WO2020057317A1 - 传输指示信号的传输方法、网络设备及终端 - Google Patents

传输指示信号的传输方法、网络设备及终端 Download PDF

Info

Publication number
WO2020057317A1
WO2020057317A1 PCT/CN2019/101972 CN2019101972W WO2020057317A1 WO 2020057317 A1 WO2020057317 A1 WO 2020057317A1 CN 2019101972 W CN2019101972 W CN 2019101972W WO 2020057317 A1 WO2020057317 A1 WO 2020057317A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal
transmitting
signal
indication signal
Prior art date
Application number
PCT/CN2019/101972
Other languages
English (en)
French (fr)
Inventor
吴凯
潘学明
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19862040.3A priority Critical patent/EP3855848B1/en
Priority to ES19862040T priority patent/ES2970131T3/es
Priority to JP2021515649A priority patent/JP7210708B2/ja
Priority to KR1020217010463A priority patent/KR102542746B1/ko
Publication of WO2020057317A1 publication Critical patent/WO2020057317A1/zh
Priority to US17/206,190 priority patent/US20210212036A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a transmission method, a network device, and a terminal for transmitting an instruction signal.
  • the terminal or network device needs to make Clear Channel Assess (CCA) / extended Channel Clear Assess (eCCA) Listening to the channel, that is, performing energy detection (ED), when the energy is below a certain threshold, the channel is determined to be empty before transmission can begin.
  • CCA Clear Channel Assess
  • eCCA extended Channel Clear Assess
  • ED energy detection
  • the channel is determined to be empty before transmission can begin.
  • this contention-based access method causes uncertainty in the channel's available time.
  • the transmittable position of the network-side signal transmission may be Has missed and could not send, this may cause the receiving end to not normally receive the signal configuration configured on the network side and terminal behavior based on the network configuration after signal reception, such as Physical Downlink Control Channel (PDCCH) monitoring, Monitoring and measurement of wireless environment.
  • PDCCH Physical Downlink Control Channel
  • Embodiments of the present disclosure provide a method, a network device, and a terminal for transmitting an indication signal, so as to solve a problem that a downlink signal cannot be normally received due to a terminal unable to receive a reference signal (RS) on an unlicensed frequency band.
  • RS reference signal
  • an embodiment of the present disclosure provides a method for transmitting a transmission indication signal, which is applied to a terminal side and includes:
  • a transmission instruction signal is received on a part of the time-frequency resources occupied by the network device, where the transmission instruction signal is used to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information, and the terminal behavior instruction information is used to indicate the terminal behavior.
  • an embodiment of the present disclosure further provides a terminal, including:
  • the first receiving module is configured to receive a transmission instruction signal on a part of the time-frequency resources occupied by the network device, where the transmission instruction signal is used to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information. Used to indicate terminal behavior.
  • an embodiment of the present disclosure provides a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor, the foregoing transmission instruction signal is transmitted.
  • an embodiment of the present disclosure provides a method for transmitting a transmission indication signal, which is applied to a network device side and includes:
  • a transmission instruction signal is sent on some of the occupied time-frequency resources, where the transmission instruction signal is used to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information, and the terminal behavior instruction information is used to indicate the terminal behavior.
  • an embodiment of the present disclosure provides a network device, including:
  • a first sending module configured to send a transmission instruction signal on some of the occupied time-frequency resources, where the transmission instruction signal is used to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information, and the terminal behavior instruction information is used to indicate Terminal behavior.
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the processor executes the computer program, the transmission instruction signal is implemented. Steps of the transfer method.
  • an embodiment of the present disclosure provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the above-mentioned transmission instruction signal transmission method.
  • the terminal according to the embodiment of the present disclosure can execute the corresponding terminal behavior according to the terminal behavior instruction information to avoid unnecessary behavior attempts, improve transmission performance, and save power consumption of the terminal.
  • FIG. 1 shows a block diagram of a mobile communication system applicable to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for transmitting a transmission instruction signal on a terminal side according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of resource mapping for transmitting an indication signal in Example 2 of the present disclosure
  • FIG. 4 is a schematic diagram of resource mapping for transmitting an indication signal in Example 3 of the present disclosure
  • FIG. 5 shows a first resource mapping diagram for transmitting an indication signal in Example 4 of the embodiment of the present disclosure
  • FIG. 6 shows a second resource mapping diagram for transmitting an indication signal in Example 4 of the present disclosure
  • FIG. 7 is a schematic diagram of resource mapping for transmitting an indication signal in a DRX scenario according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a module of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 shows a block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a method for transmitting a transmission instruction signal on a network device side according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a module of a network device according to an embodiment of the present disclosure.
  • FIG. 12 shows a block diagram of a network device according to an embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single Carrier Frequency-Division Multiple Access
  • system and “network” are often used interchangeably.
  • the techniques described herein can be used for both the systems and radio technologies mentioned above as well as other systems and radio technologies. However, the following description describes the NR system for example purposes and uses NR terminology in much of the description below, although these techniques can also be applied to applications other than NR system applications.
  • FIG. 1 is a block diagram of a wireless communication system applicable to an embodiment of the present disclosure.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be referred to as a terminal device or a user terminal (User), and the terminal 11 may be a mobile phone, a tablet computer (laptop computer), a laptop computer (laptop computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • vehicle-mounted devices such as terminal-side equipment
  • the network device 12 may be a base station or a core network, where the base station may be a fifth generation mobile communication technology (fifth generation cellular network technology, 5G) and later versions of the base station (for example, gNB, 5G, NR, NB, etc.), or other communication
  • the base station in the system for example: eNB, Wireless Local Area Network (WLAN) access point, or other access point, etc.
  • the base station can be referred to as Node B, evolved Node B, access point, base Transceiver Station (Base Transceiver Station, BTS), Radio Base Station, Radio Transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB) , Home Node B, Home Evolution Node B, WLAN access point, Wireless Fidelity (WiFi) node or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to For specific technical vocabulary, it should be noted that, in the embodiment of
  • the base station may communicate with the terminal 11 under the control of a base station controller.
  • the base station controller may be part of the core network or some base stations.
  • Some base stations can communicate control information or user data with the core network through the backhaul.
  • some of these base stations may communicate with each other directly or indirectly through a backhaul link, which may be a wired or wireless communication link.
  • Wireless communication systems can support operation on multiple carriers (waveform signals of different frequencies).
  • Multi-carrier transmitters can transmit modulated signals on these multiple carriers simultaneously.
  • each communication link may be a multi-carrier signal modulated according to various radio technologies.
  • Each modulated signal can be sent on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station may perform wireless communication with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, a macro base station, a pico base station, or a pico base station). Base stations can also utilize different radio technologies, such as cellular or WLAN radio access technologies. Base stations can be associated with the same or different access networks or operator deployments. The coverage areas of different base stations (including the coverage areas of the same or different types of base stations, the coverage areas using the same or different radio technologies, or the coverage areas belonging to the same or different access networks) may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 11 to the network device 12), or a bearer for downlink (Downlink, DL) Downlink for transmission (for example, from network device 12 to terminal 11).
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmissions can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • An embodiment of the present disclosure provides a transmission method of a transmission indication signal, which is applied to a terminal side. As shown in FIG. 2, the method includes the following steps:
  • Step 21 Receive a transmission instruction signal on a part of the time-frequency resources occupied by the network device, where the transmission instruction signal is used to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information.
  • the terminal behavior indication information is used to indicate terminal behavior. Taking the NR system as an example, on an unlicensed frequency band of the NR, network equipment needs to monitor the channel before sending downlink information, and can only send downlink information after monitoring an idle channel and successfully occupying it.
  • the transmission instruction signal is used to indicate that the network device successfully occupied the idle channel, that is, after the network device successfully occupied the idle channel, the transmission instruction signal is sent to the terminal.
  • the network device may be sent multiple times in the occupied time-frequency resources to ensure that the terminal can receive the transmission instruction signal. In this way, after receiving the transmission instruction signal, the terminal may execute the corresponding terminal behavior according to the previously received terminal behavior instruction information.
  • the terminal behavior instruction information is used to indicate that the terminal needs to perform the corresponding terminal behavior.
  • the terminal behavior instruction information is pre-configured by the network device to the terminal, and can be specifically, but not limited to, through high-level signaling, such as radio resource control (Radio Resource Control, RRC) signaling, or Medium Access Control (MAC) Control Element (CE).
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • CE Control Element
  • the transmission instruction signal of the embodiment of the present disclosure may be transmitted in the form of a physical signal or a physical channel.
  • the transmission indication signal is transmitted in one of the following forms:
  • DM demodulation reference signal (De-Modulation Reference Signal, DMRS);
  • CSI-RS Channel State Information Reference Signal
  • the preset sequence includes at least one of a ZC sequence, a Gold sequence, and an m sequence, that is, the preset sequence may be a ZC sequence, a Gold sequence, or an m sequence, or a plurality of the ZC sequence, the Gold sequence, and the m sequence. Collection of sequences.
  • the preset sequence includes a modulation sequence formed by at least two modulations of a ZC sequence, a Gold sequence, and an m sequence, that is, the preset sequence may be a modulation of at least two sequences among a ZC sequence, a Gold sequence, and an m sequence.
  • the transmission indication signal when transmitted in the form of a physical channel, it can be transmitted through the PDCCH.
  • the transmission indication signal when transmitted in the form of a physical signal, it may be transmitted through at least one of a DMRS of a PDCCH, a DMRS of a PDSCH, a CSI-RS, and a preset sequence.
  • the method further includes: receiving configuration information of a transmission instruction signal. That is, the network device can configure the transmission indication signal, where the configuration information includes but is not limited to: the transmission period of the transmission indication signal, the time slot in which it is located, and the orthogonal frequency division multiplexing in the slot (Orthogonal Frequency (Division, Multiplexing, OFDM) symbol position, the number of OFDM symbols in the slot, resource block (RB) and quasi co-location (QCL) relationship on the OFDM symbol.
  • OFDM Orthogonal Frequency
  • RB resource block
  • QCL quasi co-location
  • the QCL relationship includes: the transmission indication signal is quasi co-located with at least one of the following: a synchronization signal block (Synchronization Signal and PBCH Block, SSB), a discovery signal (discovery signal), and a CSI-RS. That is, the transmission indication signal may be quasi-co-located with the SSB, or the transmission indication signal may be quasi-co-located with the discovery signal, or the transmission indication signal may be quasi-co-located with the CSI-RS.
  • a synchronization signal block Synchronet Access Signal and PBCH Block, SSB
  • discovery signal discovery signal
  • CSI-RS CSI-RS
  • the transmission indication signal will be further described in combination with application examples of different transmission forms.
  • Example 1 Transmission indication signal is transmitted in the form of PDCCH
  • the configuration information of the transmission indication signal includes: PDCCH monitoring period, monitoring duration, slot offset, OFDM symbols in the slot, control resource set CORESET, and downlink control information (Downlink Control Information) , At least one of a DCI format, a DCI size, an aggregation level (AL) of a control channel element (CCE), and a monitored CCE candidate set.
  • a radio network temporary identity can be defined for the PDCCH, and a specific RNTI is used to perform cyclic redundancy check (Cyclic Redundancy Check, CRC) scrambling for transmitting the transmission indication signal.
  • CRC Cyclic Redundancy Check
  • the terminal After detecting the DCI of the PDCCH as the transmission indication signal, the terminal obtains the start time (segment), duration, and end time (segment) of the channel for signal transmission occupied by the network device based on the indication therein. The terminal may determine at what time the downlink reception can be stopped according to the end time (period).
  • Example 2 Transmission indication signal is transmitted in the form of DMRS of PDCCH
  • the DMRS of the PDCCH is periodically sent. Once the terminal detects the DMRS of the PDCCH, it considers that the network device has obtained channel resources and can transmit. , The terminal thus performs subsequent reception.
