WO2020063228A1 - 信号发送方法、接收方法及发送设备、接收设备 - Google Patents

信号发送方法、接收方法及发送设备、接收设备 Download PDF

Info

Publication number
WO2020063228A1
WO2020063228A1 PCT/CN2019/102513 CN2019102513W WO2020063228A1 WO 2020063228 A1 WO2020063228 A1 WO 2020063228A1 CN 2019102513 W CN2019102513 W CN 2019102513W WO 2020063228 A1 WO2020063228 A1 WO 2020063228A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
sequence
following
resource
Prior art date
Application number
PCT/CN2019/102513
Other languages
English (en)
French (fr)
Inventor
刘思綦
纪子超
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020063228A1 publication Critical patent/WO2020063228A1/zh
Priority to US17/211,931 priority Critical patent/US20210235430A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a signal transmission method, a reception method, a transmission device, and a reception device.
  • Configure terminal A The network-side device sends the allocation of sidelink transmission resources on the current carrier. After receiving the allocation information, the terminal selects and performs sidelink transmission according to the sidelink transmission resources indicated by the network-side device.
  • Configure terminal B The terminal selects the sidelink transmission resource from the vendor's pre-configured resource pool.
  • the terminal configured with A it can obtain information about tdd-config and sidelink synchronization resources from the network-side device.
  • the terminal configured with B usually because there is no network coverage, the tdd-config and the sidelink synchronization resources can only be obtained from the manufacturer's pre-configuration.
  • the network in NR supports flexible uplink and downlink configurations, indicating that the overhead signaling required for this configuration is much larger than LTE.
  • the number and flexibility of uplink and downlink configurations pre-configured by vendors are limited.
  • the uplink-downlink configurations configured by the network and the uplink-downlink configurations pre-configured by the vendors are likely to be different, causing terminals in different modes to interfere with each other. Even when the terminals of the two modes have the same timing alignment or the same synchronization source, and use the same sidelink resources, the two terminals may have different understandings of the DFN, which may cause mutual interference.
  • different terminals may choose the same synchronization source, sidelink synchronization resource, and synchronization signal sequence, but the content carried in MIB-SL-V2X may be the same or different.
  • the receiving terminal may receive on a resource The synchronization signal sequence and MIB-SL-V2X to multiple sending devices, but the receiver cannot directly distinguish between different MIB-SL-V2X by detecting the synchronization signal sequence, and it cannot decode different MIB-SL-V2X.
  • the transmitting device is uniquely determined, so the measured result is actually a superposition of signals from multiple transmitting devices, which is not accurate, and beam-related operations cannot be performed in a multi-beam scenario.
  • the technical problem to be solved by the present disclosure is to provide a signal transmitting method, a receiving method, a transmitting device, and a receiving device, so that the receiving device can determine the information of the transmitting device through detection of the signal, which is beneficial to subsequent measurement, combining, decoding, and management. And other operations to improve the accuracy of transmission.
  • an embodiment of the present disclosure provides a signal sending method, which is applied to a sending device, and the method includes:
  • an embodiment of the present disclosure provides a signal receiving method, which is applied to a receiving device.
  • the method includes:
  • the first signal including at least one of the following information:
  • an embodiment of the present disclosure provides a sending device, including:
  • a sending module configured to send a first signal to a receiving device, where the first signal includes at least one of the following information:
  • an embodiment of the present disclosure provides a receiving device, including:
  • a receiving module configured to receive a first signal from a sending device, where the first signal includes at least one of the following information:
  • an embodiment of the present disclosure provides a network node, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is implemented as described above when executed by the processor. The steps in the signal transmission method described above or the steps in the signal reception method described above are implemented.
  • an embodiment of the present disclosure provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements steps in the signal sending method described above. Or implement the steps in the signal receiving method as described above.
  • the transmitting device sends a first signal to the receiving device, and the first signal includes at least one of the following information: timing information; device identification information; group identification information; resource configuration information; first signal transmission information; beam transmission information Other information.
  • the receiving device can determine the information of the sending device by detecting the first signal, which is beneficial to subsequent operations such as measurement, combining, decoding, and management, and improves the accuracy of transmission.
  • FIG. 1 is a schematic diagram of the time domain structure of PSSS and SSSS in LTE V2V;
  • FIG. 2 is a schematic diagram of DFN numbers
  • FIG. 3 is a schematic diagram of a slot position carrying an SSB
  • FIG. 4 is a schematic flowchart of a signal sending method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a signal receiving method according to an embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram of a sending device according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram of a receiving device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • Configure terminal A The network-side device sends the allocation of sidelink transmission resources on the current carrier. After receiving the allocation information, the terminal selects and performs sidelink transmission according to the sidelink transmission resources indicated by the network-side device.
  • Configure terminal B The terminal selects the sidelink transmission resource from the vendor's pre-configured resource pool.
  • LTE sidelink reuses the uplink resources of LTE.
  • the sidelink terminal sends a primary side link synchronization signal (PSSS), a secondary side link synchronization signal (SSSS), and a side link master information block (MasterInformationBlock-SL-V2X, MIB- SL-V2X), where PSSS and SSSS are used to help the receiving terminal to obtain timing information at the subframe level.
  • PSSS sequence in LTE sidelink is the ZC sequence, but uses a different logic from the LTE primary synchronization signal (PSS). Root, so the PSSS sequence and the LTE PSS sequence are essentially different sequences.
  • the SSSS reuses the sequence design of the secondary synchronization signal (SSS). When the identifiers (IDs) corresponding to the PSSS and PSS are the same, and the SSSS and SSS corresponding IDs are the same, the SSSS sequence is the same as the SSS sequence.
  • IDs identifiers
  • MIB-SL-V2X carries information such as tdd-config, direct frame number (DFN), and bandwidth. DFN is used to help the receiving terminal obtain the frame-level timing information of the sending terminal. What tdd-config provides is Uplink (UL) / downlink (Downlink, DL) configuration. For simplicity, the resources used to transmit PSSS, SSSS, and MIB-SL-V2X can be referred to simply as sidelink synchronization resources.
  • the terminal configured with A it can obtain information about tdd-config and sidelink synchronization resources from the network-side device.
  • the terminal configured with B usually because there is no network coverage, the tdd-config and the sidelink synchronization resources can only be obtained from the manufacturer's pre-configuration.
  • the terminal of configuration A will send the tdd-config, DFN and bandwidth configuration it obtained from the network-side device in its MIB-SL-V2X, and the terminal of configuration B will send the vendor pre-configuration in its MIB-SL-V2X Tdd-config, DFN and bandwidth.
  • the terminal first determines which of the wireless resources are uplink subframes, which are downlink subframes and special subframes according to the tdd-config, and then the terminal deletes the resources occupied by the downlink subframes and sidelink synchronization resources from the wireless resources, and uses the remaining resource time. They are arranged in sequence, and a sidelink frame is numbered according to 10ms, and the number is DFN.
  • FIG. 2 A schematic diagram is shown in FIG. 2. It is assumed that UL subframes are reused for SL transmission, and subframe 8 in SFN1 is used for SL synchronization signal transmission.
  • uplink / downlink configurations There are only 6 uplink / downlink configurations supported in LTE, and the unit of configuration is a subframe. In addition, there are dozens of uplink / downlink configurations supported in New Radio (NR).
  • the unit of configuration can be a symbol.
  • the NR also introduces the flexible symbol. Network-side equipment can dynamically configure and change the flexible symbol. Uplink / downlink configuration, and the number of supported configurations can be further expanded in subsequent evolution.
  • NR synchronization signal block
  • SSB also known as SS / PBCH block, synchronization signal / physical broadcast signal block
  • An SSB is composed of two parts: NR-SS and NR-PBCH (Physical Broadcast Channel, Physical Broadcast Channel).
  • NR-SS is divided into NR-PSS and NR-SSS.
  • An SSB contains 4 symbols in total, and the time domain composition order of these symbols in an SSB is PSS-PBCH-SSS-PBCH.
  • the L SSBs are transmitted within a 5ms time window according to the time domain position defined by the protocol, that is, a 5ms window in which the SSB appears periodically.
  • the base station will inform the terminal through a 1-bit half frame indicator (HFI) whether the time window is in the first half or the second half of a radio frame. And the base station will also indicate the index of each SSB.
  • HFI half frame indicator
  • the network in NR supports flexible uplink and downlink configurations, indicating that the overhead signaling required for this configuration is much larger than LTE.
  • the number and flexibility of uplink and downlink configurations pre-configured by vendors are limited.
  • the uplink-downlink configurations configured by the network and the uplink-downlink configurations pre-configured by the vendors are likely to be different, causing terminals in different modes to interfere with each other. Even when the terminals of the two modes have the same timing alignment or the same synchronization source, and use the same sidelink resources, the two terminals may have different understandings of the DFN, which may cause mutual interference.
  • different terminals may choose the same synchronization source, sidelink synchronization resource, and synchronization signal sequence, but the content carried in MIB-SL-V2X may be the same or different.
  • the receiving terminal may receive on a resource The synchronization signal sequence and MIB-SL-V2X to multiple sending devices, but the receiver cannot directly distinguish between different MIB-SL-V2X by detecting the synchronization signal sequence, and it cannot decode different MIB-SL-V2X.
  • the transmitting device is uniquely determined, so the measured result is actually a superposition of signals from multiple transmitting devices, which is not accurate, and beam-related operations cannot be performed in a multi-beam scenario.
  • embodiments of the present disclosure provide a signal sending method, a receiving method, a sending device, and a receiving device, so that the receiving device can determine the information of the sending device through detection of the signal, which is beneficial to subsequent measurement, combining, decoding, Management and other operations to improve the accuracy of transmission.
  • the side link can also be called a side link, a direct link, both belong to the same concept, corresponding to the sidelink in English.
  • An embodiment of the present disclosure provides a signal sending method, which is applied to a sending device. As shown in FIG. 4, the method includes:
  • Step 101 Send a first signal to the receiving device, where the first signal includes at least one of the following information:
  • the device identification information may be identification information of the receiving device or identification information of the sending device.
  • the sending device includes at least one of a network-side device and other terminals.
  • the device identification information may be identification information of the other terminal.
  • the sending device sends a first signal to the receiving device, and the first signal includes at least one of the following information: timing information; device identification information; group identification information; resource configuration information; first signal transmission information; beam transmission Information; other information.
  • the receiving device can determine the information of the sending device by detecting the first signal, which is beneficial to subsequent operations such as measurement, combining, decoding, and management, and improves the accuracy of transmission.
  • a sequence of random access signals is a sequence of random access signals.
  • the terminal selects one of the reference signal and / or the synchronization signal and / or the measurement signal sequence from a plurality of candidates of the reference signal and / or the synchronization signal and / or The sequence of measurement signals is described. Among them, and / or represent at least one of the connection objects.
  • the first signal includes at least one of the following:
  • Broadcast channel reference signal, synchronization signal, measurement signal, random access signal, data channel.
  • the broadcast channel carries information included in the at least part of the first signal; and / or
  • the data channel carries information included in the at least part of the first signal, and the data channel carries a 2-step random access (Random Access) process to which the information included in the at least part of the first signal is applicable. Among them, and / or represent at least one of the connection objects.
  • At least one of the following is determined: a sequence of the reference signal, a sequence of the synchronization signal, a sequence of the measurement signal; and / or
  • At least one of the following is determined: a sequence of the reference signal and a sequence of the random access signal. Among them, and / or represent at least one of the connection objects.
  • the method includes at least one of the following:
  • a plurality of candidate reference signals and / or the synchronization signals and / or the measurement signal sequences are determined through mapping from the reference signals and And / or selecting a sequence of the reference signal and / or the synchronization signal and / or the measurement signal from the synchronization signal and / or the measurement signal sequence;
  • connection objects and / or represent at least one of the connection objects.
  • the method includes at least one of the following:
  • a sequence of the reference signal and / or the random access signal of a plurality of candidates is determined through mapping, from the reference signals and / or the plurality of candidates. Selecting one of the reference signal and / or the sequence of the random access signal from the sequence of the random access signal;
  • a sequence of the reference signal and / or the random access signal is selected from a plurality of candidate sequences of the reference signal and / or the random access signal.
  • connection objects and / or represent at least one of the connection objects.
  • the information included in the at least part of the first signal includes at least one of the following:
  • Equipment identification information identification of the first signal.
  • timing information includes at least one of the following:
  • Frame information Time slot information, an identifier of the first signal, an identifier of a transmission direction, and an identifier of a resource set to which the first signal belongs.
  • the resource set is at least one of the following:
  • N is a positive integer.
  • the time domain resources occupied by the N first signals refer to the time domain symbols occupied by the N first signals, and the time range to which the N first signals belong refers to the time range to which the time domain symbols occupied by the N first signals belong;
  • the frequency domain range to which the first signals belong refers to the frequency domain range to which the frequency domain resources occupied by the N first signals belong.
  • the resource configuration information includes at least one of the following:
  • uplink and downlink resource configuration information is obtained in at least one of the following ways:
  • the side link resource configuration information indicates at least one of a side link resource part and a non-side link resource part.
  • side link resource configuration information is at least one of the following forms:
  • the first signal transmission information includes at least one of the following:
  • the beam transmission information includes at least one of the following:
  • the other information includes at least one of the following:
  • the subsequent communication information includes at least one of the following:
  • the first signal is used to perform at least one of the following:
  • the measured information is used for at least one of beam failure detection BFD, radio link monitoring RLM, radio resource management RRM, CSI acquisition, and beam management.
  • the directional information includes a quasi-co-location relationship.
  • An embodiment of the present disclosure further provides a signal receiving method, which is applied to a receiving device. As shown in FIG. 5, the method includes:
  • Step 201 Receive a first signal from a transmitting device, where the first signal includes at least one of the following information:
  • the sending device sends a first signal to the receiving device, and the first signal includes at least one of the following information: timing information; device identification information; group identification information; resource configuration information; first signal transmission information; beam transmission Information; other information.
  • the receiving device can determine the information of the sending device by detecting the first signal, which is beneficial to subsequent operations such as measurement, combining, decoding, and management, and improves the accuracy of transmission.
  • the first signal includes at least one of the following:
  • Broadcast channel reference signal, synchronization signal, measurement signal, random access signal, data channel.
  • the broadcast channel carries information included in the at least part of the first signal; and / or
  • the data channel carries information included in the at least part of the first signal.
  • connection objects and / or represent at least one of the connection objects.
  • the information included in the at least part of the first signal includes at least one of the following:
  • Equipment identification information identification of the first signal.
  • timing information includes at least one of the following:
  • Frame information Time slot information, an identifier of the first signal, an identifier of a transmission direction, and an identifier of a resource set to which the first signal belongs.
  • the resource set is at least one of the following:
  • N is a positive integer.
  • the resource configuration information includes at least one of the following:
  • the side link resource configuration information indicates at least one of a side link resource part and a non-side link resource part.
  • side link resource configuration information is at least one of the following forms:
  • the first signal transmission information includes at least one of the following:
  • the beam transmission information includes at least one of the following:
  • the other information includes at least one of the following:
  • the subsequent communication information includes at least one of the following:
  • the measured information is used for at least one of beam failure detection BFD, radio link monitoring RLM, radio resource management RRM, CSI acquisition, and beam management.
  • the directional information includes a quasi-co-location relationship.
  • the information that the first signal may carry includes at least one of the following:
  • Timing information including at least one of the following:
  • Frame information for example, when this signal block is used for sidelink, it carries DFN information;
  • Time slot information such as slot index
  • the identification of the transmission direction such as dividing 360 ° into four directions, and using the identifiers 0,1,2,3 to represent the four directions;
  • resource configuration information including at least one of the following: uplink and downlink resource configuration, sidelink resource configuration;
  • the first signal transmission information includes at least one of the following: information of the first signal actually transmitted, and information of the first signal allowed to be transmitted;
  • Beam transmission information includes at least one of the following: information on permitted transmission beams, information on actually transmitted beams, and beam information corresponding to the current first signal;
  • the power information includes at least one of the following: reference signal transmission power; synchronization sequence transmission power; broadcast channel transmission power; measurement signal transmission power; reference signal transmission power, synchronization sequence transmission Power, one of the broadcast channel transmission power and the measurement signal transmission power, and the power difference between this power and one or more other powers; subsequent communication-related information includes at least one of the following: resource indication information for subsequent communication, and configuration of subsequent communication Information, the mapping relationship between the first signal and the resource pool resource, wherein the resource indication information includes at least one of the following: time domain resource, frequency domain resource, bandwidth part (BWP), resource pool, cell identity, Carrier identification, frequency band identification, subcarrier spacing (SCS), Cyclic Prefix (CP), resource pool configuration, control resource configuration, data resource configuration, monitoring window length, monitoring period, modulation and coding strategy MCS , Bit rate, precoding mode, synchronization source, time of subsequent transmission Relevant configurations.
  • resource indication information includes at least one of the following: time domain resource, frequency domain resource, bandwidth part (BWP), resource pool, cell
  • the time domain resource includes at least one of the following: time domain resource offset, and time domain symbols occupied.
  • the frequency domain resources include at least the following: frequency domain resource offset, occupied frequency domain resources.
  • the subsequent communication information includes at least one of security service messages, basic V2X service messages, periodic service messages, public safety service messages, and other broadcast messages.
  • the composition of the first signal includes at least one of the following: a broadcast channel, a reference signal, a synchronization signal, a measurement signal, a data channel, and a random access signal.
  • the first signal includes at least a broadcast channel, a reference signal, and a synchronization signal
  • the broadcast channel carries at least a part of the above-mentioned required carrying information
  • the first signal includes at least a data channel and a reference signal, and the data channel carries at least part of the above-mentioned required carrying information.
  • the first signal when the first signal includes a measurement signal and a reference signal, they may be the same signal or different signals.
  • the reference signal, the synchronization signal, and the measurement signal in the first signal determine the reference / synchronization / measurement signal sequence based on at least part of the above-mentioned required carrying information, (or it can also be said
  • the reference / synchronization / measurement signal sequence carries at least part of the above-mentioned required carrying information).
  • the measurement signal and / or the reference signal and / or the synchronization signal sequence are determined based on at least part of the above-mentioned required carrying information carried in the broadcast channel (for example, by bringing in a hash function or other mapping method); optionally, The at least part includes at least one of equipment identification information (similar to the UE ID of the sending equipment) and the identity of the first signal.
  • a random access signal and / or a reference signal sequence is determined based on at least part of the above-mentioned required carrying information carried in the data channel (for example, by bringing in a hash function or other mapping method); optionally, the at least The part contains at least one of equipment identification information (similar to the UE ID of the sending equipment) and the identity of the first signal.
  • a candidate sequence set is determined based on at least part of the above-mentioned required carrying information carried in the broadcast channel, and a candidate sequence set is selected.
  • a candidate sequence set is determined based on at least part of the above-mentioned required carrying information carried in the data channel, and a candidate sequence set is selected.
  • a sequence is determined in a candidate sequence set based on at least part of the above-mentioned required carrying information carried in the broadcast channel.
  • a sequence is determined in a candidate sequence set based on at least part of the above-mentioned required carrying information carried in the data channel.
  • the reference signal is at least one of the following
  • the measurement signal is at least one of the following (reference signal and measurement signal types may be the same or different, and may be the same signal or different signals):
  • DMRS demodulation reference signal
  • CSI Channel State Information
  • RS Channel State Information
  • TRS tracking reference signal
  • TRS phase tracking reference signal
  • PTRS phase tracking reference signal
  • SRS sounding reference signal
  • the functions that can be performed on the first signal include at least one of the following:
  • Measurement measurement includes at least one of the following: measurement of radio resource management (RRM), measurement of radio link monitoring (RLM), measurement of beam failure detection (BFD); CSI Measurements such as Reference Signal Received Power (RSRP), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI) and other measurements, beam management .
  • RRM radio resource management
  • RLM radio link monitoring
  • BFD beam failure detection
  • CSI Measurements such as Reference Signal Received Power (RSRP), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI) and other measurements, beam management .
  • RSRP Reference Signal Received Power
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • the receiving terminal ie, the receiving device
  • the direction information includes a Quasi-co-location (QCL) relationship.
  • QCL Quasi-co-location
  • the first signal is associated with other signals and / or resource pools, and can be used as a QCL reference for other signals and / or resource pools, that is, at least one of the following QCL parameters of the first signal and other signals and / or resource pools
  • QCL average delay (delay); delay spread (spread); doppler shift (doppler shift); doppler spread (spatial, Rx parametric), average gain ( average gain). Among them, and / or represent at least one of the connection objects.
  • the timing information when the first signal carries timing information, optionally, includes DFN.
  • a DFN is defined in a manner that a DFN is 10 ms in length and includes a side link (sidelink). , SL) at least one of a resource part and a non-SL resource part.
  • the DFN is defined with reference to the form of the SFN, and does not remove any DL and / or flexible symbols according to the pre-defined and / or configured and / or pre-configured uplink and downlink configurations.
