1000.
  • Network device 1000 may also include one or more power sources 1026, one or more wired or wireless network interfaces 1050, one or more input and output interfaces 1058, and/or one or more operating systems 1041, such as Windows ServerTM, Mac. OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 1041 such as Windows ServerTM, Mac. OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the steps performed by the network device in the above embodiments may be based on the network device structure shown in FIG.
  • the CPU 1022 included in the network device further has the following functions:
  • the first indication information is used by the terminal device to determine a measurement resource
  • the first indication information includes a first sub-information and a second sub-information
  • the first sub-information The information is used to indicate a measured measurement period, the measurement period includes at least one second time unit, the second time unit includes at least two first time units, and the second sub information is used to indicate a time corresponding to the measurement resource a starting position of the resource within the measurement period, the measurement resource being determined according to a starting position of the first time unit within the measurement period;
  • the CPU 1022 is specifically configured to perform the following steps:
  • the CPU 1022 is further configured to perform the following steps:
  • Second indication information Sending, to the terminal device, second indication information, where the second indication information is used to indicate whether to perform measurement and/or reporting on the measurement resource.
  • FIG. 27 is a schematic diagram of an embodiment of a signal strength measurement system according to an embodiment of the present application.
  • the signal strength measurement system includes: a terminal device 1101 and a network device 1102;
  • the network device 1102 sends the first indication information to the terminal device 1101, where the first indication information includes the first sub-information, the second sub-information, and the third sub-information, where the first sub-information is used to indicate the measurement.
  • a measurement period comprising at least one second time unit, the second time unit comprising at least two first time units, the third sub-information being used to indicate a measured start position of the second time unit relative to the measurement An offset of a start position of the period, the second sub-information being used to indicate an offset of a start position of the first time unit measured during the measurement period with respect to a measured start position of the second time unit
  • the terminal The device 1101 determines the measurement resource according to the first indication information, where the measurement resource is determined according to the start position of the first time unit and the start position of the second time unit in the measurement period, and the terminal device 1101 is on the measurement resource.
  • the signal performs signal strength measurement, and the measurement result is obtained, and the terminal device 1101 transmits the measurement result to the network device 1102.
  • a signal strength measurement system is provided.
  • the network device can more flexibly indicate the measurement and reporting of the signal strength of the terminal device, and can accurately measure the signal strength on several symbols in the subframe, thereby Obtain more accurate CLI information for improving the quality and transmission rate of network transmission in coordinated scheduling.
  • FIG. 28 is a schematic diagram of an embodiment of a signal strength measurement system according to an embodiment of the present application.
  • the signal strength measurement system includes: a terminal device 1201 and a network device 1202.
  • the network device 1202 sends the first indication information to the terminal device 1201, where the first indication information includes the first sub-information and the second sub-information, where the first sub-information is used to indicate the measurement period of the measurement, and the measurement period Included in the at least one second time unit, the second time unit includes at least two first time units, the second sub-information is used to indicate a start position of the time resource corresponding to the measurement resource in the measurement period, and the terminal device 1201 is configured according to the first indication
  • the information determines the measurement resource, wherein the measurement resource is determined according to the start position of the first time unit in the measurement period, and the terminal device 1201 performs signal strength measurement on the signal on the measurement resource, and obtains the measurement result, and the terminal device 1201 goes to the network.
  • Device 1202 sends the measurement results.
  • a signal strength measurement system is provided.
  • the network device can more flexibly indicate the measurement and reporting of the signal strength of the terminal device, and can accurately measure the signal strength on several symbols in the subframe, thereby Obtain more accurate CLI information for improving the quality and transmission rate of network transmission in coordinated scheduling.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the readable storage medium can be any available media that can be stored by the computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the available media can be magnetic media (eg, floppy disk, hard disk, tape) ), an optical medium (for example, a digital versatile disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) or the like.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信号强度测量的方法,包括:接收第一指示信息,第一指示信息包含第一子信息、第二子信息及第三子信息,第一子信息指示测量的测量周期,第三子信息用于指示测量的第二时间单元的起始位置相对于测量周期的起始位置的偏移,第二子信息用于指示测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;根据第一指示信息确定测量资源;对测量资源上的信号进行信号强度测量;发送测量结果。本申请还提供一种终端设备、网络设备及信号强度测量系统。本申请可以更加灵活地指示终端设备进行信号强度的测量和上报,精确地测量到子帧或时隙内若干个符号上的信号强度。