  • the DMRS of the PDCCH is a bandwidth DMRS, that is, a DMRS of the PDCCH exists on each RB in a control resource set (CORESET).
  • the time domain position of the CORESET where the DMRS of the PDCCH is located may be predefined, for example, the 0th and / or 7th OFDM symbol of each slot is the starting position of the CORESET.
  • the bandwidth DMRS is mapped on a resource element group (REG) of consecutive resource blocks RB in the control resource set CORESET, and the precoding granularity (Precoder) of CORESET is the same as the number of RBs included in CORESET.
  • REG resource element group
  • Precoder precoding granularity
  • the configuration information of the transmission indication signal includes: the CORESET where the DMRS of the PDCCH is located and / or the time domain position of the CORESET.
  • the network device in addition to the pre-defined time-frequency resource location of the CORESET of the PDCCH-DMRS, it can also be configured by the network device, such as by high-level signaling.
  • the time resource of the CORESET of the DMRS transmitting the PDCCH may be periodic, that is, the network device may send a transmission instruction signal to the terminal at a fixed period.
  • the network device transmits the DMRS of the PDCCH on the 0th and / or 7th OFDM symbols of each slot at a period of every 7 or 14 OFDM symbols in the COT after occupying the channel. This period can be predefined or configured by higher layer signaling.
  • the CORESET of the DMRS of the PDCCH may be a CORESET occupying two OFDM symbols and a bandwidth of 48 RBs.
  • Transmission indication signal is transmitted in the form of DMRS or CSI-RS of PDSCH
  • the network equipment transmits the DMRS / CSI-RS of the PDSCH in the COT after occupying the channel. Once the terminal detects the DMRS / CSI-RS of the PDSCH, it considers that the network equipment has obtained the free channel resources and can transmit. Reception.
  • the time domain position of the DMRS or CSI-RS of the PDSCH may be predefined, for example, fixed on the 3rd and 10th OFDM symbols of each slot for transmission.
  • the time domain location of the DMRS or CSI-RS of the PDSCH may be configured by the network device.
  • the time resource of the DMRS or CSI-RS transmitting the PDSCH may be periodic, that is, the network device may send a transmission instruction signal to the terminal at a fixed period.
  • the network device transmits the PDSCH DMRS or the PDSCH on the 3rd and 10th OFDM symbols of each slot at a period of every 7 or 14 OFDM symbols in the COT after occupying the channel.
  • CSI-RS this period can be predefined or configured by higher layer signaling.
  • the DMRS or CSI-RS sent by the network device for the PDSCH may be predefined as full-band transmission, single-port transmission, or multi-port transmission.
  • the network device may also configure the PDSCH or CSI-RS RBs occupied by the PDSCH transmission, the corresponding number of ports, a scrambling identifier (Identifier, ID), etc. through high-level signaling.
  • the configuration information of the transmission indication signal includes: the OFDM symbol on which the DMRS of the PDSCH is located and / or the RB on the OFDM symbol.
  • the PDSCH DMRS is transmitted on a transmission channel bandwidth corresponding to some or all RBs on an OFDM symbol.
  • the configuration information of the transmission indication signal includes: the number of CSI-RS ports, the period, the location in the time domain, the location in the frequency domain, the density, and the code division multiplex. (CDM) at least one of a type, a power level, an RB in a time domain location, a scrambling ID, and a Transmission Configuration Indicator (TCI) status.
  • CDM code division multiplex
  • TCI Transmission Configuration Indicator
  • the CSI-RS is transmitted on a transmission channel bandwidth corresponding to some or all RBs on an OFDM symbol.
  • the CSI-RS can be configured in the form of a tracking reference signal (TRS).
  • TRS tracking reference signal
  • Example four the transmission instruction signal is transmitted in the form of a preset sequence
  • the configuration information of the transmission indication signal includes: the generation parameters of the preset sequence, the period, and the time domain resources (such as the system frame, subframe, slot, OFDM symbol, etc.) At least one of transmission power, power level, and preset sequence.
  • the time-frequency resources occupied by the transmission once may occupy multiple RBs on one OFDM symbol, or one RB on multiple OFDM symbols on one slot for transmission.
  • the generation parameters of the preset sequence are related to time information of the channel occupation time COT of the network device, and the time information includes at least one of a start time, a duration, and an end time of the COT.
  • the start time of the COT can also be called the start time (section) of the COT
  • the end time of the COT can also be called the end time (section) of the COT.
  • the terminal may obtain the COT information currently transmitted by the network device according to the detection of a preset sequence, such as the start time, duration, and end time of the COT.
  • the preset sequence is periodically transmitted in the COT of the network device.
  • the COT is transmitted in a cycle of 7 or 14 OFDM symbols.
  • the transmission cycle and time domain resource location can be configured by higher-level signaling.
  • the preset sequence can also be transmitted on some physical resource blocks (PRBs) within the channel bandwidth, that is, part of the PRB is reserved for the preset sequence for transmission, and the preset sequence can be within this RB bandwidth.
  • PRBs physical resource blocks
  • the preset sequence is transmitted on one RB.
  • the preset sequence may also be transmitted on multiple RBs, and multiple RBs may be continuous or discontinuous.
  • the transmitted RB (s) may be predefined or configured by higher layer signaling.
  • m_0 and m_1 are cyclic shift values, 0 ⁇ n ⁇ M, and M represents a sequence length.
  • the cyclic shift value and the sequence length may be predefined or configured by higher layer signaling.
  • the cyclic shift value may be related to the cell ID.
  • the cyclic shift value of different m sequences may be related to the information of the COT, and the information includes: the start time (segment) of the COT, the duration of the COT, and the end time (segment) of the COT.
  • the terminal may determine at what time it can stop performing downlink reception according to the end time (period) of the COT.
  • SSS Secondary Synchronization Signal
  • the terminal can use the existing SSS-based measurement module to measure on 127 Resource Elements (RE).
  • M 127
  • the sequence is exactly the same as the SSS sequence. It should be noted that although the sequences are exactly the same, because SSS is not in a traditional SSB structure, that is, there is no primary synchronization signal (Primary synchronization) on adjacent resources. Signal (PSS), PBCH, PBCH-DMRS, so this signal may not be considered as an SSS.
  • PSS Primary synchronization
  • PBCH Physical synchronization
  • PBCH-DMRS primary synchronization signal
  • the m-sequence may be transmitted on discrete or continuous resources in the time and / or frequency direction.
  • the transmission instruction signal is transmitted in the form of a ZC sequence
  • the root index, sequence group number, sequence number, or cyclic shift value of the ZC sequence is predefined or configured by high-level signaling.
  • the cyclic shift value may also be related to the cell ID.
  • different ZC sequence root indexes, sequence group numbers, sequence numbers, or cyclic shift values may be related to COT information, which includes at least one of the following: the start time (segment) of the COT, the duration of the COT, and And / or the end time (segment) of the COT.
  • the terminal may determine at what time it can stop performing downlink reception according to the end time (period) of the COT.
  • the ZC sequence may be transmitted on discrete or continuous resources in the time and / or frequency direction.
  • the transmission instruction signal is transmitted in the form of a Gold sequence.
  • the initialization method of the Gold sequence is related to at least one of the following: the start time (segment) of the COT, the duration of the COT, the end time (segment) of the COT, and the cell ID , The number of the OFDM symbol where the sequence is located, etc.
  • the terminal may determine at what time it can stop performing downlink reception according to the end time (period) of the COT. E.g:
  • T COT is related information in the COT, for example, the slot indicating the end of the COT.
  • the terminal can blindly check the sequence, and determine the value of the T COT according to the detection result, thereby determining the end slot of the COT.
  • the terminal may not receive downlink PDCCH or PDSCH and other measurements based on downlink RS.
  • the transmission indication signal is transmitted in the form of a modulation sequence, for example, the transmission indication signal is a modulation sequence after modulation of at least two sequences; the two sequences may be at least two of an m sequence, a ZC sequence, and a Gold sequence.
  • Modulation here refers to: Modulation of two binary sequences at the bit level, that is, scrambling; or refers to: modulation at the symbol level, such as mapping at least one of the two sequences after the symbol Symbol-level multiplication. For example, the symbol level multiplication of two m sequences, and the symbol level multiplication of ZC sequence and Gold sequence.
  • the terminal when the terminal works in a Discontinuous Reception (DRX) scenario, the terminal only needs to detect the transmission indication signal within the time period of the DRX active period (active or on duration). As shown in FIG. 7, the idle channel obtained by the network device starts from the first subframe, and the DRX active time of the terminal starts from the second subframe. The terminal only needs to detect the transmission indication signal during the DRX active period. The network device needs to periodically and repeatedly transmit the transmission indication signal in the occupied channel for signal transmission to ensure that different terminals with different DRX active times can detect the transmission indication signal as soon as possible.
  • DRX active period active or on duration
  • the terminal further includes: receiving a downlink physical signal or a downlink physical channel; wherein the downlink physical signal or the downlink physical channel and the transmission resource of the transmission instruction signal do not overlap.
  • the downlink physical signal or downlink physical channel resources scheduled by the network device are the same as some of the RE / RB resources occupied by the transmission indicator signal, the downlink physical signal or downlink physical channel is not mapped on these RE / RBs, and the terminal considers the downlink physical signal or downlink The physical channel performs rate matching on these RE / RB resources.
  • the downlink physical channel includes at least one of a physical downlink broadcast channel (Physical Broadcast Channel, PBCH), a PDCCH, and a PDSCH.
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Broadcast Channel
  • the terminal behavior indication information may be transmitted by a network device through high-level signaling or a media access control MAC control unit CE, and the terminal behavior indication information is used to instruct the terminal to perform at least one of the following behaviors:
  • CSI measurement such as channel and / or interference measurement, including Layer 1 reference signal received power (L1-RSRP), channel quality indicator (CQI), precoding matrix indicator (Precoding matrix) Indicator (PMI), Rank Indication (RI), etc .;
  • L1-RSRP Layer 1 reference signal received power
  • CQI channel quality indicator
  • Precoding matrix Precoding matrix
  • PMI precoding matrix Indicator
  • RI Rank Indication
  • Radio Resource Management (RRM) measurements such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Received Signal Strength Indicator (RSSI) )Wait.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Received Signal Strength Indicator
  • the terminal may execute the corresponding terminal behavior according to the terminal behavior instruction information to avoid unnecessary behavior attempts, improve transmission performance, and save The terminal consumes power.
  • the terminal 800 can implement receiving the transmission instruction signal on some resources of the time-frequency resources occupied by the network device in the foregoing embodiment, where the transmission instruction signal is used to instruct the terminal according to the terminal behavior
  • the instruction information performs the corresponding terminal behavior.
  • the terminal behavior instruction information is used to indicate the details of the terminal behavior method and achieve the same effect.
  • the terminal 800 specifically includes the following functional modules:
  • the first receiving module 810 is configured to receive a transmission instruction signal on a part of the time-frequency resources occupied by the network device, and the transmission instruction signal is used to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information, and the terminal behavior instruction information is used to Indicate terminal behavior.
  • the transmission instruction signal is transmitted in one of the following forms:
  • the preset sequence includes at least one of a ZC sequence, a Gold sequence, and an m sequence, or the preset sequence includes a modulation sequence formed by at least two modulations in a ZC sequence, a Gold sequence, and an m sequence.
  • the DMRS of the PDCCH is a bandwidth DMRS.
  • the bandwidth DMRS is mapped on the resource element group REG of consecutive resource blocks RB in the control resource set CORESET, and the precoding granularity of CORESET is the same as the number of RBs included in CORESET.
  • the time domain position of CORESET where the DMRS of the PDCCH is located is predefined.
  • the time domain position of the DMRS or CSI-RS of the PDSCH is predefined.
  • the terminal 800 further includes:
  • the second receiving module is configured to receive configuration information of the transmission instruction signal.