  • the DFN and the SFN boundary of the network are aligned.
  • a certain time according to local time is regarded as 0, and every 10ms is regarded as a DFN.
  • the DFN is recalculated from 0 every 10240ms, that is, the DFN range is 0-1023.
  • T is the time interval between the current time and the starting time
  • the unit is ms, where / is the division sign, and mod is the modulus.
  • the uplink and downlink resource configuration information indicates format information of uplink and / or downlink and / or fexible over a period of time, and
  • the precision may be symbols or slots or subframes.
  • the format of a slot is indicated, that is, the allocation of uplink symbols, downlink symbols, and flexible symbols contained in the slot (A slot format includes downlink symbols, uplink symbols, and flexible symbols).
  • the uplink and downlink resource configuration information may be obtained by the sending device through network-side device configuration, or may be obtained by the sending device through pre-configuration, or may be derived by the sending device through a resource pool, such as time domain resources from the initial resource pool. Introduced.
  • the side link resource configuration information indicates at least one of a SL resource portion and a non-SL resource portion
  • the resources include At least one of a time domain resource and a frequency domain resource.
  • the side-link resource configuration information may indicate the SL resource part and the non-SL resource part, or may indicate only one of them. Alternatively, the other may be implicitly derived through the former.
  • the side-link resource configuration information does not indicate that the resource corresponding to it is an SL resource.
  • the side-link resource configuration information indicates that the resource corresponding to the side-link resource is an SL resource, but the resource is not taken into consideration when the resource is reserved, or the resource set to which the resource belongs is not taken into account.
  • the reserved resource and the resource or overlap it is considered that the overlapping portion is used for the transmission of the first signal.
  • the reserved resource and the resource set to which the resource belongs overlap, it is considered that the overlapped portion is used for the transmission of the first signal.
  • the side link resource configuration information may be at least one of the following forms:
  • the first value may be at least one of the following:
  • the number of time domain resources contained in at least one sidelink slot is the number of time domain resources contained in at least one sidelink slot
  • the number of time domain resources contained in at least one time window is the number of time domain resources contained in at least one time window.
  • the second value may be at least one of the following:
  • the number of frequency domain resources contained in at least one resource pool is the number of frequency domain resources contained in at least one resource pool
  • the number of frequency domain resources included in at least one frequency domain window is the number of frequency domain resources included in at least one frequency domain window.
  • bitmap is used to indicate time domain SL resources and frequency domain SL resources.
  • identifier 1 indicates that subframes a and b are time domain SL resources
  • the identifier 2 indicates that RB c, d is a SL resource in the time domain
  • the identifier 3 indicates that the subframes a, b and RB c, d are SL resources.
  • indicating subframes a and b indicates that subframes a and b are time domain SL resources
  • indicating RB c, d indicates that RB c, d is a SL resource in the time domain
  • the subframes a, b and RB c, d are indicated, indicating that the subframes a, b and RB c, d are SL resources.
  • both include, for example, indicating subframes a and b, indicating that subframe ab is a time domain SL resource; for example, indicating RB c, d, indicating that RB cd is a frequency domain SL resource; for example, indicating subframes a, b and RB , d, indicates that the subframe ab and RB CD are SL resources.
  • the SL resource is from the starting point resource to the maximum; when the ending point is included, the SL resource is the minimum resource to the ending point resource.
  • time domain resources and frequency domain resources may be indicated by different parameters, or they may be indicated by the same parameter.
  • Non-SL resources and SL resources may be indicated by the same set of parameters, or may be indicated by more than one set of parameters.
  • the side-link resource configuration information includes a bitmap and a resource pattern identifier
  • the bits of the bitmap correspond to different resource groups, and the resource pattern identifier corresponds to a pattern identifier in the resource group.
  • the bits of the bitmap correspond to resources in a resource group, and the resource pattern identifier corresponds to a different resource group.
  • the side-link resource configuration information includes a resource identifier and a resource pattern identifier
  • different resource identifiers correspond to different resource groups
  • the resource pattern identifier corresponds to a pattern identifier in the resource group.
  • different resource identifiers correspond to different resources in a resource group
  • resource pattern identifiers correspond to different resource groups.
  • the side-link resource configuration information includes a resource identifier, in a bitmap, optionally, the bits of the bitmap correspond to different resource groups, and different resource identifiers correspond to different resources in the resource group. Alternatively, the bits of the bitmap correspond to resources in a resource group, and the same resource identifier corresponds to a different resource group.
  • the side-link resource configuration information includes a bitmap, a resource identifier, and a resource pattern identifier
  • the bits of the bitmap correspond to different resource groups
  • the resource pattern identifier corresponds to the pattern identifier in the resource group
  • the resource identifier corresponds to the difference in the pattern. Resources.
  • the first signal transmission information includes at least one of the following:
  • the first signal indicated by the information is the first signal actually sent.
  • the form of the information may be at least one of the following:
  • Bitmap for example, the first signal indicated by the bitmap is the first signal actually sent
  • the number M can only send the first signal according to a certain rule starting from the first signal with a fixed index, for example, sending M consecutive first signals from index 0;
  • Start index + number M that is, M consecutive numbers starting from Start index.
  • end index + number M That is, up to the end of M consecutive index.
  • Information of the first signal allowed to be transmitted may be at least one of the following
  • the maximum number N of first signals allowed to be transmitted For example, the maximum number N of first signals allowed to be transmitted;
  • the index range of the first signal allowed to be transmitted includes, for example, at least one of the maximum and minimum values of the index of the first signal allowed to be transmitted.
  • the minimum index the number N; that is, N consecutive numbers starting from the minimum index.
  • N contains the maximum index, number N; that is, N consecutive numbers up to the maximum index.
  • it includes the maximum index and the minimum index, that is, starting from the minimum index and ending at the maximum index.
  • the beam transmission information includes at least one of the following:
  • the information of the beam actually transmitted is the beam actually transmitted.
  • the form of the information may be at least one of the following:
  • Bitmap for example, the beam indicated by bitmap is the beam actually transmitted
  • the number M can only send beams according to a certain rule starting from the beam with a fixed index, for example, starting from index 0 and sending M consecutive beams;
  • Start index + number M that is, M consecutive numbers starting from Start index.
  • end index + number M That is, up to the end of M consecutive index.
  • the maximum number of beams allowed to be transmitted N the maximum number of beams allowed to be transmitted N
  • the index range of the beams allowed to be transmitted includes, for example, at least one of the maximum and minimum values of the index of the beams allowed to be transmitted.
  • the minimum index the number N; that is, N consecutive numbers starting from the minimum index.
  • N contains the maximum index, number N; that is, N consecutive numbers up to the maximum index.
  • it includes the maximum index and the minimum index, that is, starting from the minimum index and ending at the maximum index.
  • a correspondence relationship between the beam and the first signal there may be a correspondence relationship between the beam and the first signal, and the correspondence relationship may be 1 to 1, 1 to many, many to 1, and many to many.
  • a first signal corresponds to a beam, but the directionality information of the beam cannot be specifically embodied.
  • different first signals may correspond to different beam identifiers, but may actually be performed by beams in the same direction. transmission.
  • a first signal corresponds to a group of beams, but the directionality information of the beams cannot be specifically embodied.
  • different first signals may correspond to different beam identifiers, but may actually pass through the same group of directions. Beam for transmission.
  • a first signal may correspond to a beam and its directivity information at the same time, and the beams and beam directions are different between different signal blocks.
  • the beam identifiers corresponding to the synchronization signal blocks transmitted through the same transmission direction are the same.
  • a first signal may correspond to a set of beams and their directivity information at the same time, and the beams and beam directions are different between different signal blocks.
  • the beam identifiers corresponding to the synchronization signal blocks transmitted through the same set of transmission directions are the same.
  • the directivity mentioned in this embodiment refers to a pointing direction during beam transmission.
  • the first signal when the first signal carries at least one item of information such as device identification information and the first signal identification, and the first signal composition includes: a broadcast channel, a reference signal, a synchronization signal, and a measurement signal :
  • the broadcast channel is used to carry at least part of the information carried by the first signal.
  • the reference signal in the first signal determine the reference signal sequence based on at least part of the information mapping carried by the broadcast channel, such as mapping (for example, by a hash function) at least part of the information carried by the broadcast channel to one or one. Group values, and generate a reference signal sequence based on the mapping results.
  • mapping for example, by a hash function
  • the reference signal in the first signal determine the reference signal sequence based on at least part of the information mapping carried by the broadcast channel, such as mapping (for example, by a hash function) at least part of the information carried by the broadcast channel to one or one. Group values, based on the mapping results, a sequence is selected from the candidate sequences as a reference signal sequence.
  • mapping for example, by a hash function
  • At least part of the information in 1 and 2 includes at least one of equipment identification information and a first signal identification.
  • randomly select in the candidate sequence set for example, the UE randomly selects one from the 8 DMRS sequences
  • a specific implementation is that the terminal does not select candidate sequences that have been detected by other terminals; or excludes that the detected measurement result is higher than the corresponding Threshold candidate sequences are selected from the remaining candidate sequences; if all candidate sequences are used by other terminals and / or the strength of the measured result is higher than the corresponding threshold, optionally, the terminal selects the candidate sequence with the smallest strength of the measured results ,
  • the measured quantities may be RSRP, Reference Signal Receiving Quality (RSRQ), Received Signal Strength Indication (RSSI), Signal to Interference plus Noise Ratio (Signal to Interference, Noise, Ratio, SINR) At least one of.
  • a measurement signal sequence is generated based on at least part of the above-mentioned required carrying information carried on the broadcast channel; optionally, the at least part of the information includes at least one of equipment identification information and a first signal identification.
  • a measurement signal sequence is generated based on the device identification information carried in the broadcast channel and the first signal identification.
  • randomly select in the candidate sequence set for example, the UE randomly selects one from the 8 DMRS sequences
  • a specific implementation is that the terminal does not select a candidate sequence that has been detected by other terminals; or excludes that the detected measurement result is higher than the corresponding Threshold candidate sequences are selected from the remaining candidate sequences; if all candidate sequences are used by other terminals and / or the strength of the measured result is higher than the corresponding threshold, optionally, the terminal selects the candidate sequence with the smallest strength of the measured results ,
  • the measured quantities may be RSRP, Reference Signal Receiving Quality (RSRQ), Received Signal Strength Indication (RSSI), Signal to Interference plus Noise Ratio (Signal to Interference, Noise, Ratio, SINR) At least one of.
  • the reference signal may be at least one of the following, and the measurement signal may be at least one of the following:
  • It can be at least one of DMRS, CSI-RS, TRS, PTRS, SRS, SSS, PSS;
  • sequences may be used, or at least two sequences may be multiplied.
  • sequences may be mapped into symbols and then sequence multiplied.
  • the same generation method and the same sequence length can be used for SSS.
  • the same generator polynomial as that of the PSS may be adopted, but the number of cyclic shifts is not limited to three kinds of sequences.
  • the signal block includes PSS (referred to as PSSS on the sidelink), SSS (referred to as SSSS on the sidelink), DMRS and measurement signal (measurement reference signal, MRS), the reference signal is DMRS, and the broadcast channel PBCH (called PSBCH on the sidelink) a value obtained by mapping all information carried, and initialize and generate a DMRS sequence based on the value.
  • the information carried by the PBCH (PSBCH) includes the index of the first signal and the ID of the transmitting device (if it is an sIDelink transmission, it is the ID of the transmitting UE), and the MRS sequence is initialized and generated based on the index and the ID.
  • the terminal may obtain a measurement result of the signal block sent by the sending device by measuring the MRS signal.
  • MRS is an abbreviation given for the convenience of description. In fact, it may have other names according to its type and function.
  • x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod 2
  • x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) + x 2 (n)) mod 2
  • M is an integer
  • the initialization sequence of at least one of x 1 and x 2 is represented by c init .
  • the transmitting device ID carried by the broadcast channel is 10 bits and the MRS is a gold sequence.
  • the MRS can be initialized according to the following formula:
  • n ID is the 10-bit terminal ID
  • i is the identification of the first signal
  • l is the OFDM symbol number in a slot, or l may also be 0, and the sequence c (n) is:
  • x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod 2
  • x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) + x 2 (n)) mod 2
  • the sequence generation formula is:
  • the reference sequence is a gold sequence
  • the reference sequence can be initialized according to the following formula:
  • BCH mapping is the value obtained by mapping the information carried by the broadcast channel
  • i is the identification of the first signal
  • l is the OFDM symbol number in a slot, or l may also be 0, and the sequence c (n) is:
  • x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod 2
  • x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) + x 2 (n)) mod 2
  • the sequence generation formula is:
  • the same generator polynomial as the PSS is used, and the generation method is as follows,
  • N cs is the cyclic shift.
  • the cyclic shift N cs in its reference sequence corresponds to the mapping result of the information carried by its broadcast channel.
  • the reference signal is an m-sequence and uses the same generator polynomial as SSS.
  • L is the length of the m sequence
  • the information carried on the broadcast channel is mapped to obtain at least one of N 1 and N 2 .
  • x 1 (i + 7) (x 1 (i + 1) + x 1 (i)) mod 2
  • the m sequence is generated as follows:
  • d 2 (n) 1 to 2x ((n + m) mod M), where m is a cyclic shift value.
  • a cyclic shift value can be configured for each UE or each group of UEs.
  • the MRS sequence sent is the product of the above-mentioned Gold sequence and m sequence (that is, mutual modulation):
  • d (n) d 1 (n) ⁇ d 2 (n).
  • MRS is a multiplication of three m sequences, and the three m sequences are described below as d 1 (n), d 2 (n), and d 3 (n), respectively:
  • N cs is the cyclic shift and L is the sequence length.
  • d 2 (n) and d 3 (n) are generated as follows:
  • d (n) d 1 (n) ⁇ d 2 (n) ⁇ d 3 (n).
  • N cs wherein between the presence of N cs, N 1 and N 2 and the identification device transmitting the first signal identifier mapping relationship, e.g., device identification is assigned to the transmission group X, X N cs a total possible values, each of the N cs The value corresponds to one sending device identification group, one sending device identification group corresponds to Y subgroups, and N 1 has a total of X possible values. Each N 1 value corresponds to one sending device identification subgroup and one sending device identification subgroup.
  • N 2 Corresponding to Z sending device identifiers, N 2 has a total of Z possible values, and each N 2 value corresponds to a sending device identifier.
  • the MRS includes two sequences, and a sequence d 1 (n) is generated as follows,
  • N cs is the cyclic shift and L is the sequence length.
  • N cs wherein between the presence of N cs, N 1 and N 2 and the identification device transmitting the first signal identifier mapping relationship, e.g., device identification is assigned to the transmission group X, X N cs a total possible values, each of the N cs The value corresponds to one sending device identification group, one sending device identification group corresponds to Y subgroups, and N 1 has a total of X possible values. Each N 1 value corresponds to one sending device identification subgroup and one sending device identification subgroup.
  • N 2 Corresponding to Z sending device identifiers, N 2 has a total of Z possible values, and each N 2 value corresponds to a sending device identifier.
  • these two sequences may occupy two OFDM symbols.
  • these two sequences are also used for PSS (referred to as PSSS on sIDelink) and SSS (referred to as SSSS on sIDelink), that is, MRS contains PSS and SSS.
  • PSS PSSS on sIDelink
  • SSS SSS on sIDelink
  • N 1 and N 2 may be PSS, SSS The sequence ID.
  • the first signal when the first signal carries at least one of information such as device identification information and the first signal identification, and the first signal composition includes at least: a reference signal and a data channel:
  • the data channel is used to carry at least part of the information carried by the first signal.
  • a reference signal sequence based on at least part of the information mapping carried by the data channel, such as mapping (for example, by a hash function) at least part of the information carried by the data channel to one or a set of values, and generating a reference signal based on the mapping result sequence.
  • mapping for example, by a hash function
  • the reference signal in the first signal determine the reference signal sequence based on at least part of the information mapping carried by the data channel, for example, map (for example, by a hash function) at least part of the information carried by the data channel to one or one. Group values, based on the mapping results, a sequence is selected from the candidate sequences as a reference signal sequence.
  • map for example, by a hash function
  • At least part of the information in 1 and 2 includes at least one of equipment identification information and a first signal identification.
  • a measurement signal sequence is generated based on at least part of the above-mentioned required carrying information carried by the data channel (by a method such as hash); optionally, the at least part of the information includes device identification information, At least one.
  • a measurement signal sequence is generated based on the device identification information carried in the data channel and the first signal identification.
  • randomly select in the candidate sequence set for example, the UE randomly selects one from the 8 DMRS sequences
  • a specific implementation is that the terminal does not select candidate sequences that have been detected by other terminals; or excludes that the detected measurement result is higher than the corresponding Threshold candidate sequences are selected from the remaining candidate sequences; if all candidate sequences are used by other terminals and / or the strength of the measured result is higher than the corresponding threshold, optionally, the terminal selects the candidate sequence with the smallest strength of the measured results ,
  • the measured quantities may be RSRP, Reference Signal Receiving Quality (RSRQ), Received Signal Strength Indication (RSSI), Signal to Interference plus Noise Ratio (Signal to Interference, Noise, Ratio, SINR) At least one of.
  • the first signal further includes a random access signal.
  • the formula for generating the reference signal may be the same as the formula for generating the reference signal or the measurement signal in the sixth embodiment, and details are not described herein.
  • the formula in the sixth embodiment corresponding to the broadcasting channel carrying information in the formula, it can be replaced with the data channel carrying information used to determine (generate) the reference signal.
  • the first signal measurement information may be configured to be used in BFD (beam failure detection), RLM, and RRM through at least one of protocol pre-defined, network-side device configuration, other terminal configuration, and vendor pre-configuration. At least one.
  • the first signal measurement information may include the following:
  • the indication of the first signal to be measured includes at least one of the following: Bitmap, identification (one or more), the number of first signals to be measured, the number of first signals to be measured, and the first first signal to be measured.
  • Bitmap identification (one or more)
  • the index of a signal the number of the first signal to be measured, the index of the last first signal to be measured.
  • a receiving device determines resources to be measured based on the information.
  • at least one of PSS, SSS, reference signal, and measurement signal is detected and measured on the indicated resource. Evaluation is performed based on the measurement result, and the evaluation is determined. result.
  • the terminal obtains the first signal identifier 1 and / or the beam identifier 2 based on at least one of the detected PSS, SSS, physical broadcast channel, reference signal, and measurement signal on the indicated resource.
  • the terminal considers that the evaluation result corresponds to the identifier.
  • the MRS can be used for at least one of RRM, RLM, BFD, power control, and BM on the sidelink.
  • the signal block includes PSS (referred to as PSSS on the sidelink), SSS (referred to as SSSS on the sidelink), a reference signal and a measurement signal MRS, and the terminal measures its MRS on the corresponding information structure according to the indication of the measurement information
  • PSS PSSS on the sidelink
  • SSS SSS
  • MRS measurement signal
  • the terminal measures its MRS on the corresponding information structure according to the indication of the measurement information
  • the signal is evaluated based on the measurement result. For example, the measurement result is compared with at least one of the corresponding judgment threshold and / or criterion to determine a subsequent step.
  • the terminal may select one or more first signals by comparing at least one of RSRP, RSSI, RSRQ, SINR and other measured quantities of different measured first signals MRS, such as selecting a measurement One or more of the highest measurement results, or one or more of the measurement results satisfying the threshold requirement.
  • the terminal may evaluate at least one of the current link quality and / or status through the measured first signal MRS, and optionally further determine whether it is necessary to report IS or OOS, and optionally whether it is further required. Initiate a link restoration request.
  • perform BFD measurement based on MRS evaluate at least one of the quality and / or status of the beam, such as whether a beam failure occurs, and optionally further determine whether to initiate a beam recovery request.
  • power control is performed based on MRS.
  • the terminal may use the measured received power of the first signal MRS and send instruction information based on the received power to assist the sender to adjust the signal power.
  • the terminal may evaluate at least one of the measured quantities such as RSRP, RSSI, RSRQ, and SINR of the first signal MRS to evaluate the beam quality and / or state corresponding to the first signal and / Or at least one item of QCL information, optionally further selecting which beam or beams to send and receive, for example, selecting the beam corresponding to the first signal with the highest measurement result, or selecting one or more first measurement signals whose measurement results meet the threshold requirement The beam corresponding to a signal.
  • the measured quantities such as RSRP, RSSI, RSRQ, and SINR of the first signal MRS
  • the terminal may evaluate at least one of the measured quantities such as RSRP, RSSI, RSRQ, and SINR of the first signal MRS to evaluate the beam quality and / or state corresponding to the first signal and / Or at least one item of QCL information, optionally further selecting which beam or beams to send and receive, for example, selecting the beam corresponding to the first signal with the highest measurement result, or selecting one or more first measurement signals whose measurement results
  • the reference signal type is DMRS
  • the DMRS sequence is initialized and generated based on a value obtained by mapping information carried by the broadcast channel.
  • the information carried by the broadcast channel includes the index of the first signal and the transmitting device ID, and the MRS sequence is initialized and generated based on the index and the ID.
  • the first signal may provide a QCL reference of quasi-co-location (QCL) parameters during transmission of other signals, that is, there may be an association relationship between the first signal and other signals.
  • QCL quasi-co-location
  • the association relationship may be pre-defined by a protocol, configured by a network device, configured by other terminals, and / or pre-configured by a vendor.
  • first signals When multiple first signals are configured for the same other signal and / or resource pool as a QCL reference, one of them may be indicated by high-level signaling, MAC-CE (Media Access Control-Control Element), or downlink control information.
  • the first signal is used as the actual QCL reference.
  • a case where the protocol is predefined or the vendor is pre-configured with the association relationship is that other signals and / or resource pools perform resource mapping according to a certain rule according to the first signal identifier, and the rule includes at least one of the following:
  • the time domain is mapped in ascending order
  • the frequency domain is mapped in ascending order
  • An embodiment of the present disclosure further provides a sending device, as shown in FIG. 6, including:
  • the sending module 31 is configured to send a first signal to a receiving device, where the first signal includes at least one of the following information:
  • the sending device sends a first signal to the receiving device, and the first signal includes at least one of the following information: timing information; device identification information; group identification information; resource configuration information; first signal transmission information; beam transmission Information; other information.
  • the receiving device can determine the information of the sending device by detecting the first signal, which is beneficial to subsequent operations such as measurement, combining, decoding, and management, and improves the accuracy of transmission.
  • a determining module configured to determine at least one of the following based on at least part of information included in the first signal:
  • a sequence of random access signals is a sequence of random access signals.
  • the first signal includes at least one of the following:
  • Broadcast channel reference signal, synchronization signal, measurement signal, random access signal, data channel.
  • the broadcast channel carries information included in the at least part of the first signal; and / or
  • the data channel carries information included in the at least part of the first signal.
  • the determining module is specifically configured to determine at least one of the following: a sequence of the reference signal, a sequence of the synchronization signal, and a sequence of the measurement signal based on at least part of the information carried by the broadcast channel; and / or
  • At least one of the following is determined: a sequence of the reference signal and a sequence of the random access signal.
  • the determining module is specifically configured to execute at least one of the following:
  • a plurality of candidate reference signals and / or the synchronization signals and / or the measurement signal sequences are determined through mapping from the reference signals and And / or selecting a sequence of the reference signal and / or the synchronization signal and / or the measurement signal from the synchronization signal and / or the measurement signal sequence;
  • the determining module is specifically configured to execute at least one of the following:
  • a sequence of the reference signal and / or the random access signal of a plurality of candidates is determined through mapping, from the reference signals and / or the plurality of candidates. Selecting one of the reference signal and / or the sequence of the random access signal from the sequence of the random access signal;
  • a sequence of the reference signal and / or the random access signal is selected from a plurality of candidate sequences of the reference signal and / or the random access signal.
  • the information included in the at least part of the first signal includes at least one of the following:
  • Equipment identification information identification of the first signal.
  • timing information includes at least one of the following:
  • Frame information Time slot information, an identifier of the first signal, an identifier of a transmission direction, and an identifier of a resource set to which the first signal belongs.
  • the resource set is at least one of the following:
  • N is a positive integer.
  • the resource configuration information includes at least one of the following:
  • uplink and downlink resource configuration information is obtained in at least one of the following ways:
  • the side link resource configuration information indicates at least one of a side link resource part and a non-side link resource part.
  • side link resource configuration information is at least one of the following forms:
  • the first signal transmission information includes at least one of the following:
  • the beam transmission information includes at least one of the following:
  • the other information includes at least one of the following:
  • the subsequent communication information includes at least one of the following:
  • the first signal is used to perform at least one of the following:
  • the measured information is used for at least one of beam failure detection BFD, radio link monitoring RLM, radio resource management RRM, CSI acquisition, and beam management.
  • the directional information includes a quasi-co-location relationship.
  • An embodiment of the present disclosure further provides a receiving device, as shown in FIG. 7, including:
  • the receiving module 41 is configured to receive a first signal of a sending device, where the first signal includes at least one of the following information:
  • the sending device sends a first signal to the receiving device, and the first signal includes at least one of the following information: timing information; device identification information; group identification information; resource configuration information; first signal transmission information; beam transmission Information; other information.
  • the receiving device can determine the information of the sending device by detecting the first signal, which is beneficial to subsequent operations such as measurement, combining, decoding, and management, and improves the accuracy of transmission.
  • the first signal includes at least one of the following:
  • Broadcast channel reference signal, synchronization signal, measurement signal, random access signal, data channel.
  • the broadcast channel carries information included in the at least part of the first signal; and / or
  • the data channel carries information included in the at least part of the first signal.
  • the information included in the at least part of the first signal includes at least one of the following:
  • Equipment identification information identification of the first signal.
  • timing information includes at least one of the following:
  • Frame information Time slot information, an identifier of the first signal, an identifier of a transmission direction, and an identifier of a resource set to which the first signal belongs.
  • the resource set is at least one of the following:
  • N is a positive integer.
  • the resource configuration information includes at least one of the following:
  • the side link resource configuration information indicates at least one of a side link resource part and a non-side link resource part.
  • side link resource configuration information is at least one of the following forms:
  • the first signal transmission information includes at least one of the following:
  • the beam transmission information includes at least one of the following:
  • the other information includes at least one of the following:
  • the subsequent communication information includes at least one of the following:
  • a processing module configured to perform at least one of the following using the first signal:
  • the measured information is used for at least one of beam failure detection BFD, radio link monitoring RLM, radio resource management RRM, CSI acquisition, and beam management.
  • the directional information includes a quasi-co-location relationship.
  • the embodiment of the present disclosure further provides a sending device, which can implement the details of the signal sending method in the above embodiments and achieve the same effect.
  • the sending device may be a network-side device or a terminal.
  • the network-side device 500 includes: a processor 501, a transceiver 502, a memory 503, a user interface 504, and a bus interface, where:
  • the network-side device 500 further includes a computer program stored on the memory 503 and executable on the processor 501.
  • the computer program When the computer program is executed by the processor 501, the following steps are implemented: sending a first signal to a receiving device
  • the first signal includes at least one of the following information: timing information; device identification information; group identification information; resource configuration information; first signal transmission information; beam transmission information; and other information.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 501 and various circuits of the memory represented by the memory 503 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 502 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the user interface 504 may also be an interface capable of externally connecting internally required devices.
  • the connected devices include, but are not limited to, a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 501 is responsible for managing the bus architecture and general processing, and the memory 503 may store data used by the processor 501 when performing operations.
  • a sequence of random access signals is a sequence of random access signals.
  • the first signal includes at least one of the following:
  • Broadcast channel reference signal, synchronization signal, measurement signal, random access signal, data channel.
  • the broadcast channel carries information included in the at least part of the first signal; and / or
  • the data channel carries information included in the at least part of the first signal.
  • At least one of the following is determined: a sequence of the reference signal, a sequence of the synchronization signal, a sequence of the measurement signal; and / or
  • At least one of the following is determined: a sequence of the reference signal and a sequence of the random access signal.
  • a plurality of candidate reference signals and / or the synchronization signals and / or the measurement signal sequences are determined through mapping from the reference signals and And / or selecting a sequence of the reference signal and / or the synchronization signal and / or the measurement signal from the synchronization signal and / or the measurement signal sequence;
  • a sequence of the reference signal and / or the random access signal of a plurality of candidates is determined through mapping, from the reference signals and / or the plurality of candidates. Selecting one of the reference signal and / or the sequence of the random access signal from the sequence of the random access signal;
  • a sequence of the reference signal and / or the random access signal is selected from a plurality of candidate sequences of the reference signal and / or the random access signal.
  • the information included in the at least part of the first signal includes at least one of the following:
  • Equipment identification information identification of the first signal.
  • timing information includes at least one of the following:
  • Frame information Time slot information, an identifier of the first signal, an identifier of a transmission direction, and an identifier of a resource set to which the first signal belongs.
  • the resource set is at least one of the following:
  • N is a positive integer.
  • the resource configuration information includes at least one of the following:
  • uplink and downlink resource configuration information is obtained in at least one of the following ways:
  • the side link resource configuration information indicates at least one of a side link resource part and a non-side link resource part.
  • side link resource configuration information is at least one of the following forms:
  • the first signal transmission information includes at least one of the following:
  • the beam transmission information includes at least one of the following:
  • the other information includes at least one of the following:
  • the subsequent communication information includes at least one of the following:
  • the first signal is used to perform at least one of the following:
  • the measured information is used for at least one of beam failure detection BFD, radio link monitoring RLM, radio resource management RRM, CSI acquisition, and beam management.
  • the directional information includes a quasi-co-location relationship.
  • the terminal 600 includes, but is not limited to, a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, The interface unit 608, the memory 609, the processor 610, and the power supply 611 and other components.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or some components may be combined, or different components may be arranged.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the processor 610 is configured to send a first signal to a receiving device, where the first signal includes at least one of the following information: timing information; device identification information; group identification information; resource configuration information; first signal transmission information; Beam transmission information; other information.
  • processor 610 is further configured to determine at least one of the following based on at least part of information included in the first signal:
  • a sequence of random access signals is a sequence of random access signals.
  • the first signal includes at least one of the following:
  • Broadcast channel reference signal, synchronization signal, measurement signal, random access signal, data channel.
  • the broadcast channel carries information included in the at least part of the first signal; and / or
  • the data channel carries information included in the at least part of the first signal.
  • the processor 610 is further configured to determine at least one of the following: a sequence of the reference signal, a sequence of the synchronization signal, and a sequence of the measurement signal based on at least part of the information carried by the broadcast channel; and / or
  • At least one of the following is determined: a sequence of the reference signal and a sequence of the random access signal.
  • processor 610 is further configured to execute at least one of the following:
  • a plurality of candidate reference signals and / or the synchronization signals and / or the measurement signal sequences are determined through mapping from the reference signals and And / or selecting a sequence of the reference signal and / or the synchronization signal and / or the measurement signal from the synchronization signal and / or the measurement signal sequence;
  • processor 610 is further configured to execute at least one of the following:
  • a sequence of the reference signal and / or the random access signal of a plurality of candidates is determined through mapping, from the reference signals and / or the plurality of candidates. Selecting one of the reference signal and / or the sequence of the random access signal from the sequence of the random access signal;
  • a sequence of the reference signal and / or the random access signal is selected from a plurality of candidate sequences of the reference signal and / or the random access signal.
  • the information included in the at least part of the first signal includes at least one of the following:
  • Equipment identification information identification of the first signal.
  • timing information includes at least one of the following:
  • Frame information Time slot information, an identifier of the first signal, an identifier of a transmission direction, and an identifier of a resource set to which the first signal belongs.
  • the resource set is at least one of the following:
  • N is a positive integer.
  • the resource configuration information includes at least one of the following:
  • uplink and downlink resource configuration information is obtained in at least one of the following ways:
  • the side link resource configuration information indicates at least one of a side link resource part and a non-side link resource part.
  • side link resource configuration information is at least one of the following forms:
  • the first signal transmission information includes at least one of the following:
  • the beam transmission information includes at least one of the following:
  • the other information includes at least one of the following:
  • the subsequent communication information includes at least one of the following:
  • the first signal is used to perform at least one of the following:
  • the measured information is used for at least one of beam failure detection BFD, radio link monitoring RLM, radio resource management RRM, CSI acquisition, and beam management.
  • the directional information includes a quasi-co-location relationship.
  • the radio frequency unit 601 may be used to receive and send signals during the transmission and reception of information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 610; The uplink data is sent to the base station.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 601 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 602, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 603 may convert audio data received by the radio frequency unit 601 or the network module 602 or stored in the memory 609 into audio signals and output them as sound. Also, the audio output unit 603 may also provide audio output (for example, a call signal receiving sound, a message receiving sound, etc.) related to a specific function performed by the terminal 600.
  • the audio output unit 603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 604 is used for receiving audio or video signals.
  • the input unit 604 may include a graphics processing unit (GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on a display unit 606.
  • the image frames processed by the graphics processor 6041 may be stored in the memory 609 (or other storage medium) or transmitted via the radio frequency unit 601 or the network module 602.
  • the microphone 6042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 601 in the case of a telephone call mode and output.
  • the terminal 600 further includes at least one sensor 605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 6061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 6061 and / Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 605 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 606 is configured to display information input by the user or information provided to the user.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 607 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072.
  • Touch panel 6071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 6071 or near touch panel 6071 operating).
  • the touch panel 6071 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 610, receive the command sent by the processor 610 and execute it.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 6071.
  • the user input unit 607 may further include other input devices 6072.
  • other input devices 6072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 6071 may be overlaid on the display panel 6061.
  • the touch panel 6071 detects a touch operation on or near the touch panel 6071, the touch panel 6071 transmits the touch operation to the processor 610 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 6061.
  • the touch panel 6071 and the display panel 6061 are implemented as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 6071 and the display panel 6061 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 608 is an interface through which an external device is connected to the terminal 600.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 608 may be used to receive an input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 600 or may be used between the terminal 600 and an external device. Transfer data.
  • the memory 609 can be used to store software programs and various data.
  • the memory 609 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), and the like; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 609 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 610 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal.
  • the processor 610 runs or executes software programs and / or modules stored in the memory 609 and calls data stored in the memory 609 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the terminal 600 may further include a power source 611 (such as a battery) for supplying power to various components.
  • a power source 611 such as a battery
  • the power source 611 may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 600 includes some functional modules that are not shown, and details are not described herein again.
  • An embodiment of the present disclosure further provides a terminal, which can implement the signal receiving method in the foregoing embodiment and achieve the same effect.
  • the terminal 600 includes, but is not limited to, a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, The processor 610, and the power supply 611 and other components.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the processor 610 is configured to receive a first signal of a sending device, where the first signal includes at least one of the following information:
  • processor 610 is further configured to monitor the first resource pool according to a corresponding process.
  • the first signal includes at least one of the following:
  • Broadcast channel reference signal, synchronization signal, measurement signal, random access signal, data channel.
  • the broadcast channel carries information included in the at least part of the first signal; and / or
  • the data channel carries information included in the at least part of the first signal.
  • the information included in the at least part of the first signal includes at least one of the following:
  • Equipment identification information identification of the first signal.
  • timing information includes at least one of the following:
  • Frame information Time slot information, an identifier of the first signal, an identifier of a transmission direction, and an identifier of a resource set to which the first signal belongs.
  • the resource set is at least one of the following:
  • N is a positive integer.
  • the resource configuration information includes at least one of the following:
  • the side link resource configuration information indicates at least one of a side link resource part and a non-side link resource part.
  • side link resource configuration information is at least one of the following forms:
  • the first signal transmission information includes at least one of the following:
  • the beam transmission information includes at least one of the following:
  • the other information includes at least one of the following:
  • the subsequent communication information includes at least one of the following:
  • processor 610 is further configured to perform at least one of the following using the first signal:
  • the measured information is used for at least one of beam failure detection BFD, radio link monitoring RLM, radio resource management RRM, CSI acquisition, and beam management.
  • the directional information includes a quasi-co-location relationship.
  • the radio frequency unit 601 may be used to receive and send signals during the transmission and reception of information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 610; The uplink data is sent to the base station.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 601 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 602, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 603 may convert audio data received by the radio frequency unit 601 or the network module 602 or stored in the memory 609 into audio signals and output them as sound. Also, the audio output unit 603 may also provide audio output (for example, a call signal receiving sound, a message receiving sound, etc.) related to a specific function performed by the terminal 600.
  • the audio output unit 603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 604 is used for receiving audio or video signals.
  • the input unit 604 may include a graphics processing unit (GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on a display unit 606.
  • the image frames processed by the graphics processor 6041 may be stored in the memory 609 (or other storage medium) or transmitted via the radio frequency unit 601 or the network module 602.
  • the microphone 6042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 601 in the case of a telephone call mode.
  • the terminal 600 further includes at least one sensor 605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 6061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 6061 and / Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 605 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 606 is configured to display information input by the user or information provided to the user.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 607 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072.
  • Touch panel 6071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 6071 or near touch panel 6071 operating).
  • the touch panel 6071 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 610, receive the command sent by the processor 610 and execute it.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 6071.
  • the user input unit 607 may further include other input devices 6072.
  • other input devices 6072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 6071 may be overlaid on the display panel 6061.
  • the touch panel 6071 detects a touch operation on or near the touch panel 6071, the touch panel 6071 transmits the touch operation to the processor 610 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 6061.
  • the touch panel 6071 and the display panel 6061 are implemented as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 6071 and the display panel 6061 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 608 is an interface through which an external device is connected to the terminal 600.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 608 may be used to receive an input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 600 or may be used between the terminal 600 and an external device. Transfer data.
  • the memory 609 can be used to store software programs and various data.
  • the memory 609 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), and the like; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 609 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 610 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal.
  • the processor 610 runs or executes software programs and / or modules stored in the memory 609 and calls data stored in the memory 609 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the terminal 600 may further include a power source 611 (such as a battery) for supplying power to various components.
  • a power source 611 such as a battery
  • the power source 611 may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 600 includes some functional modules that are not shown, and details are not described herein again.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps in the resource pool configuration method described above or Implement the steps in the resource pool acquisition method described above.
  • the embodiments described herein may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application-specific integrated circuits (ASICs), digital signal processors (DSP), digital signal processing devices (DSPD), programmable Logic device (Programmable Logic Device, PLD), Field Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this application Electronic unit or combination thereof.
  • ASICs application-specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller
  • microprocessor other for performing the functions described in this application Electronic unit or combination thereof.
  • the techniques described herein can be implemented through modules (e.g., procedures, functions, etc.) that perform the functions described herein.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.
  • the embodiments of the embodiments of the present disclosure may be provided as a method, an apparatus, or a computer program product. Therefore, the embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the embodiments of the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present disclosure are described with reference to flowcharts and / or block diagrams of methods, terminals (systems), and computer program products according to embodiments of the present disclosure. It should be understood that each process and / or block in the flowcharts and / or block diagrams, and combinations of processes and / or blocks in the flowcharts and / or block diagrams can be implemented by computer program instructions.
  • These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing terminal to generate a machine, so that instructions generated by the processor of the computer or other programmable data processing terminal are used to generate instructions Means for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal to work in a specific manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions The device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions may also be loaded on a computer or other programmable data processing terminal, so that a series of operation steps are performed on the computer or other programmable terminal to produce a computer-implemented process, and thus executed on the computer or other programmable terminal.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种信号发送方法、接收方法及发送设备、接收设备。信号发送方法应用于发送设备,所述方法包括:向接收设备发送第一信号,所述第一信号包括以下信息中的至少一种:定时信息;设备标识信息;组标识信息;资源配置信息;第一信号传输信息;波束传输信息;其他信息。