Description

一种信号强度测量的方法、相关装置以及系统
本申请要求于2017年8月11日提交中国专利局、申请号为201710687953.3、发明名称为“一种信号强度测量的方法、相关装置以及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种信号强度测量的方法、相关装置以及系统。
背景技术
在无线通信系统中,对于室内热点场景或者小站密集覆盖场景,处于不同小区覆盖范围内的终端设备之间的距离会比较小,从而使得该交叉链路干扰会严重影响相邻小区内终端设备接收下行信号的性能。为了使能网络设备之间的协调调度,每个网络设备都需要预先获知自己覆盖范围内所服务的终端设备可能受到的交叉链路干扰(cross-link interference,CLI)信息。考虑到网络设备无法直接获得不同小区覆盖范围内的终端设备之间的链路信息,因此需要这些终端设备之间进行CLI信息测量,每个终端设备获取自己的CLI信息,再将测量结果上报给网络设备。
目前,为了使终端设备之间准确地获取CLI信息,网络设备可以为终端设备配置接收信号强度指示(received signal strength indication,RSSI)的测量,RSSI测量即为功率测量。网络设备通过高层信令为终端设备配置RSSI测量的参数,参数可以包括时域上的周期、测量子帧偏移、测量持续时间以及频域上的测量带宽。通过周期和测量子帧偏移的配置,终端设备可以确定具体在哪个子帧上开始进行RSSI测量。而通过测量持续时间的配置,终端设备可以确定从上述子帧的第一个符号开始进行功率测量。从频域上看,网络设备为终端设备配置了RSSI测量的带宽,该带宽通常即为该网络设备的下行带宽或最大允许带宽。
然而,从时域上看,RSSI测量只有子帧级别的偏置,小于一个子帧长度的测量持续时间也也只有一个符号的可配置值,因此,目前的测量方案无法精确地测量一个子帧内若干个符号上的信号功率。
发明内容
本申请实施例提供了一种信号强度测量的方法、相关装置以及系统,用于在协调调度中提高信号强度测量的测量精度。
有鉴于此,本申请实施例的第一方面提供一种信号强度测量的方法,可以包括:
首先终端设备可以接收网络设备发送的第一指示信息,网络设备可以是5G基站,也可以是其他类似的网络设备。其中,第一指示信息中包含了第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期中包含了至少一个第二时间单元,第二时间单元包含至少两个第一时间单元。第一时间单元可以为一个采样点,或者半 个符号,又或者是一个符号,而第二时间单元可以是一个时隙或者一个微时隙等。
所述第二子信息用于指示测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移。而第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移。通常情况下,第二时间单元属于非下行时间单元。所谓“非下行时间单元”即包含“上行时间单元”、“空时间单元”和“可上行可下行时间单元”三种类型,“空时间单元”表示既不传上行数据,又不传下行数据的时间单元。“可上行可下行时间单元”表示在NR中定义的一些可以传上行数据,也可以传下行数据的时间单元。
可以理解的是,第二子信息和第三子信息可以是两个参数(或者两条消息),也可以是同一个参数(或者同一个消息)的两个字段,或者是对同一个参数(或者同一个消息)采用预定义的方式进行解读后获取的两个信息。
接下来,终端设备可以根据第一指示信息确定测量资源,其中,该测量资源为在测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置所确定的。然后,终端设备对该测量资源上的信号进行信号强度测量,也就是进行功率测量,最后将测量结果上报给网络设备,至此,完成信号强度测量的流程。
本申请实施例中,提供了一种信号强度测量的方法,包括:首先终端设备接收网络设备发送的第一指示信息,其中,该第一指示信息中包含第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第三子信息用于指示测量的第二时间单元的起始位置相对于测量周期的起始位置的偏移,第二子信息用于指示测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移,而第二时间单元属于非下行时间单元。接下来,终端设备根据第一指示信息确定测量资源,其中,测量资源是在所测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置所确定的,然后终端设备对测量资源上的信号进行信号强度测量,获取测量结果,最后该终端设备向网络设备发送测量结果。通过上述方式,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
在一种可能的设计中,在本申请实施例的第一方面的第一种实现方式中,第一指示信息中还包含测量持续时间指示信息,该测量持续时间指示信息指示测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元,因此,测量资源就是在测量周期内,同时根据第一时间单元的起始位置、第二时间单元的起始位置以及测量持续时间所确定的。
可见,本申请实施例中,还可以在第一指示信息中加入测量持续时间指示信息,该测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元。通过上述方式,可以准确地确定需要在几个第一时间单元上进行测量,从而使得测量更加精准,提升方案的可行性和实用性。
在一种可能的设计中,在本申请实施例的第一方面的第二种实现方式中,终端设备还可以包括接收网络设备发送的测量频带指示信息,该测量频带指示信息指示了测量频带指示信息,测量频带指示信息指示测量频带。
其中,测量频带包含测量的带宽部分、测量带宽以及频域位置,或者,测量频带只包含测量的带宽部分以及测量带宽。测量带宽小于或等于带宽部分的带宽,带宽部分包含了多个频域单元,通常情况下,每个频域单元的频域资源大小都是一致的,频域单元可以是一个子载波,或者若干个连续的子载波。采用一些方式可以确定频域位置,该频域位置用于指示在带宽部分中用于测量的至少一个目标频域单元。该目标频域单元可以是连续的若干个频域单元,也可以是梳齿(comb)状的若干个频域单元。
这样的话,测量资源就是在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带共同确定的。
再次,本申请实施例中,第一指示信息中还可以包含测量频带指示信息,测量频带指示信息指示了测量频带,测量频带包含测量的带宽部分、测量带宽以及频域位置,或,测量频带包含测量的带宽部分以及测量带宽。根据上述指示信息,以达到终端设备更快且更准确地确定测量资源的效果,从而提升方案的实用性。
在一种可能的设计中,在本申请实施例的第一方面的第三种实现方式中,还可以在同一个测量频带上采用多套测量参数进行信号强度测量。具体地,终端设备接收网络设备发送的多个第一指示信息,每个第一指示信息对应一套测量参数。然后终端设备根据多个第一指示信息确定多个测量资源,其中,每个第一指示信息对应一个测量资源。接下来,终端设备将分别对各个测量资源上的信号进行信号强度测量,并且分别获取测量结果,当然,每个测量结果也对应一个测量资源。最后,终端设备向网络设备发送多个测量结果。
可选地,终端设备可以向网络设备发送该多个测量结果中的一部分。具体地,当测量结果满足一定的条件时,比如当测量得到的信号强度超过一个预定义的阈值时,终端设备才向网络设备发送该测量结果。
可见,本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用性和灵活性。
在一种可能的设计中,在本申请实施例的第一方面的第四种实现方式中,网络设备还可以向终端设备发送第二指示信息,即终端设备收到网络设备发送的第二指示信息,其中,该第二指示信息主要用于指示是否在测量资源上进行测量和/或上报。
具体地,第二指示信息可以表示为“00”、“01”、“10”和“11”,其中,“00”表示在测量资源上不进行测量且不进行上报,“01”表示在测量资源上进行测量,但不上报,“10”表示在测量资源上进行上报,但不测量,而“11”表示在测量资源上既进行测量又进行上报。
当然,上述的第二指示信息和第二指示信息所指示的内容均为一个示意,在实际应用 中,还可以是其他形式第二指示信息和指示内容,此处不做限定。
可见,本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
在一种可能的设计中,在本申请实施例的第一方面的第五种实现方式中,终端设备向网络设备发送至少一个测量结果,可以包括如下步骤:
终端设备接收网络设备发送的无线资源控制信令、媒体接入控制信令和下行控制信息中的一种或多种,然后根据无线资源控制信令或媒体接入控制信令和下行控制信息中的一种或多种,向网络设备发送每个第一指示信息所对应的测量结果。
具体地,若为周期性或半周期性上报,则可以是网络设备通过无线资源控制信令和/或媒体接入控制信令为终端设备配置上报周期和上报资源,上报周期大于或等于测量周期。其中,无线资源控制信令和媒体接入控制信令属于高层信令,终端设备可以通过高层上报的方式发送测量得到的测量结果。
若为非周期性上报,则可以是网络设备通过下行控制信息触发终端设备上报,并为终端设备配置上报资源。其中,终端设备可以通过物理层上报的方式发送测量得到的测量结果。
可见,本申请实施例中,终端设备还可以周期性或半周期性或者非周期性地将测量结果上报给网络设备。通过上述方式,如果采用无线资源控制信令和/或媒体接入控制信令,可以周期性地上报测量结果,如果采用下行控制信息则可以非周期地上报测量结果。从而提升方案的实用性和灵活性。
在一种可能的设计中,在本申请实施例的第一方面的第六种实现方式中,终端设备分别采用每组测量参数对各个测量资源进行信号强度测量,以获取每组测量参数所对应的测量结果,这个过程具体可以包括如下步骤:
首先,终端设备分别采用每组测量参数对测量资源进行信号强度测量,然后根据测量资源上的信号强度计算每组测量参数所对应的线性平均功率值。
具体地,假设第一时间单元为OFDM符号,且测量资源在时域上占用4个OFDM符号,在频域上占用6个资源块,在4个OFDM符号测得的信号强度分别为W1、W2、W3和W4,那么信号强度的线性平均方式为(W1+W2+W3+W4)/(4×6)。
最后,终端设备根据预设功率映射关系确定线性平均功率值对应的测量结果,再将测量结果上报给网络设备。
可见,本申请实施例中,终端设备可以获取到所受干扰的平均情况,通过上述方式,对于平稳的随机过程进行测量和分析,增加平均次数还能够减小偏差,以此提升方案的可行性和实用性。
在一种可能的设计中,在本申请实施例的第一方面的第七种实现方式中,终端设备分别采用每组测量参数对各个测量资源进行信号强度测量,以获取每组测量参数所对应的测量结果,这个过程具体可以包括如下步骤:
首选终端设备分别采用每组测量参数对测量资源中的各个预设颗粒度资源进行接收信 号强度测量,预设颗粒度资源就是预先定义的颗粒度资源。然后终端设备获取每个预设颗粒度资源对应的信号功率,再从每个预设颗粒度资源对应的信号功率中选择最大值作为目标信号功率,最后根据预设功率映射关系确定目标信号功率值对应的测量结果,将该测量结果上报给网络设备。
具体地,假设第一时间单元为OFDM符号,且测量资源在时域上占用4个OFDM符号,预设设定的颗粒度资源为1个OFDM×1个RB,在频域上占用6个RB,则共有4×6=24个指定的颗粒度资源。终端设备可以选取24个颗粒度资源中最大值作为处理结果。
可见,本申请实施例中,终端设备可以获取最强干扰的情况。通过上述方式,针对最强干扰的情况进行信号强度的测量,可以节省测量的资源和时间,同时提升方案的实用性和可行性。
本申请实施例的第二方面提供一种信号强度测量的方法,可以包括:
首先网络设备向终端设备发送第一指示信息,以使终端设备根据第一指示信息确定测量资源,其中,第一指示信息中包含了第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期中包含了至少一个第二时间单元,第二时间单元包含至少两个第一时间单元。第一时间单元可以为一个采样点,或者半个符号,又或者是一个符号,而第二时间单元可以是一个时隙或者一个微时隙等。
第三子信息用于指示测量的第二时间单元的起始位置相对于测量周期的起始位置的偏移,第二子信息用于指示测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移,通常情况下,第二时间单元属于非下行时间单元。所谓“非下行时间单元”即包含“上行时间单元”、“空时间单元”和“可上行可下行时间单元”三种类型,“空时间单元”表示既不传上行数据,又不传下行数据的时间单元。“可上行可下行时间单元”表示在NR中定义的一些可以传上行数据,也可以传下行数据的时间单元。
可以理解的是,第二子信息和第三子信息可以是两个参数(或者两条消息),也可以是同一个参数(或者同一个消息)的两个字段,或者是对同一个参数(或者同一个消息)采用预定义的方式进行解读后获取的两个信息。
接下来,终端设备可以根据第一指示信息确定测量资源,其中,该测量资源为在测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置所确定的。然后,终端设备对该测量资源上的信号进行信号强度测量,也就是进行功率测量,最后将测量结果上报给网络设备,至此,完成信号强度测量的流程。
本申请实施例中,提供了一种信号强度测量的方法,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
在一种可能的设计中,在本申请实施例的第二方面的第一种实现方式中,第一指示信息中还包含测量持续时间指示信息,该测量持续时间指示信息指示测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元,因此,测量资源就是在测量周期内,同时根据第一时间单元的起始位置、第二时间单元的起始位置以及测量持续时间所确定的。
可见,本申请实施例中,还可以在第一指示信息中加入测量持续时间指示信息,该测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元。通过上述方式,可以准确地确定需要在几个第一时间单元上进行测量,从而使得测量更加精准,提升方案的可行性和实用性。
在一种可能的设计中,在本申请实施例的第二方面的第二种实现方式中,还可以包括网络设备向终端设备发送测量频带指示信息,该测量频带指示信息指示了测量频带指示信息,测量频带指示信息指示测量频带。
其中,测量频带包含测量的带宽部分、测量带宽以及频域位置,或者,测量频带只包含测量的带宽部分以及测量带宽。测量带宽小于或等于带宽部分的带宽,带宽部分包含了多个频域单元,通常情况下,每个频域单元的频域资源大小都是一致的。采用一些方式可以确定频域位置,该频域位置用于指示在带宽部分中用于测量的至少一个目标频域单元。该目标频域单元可以是连续的若干个频域单元,也可以是梳齿状的若干个频域单元。
这样的话,测量资源就是在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带共同确定的。
再次,本申请实施例中,第一指示信息中还可以包含测量频带指示信息,测量频带指示信息指示了测量频带,测量频带包含测量的带宽部分、测量带宽以及频域位置,或,测量频带包含测量的带宽部分以及测量带宽。根据上述指示信息,以达到终端设备更快且更准确地确定测量资源的效果,从而提升方案的实用性。
在一种可能的设计中,在本申请实施例的第二方面的第三种实现方式中,还可以在同一个测量频带上采用多套测量参数进行信号强度测量。具体地,网络设备向终端设备发送多个第一指示信息,每个第一指示信息对应一套测量参数。然后终端设备根据多个第一指示信息确定多个测量资源,其中,每个第一指示信息对应一个测量资源。接下来,终端设备将分别对各个测量资源进行信号强度测量,并且分别获取测量结果,当然,每个测量结果也对应一个测量资源。最后,终端设备向网络设备发送多个测量结果,即网络设备接收终端设备发送的多个测量结果。
可选地,终端设备可以向网络设备发送该多个测量结果中的一部分。具体地,当测量结果满足一定的条件时,比如当测量得到的信号强度超过一个预定义的阈值时,终端设备才向网络设备发送该测量结果。
可见,本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用性和灵活性。
在一种可能的设计中,在本申请实施例的第二方面的第四种实现方式中,网络设备还可以向终端设备发送第二指示信息,即终端设备接收网络设备发送的第二指示信息,其中,该第二指示信息主要用于指示是否在测量资源上进行测量和/或上报。
具体地,第二指示信息可以表示为“00”、“01”、“10”和“11”,其中,“00”表示在测量资源上不进行测量且不进行上报,“01”表示在测量资源上进行测量,但不上报,“10”表示在测量资源上进行上报,但不测量,而“11”表示在测量资源上既进行测量又进行上报。
当然,上述的第二指示信息和第二指示信息所指示的内容均为一个示意,在实际应用中,还可以是其他形式第二指示信息和指示内容,此处不做限定。
可见,本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
在一种可能的设计中,在本申请实施例的第二方面的第五种实现方式中,网络设备接收终端设备发送的至少一个测量结果,可以包括如下步骤:
网络设备向终端设备发送无线资源控制信令、媒体接入控制信令和下行控制信息中的一种或多种,然后终端设备根据无线资源控制信令或媒体接入控制信令和下行控制信息中的一种或多种,向网络设备发送每个第一指示信息所对应的测量结果。
具体地,若为周期性或半周期性上报,则可以是网络设备通过无线资源控制信令和/或媒体接入控制信令为终端设备配置上报周期和上报资源,上报周期大于或等于测量周期。其中,无线资源控制信令和媒体接入控制信令属于高层信令,终端设备可以通过高层上报的方式发送测量得到的测量结果。
若为非周期性上报,则可以是网络设备通过下行控制信息触发终端设备上报,并为终端设备配置上报资源。其中,终端设备可以通过物理层上报的方式发送测量得到的测量结果。
可见,本申请实施例中,终端设备还可以周期性或半周期性或者非周期性地将测量结果上报给网络设备。通过上述方式,如果采用无线资源控制信令和/或媒体接入控制信令,可以周期性地上报测量结果,如果采用下行控制信息则可以非周期地上报测量结果。从而提升方案的实用性和灵活性。
本申请实施例的第三方面提供一种信号强度测量的方法,可以包括:
首先终端设备可以接收网络设备发送的第一指示信息,其中,第一指示信息中包含第一子信息以及第二子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元。第一时间单元可以为一个采样点,或者半个符号,又或者是一个符号,而第二时间单元可以是一个时隙或者一个微时隙。
第二子信息用于指示测量资源对应的时间资源在测量周期内的起始位置。通过第二子信息就可以直接精确地在测量周期中指示出测量资源,换言之,该测量资源为在测量周期内根据第一时间单元的起始位置所确定的。接下来,终端设备根据第一指示信息确定测量资源,然后,对该测量资源上的信号进行信号强度测量,也就是进行功率测量,最后将测量结果上报给网络设备,至此,完成信号强度测量的流程。
本申请实施例中,提供了一种信号强度测量的方法,包括:首先终端设备接收网络设备发送的第一指示信息,其中,第一指示信息中包含第一子信息以及第二子信息,第一子 信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第二子信息用于指示测量资源对应的时间资源在测量周期内的起始位置。接下来,终端设备根据第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置所确定的,然后终端设备对测量资源进行信号强度测量,获取测量结果,最后该终端设备向所述网络设备发送所述测量结果。通过上述方式,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
在一种可能的设计中,在本申请实施例的第三方面的第一种实现方式中,第一指示信息中还包含测量持续时间指示信息,该测量持续时间指示信息指示测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元,因此,测量资源就是在测量周期内,同时根据第一时间单元的起始位置、第二时间单元的起始位置以及测量持续时间所确定的。
可见,本申请实施例中,还可以在第一指示信息中加入测量持续时间指示信息,该测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元。通过上述方式,可以准确地确定需要在几个第一时间单元上进行测量,从而使得测量更加精准,提升方案的可行性和实用性。
在一种可能的设计中,在本申请实施例的第三方面的第二种实现方式中,还可以包括终端设备接收网络设备发送的测量频带指示信息,该测量频带指示信息指示了测量频带指示信息,测量频带指示信息指示测量频带。
其中,测量频带包含测量的带宽部分、测量带宽以及频域位置,或者,测量频带只包含测量的带宽部分以及测量带宽。测量带宽小于或等于带宽部分的带宽,带宽部分包含了多个频域单元,通常情况下,每个频域单元的频域资源大小都是一致的。采用一些方式可以确定频域位置,该频域位置用于指示在带宽部分中用于测量的至少一个目标频域单元。该目标频域单元可以是连续的若干个频域单元,也可以是梳齿状的若干个频域单元。
这样的话,测量资源就是在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带共同确定的。
再次,本申请实施例中,第一指示信息中还可以包含测量频带指示信息,测量频带指示信息指示了测量频带,测量频带包含测量的带宽部分、测量带宽以及频域位置,或,测量频带包含测量的带宽部分以及测量带宽。根据上述指示信息,以达到终端设备更快且更准确地确定测量资源的效果,从而提升方案的实用性。
在一种可能的设计中,在本申请实施例的第三方面的第三种实现方式中,终端设备接收网络设备发送的多个第一指示信息,每个第一指示信息对应一套测量参数。然后终端设备根据多个第一指示信息确定多个测量资源,其中,每个第一指示信息对应一个测量资源。接下来,终端设备将分别对各个测量资源进行信号强度测量,并且分别获取测量结果,当然,每个测量结果也对应一个测量资源。最后,终端设备向网络设备发送多个测量结果。
可选地,终端设备可以向网络设备发送该多个测量结果中的一部分。具体地,当测量结果满足一定的条件时,比如当测量得到的信号强度超过一个预定义的阈值时,终端设备才向网络设备发送该测量结果。
可见,本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用性和灵活性。
在一种可能的设计中,在本申请实施例的第三方面的第四种实现方式中,网络设备还可以向终端设备发送第二指示信息,即终端设备收到网络设备发送的第二指示信息,其中,该第二指示信息主要用于指示是否在测量资源上进行测量和/或上报。
具体地,第二指示信息可以表示为“00”、“01”、“10”和“11”,其中,“00”表示在测量资源上不进行测量且不进行上报,“01”表示在测量资源上进行测量,但不上报,“10”表示在测量资源上进行上报,但不测量,而“11”表示在测量资源上既进行测量又进行上报。
当然,上述的第二指示信息和第二指示信息所指示的内容均为一个示意,在实际应用中,还可以是其他形式第二指示信息和指示内容,此处不做限定。
可见,本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
在一种可能的设计中,在本申请实施例的第三方面的第五种实现方式中,终端设备向网络设备发送至少一个测量结果,可以包括如下步骤:
终端设备接收网络设备发送的无线资源控制信令、媒体接入控制信令和下行控制信息中的一种或多种,然后根据无线资源控制信令或媒体接入控制信令和下行控制信息中的一种或多种,向网络设备发送每个第一指示信息所对应的测量结果。
具体地,若为周期性或半周期性上报,则可以是网络设备通过无线资源控制信令和/或媒体接入控制信令为终端设备配置上报周期和上报资源,上报周期大于或等于测量周期。其中,无线资源控制信令和媒体接入控制信令属于高层信令,终端设备可以通过高层上报的方式发送测量得到的测量结果。
若为非周期性上报,则可以是网络设备通过下行控制信息触发终端设备上报,并为终端设备配置上报资源。其中,终端设备可以通过物理层上报的方式发送测量得到的测量结果。
可见,本申请实施例中,终端设备还可以周期性或半周期性或者非周期性地将测量结果上报给网络设备。通过上述方式,如果采用无线资源控制信令和/或媒体接入控制信令,可以周期性地上报测量结果,如果采用下行控制信息则可以非周期地上报测量结果。从而提升方案的实用性和灵活性。
在一种可能的设计中,在本申请实施例的第三方面的第六种实现方式中,终端设备分 别采用每组测量参数对各个测量资源进行信号强度测量,以获取每组测量参数所对应的测量结果,这个过程具体可以包括如下步骤:
首先,终端设备分别采用每组测量参数对测量资源进行信号强度测量,然后根据测量资源上的信号强度计算每组测量参数所对应的线性平均功率值。
具体地,假设第一时间单元为OFDM符号,且测量资源在时域上占用4个OFDM符号,在频域上占用6个资源块,在4个OFDM符号测得的信号强度分别为W1、W2、W3和W4,那么信号强度的线性平均方式为(W1+W2+W3+W4)/(4×6)。