  • the configuration information includes: the transmission period of the transmission indicator signal, the slot slot in which it is located, the position of the OFDM symbol in the slot, the number of OFDM symbols in the slot, the resource block RB on the OFDM symbol, and the quasi co-location QCL relationship At least one.
  • the QCL relationship includes: the transmission indication signal is quasi co-located with at least one of the following: a synchronization signal block SSB, a discovery signal, and a CSI-RS.
  • the configuration information includes: PDCCH monitoring period, monitoring duration, slot offset, OFDM symbols in the slot, control resource set CORESET, downlink control information DCI format, DCI size, At least one of the control channel element CCE's aggregation level AL and the monitored CCE candidate set.
  • the configuration information when the transmission indication signal is transmitted through the DMRS of the PDCCH, the configuration information includes: the time domain position of CORESET and / or CORESET where the DMRS of the PDCCH is located.
  • the configuration information includes: the OFDM symbol on which the DMRS of the PDSCH is located and / or the RB on the OFDM symbol.
  • the configuration information includes: the number of CSI-RS ports, the period, the time domain location, the frequency domain location, density, code division multiplexing CDM type, power size, At least one of the RB, the scramble ID, and the TCI state of the transmission control plane at the time domain location.
  • the configuration information includes at least one of a parameter, a period, a time domain resource, a power level, and a transmission resource of the preset sequence.
  • the generation parameters of the preset sequence are related to time information of the channel occupation time COT of the network device, and the time information includes at least one of a start time, a duration, and an end time of the COT.
  • the terminal 800 further includes:
  • the third receiving module is configured to receive a downlink physical signal or a downlink physical channel; wherein the downlink physical signal or the downlink physical channel and the transmission resource of the transmission instruction signal do not overlap.
  • the downlink physical channel includes at least one of a physical downlink broadcast channel PBCH, a PDCCH, and a PDSCH.
  • the terminal behavior instruction information is transmitted by a network device through high-level signaling or a media access control MAC control unit CE, and the terminal behavior instruction information is used to instruct the terminal to perform at least one of the following behaviors:
  • the terminal according to the embodiment of the present disclosure can execute the corresponding terminal behavior according to the terminal behavior instruction information to avoid unnecessary behavior attempts, which can improve transmission performance and save terminal power consumption. .
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal for implementing the embodiments of the present disclosure.
  • the terminal 90 includes, but is not limited to, a radio frequency unit 91, a network module 92, an audio output unit 93, The input unit 94, the sensor 95, the display unit 96, the user input unit 97, the interface unit 93, the memory 99, the processor 910, and the power source 911 and other components.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the radio frequency unit 91 is configured to send and receive data under the control of the processor 910, and is specifically configured to receive a transmission instruction signal on a part of the time-frequency resources occupied by the network device, and the transmission instruction signal is used to indicate the transmission instruction signal.
  • the terminal executes the corresponding terminal behavior according to the terminal behavior instruction information, and the terminal behavior instruction information is used to indicate the terminal behavior;
  • the terminal After receiving the transmission instruction signal, the terminal according to the embodiment of the present disclosure may perform corresponding terminal behaviors according to the terminal behavior instruction information to avoid unnecessary behavior attempts, improve transmission performance, and save power consumption of the terminal.
  • the radio frequency unit 91 may be used to receive and send signals during the process of receiving and sending information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 910; The uplink data is sent to the base station.
  • the radio frequency unit 91 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 91 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 92, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 93 may convert audio data received by the radio frequency unit 91 or the network module 92 or stored in the memory 99 into audio signals and output them as sound. Moreover, the audio output unit 93 may also provide audio output (for example, a call signal reception sound, a message reception sound, etc.) related to a specific function performed by the terminal 90.
  • the audio output unit 93 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 94 is used to receive audio or video signals.
  • the input unit 94 may include a Graphics Processing Unit (GPU) 941 and a microphone 942.
  • the graphics processor 941 pairs images of still pictures or videos obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode. Data is processed.
  • the processed image frames may be displayed on a display unit 96.
  • the image frames processed by the graphics processor 941 may be stored in the memory 99 (or other storage medium) or transmitted via the radio frequency unit 91 or the network module 92.
  • the microphone 942 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 91 in the case of a telephone call mode and output.
  • the terminal 90 further includes at least one sensor 95, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 961 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 961 and / or when the terminal 90 is moved to the ear. Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 95 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 96 is used to display information input by the user or information provided to the user.
  • the display unit 96 may include a display panel 961, and the display panel 961 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 97 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 97 includes a touch panel 971 and other input devices 972.
  • the touch panel 971 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses a finger, a stylus or any suitable object or accessory on the touch panel 971 or near the touch panel 971 operating).
  • the touch panel 971 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 910, receive the command sent by the processor 910 and execute it.
  • the touch panel 971 may be implemented in various types such as a resistive type, a capacitive type, an infrared type, and a surface acoustic wave.
  • the user input unit 97 may further include other input devices 972.
  • other input devices 972 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 971 may be overlaid on the display panel 961.
  • the touch panel 971 detects a touch operation on or near the touch panel 971, the touch panel 971 is transmitted to the processor 910 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 961.
  • the touch panel 971 and the display panel 961 are implemented as two independent components to implement input and output functions of the terminal, in some embodiments, the touch panel 971 and the display panel 961 may be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 93 is an interface through which an external device is connected to the terminal 90.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (Input / Output, I / O) port, video I / O port, headphone port, etc.
  • the interface unit 93 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 90 or may be used to connect the terminal 90 and the external device. Transfer data.
  • the memory 99 can be used to store software programs and various data.
  • the memory 99 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 99 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage device.
  • the processor 910 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal. By running or executing software programs and / or modules stored in the memory 99, and calling data stored in the memory 99, execution is performed. Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 910.
  • the terminal 90 may further include a power source 911 (such as a battery) for supplying power to various components.
  • a power source 911 such as a battery
  • the power source 911 may be logically connected to the processor 910 through a power management system, thereby implementing management of charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 90 includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal including a processor 910, a memory 99, and a computer program stored on the memory 99 and executable on the processor 910.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and / or other business data connectivity to the user, a handheld device with a wireless connection function, or other processing equipment connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • it can be a portable, pocket, handheld, computer-built or vehicle-mounted mobile device that exchanges language and / or data with a wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless terminal can also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a mobile station, a remote station, a remote terminal,
  • the access terminal Access terminal
  • user terminal User terminal
  • user agent User agent
  • user equipment User Equipment
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, each process of the foregoing transmission method signal transmission method embodiment is implemented, and can achieve The same technical effects are omitted here to avoid repetition.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the method for transmitting a transmission indication signal is applied to a network device side.
  • the method includes the following steps:
  • Step 101 Send a transmission instruction signal on a part of the occupied time-frequency resources, where the transmission instruction signal is used to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information.
  • the terminal behavior indication information is used to indicate the terminal behavior, for example, the terminal behavior indication information is used to instruct the terminal to perform at least one of the following behaviors: monitoring PDCCH; CSI measurement; radio resource management RRM measurement; beam management measurement; wireless link monitoring ; And, beam failure detection.
  • the network device may send the terminal behavior instruction information to the terminal through high-level signaling or MAC CE.
  • the transmission instruction signal is used to indicate that the network device successfully occupied the idle channel, that is, after the network device successfully occupied the idle channel, the transmission instruction signal is sent to the terminal to indicate that the terminal network device has successfully occupied the idle channel.
  • the network device may send the transmission instruction signal multiple times in the occupied time-frequency resources to ensure that the terminal can receive the transmission instruction signal.
  • the transmission instruction signal of the embodiment of the present disclosure may be transmitted in the form of a physical signal or a physical channel.
  • the transmission indication signal is sent in one of the following forms:
  • the preset sequence includes at least one of a ZC sequence, a Gold sequence, and an m sequence, that is, the preset sequence may be a ZC sequence, a Gold sequence, or an m sequence, or a plurality of the ZC sequence, the Gold sequence, and the m sequence. Collection of sequences.
  • the preset sequence includes a modulation sequence formed by at least two modulations of a ZC sequence, a Gold sequence, and an m sequence, that is, the preset sequence may be a modulation of at least two of the ZC sequence, the Gold sequence, and the m sequence.
  • the method further includes: sending configuration information of a transmission instruction signal to the terminal. That is, the network device can configure the transmission indication signal, where the configuration information includes but is not limited to: the transmission period of the transmission indication signal, the slot in which it is located, the position of the OFDM symbol in the slot, and the OFDM symbol in the slot. At least one of the number, the resource block RB on the OFDM symbol, and the quasi co-location QCL relationship.
  • the QCL relationship includes: the transmission indication signal is quasi co-located with at least one of the following: a synchronization signal block SSB, a discovery signal, and a CSI-RS. That is, the transmission indication signal may be quasi-co-located with the SSB, or the transmission indication signal may be quasi-co-located with the discovery signal, or the transmission indication signal may be quasi-co-located with the CSI-RS.
  • the transmission indication signal will be further described in combination with application examples of different transmission forms.
  • the transmission instruction signal is sent in the form of PDCCH
  • the configuration information of the transmission indication signal includes: the monitoring period of the PDCCH, the monitoring duration, the slot offset, the OFDM symbol in the slot, the control resource set CORESET, the downlink control information DCI format, and DCI. At least one of the size, the aggregation level AL of the control channel element CCE, and the monitored CCE candidate set.
  • the transmission instruction signal is transmitted in the form of DMRS of the PDCCH
  • the network device periodically sends the DMRS of the PDCCH within the channel occupation time COT after occupying the idle channel.
  • the DMRS of the PDCCH is a bandwidth DMRS, that is, a DMRS of a PDCCH exists on each resource block RB in the control resource set CORESET.
  • the time domain position of the CORESET where the DMRS of the PDCCH is located may be predefined, for example, the 0th and / or 7th OFDM symbol of each slot is the starting position of the CORESET.
  • the bandwidth DMRS is mapped on the resource element group REG of consecutive resource blocks RB in the control resource set CORESET, and the precoding granularity of CORESET is the same as the number of RBs included in CORESET.
  • the configuration information of the transmission indication signal includes: the CORESET where the DMRS of the PDCCH is located and / or the time domain position of the CORESET.
  • the pre-defined time-frequency resource location of the CORESET of the PDCCH-DMRS it can also be configured by the network device, such as by high-level signaling.
  • the transmission indication signal is sent in the form of DMRS or CSI-RS of PDSCH
  • the network equipment occupies the COT after the channel and transmits the DMRS / CSI-RS of the PDSCH.
  • the time domain position of the DMRS or CSI-RS of the PDSCH may be predefined, for example, fixed on the 3rd and 10th OFDM symbols of each slot for transmission.
  • the time domain location of the DMRS or CSI-RS of the PDSCH may be configured by the network device.
  • the time resource of the DMRS or CSI-RS for transmitting the PDSCH may be periodic, that is, the network device may send a transmission instruction signal to the terminal at a fixed period.
  • the configuration information of the transmission indication signal includes: the OFDM symbol on which the DMRS of the PDSCH is located and / or the RB on the OFDM symbol.
  • the PDSCH DMRS is transmitted on a transmission channel bandwidth corresponding to some or all RBs on an OFDM symbol.
  • the configuration information of the transmission indication signal includes: CSI-RS port number, period, time domain location, frequency domain location, density, code division multiplexing CDM type, power
  • the size, the RB in the time domain location, the scrambling ID, and the transmission configuration indicate at least one of the TCI states.
  • the CSI-RS is transmitted on a transmission channel bandwidth corresponding to some or all RBs on an OFDM symbol.
  • the CSI-RS can also be configured in the form of a tracking reference signal TRS.
  • the transmission instruction signal is sent in a preset sequence
  • the configuration information of the transmission instruction signal includes at least one of a parameter, a period, a time domain resource, a power level, and a transmission resource of the preset sequence.