Description

信号发送方法、接收方法及发送设备、接收设备
相关申请的交叉引用
本申请主张在2018年9月26日在中国提交的中国专利申请号No.201811126458.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种信号发送方法、接收方法及发送设备、接收设备。
背景技术
在sidelink(旁链路)上传输的存在两种终端:
1.配置A终端:网络侧设备发送当前载波上sidelink传输资源的分配,终端接收分配信息后,选择并根据网络侧设备指示的sidelink传输资源,进行sidelink传输。
2.配置B终端:终端从厂商预配置的资源池中选择sidelink传输资源。
对于配置A的终端,它可以从网络侧设备获取tdd-config和sidelink同步资源的相关信息。对于配置B的终端,通常是因为没有网络覆盖,只能从厂商预配置中获取tdd-config和确定sidelink同步资源。
相关技术存在以下问题:
第一方面,NR中网络支持上下行配置非常灵活,指示该配置所需的开销信令比LTE大了很多。一方面,厂商预配置的上下行配置的数目和灵活性有限,网络配置的上下行配置和厂商预配置的上下行配置很可能会不同,导致不同模式的终端互相干扰。即使在两种模式的终端定时对齐或者同步源相同,并且使用相同sidelink资源的时候,两种终端对于DFN理解也可能不同,从而也会造成相互干扰。
第二方面,不同的终端可能选择了相同的同步源、sidelink同步资源和同步信号序列,但是MIB-SL-V2X中携带的内容可能相同也可能不同,此时接 收端终端可能在一块资源上收到多个发送设备的同步信号序列和MIB-SL-V2X,然而接收端无法通过检测同步信号序列直接区分出存在不同MIB-SL-V2X,并且也无法通过解码出不同的MIB-SL-V2X而唯一地确定其发送设备,因此测量出的结果实际上是多个发送设备信号的叠加,并不准确,在多波束的场景下也无法进行波束相关的操作。
发明内容
本公开要解决的技术问题是提供一种信号发送方法、接收方法及发送设备、接收设备,使得接收设备可以通过对信号的检测确定发送设备的信息,有利于后续的测量、合并、解码、管理等操作,提高传输的准确性。
为解决上述技术问题,本公开的实施例提供技术方案如下:
第一方面,本公开实施例提供一种信号发送方法,应用于发送设备,所述方法包括:
向接收设备发送第一信号,所述第一信号包括以下信息中的至少一种:
定时信息;
设备标识信息;
组标识信息;
资源配置信息;
第一信号传输信息;
波束传输信息;
其他信息。
第二方面,本公开实施例提供一种信号接收方法,应用于接收设备,所述方法包括:
接收发送设备的第一信号,所述第一信号包括以下信息中的至少一种:
定时信息;
设备标识信息;
组标识信息;
资源配置信息;
第一信号传输信息;
波束传输信息;
其他信息。
第三方面,本公开实施例提供一种发送设备,包括:
发送模块,用于向接收设备发送第一信号,所述第一信号包括以下信息中的至少一种:
定时信息;
设备标识信息;
组标识信息;
资源配置信息;
第一信号传输信息;
波束传输信息;
其他信息。
第四方面,本公开实施例提供一种接收设备,包括:
接收模块,用于接收发送设备的第一信号,所述第一信号包括以下信息中的至少一种:
定时信息;
设备标识信息;
组标识信息;
资源配置信息;
第一信号传输信息;
波束传输信息;
其他信息。
第五方面,本公开实施例提供一种网络节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的信号发送方法中的步骤或实现如上所述的信号接收方法中的步骤。
第六方面,本公开实施例提供一种计算机可读存储介质,所述计算机可 读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的信号发送方法中的步骤或实现如上所述的信号接收方法中的步骤。
本公开的实施例具有以下有益效果:
上述方案中,发送设备向接收设备发送第一信号,第一信号包括以下信息中的至少一种:定时信息;设备标识信息;组标识信息;资源配置信息;第一信号传输信息;波束传输信息;其他信息,通过本公开的技术方案可以使得接收设备通过对第一信号的检测确定发送设备的信息,有利于后续的测量、合并、解码、管理等操作,提高传输的准确性。
附图说明
图1为LTE V2V中PSSS和SSSS的时域结构示意图;
图2为DFN的编号示意图;
图3为承载有SSB的slot位置示意图;
图4为本公开实施例信号发送方法的流程示意图;
图5为本公开实施例信号接收方法的流程示意图;
图6为本公开实施例发送设备的结构框图;
图7为本公开实施例接收设备的结构框图;
图8为本公开实施例网络侧设备的组成示意图;
图9为本公开实施例终端的组成示意图。
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
在sidelink(旁链路)上传输的存在两种终端:
1.配置A终端:网络侧设备发送当前载波上sidelink传输资源的分配,终端接收分配信息后,选择并根据网络侧设备指示的sidelink传输资源,进行sidelink传输。
2.配置B终端:终端从厂商预配置的资源池中选择sidelink传输资源。
在长期演进(Long Term Evolution,LTE)sidelink中,sidelink重用了LTE的上行资源。sidelink终端在sidelink上发送主旁链路同步信号(primary sidelink synchronization signal,PSSS),副旁链路同步信号(Secondary SIDelink Synchronization,SSSS),旁链路主信息块(MasterInformationBlock-SL-V2X,MIB-SL-V2X),其中PSSS,SSSS用于帮助接收终端获取子帧级别的定时信息,LTE sidelink中PSSS序列是ZC序列,但是采用了和LTE主同步信号(primary synchronization signal,PSS)的不同的逻辑根,因此PSSS序列和LTE的PSS序列本质上是不同的序列。而SSSS重用了副同步信号(Secondary SIDelink Synchronization,SSS)的序列设计,在PSSS和PSS对应的标识(Identifier,ID)相同,SSSS和SSS对应的ID相同时,SSSS序列和SSS序列一样。
LTE V2V中PSSS和SSSS的时域结构如图1所示。
MIB-SL-V2X中携带了tdd-config,直接帧号(Direct Frame Number,DFN)和带宽等信息,DFN用于帮助接收终端获取发送终端的帧级别的定时信息,tdd-config上提供的是上行(Uplink,UL)/下行(Downlink,DL)的配置。为了简单,可以将用于传输PSSS,SSSS,MIB-SL-V2X的资源简称为sidelink同步资源。
对于配置A的终端,它可以从网络侧设备获取tdd-config和sidelink同步资源的相关信息。对于配置B的终端,通常是因为没有网络覆盖,只能从厂商预配置中获取tdd-config和确定sidelink同步资源。
配置A的终端会在它的MIB-SL-V2X中发送它从网络侧设备获得的tdd-config,DFN和带宽配置,而配置B的终端会在它的MIB-SL-V2X中发送厂商预配置的tdd-config,DFN和带宽。
终端先根据tdd-config确定无线资源中哪些是上行子帧,哪些是下行子帧和特殊子帧,随后终端从无线资源中删除下行子帧和sidelink同步资源占据的资源,将剩下的资源时间顺序排列,并且按照10ms为一个sidelink帧进行编号,编号即DFN。
一种示意图如图2所示,假设UL子帧都被重用于传输SL,其中SFN1中的子帧8用于SL同步信号的传输。
LTE中支持的上行/下行配置只有6种,并且配置的单位是子帧。而且新空口(New Radio,NR)中支持的上行/下行配置达到了几十种,配置的单位可以是符号,另外NR中还引入了flexible符号,网络侧设备可以动态地配置和改变flexible符号上的上行/下行配置,并且在后续演进中还可以继续拓展支持的配置数。
在NR中,NR基站需要发送同步信号块(SS block,SSB,也可以称为SS/PBCH block,同步信号/物理广播信号块)以供终端进行同步、系统信息获取、测量评估等。一个SSB由NR-SS和NR-PBCH(Physical Broadcast Channel,物理广播信道)两部分组成,其中NR-SS分为NR-PSS和NR-SSS两部分。一个SSB总共包含4个符号,一个SSB内这些符号的时域组成顺序是PSS-PBCH-SSS-PBCH.
对于某个频域,假设一个周期内最多发送L个SSB,则L个SSB是在一个5ms的时间窗内按照协议定义好的时域位置进行传输的,即SSB在周期性出现的一个5ms窗内传输。如图3所示,L=4,子载波间隔SCS=15kHz,一个slot(时隙)中有两个SSB,该5ms窗内承载有SSB的slot位置如图3所示。
由于一个无线帧的长度是10ms,而SSB时间窗只有5ms,因此基站会通过1bit的半帧指示(half frame indicator,HFI)来告知终端该时间窗位于一个无线帧的前半帧还是后半帧,并且基站还会指示每个SSB的指示(index)。
相关技术存在以下问题:
第一方面,NR中网络支持上下行配置非常灵活,指示该配置所需的开销信令比LTE大了很多。一方面,厂商预配置的上下行配置的数目和灵活性有限,网络配置的上下行配置和厂商预配置的上下行配置很可能会不同,导致不同模式的终端互相干扰。即使在两种模式的终端定时对齐或者同步源相同,并且使用相同sidelink资源的时候,两种终端对于DFN理解也可能不同,从而也会造成相互干扰。
第二方面,不同的终端可能选择了相同的同步源、sidelink同步资源和同步信号序列,但是MIB-SL-V2X中携带的内容可能相同也可能不同,此时接收端终端可能在一块资源上收到多个发送设备的同步信号序列和 MIB-SL-V2X,然而接收端无法通过检测同步信号序列直接区分出存在不同MIB-SL-V2X,并且也无法通过解码出不同的MIB-SL-V2X而唯一地确定其发送设备,因此测量出的结果实际上是多个发送设备信号的叠加,并不准确,在多波束的场景下也无法进行波束相关的操作。
为了解决上述问题,本公开实施例提供一种信号发送方法、接收方法及发送设备、接收设备,使得接收设备可以通过对信号的检测确定发送设备的信息,有利于后续的测量、合并、解码、管理等操作,提高传输的准确性。
本实施例的技术方案不仅仅适用于sidelink通信中,还适用于其他的通信系统中。其中,旁链路也可以称为边链路、直连链路,都属于同一概念,对应英文中的sidelink。
本公开实施例提供一种信号发送方法,应用于发送设备,如图4所示,所述方法包括:
步骤101:向接收设备发送第一信号,所述第一信号包括以下信息中的至少一种:
定时信息;
设备标识信息;
组标识信息;
资源配置信息;
第一信号传输信息;
波束传输信息;
其他信息。
其中,设备标识信息可以是接收设备的标识信息也可以是发送设备的标识信息,在接收设备为终端时,发送设备包括网络侧设备和其他终端中的至少一项。当发送设备为其他终端时,设备标识信息可以为其他终端的标识信息。
本实施例中,发送设备向接收设备发送第一信号,第一信号包括以下信息中的至少一种:定时信息;设备标识信息;组标识信息;资源配置信息;第一信号传输信息;波束传输信息;其他信息,通过本公开的技术方案可以 使得接收设备通过对第一信号的检测确定发送设备的信息,有利于后续的测量、合并、解码、管理等操作,提高传输的准确性。
进一步地,还包括:
基于至少部分所述第一信号包括的信息确定以下至少一种:
参考信号的序列;
同步信号的序列;
测量信号的序列;
随机接入信号的序列。
可选地,还包括,终端从多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列。其中,和/或表示连接对象中的至少其中之一。
进一步地,所述第一信号包括以下至少一种:
广播信道,参考信号,同步信号,测量信号,随机接入信号,数据信道。
进一步地,所述广播信道携带所述至少部分所述第一信号包括的信息;和/或
所述数据信道携带所述至少部分所述第一信号包括的信息,其中,数据信道携带所述至少部分所述第一信号包括的信息适用于的2步随机接入(Random Access)流程。其中,和/或表示连接对象中的至少其中之一。
进一步地,基于所述广播信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述同步信号的序列,所述测量信号的序列;和/或
基于所述数据信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述随机接入信号的序列。其中,和/或表示连接对象中的至少其中之一。
进一步地,所述方法包括以下至少一种:
基于所述广播信道携带的至少部分信息,通过映射确定所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列,从所述多个候选的所述 参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,生成所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,从多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列。
其中,和/或表示连接对象中的至少其中之一。
进一步地,所述方法包括以下至少一种:
基于所述数据信道携带的至少部分信息,通过映射确定所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述随机接入信号的序列,从所述多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,生成所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,从多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列。
其中,和/或表示连接对象中的至少其中之一。
进一步地,所述至少部分所述第一信号包括的信息包括以下至少一种:
设备标识信息,第一信号的标识。
进一步地,所述定时信息包括以下至少一种:
帧信息,时隙信息,所述第一信号的标识,传输方向的标识,所述第一信号所属资源集合的标识。
进一步地,所述资源集合为以下至少一种:
N个第一信号占据的时域资源;
N个第一信号占据的频域资源;
N个第一信号所属的频域范围;
N个第一信号所属的时间范围;
N为正整数。其中,N个第一信号占据的时域资源指N个第一信号占用的时域符号,N个第一信号所属的时间范围指N个第一信号占用的时域符号所属的时间范围;N个第一信号所属的频域范围指N个第一信号占用的频域资源所属的频域范围。
进一步地,所述资源配置信息包括以下至少一种:
上下行资源配置信息;
旁链路资源配置信息。
进一步地,所述上下行资源配置信息为通过以下至少一种方式获得:
通过网络侧设备配置获得;
通过预配置获得;
通过资源池隐式获得。
进一步地,所述旁链路资源配置信息指示旁链路资源部分和非旁链路资源部分中的至少一个。
进一步地,所述旁链路资源配置信息是以下形式中的至少一种:
比特位图;
资源图样标识;
资源标识。
进一步地,所述第一信号传输信息包括以下至少一种:
实际传输的第一信号的信息;
允许传输的第一信号的信息。
进一步地,所述波束传输信息包括以下至少一种:
允许传输的波束的信息;
实际传输的波束的信息;
当前第一信号对应的波束的信息。
进一步地,所述其他信息包括以下至少一种:
功率信息;
后续通信信息。
进一步地,所述后续通信信息包括以下至少一种:
后续通信的配置信息;
所述第一信号和资源池资源的映射关系;
进一步地,所述第一信号用于执行以下至少一种:
同步;
测量;
功率控制;
提供方向性信息;
获取方向性信息。
进一步地,所述接收设备为旁链路终端时,测量的信息用于波束失败检测BFD,无线链路监测RLM,无线资源管理RRM,CSI获取,波束管理中的至少一项。
进一步地,所述方向性信息包括准共址关系。
本公开实施例还提供了一种信号接收方法,应用于接收设备,如图5所示,所述方法包括:
步骤201:接收发送设备的第一信号,所述第一信号包括以下信息中的至少一种:
定时信息;
设备标识信息;
组标识信息;
资源配置信息;
第一信号传输信息;
波束传输信息;
其他信息。
本实施例中,发送设备向接收设备发送第一信号,第一信号包括以下信息中的至少一种:定时信息;设备标识信息;组标识信息;资源配置信息; 第一信号传输信息;波束传输信息;其他信息,通过本公开的技术方案可以使得接收设备通过对第一信号的检测确定发送设备的信息,有利于后续的测量、合并、解码、管理等操作,提高传输的准确性。
进一步地,所述第一信号包括以下至少一种:
广播信道,参考信号,同步信号,测量信号,随机接入信号,数据信道。
进一步地,所述广播信道携带所述至少部分所述第一信号包括的信息;和/或
所述数据信道携带所述至少部分所述第一信号包括的信息。
其中,和/或表示连接对象中的至少其中之一。
进一步地,所述至少部分所述第一信号包括的信息包括以下至少一种:
设备标识信息,第一信号的标识。
进一步地,所述定时信息包括以下至少一种:
帧信息,时隙信息,所述第一信号的标识,传输方向的标识,所述第一信号所属资源集合的标识。
进一步地,所述资源集合为以下至少一种:
N个第一信号占据的时域资源;
N个第一信号占据的频域资源;
N个第一信号所属的频域范围;
N个第一信号所属的时间范围;
N为正整数。
进一步地,所述资源配置信息包括以下至少一种:
上下行资源配置信息;
旁链路资源配置信息。
进一步地,所述旁链路资源配置信息指示旁链路资源部分和非旁链路资源部分中的至少一个。
进一步地,所述旁链路资源配置信息是以下形式中的至少一种:
比特位图;
资源图样标识;
资源标识。
进一步地,所述第一信号传输信息包括以下至少一种:
实际传输的第一信号的信息;
允许传输的第一信号的信息。
进一步地,所述波束传输信息包括以下至少一种:
允许传输的波束的信息;
实际传输的波束的信息;
当前第一信号对应的波束的信息。
进一步地,所述其他信息包括以下至少一种:
功率信息;
后续通信信息。
进一步地,所述后续通信信息包括以下至少一种:
后续通信的配置信息;
所述第一信号和资源池资源的映射关系;
进一步地,还包括:
利用所述第一信号执行以下至少一种:
同步;
测量;
功率控制;
提供方向性信息;
获取方向性信息。
进一步地,所述接收设备为旁链路终端时,测量的信息用于波束失败检测BFD,无线链路监测RLM,无线资源管理RRM,CSI获取,波束管理中的至少一项。
进一步地,所述方向性信息包括准共址关系。
下面结合具体的实施例对本公开的技术方案进行进一步介绍:
一、该第一信号可能携带的信息包含以下至少一项:
(1)定时信息,包含以下至少一项:
帧信息,例如该信号块用于sidelink的时候,携带DFN信息;
时隙信息,例如slot index;
第一信号的标识;
传输方向的标识,比如将360°划分为四个方向,利用标识0,1,2,3来代表四个方向;
第一信号所属资源集合的标识,该资源集合可以是:N个第一信号总共占据的时域符号和/或频域资源元素(Resource Element,RE)或资源块(resource block,RB)的集合,N>=1;或者N个第一信号所属的时间窗和/或频域窗中资源的集合,N>=1;
(2)设备标识信息,例如发送设备的ID;
(3)组标识信息;
(4)资源配置信息,包含以下至少一种:上下行资源配置,sidelink资源配置;
(5)第一信号传输信息,包含以下至少一项:实际传输的第一信号的信息,允许传输的第一信号的信息;
(6)波束传输信息,包含以下至少一项:允许传输的波束的信息,实际传输的波束的信息,当前第一信号对应的波束信息;
(7)其他信息,包括功率信息和后续通信信息,功率信息包含以下至少一项:参考信号发送功率;同步序列发送功率;广播信道发送功率;测量信号发送功率;参考信号发送功率,同步序列发送功率,广播信道发送功率和测量信号发送功率中的一个功率以及该功率与其他一个或多个功率的功率差;后续通信相关信息包含以下至少一项:后续通信的资源指示信息,后续通信的配置信息,所述第一信号和资源池资源的映射关系,其中,资源指示信息包含以下至少一项:时域资源,频域资源,带宽部分(Band Width Part,BWP),资源池,小区标识,载波标识,频段标识,子载波间隔(subcarrier spacing,SCS),循环前缀(Cyclic Prefix,CP),资源池配置,控制资源配置,数据资源配置,监控窗窗长,监控周期,调制与编码策略MCS,码率,预编码方式,同步源,后续传输的时间窗相关配置等。
其中,时域资源包括以下至少一项:时域资源偏移,占据的时域符号。频域资源包括以下至少以下:频域资源偏移,占据的频域资源。
其中后续通信信息包含:安全类业务消息,基础V2X业务消息,周期类业务消息,公共安全业务消息,其他广播消息中至少一项。
二、该第一信号的组成包含以下至少一项:广播信道,参考信号,同步信号,测量信号,数据信道,随机接入信号。
(1)可选地,第一信号至少包含广播信道,参考信号和同步信号,广播信道携带上述所需携带信息的至少部分。
(2)可选地,第一信号至少包含数据信道和参考信号,数据信道携带上述所需携带信息的至少部分。
(3)可选地,第一信号包含测量信号和参考信号时,他们可能是同一个信号,也可能是不同的信号。
(4)可选地,对于第一信号中的参考信号,同步信号,测量信号中的至少一项,基于上述所需携带信息的至少部分确定参考/同步/测量信号序列,(或者也可以说参考/同步/测量信号序列携带上述所需携带信息的至少部分)。
可选地,基于广播信道携带的上述所需携带信息的至少部分(例如,通过带入hash函数或者其他映射等方法)确定测量信号和/或参考信号和/或同步信号序列;可选地,所述至少部分包含设备标识信息(类似发送设备的UE ID),第一信号的标识中的至少一项。
可选地,基于数据信道携带的上述所需携带信息的至少部分(例如,通过带入hash函数或者其他映射等方法)确定随机接入信号和/或参考信号序列;可选地,所述至少部分包含设备标识信息(类似发送设备的UE ID),第一信号的标识中的至少一项。
可选地,基于广播信道携带的上述所需携带信息的至少部分确定一个候选序列集合,在一个候选序列集合中选择。
可选地,基于数据信道携带的上述所需携带信息的至少部分确定一个候选序列集合,在一个候选序列集合中选择。
可选地,基于广播信道携带的上述所需携带信息的至少部分在一个候选 序列集中确定一个序列。
可选地,基于数据信道携带的上述所需携带信息的至少部分在一个候选序列集中确定一个序列。
(4)可选地,参考信号为以下至少一项,测量信号为以下至少一项(参考信号和测量信号类型可以相同,也可以不同,可以是同一个信号也可以是不同信号):
可以为解调参考信号(demodulation reference signal,DMRS),信道状态信息(Channel State Information,CSI)-参考信号(reference signal,RS),跟踪参考信号(tracking reference signal,TRS),相位追踪参考信号(phase tracking reference signal,PTRS),探测参考信号(sounding reference signal,SRS),SSS,PSS中的至少一项;
还可以为除上述信号之外的其他m序列;除上述信号之外的其他ZC序列;除上述信号之外的其他gold序列;所述其他m序列,所述其他ZC序列和所述其他gold序列中至少两种序列的相乘。其中可以将序列映射成符号再进行序列相乘。
在不同的通信系统中上述信号的名称和缩写会出现对应的变化,在缩写变化的时候本公开的技术方案依然是适用的。
(5)在该第一信号上可以进行的功能包括以下至少一项:
同步
测量,测量包含以下至少一种:无线资源管理(radio resource management,RRM)的测量,无线链路监测(radio link monitoring,RLM)的测量,波束失败检测(beam failure detection,BFD)的测量;CSI、参考信号接收功率(Reference Signal Receiving Power,RSRP),信道质量指示(Channel Quality Indicator,CQI),预编码矩阵指示(Precoding Matrix Indicator,PMI),秩指示(rank indication,RI)等测量,波束管理。接收侧的终端(即接收设备)可以将测量结果和判定阈值/对定的判断流程进行比较,从而确定评估结果和/或后续步骤;
功率控制;
提供方向性信息;
获取方向性信息。
可选地,方向信息包含准共址(Quasi-co-location,QCL)关系。
可选地,第一信号和其他信号和/或资源池存在关联,能够作为其他信号和/或资源池的QCL参考,即第一信号和其他信号和/或资源池的如下QCL参数中至少一项是QCL的:平均延迟(average delay);延迟扩展(delay spread);多普勒频移(doppler shift);多普勒扩展(doppler spread),空间接收参数(spatial Rx parameter),平均增益(average gain)。其中,和/或表示连接对象中的至少其中之一。
具体实施例一中,当该第一信号携带了定时信息时,可选地,定时信息中包含DFN,一种DFN的定义方式是,一个DFN长度为10ms,且其中包含了旁链路(sidelink,SL)资源部分和非SL资源部分中的至少一项。
例如,DFN参照SFN的形式进行定义,不根据预定义和/或配置和/或预配置的上下行配置抠掉任何DL和/或flexible符号。此时对于采用网络设备配置的终端,DFN和网络的SFN边界是对齐的。对于采用预配置的终端,根据本地时间的某一时刻作为0点,每10ms作为一个DFN.
可选地,从起始点开始,每经过10240ms,DFN重新从0开始计算,即DFN范围为0-1023。
DFN=(T/10)mod1024,T为当前时间相对起点时间的时间间隔,单位为ms,其中/为除号,mod为求模。
具体实施例二中,当该第一信号携带的资源配置信息包含上下行资源配置信息时,该上下行资源配置信息指示了一段时间内上行和/或下行和/或fexible的格式信息,该配置的精度可能是符号或slot或子帧。例如指示了一个slot的格式,即该slot内包含的上行符号、下行符号和flexible符号的分配(A slot format includes downlink symbols,uplink symbols,and flexible symbols)。