最后,终端设备根据预设功率映射关系确定线性平均功率值对应的测量结果,再将测量结果上报给网络设备。
可见,本申请实施例中,终端设备可以获取到所受干扰的平均情况,通过上述方式,对于平稳的随机过程进行测量和分析,增加平均次数还能够减小偏差,以此提升方案的可行性和实用性。
在一种可能的设计中,在本申请实施例的第三方面的第七种实现方式中,终端设备分别采用每组测量参数对各个测量资源进行信号强度测量,以获取每组测量参数所对应的测量结果,这个过程具体可以包括如下步骤:
首选终端设备分别采用每组测量参数对测量资源中的各个预设颗粒度资源进行接收信号强度测量,预设颗粒度资源就是预先定义的颗粒度资源。然后终端设备获取每个预设颗粒度资源对应的信号功率,再从每个预设颗粒度资源对应的信号功率中选择最大值作为目标信号功率,最后根据预设功率映射关系确定目标信号功率值对应的测量结果,将该测量结果上报给网络设备。
具体地,假设第一时间单元为OFDM符号,且测量资源在时域上占用4个OFDM符号,预设设定的颗粒度资源为1个OFDM×1个RB,在频域上占用6个RB,则共有4×6=24个指定的颗粒度资源。终端设备可以选取24个颗粒度资源中最大值作为处理结果。
可见,本申请实施例中,终端设备可以获取最强干扰的情况。通过上述方式,针对最强干扰的情况进行信号强度的测量,可以节省测量的资源和时间,同时提升方案的实用性和可行性。
本申请实施例的第四方面提供一种信号强度测量的方法,可以包括:
首先网络设备向终端设备发送第一指示信息,以使该终端设备根据该第一指示信息确定测量资源,其中,第一指示信息中包含第一子信息以及第二子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元。第一时间单元可以为一个采样点,或者半个符号,又或者是一个符号,而第二时间单元可以是一个时隙或者一个微时隙。
第二子信息用于指示测量资源对应的时间资源在测量周期内的起始位置,通过第二子信息就可以直接精确地在测量周期中指示出测量资源,换言之,该测量资源为在测量周期内根据第一时间单元的起始位置所确定的。接下来,终端设备根据第一指示信息确定测量资源,然后,对该测量资源上的信号进行信号强度测量,也就是进行功率测量,最后将测量结果上报给网络设备,至此,完成信号强度测量的流程。
本申请实施例中,提供了一种信号强度测量的方法,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
在一种可能的设计中,在本申请实施例的第四方面的第一种实现方式中,第一指示信息中还包含测量持续时间指示信息,该测量持续时间指示信息指示测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元,因此,测量资源就是在测量周期内,同时根据第一时间单元的起始位置、第二时间单元的起始位置以及测量持续时间所确定的。
可见,本申请实施例中,还可以在第一指示信息中加入测量持续时间指示信息,该测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元。通过上述方式,可以准确地确定需要在几个第一时间单元上进行测量,从而使得测量更加精准,提升方案的可行性和实用性。
在一种可能的设计中,在本申请实施例的第四方面的第二种实现方式中,还可以包括网络设备向终端设备发送测量频带指示信息,该测量频带指示信息指示了测量频带指示信息,测量频带指示信息指示测量频带。
其中,测量频带包含测量的带宽部分、测量带宽以及频域位置,或者,测量频带只包含测量的带宽部分以及测量带宽。测量带宽小于或等于带宽部分的带宽,带宽部分包含了多个频域单元,通常情况下,每个频域单元的频域资源大小都是一致的。采用一些方式可以确定频域位置,该频域位置用于指示在带宽部分中用于测量的至少一个目标频域单元。该目标频域单元可以是连续的若干个频域单元,也可以是梳齿状的若干个频域单元。
这样的话,测量资源就是在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带共同确定的。
可见,本申请实施例中,第一指示信息中还可以包含测量频带指示信息,测量频带指示信息指示了测量频带,测量频带包含测量的带宽部分、测量带宽以及频域位置,或,测量频带包含测量的带宽部分以及测量带宽。根据上述指示信息,以达到终端设备更快且更准确地确定测量资源的效果,从而提升方案的实用性。
在一种可能的设计中,在本申请实施例的第四方面的第三种实现方式中,还可以在同一个测量频带上采用多套测量参数进行信号强度测量。具体地,网络设备向终端设备发送多个第一指示信息,每个第一指示信息对应一套测量参数。然后终端设备根据多个第一指示信息确定多个测量资源,其中,每个第一指示信息对应一个测量资源。接下来,终端设备将分别对各个测量资源上的信号进行信号强度测量,并且分别获取测量结果,当然,每个测量结果也对应一个测量资源。最后,终端设备向网络设备发送多个测量结果,即网络设备接收终端设备发送的多个测量结果。
可选地,终端设备可以向网络设备发送该多个测量结果中的一部分。具体地,当测量结果满足一定的条件时,比如当测量得到的信号强度超过一个预定义的阈值时,终端设备才向网络设备发送该测量结果。
可见,本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用性和灵活性。
在一种可能的设计中,在本申请实施例的第四方面的第四种实现方式中,网络设备还可以向终端设备发送第二指示信息,即终端设备收到网络设备发送的第二指示信息,其中,该第二指示信息主要用于指示是否在测量资源上进行测量和/或上报。
具体地,第二指示信息可以表示为“00”、“01”、“10”和“11”,其中,“00”表示在测量资源上不进行测量且不进行上报,“01”表示在测量资源上进行测量,但不上报,“10”表示在测量资源上进行上报,但不测量,而“11”表示在测量资源上既进行测量又进行上报。
当然,上述的第二指示信息和第二指示信息所指示的内容均为一个示意,在实际应用中,还可以是其他形式第二指示信息和指示内容,此处不做限定。
可见,本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
在一种可能的设计中,在本申请实施例的第四方面的第五种实现方式中,网络设备接收终端设备发送的至少一个测量结果,可以包括如下步骤:
网络设备向终端设备发送无线资源控制信令、媒体接入控制信令和下行控制信息中的一种或多种,然后终端设备根据无线资源控制信令或媒体接入控制信令和下行控制信息中的一种或多种,向网络设备发送每个第一指示信息所对应的测量结果。
具体地,若为周期性或半周期性上报,则可以是网络设备通过无线资源控制信令和/或媒体接入控制信令为终端设备配置上报周期和上报资源,上报周期大于或等于测量周期。其中,无线资源控制信令和媒体接入控制信令属于高层信令,终端设备可以通过高层上报的方式发送测量得到的测量结果。
若为非周期性上报,则可以是网络设备通过下行控制信息触发终端设备上报,并为终端设备配置上报资源。其中,终端设备可以通过物理层上报的方式发送测量得到的测量结果。
可见,本申请实施例中,终端设备还可以周期性或半周期性或者非周期性地将测量结果上报给网络设备。通过上述方式,如果采用无线资源控制信令和/或媒体接入控制信令,可以周期性地上报测量结果,如果采用下行控制信息则可以非周期地上报测量结果。从而提升方案的实用性和灵活性。
本申请实施例的第五方面提供一种终端设备,可以包括:
接收模块,用于接收网络设备发送的第一指示信息,其中,第一指示信息中包含第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第三子信息用于指 示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,第二子信息用于指示测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
确定模块,用于根据接收模块接收的第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置所确定的;
获取模块,用于对确定模块确定的测量资源上的信号进行信号强度测量,获取测量结果;
发送模块,用于向网络设备发送获取模块获取的测量结果。
在一种可能的设计中,在本申请实施例的第五方面的第一种实现方式中,第一指示信息中还包含测量持续时间指示信息,测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个所第一时间单元、四个第一时间单元或者六个第一时间单元;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量持续时间所确定的。
在一种可能的设计中,在本申请实施例的第五方面的第二种实现方式中,接收模块还用于接收测量频带指示信息,测量频带指示信息指示测量频带;
测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,测量带宽小于或等于带宽部分的带宽,带宽部分包含多个频域单元,频域位置指示在带宽部分中用于测量的目标频域单元,或,测量频带包含测量的带宽部分以及测量带宽;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带所确定的。
在一种可能的设计中,在本申请实施例的第五方面的第三种实现方式中,
接收模块,具体用于接收网络设备发送的多个第一指示信息;
确定模块,具体用于根据接收模块接收的多个第一指示信息确定多个测量资源,其中,每个第一指示信息与每个测量资源具有一一对应的关系;
获取模块,具体用于对确定模块确定的多个测量资源上的信号进行信号强度测量,获取多个测量结果,其中,每个测量结果与每个测量资源具有一一对应的关系;
发送模块,具体用于向网络设备发送获取模块获取的多个测量结果。
在一种可能的设计中,在本申请实施例的第五方面的第四种实现方式中,
接收模块,还用于接收网络设备发送的第二指示信息,其中,第二指示信息用于指示是否在测量资源上进行测量和/或上报。
本申请实施例的第六方面提供一种网络设备,可以包括:
发送模块,用于向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,第一指示信息中包含第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,第二子信息用于指示测量周期内测量的第一时间单元的 起始位置相对于测量的第二时间单元的起始位置的偏移;
接收模块,用于接收终端设备发送的测量结果,其中,测量结果为终端设备对测量资源进行信号强度测量所获取的。
在一种可能的设计中,在本申请实施例的第六方面的第一种实现方式中,第一指示信息中还包含测量持续时间指示信息,测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个所第一时间单元、四个第一时间单元或者六个第一时间单元;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量持续时间所确定的。
在一种可能的设计中,在本申请实施例的第六方面的第二种实现方式中,发送模块还用于发送测量频带指示信息,测量频带指示信息指示测量频带;
测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,测量带宽小于或等于带宽部分的带宽,带宽部分包含多个频域单元,频域位置指示在带宽部分中用于测量的目标频域单元,或,测量频带包含测量的带宽部分以及测量带宽;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带所确定的。
在一种可能的设计中,在本申请实施例的第六方面的第三种实现方式中,
发送模块,具体用于向终端设备发送多个第一指示信息,以使终端设备根据多个第一指示信息确定多个测量资源,其中,每个第一指示信息与每个测量资源具有一一对应的关系;
接收模块,具体用于接收终端设备发送的多个测量结果,其中,多个测量结果为终端设备对多个测量资源进行信号强度测量所获取的,每个测量结果与每个测量资源具有一一对应的关系。
在一种可能的设计中,在本申请实施例的第六方面的第四种实现方式中,
发送模块,还用于向终端设备发送第二指示信息,其中,第二指示信息用于指示是否在测量资源上进行测量和/或上报。
本申请实施例的第七方面提供一种终端设备,可以包括:
接收模块,用于接收网络设备发送的第一指示信息,其中,第一指示信息中包含第一子信息以及第二子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第二子信息用于指示测量资源对应的时间资源在测量周期内的起始位置;
确定模块,用于根据接收模块接收的第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置所确定的;
获取模块,用于对确定模块确定的测量资源上的信号进行信号强度测量,获取测量结果;
发送模块,用于向网络设备发送获取模块获取的测量结果。
在一种可能的设计中,在本申请实施例的第七方面的第一种实现方式中,第一指示信 息中还包含测量持续时间指示信息,测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个所第一时间单元、四个第一时间单元或者六个第一时间单元;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量持续时间所确定的。
在一种可能的设计中,在本申请实施例的第七方面的第二种实现方式中,接收模块还用于接收测量频带指示信息,测量频带指示信息指示测量频带;
测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,测量带宽小于或等于带宽部分的带宽,带宽部分包含多个频域单元,频域位置指示在带宽部分中用于测量的目标频域单元,或,测量频带包含测量的带宽部分以及测量带宽;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带所确定的。
在一种可能的设计中,在本申请实施例的第七方面的第三种实现方式中,
接收模块,具体用于接收网络设备发送的多个第一指示信息;
确定模块,具体用于根据接收模块接收的多个第一指示信息确定多个测量资源,其中,每个第一指示信息与每个测量资源具有一一对应的关系;
获取模块,具体用于对确定模块确定的多个测量资源上的信号进行信号强度测量,获取多个测量结果,其中,每个测量结果与每个测量资源具有一一对应的关系;
发送模块,具体用于向网络设备发送获取模块获取的多个测量结果。
在一种可能的设计中,在本申请实施例的第七方面的第四种实现方式中,
接收模块,还用于接收网络设备发送的第二指示信息,其中,第二指示信息用于指示是否在测量资源上进行测量和/或上报。
本申请实施例的第八方面提供一种网络设备,可以包括:
发送模块,用于向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,第一指示信息中包含第一子信息以及第二子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第二子信息用于指示测量资源对应的时间资源在测量周期内的起始位置,测量资源为在测量周期内根据第一时间单元的起始位置所确定的;
接收模块,用于接收终端设备发送的测量结果,其中,测量结果为终端设备对测量资源进行信号强度测量所获取的。
在一种可能的设计中,在本申请实施例的第八方面的第一种实现方式中,第一指示信息中还包含测量持续时间指示信息,测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个所第一时间单元、四个第一时间单元或者六个第一时间单元;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量持续时间所确定的。
在一种可能的设计中,在本申请实施例的第八方面的第二种实现方式中,发送模块还 用于发送测量频带指示信息,测量频带指示信息指示测量频带;
测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,测量带宽小于或等于带宽部分的带宽,带宽部分包含多个频域单元,频域位置指示在带宽部分中用于测量的目标频域单元,或,测量频带包含测量的带宽部分以及测量带宽;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带所确定的。
在一种可能的设计中,在本申请实施例的第八方面的第三种实现方式中,
发送模块,具体用于向终端设备发送多个第一指示信息,以使终端设备根据多个第一指示信息确定多个测量资源,其中,每个第一指示信息与每个测量资源具有一一对应的关系;
接收模块,具体用于接收终端设备发送的多个测量结果,其中,多个测量结果为终端设备对多个测量资源上的信号进行信号强度测量所获取的,每个测量结果与每个测量资源具有一一对应的关系。
在一种可能的设计中,在本申请实施例的第八方面的第四种实现方式中,
发送模块,还用于向终端设备发送第二指示信息,其中,第二指示信息用于指示是否在测量资源上进行测量和/或上报。
本申请实施例的第九方面提供一种终端设备,可以包括:存储器、收发器、处理器以及总线系统;
其中,所述存储器用于存储程序和指令;
所述收发器用于在所述处理器的控制下接收或发送信息;
所述处理器用于执行所述存储器中的程序;
所述总线系统用于连接所述存储器、所述收发器以及所述处理器,以使所述存储器、所述收发器以及所述处理器进行通信;
所述处理器用于调用所述存储器中的程序指令,执行如上述第一方面中任一项所述的方法。
本申请实施例的第十方面提供一种网络设备,其特征在于,包括:存储器、收发器、处理器以及总线系统;
其中,存储器用于存储程序和指令;
收发器用于在处理器的控制下接收或发送信息;
处理器用于执行存储器中的程序;
总线系统用于连接存储器、收发器以及处理器,以使存储器、收发器以及处理器进行通信;
处理器用于调用存储器中的程序指令,执行如上述第二方面中任一项所述的方法。
本申请实施例的第十一方面提供一种终端设备,其特征在于,包括:存储器、收发器、处理器以及总线系统;
其中,存储器用于存储程序和指令;
收发器用于在处理器的控制下接收或发送信息;
处理器用于执行存储器中的程序;
总线系统用于连接存储器、收发器以及处理器,以使存储器、收发器以及处理器进行通信;
处理器用于调用存储器中的程序指令,执行如上述第三方面中任一项所述的方法。
本申请实施例的第十二方面提供一种网络设备,其特征在于,包括:存储器、收发器、处理器以及总线系统;
其中,存储器用于存储程序和指令;
收发器用于在处理器的控制下接收或发送信息;
处理器用于执行存储器中的程序;
总线系统用于连接存储器、收发器以及处理器,以使存储器、收发器以及处理器进行通信;
处理器用于调用存储器中的程序指令,执行如上述第四方面中任一项所述的方法。
本申请实施例第十三方面提供了一种信号强度测量系统,该信号强度测量系统可以包括终端设备以及网络设备;
该终端设备为上述第五方面以及第五方面第一种至第四种可能实现方式中任一项所述的终端设备;
该网络设备为上述第六方面以及第六方面第一种至第四种可能的实现方式中任一项所述的网络设备。
本申请实施例第十四方面提供了一种信号强度测量系统,该信号强度测量系统可以包括终端设备以及网络设备;
该终端设备为上述第七方面以及第七方面第一种至第四种可能实现方式中任一项所述的终端设备;
该网络设备为上述第八方面以及第八方面第一种至第四种可能的实现方式中任一项所述的网络设备。
第十五方面,本申请实施例提供一种计算机设备,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该服务器运行时,该处理器执行该存储器存储的该计算机执行指令,以使该服务器执行如上述任一方面的方法。
第十六方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述方法所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述中任一方面的方法。
第十七方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面的方法。
另外,第五方面至第十七方面任一种设计方式所带来的技术效果可参见第一方面至第四方面中不同设计方式所带来的技术效果,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,提供了一种信号强度测量的方法,包括:首先终端设备接收网络设 备发送的第一指示信息,其中,该第一指示信息中包含第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第三子信息用于指示测量的第二时间单元的起始位置相对于测量周期的起始位置的偏移,第二子信息用于指示测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移。接下来,终端设备根据第一指示信息确定测量资源,其中,测量资源是在所测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置所确定的,然后终端设备对测量资源进行信号强度测量,获取测量结果,最后该终端设备向所述网络设备发送所述测量结果。通过上述方式,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
附图说明
图1为本申请实施例中服务小区的上行传输干扰邻小区下行传输的示意图;
图2为本申请实施例中信号强度测量的方法一个实施例示意图;
图3为本申请实施例中一个测量周期的示意图;
图4为本申请实施例中第一时间单元和第二时间单元的一个示意图;
图5为本申请实施例中第一时间单元和第二时间单元的另一个示意图;
图6为本申请实施例一中的二级指示测量资源实施例示意图;
图7为本申请实施例中一个测量频带的示意图;
图8为本申请实施例中测量频带的带宽部分示意图;
图9为本申请实施例中不同配置下测量带宽以及频域位置的示意图;
图10为本申请实施例中两个小区之间协调进行参考信号发送和信号强度测量的示意图;
图11为本申请应用场景中信号强度测量系统的架构示意图;
图12为本申请应用场景中二级指示测量资源的一个示意图;
图13为本申请应用场景中二级指示测量资源的另一个示意图;
图14为本申请实施例中信号强度测量的方法另一个实施例示意图;
图15为本申请实施例二中的一级指示测量资源实施例示意图;
图16为本申请应用场景中信号强度测量系统的另一个架构示意图;
图17为本申请应用场景中一级指示测量资源的一个示意图;
图18为本申请应用场景中一级指示测量资源的另一个示意图;
图19为本申请实施例中终端设备一个实施例示意图;
图20为本申请实施例中网络设备一个实施例示意图;
图21为本申请实施例中终端设备一个实施例示意图;
图22为本申请实施例中网络设备一个实施例示意图;
图23为本申请实施例中终端设备一个结构示意图;
图24为本申请实施例中网络设备一个结构示意图;
图25为本申请实施例中终端设备一个结构示意图;
图26为本申请实施例中网络设备一个结构示意图;
图27为本申请实施例中信号强度测量系统一个实施例示意图;
图28为本申请实施例中信号强度测量系统一个实施例示意图。
具体实施方式
本申请实施例提供了一种信号强度测量的方法、相关装置以及系统,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本申请实施例的技术方案可以应用于多种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统或第五代移动通信技术(5th-generation,5G)等,需要说明的是,本申请实施例并不限定具体的通信系统。
为了便于理解,请参阅图1,图1为本申请实施例中服务小区的上行传输干扰邻小区下行传输的示意图,在无线通信系统中,按照发送节点和接收节点种类的不同,可以将通信分为不同的类型。通常,将网络设备向终端设备发送信息称为下行(downlink,DL)通信,将终端设备向网络设备发送信息称为上行(uplink,UL)通信。在LTE及长期演进高级(long term evolution advanced,LTE-A)通信系统中,对于使用同一个工作频段且地理上的距离较近的网络设备覆盖的区域,该区域内的所有小区必须同时为上行通信,或同为下行通信。但考虑到系统中的终端设备分布的不均匀,通信的业务量也不相同,处于同一频段覆盖下的小区在同一时刻的下行业务量和上行业务量差异较大,所有小区采用相同的上下行通信配置,无法满足每个小区的不同业务量的需求。
为了提升网络传输资源的利用率,在第五代无线通信系统的新无线接入技术(new  radio access technology,NR)中,可以采用灵活双工技术,即使对使用相同或者重叠频段的多个相邻小区,每个小区的通信方向配置可以是独立的。例如,各小区可以根据当前各自小区上下行业务的比例来确定本小区在一段较长时间端内,上行通信时间端和下行通信时间段的配比,或者动态的调整每个时间段内的通信类型。但图1所示,当相邻的服务小区在同一时间且同一频段内分别进行上行和下行传输时,会导致服务小区内的终端设备所发送的上行信号干扰相邻小区内终端设备所接收的下行信号,也即出现终端设备间的CLI。