  • the time-frequency resources occupied by the transmission once may occupy multiple RBs on one OFDM symbol, or one RB on multiple OFDM symbols on one slot for transmission.
  • the generation parameters of the preset sequence are related to time information of the channel occupation time COT of the network device, and the time information includes at least one of a start time, a duration, and an end time of the COT. Then, the terminal may obtain the COT information currently transmitted by the network device, such as the start time, duration, and end time of the COT, according to the detection of the preset sequence.
  • the network device further includes: sending a downlink physical signal or a downlink physical channel to the terminal, wherein the downlink physical signal or the downlink physical channel and the transmission resource of the transmission instruction signal do not overlap.
  • the downlink physical signals or downlink physical channel resources scheduled by the network device are the same as some RE / RB resources occupied by the transmission indicator signal, the downlink physical signals or downlink physical channels are not mapped on these RE / RBs to avoid downlink physical signals or downlink
  • the physical channel overlaps with the transmission resource of the transmission indication signal.
  • the downlink physical channel includes at least one of a physical downlink broadcast channel PBCH, a PDCCH, and a PDSCH.
  • a network device sends a transmission instruction signal to a terminal to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information, so as to avoid unnecessary behavior attempts of the terminal and improve transmission performance. And save power consumption of the terminal.
  • the network device 1100 can implement sending the transmission instruction signal on some of the occupied time-frequency resources in the foregoing embodiment, where the transmission instruction signal is used to instruct the terminal to indicate according to the terminal behavior.
  • the information executes the details of the corresponding terminal behavior method and achieves the same effect.
  • the network device 1100 specifically includes the following functional modules:
  • the first sending module 1110 is configured to send a transmission instruction signal on some of the occupied time-frequency resources.
  • the transmission instruction signal is used to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information, and the terminal behavior instruction information is used to indicate Terminal behavior.
  • the transmission instruction signal is sent in one of the following forms:
  • the preset sequence includes at least one of a ZC sequence, a Gold sequence, and an m sequence, or the preset sequence includes a modulation sequence formed by at least two modulations in a ZC sequence, a Gold sequence, and an m sequence.
  • the DMRS of the PDCCH is a bandwidth DMRS.
  • the bandwidth DMRS is mapped on the resource element group REG of consecutive resource blocks RB in the control resource set CORESET, and the precoding granularity of CORESET is the same as the number of RBs included in CORESET.
  • the time domain position of CORESET where the DMRS of the PDCCH is located is predefined.
  • the time domain position of the DMRS or CSI-RS of the PDSCH is predefined.
  • the network equipment 1100 further includes:
  • the second sending module is configured to send configuration information of a transmission instruction signal to the terminal.
  • the configuration information includes: the transmission period of the transmission indicator signal, the slot slot in which it is located, the position of the OFDM symbol in the slot, the number of OFDM symbols in the slot, the resource block RB on the OFDM symbol, and the quasi co-location QCL relationship At least one.
  • the QCL relationship includes: the transmission indication signal is quasi co-located with at least one of the following: a synchronization signal block SSB, a discovery signal, and a CSI-RS.
  • the configuration information includes: the monitoring period of the PDCCH, the monitoring duration, the slot offset, the OFDM symbol in the slot, the control resource set CORESET, the DCI format of the downlink control information, the DCI size, At least one of the control channel element CCE's aggregation level AL and the monitored CCE candidate set.
  • the configuration information when the transmission instruction signal is sent through the DMRS of the PDCCH, the configuration information includes: the time domain position of CORESET and / or CORESET where the DMRS of the PDCCH is located.
  • the configuration information includes: the OFDM symbol on which the DMRS of the PDSCH is located and / or the RB on the OFDM symbol.
  • the configuration information includes: the number of CSI-RS ports, the period, the time domain location, the frequency domain location, the density, the code division multiplexing CDM type, the power level, The RB, the scramble ID, and the transmission configuration at the time domain location indicate at least one of the TCI states.
  • the configuration information includes at least one of a parameter, a period, a time domain resource, a power level, and a transmission resource of the preset sequence.
  • the generation parameters of the preset sequence are related to time information of the channel occupation time COT of the network device, and the time information includes at least one of a start time, a duration, and an end time of the COT.
  • the network equipment 1100 further includes:
  • the third sending module is configured to send a downlink physical signal or a downlink physical channel to the terminal, wherein the downlink physical signal or the downlink physical channel does not overlap with the transmission resource of the transmission instruction signal.
  • the downlink physical channel includes at least one of a physical downlink broadcast channel PBCH, a PDCCH, and a PDSCH.
  • the network device in the embodiment of the present disclosure sends a transmission instruction signal to the terminal to instruct the terminal to perform the corresponding terminal behavior according to the terminal behavior instruction information, in order to avoid unnecessary behavior attempts of the terminal, which can improve transmission performance and save the terminal. Power consumption.
  • each module of the above network equipment and terminal is only a division of logical functions. In actual implementation, it can be fully or partially integrated into a physical entity, or it can be physically separated. And these modules can all be implemented in the form of software called by processing elements; they can also be all implemented in hardware; some modules can be implemented in the form of software called by processing elements, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or it may be integrated and implemented in a certain chip of the above device.
  • it may also be stored in the form of a program code in the memory of the above device, and a certain processing element of the above device may be used. Invoke and execute the functions of the above identified modules.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a Central Processing Unit (CPU) or other processor that can call program code.
  • CPU Central Processing Unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program.
  • the steps in the transmission method of the transmission instruction signal as described above are implemented at times.
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the method for transmitting an instruction signal as described above.
  • the network device 1200 includes: an antenna 121, a radio frequency device 122, and a baseband device 123.
  • the antenna 121 is connected to the radio frequency device 122.
  • the radio frequency device 122 receives information through the antenna 121 and sends the received information to the baseband device 123 for processing.
  • the baseband device 123 processes the information to be sent and sends it to the radio frequency device 122.
  • the radio frequency device 122 processes the received information and sends it out via the antenna 121.
  • the above-mentioned frequency band processing device may be located in the baseband device 123.
  • the method performed by the network device in the foregoing embodiment may be implemented in the baseband device 123.
  • the baseband device 123 includes a processor 124 and a memory 125.
  • the baseband device 123 may include, for example, at least one baseband board, and a plurality of chips are provided on the baseband board, as shown in FIG. 12, where one chip is, for example, the processor 124, which is connected to the memory 125 to call a program in the memory 125 and execute The network device operations shown in the above method embodiments are operated.
  • the baseband device 123 may further include a network interface 126 for exchanging information with the radio frequency device 122.
  • the interface is, for example, a common public radio interface (CPRI).
  • the processor here may be a processor or a collective name for multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the methods performed by the above network devices.
  • Integrated circuits such as: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • the memory 125 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM SLDRAM
  • Direct RAMbus RAM Direct RAMbus RAM, DRRAM
  • the memory 125 described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • the network device in the embodiment of the present disclosure further includes: a computer program stored in the memory 125 and executable on the processor 124, and the processor 124 calls the computer program in the memory 125 to execute the method executed by each module shown in FIG. 11 .
  • the computer program can be used for execution when called by the processor 124: sending a transmission instruction signal on some of the occupied time-frequency resources, wherein the transmission instruction signal is used to instruct the terminal to perform a corresponding terminal behavior according to the terminal behavior instruction information
  • the terminal behavior instruction information is used to indicate the terminal behavior.
  • the network device in the embodiment of the present disclosure sends a transmission instruction signal to the terminal to instruct the terminal to perform the corresponding terminal behavior according to the terminal behavior instruction information, so as to avoid unnecessary behavior attempts of the terminal, which can improve transmission performance and save power consumption of the terminal.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to related technologies or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be disassembled and / or recombined.
  • These decompositions and / or recombinations should be regarded as equivalent solutions of the present disclosure.
  • the steps for performing the series of processes described above can be performed naturally in chronological order in accordance with the described order, but need not necessarily be performed in chronological order, and certain steps can be performed in parallel or independently of each other.
  • it is able to understand all or any steps or components of the methods and devices of the present disclosure and may be implemented in hardware, firmware in any computing device (including a processor, a storage medium, etc.) or a network of computing devices.
  • Software, or a combination thereof which can be achieved by a person of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product including a program code that implements the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future. It should also be noted that, in the apparatus and method of the present disclosure, it is obvious that each component or each step can be disassembled and / or recombined.
  • the program may be stored in a computer-readable storage medium.