该上下行资源配置信息可能是发送设备通过网络侧设备配置获得的,也可能是发送设备通过预配置获得的,也可能是发送设备通过资源池推出来的, 例如通过初始资源池的时域资源推出来的。
具体实施例三中,当该第一信号携带的资源配置信息包含sidelink资源配置时,可选地,旁链路资源配置信息指示SL资源部分和非SL资源部分中的至少一项,上述资源包括时域资源和频域资源中的至少一项。
旁链路资源配置信息可以指示SL资源部分和非SL资源部分,也可以只指示其中一种,可选地,另一种可以通过前者隐式推出来。
可选地,对于该第一信号占据的资源,旁链路资源配置信息不指示它对应的资源为SL资源。或者,旁链路资源配置信息指示它对应的资源为SL资源,但是在资源预留时不考虑该资源,或者不考虑该资源所属资源集合。
不考虑指的是,如果预留资源和该资源或者重叠,认为重叠部分用于该第一信号的传输。或者,如果预留资源和该资源所属的资源集合重叠,认为重叠部分用于该第一信号的传输。
旁链路资源配置信息可以是以下形式中的至少一种:
(1)bitmap的形式,
①例如使用一个bitmap指示时域SL资源,其中bitmap的长度等于第一数值,其中SL时域资源对应bit=1,非SL时域资源对应bit=0;或者SL时域资源对应bit=0,非SL时域资源对应bit=1.
第一数值可能为以下至少一项:
至少一个资源池周期内包含的时域资源数;
至少一个sidelink frame(帧)中包含的时域资源数;
至少一个sidelink subframe(子帧)中包含的时域资源数;
至少一个sidelink slot(时隙)中包含的时域资源数;
至少一个时间窗中包含的时域资源数。
②例如使用一个bitmap指示频域SL资源,其中bitmap的长度等于第二数值,其中SL频域资源对应bit=1,非SL频域资源对应bit=0;或者SL时域资源对应bit=0,非SL时域资源对应bit=1.
第二数值可能为以下至少一项:
至少一个资源池内包含的频域资源数;
至少一个子资源池(子信道)中包含的频域资源数;
至少一个BWP中包含的频域资源;
至少一个频域窗中包含的频域资源数。
③例如使用一个bitmap指示时域SL资源和频域SL资源。
(2)资源图样标识
例如,标识1表示子帧a,b为时域SL资源;
例如,标识2表示RB c,d为时域SL资源;
例如,标识3表示子帧a,b且RB c,d为SL资源。
(3)资源标识,形式为以下至少一种:
①资源标识列表,
例如指示子帧a,b,说明子帧a,b为时域SL资源;
例如指示RB c,d,说明RB c,d为时域SL资源;
例如指示子帧a,b和RB c,d,说明子帧a,b且RB c,d为SL资源。
②起点资源和终点资源的标识中的至少一项,
如果两个都包含,例如指示子帧a,b,说明子帧a-b为时域SL资源;例如指示RB c,d,说明RB c-d为频域SL资源;例如指示子帧a,b和RB c,d,说明子帧a-b且RB c-d为SL资源。
如果只包含一个,包含起点,则从起点资源到最大为SL资源;包含终点,则从最小资源到终点资源为SL资源。
其中,时域资源,频域资源可能是由不同的参数指示的,也可能是同一个参数指示的。非SL资源和SL资源可能是由同一套参数指示的,也可能是由一套以上的参数指示的。
如果旁链路资源配置信息包含bitmap,资源图样标识时,可选地,bitmap的比特位对应不同的资源组,资源图样标识对应资源组内的图样标识。或者,bitmap的比特位对应资源组内的资源,资源图样标识对应不同的资源组。
如果旁链路资源配置信息包含资源标识,资源图样标识时,可选地,不同的资源标识对应不同的资源组,资源图样标识对应资源组内的图样标识。或者,不同的资源标识对应资源组内的不同资源,资源图样标识对应不同的 资源组。
如果旁链路资源配置信息包含资源标识,bitmap时,可选地,bitmap的比特位对应不同的资源组,不同的资源标识对应资源组内的不同资源。或者,bitmap的比特位对应资源组内的资源,同的资源标识对应不同的资源组。
如果旁链路资源配置信息包含bitmap,资源标识,资源图样标识时,可选地,bitmap的比特位对应不同的资源组,资源图样标识对应资源组内的图样标识,资源标识对应图样内的不同资源。
具体实施例四中,当该第一信号携带第一信号传输信息时,第一信号传输信息,包含以下至少一项:
(1)实际发送的第一信号的信息,该信息指示的第一信号为实际发送的第一信号,该信息的形式可能为以下至少一项:
Bitmap,例如bitmap指示的第一信号为实际发送的第一信号;
或者,数目M,例如只能从固定index的第一信号开始按照一定规律发送第一信号,例如从index 0开始发送连续M个的第一信号;
或者,Start index+数目M;即从Start index开始连续M个。
或者,end index+数目M。即截止至end index连续M个。
(2)允许发送的第一信号的信息,该信息的形式可能为以下至少一项
例如允许发送的第一信号的最大数目N;
例如允许发送的第一信号的index范围,例如,包含允许发送的第一信号的Index最大值和最小值其中的至少一项。
例如包含了最小index,数目N;即从最小index开始连续N个。
例如包含了最大index,数目N;即截止至最大index连续N个。
例如包含了最大index,最小index,即从最小index开始截止至最大index。
具体实施例五中,当该第一信号携带波束传输信息时,波束传输信息,包含以下至少一项:
(1)实际发送的波束的信息,该信息指示的波束为实际发送的波束,该信息的形式可能为以下至少一项:
Bitmap,例如bitmap指示的波束为实际发送的波束;
或者,数目M,例如只能从固定index的波束开始按照一定规律发送波束,例如从index 0开始发送连续M个的波束;
或者,Start index+数目M;即从Start index开始连续M个。
或者,end index+数目M。即截止至end index连续M个。
(2)允许发送的波束的信息
例如允许发送的波束的最大数目N;
例如允许发送的波束的index范围,例如,包含允许发送的波束的Index最大值和最小值其中的至少一项。
例如包含了最小index,数目N;即从最小index开始连续N个。
例如包含了最大index,数目N;即截止至最大index连续N个。
例如包含了最大index,最小index,即从最小index开始截止至最大index。
波束和第一信号之间可能存在对应关系,该对应关系可能为1对1,1对多,多对1,多对多。例如在一些实施例中,一个第一信号对应一个波束,但是无法具体体现波束的方向性信息,此时不同的第一信号可能对应不同的波束标识,但是可能实际上是通过同一方向的波束进行传输。
例如在一些实施例中,一个第一信号对应一组波束,但是无法具体体现波束的方向性信息,此时不同的第一信号可能对应不同的波束标识,但是可能实际上是通过同一组方向的波束进行传输。
例如在一些实施例中,一个第一信号可能同时对应一个波束及其方向性信息,且不同的信号块之间的波束和波束方向不同。此时通过相同传输方向进行传输的同步信号块对应的波束标识相同。
例如在一些实施例中,一个第一信号可能同时对应一组波束及其方向性信息,且不同的信号块之间的波束和波束方向不同。此时通过相同一组传输方向进行传输的同步信号块对应的波束标识相同。
本实施例提及的方向性指的是波束传输时的指向方向。
具体实施例六中,该第一信号携带了设备标识信息、第一信号标识等信 息中的至少一项时,并且该第一信号组成包含了:广播信道,参考信号,同步信号,测量信号时:
(1)广播信道用于承载第一信号携带的至少部分信息。
(2)可选地,对于第一信号中的参考信号,
1、可选地,对于第一信号中的参考信号,基于广播信道携带的至少部分信息映射确定参考信号序列,例如将广播信道携带的至少部分信息映射(例如,通过hash函数)为一个或者一组值,基于映射结果生成参考信号序列。
2、可选地,对于第一信号中的参考信号,基于广播信道携带的至少部分信息映射确定参考信号序列,例如将广播信道携带的至少部分信息映射(例如,通过hash函数)为一个或者一组值,基于映射结果从候选序列中选择出一个序列,作为参考信号序列。
3、可选地,1和2中所述至少部分信息包含设备标识信息,第一信号标识中的至少一项。
4、可选地,1和2中所述至少部分信息广播信道携带的全部信息。
5、在一个候选集合中随机选择
可选地,在候选序列集合中随机选择(例如,从8个DMRS序列中UE随机选择一个);
可选地,基于一定准则选择(例如,终端基于测量和/或检测结果选择,一个具体实施方式是终端不选择检测到的其他终端使用过的候选序列;或者排除检测到的测量结果高于对应阈值的候选序列,从剩下的候选序列中选择;如果所有候选序列都被其他终端使用和/或检测到的测量结果强度高于对应阈值,可选地,终端选择测量结果强度最小的候选序列,其中测量量可能为RSRP,参考信号接收质量(Reference Signal Receiving Quality,RSRQ),接收信号强度指示(Received Signal Strength Indication,RSSI),信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)中的至少一项。
(3)可选地,对于第一信号中的测量信号
1、可选地,基于广播信道携带的上述所需携带信息的至少部分信息生成测量信号序列;可选地,所述至少部分信息包含设备标识信息,第一信号标 识中的至少一项。例如基于广播信道中携带的设备标识信息和第一信号标识的生成测量信号序列。
3、在一个候选集合中随机选择
可选地,在候选序列集合中随机选择(例如,从8个DMRS序列中UE随机选择一个);
可选地,基于一定准则选择(例如,终端基于测量和/或检测结果选择,一个具体实施方式是终端不选择检测到的其他终端使用过的候选序列;或者排除检测到的测量结果高于对应阈值的候选序列,从剩下的候选序列中选择;如果所有候选序列都被其他终端使用和/或检测到的测量结果强度高于对应阈值,可选地,终端选择测量结果强度最小的候选序列,其中测量量可能为RSRP,参考信号接收质量(Reference Signal Receiving Quality,RSRQ),接收信号强度指示(Received Signal Strength Indication,RSSI),信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)中的至少一项。
(4)可选地,参考信号可为以下至少一项,测量信号可为以下至少一项:
1、可以为DMRS,CSI-RS,TRS,PTRS,SRS,SSS,PSS中的至少一项;
2、可以除上述参考序列外的其他m序列,其他ZC序列,其他gold序列其中之一,或者为至少两种序列的相乘,例如可以将序列映射成符号再进行序列相乘。
进一步地,可以为和SSS采用相同的生成方式和相同的序列长度。
进一步地,可以为和SSS采用相同的生成多项式,序列ID,但是长度大于127的序列。
进一步地,可以为和PSS采用相同的生成多项式,但是长度大于127的序列。
进一步地,可以为和PSS采用相同的生成多项式,但是循环移位数不限于3种的序列。
进一步地,gold和m序列的相乘。
其中一种具体实施方式为,信号块中包含PSS(sidelink上称为PSSS),SSS (sidelink上称为SSSS),DMRS和测量信号(measurement reference signal,MRS),参考信号为DMRS,广播信道PBCH(sidelink上称为PSBCH)携带的全部信息经过映射得到的值,并基于该值初始化和生成DMRS序列。PBCH(PSBCH)携带的信息中包含了第一信号的index和发送设备ID(如果是sIDelink传输则是发送UE的ID),基于index和ID初始化和生成MRS序列。终端可以通过测量该MRS信号得到该发送设备发送的该信号块的测量结果。
其中MRS是为了方便描述而给出的一个简称,实际上可能会根据其类型,功能而有其他的名称。
其中,gold序列为2个m序列的异或,输出的gold序列c(n)的长度为M,其中,n=0,1,...,M-1:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
其中,M为整数,x 1和x 2中至少一个的初始化序列用c init表示。
其中一个具体实施方式为,假设广播信道携带的发送设备ID为10bit,MRS为gold序列,此时MRS可以按照如下公式进行初始化:
序列的初始化公式为:c init=(2 a(i+l+1)(2n ID+1)+n ID)mod2 31
其中a为一个整数,n ID为10bit的终端ID,i为第一信号的标识,l为一个slot内OFDM符号编号,或者l也可能为0,序列c(n)为:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
序列的生成公式为:
Figure PCTCN2019102513-appb-000001
另外一个具体实施方式为,假设参考序列为gold序列,此时参考序列可以按照如下公式进行初始化:
序列的初始化公式为:c init=(2 b(i+l+1)(2BCH mapping+1)+2N ID)mod2 31
其中b为整数,BCH mapping为广播信道携带信息经过映射得到的值,i为第一 信号的标识,l为一个slot内OFDM符号编号,或者l也可能为0,序列c(n)为:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
序列的生成公式为:
Figure PCTCN2019102513-appb-000002
另外一个具体实施方式为,参考信号是m序列时,采用和PSS相同的生成多项式,生成方式如下,
d 1(n)=1-2x(m)
m=(n+N CS)mod L
0≤n<L
其中L为m序列长度,N cs为循环移位,可选地,该值和基于广播信道携带信息经过映射得到的值之间存在映射关系,例如不同的广播信道携带信息经过映射总共可能得到的8个不同的值,每个值分别对应一个不同的N cs。对于一个第一信号,其参考序列中的循环移位N cs和其广播信道携带信息的映射结果对应。
x(i+7)=(x(i+4)+x(i))mod 2
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]
另外一个具体实施方式为,参考信号是一个m序列,采用和SSS相同的生成多项式,
d(n)=[1-2x 0((n+m 0)mod L)][1-2x 1((n+m 1)mod L)]
Figure PCTCN2019102513-appb-000003
m 1=N 1 mod 112
其中L为m序列长度,广播信道携带信息经过映射得到N 1和N 2中至少一个。
x 0(i+7)=(x 0(i+4)+x 0(i))mod 2
x 1(i+7)=(x 1(i+1)+x 1(i))mod 2
[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)]=[0 0 0 0 0 0 1]
且[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)]=[0 0 0 0 0 0 1]。
另外一个具体实施方式为,MRS是一个Gold序列和m序列的乘积(即相互调制),假设gold序列c(n)的长度为M,其中,n=0,1,...,M-1,发送的gold序列为d 1(n)=1-2c(n),
m序列的生成方式如下:
d 2(n)=1- 2x((n+m)mod M),其中m为循环移位值。可以给每一个UE或者每一组UE配置一个循环移位值。
所发送的MRS序列为上述Gold序列和m序列的乘积(即相互调制):
d(n)=d 1(n)·d 2(n)。
另外一个具体实施方式为,MRS是三个m序列相乘,3个m序列下文分别描述为d 1(n),d 2(n),d 3(n):
d 1(n)生成方式如下:
d 1(n)=1-2x(m)
m=(n+N cs)mod L
0≤n<L
其中,N cs是循环移位,L是序列长度。
x(i+7)=(x(i+4)+x(i))mod 2
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]
d 2(n),d 3(n)的生成方式如下:
d 2(n)=1-2x 0((n+m 0)mod L)
d 3(n)=1-2x 1((n+m 1)mod L)
Figure PCTCN2019102513-appb-000004
m 1=(N 1mod112)+m 0+1
0≤n<L。
则,发送的序列d(n)为
d(n)=d 1(n)·d 2(n)·d 3(n)。
其中N cs,N 1和N 2与发送设备标识和第一信号标识之间存在映射关系,例如,发送设备标识被分配为X组,N cs一共有X种可能的取值,每个N cs取值对应一个发送设备标识组,一个发送设备标识组对应Y个子组,N 1一共有X种可能的取值,每个N 1取值对应一个发送设备标识子组,一个发送设备标识 子组对应Z个发送设备标识,N 2一共有Z种可能的取值,每个N 2取值对应一个发送设备标识。
另外一个具体实施方式为,MRS包含两个序列,其中一个序列d 1(n)生成方式如下,
d 1(n)=1-2x(m)
m=(n+N cs)mod L
0≤n<L
其中,N cs是循环移位,L是序列长度。
x(i+7)=(x(i+4)+x(i))mod 2
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]
另一个序列d 2(n)生成方式如下:
d 2(n)=[1-2x 0((n+m 0)mod L)][1-2x 1((n+m 1)mod L)]
Figure PCTCN2019102513-appb-000005
m 1=(N 1mod112)+m 0+1
0≤n<L
其中N cs,N 1和N 2与发送设备标识和第一信号标识之间存在映射关系,例如,发送设备标识被分配为X组,N cs一共有X种可能的取值,每个N cs取值对应一个发送设备标识组,一个发送设备标识组对应Y个子组,N 1一共有X种可能的取值,每个N 1取值对应一个发送设备标识子组,一个发送设备标识子组对应Z个发送设备标识,N 2一共有Z种可能的取值,每个N 2取值对应一个发送设备标识。
可选地,这两个序列可能占据两个OFDM符号。
可选地,这两个序列也分别用于PSS(sIDelink上称为PSSS)和SSS(sIDelink上称为SSSS),即MRS包含PSS和SSS,此时N 1和N 2可能分别为PSS,SSS的序列ID。
具体在具体实施例七中,该第一信号携带了设备标识信息、第一信号标识等信息中的至少一项时,并且该第一信号组成至少包含了:参考信号,数据信道时:
(1)数据信道用于承载第一信号携带的至少部分信息。
(2)可选地,对于第一信号中的参考信号,
1、可选地,基于数据信道携带的至少部分信息映射确定参考信号序列,例如将数据信道携带的至少部分信息映射(例如,通过hash函数)为一个或者一组值,基于映射结果生成参考信号序列。
2、可选地,对于第一信号中的参考信号,基于数据信道携带的至少部分信息映射确定参考信号序列,例如将数据信道携带的至少部分信息映射(例如,通过hash函数)为一个或者一组值,基于映射结果从候选序列中选择出一个序列,作为参考信号序列。
3、可选地,1和2中所述至少部分信息包含设备标识信息,第一信号标识中的至少一项。
4、可选地,1和2中所述至少部分信息数据信道携带的全部信息。
5、可选地,基于数据信道携带的上述所需携带信息的至少部分(通过hash等方法)生成测量信号序列;可选地,所述至少部分信息包含设备标识信息,第一信号标识中的至少一项。例如基于数据信道中携带的设备标识信息和第一信号标识的生成测量信号序列。
6、在一个候选集合中随机选择
可选地,在候选序列集合中随机选择(例如,从8个DMRS序列中UE随机选择一个);
可选地,基于一定准则选择(例如,终端基于测量和/或检测结果选择,一个具体实施方式是终端不选择检测到的其他终端使用过的候选序列;或者排除检测到的测量结果高于对应阈值的候选序列,从剩下的候选序列中选择;如果所有候选序列都被其他终端使用和/或检测到的测量结果强度高于对应阈值,可选地,终端选择测量结果强度最小的候选序列,其中测量量可能为RSRP,参考信号接收质量(Reference Signal Receiving Quality,RSRQ),接收信号强度指示(Received Signal Strength Indication,RSSI),信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)中的至少一项。
可选地,第一信号还包含了随机接入信号。
关于该实施例中,参考信号的生成公式可以采用和实施例六中参考信号或测量信号的相同的生成公式,在这里不做赘述。此时在使用实施例六中公 式时,公式中涉及广播信道携带信息对应地,可以替换为用于确定(生成)参考信号的所述数据信道携带信息。
具体实施例八中,可以通过协议预定义,网络侧设备配置,其他终端配置和厂商预配置等方式中的至少一项配置第一信号测量信息用于BFD(波束失败检测),RLM,RRM中的至少一项。
该第一信号测量信息可能包含以下:
频点;
所属池ID;
被测目标标识;
测量窗周期;
测量窗长;
需要测量的第一信号的指示,包括以下至少一种:Bitmap,标识(一个或者多个),需要测量的第一信号的数目,需要测量的第一信号的数目和需要测量的第一个第一信号的index,需要测量的第一信号的数目需要测量的最后一个第一信号的index。
接收设备比如终端通过该信息确定需要测量的资源,可选地,测量被指示的资源上检测并测量PSS,SSS,参考信号,测量信号中的至少一项,基于该测量结果进行评估,确定评估结果。
终端在该被指示的资源上基于检测出的PSS,SSS,物理广播信道,参考信号,测量信号中至少一项获取第一信号的标识1和/或波束的标识2,终端认为评估结果对应标识1对应的第一信号和/或标识2对应的波束。
当该第一信号用于sidelink时,MRS可以用于sidelink上的RRM,RLM,BFD,功控,BM中的至少一项。
一具体实施方式为,信号块中包含PSS(sidelink上称为PSSS),SSS(sidelink上称为SSSS),参考信号和测量信号MRS,终端根据测量信息的指示在对应的信息结构上测量其MRS信号,基于该测量结果进行评估,例如将测量结果和对应的判断阈值和/或准则等其中至少一项进行比较,从而确定后续的步骤。
例如基于MRS进行RRM测量,终端可以通过比较测得的不同第一信号MRS的RSRP,RSSI,RSRQ,SINR等测量量中的至少一项,从中选出一个或多个第一信号,例如选择测量量结果最高的一个或多个,或者,选择测量量结果满足阈值需求的一个或多个。
例如基于MRS进行RLM测量,终端可以通过测得的第一信号MRS,评估当前链路质量和/或状态的至少一项,可选地进一步确定是否需要上报IS或OOS,可选地进一步是否需要发起链路恢复请求。
例如基于MRS进行BFD测量,评估波束的质量和/或状态的至少一项,例如是否出现波束失败,可选地进一步确定是否需要发起波束恢复请求。
例如基于MRS进行功控,终端可以通过测得的第一信号MRS的接收功率,基于该接收功率发送指示信息辅助发送方调整信号功率。
例如基于MRS进行BM测量,终端可以通过测得的第一信号MRS的RSRP,RSSI,RSRQ,SINR等测量量中的至少一项,评估出该第一信号对应的波束质量和/或状态和/或QCL信息的至少一项,可选地进一步选择哪个或者哪些波束进行收发,例如选择测量量结果最高的一个第一信号对应的波束,或者,选择测量量结果满足阈值需求的一个或多个第一信号对应的波束。
其中可选地,参考信号类型为DMRS,并基于广播信道携带信息经过映射得到的值初始化和生成该DMRS序列。广播信道携带的信息中包含了第一信号的index和发送设备ID,并基于index和ID初始化和生成MRS序列。
具体实施例九中,该第一信号可以提供其他信号传输时准共址(Quasi-co-location,QCL)参数的QCL参考,即第一信号和其他信号之间可能存在关联关系。
该关联关系可以是协议预定义,网络设备配置,其他终端配置和/或厂商预配置的。
当对于同一个其他信号和/或资源池配置了多个第一信号可以作为QCL参考时,可以通过高层信令,MAC-CE(媒体接入控制-控制元素),或者下行控制信息指示其中一个第一信号作为实际的QCL参考。
协议预定义或厂商预配置关联关系的一种情况是,其他信号和/或资源池 根据第一信号标识,按照一定规律进行资源映射,该规律包含以下至少一种:
例如,时域上按照升序映射;
例如,频域上按照升序映射;
例如,先频域上映射后时域上映射。
本公开实施例还提供了一种发送设备,如图6所示,包括:
发送模块31,用于向接收设备发送第一信号,所述第一信号包括以下信息中的至少一种:
定时信息;
设备标识信息;
组标识信息;
资源配置信息;
第一信号传输信息;
波束传输信息;
其他信息。
本实施例中,发送设备向接收设备发送第一信号,第一信号包括以下信息中的至少一种:定时信息;设备标识信息;组标识信息;资源配置信息;第一信号传输信息;波束传输信息;其他信息,通过本公开的技术方案可以使得接收设备通过对第一信号的检测确定发送设备的信息,有利于后续的测量、合并、解码、管理等操作,提高传输的准确性。
进一步地,还包括:
确定模块,用于基于至少部分所述第一信号包括的信息确定以下至少一种:
参考信号的序列;
同步信号的序列;
测量信号的序列;
随机接入信号的序列。
进一步地,所述第一信号包括以下至少一种:
广播信道,参考信号,同步信号,测量信号,随机接入信号,数据信道。
进一步地,所述广播信道携带所述至少部分所述第一信号包括的信息;和/或
所述数据信道携带所述至少部分所述第一信号包括的信息。
进一步地,所述确定模块具体用于基于所述广播信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述同步信号的序列,所述测量信号的序列;和/或
基于所述数据信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述随机接入信号的序列。
进一步地,所述确定模块具体用于执行以下至少一种:
基于所述广播信道携带的至少部分信息,通过映射确定所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列,从所述多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,生成所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,从多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列。
进一步地,所述确定模块具体用于执行以下至少一种:
基于所述数据信道携带的至少部分信息,通过映射确定所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述随机接入信号的序列,从所述多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,生成所述参考信号和/或所述随 机接入信号的序列;
基于所述数据信道携带的至少部分信息,从多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列。
进一步地,所述至少部分所述第一信号包括的信息包括以下至少一种:
设备标识信息,第一信号的标识。
进一步地,所述定时信息包括以下至少一种:
帧信息,时隙信息,所述第一信号的标识,传输方向的标识,所述第一信号所属资源集合的标识。
进一步地,所述资源集合为以下至少一种:
N个第一信号占据的时域资源;
N个第一信号占据的频域资源;
N个第一信号所属的频域范围;
N个第一信号所属的时间范围;
N为正整数。
进一步地,所述资源配置信息包括以下至少一种:
上下行资源配置信息;
旁链路资源配置信息。
进一步地,所述上下行资源配置信息为通过以下至少一种方式获得:
通过网络侧设备配置获得;
通过预配置获得;
通过资源池隐式获得。
进一步地,所述旁链路资源配置信息指示旁链路资源部分和非旁链路资源部分中的至少一个。
进一步地,所述旁链路资源配置信息是以下形式中的至少一种:
比特位图;
资源图样标识;
资源标识。
进一步地,所述第一信号传输信息包括以下至少一种:
实际传输的第一信号的信息;
允许传输的第一信号的信息。
进一步地,所述波束传输信息包括以下至少一种:
允许传输的波束的信息;
实际传输的波束的信息;
当前第一信号对应的波束的信息。
进一步地,所述其他信息包括以下至少一种:
功率信息;
后续通信信息。
进一步地,所述后续通信信息包括以下至少一种:
后续通信的配置信息;
所述第一信号和资源池资源的映射关系;
进一步地,所述第一信号用于执行以下至少一种:
同步;
测量;
功率控制;
提供方向性信息;
获取方向性信息。
进一步地,所述接收设备为旁链路终端时,测量的信息用于波束失败检测BFD,无线链路监测RLM,无线资源管理RRM,CSI获取,波束管理中的至少一项。
进一步地,所述方向性信息包括准共址关系。
本公开实施例还提供了一种接收设备,如图7所示,包括:
接收模块41,用于接收发送设备的第一信号,所述第一信号包括以下信息中的至少一种:
定时信息;
设备标识信息;
组标识信息;
资源配置信息;
第一信号传输信息;
波束传输信息;
其他信息。
本实施例中,发送设备向接收设备发送第一信号,第一信号包括以下信息中的至少一种:定时信息;设备标识信息;组标识信息;资源配置信息;第一信号传输信息;波束传输信息;其他信息,通过本公开的技术方案可以使得接收设备通过对第一信号的检测确定发送设备的信息,有利于后续的测量、合并、解码、管理等操作,提高传输的准确性。
进一步地,所述第一信号包括以下至少一种:
广播信道,参考信号,同步信号,测量信号,随机接入信号,数据信道。
进一步地,所述广播信道携带所述至少部分所述第一信号包括的信息;和/或
所述数据信道携带所述至少部分所述第一信号包括的信息。
进一步地,所述至少部分所述第一信号包括的信息包括以下至少一种:
设备标识信息,第一信号的标识。
进一步地,所述定时信息包括以下至少一种:
帧信息,时隙信息,所述第一信号的标识,传输方向的标识,所述第一信号所属资源集合的标识。
进一步地,所述资源集合为以下至少一种:
N个第一信号占据的时域资源;
N个第一信号占据的频域资源;
N个第一信号所属的频域范围;
N个第一信号所属的时间范围;
N为正整数。
进一步地,所述资源配置信息包括以下至少一种:
上下行资源配置信息;
旁链路资源配置信息。
进一步地,所述旁链路资源配置信息指示旁链路资源部分和非旁链路资源部分中的至少一个。
进一步地,所述旁链路资源配置信息是以下形式中的至少一种:
比特位图;
资源图样标识;
资源标识。
进一步地,所述第一信号传输信息包括以下至少一种:
实际传输的第一信号的信息;
允许传输的第一信号的信息。
进一步地,所述波束传输信息包括以下至少一种:
允许传输的波束的信息;
实际传输的波束的信息;
当前第一信号对应的波束的信息。
进一步地,所述其他信息包括以下至少一种:
功率信息;
后续通信信息。
进一步地,所述后续通信信息包括以下至少一种:
后续通信的配置信息;
所述第一信号和资源池资源的映射关系;
进一步地,还包括:
处理模块,用于利用所述第一信号执行以下至少一种:
同步;
测量;
功率控制;
提供方向性信息;
获取方向性信息。
进一步地,所述接收设备为旁链路终端时,测量的信息用于波束失败检 测BFD,无线链路监测RLM,无线资源管理RRM,CSI获取,波束管理中的至少一项。
进一步地,所述方向性信息包括准共址关系。
本公开实施例还提供了一种发送设备,能够实现上述实施例中信号发送方法的细节,并达到相同的效果。发送设备可以为网络侧设备或终端。
在发送设备为网络侧设备时,如图8所示,网络侧设备500包括:处理器501、收发机502、存储器503、用户接口504和总线接口,其中:
在本公开实施例中,网络侧设备500还包括:存储在存储器503上并可在处理器501上运行的计算机程序,计算机程序被处理器501执行时实现如下步骤:向接收设备发送第一信号,所述第一信号包括以下信息中的至少一种:定时信息;设备标识信息;组标识信息;资源配置信息;第一信号传输信息;波束传输信息;其他信息。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器501代表的一个或多个处理器和存储器503代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机502可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口504还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器501负责管理总线架构和通常的处理,存储器503可以存储处理器501在执行操作时所使用的数据。
进一步地,计算机程序被处理器501执行时还实现如下步骤:
基于至少部分所述第一信号包括的信息确定以下至少一种:
参考信号的序列;
同步信号的序列;
测量信号的序列;
随机接入信号的序列。
进一步地,所述第一信号包括以下至少一种:
广播信道,参考信号,同步信号,测量信号,随机接入信号,数据信道。
进一步地,所述广播信道携带所述至少部分所述第一信号包括的信息;和/或
所述数据信道携带所述至少部分所述第一信号包括的信息。
进一步地,基于所述广播信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述同步信号的序列,所述测量信号的序列;和/或
基于所述数据信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述随机接入信号的序列。
进一步地,计算机程序被处理器501执行时还实现以下至少一种:
基于所述广播信道携带的至少部分信息,通过映射确定所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列,从所述多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,生成所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,从多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列。
进一步地,计算机程序被处理器501执行时还实现以下至少一种:
基于所述数据信道携带的至少部分信息,通过映射确定所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述随机接入信号的序列,从所述多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,生成所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,从多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列。
进一步地,所述至少部分所述第一信号包括的信息包括以下至少一种:
设备标识信息,第一信号的标识。
进一步地,所述定时信息包括以下至少一种:
帧信息,时隙信息,所述第一信号的标识,传输方向的标识,所述第一信号所属资源集合的标识。
进一步地,所述资源集合为以下至少一种:
N个第一信号占据的时域资源;
N个第一信号占据的频域资源;
N个第一信号所属的频域范围;
N个第一信号所属的时间范围;
N为正整数。
进一步地,所述资源配置信息包括以下至少一种:
上下行资源配置信息;
旁链路资源配置信息。
进一步地,所述上下行资源配置信息为通过以下至少一种方式获得:
通过网络侧设备配置获得;
通过预配置获得;
通过资源池隐式获得。
进一步地,所述旁链路资源配置信息指示旁链路资源部分和非旁链路资源部分中的至少一个。
进一步地,所述旁链路资源配置信息是以下形式中的至少一种:
比特位图;
资源图样标识;
资源标识。
进一步地,所述第一信号传输信息包括以下至少一种:
实际传输的第一信号的信息;
允许传输的第一信号的信息。
进一步地,所述波束传输信息包括以下至少一种:
允许传输的波束的信息;
实际传输的波束的信息;
当前第一信号对应的波束的信息。
进一步地,所述其他信息包括以下至少一种:
功率信息;
后续通信信息。
进一步地,所述后续通信信息包括以下至少一种:
后续通信的配置信息;
所述第一信号和资源池资源的映射关系;
进一步地,所述第一信号用于执行以下至少一种:
同步;
测量;
功率控制;
提供方向性信息;
获取方向性信息。
进一步地,所述接收设备为旁链路终端时,测量的信息用于波束失败检测BFD,无线链路监测RLM,无线资源管理RRM,CSI获取,波束管理中的至少一项。
进一步地,所述方向性信息包括准共址关系。
在发送设备为终端时,如图9所示,该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、处理器610、以及电源611等部件。本领域技术人员可以理解,图9中示出的终端结构并 不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
所述处理器610用于向接收设备发送第一信号,所述第一信号包括以下信息中的至少一种:定时信息;设备标识信息;组标识信息;资源配置信息;第一信号传输信息;波束传输信息;其他信息。
进一步地,处理器610还用于基于至少部分所述第一信号包括的信息确定以下至少一种:
参考信号的序列;
同步信号的序列;
测量信号的序列;
随机接入信号的序列。
进一步地,所述第一信号包括以下至少一种:
广播信道,参考信号,同步信号,测量信号,随机接入信号,数据信道。
进一步地,所述广播信道携带所述至少部分所述第一信号包括的信息;和/或
所述数据信道携带所述至少部分所述第一信号包括的信息。
进一步地,处理器610还用于基于所述广播信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述同步信号的序列,所述测量信号的序列;和/或
基于所述数据信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述随机接入信号的序列。
进一步地,处理器610还用于执行以下至少一种:
基于所述广播信道携带的至少部分信息,通过映射确定所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列,从所述多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信 号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,生成所述参考信号和/或所述同步信号和/或所述测量信号的序列;
基于所述广播信道携带的至少部分信息,从多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列。
进一步地,处理器610还用于执行以下至少一种:
基于所述数据信道携带的至少部分信息,通过映射确定所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述随机接入信号的序列,从所述多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,生成所述参考信号和/或所述随机接入信号的序列;
基于所述数据信道携带的至少部分信息,从多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列。
进一步地,所述至少部分所述第一信号包括的信息包括以下至少一种:
设备标识信息,第一信号的标识。
进一步地,所述定时信息包括以下至少一种:
帧信息,时隙信息,所述第一信号的标识,传输方向的标识,所述第一信号所属资源集合的标识。
进一步地,所述资源集合为以下至少一种:
N个第一信号占据的时域资源;
N个第一信号占据的频域资源;
N个第一信号所属的频域范围;
N个第一信号所属的时间范围;
N为正整数。
进一步地,所述资源配置信息包括以下至少一种:
上下行资源配置信息;
旁链路资源配置信息。
进一步地,所述上下行资源配置信息为通过以下至少一种方式获得:
通过网络侧设备配置获得;
通过预配置获得;
通过资源池隐式获得。
进一步地,所述旁链路资源配置信息指示旁链路资源部分和非旁链路资源部分中的至少一个。
进一步地,所述旁链路资源配置信息是以下形式中的至少一种:
比特位图;
资源图样标识;
资源标识。
进一步地,所述第一信号传输信息包括以下至少一种:
实际传输的第一信号的信息;
允许传输的第一信号的信息。
进一步地,所述波束传输信息包括以下至少一种:
允许传输的波束的信息;
实际传输的波束的信息;
当前第一信号对应的波束的信息。
进一步地,所述其他信息包括以下至少一种:
功率信息;
后续通信信息。
进一步地,所述后续通信信息包括以下至少一种:
后续通信的配置信息;
所述第一信号和资源池资源的映射关系;
进一步地,所述第一信号用于执行以下至少一种:
同步;
测量;
功率控制;
提供方向性信息;
获取方向性信息。
进一步地,所述接收设备为旁链路终端时,测量的信息用于波束失败检测BFD,无线链路监测RLM,无线资源管理RRM,CSI获取,波束管理中的至少一项。
进一步地,所述方向性信息包括准共址关系。
应理解的是,本公开实施例中,射频单元601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器610处理;另外,将上行的数据发送给基站。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元601还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元603可以将射频单元601或网络模块602接收的或者在存储器609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元603还可以提供与终端600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元603包括扬声器、蜂鸣器以及受话器等。
输入单元604用于接收音频或视频信号。输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元606上。经图形处理器6041处理后的图像帧可以存储在存储器609(或其它存储介质)中或者经由射频单元601或网络模块602进行发送。麦克风6042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元601发送到移动通信基站的 格式输出。
终端600还包括至少一种传感器605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板6061的亮度,接近传感器可在终端600移动到耳边时,关闭显示面板6061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元606用于显示由用户输入的信息或提供给用户的信息。显示单元606可包括显示面板6061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板6061。
用户输入单元607可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6071上或在触控面板6071附近的操作)。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6071。除了触控面板6071,用户输入单元607还可以包括其他输入设备6072。具体地,其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板6071可覆盖在显示面板6061上,当触控面板6071检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类 型,随后处理器610根据触摸事件的类型在显示面板6061上提供相应的视觉输出。虽然在图9中,触控面板6071与显示面板6061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板6071与显示面板6061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元608为外部装置与终端600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端600内的一个或多个元件或者可以用于在终端600和外部装置之间传输数据。
存储器609可用于存储软件程序以及各种数据。存储器609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器609内的软件程序和/或模块,以及调用存储在存储器609内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器610可包括一个或多个处理单元;可选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
终端600还可以包括给各个部件供电的电源611(比如电池),可选的,电源611可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端600包括一些未示出的功能模块,在此不再赘述。
本公开实施例还提供了一种终端,能够实现上述实施例中的信号接收方 法,并达到相同的效果。
如图9所示,该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、处理器610、以及电源611等部件。本领域技术人员可以理解,图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
所述处理器610用于接收发送设备的第一信号,所述第一信号包括以下信息中的至少一种:
定时信息;
设备标识信息;
组标识信息;
资源配置信息;
第一信号传输信息;
波束传输信息;
其他信息。
进一步地,所述处理器610还用于按照对应流程监听所述第一资源池。
进一步地,所述第一信号包括以下至少一种:
广播信道,参考信号,同步信号,测量信号,随机接入信号,数据信道。
进一步地,所述广播信道携带所述至少部分所述第一信号包括的信息;和/或
所述数据信道携带所述至少部分所述第一信号包括的信息。
进一步地,所述至少部分所述第一信号包括的信息包括以下至少一种:
设备标识信息,第一信号的标识。
进一步地,所述定时信息包括以下至少一种:
帧信息,时隙信息,所述第一信号的标识,传输方向的标识,所述第一信号所属资源集合的标识。
进一步地,所述资源集合为以下至少一种:
N个第一信号占据的时域资源;
N个第一信号占据的频域资源;
N个第一信号所属的频域范围;
N个第一信号所属的时间范围;
N为正整数。
进一步地,所述资源配置信息包括以下至少一种:
上下行资源配置信息;
旁链路资源配置信息。
进一步地,所述旁链路资源配置信息指示旁链路资源部分和非旁链路资源部分中的至少一个。
进一步地,所述旁链路资源配置信息是以下形式中的至少一种:
比特位图;
资源图样标识;
资源标识。
进一步地,所述第一信号传输信息包括以下至少一种:
实际传输的第一信号的信息;
允许传输的第一信号的信息。
进一步地,所述波束传输信息包括以下至少一种:
允许传输的波束的信息;
实际传输的波束的信息;
当前第一信号对应的波束的信息。
进一步地,所述其他信息包括以下至少一种:
功率信息;
后续通信信息。
进一步地,所述后续通信信息包括以下至少一种:
后续通信的配置信息;
所述第一信号和资源池资源的映射关系;
进一步地,所述处理器610还用于利用所述第一信号执行以下至少一种:
同步;
测量;
功率控制;
提供方向性信息;
获取方向性信息。
进一步地,所述接收设备为旁链路终端时,测量的信息用于波束失败检测BFD,无线链路监测RLM,无线资源管理RRM,CSI获取,波束管理中的至少一项。
进一步地,所述方向性信息包括准共址关系。
应理解的是,本公开实施例中,射频单元601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器610处理;另外,将上行的数据发送给基站。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元601还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元603可以将射频单元601或网络模块602接收的或者在存储器609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元603还可以提供与终端600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元603包括扬声器、蜂鸣器以及受话器等。
输入单元604用于接收音频或视频信号。输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元606上。经图形处理器6041处理后的图像帧可以存储在存储器609(或其它存储介质)中或者经由射频单元601或网络模块602进行发送。麦克风6042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以 在电话通话模式的情况下转换为可经由射频单元601发送到移动通信基站的格式输出。
终端600还包括至少一种传感器605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板6061的亮度,接近传感器可在终端600移动到耳边时,关闭显示面板6061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元606用于显示由用户输入的信息或提供给用户的信息。显示单元606可包括显示面板6061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板6061。
用户输入单元607可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6071上或在触控面板6071附近的操作)。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6071。除了触控面板6071,用户输入单元607还可以包括其他输入设备6072。具体地,其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板6071可覆盖在显示面板6061上,当触控面板6071 检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板6061上提供相应的视觉输出。虽然在图9中,触控面板6071与显示面板6061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板6071与显示面板6061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元608为外部装置与终端600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端600内的一个或多个元件或者可以用于在终端600和外部装置之间传输数据。
存储器609可用于存储软件程序以及各种数据。存储器609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器609内的软件程序和/或模块,以及调用存储在存储器609内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器610可包括一个或多个处理单元;可选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
终端600还可以包括给各个部件供电的电源611(比如电池),可选的,电源611可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端600包括一些未示出的功能模块,在此不再赘述。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的资源池配置方法中的步骤或实现如上所述的资源池获取方法中的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本公开实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、终端(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端的处理器执行的指令产生用于实 现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端上,使得在计算机或其他可编程终端上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开实施例范围的所有变更和修改。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端中还存在另外的相同要素。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (42)