尤其对于室内热点场景或者小站密集覆盖场景,小区半径较小,处于不同小区覆盖范围内的终端设备之间的距离会比较小,从而使得该CLI会严重影响相邻小区内终端设备接收下行信号的性能。为了避免出现终端设备之间的CLI,相邻的两个或多个网络设备可以采用协调调度的方法,例如,当第一网络设备调度其所服务的一个或多个终端设备下行传输时,相邻的第二网络设备不调度受到第一网络设备范围内的终端设备强CLI的第二终端设备。或者,把第二终端设备调度到第二网络设备与第一网络设备传输方向相同的时频资源中,从而避免CLI。
为了使能网络设备之间的协调调度,每个网络设备都需要预先获知自己覆盖范围内所服务的终端设备可能受到的CLI信息。考虑到网络设备无法直接获得不同小区覆盖范围内的终端设备之间的链路信息,因此需要这些终端设备之间进行CLI测量,每个终端获取自己的CLI信息,再将测量结果上报给网络设备。为了使终端之间准确地获取其可能受到的CLI信息,网络设备应能配置其终端可以对其他小区的终端的可发送的参考信号进行测量,如探测参考信号(sounding reference signal,SRS)或者解调参考信号(demodulation reference signal,DMRS)。以NR系统中发送SRS为例,SRS的可能在一个时隙中的倒数第1个符号、倒数后2个符号或者倒数后4个符号上进行发送,因此网络设备需要配置终端设备在上述可能的位置进行CLI测量。
网络终端可以为终端设备配置周期性地测量一段时间和一段频段内的接收信号强度,并进行反馈,也就是测量RSSI,RSSI测量是功率。在RSSI的测量机制中,网络设备可以通过高层信令为终端设备配置RSSI测量相关的参数,这些参数包括时域上的周期、时域上的测量子帧偏移、时域上的测量持续时间以及频域上的测量带宽。
从时域上看,RSSI测量只有子帧级别的偏置,小于一个子帧长度的测量持续时间也也只有一个符号的可配置值,因此,目前的测量方案无法精确地测量一个子帧内若干个符号上的信号功率。从频域上看,现有RSSI测量无法指定一个小区下的系统频带中的带宽部分(bandwidth part,BP)或频域位置,因此,目前的测量方案无法精确地测量一个频带内特定BP上或特定频域位置上的信号功率。
为了获取到更准确的CLI信息,本申请将介绍一种信号强度测量的机制。需要说明的是,本申请不仅可以应用于CLI信息的测量,也可以用于同向链路干扰测量和噪声测量等,本申请是以测量CLI信息为例进行介绍,然而,这并不应构成对本申请的限定。
实施例一:二级指示
请参阅图2,图2为本申请实施例中信号强度测量的方法一个实施例示意图,本申请 实施例中信号强度测量的方法一个实施例包括:
101、网络设备向终端设备发送第一指示信息,终端设备接收网络设备发送的第一指示信息,其中,第一指示信息中包含第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第三子信息用于指示测量的第二时间单元的起始位置相对于测量周期的起始位置的偏移,第二子信息用于指示测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
本实施例中,网络设备首先向终端设备发送包含第一子信息、第二子信息以及第三子信息的第一指示信息,终端设备可以根据收到的第一子信息、第二子信息以及第三子信息确定需要进行测量的资源。
具体地,第一子信息可以指示测量的测量周期,测量周期包含了至少一个第二时间单元,而第二时间单元包含了至少两个第一时间单元,本申请中,一个测量周期通常包括至少两个第二时间单元,这样的话,可以便于完成二级指示的流程。为了便于理解,请参阅图3,图3为本申请实施例中一个测量周期的示意图,如图所示,一个测量周期可以为640毫秒(ms),从时域上看,一个子帧的时间长度为1ms,也就是一个测量周期可包含640个子帧。每个子帧中包含至少一个第二时间单元,而第二时间单元包含了至少两个第一时间单元。假设第二时间单元在图3中表示为空白格子,第一时间单元在图3中表示为黑色格子,那么第三指示信息所指示的就是从测量周期的开始位置到第二时间单元开始位置的偏移量(这里偏移量的计数单位为第二时间单元),以标号为2的第二时间单元为例,那么第三指示信息即为“2”。
第二子信息所指示的就是在测量周期内,第一时间单元开始位置相对于被测量的第二时间单元的开始位置的偏移量(这里偏移量的计数单位为第一时间单元),以黑色格子对应的第一时间单元为例,被测量的第二时间单元为标号2指示的第二时间单元,那么第一时间单元刚好在这个第二时间单元内,且为这个第二时间单元中的第一个第一时间单元,即第二指示信息为“0”。
可以理解的是,在实际应用中,第二子信息所指示的第一时间单元可以在第三子信息所指示的第二时间单元内,也可以不在第三子信息所指示的第二时间单元内。例如,一个测量周期包含4个第二时间单元,每个第二时间单元中包含了3个第一时间单元,假设对于第二时间单元而言,偏移可取值为0或2,对于第一时间单元而言,偏移可取值为0、1、2、3、4或5,那么,若第三子信息所指示的第二时间单元偏移值为0,第二子信息所指示的第一时间单元偏移值为4,则第二子信息所指示的第一时间单元在第二时间单元偏移值为1的第二时间单元中,而不在第三子信息所指示的第二时间单元偏移值为0的第二时间单元中。又例如,若第三子信息所指示的第二时间单元偏移值为0,第二子信息所指示的第一时间单元偏移值为1,则第二子信息所指示的第一时间单元在第三子信息所指示的第二时间单元偏移值为0的第二时间单元中。
通常情况下,需要配置至少一个RSSI测量周期与至少一个SRS的周期相同,该SRS是周期性或半周期性的,这样可以使得终端设备在每个测量周期内都能测得来自其他终端设 备发送的参考信息,获得来自其他终端设备对该终端设备产生的信号强度信息。
类似地,第二时间单元的取值范围与干扰源终端设备发送SRS的时间单位对应,具体地,第二时间单元的取值范围为系统中上行时隙对应的时隙位置。
其中,第二时间单元可以为时隙(slot)或者微时隙(mini-slot)。第二时间单元属于非下行时间单元,所谓“非下行时间单元”即包含“上行时间单元”、“空时间单元”和“可上行可下行时间单元”三种类型,“空时间单元”表示既不传上行数据,又不传下行数据的时间单元。“可上行可下行时间单元”表示在NR中定义的一些可以传上行数据,也可以传下行数据的时间单元。
第一时间单元可以为正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号或者半个OFDM符号。可以理解的是,一个OFDM符号在时域上占很多个采样点,多个采样点组成了1个OFDM符号,所以理论上说,NR系统里时域上的第一时间单元还可以是1个采样点,这个采样点比一个OFDM符号在时域上更小。
可以理解的是,第二子信息和第三子信息可以是两个参数(或者两条消息),也可以是同一个参数(或者同一个消息)的两个字段,或者是对同一个参数(或者同一个消息)采用预定义的方式进行解读后获取的两个信息。
其中,对同一个参数(或者同一个消息)采用预定义的方式进行解读后获取的两个信息的示例可以是,例如,假设传输给用户一个参数(或者消息)I,通过如下方式可以解读出第二子信息和第三子信息:
表1
I的取值 第二子信息 第三子信息
0 符号0 时隙0
1 符号0 时隙10
2 符号2 时隙10
3 符号4 时隙10
其中,该参数(或者消息)与第二子信息和第三子信息的解读方式是预定义的,上表中仅为示例用,并不应理解为对本申请的限定。
102、终端设备根据第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置所确定的;
本实施例中,终端设备根据第一指示信息确定接下来需要进行测量的测量资源,该测量资源是在测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置共同决定的。
103、终端设备对测量资源上的信号进行信号强度测量,获取测量结果;
本实施例中,在每一次信号强度测量结束之后,终端设备可以获得在指示的测量资源上测得的信号强度。为了便于衡量不同测量资源配置下的干扰强度,终端设备可以对测量得到的信号强度进行处理,具体处理方式如下所述。
第一种处理方式:线性平均法
一种可行的方式是把多个第一时间单元和多个资源块(resource block,RB)频率范 围内测得的信号强度做线性平均。具体地,假设第一时间单元为OFDM符号,一个RB在频域上占用12个子载波,且测量资源在时域上占用2个OFDM符号,在频域上占用4个RB,在2个OFDM符号测得的信号强度分别为W1和W2,那么信号强度的线性平均方式为(W1+W2)/(2×4)。这种方法可以获得终端设备受到干扰的平均情况。
第二种处理方式,最大取值法
另一种可行的方式是从多个第一时间单元和多个RB频率范围测得的信号强度中选取一定颗粒度资源上的最大值。具体地,假设第一时间单元为OFDM符号,一个RB在频域上占用12个子载波,颗粒度资源为1个OFDM×1个RB,且测量资源在时域上占用2个OFDM符号,在频域上占用4个RB,则共有2×4=8个指定的颗粒度资源。终端设备可以选取8个颗粒度资源中最大值作为处理结果。这种方法可以获得该终端设备受到的最强干扰的情况。
此外,在网络设备和终端设备之间还可以预定义一套映射关系,指示测量的信号强度与上报的测量结果之间的关系。请参阅表2,表2为使用4位二进制比特测量结果进行上报的具体示例。
表2
Figure PCTCN2018096766-appb-000001
需要说明的是,表2中的映射关系仅为一个示意,在实际应用中,还可以是其他的配置方式,此处不做限定。
其中,表1的二进制比特即为测量结果,这是因为终端设备与网络设备通信通常是采用二进制比特,在终端设备和网络设备两侧均维护同一个如表1所示的映射关系,这样的话,当双方可以根据同样的映射关系来获取对端所传输的信息。例如,终端设备测量得到的信号强度为-85dBm,那么该终端设备根据该结果确定上报RSSI_02,即向网络设备发送 0010的二进制比特。
可以理解的是,每套配置参数下的测量结果分别独立进行上述处理操作。
104、终端设备向网络设备发送测量结果,网络设备接收终端设备发送的测量结果,其中,测量结果为终端设备对测量资源上的信号进行信号强度测量所获取的。
本实施例中,终端设备在处理得到测量结果之后,即可向网络设备发送该测量结果,网络设备具体可以是5G基站(g Node B,gNB),至此,完成信号强度测量的流程。
终端设备可以周期性或者非周期性地向网络设备发送测量结果。
具体地,若为周期性或半周期性上报,则可以是网络设备通过无线资源控制信令(radio resource control,RRC)和/或媒体接入控制(media access control,MAC)信信令为终端设备配置上报周期和上报资源,上报周期大于或等于测量周期。其中,无线资源控制信令和媒体接入控制信令属于高层信令,终端设备可以通过高层上报的方式发送测量得到的测量结果。
若为非周期性上报,则可以是网络设备通过下行控制信息(downlink control information,DCI)触发终端设备上报,并为终端设备配置上报资源。其中,终端设备可以通过物理层上报的方式发送测量得到的测量结果。
本申请实施例中,提供了一种信号强度测量的方法,包括:首先终端设备接收网络设备发送的第一指示信息,其中,该第一指示信息中包含第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第三子信息用于指示测量的第二时间单元的起始位置相对于测量周期的起始位置的偏移,第二子信息用于指示测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移。接下来,终端设备根据第一指示信息确定测量资源,其中,测量资源是在所测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置所确定的,然后终端设备对测量资源进行信号强度测量,获取测量结果,最后该终端设备向所述网络设备发送所述测量结果。通过上述方式,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
可选地,在上述图2对应的基础上,本申请实施例提供的信号强度测量的方法第一个可选实施例中,第一指示信息中还可以包含测量持续时间指示信息,测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量持续时间所确定的。
本实施例中,在第一指示信息中还可以加入测量持续时间指示信息,该测量持续时间指示信息主要用于指示测量所需持续时间,通常测量持续时间可以包含一个第一时间单元或者两个第一时间单元,又或者四个时间单元,
具体地,为了便于理解,请参阅图4,图4为本申请实施例中第一时间单元和第二时 间单元的一个示意图,如图所示,一个第二时间单元包含7个第一时间单元,假设第二时间单元为slot,第一时间单元为OFDM符号,采用SRS进行终端设备之间的信号强度测量,通过物理层或者高层指示OFDM符号偏置,OFDM符号偏置即为OFDM符号的起始位置。同时,通过测量持续时间指示信息指示测量持续时间,可以包括一个slot内倒数第0个、倒数第1个、倒数第2个和倒数第3个OFDM符号中的至少一个。相比正数指示起始位置,倒数指示的方式可以不受slot配置或循环前缀(cyclic prefix,CP)长度的影响。
类似地,请参阅图5,图5为本申请实施例中第一时间单元和第二时间单元的另一个示意图,如图所示,一个第二时间单元包含14个第一时间单元,假设第二时间单元为slot,第一时间单元为OFDM符号,采用SRS进行终端设备之间的信号强度测量,通过物理层或者高层指示OFDM符号偏置,OFDM符号偏置即为OFDM符号的起始位置。同时,通过测量持续时间指示信息指示测量持续时间,可以包括一个slot内倒数第0个、倒数第1个、倒数第2个和倒数第3个OFDM符号中的至少一个。
可以理解的是,图4和图5所示的SRS区域仅为一个示意,在实际应用中,测量持续时间还可以包含其他个数的第一时间单元,且发送SRS的位置也并不局限于此。
为了便于理解,请参阅图6,图6为本申请实施例一中的二级指示测量资源实施例示意图,如图所示,假设测量周期为100ms,每10ms为一个第二时间单元,也就是每个第二时间单元中包含10个第一时间单元,具体地,若第二时间单元为时隙,那么第一时间单元可以为OFDM符号。如果希望测量的起始位置是100个符号中的第13个符号,那么二级指示需要通过两个步骤来完成指示。第一步为,指示测量的起始时间位于第二个时隙,即对应第二时间单元1;第二步为,指示测量的起始时间位于第二个时隙的第三个OFDM符号,即对应第二时间单元2中的时间单元2。如果加入测量持续时间指示信息,则可以进一步指示占用几个OFDM符号进行测量。比如指示测量持续时间为4个符号,则表示测量资源的时域范围为连续的4个符号
其次,本申请实施例中,还可以在第一指示信息中加入测量持续时间指示信息,该测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元。通过上述方式,可以准确地确定需要在几个第一时间单元上进行测量,从而使得测量更加精准,提升方案的可行性和实用性。
可选地,在上述图2或图2对应的第一个实施例基础上,本申请实施例提供的信号强度测量的方法第二个可选实施例中,还可以包括终端设备接收网络设备发送的测量频带指示信息,测量频带指示信息指示了测量频带;
测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,测量带宽小于或等于带宽部分的带宽,带宽部分包含多个频域单元,频域位置指示在带宽部分中用于测量的目标频域单元,或,测量频带包含测量的带宽部分以及测量带宽;
测量资源为在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带所确定的。
本实施例中,在上述实施例中介绍了如何指示测量资源所对应的时域资源,下面将介 绍如何指示该测量资源所对应的频域资源。即,终端设备还可以接收测量频带指示信息,测量频带指示信息指示了测量频带,其中,测量频带包含测量的带宽部分(bandwidth part,BP)、测量带宽以及频域位置,或者测量频带只包含测量的BP以及BW。测量资源就是在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带共同确定的。
可以理解的是,可以在第一指示信息中包含测量频带指示信息,也可以在其他的信息中携带该测量频带指示信息,此处不做限定。
请参阅图7,图7为本申请实施例中一个测量频带的示意图,如图所示,终端设备1和终端设备2可以在不同的测量频带上进行信号强度测量,终端设备进行信号强度测量的BP等于终端设备的DL BP。若终端设备工作与多个DL BP,则可以配置多个信号强度测量的BP,多个BP之间的时域配置也可以不同。
下面将具体介绍如何指示频域位置,因为在测量的过程中需要先指示终端设备在哪一个BP上进行测量,然后进一步确定频域配置结果。
第一种频域位置指示方式为,先将一个BP的频带划分为若干个频域单元,通常情况下,每个频域单元的频域资源大小都是一致的。采用一些方式可以确定频域位置,该频域位置用于指示在带宽部分中用于测量的至少一个目标频域单元。该目标频域单元可以是连续的若干个频域单元,也可以是梳齿状的若干个频域单元。举个例子,假设梳齿级别为2,每2个频域单元中有1个频域单元属于目标频域单元,目标频域单元的频域单元是等间隔排布的。再举个例子,假设梳齿级别为4,每4个频域单元中有1个频域单元属于目标频域单元,通常情况下,目标频域单元的频域单元是等间隔排布的。
然后预定义索引和至少一个频域单元之间的映射关系,通过给终端设备指示一个索引值,以达到指示一个BP内的频域位置和测量带宽的目的。请参阅图8,图8为本申请实施例中测量频带的带宽部分示意图,如图所示,假设把一个BP划分为4个频域单元,然后预定义索引和频域单元之间的映射关系,该映射关系如表3所示。
表3
索引 指示频域单元 索引 指示频域单元
0 0 1 1
2 2 3 3
4 0,1 5 1,2
6 2,3 7 0,2
8 1,3 9 0,3
10 0,1,2 11 0,1,3
12 0,2,3 13 1,2,3
14 0,1,2,3    
当然,表3所示的映射关系仅为一个示意,不应理解为对本申请的限定。在进行频域配置时,仅需要指示UE的一个索引值,终端设备即可知道进行测量的频域位置和测量带宽。为了便于理解,请参阅图9,图9为本申请实施例中不同配置下测量带宽以及频域位置的示意图,结合表3来看,假设配置1指示索引值为“6”,则指示频域单元2和频域单元3。假设配置2指示索引值为“10”,则指示频域单元0、频域单元1和频域单元2。
第二种频域位置指示方式为,通过指示测量频带在BP中的起始位置,以及指示测量频带在该BP中的测量带宽来确定测量频带。比如,还是以图9为例,对于配置1而言,相当于起始位置为频域单元2,测量带宽为2个频域单元。对于配置2而言,相当于起始位置为频域单元0,测量带宽为3个频域单元。
然而,这种指示方式下,测量频带总是连续的,而不像第一种频域指示方式,可以指示不连续的测量带宽,比如频域单元0和频域单元1。
第三种频域位置指示方式为,预定义测量频带的位置,仅指示测量频带在BP中的带宽。比如,预定义测量频带的位置为BP的中心频点位置再比如,预定义测量频带的起始位置为BP的最低频位置,指示一个测量带宽。或者预定义测量频带的结束位置为BP的最高频位置,指示一个测量带宽。
再次,本申请实施例中,第一指示信息中还可以包含测量频带指示信息,测量频带指示信息指示了测量频带,测量频带包含测量的带宽部分、测量带宽以及频域位置,或,测量频带包含测量的带宽部分以及测量带宽。根据上述指示信息,以达到终端设备更快且更准确地确定测量资源的效果,从而提升方案的实用性。
可选地,在上述图2、图2对应的第一个或第二个实施例基础上,本申请实施例提供的信号强度测量的方法第三个可选实施例中,接收网络设备发送的第一指示信息,可以包括:
接收网络设备发送的多个所述第一指示信息;
根据第一指示信息确定测量资源,可以包括:
根据多个第一指示信息确定多个测量资源,其中,每个第一指示信息与每个测量资源具有一一对应的关系;
对测量资源上的信号进行信号强度测量,获取测量结果,可以包括:
对多个测量资源上的信号进行信号强度测量,获取多个测量结果,其中,每个测量结果与每个测量资源具有一一对应的关系;
向网络设备发送测量结果,可以包括:
向网络设备发送多个测量结果。
本实施例中,若第一指示信息中携带有测量频带指示信息,那么请参阅表4,表4为两个第一指示信息中所携带的两套测量参数,测量带宽指示信息可能包含于第一指示信息中。
表4
  测量参数1 测量参数2
测量周期 100ms 150ms
第一时间单元偏置 2号OFDM符号 1号OFDM符号
第二时间单元偏置 14slot 10slot
测量持续时间 4个OFDM符号 2个OFDM符号
测量带宽 BW1 BW2
每套测量参数对应的测量结果可以分别在各自的BP上上报,或者在同一个指定的BP上进行上报,在此不作限定。即终端设备将测量结果上报给网络设备,并且每套测量参数指定资源的测量结果分别独立上报,也就是每个测量资源上的测量结果不会再平均或求和等操作,这有利于网络设备判断终端设备在各测量资源上的受干扰程度,以便进行协调调度。
可选地,终端设备可以向网络设备发送该多个测量结果中的一部分。具体地,当测量结果满足一定的条件时,比如当测量得到的信号强度超过一个预定义的阈值时,终端设备才向网络设备发送该测量结果。
进一步地,本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用性和灵活性。
可选地,在上述图2、图2对应的第一个至第三个实施例中任一项的基础上,本申请实施例提供的信号强度测量的方法第四个可选实施例中,还可以包括:
网络设备向终端设备发送第二指示信息,终端设备接收网络设备发送的第二指示信息,其中,第二指示信息用于指示是否在测量资源上进行测量和/或上报。
本实施例中,网络设备还可以向终端设备发送第二指示信息,与第一指示信息不同的是,第二指示信息用于指示是否需要在测量资源上进行测量和/或上报。
具体地,请参阅表5,表5为第二指示信息的一种指示方式。
表5
第二指示信息 指示内容
00 在测量资源上不进行测量且不进行上报
01 在测量资源上进行测量,但不上报
10 在测量资源上进行上报,但不测量
11 在测量资源上既进行测量又进行上报
需要说明的是,表5中的第二指示信息和指示内容均为一个示意,在实际应用中,还可以是其他形式第二指示信息和指示内容,此处不做限定。
更进一步地,本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
小区1和小区2协调SRS参考信号的发送和RSSI的测量,使得各自的终端设备可以互相测量CLI。请参阅图10,图10为本申请实施例中两个小区之间协调进行参考信号发送和信号强度测量的示意图,如图所示,假设一个测量周期中包含若干个第二时间单元,且一个第二时间单元中包含7个第一时间单元。在第一个第二时间单元的第6个第一时间单元上,小区1配置小区1中的终端设备发送SRS,同时小区2配置小区2中的终端设备获取该资源上的RSSI,从而使得小区2的终端设备测得小区1中的终端设备可能产生的CLI。在第二个第二时间单元的第6个第一时间单元上,小区2配置小区2中的终端设备发送SRS,同时小区1配置小区1中的终端设备获取该资源上的RSSI,从而使得小区1的终端设备测得小区2中的终端设备可能产生的CLI。
为便于理解,下面可以以一个具体应用场景对本申请中信号强度测量的过程进行详细描述,本申请主要应用于无线通信系统,具体可以应用于采用了灵活双工的无线通信系统,如NR系统,请参阅图11,图11为本申请应用场景中信号强度测量系统的架构示意图,如图所示,在第一网络设备的覆盖范围内存在第一终端设备(图11中以一个终端设备为例,也可以是多个终端设备),在第一网络设备附近存在第二网络设备和第三网络设备,以及第二网络设备覆盖范围内的第二终端设备,以及第三网络设备覆盖范围内的第三终端设备。此外,可以理解的是,在实际情况中,还可能存在更多的网络设备或者更少的网络设备,对应地,每个网络设备的覆盖范围下也可以存在一个或多个终端设备,图11仅为一个示意,并不应理解为对本应用场景的限定。
其中,网络设备是指网络侧用于发射信号或者接收信号的实体,这里以gNB为例进行介绍。终端设备是用户侧用于接收信号或者发射信号的实体,这里以用户设备(user equipment,UE)为例进行介绍。下面将以第一gNB中的第一UE进行测量,第二gNB中的第二UE和第三gNB中的第三UE进行参考信号的发送为例进行介绍。
具体地,第一gNB向第一UE发送两个第一指示信息,每个第一指示信息包含一套测量参数,分别指示第一UE在其多个下行BP中的两个BP上进行测量。记第一UE的两个BP分别为BP1和BP2,在BP1和BP2上配置的测量周期、第一时间单元偏置、第二时间单元偏置、测量持续时间和测量带宽。
请参阅表6,表6为两个第一指示信息中所携带的两套测量参数,测量带宽指示信息可能包含于第一指示信息中。
表6
  测量参数1 测量参数2
测量周期 P1 P2
第一时间单元偏置 SyO1 SyO2
第二时间单元偏置 SlO1 SlO2
测量持续时间 MD1 MD2
测量带宽 BW1 BW2
每个BP上的测量资源可依据上述指示确定,请参阅图12,图12为本申请应用场景中二级指示测量资源的一个示意图,如图所示,BP1上的测量周期等于BP2上的测量周期,也即P1=P2。测量周期的可配置值应至少有一个等于第二UE或第三UE可发送参考信号(如SRS)的周期中的至少一个,这样做可以使得其他gNB(如第二gNB和第三gNB)为其覆盖范围内的其他UE(如第二UE和第三UE)配置与第一UE的测量周期相同周期的参考信号(如SRS),使得第一UE可以在每个周期内都测得来自其他gNB中的其他UE发送的参考信号,获取来自其他gNB中的UE的对第一UE产生的CLI强度信息。其中,在定义了可发送SRS的周期,那么所有使用这个定义的UE都服从gNB的配置。