  • the program When executed, the processes of the embodiments of the methods described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a ROM, or a RAM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种传输指示信号的传输方法、网络设备及终端,该方法包括:在网络设备占用的时频资源中的部分资源上接收传输指示信号,其中,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为。

Description

传输指示信号的传输方法、网络设备及终端
相关申请的交叉引用
本申请主张在2018年9月20日在中国提交的中国专利申请号No.201811103528.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种传输指示信号的传输方法、网络设备及终端。
背景技术
在新空口(New Radio,NR)的非授权频段上,在发送信息之前,终端或网络设备需要做信道空闲估计(Clear Channel Assess,CCA)/扩展信道空闲估计(extended Clear Channel Assess,eCCA)来侦听信道,即进行能量检测(Energy Detection,ED),当能量低于一定门限时,信道被判断为空,方可开始传输。由于非授权频段是多种技术或多个传输节点共享,因此这种基于竞争的接入方式导致信道可用时间的不确定性,当信道可用(available)时,网络侧信号传输的可传输位置可能已经错过而无法发送,这样可能导致接收端无法正常接收网络侧配置的信号接收,以及信号接收后根据网络侧的配置进行的终端行为,例如物理下行控制信道(Physical Downlink Control Channel,PDCCH)监听,对无线环境的监测和测量等。
发明内容
本公开实施例提供了一种传输指示信号的传输方法、网络设备及终端,以解决非授权频段上因终端无法接收到参考信号(Reference Signal,RS)而导致的下行信号无法正常接收的问题。
第一方面,本公开实施例提供了一种传输指示信号的传输方法,应用于终端侧,包括:
在网络设备占用的时频资源中的部分资源上接收传输指示信号,其中, 传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,终端行为指示信息用于指示终端行为。
第二方面,本公开实施例还提供了一种终端,包括:
第一接收模块,用于在网络设备占用的时频资源中的部分资源上接收传输指示信号,其中,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,终端行为指示信息用于指示终端行为。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的传输指示信号的传输方法的步骤。
第四方面,本公开实施例提供了一种传输指示信号的传输方法,应用于网络设备侧,包括:
在占用的时频资源中的部分资源上发送传输指示信号,其中,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,终端行为指示信息用于指示终端行为。
第五方面,本公开实施例提供了一种网络设备,包括:
第一发送模块,用于在占用的时频资源中的部分资源上发送传输指示信号,其中,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,终端行为指示信息用于指示终端行为。
第六方面,本公开实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的传输指示信号的传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述的传输指示信号的传输方法的步骤。
这样,本公开实施例的终端可以在接收到传输指示信号后,再根据终端行为指示信息执行相应的终端行为,以避免不必要的行为尝试,可以提高传输性能,并节省终端耗电。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例可应用的一种移动通信系统框图;
图2表示本公开实施例终端侧的传输指示信号的传输方法的流程示意图;
图3表示本公开实施例示例二的传输指示信号的资源映射示意图;
图4表示本公开实施例示例三的传输指示信号的资源映射示意图;
图5表示本公开实施例示例四的传输指示信号的资源映射示意图一;
图6表示本公开实施例示例四的传输指示信号的资源映射示意图二;
图7表示本公开实施例DRX场景下传输指示信号的资源映射示意图;
图8表示本公开实施例终端的模块结构示意图;
图9表示本公开实施例的终端框图;
图10表示本公开实施例网络设备侧的传输指示信号的传输方法的流程示意图;
图11表示本公开实施例网络设备的模块结构示意图;
图12表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤 或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是第五代移动通信技术(fifth generation cellular network technology,5G)及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、无线局域网(Wireless Local Area  Network,WLAN)接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、无线保真(Wireless Fidelity,WiFi)节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链 路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开实施例提供了一种传输指示信号的传输方法,应用于终端侧,如图2所示,该方法包括以下步骤:
步骤21:在网络设备占用的时频资源中的部分资源上接收传输指示信号,其中,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为。
其中,终端行为指示信息用于指示终端行为。以NR系统为例,在NR的非授权频段上,网络设备在发送下行信息之前,需要对信道进行监听,当监听到空闲信道并成功占用后才可以发送下行信息。其中,传输指示信号用于指示网络设备成功占用了空闲信道,也就是说,当网络设备成功占用空闲信道后,向终端发送传输指示信号,为了使得终端能够尽快的检测到传输指示信号,网络设备可在占用的时频资源中多次发送传输指示信号,以保证终端能够接收到该传输指示信号。这样,终端在接收到该传输指示信号后,可依据先前接收到的终端行为指示信息来执行相应的终端行为。
其中,终端行为指示信息用于指示终端需要执行相应的终端行为,终端行为指示信息是网络设备预先配置给终端的,具体可通过但不限于通过高层信令,如无线资源控制(Radio Resource Control,RRC)信令,或者媒体接入控制(Medium Access Control,MAC)控制单元(Control Element,CE)等。
本公开实施例的传输指示信号可以通过物理信号或物理信道的形式进行传输。例如,传输指示信号通过以下形式中的一种进行传输:
PDCCH;
PDCCH的解调参考信号(De-Modulation Reference Signal,DMRS);
物理下行共享信道(Physical Downlink Share Channel,PDSCH)的DMRS;
信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);以及,
预设序列。其中,预设序列包括:ZC序列、Gold序列、m序列中的至少一项,即预设序列可以是ZC序列、Gold序列或m序列,也可以是ZC序列、Gold序列和m序列中多个序列的集合。或者,预设序列包括:由ZC序列、Gold序列、m序列中的至少两项调制形成的调制序列,即预设序列可以 是ZC序列、Gold序列和m序列中至少两个序列的调制。
也就是说,当传输指示信号以物理信道形式进行传输时,可以通过PDCCH传输。当传输指示信号以物理信号形式进行传输时,可以通过PDCCH的DMRS、PDSCH的DMRS、CSI-RS和预设序列中的至少一项进行传输。
本公开实施例的方法中,在步骤21之前还包括:接收传输指示信号的配置信息。也就是说,网络设备可以对传输指示信号进行配置,其中,配置信息包括但不限于:传输指示信号的传输周期、所在的时隙(slot)、所在slot中的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号位置、所在slot中的OFDM符号数量、所在OFDM符号上的资源块(Resource Block,RB)和准共址(Quasi Co-Location,QCL)关系中的至少一项。其中,QCL关系包括:传输指示信号与以下中的至少一项准共址:同步信号块(Synchronization Signal and PBCH Block,SSB)、发现信号(discovery signal)和CSI-RS。也就是说,传输指示信号可以与SSB准共址,或传输指示信号可以与发现信号准共址,或传输指示信号可以与CSI-RS准共址。
下面本实施例,将结合不同传输形式的应用示例对传输指示信号做进一步说明。
示例一、传输指示信号以PDCCH的形式进行传输
当传输指示信号通过PDCCH传输时,传输指示信号的配置信息包括:PDCCH的监听周期、监听持续时间、slot偏移、slot中的OFDM符号、所在的控制资源集CORESET、下行控制信息(Downlink Control Information,DCI)格式(format)、DCI尺寸(size)、控制信道元素(Control Channel Element,CCE)的聚合等级(Aggregation level,AL)和监听的CCE候选(candidate)集合中的至少一项。
进一步地,对于该PDCCH可以定义一种无线网络临时标识(Radio Network Temporary Identity,RNTI),使用一种特定的RNTI进行传输该传输指示信号的循环冗余校验(Cyclic Redundancy Check,CRC)加扰。终端在检测到作为传输指示信号的PDCCH的DCI后,基于其中的指示获取网络设备的占用的用于信号发送的信道的的起始时间(段)、持续时间和结束时间(段)。终端可以根据该结束时间(段),确定在什么时间可以停止进行下行接收。
示例二、传输指示信号以PDCCH的DMRS的形式进行传输
网络设备占用到空闲信道后的信道占用时间(Channel Occupancy Time,COT)内,周期性的发送该PDCCH的DMRS,终端一旦检测到该PDCCH的DMRS,则认为网络设备获得了信道资源,可以进行传输,终端从而进行后续的接收。
该PDCCH的DMRS为带宽DMRS,即在控制资源集(Control Resource set,CORESET)内的每个RB上都存在PDCCH的DMRS。其中,PDCCH的DMRS所在的CORESET的时域位置可以是预定义的,例如在每个slot第0个和/或第7个OFDM符号为该CORESET的起始位置。
进一步地,带宽DMRS在控制资源集CORESET中连续的资源块RB的资源元素组(Resource Element Group,REG)上映射,且CORESET的预编码颗粒度(Precoder Granularity)与CORESET所包含的RB数相同。
该传输指示信号的配置信息包括:PDCCH的DMRS所在的CORESET和/或CORESET的时域位置。也就是说,PDCCH-DMRS的CORESET的时频资源位置除了可以是预定义的外,还可以是网络设备配置的,如通过高层信令进行配置。传输该PDCCH的DMRS的CORESET的时间资源可以是周期性的,也就是说网络设备可以以固定周期向终端发送传输指示信号。
例如,如图3所示,网络设备在占用到信道后的COT内以每7或者14个OFDM符号为周期,在每个slot第0个和/或第7个OFDM符号上传输该PDCCH的DMRS,该周期可以为预定义的或者由高层信令配置的。PDCCH的DMRS的CORESET可以为占用两个OFDM符号,带宽为48个RB的CORESET。
示例三、传输指示信号以PDSCH的DMRS或CSI-RS形式传输
网络设备占用到信道后的COT内,传输PDSCH的DMRS/CSI-RS,终端一旦检测到PDSCH的DMRS/CSI-RS,则认为网络设备获得了空闲信道资源,并可以进行传输,终端从而进行后续的接收。
其中,PDSCH的DMRS或CSI-RS的时域位置可以是预定义的,例如固定在每个slot的第3个和第10个OFDM符号上进行传输。或者,PDSCH的DMRS或CSI-RS的时域位置可以是网络设备配置的。传输该PDSCH的 DMRS或CSI-RS的时间资源可以是周期性的,也就是说网络设备可以以固定周期向终端发送传输指示信号。
例如,如图4所示,网络设备在占用到信道后的COT内以每7或者14个OFDM符号为周期,在每个slot的第3个和第10个OFDM符号上传输该PDSCH的DMRS或CSI-RS,该周期可以为预定义的或者由高层信令配置的。其中,网络设备发送该PDSCH的DMRS或CSI-RS可以预定义为全带宽发送、单端口发送或多端口发送。或者,网络设备还可通过高层信令配置该PDSCH的DMRS或CSI-RS发送占用的RB以及对应的端口数、加扰标识符(Identifier,ID)等。
具体地,当传输指示信号通过PDSCH的DMRS传输时,传输指示信号的配置信息包括:PDSCH的DMRS所在OFDM符号和/或OFDM符号上的RB。例如该PDSCH的DMRS在传输信道带宽上对应OFDM符号上的部分或全部RB上进行传输。
当传输指示信号通过CSI-RS传输时,传输指示信号的配置信息包括:CSI-RS的端口数、周期、所在的时域位置、所在的频域位置、密度、码分复用(Code Division Multiple,CDM)类型(type)、功率大小、时域位置上的RB、加扰ID和传输配置指示(Transmission Configuration Indicator,TCI)状态中的至少一项。例如,该CSI-RS在传输信道带宽上对应OFDM符号上的部分或全部RB上进行传输。此外,CSI-RS可以以跟踪参考信号(Tracking Reference Signal,TRS)的形式进行配置。
示例四、传输指示信号以预设序列形式传输
当传输指示信号通过预设序列传输时,传输指示信号的配置信息包括:预设序列的生成参数、周期、所在时域资源(如系统帧frame、子帧subframe、时隙slot、OFDM符号等)、功率大小和预设序列的传输资源中的至少一项。例如,传输一次该资源所占用的时频资源可以占用1个OFDM符号上的多个RB,或者一个slot上多个OFDM符号上的一个RB上进行传输。
其中,预设序列的生成参数与网络设备的信道占用时间COT的时间信息相关,时间信息包括:COT的起始时刻、持续时间和结束时刻中的至少一项。其中,COT的起始时刻亦可以称为COT的起始时间(段),COT的结束时刻 又可以称为COT的结束时间(段)。终端可以根据预设序列的检测,获得网络设备当前传输的COT信息,如COT的起始时刻、持续时间和结束时刻等。
预设序列在网络设备的COT中进行周期性发送,例如如图5所示,在COT中以7或14个OFDM符号为周期进行发送。其中,传输周期、时域资源位置可以由高层信令配置。
预设序列还可以在信道带宽内的部分物理资源块(Physical Resource Block,PRB)上进行传输,即部分PRB为专门预留给该预设序列进行传输,该预设序列可以在这个RB带宽内,以时间方向重复发送,和/或,按照先频率后时间方向的序列映射。如图6所示,预设序列在一个RB上传输。此外,预设序列也可以在多个RB上发送,多个RB可以连续或者不连续。传输的RB(s)可以是预定义的或者由高层信令配置的。