  1. 一种信号发送方法,应用于发送设备,所述方法包括:
    向接收设备发送第一信号,所述第一信号包括以下信息中的至少一种:
    定时信息;
    设备标识信息;
    组标识信息;
    资源配置信息;
    第一信号传输信息;
    波束传输信息;
    其他信息。
  2. 根据权利要求1所述的信号发送方法,还包括:
    基于至少部分所述第一信号包括的信息确定以下至少一种:
    参考信号的序列;
    同步信号的序列;
    测量信号的序列;
    随机接入信号的序列。
  3. 根据权利要求2所述的信号发送方法,其中,所述第一信号包括以下至少一种:
    广播信道,参考信号,同步信号,测量信号,随机接入信号,数据信道。
  4. 根据权利要求3所述的信号发送方法,其中,所述广播信道携带所述至少部分所述第一信号包括的信息;和/或
    所述数据信道携带所述至少部分所述第一信号包括的信息。
  5. 根据权利要求4所述的信号发送方法,其中,
    基于所述广播信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述同步信号的序列,所述测量信号的序列;和/或
    基于所述数据信道携带的至少部分信息确定以下至少一种:所述参考信号的序列,所述随机接入信号的序列。
  6. 根据权利要求5所述的信号发送方法,其中,所述方法包括以下至少一种:
    基于所述广播信道携带的至少部分信息,通过映射确定所述参考信号和/或所述同步信号和/或所述测量信号的序列;
    基于所述广播信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列,从所述多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列;
    基于所述广播信道携带的至少部分信息,生成所述参考信号和/或所述同步信号和/或所述测量信号的序列;
    基于所述广播信道携带的至少部分信息,从多个候选的所述参考信号和/或所述同步信号和/或所述测量信号序列中选择一个所述参考信号和/或所述同步信号和/或所述测量信号的序列。
  7. 根据权利要求5所述的信号发送方法,其中,所述方法包括以下至少一种:
    基于所述数据信道携带的至少部分信息,通过映射确定所述参考信号和/或所述随机接入信号的序列;
    基于所述数据信道携带的至少部分信息,通过映射确定多个候选的所述参考信号和/或所述随机接入信号的序列,从所述多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列;
    基于所述数据信道携带的至少部分信息,生成所述参考信号和/或所述随机接入信号的序列;
    基于所述数据信道携带的至少部分信息,从多个候选的所述参考信号和/或所述随机接入信号的序列中选择一个所述参考信号和/或所述随机接入信号的序列。
  8. 根据权利要求2所述的信号发送方法,其中,所述至少部分所述第一信号包括的信息包括以下至少一种:
    设备标识信息,第一信号的标识。
  9. 根据权利要求1所述的信号发送方法,其中,所述定时信息包括以下至少一种:
    帧信息,时隙信息,所述第一信号的标识,传输方向的标识,所述第一信号所属资源集合的标识。
  10. 根据权利要求9所述的信号发送方法,其中,所述资源集合为以下至少一种:
    N个第一信号占据的时域资源;
    N个第一信号占据的频域资源;
    N个第一信号所属的频域范围;
    N个第一信号所属的时间范围;
    N为正整数。
  11. 根据权利要求1所述的信号发送方法,其中,所述资源配置信息包括以下至少一种:
    上下行资源配置信息;
    旁链路资源配置信息。
  12. 根据权利要求11所述的信号发送方法,其中,所述上下行资源配置信息为通过以下至少一种方式获得:
    通过网络侧设备配置获得;
    通过预配置获得;
    通过资源池隐式获得。
  13. 根据权利要求11所述的信号发送方法,其中,所述旁链路资源配置信息指示旁链路资源部分和非旁链路资源部分中的至少一个。
  14. 根据权利要求13所述的信号发送方法,其中,所述旁链路资源配置信息是以下形式中的至少一种:
    比特位图;
    资源图样标识;
    资源标识。
  15. 根据权利要求1所述的信号发送方法,其中,所述第一信号传输信息包括以下至少一种:
    实际传输的第一信号的信息;
    允许传输的第一信号的信息。
  16. 根据权利要求1所述的信号发送方法,其中,所述波束传输信息包括以下至少一种:
    允许传输的波束的信息;
    实际传输的波束的信息;
    当前第一信号对应的波束的信息。
  17. 根据权利要求1所述的信号发送方法,其中,所述其他信息包括以下至少一种:
    功率信息;
    后续通信信息。
  18. 根据权利要求17所述的信号发送方法,其中,所述后续通信信息包括以下至少一种:
    后续通信的配置信息;
    所述第一信号和资源池资源的映射关系;
  19. 根据权利要求2所述的信号发送方法,其中,所述第一信号用于执行以下至少一种:
    同步;
    测量;
    功率控制;
    提供方向性信息;
    获取方向性信息。
  20. 根据权利要求19所述的信号发送方法,其中,所述接收设备为旁链路终端时,测量的信息用于波束失败检测BFD,无线链路监测RLM,无线资源管理RRM,CSI获取,波束管理中的至少一项。
  21. 根据权利要求19所述的信号发送方法,其中,所述方向性信息包括 准共址关系。
  22. 一种信号接收方法,应用于接收设备,所述方法包括:
    接收发送设备的第一信号,所述第一信号包括以下信息中的至少一种:
    定时信息;
    设备标识信息;
    组标识信息;
    资源配置信息;
    第一信号传输信息;
    波束传输信息;
    其他信息。
  23. 根据权利要求22所述的信号接收方法,其中,所述第一信号包括以下至少一种:
    广播信道,参考信号,同步信号,测量信号,随机接入信号,数据信道。
  24. 根据权利要求23所述的信号接收方法,其中,所述广播信道携带所述至少部分所述第一信号包括的信息;和/或
    所述数据信道携带所述至少部分所述第一信号包括的信息。
  25. 根据权利要求22所述的信号接收方法,其中,所述至少部分所述第一信号包括的信息包括以下至少一种:
    设备标识信息,第一信号的标识。
  26. 根据权利要求22所述的信号接收方法,其中,所述定时信息包括以下至少一种:
    帧信息,时隙信息,所述第一信号的标识,传输方向的标识,所述第一信号所属资源集合的标识。
  27. 根据权利要求26所述的信号接收方法,其中,所述资源集合为以下至少一种:
    N个第一信号占据的时域资源;
    N个第一信号占据的频域资源;
    N个第一信号所属的频域范围;
    N个第一信号所属的时间范围;
    N为正整数。
  28. 根据权利要求22所述的信号接收方法,其中,所述资源配置信息包括以下至少一种:
    上下行资源配置信息;
    旁链路资源配置信息。
  29. 根据权利要求28所述的信号接收方法,其中,所述旁链路资源配置信息指示旁链路资源部分和非旁链路资源部分中的至少一个。
  30. 根据权利要求29所述的信号接收方法,其中,所述旁链路资源配置信息是以下形式中的至少一种:
    比特位图;
    资源图样标识;
    资源标识。
  31. 根据权利要求22所述的信号接收方法,其中,所述第一信号传输信息包括以下至少一种:
    实际传输的第一信号的信息;
    允许传输的第一信号的信息。
  32. 根据权利要求22所述的信号接收方法,其中,所述波束传输信息包括以下至少一种:
    允许传输的波束的信息;
    实际传输的波束的信息;
    当前第一信号对应的波束的信息。
  33. 根据权利要求22所述的信号接收方法,其中,所述其他信息包括以下至少一种:
    功率信息;
    后续通信信息。
  34. 根据权利要求33所述的信号接收方法,其中,所述后续通信信息包括以下至少一种:
    后续通信的配置信息;
    所述第一信号和资源池资源的映射关系;
  35. 根据权利要求23所述的信号接收方法,还包括:
    利用所述第一信号执行以下至少一种:
    同步;
    测量;
    功率控制;
    提供方向性信息;
    获取方向性信息。
  36. 根据权利要求35所述的信号接收方法,其中,所述接收设备为旁链路终端时,测量的信息用于波束失败检测BFD,无线链路监测RLM,无线资源管理RRM,CSI获取,波束管理中的至少一项。
  37. 根据权利要求35所述的信号接收方法,其中,所述方向性信息包括准共址关系。
  38. 一种发送设备,包括:
    发送模块,用于向接收设备发送第一信号,所述第一信号包括以下信息中的至少一种:
    定时信息;
    设备标识信息;
    组标识信息;
    资源配置信息;
    第一信号传输信息;
    波束传输信息;
    其他信息。
  39. 根据权利要求38所述的发送设备,还包括:
    确定模块,用于基于至少部分所述第一信号包括的信息确定以下至少一种:
    参考信号的序列;
    同步信号的序列;
    测量信号的序列;
    随机接入信号的序列。
  40. 一种接收设备,包括:
    接收模块,用于接收发送设备的第一信号,所述第一信号包括以下信息中的至少一种:
    定时信息;
    设备标识信息;
    组标识信息;
    资源配置信息;
    第一信号传输信息;
    波束传输信息;
    其他信息。
  41. 一种网络节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至21中任一项所述的信号发送方法中的步骤或实现如权利要求22-37中任一项所述的信号接收方法中的步骤。
  42. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至21中任一项所述的信号发送方法中的步骤或实现如权利要求22-37中任一项所述的信号接收方法中的步骤。
PCT/CN2019/102513 2018-09-26 2019-08-26 信号发送方法、接收方法及发送设备、接收设备 WO2020063228A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/211,931 US20210235430A1 (en) 2018-09-26 2021-03-25 Signal sending method, signal receiving method, sending device, and receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811126458.6 2018-09-26
CN201811126458.6A CN110958092A (zh) 2018-09-26 2018-09-26 信号发送方法、接收方法及发送设备、接收设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/211,931 Continuation US20210235430A1 (en) 2018-09-26 2021-03-25 Signal sending method, signal receiving method, sending device, and receiving device