比如标准中UE的SRS的周期可为{10ms,80ms,320ms},则UE可配置如上3种SRS周期。假设第一网络设备可能为第一UE配置了80ms,第二网络设备可能为第二UE配置了80ms,以此类推。因此,使RSSI的可配置周期等于SRS的周期是每次都能准确测量干扰大小的先决条件,除此之外还必须做协调配置,比如周期一样,子帧偏移一样,频域位置一样等。最好的情况自然是第一UE的测量周期等于第二UE的发送周期和第三UE的发送周期。同理,第二UE的测量周期等于第一UE和第三UE的发送周期。第三UE的测量周期等于第一UE1和第二UE的发送周期。第一UE、第二UE第三UE各自的发送周期和测量周期都是由各自的gNB确定的,因此第一gNB、第二gNB及第三gNB之间应该需要协商好的。
第一时间单元为符号(symbol),第一时间单元偏置即为Symbol Offset,它也可以是其他时间单元。时间尺度上看,第一时间单元比第二时间单元偏置要小。该偏置指示了第一UE在一个Slot内进行测量的Symbol级别的起始位置。比如,BP1中的SyO1指示第一UE在Slot的倒数第二个Symbol开始进行测量,BP2中的SyO2指示第一UE在Slot的倒数第四个Symbol开始进行测量。
第二时间单元为slot,第二时间单元偏置即为Slot Offset,它也可以是子帧或其他时间单元;该偏置指示了UE在一个测量周期内进行测量的Slot级别的起始位置。比如BP1中的SlO1指示第一UE在测量周期的第2个Slot开始测量,而BP2中的SlO2指示第一UE在测量周期的第3个Slot开始测量。Slot Offset的可配置范围可限制为测量UE的非DL Slot上,这样可以减少所需要指示的Slot位置,节省指示开销。这是由于,在DL Slot上,UE不会进行上行发送,因此在DL Slot上测得的CLI强度信息并不会是来自其他UE的CLI。
测量持续时间的单位可以为Symbol,该单位也可以是其他时间单位。该持续时间指示了第一UE从起始位置开始进行测量的时间长度。比如BP1中的MD1指示了第一UE的测量持续时间为1个Symbol,BP2中的MD2指示第一UE的测量持续时间为2个Symbol。测量持续时间包括1个、2个、4个、7个或14个Symbol。
测量带宽BW1为BP1的带宽,测量带宽BW2为BP2的带宽。测量带宽的可选值应为不超过BP带宽大小的有限个带宽。需要注意的是,图13中的BP1和BP2在频域上是不相交的,但BP1和BP2是可能相交的,取决于第一gNB对第一UE的配置。但无论一个UE的BP是否相交,都不影响本方案的实行。
第一gNB可以指示其覆盖范围下的多个UE在相同的资源进行测量(比如,第一gNB指示多个UE在BP1的相同资源上测量来自第二gNB和第三gNB覆盖范围下的UE的CLI),或者多个gNB可以指示各自覆盖范围内的多个UE在相同的资源进行测量(比如,第一gNB和第二gNB指示各自覆盖范围中的多个UE在BP1的相同资源上测量来自第三gNB覆盖范围下的UE的CLI)。
在每一次测量后,第一UE可以获得在指示的资源中测得的信号功率。为了便于衡量不同测量资源配置下的干扰强度,第一UE可以对测量结果做处理。gNB和UE之间可以预定义一套映射关系,指示测量结果的功率值与上报的指示值之间的关系。第一UE的经过处理后的测量结果上报给第一gNB,并且每套测量参数指定资源的测量结果分别独立上报(也即每个资源上的测量结果不会再平均或求和等操作,这是为了有利于第一gNB判断第一UE在各资源上的受干扰程度,以便进行协调调度)。
需要说明的是,为了使得第一gNB中的第一UE可测得CLI,第一gNB、第二gNB和第三gNB等网络设备之间应该事先进行协调。非第一gNB的其他一个或多个gNB配置其一个或多个UE在协调确定的资源上发送参考信号(如SRS),而第一gNB配置其第一UE在相同的测量资源上通过上述方式确定资源并进行测量。
具体地,第一gNB还可以向第一UE发送多个第一指示信息,一套测量参数对应一个指示信息。请参阅图13,图13为本申请应用场景中二级指示测量资源的另一个示意图,如图所示,两套测量参数指示第一UE在同一个BP(如BP1)进行测量,测量周期P1为测量周期P2的两倍,BW1和BW2不相同。从图13中可以看出,即使对于同一个BP,也可以通过配置多套参数,实现不同资源上的测量。通过这种方式,可以使得干扰测量更灵活,比如第一gNB、第二gNB和第三gNB之间通过协商,第一gNB配置第一UE在上述配置1和配置2所指示的资源上分别进行测量。第二gNB配置第二UE在上述配置1的资源上发送参考信号(如SRS)。第三gNB配置第三UE在上述配置2的资源上发送参考信号(如SRS)。通过测量、处理和上报,第一gNB可以分别获知第一UE在该BP上受到的来自第二gNB中的第二UE的CLI,以及来自第三gNB中的第三UE的CLI,从而可以进行更有效的干扰协调调度。
尽管在同一个BP上进行测量,但是配置1和配置2所测得的测量结果是分别处理的,且分别上报的。
实施例二:一级指示
请参阅图14,图14为本申请实施例中信号强度测量的方法另一个实施例示意图,本申请实施例中信号强度测量的方法另一个实施例包括:
201、网络设备向终端设备发送第一指示信息,终端设备接收网络设备发送的第一指示信息,其中,第一指示信息中包含第一子信息以及第二子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第二时间单元属于非下行时间单元,第二子信息用于指示测量资源对应的时间资源在测量周期内的起始位置;
本实施例中,网络设备首先向终端设备发送包含第一子信息以及第二子信息的第一指示信息,以使得终端设备根据收到的第一子信息以及第二子信息确定需要进行测量的资源。
具体地,第一子信息可以指示测量的测量周期,一个测量周期包含了至少一个第二时间单元,而一个第二时间单元包含了至少两个第一时间单元。例如,一个测量周期可以为640ms,从时域上看,一个子帧的时间长度为1ms,也就是一个测量周期可包含640个子帧。每个子帧中包含至少一个第二时间单元。
通常情况下,需要配置至少一个RSSI测量周期与至少一个SRS的周期相同,该SRS是周期性或半周期性的,这样可以使得终端设备在每个测量周期内都能测得来自其他终端设备发送的参考信息,获得来自其他终端设备对该终端设备产生的信号强度信息。
类似地,第二时间单元的取值范围与干扰源终端设备发送SRS的时间单位对应,具体地,第二时间单元的取值范围为系统中上行slot对应的slot位置。
其中,第二时间单元可以为slot或者mini-slot。第二时间单元属于非下行时间单元,所谓“非下行时间单元”即包含“上行时间单元”、“空时间单元”和“可上行可下行时间单元”三种类型。第一时间单元可以为一个OFDM符号或者半个OFDM符号。可以理解的是,一个OFDM符号在时域上占很多个采样点,多个采样点组成了1个OFDM符号,所以理论上说,NR系统里时域上的第一时间单元还可以是1个采样点,这个采样点比一个OFDM符号在时域上更小。
在本实施例中,第二子信息用于指示测量资源对应的时间资源在测量周期内的起始位置,具体可以是直接指示第一时间单元在测量周期内的起始位置。换句话说,也就不需要先确定测量资源在第二时间单元上的起始位置,再从第二时间单元上找到第一时间单元的位置,而是一次性就定位到第一时间单元的位置。
202、终端设备根据第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置所确定的;
本实施例中,终端设备根据第一指示信息确定接下来需要进行测量的测量资源,该测量资源是在测量周期内仅根据第一时间单元的起始位置决定的。
203、终端设备对测量资源上的信号进行信号强度测量,获取测量结果;
本实施例中,在每一次信号强度测量结束之后,终端设备可以获得在指示的测量资源中测得的信号功率。为了便于衡量不同测量资源配置下的干扰强度,终端设备可以对测量得到的信号功率进行处理,具体处理方式类似实施例一中步骤103的内容,此处不做赘述。
204、终端设备向网络设备发送测量结果,网络设备接收终端设备发送的测量结果。
本实施例中,终端设备在处理得到测量结果之后,即可向网络设备发送该测量结果,网络设备具体可以是gNB,至此,完成信号强度测量的流程。步骤204类似实施例一中步骤104的内容,此处不做赘。
本申请实施例中,提供了一种信号强度测量的方法,包括:首先终端设备接收网络设备发送的第一指示信息,其中,该第一指示信息中包含第一子信息以及第二子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元可以包含至少两个第一时间单元,第二子信息用于指示测量资源对应的时间资源在所述测量周期内的起始位置,接下来,终端设备根据第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置所确定的,然后终端设备对测量资源上的信号进行信号强度测量,获取测量结果,最后向网络设备发送测量结果。通过上述方式,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
可选地,在上述图14对应的基础上,本申请实施例提供的信号强度测量的方法第一个可选实施例中,第一指示信息中还可以包含测量持续时间指示信息,测量持续时间指示信息指示测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元;
测量资源为在测量周期内,根据第一时间单元的起始位置以及测量持续时间所确定的。
本实施例中,在第一指示信息中还可以加入测量持续时间指示信息,该测量持续时间指示信息主要用于指示测量所需持续时间,通常测量持续时间可以包含一个第一时间单元或者两个第一时间单元,又或者四个时间单元。本实施例与上述实施例一对应的第一个可选实施例类似,此处不作赘述。
为了便于理解,请参阅图15,图15为本申请实施例二中的一级指示测量资源实施例示意图,如图所示,假设测量周期为100ms,一个测量周期包含100个第一时间单元,具体地,第一时间单元可以为OFDM符号。如果希望测量的起始位置是100个符号中的第13个符号,那么一级指示只需要通过一个步骤就可完成指示,即指示测量位于测量周期的的第十三个OFDM符号,对应图15中的13号位置。如果加入测量持续时间指示信息,则可以进一步指示占用几个OFDM符号进行测量。比如“13 4”,就可以认为是从第十三个OFDM符号开始,连续进行四个OFDM符号的测量。
其次,本申请实施例中,还可以在第一指示信息中加入测量持续时间指示信息,该测量持续时间指示信息指示了测量持续时间,其中,测量持续时间的可取值包含一个第一时间单元、两个第一时间单元、四个第一时间单元或者六个第一时间单元。通过上述方式,可以准确地确定需要在几个第一时间单元上进行测量,从而使得测量更加精准,提升方案的可行性和实用性。
可选地,在上述图14或图14对应的第一个实施例基础上,本申请实施例提供的信号强度测量的方法第二个可选实施例中,还可以包括终端设备接收网络涉测量频带指示信息,测量频带指示信息指示了测量频带指示信息,测量频带指示信息指示了测量频带;
测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,测量带宽小于或等于带宽部分的带宽,带宽部分包含多个频域单元,频域位置指示在带宽部分中用于测量的目标频域单元,或,测量频带包含测量的带宽部分以及测量带宽;
测量资源为在测量周期内,根据第一时间单元的起始位置以及测量频带所确定的。
本实施例中,在上述实施例中介绍了如何指示测量资源所对应的时域资源,下面将介绍如何指示该测量资源所对应的频域资源。即,第一指示信息中还可以包含测量频带指示信息,测量频带指示信息指示了测量频带,其中,测量频带包含测量的带宽部分(bandwidth part,BP)、测量带宽(bandwidth,BW)以及频域位置,或者测量频带只包含测量的BP以及BW。测量资源就是在测量周期内,根据第一时间单元的起始位置、第二时间单元的起始位置以及测量频带共同确定的。本实施例与上述实施例一对应的第二个可选实施例类似,此处不作赘述。
再次,本申请实施例中,第一指示信息中还可以包含测量频带指示信息,测量频带指示信息指示了测量频带,测量频带包含测量的带宽部分、测量带宽以及频域位置,或,测量频带包含测量的带宽部分以及测量带宽。根据上述指示信息,以达到终端设备更快且更准确地确定测量资源的效果,从而提升方案的实用性。
可选地,在上述图14、图14对应的第一个或第二个实施例基础上,本申请实施例提供的信号强度测量的方法第三个可选实施例中,接收网络设备发送的第一指示信息,可以包括:
接收网络设备发送的多个第一指示信息;
根据第一指示信息确定测量资源,可以包括:
根据多个第一指示信息确定多个测量资源,其中,每个第一指示信息与每个测量资源具有一一对应的关系;
对测量资源进行信号强度测量,获取测量结果,可以包括:
对多个测量资源进行信号强度测量,获取多个测量结果,其中,每个测量结果与每个测量资源具有一一对应的关系;
向网络设备发送测量结果,可以包括:
向网络设备发送多个测量结果。
本实施例中,还可以在在同一个BP采用多套测量参数进行信号强度测量。具体地,终端设备接收网络设备发送的多个第一指示信息,每个第一指示信息对应一套测量参数。然后终端设备根据多个第一指示信息确定多个测量资源,其中,每个第一指示信息对应一个测量资源。接下来,终端设备将分别对各个测量资源进行信号强度测量,并且分别获取测量结果,当然,每个测量结果也对应一个测量资源。最后,终端设备向网络设备发送多个测量结果。本实施例与上述实施例一对应的第三个可选实施例类似,此处不作赘述。
进一步地,本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用 性和灵活性。
可选地,在上述图14、图14对应的第一个至第三个实施例中任一项的基础上,本申请实施例提供的信号强度测量的方法第四个可选实施例中,还可以包括:
网络设备向终端设备发送第二指示信息,终端设备接收网络设备发送的第二指示信息,其中,第二指示信息用于指示是否在测量资源上进行测量和/或上报。
本实施例中,网络设备还可以向终端设备发送第二指示信息,与第一指示信息不同的是,第二指示信息用于指示是否需要在测量资源上进行测量和/或上报。具体指示方式可以参阅实施例一中第四个可选实施例的内容,此处不再赘述。
更进一步地,本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
为便于理解,下面可以以另一个具体应用场景对本申请中信号强度测量的过程进行详细描述,本申请主要应用于无线通信系统,具体可以应用于采用了灵活双工的无线通信系统,如NR系统,请参阅图16,图16为本申请应用场景中信号强度测量系统的另一个架构示意图,如图所示,在第一网络设备的覆盖范围内存在第一终端设备(图16中以一个终端设备为例,也可以是多个终端设备),在第一网络设备附近存在第二网络设备和第三网络设备,以及第二网络设备覆盖范围内的第二终端设备,以及第三网络设备覆盖范围内的第三终端设备。此外,可以理解的是,在实际情况中,还可能存在更多的网络设备或者更少的网络设备,对应地,每个网络设备的覆盖范围下也可以存在一个或多个终端设备,图16仅为一个示意,并不应理解为对本应用场景的限定。
其中,网络设备是指网络侧用于发射信号或者接收信号的实体,这里以gNB为例进行介绍。终端设备是用户侧用于接收信号或者发射信号的实体,这里以用户设备(user equipment,UE)为例进行介绍。下面将以第一gNB中的第一UE进行测量,第二gNB中的第二UE和第三gNB中的第三UE进行参考信号的发送为例进行介绍。
具体地,第一gNB向第一UE发送两个第一指示信息,每个第一指示信息包含一套测量参数,分别指示第一UE在其多个下行BP中的两个BP上进行测量。记第一UE的两个BP分别为BP1和BP2,在BP1和BP2上配置的测量周期、第一时间单元偏置、测量持续时间和测量带宽,请参阅表7,表7为两个第一指示信息中所携带的两套测量参数。
表7
  测量参数1 测量参数2
测量周期 P1 P2
第一时间单元偏置 SyO1 SyO2
测量持续时间 MD1 MD2
测量带宽 BW1 BW2
每个BP上的测量资源可依据上述指示确定,请参阅图17,图17为本申请应用场景中 一级指示测量资源的一个示意图,如图所示,BP1上的测量周期等于BP2上的测量周期,也即P1=P2。测量周期的可配置值应至少有一个等于第二UE或第三UE可发送参考信号(如SRS)的周期中的至少一个,这样做可以使得其他gNB(如第二gNB和第三gNB)为其覆盖范围内的其他UE(如第二UE和第三UE)配置与第一UE的测量周期相同周期的参考信号(如SRS),使得第一UE可以在每个周期内都测得来自其他gNB中的其他UE发送的参考信号,获取来自其他gNB中的UE的对第一UE产生的CLI强度信息。
第一时间单元为符号(symbol),第一时间单元偏置即为Symbol Offset,它也可以是其他时间单元。时间尺度上看,第一时间单元比第二时间单元偏置要小。该偏置指示了第一UE在一个Slot内进行测量的Symbol级别的起始位置。比如,BP1中的SyO1指示第一UE在第十三个Symbol开始进行测量,BP2中的SyO2指示第一UE第十八个Symbol开始进行测量。
测量持续时间的单位可以为Symbol,该单位也可以是其他时间单位。该持续时间指示了第一UE从起始位置开始进行测量的时间长度。比如BP1中的MD1指示了第一UE的测量持续时间为1个Symbol,BP2中的MD2指示第一UE的测量持续时间为2个Symbol。测量持续时间包括1个、2个、4个、7个或14个Symbol。
测量带宽BW1为BP1的带宽,测量带宽BW2为BP2的带宽。测量带宽的可选值应为不超过BP带宽大小的有限个带宽。需要注意的是,图13中的BP1和BP2在频域上是不相交的,但BP1和BP2是可能相交的,取决于第一gNB对第一UE的配置。但无论一个UE的BP是否相交,都不影响本方案的实行。
在每一次测量后,第一UE可以获得在指示的资源中测得的信号功率。为了便于衡量不同测量资源配置下的干扰强度,第一UE可以对测量结果做处理。gNB和UE之间可以预定义一套映射关系,指示测量结果的功率值与上报的指示值之间的关系。第一UE的经过处理后的测量结果上报给第一gNB,并且每套测量参数指定资源的测量结果分别独立上报(也即每个资源上的测量结果不会再平均或求和等操作,这是为了有利于第一gNB判断第一UE在各资源上的受干扰程度,以便进行协调调度)。
具体地,第一gNB还可以向第一UE发送多个第一指示信息,一套测量参数对应一个指示信息。请参阅图18,图18为本申请应用场景中一级指示测量资源的另一个示意图,如图所示,两套测量参数指示第一UE在同一个BP(如BP1)进行测量,测量周期P1为测量周期P2的两倍,BW1和BW2不相同。从图13中可以看出,即使对于同一个BP,也可以通过配置多套参数,实现不同资源上的测量。通过这种方式,可以使得干扰测量更灵活,比如第一gNB、第二gNB和第三gNB之间通过协商,第一gNB配置第一UE在上述配置1和配置2所指示的资源上分别进行测量。第二gNB配置第二UE在上述配置1的资源上发送参考信号(如SRS)。第三gNB配置第三UE在上述配置2的资源上发送参考信号(如SRS)。通过测量、处理和上报,第一gNB可以分别获知第一UE在该BP上受到的来自第二gNB中的第二UE的CLI,以及来自第三gNB中的第三UE的CLI,从而可以进行更有效的干扰协调调度。
尽管在同一个BP上进行测量,但是配置1和配置2所测得的测量结果是分别处理的, 且分别上报的。
下面对本申请中一个实施例对应的终端设备进行详细描述,请参阅图19,本申请实施例中的终端设备30包括:
接收模块301,用于接收网络设备发送的第一指示信息,其中,所述第一指示信息中包含第一子信息、第二子信息以及第三子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
确定模块302,用于根据所述接收模块301接收的所述第一指示信息确定测量资源,其中,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置和所述第二时间单元的起始位置所确定的;
获取模块303,用于对所述确定模块302确定的所述测量资源上的信号进行信号强度测量,获取测量结果;
发送模块304,用于向所述网络设备发送所述获取模块303获取的所述测量结果。
本实施例中,接收模块301接收网络设备发送的第一指示信息,其中,第一指示信息中包含第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移,确定模块302根据接收模块301接收的第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置所确定的,获取模块303对确定模块302确定的测量资源上的信号进行信号强度测量,获取测量结果。发送模块304向网络设备发送获取模块303获取的测量结果。
进一步的,接收模块301还用于执行图2中终端设备执行的步骤101等步骤。确定模块302还可以执行图2中终端设备执行的步骤102等步骤。获取模块303还用于执行图2中终端设备执行的步骤103等步骤。发送模块304还用于执行图2中终端设备执行的步骤104等步骤。本申请实施例在此不再详述。
本申请实施例中,提供了一种终端设备,该终端设备接收网络设备发送的第一指示信息,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
可选地,在上述图19所对应的实施例的基础上,本申请实施例提供的终端设备30的另一实施例中,
所述接收模块301,具体用于接收所述网络设备发送的多个所述第一指示信息;
所述确定模块302,具体用于根据所述接收模块301接收的多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的 关系;
所述获取模块303,具体用于对所述确定模块302确定的多个所述测量资源上的信号进行信号强度测量,获取多个所述测量结果,其中,每个所述测量结果与每个所述测量资源具有一一对应的关系;
所述发送模块304,具体用于向所述网络设备发送所述获取模块303获取的多个所述测量结果。
本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用性和灵活性。
可选地,在上述图19所对应的实施例的基础上,本申请实施例提供的终端设备30的另一实施例中,
所述接收模块301,还用于接收所述网络设备发送的第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
下面对本申请中一个实施例对应的网络设备进行详细描述,请参阅图20,本申请实施例中的网络设备40包括:
发送模块401,用于向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,所述第一指示信息中包含第一子信息、第二子信息以及第三子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
接收模块402,用于接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源上的信号进行信号强度测量所获取的。
本实施例中,发送模块401向终端设备发送第一指示信息,第一指示信息用于终端设备确定测量资源,其中,第一指示信息中包含第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移,接收模块402接收终端设备发送的测量结果,其中,测量结果为终端设备对测量资源上的信号进行信号强度测量所获取的。
进一步的,发送模块401还用于执行图2中网络设备执行的步骤101等步骤。接收模 块402,还可以执行图2中网络设备执行的步骤102等步骤。本申请实施例在此不再详述。
本申请实施例中,提供了一种网络设备,该网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
可选地,在上述图20所对应的实施例的基础上,本申请实施例提供的网络设备40的另一实施例中,
所述发送模块401,具体用于向所述终端设备发送多个所述第一指示信息,以使所述终端设备根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
所述接收模块402,具体用于接收所述终端设备发送的多个所述测量结果,其中,多个所述测量结果为所述终端设备对多个所述测量资源上的信号进行信号强度测量所获取的,每个所述测量结果与每个所述测量资源具有一一对应的关系。
本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用性和灵活性。
可选地,在上述图20所对应的实施例的基础上,本申请实施例提供的网络设备40的另一实施例中,
所述发送模块401,还用于向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
下面对本申请中一个实施例对应的终端设备进行详细描述,请参阅图21,本申请实施例中的终端设备50包括:
接收模块501,用于接收网络设备发送的第一指示信息,其中,所述第一指示信息中包含第一子信息以及第二子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第二子信息用于指示测量资源对应的时间资源在所述测量周期内的起始位置;