1、假设传输指示信号以m序列形式传输,该传输指示信号的生成公式如下:
d seq(n)=[1-2x 0((n+m 0)mod127)][1-2x 1((n+m 1)mod127)]
其中,m_0和m_1为循环移位值,0≤n<M,M表示序列长度。循环移位值和序列长度可以为预定义的或者由高层信令配置的。该循环移位值可以和小区ID有关。进一步的,不同的m序列的循环移位值可以和COT的信息相关,该信息包括:COT的起始时间(段)、COT的持续时间、COT的结束时间(段)等。终端可以根据该COT的结束时间(段),确定在什么时间可以停止进行下行接收。
例如,可以采用和辅同步信号(Secondary Synchronization Signal,SSS)相同的生成多项式,如下所示:
d seq(n)=[1-2x 0((n+m 0)mod127)][1-2x 1((n+m 1)mod127)]
Figure PCTCN2019101972-appb-000001
Figure PCTCN2019101972-appb-000002
其中,0≤n<M,M≥127,x 0(i+7)=(x 0(i+4)+x 0(i))mod2,x 1(i+7)=(x 1(i+1)+x 1(i))mod2,
且[x 0(6)x 0(5)x 0(4)x 0(3)x 0(2)x 0(1)x 0(0)]=[0 0 0 0 0 0 1]
[x 1(6)x 1(5)x 1(4)x 1(3)x 1(2)x 1(1)x 1(0)]=[0 0 0 0 0 0 1]
当M大于127时,前127个序列符号和SSS相同,这样终端可以使用已有的基于SSS的测量模块在127个资源元素(Resource Element,RE)上进行测量。当M=127时,该序列和SSS序列完全相同,需要说明的是,虽然序列完全相同,由于SSS并不在一个传统的SSB的结构,即在相邻的资源上不存在主同步信号(Primary Synchronization Signal,PSS)、PBCH、PBCH-DMRS,所以该信号可以不认为是一个SSS。该m序列可以在时间和/或频率方向上离散或者连续的资源上进行发送。
2、假设传输指示信号以ZC序列形式传输,ZC序列的根索引、序列组号、序列号或者循环移位值为预定义或者由高层信令配置。其中,该循环移位值也可以和小区ID有关。进一步的,不同的ZC序列根索引、序列组号、序列号或者循环移位值可以和COT的信息相关,该信息包括至少如下之一:COT的起始时间(段)、COT的持续时间和/或COT的结束时间(段)等。终端可以根据该COT的结束时间(段),确定在什么时间可以停止进行下行接收。该ZC序列可以在时间和/或频率方向上离散或者连续的资源上进行发送。
3、假设传输指示信号以Gold序列形式传输,该Gold序列的初始化方式至少和以下其中一项有关:COT的起始时间(段)、COT的持续时间、COT的结束时间(段)、cell ID、该序列所在的OFDM符号的编号等。终端可以根据该COT的结束时间(段),确定在什么时间可以停止进行下行接收。例如:
Figure PCTCN2019101972-appb-000003
其中,T COT为COT中的相关信息,例如指示该COT结束的slot,终端可以盲检该序列,并根据检测结果,确定该T COT的值,从而确定COT的结束slot,在该结束slot之后,终端可以不进行下行PDCCH或PDSCH等接收及基于下行RS的测量等。
4、假设传输指示信号以调制序列形式传输,例如该传输指示信号为至少两个序列的调制之后的调制序列;这两个序列可以为m序列、ZC序列和Gold序列中的至少两个。这里所说的调制指的是:在比特级为两个二进制序列的 模2加,即加扰;或者指的是:符号级的调制,如将两个序列至少其中之一映射为符号之后的符号级的相乘。例如两个m序列符号级的相乘,ZC序列和Gold序列的符号级相乘。例如,d1和d2为两个不同的比特序列或者符号序列:d(n)=d 1(n)·d 2(n),其中,0≤n≤N-1,N为序列的长度。
其中值得指出的是,当终端工作在非连续接收(Discontinuous Reception,DRX)场景下时,终端仅需要在DRX的激活期(active或On duration)的时间段内进行传输指示信号的检测。如图7所示,网络设备获得的空闲信道从第1个subframe开始,而终端的DRX active时间从第2个subframe开始,则终端只需要在DRX active期间进行该传输指示信号的检测。网络设备需要在占用的用于信号发送的信道内周期性的重复发送传输指示信号,以保证不同具有不同DRX active time的终端能够尽早检测到该传输指示信号。
进一步地,终端在接收到传输指示信号之后,即在步骤21之后,还包括:接收下行物理信号或下行物理信道;其中,下行物理信号或下行物理信道与传输指示信号的传输资源不重叠。假设网络设备调度的下行物理信号或下行物理信道资源和该传输指示信号占用的部分RE/RB资源相同,则下行物理信号或下行物理信道不在这些RE/RB上映射,终端认为下行物理信号或下行物理信道对这些RE/RB资源进行了速率匹配。其中,下行物理信道包括:物理下行广播信道(Physical Broadcast Channel,PBCH)、PDCCH和PDSCH中的至少一项。
在本公开实施例中,终端行为指示信息可以是网络设备通过高层信令或媒体接入控制MAC控制单元CE传输的,终端行为指示信息用于指示终端执行以下行为中的至少一项:
监听PDCCH;
CSI测量,如信道和/或干扰测量,包括层1的参考信号接收功率(Layer 1 Reference Signal Received Power,L1-RSRP)、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、和秩指示(Rank Indication,RI)等;
无线资源管理(Radio Resource Management,RRM)测量,如参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量 (Reference Signal Received Quality,RSRQ)和接收信号强度指示(Received Signal Strength Indicator,RSSI)等。
波束管理(Beam management)测量;
无线链路监测;以及,
波束失败检测。
本公开实施例的传输指示信号的传输方法中,终端可以在接收到传输指示信号后,再根据终端行为指示信息执行相应的终端行为,以避免不必要的行为尝试,可以提高传输性能,并节省终端耗电。
以上实施例分别详细介绍了不同场景下的传输指示信号的传输方法,下面本实施例将结合附图对其对应的终端做进一步介绍。
如图8所示,本公开实施例的终端800,能实现上述实施例中在网络设备占用的时频资源中的部分资源上接收传输指示信号,其中,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,终端行为指示信息用于指示终端行为方法的细节,并达到相同的效果,该终端800具体包括以下功能模块:
第一接收模块810,用于在网络设备占用的时频资源中的部分资源上接收传输指示信号,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,终端行为指示信息用于指示终端行为。
其中,传输指示信号通过以下形式中的一种进行传输:
物理下行控制信道PDCCH,
PDCCH的解调参考信号DMRS,
物理下行共享信道PDSCH的DMRS,
信道状态信息参考信号CSI-RS,以及
预设序列。
其中,预设序列包括:ZC序列、Gold序列、m序列中的至少一项,或者,预设序列包括:由ZC序列、Gold序列、m序列中的至少两项调制形成的调制序列。
其中,PDCCH的DMRS为带宽DMRS。
其中,带宽DMRS在控制资源集CORESET中连续的资源块RB的资源 元素组REG上映射,且CORESET的预编码颗粒度与CORESET所包含的RB数相同。
其中,PDCCH的DMRS所在的CORESET的时域位置是预定义的。
其中,PDSCH的DMRS或CSI-RS的时域位置是预定义的。
其中,终端800还包括:
第二接收模块,用于接收传输指示信号的配置信息。
其中,配置信息包括:传输指示信号的传输周期、所在的时隙slot、所在slot中的OFDM符号位置、所在slot中的OFDM符号数量、所在OFDM符号上的资源块RB和准共址QCL关系中的至少一项。
其中,QCL关系包括:传输指示信号与以下中的至少一项准共址:同步信号块SSB、发现信号和CSI-RS。
其中,当传输指示信号通过PDCCH传输时,配置信息包括:PDCCH的监听周期、监听持续时间、slot偏移、slot中的OFDM符号、所在的控制资源集CORESET、下行控制信息DCI格式、DCI尺寸、控制信道元素CCE的聚合等级AL和监听的CCE候选集合中的至少一项。
其中,当传输指示信号通过PDCCH的DMRS传输时,配置信息包括:PDCCH的DMRS所在的CORESET和/或CORESET的时域位置。
其中,当传输指示信号通过PDSCH的DMRS传输时,配置信息包括:PDSCH的DMRS所在OFDM符号和/或OFDM符号上的RB。
其中,当传输指示信号通过CSI-RS传输时,配置信息包括:CSI-RS的端口数、周期、所在的时域位置、所在的频域位置、密度、码分复用CDM类型、功率大小、时域位置上的RB、加扰ID和传输控制面TCI状态中的至少一项。
其中,当传输指示信号通过预设序列传输时,配置信息包括:预设序列的生成参数、周期、所在时域资源、功率大小和预设序列的传输资源中的至少一项。
其中,预设序列的生成参数与网络设备的信道占用时间COT的时间信息相关,时间信息包括:COT的起始时刻、持续时间和结束时刻中的至少一项。
其中,终端800还包括:
第三接收模块,用于接收下行物理信号或下行物理信道;其中,下行物理信号或下行物理信道与传输指示信号的传输资源不重叠。
其中,下行物理信道包括:物理下行广播信道PBCH、PDCCH和PDSCH中的至少一项。
其中,终端行为指示信息是网络设备通过高层信令或媒体接入控制MAC控制单元CE传输的,终端行为指示信息用于指示终端执行以下行为中的至少一项:
监听PDCCH;
CSI测量;
无线资源管理RRM测量;
波束管理测量;
无线链路监测;以及,
波束失败检测。
值得指出的是,本公开实施例的终端可以在接收到传输指示信号后,再根据终端行为指示信息执行相应的终端行为,以避免不必要的行为尝试,可以提高传输性能,并节省终端耗电。
为了更好的实现上述目的,进一步地,图9为实现本公开各个实施例的一种终端的硬件结构示意图,该终端90包括但不限于:射频单元91、网络模块92、音频输出单元93、输入单元94、传感器95、显示单元96、用户输入单元97、接口单元93、存储器99、处理器910、以及电源911等部件。本领域技术人员可以理解,图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元91,用于在处理器910的控制下收发数据,具体用于:在网络设备占用的时频资源中的部分资源上接收传输指示信号,所述传输指示信号用于指示所述终端根据终端行为指示信息执行相应的终端行为,该终端行为指示信息用于指示终端行为;
本公开实施例的终端可以在接收到传输指示信号后,再根据终端行为指 示信息执行相应的终端行为,以避免不必要的行为尝试,可以提高传输性能,并节省终端耗电。
应理解的是,本公开实施例中,射频单元91可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器910处理;另外,将上行的数据发送给基站。通常,射频单元91包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元91还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块92为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元93可以将射频单元91或网络模块92接收的或者在存储器99中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元93还可以提供与终端90执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元93包括扬声器、蜂鸣器以及受话器等。
输入单元94用于接收音频或视频信号。输入单元94可以包括图形处理器(Graphics Processing Unit,GPU)941和麦克风942,图形处理器941对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元96上。经图形处理器941处理后的图像帧可以存储在存储器99(或其它存储介质)中或者经由射频单元91或网络模块92进行发送。麦克风942可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元91发送到移动通信基站的格式输出。
终端90还包括至少一种传感器95,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板961的亮度,接近传感器可在终端90移动到耳边时,关闭显示面板961和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传 感器95还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元96用于显示由用户输入的信息或提供给用户的信息。显示单元96可包括显示面板961,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板961。
用户输入单元97可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元97包括触控面板971以及其他输入设备972。触控面板971,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板971上或在触控面板971附近的操作)。触控面板971可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器910,接收处理器910发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板971。除了触控面板971,用户输入单元97还可以包括其他输入设备972。具体地,其他输入设备972可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板971可覆盖在显示面板961上,当触控面板971检测到在其上或附近的触摸操作后,传送给处理器910以确定触摸事件的类型,随后处理器910根据触摸事件的类型在显示面板961上提供相应的视觉输出。虽然在图9中,触控面板971与显示面板961是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板971与显示面板961集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元93为外部装置与终端90连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(Input/Output,I/O)端口、视频I/O端口、耳机端口等等。接口单元93可以用 于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端90内的一个或多个元件或者可以用于在终端90和外部装置之间传输数据。