Publications (1)

Publication Number Publication Date
WO2020063228A1 true WO2020063228A1 (zh) 2020-04-02

Family

ID=69953303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102513 WO2020063228A1 (zh) 2018-09-26 2019-08-26 信号发送方法、接收方法及发送设备、接收设备

Country Status (3)

Country Link
US (1) US20210235430A1 (zh)
CN (1) CN110958092A (zh)
WO (1) WO2020063228A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115334486A (zh) * 2022-10-18 2022-11-11 成都锐成芯微科技股份有限公司 蓝牙通信方法及蓝牙系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498087B (zh) * 2020-04-08 2023-07-04 维沃移动通信有限公司 资源确定方法及终端
CN113498088B (zh) * 2020-04-08 2023-07-14 维沃移动通信有限公司 资源确定方法及终端
CN114071690B (zh) * 2020-08-06 2024-04-26 维沃移动通信有限公司 信息上报方法、信息接收方法及相关设备
CN115250524A (zh) * 2021-04-25 2022-10-28 维沃移动通信有限公司 同步资源配置方法、装置、用户设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796845A (zh) * 2014-01-16 2015-07-22 电信科学技术研究院 一种设备到设备信号传输方法及设备
CN105992364A (zh) * 2015-03-02 2016-10-05 中兴通讯股份有限公司 资源处理方法及装置
US20180049073A1 (en) * 2016-08-10 2018-02-15 Ofinno Technologies, Llc Cell Configuration for V2X Communications in a Wireless Network
CN108023698A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 配置参考信号的方法和装置
CN108029005A (zh) * 2015-09-18 2018-05-11 日本电气株式会社 基站装置、无线电终端及其方法
CN108419295A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 一种终端与终端之间通信的方法、网络侧设备和终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007280A1 (ko) * 2015-07-09 2017-01-12 엘지전자 주식회사 무선 통신 시스템에서 단말의 동기화 수행 방법 및 상기 방법을 이용하는 단말
WO2017077976A1 (ja) * 2015-11-05 2017-05-11 株式会社Nttドコモ ユーザ装置、基地局、信号送信方法及びリソース割当て方法
CN107682925B (zh) * 2016-08-02 2019-06-28 电信科学技术研究院 一种信息发送时间的确定方法及装置
EP3522620A4 (en) * 2016-09-27 2020-10-14 LG Electronics Inc. -1- METHOD AND DEVICE FOR SENDING AND RECEIVING A SYNCHRONIZATION SIGNAL OF A TERMINAL FOR DEVICE-TO-DEVICE COMMUNICATION IN A WIRELESS COMMUNICATION SYSTEM
US10856118B2 (en) * 2016-11-18 2020-12-01 Lg Electronics Inc. Method and apparatus for transmitting information using V2X communication in a wireless communication system
WO2019151773A1 (ko) * 2018-01-30 2019-08-08 엘지전자 주식회사 무선통신시스템에서 두 개 이상의 반송파, 대역폭 파트에서 자원을 선택하고 사이드 링크 신호를 전송하는 방법
US20210058914A1 (en) * 2018-04-13 2021-02-25 Lg Electronics Inc. Method for transmitting/receiving synchronous beam discovery signal for device-to-device communication in wireless communication system
WO2020027635A1 (ko) * 2018-08-03 2020-02-06 엘지전자 주식회사 Nr v2x에서 동기화를 수행하는 방법 및 장치
US20200053835A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Uu interface enhancement for nr v2x
CN112567673A (zh) * 2018-08-09 2021-03-26 康维达无线有限责任公司 用于nr v2x的波束赋形和分组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796845A (zh) * 2014-01-16 2015-07-22 电信科学技术研究院 一种设备到设备信号传输方法及设备
CN105992364A (zh) * 2015-03-02 2016-10-05 中兴通讯股份有限公司 资源处理方法及装置
CN108029005A (zh) * 2015-09-18 2018-05-11 日本电气株式会社 基站装置、无线电终端及其方法
US20180049073A1 (en) * 2016-08-10 2018-02-15 Ofinno Technologies, Llc Cell Configuration for V2X Communications in a Wireless Network
CN108023698A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 配置参考信号的方法和装置
CN108419295A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 一种终端与终端之间通信的方法、网络侧设备和终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115334486A (zh) * 2022-10-18 2022-11-11 成都锐成芯微科技股份有限公司 蓝牙通信方法及蓝牙系统
CN115334486B (zh) * 2022-10-18 2023-03-03 成都锐成芯微科技股份有限公司 蓝牙通信方法及蓝牙系统

Also Published As

Publication number Publication date
CN110958092A (zh) 2020-04-03
US20210235430A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
CN110474724B (zh) 一种tci状态指示方法、终端及网络侧设备
WO2020063228A1 (zh) 信号发送方法、接收方法及发送设备、接收设备
US20210320749A1 (en) Sequence generation method, signal receiving method, apparatus, and terminal
CN110351052B (zh) 信道和信号的传输方法及通信设备
US20210377890A1 (en) Measurement processing method, parameter configuration method, terminal, and network device
WO2019076169A1 (zh) 同步信号块的处理方法、同步信号块的指示方法及装置
CN113517965B (zh) 信道状态信息报告的获取方法及终端
CN113259973B (zh) 波束失败恢复方法、终端及网络设备
WO2019029353A1 (zh) 一种信号强度测量的方法、相关装置以及系统
EP3952184A1 (en) Channel resource determination method, channel detection method and terminal
CN110022195B (zh) 测量方法、测量配置方法、终端及网络设备
CN111435899A (zh) 混合自动重传请求harq反馈方法、终端及网络设备
CN110784932B (zh) 随机接入方法、终端设备及网络设备
WO2018059389A1 (zh) 下行控制信道的传输方法、接收网元及发送网元
US11844051B2 (en) Resource pool configuration method, resource pool using method, configuration device, and terminal
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
EP4152816A1 (en) Information transmission method and apparatus, and electronic device
CN111262672B (zh) 传输方法、网络设备和终端
WO2021209031A1 (zh) 资源确定方法及设备
US20210067390A1 (en) Uplink transmission method and terminal
CN110708764B (zh) 一种信息传输方法、网络设备及终端
CN112469131B (zh) 一种配置srs资源符号数的方法及终端设备
WO2021147765A1 (zh) 旁链路参考信号处理方法及装置、通信设备
WO2021147956A1 (zh) 一种测量上报、配置方法、终端及网络侧设备
CN113453267B (zh) 一种测量方法、终端设备和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867413

Country of ref document: EP

Kind code of ref document: A1