确定模块502,用于根据所述接收模块501接收的所述第一指示信息确定测量资源,其中,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置所确定的;
获取模块503,用于对所述确定模块502确定的所述测量资源上的信号进行信号强度测量,获取测量结果;
发送模块504,用于向所述网络设备发送所述获取模块503获取的所述测量结果。
本实施例中,接收模块501接收网络设备发送的第一指示信息,其中,第一指示信息中包含第一子信息以及第二子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第二子信息用于指示 测量资源对应的时间资源在测量周期内的起始位置,确定模块502根据接收模块501接收的第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置所确定的,获取模块503对确定模块502确定的测量资源上的信号进行信号强度测量,获取测量结果,发送模块504向网络设备发送获取模块503获取的测量结果。
进一步的,接收模块501还用于执行图14中终端设备执行的步骤201等步骤。确定模块502还可以执行图14中终端设备执行的步骤202等步骤。获取模块503还用于执行图14中终端设备执行的步骤203等步骤。发送模块504还用于执行图14中终端设备执行的步骤504等步骤。本申请实施例在此不再详述。
本申请实施例中,提供了一种终端设备,该终端设备接收网络设备发送的第一指示信息,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
可选地,在上述图21所对应的实施例的基础上,本申请实施例提供的终端设备50的另一实施例中,
所述接收模块501,具体用于接收所述网络设备发送的多个所述第一指示信息;
所述确定模块502,具体用于根据所述接收模块501接收的多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
所述获取模块503,具体用于对所述确定模块502确定的多个所述测量资源上的信号进行信号强度测量,获取多个所述测量结果,其中,每个所述测量结果与每个所述测量资源具有一一对应的关系;
所述发送模块504,具体用于向所述网络设备发送所述获取模块503获取的多个所述测量结果。
进一步地,本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用性和灵活性。
可选地,在上述图21所对应的实施例的基础上,本申请实施例提供的终端设备50的另一实施例中,
所述接收模块501,还用于接收所述网络设备发送的第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
更进一步地,本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
下面对本申请中一个实施例对应的网络设备进行详细描述,请参阅图22,本申请实施例中的网络设备60包括:
发送模块601,用于向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,所述第一指示信息中包含第一子信息以及第二子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第二子信息用于指示测量资源对应的时间资源在所述测量周期内的起始位置,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置所确定的;
接收模块602,用于接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源进行信号强度测量所获取的。
本实施例中,发送模块601向终端设备发送第一指示信息,第一指示信息用于终端设备确定测量资源,其中,第一指示信息中包含第一子信息以及第二子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第二子信息用于指示测量资源对应的时间资源在测量周期内的起始位置,测量资源为在测量周期内根据第一时间单元的起始位置所确定的,接收模块602接收终端设备发送的测量结果,其中,测量结果为终端设备对测量资源上的信号进行信号强度测量所获取的。
进一步的,发送模块601还用于执行图14中网络设备执行的步骤201等步骤。接收模块602还可以执行图14中网络设备执行的步骤202等步骤。本申请实施例在此不再详述。
本申请实施例中,提供了一种网络设备,该网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
可选地,在上述图22所对应的实施例的基础上,本申请实施例提供的网络设备60的另一实施例中,
所述发送模块601,具体用于向所述终端设备发送多个所述第一指示信息,以使所述终端设备根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
所述接收模块602,具体用于接收所述终端设备发送的多个所述测量结果,其中,多个所述测量结果为所述终端设备对多个所述测量资源上的信号进行信号强度测量所获取的,每个所述测量结果与每个所述测量资源具有一一对应的关系。
进一步地,本申请实施例中,网络设备可为终端设备配置多套参数,指示终端设备在一个或多个测量频带上进行测量,而终端设备可以在网络设备配置的资源内进行接收和测量,并把在各套配置参数上的测量的结果分别上报给网络设备。通过上述方式,能够配置多套参数进行测量,并且独立上报各参数对应的测量结果,从而提升信号强度测量的实用性和灵活性。
可选地,在上述图22所对应的实施例的基础上,本申请实施例提供的网络设备60的另一实施例中,
所述发送模块601,还用于向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
更进一步地,本申请实施例中,网络设备向终端设备发送第二指示信息,其中,该第二指示信息用于指示是否在测量资源上进行测量和/或上报。通过上述方式,网络设备还能够进一步控制终端设备上报和/或测量,从而便于增强方案的可操作性和可行性。
本申请实施例还提供了另一种终端设备,如图23所示,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。该终端设备可以为包括手机、平板电脑、个人数字助理(personal digital assistant,PDA)、销售终端(point of sales,POS)、车载电脑等任意终端设备,以终端设备为手机为例:
图23示出的是与本申请实施例提供的终端设备相关的手机的部分结构的框图。参考图23,手机包括:射频(radio frequency,RF)电路710、存储器720、输入单元730、显示单元740、传感器750、音频电路760、无线保真(wireless fidelity,WiFi)模块770、处理器780、以及电源790等部件。本领域技术人员可以理解,图23中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图23对手机的各个构成部件进行具体的介绍:
RF电路710可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器780处理;另外,将设计上行的数据发送给基站。通常,RF电路710包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路710还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM、GPRS、CDMA、WCDMA、LTE、电子邮件、短消息服务(short messaging service,SMS)等。
存储器720可用于存储软件程序以及模块,处理器780通过运行存储在存储器720的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器720可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器720可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元730可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元730可包括触控面板731以及其他输入设备732。触控面板731,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板731上或在触控面板731附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板731可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器780,并能接收处理器780发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板731。除了触控面板731,输入单元730还可以包括其他输入设备732。具体地,其他输入设备732可以包 括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元740可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元740可包括显示面板741,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板741。进一步的,触控面板731可覆盖显示面板741,当触控面板731检测到在其上或附近的触摸操作后,传送给处理器780以确定触摸事件的类型,随后处理器780根据触摸事件的类型在显示面板741上提供相应的视觉输出。虽然在图23中,触控面板731与显示面板741是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板731与显示面板741集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器750,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板741的亮度,接近传感器可在手机移动到耳边时,关闭显示面板741和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路760、扬声器761,传声器762可提供用户与手机之间的音频接口。音频电路760可将接收到的音频数据转换后的电信号,传输到扬声器761,由扬声器761转换为声音信号输出;另一方面,传声器762将收集的声音信号转换为电信号,由音频电路760接收后转换为音频数据,再将音频数据输出处理器780处理后,经RF电路710以发送给比如另一手机,或者将音频数据输出至存储器720以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块770可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图23示出了WiFi模块770,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器780是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器720内的软件程序和/或模块,以及调用存储在存储器720内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器780可包括一个或多个处理单元;可选的,处理器780可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器780中。
手机还包括给各个部件供电的电源790(比如电池),可选的,电源可以通过电源管理系统与处理器780逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本申请实施例中,该终端设备所包括的处理器780还具有以下功能:
接收网络设备发送的第一指示信息,其中,所述第一指示信息中包含第一子信息、第二子信息以及第三子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
根据所述第一指示信息确定测量资源,其中,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置和所述第二时间单元的起始位置所确定的;
对所述测量资源上的信号进行信号强度测量,获取测量结果;
向所述网络设备发送所述测量结果。
可选地,处理器780具体用于执行如下步骤:
接收所述网络设备发送的多个所述第一指示信息;
根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
对多个所述测量资源进行信号强度测量,获取多个所述测量结果,其中,每个所述测量结果与每个所述测量资源具有一一对应的关系;
向所述网络设备发送多个所述测量结果。
可选地,处理器780还用于执行如下步骤:
接收所述网络设备发送的第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
图24是本申请实施例提供的一种网络设备结构示意图,该网络设备800可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)822(例如,一个或一个以上处理器)和存储器832,一个或一个以上存储应用程序842或数据844的存储介质830(例如一个或一个以上海量存储设备)。其中,存储器832和存储介质830可以是短暂存储或持久存储。存储在存储介质830的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对网络设备中的一系列指令操作。更进一步地,中央处理器822可以设置为与存储介质830通信,在网络设备800上执行存储介质830中的一系列指令操作。
网络设备800还可以包括一个或一个以上电源826,一个或一个以上有线或无线网络接口850,一个或一个以上输入输出接口858,和/或,一个或一个以上操作系统841,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中由网络设备所执行的步骤可以基于该图24所示的网络设备结构。
在本申请实施例中,该网络设备所包括的CPU 822还具有以下功能:
向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,所述第一指示信息中包含第一子信息、第二子信息以及第三子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单 元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源上的信号进行信号强度测量所获取的。
可选地,CPU 822具体用于执行如下步骤:
向所述终端设备发送多个所述第一指示信息,以使所述终端设备根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
接收所述终端设备发送的多个所述测量结果,其中,多个所述测量结果为所述终端设备对多个所述测量资源进行信号强度测量所获取的,每个所述测量结果与每个所述测量资源具有一一对应的关系。
可选地,CPU 822还用于执行如下步骤:
向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
本申请实施例还提供了另一种终端设备,如图25所示,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。该终端设备可以为包括手机、平板电脑、PDA、POS、车载电脑等任意终端设备,以终端设备为手机为例:
图25示出的是与本申请实施例提供的终端设备相关的手机的部分结构的框图。参考图25,手机包括:RF电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、WiFi模块970、处理器980、以及电源990等部件。本领域技术人员可以理解,图25中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图25对手机的各个构成部件进行具体的介绍:
RF电路910可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器980处理;另外,将设计上行的数据发送给基站。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、LNA、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM、GPRS、CDMA、WCDMA、LTE、电子邮件、SMS等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括触控面板931以及其他输入设备932。触控面板931,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上或在触控面板931附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器980,并能接收处理器980发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示面板941,可选的,可以采用LCD、OLED等形式来配置显示面板941。进一步的,触控面板931可覆盖显示面板941,当触控面板931检测到在其上或附近的触摸操作后,传送给处理器980以确定触摸事件的类型,随后处理器980根据触摸事件的类型在显示面板941上提供相应的视觉输出。虽然在图25中,触控面板931与显示面板941是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板931与显示面板941集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板941的亮度,接近传感器可在手机移动到耳边时,关闭显示面板941和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号输出;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据输出处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据输出至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图25示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过 运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;可选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机还包括给各个部件供电的电源990(比如电池),可选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本申请实施例中,该终端设备所包括的处理器980还具有以下功能:
接收网络设备发送的第一指示信息,其中,所述第一指示信息中包含第一子信息以及第二子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第二子信息用于指示测量资源对应的时间资源在所述测量周期内的起始位置;
根据所述第一指示信息确定测量资源,其中,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置所确定的;
对所述测量资源上的信号进行信号强度测量,获取测量结果;
向所述网络设备发送所述测量结果。
可选地,处理器980具体用于执行如下步骤:
接收所述网络设备发送的多个所述第一指示信息;
根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
对多个所述测量资源进行信号强度测量,获取多个所述测量结果,其中,每个所述测量结果与每个所述测量资源具有一一对应的关系;
向所述网络设备发送多个所述测量结果。
可选地,处理器980还用于执行如下步骤:
接收所述网络设备发送的第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
图26是本申请实施例提供的一种网络设备结构示意图,该网络设备1000可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上CPU 1022(例如,一个或一个以上处理器)和存储器1032,一个或一个以上存储应用程序1042或数据1044的存储介质1030(例如一个或一个以上海量存储设备)。其中,存储器1032和存储介质1030可以是短暂存储或持久存储。存储在存储介质1030的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对网络设备中的一系列指令操作。更进一步地,中央处理器1022可以设置为与存储介质1030通信,在网络设备1000上执行存储介质1030中的一系列指令操作。
网络设备1000还可以包括一个或一个以上电源1026,一个或一个以上有线或无线网络接口1050,一个或一个以上输入输出接口1058,和/或,一个或一个以上操作系统1041, 例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中由网络设备所执行的步骤可以基于该图26所示的网络设备结构。
在本申请实施例中,该网络设备所包括的CPU 1022还具有以下功能:
向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,所述第一指示信息中包含第一子信息以及第二子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第二子信息用于指示测量资源对应的时间资源在所述测量周期内的起始位置,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置所确定的;
接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源上的信号进行信号强度测量所获取的。
可选地,CPU 1022具体用于执行如下步骤:
向所述终端设备发送多个所述第一指示信息,以使所述终端设备根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
接收所述终端设备发送的多个所述测量结果,其中,多个所述测量结果为所述终端设备对多个所述测量资源进行信号强度测量所获取的,每个所述测量结果与每个所述测量资源具有一一对应的关系。
可选地,CPU 1022还用于执行如下步骤:
向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
请参阅图27,图27为本申请实施例中信号强度测量系统一个实施例示意图,所述信号强度测量系统包括:终端设备1101以及网络设备1102;
本实施例中,网络设备1102向终端设备1101发送第一指示信息,其中,第一指示信息中包含第一子信息、第二子信息以及第三子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移,终端设备1101根据第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置和第二时间单元的起始位置所确定的,终端设备1101对测量资源上的信号进行信号强度测量,获取测量结果,终端设备1101向网络设备1102发送测量结果。
本申请实施例中,提供了一种信号强度测量系统,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
请参阅图28,图28为本申请实施例中信号强度测量系统一个实施例示意图,所述信号强度测量系统包括:终端设备1201以及网络设备1202;
本实施例中,网络设备1202向终端设备1201发送第一指示信息,其中,第一指示信 息中包含第一子信息以及第二子信息,第一子信息用于指示测量的测量周期,测量周期包含至少一个第二时间单元,第二时间单元包含至少两个第一时间单元,第二子信息用于指示测量资源对应的时间资源在测量周期内的起始位置,终端设备1201根据第一指示信息确定测量资源,其中,测量资源为在测量周期内根据第一时间单元的起始位置所确定的,终端设备1201对测量资源上的信号进行信号强度测量,获取测量结果,终端设备1201向网络设备1202发送测量结果。
本申请实施例中,提供了一种信号强度测量系统,网络设备可以更加灵活地指示终端设备进行信号强度的测量和上报,能够精确地测量到子帧内若干个符号上的信号强度,从而可获取到更准确的CLI信息,用于在协调调度中提升网络传输的质量和传输速率。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可 以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (40)