存储器99可用于存储软件程序以及各种数据。存储器99可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器99可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器910是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器99内的软件程序和/或模块,以及调用存储在存储器99内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器910可包括一个或多个处理单元;可选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
终端90还可以包括给各个部件供电的电源911(比如电池),可选的,电源911可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端90包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器910,存储器99,存储在存储器99上并可在所述处理器910上运行的计算机程序,该计算机程序被处理器910执行时实现上述传输指示信号的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、 袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述传输指示信号的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的传输指示信号的传输方法,下面本实施例将结合附图对网络设备侧的传输指示信号的传输方法做进一步介绍。
如图10所示,本公开实施例的传输指示信号的传输方法,应用于网络设备侧,该方法包括以下步骤:
步骤101:在占用的时频资源中的部分资源上发送传输指示信号,其中,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为。
其中,终端行为指示信息用于指示终端行为,例如终端行为指示信息用于指示终端执行以下行为中的至少一项:监听PDCCH;CSI测量;无线资源管理RRM测量;波束管理测量;无线链路监测;以及,波束失败检测。其中,网络设备可通过高层信令或MAC CE向终端发送该终端行为指示信息。
以NR系统为例,在NR的非授权频段上,网络设备在发送下行信息之前,需要对信道进行监听,当监听到空闲信道并成功占用后才可以发送下行信息。其中,传输指示信号用于指示网络设备成功占用了空闲信道,也就是说,当网络设备成功占用空闲信道后,向终端发送传输指示信号,以指示终 端网络设备已经成功占用空闲信道。为了使得终端能够尽快的检测到传输指示信号,网络设备可在占用的时频资源中多次发送传输指示信号,以保证终端能够接收到该传输指示信号。
本公开实施例的传输指示信号可以通过物理信号或物理信道的形式进行发送。例如,传输指示信号通过以下形式中的一种进行发送:
物理下行控制信道PDCCH,
PDCCH的解调参考信号DMRS,
物理下行共享信道PDSCH的DMRS,
信道状态信息参考信号CSI-RS,以及
预设序列。其中,预设序列包括:ZC序列、Gold序列、m序列中的至少一项,即预设序列可以是ZC序列、Gold序列或m序列,也可以是ZC序列、Gold序列和m序列中多个序列的集合。或者,预设序列包括:由ZC序列、Gold序列、m序列中的至少两项调制形成的调制序列,即预设序列可以是ZC序列、Gold序列和m序列中至少两个序列的调制。
进一步地,在步骤101之前,还包括:向终端发送传输指示信号的配置信息。也就是说,网络设备可以对传输指示信号进行配置,其中,配置信息包括但不限于:传输指示信号的传输周期、所在的时隙slot、所在slot中的OFDM符号位置、所在slot中的OFDM符号数量、所在OFDM符号上的资源块RB和准共址QCL关系中的至少一项。其中,QCL关系包括:传输指示信号与以下中的至少一项准共址:同步信号块SSB、发现信号和CSI-RS。也就是说,传输指示信号可以与SSB准共址,或传输指示信号可以与发现信号准共址,或传输指示信号可以与CSI-RS准共址。
下面本实施例,将结合不同传输形式的应用示例对传输指示信号做进一步说明。
对应于上述示例一,传输指示信号以PDCCH的形式进行发送
当传输指示信号通过PDCCH传输时,传输指示信号的配置信息包括:PDCCH的监听周期、监听持续时间、slot偏移、slot中的OFDM符号、所在的控制资源集CORESET、下行控制信息DCI格式、DCI尺寸、控制信道元素CCE的聚合等级AL和监听的CCE候选集合中的至少一项。
对应于上述示例二,传输指示信号以PDCCH的DMRS的形式进行发送
网络设备占用到空闲信道后的信道占用时间COT内,周期性的发送该PDCCH的DMRS。
该PDCCH的DMRS为带宽DMRS,即在控制资源集CORESET内的每个资源块RB上都存在PDCCH的DMRS。其中,PDCCH的DMRS所在的CORESET的时域位置可以是预定义的,例如在每个slot第0个和/或第7个OFDM符号为该CORESET的起始位置。
进一步地,带宽DMRS在控制资源集CORESET中连续的资源块RB的资源元素组REG上映射,且CORESET的预编码颗粒度与CORESET所包含的RB数相同。
该传输指示信号的配置信息包括:PDCCH的DMRS所在的CORESET和/或CORESET的时域位置。也就是说,PDCCH-DMRS的CORESET的时频资源位置除了可以是预定义的外,还可以是网络设备配置的,如通过高层信令进行配置。
对应于示例三,传输指示信号以PDSCH的DMRS或CSI-RS形式发送
网络设备占用到信道后的COT内,传输PDSCH的DMRS/CSI-RS。其中,PDSCH的DMRS或CSI-RS的时域位置可以是预定义的,例如固定在每个slot的第3个和第10个OFDM符号上进行传输。或者,PDSCH的DMRS或CSI-RS的时域位置可以是网络设备配置的。传输该PDSCH的DMRS或CSI-RS的时间资源可以是周期性的,也就是说网络设备可以以固定周期向终端发送传输指示信号。
具体地,当传输指示信号通过PDSCH的DMRS传输时,传输指示信号的配置信息包括:PDSCH的DMRS所在OFDM符号和/或OFDM符号上的RB。例如该PDSCH的DMRS在传输信道带宽上对应OFDM符号上的部分或全部RB上进行传输。
当传输指示信号通过CSI-RS传输时,传输指示信号的配置信息包括:CSI-RS的端口数、周期、所在的时域位置、所在的频域位置、密度、码分复用CDM类型、功率大小、时域位置上的RB、加扰ID和传输配置指示TCI状态中的至少一项。例如,该CSI-RS在传输信道带宽上对应OFDM符号上 的部分或全部RB上进行传输。此外,CSI-RS还可以以跟踪参考信号TRS的形式进行配置。
对应于示例四,传输指示信号以预设序列形式发送
当传输指示信号通过预设序列传输时,传输指示信号的配置信息包括:预设序列的生成参数、周期、所在时域资源、功率大小和预设序列的传输资源中的至少一项。例如,传输一次该资源所占用的时频资源可以占用1个OFDM符号上的多个RB,或者一个slot上多个OFDM符号上的一个RB上进行传输。
其中,预设序列的生成参数与网络设备的信道占用时间COT的时间信息相关,时间信息包括:COT的起始时刻、持续时间和结束时刻中的至少一项。那么,终端可以根据预设序列的检测,获得网络设备当前传输的COT信息,如COT的起始时刻、持续时间和结束时刻等。
进一步地,网络设备在发送传输指示信号之后,即步骤101之后,还包括:向终端发送下行物理信号或下行物理信道,其中,下行物理信号或下行物理信道与传输指示信号的传输资源不重叠。假设网络设备调度的下行物理信号或下行物理信道资源和该传输指示信号占用的部分RE/RB资源相同,则下行物理信号或下行物理信道不在这些RE/RB上映射,以避免下行物理信号或下行物理信道与传输指示信号的传输资源发生重叠。其中,下行物理信道包括:物理下行广播信道PBCH、PDCCH和PDSCH中的至少一项。
本公开实施例的传输指示信号的传输方法中,网络设备向终端发送传输指示信号,以指示终端根据终端行为指示信息执行相应的终端行为,以避免终端不必要的行为尝试,可以提高传输性能,并节省终端耗电。
以上实施例介绍了不同场景下的传输指示信号的传输方法,下面将结合附图对与其对应的网络设备做进一步介绍。
如图11所示,本公开实施例的网络设备1100,能实现上述实施例中在占用的时频资源中的部分资源上发送传输指示信号,其中,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为方法的细节,并达到相同的效果,该网络设备1100具体包括以下功能模块:
第一发送模块1110,用于在占用的时频资源中的部分资源上发送传输指 示信号,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,该终端行为指示信息用于指示终端行为。
其中,传输指示信号通过以下形式中的一种进行发送:
物理下行控制信道PDCCH,
PDCCH的解调参考信号DMRS,
物理下行共享信道PDSCH的DMRS,
信道状态信息参考信号CSI-RS,以及
预设序列。
其中,预设序列包括:ZC序列、Gold序列、m序列中的至少一项,或者,预设序列包括:由ZC序列、Gold序列、m序列中的至少两项调制形成的调制序列。
其中,PDCCH的DMRS为带宽DMRS。
其中,带宽DMRS在控制资源集CORESET中连续的资源块RB的资源元素组REG上映射,且CORESET的预编码颗粒度与CORESET所包含的RB数相同。
其中,PDCCH的DMRS所在的CORESET的时域位置是预定义的。
其中,PDSCH的DMRS或CSI-RS的时域位置是预定义的。
其中,网络设备1100还包括:
第二发送模块,用于向终端发送传输指示信号的配置信息。
其中,配置信息包括:传输指示信号的传输周期、所在的时隙slot、所在slot中的OFDM符号位置、所在slot中的OFDM符号数量、所在OFDM符号上的资源块RB和准共址QCL关系中的至少一项。
其中,QCL关系包括:传输指示信号与以下中的至少一项准共址:同步信号块SSB、发现信号和CSI-RS。
其中,当传输指示信号通过PDCCH发送时,配置信息包括:PDCCH的监听周期、监听持续时间、slot偏移、slot中的OFDM符号、所在的控制资源集CORESET、下行控制信息DCI格式、DCI尺寸、控制信道元素CCE的聚合等级AL和监听的CCE候选集合中的至少一项。
其中,当传输指示信号通过PDCCH的DMRS发送时,配置信息包括: PDCCH的DMRS所在的CORESET和/或CORESET的时域位置。
其中,当传输指示信号通过PDSCH的DMRS发送时,配置信息包括:PDSCH的DMRS所在OFDM符号和/或OFDM符号上的RB。
其中,当传输指示信号通过CSI-RS发送时,配置信息包括:CSI-RS的端口数、周期、所在的时域位置、所在的频域位置、密度、码分复用CDM类型、功率大小、时域位置上的RB、加扰ID和传输配置指示TCI状态中的至少一项。
其中,当传输指示信号通过预设序列发送时,配置信息包括:预设序列的生成参数、周期、所在时域资源、功率大小和预设序列的传输资源中的至少一项。
其中,预设序列的生成参数与网络设备的信道占用时间COT的时间信息相关,时间信息包括:COT的起始时刻、持续时间和结束时刻中的至少一项。
其中,网络设备1100还包括:
第三发送模块,用于向终端发送下行物理信号或下行物理信道,其中,下行物理信号或下行物理信道与传输指示信号的传输资源不重叠。
其中,下行物理信道包括:物理下行广播信道PBCH、PDCCH和PDSCH中的至少一项。
值得指出的是,本公开实施例的网络设备向终端发送传输指示信号,以指示终端根据终端行为指示信息执行相应的终端行为,以避免终端不必要的行为尝试,可以提高传输性能,并节省终端耗电。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一 种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的传输指示信号的传输方法中的步骤。本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的传输指示信号的传输方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图12所示,该网络设备1200包括:天线121、射频装置122、基带装置123。天线121与射频装置122连接。在上行方向上,射频装置122通过天线121接收信息,将接收的信息发送给基带装置123进行处理。在下行方向上,基带装置123对要发送的信息进行处理,并发送给射频装置122,射频装置122对收到的信息进行处理后经过天线121发送出去。
上述频带处理装置可以位于基带装置123中,以上实施例中网络设备执行的方法可以在基带装置123中实现,该基带装置123包括处理器124和存储器125。
基带装置123例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为处理器124,与存储器125连接,以调用存储器125中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置123还可以包括网络接口126,用于与射频装置122交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器125可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器125旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器125上并可在处理器124上运行的计算机程序,处理器124调用存储器125中的计算机程序执行图11所示各模块执行的方法。
具体地,计算机程序被处理器124调用时可用于执行:在占用的时频资源中的部分资源上发送传输指示信号,其中,传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,该终端行为指示信息用于指示终端行为。
本公开实施例中的网络设备,向终端发送传输指示信号,以指示终端根 据终端行为指示信息执行相应的终端行为,以避免终端不必要的行为尝试,可以提高传输性能,并节省终端耗电。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网 络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、ROM或RAM等。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (36)

  1. 一种传输指示信号的传输方法,应用于终端侧,包括:
    在网络设备占用的时频资源中的部分资源上接收传输指示信号,其中,所述传输指示信号用于指示所述终端根据终端行为指示信息执行相应的终端行为,所述终端行为指示信息用于指示终端行为。
  2. 根据权利要求1所述的传输指示信号的传输方法,其中,所述终端行为指示信息是所述网络设备通过高层信令或媒体接入控制MAC控制单元CE传输的,所述终端行为指示信息用于指示终端执行以下行为中的至少一项:
    监听物理下行控制信道PDCCH;
    信道状态信息CSI测量;
    无线资源管理RRM测量;
    波束管理测量;
    无线链路监测;以及,
    波束失败检测。
  3. 根据权利要求1所述的传输指示信号的传输方法,其中,在网络设备占用的时频资源中的部分资源上接收传输指示信号的步骤之后,还包括:
    接收下行物理信号或下行物理信道;其中,所述下行物理信号或下行物理信道与所述传输指示信号的传输资源不重叠。
  4. 根据权利要求1所述的传输指示信号的传输方法,其中,所述网络设备占用的时频资源为非授权频段资源。