  1. 一种信号强度测量的方法,其特征在于,包括:
    接收网络设备发送的第一指示信息,其中,所述第一指示信息中包含第一子信息、第二子信息以及第三子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
    根据所述第一指示信息确定测量资源,其中,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置和所述第二时间单元的起始位置所确定的;
    对所述测量资源上的信号进行信号强度测量,获取测量结果;
    向所述网络设备发送所述测量结果。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息中还包含测量持续时间指示信息,所述测量持续时间指示信息指示了测量持续时间,其中,所述测量持续时间的可取值包含一个所述第一时间单元、两个所述第一时间单元、四个所述第一时间单元或者六个所述第一时间单元;
    所述测量资源为在所述测量周期内,根据所述第一时间单元的起始位置、所述第二时间单元的起始位置以及所述测量持续时间所确定的。
  3. 根据权利要求1所述的方法,其特征在于,还包括接收测量频带指示信息,所述测量频带指示信息指示了测量频带;
    所述测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,所述测量带宽小于或等于所述带宽部分的带宽,所述带宽部分包含多个频域单元,所述频域位置指示在所述带宽部分中用于测量的目标频域单元,或,所述测量频带包含测量的所述带宽部分以及所述测量带宽;
    所述测量资源为在所述测量周期内,根据所述第一时间单元的起始位置、所述第二时间单元的起始位置以及所述测量频带所确定的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述接收网络设备发送的第一指示信息,包括:
    接收所述网络设备发送的多个所述第一指示信息;
    所述根据所述第一指示信息确定测量资源,包括:
    根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
    所述对所述测量资源上的信号进行信号强度测量,获取测量结果,包括:
    对多个所述测量资源上的信号进行信号强度测量,获取多个所述测量结果,其中,每个所述测量结果与每个所述测量资源具有一一对应的关系;
    向所述网络设备发送所述测量结果,包括:
    向所述网络设备发送多个所述测量结果。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
  6. 一种信号强度测量的方法,其特征在于,包括:
    向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,所述第一指示信息中包含第一子信息、第二子信息以及第三子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
    接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源上的信号进行信号强度测量所获取的。
  7. 根据权利要求6所述的方法,其特征在于,所述第一指示信息中还包含测量持续时间指示信息,所述测量持续时间指示信息指示了测量持续时间,其中,所述测量持续时间的可取值包含一个所述第一时间单元、两个所述第一时间单元、四个所述第一时间单元或者六个所述第一时间单元;
    所述测量资源为在所述测量周期内,根据所述第一时间单元的起始位置、所述第二时间单元的起始位置以及所述测量持续时间所确定的。
  8. 根据权利要求6所述的方法,其特征在于,还包括发送测量频带指示信息,所述测量频带指示信息指示了测量频带;
    所述测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,所述测量带宽小于或等于所述带宽部分的带宽,所述带宽部分包含多个频域单元,所述频域位置指示在所述带宽部分中用于测量的目标频域单元,或,所述测量频带包含测量的所述带宽部分以及所述测量带宽;
    所述测量资源为在所述测量周期内,根据所述第一时间单元的起始位置、所述第二时间单元的起始位置以及所述测量频带所确定的。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述向终端设备发送第一指示信息,包括:
    向所述终端设备发送多个所述第一指示信息,以使所述终端设备根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
    接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源进行信号强度测量所获取的,包括:
    接收所述终端设备发送的多个所述测量结果,其中,多个所述测量结果为所述终端设备对多个所述测量资源上的信号进行信号强度测量所获取的,每个所述测量结果与每个所述测量资源具有一一对应的关系。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
  11. 一种信号强度测量的方法,其特征在于,包括:
    接收网络设备发送的第一指示信息,其中,所述第一指示信息中包含第一子信息以及第二子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第二子信息用于指示测量资源对应的时间资源在所述测量周期内的起始位置;
    根据所述第一指示信息确定测量资源,其中,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置所确定的;
    对所述测量资源上的信号进行信号强度测量,获取测量结果;
    向所述网络设备发送所述测量结果。
  12. 根据权利要求11所述的方法,其特征在于,所述第一指示信息中还包含测量持续时间指示信息,所述测量持续时间指示信息指示了测量持续时间,其中,所述测量持续时间的可取值包含一个所述第一时间单元、两个所述第一时间单元、四个所述第一时间单元或者六个所述第一时间单元;
    所述测量资源为在所述测量周期内,根据所述第一时间单元的起始位置以及所述测量持续时间所确定的。
  13. 根据权利要求11所述的方法,其特征在于,还包括接收测量频带指示信息,所述测量频带指示信息指示了测量频带;
    所述测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,所述测量带宽小于或等于所述带宽部分的带宽,所述带宽部分包含多个频域单元,所述频域位置指示在所述带宽部分中用于测量的目标频域单元,或,所述测量频带包含测量的所述带宽部分以及所述测量带宽;
    所述测量资源为在所述测量周期内,根据所述第一时间单元的起始位置以及所述测量频带所确定的。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述接收网络设备发送的第一指示信息,包括:
    接收所述网络设备发送的多个所述第一指示信息;
    所述根据所述第一指示信息确定测量资源,包括:
    根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
    所述对所述测量资源上的信号进行信号强度测量,获取测量结果,包括:
    对多个所述测量资源上的信号进行信号强度测量,获取多个所述测量结果,其中,每个所述测量结果与每个所述测量资源具有一一对应的关系;
    向所述网络设备发送所述测量结果,包括:
    向所述网络设备发送多个所述测量结果。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
  16. 一种信号强度测量的方法,其特征在于,包括:
    向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,所述第一指示信息中包含第一子信息以及第二子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第二子信息用于指示测量资源对应的时间资源在所述测量周期内的起始位置,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置所确定的;
    接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源上的信号进行信号强度测量所获取的。
  17. 根据权利要求16所述的方法,其特征在于,所述第一指示信息中还包含测量持续时间指示信息,所述测量持续时间指示信息指示了测量持续时间,其中,所述测量持续时间的可取值包含一个所述第一时间单元、两个所述第一时间单元、四个所述第一时间单元或者六个所述第一时间单元;
    所述测量资源为在所述测量周期内,根据所述第一时间单元的起始位置以及所述测量持续时间所确定的。
  18. 根据权利要求16所述的方法,其特征在于,还包括发送测量频带指示信息,所述测量频带指示信息指示了测量频带;
    所述测量频带包含测量的带宽部分、测量带宽以及频域位置,其中,所述测量带宽小于或等于所述带宽部分的带宽,所述带宽部分包含多个频域单元,所述频域位置指示在所述带宽部分中用于测量的目标频域单元,或,所述测量频带包含测量的所述带宽部分以及所述测量带宽;
    所述测量资源为在所述测量周期内,根据所述第一时间单元的起始位置以及所述测量频带所确定的。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,所述向终端设备发送第一指示信息,包括:
    向所述终端设备发送多个所述第一指示信息,以使所述终端设备根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
    接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源上的信号进行信号强度测量所获取的,包括:
    接收所述终端设备发送的多个所述测量结果,其中,多个所述测量结果为所述终端设备对多个所述测量资源进行信号强度测量所获取的,每个所述测量结果与每个所述测量资源具有一一对应的关系。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
  21. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备发送的第一指示信息,其中,所述第一指示信息中包含第一子信息、第二子信息以及第三子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
    确定模块,用于根据所述接收模块接收的所述第一指示信息确定测量资源,其中,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置和所述第二时间单元的起始位置所确定的;
    获取模块,用于对所述确定模块确定的所述测量资源上的信号进行信号强度测量,获取测量结果;
    发送模块,用于向所述网络设备发送所述获取模块获取的所述测量结果。
  22. 根据权利要求21所述的终端设备,其特征在于,
    所述接收模块,具体用于接收所述网络设备发送的多个所述第一指示信息;
    所述确定模块,具体用于根据所述接收模块接收的多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
    所述获取模块,具体用于对所述确定模块确定的多个所述测量资源上的信号进行信号强度测量,获取多个所述测量结果,其中,每个所述测量结果与每个所述测量资源具有一一对应的关系;
    所述发送模块,具体用于向所述网络设备发送所述获取模块获取的多个所述测量结果。
  23. 根据权利要求21或22所述的终端设备,其特征在于,
    所述接收模块,还用于接收所述网络设备发送的第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
  24. 一种网络设备,其特征在于,包括:
    发送模块,用于向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,所述第一指示信息中包含第一子信息、第二子信息以及第三子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第三子信息用于指示测量的第二时间单元的起始位置相对于所述测量周期的起始位置的偏移,所述第二子信息用于指示所述测量周期内测量的第一时间单元的起始位置相对于测量的第二时间单元的起始位置的偏移;
    接收模块,用于接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源上的信号进行信号强度测量所获取的。
  25. 根据权利要求24所述的网络设备,其特征在于,
    所述发送模块,具体用于向所述终端设备发送多个所述第一指示信息,以使所述终端设备根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
    所述接收模块,具体用于接收所述终端设备发送的多个所述测量结果,其中,多个所述测量结果为所述终端设备对多个所述测量资源上的信号进行信号强度测量所获取的,每个所述测量结果与每个所述测量资源具有一一对应的关系。
  26. 根据权利要求24或25所述的网络设备,其特征在于,
    所述发送模块,还用于向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
  27. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备发送的第一指示信息,其中,所述第一指示信息中包含第一子信息以及第二子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第二子信息用于指示测量资源对应的时间资源在所述测量周期内的起始位置;
    确定模块,用于根据所述接收模块接收的所述第一指示信息确定测量资源,其中,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置所确定的;
    获取模块,用于对所述确定模块确定的所述测量资源上的信号进行信号强度测量,获取测量结果;
    发送模块,用于向所述网络设备发送所述获取模块获取的所述测量结果。
  28. 根据权利要求27所述的终端设备,其特征在于,
    所述接收模块,具体用于接收所述网络设备发送的多个所述第一指示信息;
    所述确定模块,具体用于根据所述接收模块接收的多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
    所述获取模块,具体用于对所述确定模块确定的多个所述测量资源上的信号进行信号强度测量,获取多个所述测量结果,其中,每个所述测量结果与每个所述测量资源具有一一对应的关系;
    所述发送模块,具体用于向所述网络设备发送所述获取模块获取的多个所述测量结果。
  29. 根据权利要求27或28所述的终端设备,其特征在于,
    所述接收模块,还用于接收所述网络设备发送的第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
  30. 一种网络设备,其特征在于,包括:
    发送模块,用于向终端设备发送第一指示信息,所述第一指示信息用于所述终端设备确定测量资源,其中,所述第一指示信息中包含第一子信息以及第二子信息,所述第一子信息用于指示测量的测量周期,所述测量周期包含至少一个第二时间单元,所述第二时间单元包含至少两个第一时间单元,所述第二时间单元属于非下行时间单元,所述第二子信息用于指示测量资源对应的时间资源在所述测量周期内的起始位置,所述测量资源为在所述测量周期内根据所述第一时间单元的起始位置所确定的;
    接收模块,用于接收所述终端设备发送的测量结果,其中,所述测量结果为所述终端设备对所述测量资源上的信号进行信号强度测量所获取的。
  31. 根据权利要求30所述的网络设备,其特征在于,
    所述发送模块,具体用于向所述终端设备发送多个所述第一指示信息,以使所述终端设备根据多个所述第一指示信息确定多个所述测量资源,其中,每个所述第一指示信息与每个所述测量资源具有一一对应的关系;
    所述接收模块,具体用于接收所述终端设备发送的多个所述测量结果,其中,多个所述测量结果为所述终端设备对多个所述测量资源进行信号强度测量所获取的,每个所述测量结果与每个所述测量资源具有一一对应的关系。
  32. 根据权利要求30或31所述的网络设备,其特征在于,
    所述发送模块,还用于向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示是否在所述测量资源上进行测量和/或上报。
  33. 一种终端设备,其特征在于,包括:存储器、收发器、处理器以及总线系统;
    其中,所述存储器用于存储程序和指令;
    所述收发器用于在所述处理器的控制下接收或发送信息;
    所述处理器用于执行所述存储器中的程序;
    所述总线系统用于连接所述存储器、所述收发器以及所述处理器,以使所述存储器、所述收发器以及所述处理器进行通信;
    所述处理器用于调用所述存储器中的程序指令,执行如权利要求1至5中任一项所述的方法。
  34. 一种网络设备,其特征在于,包括:存储器、收发器、处理器以及总线系统;
    其中,所述存储器用于存储程序和指令;
    所述收发器用于在所述处理器的控制下接收或发送信息;
    所述处理器用于执行所述存储器中的程序;
    所述总线系统用于连接所述存储器、所述收发器以及所述处理器,以使所述存储器、所述收发器以及所述处理器进行通信;
    所述处理器用于调用所述存储器中的程序指令,执行如权利要求6至10中任一项所述的方法。
  35. 一种终端设备,其特征在于,包括:存储器、收发器、处理器以及总线系统;
    其中,所述存储器用于存储程序和指令;
    所述收发器用于在所述处理器的控制下接收或发送信息;
    所述处理器用于执行所述存储器中的程序;
    所述总线系统用于连接所述存储器、所述收发器以及所述处理器,以使所述存储器、所述收发器以及所述处理器进行通信;
    所述处理器用于调用所述存储器中的程序指令,执行如权利要求11至15中任一项所述的方法。
  36. 一种网络设备,其特征在于,包括:存储器、收发器、处理器以及总线系统;
    其中,所述存储器用于存储程序和指令;
    所述收发器用于在所述处理器的控制下接收或发送信息;
    所述处理器用于执行所述存储器中的程序;
    所述总线系统用于连接所述存储器、所述收发器以及所述处理器,以使所述存储器、所述收发器以及所述处理器进行通信;
    所述处理器用于调用所述存储器中的程序指令,执行如权利要求16至20中任一项所述的方法。
  37. 一种信号强度测量系统,其特征在于,所述系统包括终端设备以及网络设备;
    所述终端设备为上述权利要求21至23中任一项所述的终端设备;
    所述网络设备为上述权利要求24至26中任一项所述的网络设备。
  38. 一种信号强度测量系统,其特征在于,所述系统包括终端设备以及网络设备;
    所述终端设备为上述权利要求27至29中任一项所述的终端设备;
    所述网络设备为上述权利要求30至32中任一项所述的网络设备。
  39. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-5所述的方法,或执行如权利要求11-15所述的方法。
  40. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求6-10所述的方法,或执行如权利要求16-20所述的方法。
PCT/CN2018/096766 2017-08-11 2018-07-24 一种信号强度测量的方法、相关装置以及系统 WO2019029353A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18844733.8A EP3661255B1 (en) 2017-08-11 2018-07-24 Signal strength measurement method, related apparatus, and system
US16/786,696 US11115140B2 (en) 2017-08-11 2020-02-10 Signal strength measurement method, and related apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687953.3A CN109392005B (zh) 2017-08-11 2017-08-11 一种信号强度测量的方法、相关装置以及系统
CN201710687953.3 2017-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/786,696 Continuation US11115140B2 (en) 2017-08-11 2020-02-10 Signal strength measurement method, and related apparatus and system

Publications (1)

Publication Number Publication Date
WO2019029353A1 true WO2019029353A1 (zh) 2019-02-14

Family

ID=65273281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096766 WO2019029353A1 (zh) 2017-08-11 2018-07-24 一种信号强度测量的方法、相关装置以及系统

Country Status (4)

Country Link
US (1) US11115140B2 (zh)
EP (1) EP3661255B1 (zh)
CN (1) CN109392005B (zh)
WO (1) WO2019029353A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543476A (zh) * 2019-09-20 2021-03-23 中国移动通信有限公司研究院 一种信息处理方法、网络节点和终端
WO2021167729A1 (en) * 2020-02-20 2021-08-26 Qualcomm Incorporated Techniques for cross-channel interference measurement in wireless communications
WO2022041130A1 (en) * 2020-08-28 2022-03-03 Qualcomm Incorporated Rtt-based positioning with cli measurement

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143858B2 (ja) * 2017-11-10 2022-09-29 ソニーグループ株式会社 通信装置、通信方法、及びプログラム
AU2018437034B2 (en) * 2018-09-30 2022-10-27 Zte Corporation Channel measurement configuration and reporting
JP7339348B2 (ja) 2019-02-03 2023-09-05 オッポ広東移動通信有限公司 無線通信方法、端末デバイス及びネットワークデバイス
WO2020167019A1 (en) * 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Method, terminal device, base station, computer readable medium for measuring cross-link interference, and methods and apparatuses for random access preamble allocation, determination, and data transmission
US20220086843A1 (en) * 2019-02-14 2022-03-17 Apple Inc. Cli-rssi measurement resource configuration
BR112021019326A2 (pt) * 2019-03-29 2021-12-07 Huawei Tech Co Ltd Método e dispositivo de comunicação e meio de armazenamento legível por computador
CN114175773B (zh) * 2019-07-19 2024-06-11 松下知识产权经营株式会社 区域判断系统、区域判断方法和非暂时性存储介质
EP4044651A4 (en) * 2019-11-07 2022-09-14 Huawei Technologies Co., Ltd. CLI MEASUREMENT CONFIGURATION METHOD AND COMMUNICATION DEVICE
EP4022965A4 (en) * 2019-11-08 2022-11-02 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR DYNAMIC INTERLINK INTERFERENCE MEASUREMENT AND REPORTING IN A NEXT GENERATION MOBILE COMMUNICATION SYSTEM
CN115176491A (zh) * 2020-02-24 2022-10-11 上海诺基亚贝尔股份有限公司 交叉链路干扰的自适应测量

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428749A (zh) * 2012-05-18 2013-12-04 华为技术有限公司 一种下行多点信号质量测量方法和装置
CN105307190A (zh) * 2015-11-06 2016-02-03 东莞酷派软件技术有限公司 一种基于非授权频谱的rssi配置方法、测量方法和相关设备
WO2017014229A1 (ja) * 2015-07-22 2017-01-26 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
CN106454928A (zh) * 2015-08-13 2017-02-22 电信科学技术研究院 一种进行测量上报的方法和设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10972920B2 (en) * 2012-01-30 2021-04-06 Qualcomm Incorporated Flexible radio resource management (RRM) measurements for wireless networks
KR20180011248A (ko) * 2015-11-06 2018-01-31 후아웨이 테크놀러지 컴퍼니 리미티드 무선 자원 관리 측정 방법 및 장치
EP3565301A4 (en) * 2016-12-30 2019-12-18 Fujitsu Limited TRANSMISSION APPARATUS, METHOD FOR DELETING INTERFERENCE INFORMATION, AND COMMUNICATION SYSTEM
WO2018128297A1 (ko) * 2017-01-09 2018-07-12 엘지전자 주식회사 측정 정보를 보고하는 방법 및 이를 위한 단말
CN109219970B (zh) * 2017-05-05 2021-10-08 联发科技股份有限公司 移动通信中跨链路干扰测量方法及设备
US10727995B2 (en) * 2017-05-18 2020-07-28 Qualcomm Incorporated Configuring reference signal transmission in wireless communications
US10873869B2 (en) * 2017-06-16 2020-12-22 Qualcomm Incorporated Cell-specific sounding and measurement configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428749A (zh) * 2012-05-18 2013-12-04 华为技术有限公司 一种下行多点信号质量测量方法和装置
WO2017014229A1 (ja) * 2015-07-22 2017-01-26 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
CN106454928A (zh) * 2015-08-13 2017-02-22 电信科学技术研究院 一种进行测量上报的方法和设备
CN105307190A (zh) * 2015-11-06 2016-02-03 东莞酷派软件技术有限公司 一种基于非授权频谱的rssi配置方法、测量方法和相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3661255A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543476A (zh) * 2019-09-20 2021-03-23 中国移动通信有限公司研究院 一种信息处理方法、网络节点和终端
WO2021167729A1 (en) * 2020-02-20 2021-08-26 Qualcomm Incorporated Techniques for cross-channel interference measurement in wireless communications
WO2022041130A1 (en) * 2020-08-28 2022-03-03 Qualcomm Incorporated Rtt-based positioning with cli measurement

Also Published As

Publication number Publication date
CN109392005A (zh) 2019-02-26
EP3661255B1 (en) 2022-05-25
EP3661255A4 (en) 2020-07-08
EP3661255A1 (en) 2020-06-03
CN109392005B (zh) 2021-07-09
US11115140B2 (en) 2021-09-07
US20200177291A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
WO2019029353A1 (zh) 一种信号强度测量的方法、相关装置以及系统
CN110474724B (zh) 一种tci状态指示方法、终端及网络侧设备
WO2018228429A1 (zh) 一种测量上报的方法及设备
CN110958636B (zh) Csi报告的上报方法、终端设备及网络设备
CN110351052B (zh) 信道和信号的传输方法及通信设备
CN110719632B (zh) 一种准共址确定方法、调度方法、终端及网络设备
CN110475283B (zh) 一种处理csi处理单元、资源的方法、装置及系统
WO2019101063A1 (zh) 一种数据传输的方法及相关装置
CN111278116B (zh) 上行信号发送方法及装置
WO2021179184A1 (zh) 一种确定上行传输参数的方法及终端设备
CN110636538B (zh) 波束测量方法、网络侧设备、终端设备及存储介质
CN109803417B (zh) 确定参考信号的方法、上行探测参考信号发送方法和设备
WO2018082693A1 (zh) Csi上报方法、装置以及设备
KR102573527B1 (ko) 신호 리소스 측정 방법 및 단말
CN110933764B (zh) 传输指示信号的传输方法、网络设备及终端
WO2018103584A1 (zh) 一种小区确定的方法、相关设备以及系统
WO2020063228A1 (zh) 信号发送方法、接收方法及发送设备、接收设备
CN109479079A (zh) 使用麦克风激活提供提醒的系统和方法
WO2022147805A1 (zh) 定位测量的方法、终端设备及网络设备
US20220015085A1 (en) Communication method and apparatus
WO2015154223A1 (zh) 通信控制方法及相关装置
WO2023025026A1 (zh) 波束控制方法、装置及信号中继设备
CN110519793B (zh) 测量上报方法、测量配置方法、终端和网络侧设备
US20230353307A1 (en) Method for srs transmission resource configuration, terminal device, and network device
JP2020502839A (ja) リソースマッピング方法、送信端部、および受信端部

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844733

Country of ref document: EP

Effective date: 20200225