  5. 根据权利要求1所述的传输指示信号的传输方法,其中,所述传输指示信号通过以下形式中的一种进行传输:
    PDCCH,
    PDCCH的解调参考信号DMRS,
    物理下行共享信道PDSCH的DMRS,
    信道状态信息参考信号CSI-RS,以及
    预设序列。
  6. 根据权利要求5所述的传输指示信号的传输方法,其中,所述PDCCH 的DMRS为带宽DMRS。
  7. 根据权利要求6所述的传输指示信号的传输方法,其中,所述带宽DMRS在控制资源集CORESET中连续的资源块RB的资源元素组REG上映射,且所述CORESET的预编码颗粒度与所述CORESET所包含的RB数相同。
  8. 根据权利要求5所述的传输指示信号的传输方法,其中,在网络设备占用的时频资源中的部分资源上接收传输指示信号的步骤之前,还包括:
    接收所述传输指示信号的配置信息。
  9. 根据权利要求8所述的传输指示信号的传输方法,其中,所述配置信息包括:所述传输指示信号的传输周期、所在的时隙slot、所在slot中的正交频分复用OFDM符号位置、所在slot中的OFDM符号数量、所在OFDM符号上的RB和准共址QCL关系中的至少一项。
  10. 根据权利要求9所述的传输指示信号的传输方法,其中,所述QCL关系包括:所述传输指示信号与以下中的至少一项准共址:同步信号块SSB、发现信号和CSI-RS。
  11. 根据权利要求8或9所述的传输指示信号的传输方法,其中,当所述传输指示信号通过所述PDCCH传输时,所述配置信息包括:所述PDCCH的监听周期、监听持续时间、slot偏移、slot中的OFDM符号、所在的CORESET、下行控制信息DCI格式、DCI尺寸、控制信道元素CCE的聚合等级AL和监听的CCE候选集合中的至少一项。
  12. 根据权利要求8或9所述的传输指示信号的传输方法,其中,当所述传输指示信号通过PDCCH的DMRS传输时,所述配置信息包括:所述PDCCH的DMRS所在的CORESET和/或所述CORESET的时域位置。
  13. 根据权利要求8或9所述的传输指示信号的传输方法,其中,当所述传输指示信号通过PDSCH的DMRS传输时,所述配置信息包括:所述PDSCH的DMRS所在OFDM符号和/或所述OFDM符号上的RB。
  14. 根据权利要求8或9所述的传输指示信号的传输方法,其中,当所述传输指示信号通过CSI-RS传输时,所述配置信息包括:所述CSI-RS的端口数、周期、所在的时域位置、所在的频域位置、密度、码分复用CDM类 型、功率大小、所述时域位置上的RB、加扰ID和传输配置指示TCI状态中的至少一项。
  15. 根据权利要求8或9所述的传输指示信号的传输方法,其中,当所述传输指示信号通过预设序列传输时,所述配置信息包括:所述预设序列的生成参数、周期、所在时域资源、功率大小和所述预设序列的传输资源中的至少一项。
  16. 根据权利要求15所述的传输指示信号的传输方法,其中,所述预设序列的生成参数与所述网络设备的信道占用时间COT的时间信息相关,所述时间信息包括:所述COT的起始时刻、持续时间和结束时刻中的至少一项。
  17. 一种终端,包括:
    第一接收模块,用于在网络设备占用的时频资源中的部分资源上接收传输指示信号,其中,所述传输指示信号用于指示所述终端根据终端行为指示信息执行相应的终端行为,所述终端行为指示信息用于指示终端行为。
  18. 一种终端,包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至16中任一项所述的传输指示信号的传输方法的步骤。
  19. 一种传输指示信号的传输方法,应用于网络设备侧,包括:
    在占用的时频资源中的部分资源上发送传输指示信号,其中,所述传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,所述终端行为指示信息用于指示终端行为。
  20. 根据权利要求19所述的传输指示信号的传输方法,其中,在占用的时频资源中的部分资源上发送传输指示信号的步骤之后,还包括:
    向终端发送下行物理信号或下行物理信道,其中,所述下行物理信号或下行物理信道与所述传输指示信号的传输资源不重叠。
  21. 根据权利要求19所述的传输指示信号的传输方法,其中,所述占用的时频资源为非授权频段资源。
  22. 根据权利要求19所述的传输指示信号的传输方法,其中,所述传输指示信号通过以下形式中的一种进行发送:
    物理下行控制信道PDCCH,
    PDCCH的解调参考信号DMRS,
    物理下行共享信道PDSCH的DMRS,
    信道状态信息参考信号CSI-RS,以及
    预设序列。
  23. 根据权利要求22所述的传输指示信号的传输方法,其中,所述PDCCH的DMRS为带宽DMRS。
  24. 根据权利要求23所述的传输指示信号的传输方法,其中,所述带宽DMRS在控制资源集CORESET中连续的资源块RB的资源元素组REG上映射,且所述CORESET的预编码颗粒度与所述CORESET所包含的RB数相同。
  25. 根据权利要求22所述的传输指示信号的传输方法,其中,在占用的时频资源中的部分资源上发送传输指示信号的步骤之前,还包括:
    向终端发送所述传输指示信号的配置信息。
  26. 根据权利要求25所述的传输指示信号的传输方法,其中,所述配置信息包括:所述传输指示信号的传输周期、所在的时隙slot、所在slot中的正交频分复用OFDM符号位置、所在slot中的OFDM符号数量、所在OFDM符号上的RB和准共址QCL关系中的至少一项。
  27. 根据权利要求26所述的传输指示信号的传输方法,其中,所述QCL关系包括:所述传输指示信号与以下中的至少一项准共址:同步信号块SSB、发现信号和CSI-RS。
  28. 根据权利要求25或26所述的传输指示信号的传输方法,其中,当所述传输指示信号通过所述PDCCH发送时,所述配置信息包括:所述PDCCH的监听周期、监听持续时间、slot偏移、slot中的OFDM符号、所在的CORESET、下行控制信息DCI格式、DCI尺寸、控制信道元素CCE的聚合等级AL和监听的CCE候选集合中的至少一项。
  29. 根据权利要求25或26所述的传输指示信号的传输方法,其中,当所述传输指示信号通过PDCCH的DMRS发送时,所述配置信息包括:所述PDCCH的DMRS所在的CORESET和/或所述CORESET的时域位置。
  30. 根据权利要求25或26所述的传输指示信号的传输方法,其中,当 所述传输指示信号通过PDSCH的DMRS发送时,所述配置信息包括:所述PDSCH的DMRS所在OFDM符号和/或所述OFDM符号上的RB。
  31. 根据权利要求25或26所述的传输指示信号的传输方法,其中,当所述传输指示信号通过CSI-RS发送时,所述配置信息包括:所述CSI-RS的端口数、周期、所在的时域位置、所在的频域位置、密度、码分复用CDM类型、功率大小、所述时域位置上的RB、加扰ID和传输配置指示TCI状态中的至少一项。
  32. 根据权利要求25或26所述的传输指示信号的传输方法,其中,当所述传输指示信号通过预设序列发送时,所述配置信息包括:所述预设序列的生成参数、周期、所在时域资源、功率大小和所述预设序列的传输资源中的至少一项。
  33. 根据权利要求32所述的传输指示信号的传输方法,其中,所述预设序列的生成参数与所述网络设备的信道占用时间COT的时间信息相关,所述时间信息包括:所述COT的起始时刻、持续时间和结束时刻中的至少一项。
  34. 一种网络设备,包括:
    第一发送模块,用于在占用的时频资源中的部分资源上发送传输指示信号,其中,所述传输指示信号用于指示终端根据终端行为指示信息执行相应的终端行为,所述终端行为指示信息用于指示终端行为。
  35. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求19至33任一项所述的传输指示信号的传输方法的步骤。
  36. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16、29至33中任一项所述的传输指示信号的传输方法的步骤。
PCT/CN2019/101972 2018-09-20 2019-08-22 传输指示信号的传输方法、网络设备及终端 WO2020057317A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19862040.3A EP3855848B1 (en) 2018-09-20 2019-08-22 Method for transmitting transmission instruction signal, network device, and terminal
ES19862040T ES2970131T3 (es) 2018-09-20 2019-08-22 Método para transmitir señal de indicación de transmisión, dispositivo de red y terminal
JP2021515649A JP7210708B2 (ja) 2018-09-20 2019-08-22 伝送指示信号の伝送方法、ネットワーク装置及び端末
KR1020217010463A KR102542746B1 (ko) 2018-09-20 2019-08-22 전송 지시 신호의 전송 방법, 네트워크 장치 및 단말
US17/206,190 US20210212036A1 (en) 2018-09-20 2021-03-19 Method for transmitting a transmission indication signal, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811103528.6A CN110933764B (zh) 2018-09-20 2018-09-20 传输指示信号的传输方法、网络设备及终端
CN201811103528.6 2018-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/206,190 Continuation US20210212036A1 (en) 2018-09-20 2021-03-19 Method for transmitting a transmission indication signal, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2020057317A1 true WO2020057317A1 (zh) 2020-03-26

Family

ID=69856329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101972 WO2020057317A1 (zh) 2018-09-20 2019-08-22 传输指示信号的传输方法、网络设备及终端

Country Status (9)

Country Link
US (1) US20210212036A1 (zh)
EP (1) EP3855848B1 (zh)
JP (1) JP7210708B2 (zh)
KR (1) KR102542746B1 (zh)
CN (1) CN110933764B (zh)
ES (1) ES2970131T3 (zh)
HU (1) HUE065372T2 (zh)
PT (1) PT3855848T (zh)
WO (1) WO2020057317A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220263626A1 (en) * 2019-11-08 2022-08-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining position occupied by resource, user equipment, and storage medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972275B (zh) * 2018-09-28 2023-07-18 华为技术有限公司 一种指示信息的传输方法和装置
US11510082B2 (en) 2019-03-29 2022-11-22 Qualcomm Incorporated Beam indication reuse
WO2021253396A1 (zh) * 2020-06-19 2021-12-23 深圳传音控股股份有限公司 信息处理方法、设备及存储介质
CN115314174B (zh) * 2021-05-08 2024-09-03 维沃移动通信有限公司 传输方法、装置、设备及可读存储介质
CN116528367A (zh) * 2022-01-21 2023-08-01 维沃移动通信有限公司 信息传输方法、装置、网络侧设备及终端
CN116886250A (zh) * 2022-03-28 2023-10-13 维沃软件技术有限公司 信息传输方法、装置、终端及网络侧设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754396A (zh) * 2008-12-01 2010-06-23 大唐移动通信设备有限公司 一种指示传输模式的方法、系统和装置
CN102170644A (zh) * 2011-05-23 2011-08-31 新邮通信设备有限公司 一种终端设备内共存干扰避免的方法
CN107734666A (zh) * 2016-08-11 2018-02-23 中国移动通信有限公司研究院 控制信道传输指示方法、检测方法、基站及用户设备
US20180115992A1 (en) * 2015-05-13 2018-04-26 Lg Electronics Inc. Method for channel sensing in wireless communication system and apparatus therefor
CN108282876A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种上行传输方法、终端、网络侧设备

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610520B (zh) * 2008-06-17 2013-03-27 北京华恒铭圣科技发展有限责任公司 用户终端测试行为的触发方法、通信设备及通信系统
CN101783700B (zh) * 2009-01-21 2013-03-27 电信科学技术研究院 对上行数据传输的指示方法、上行数据传输方法及装置
CN102064878B (zh) * 2009-11-13 2014-03-19 电信科学技术研究院 一种指示上行数据发送的方法及设备
CN102238531B (zh) * 2010-04-29 2015-01-14 电信科学技术研究院 基于竞争的上行传输指示方法、数据传输方法及装置
CN103581921B (zh) * 2012-08-01 2016-12-21 中国移动通信集团公司 一种终端接入方法、系统及装置
CN108111291B (zh) * 2013-01-25 2021-08-20 华为技术有限公司 解调参考信号传输装置和计算机可读存储介质
US20150146628A1 (en) * 2013-11-26 2015-05-28 Qualcomm Incorporated Techniques for handling reconfiguration messages and uplink data indications
CN104796232A (zh) * 2014-01-18 2015-07-22 上海朗帛通信技术有限公司 一种在非授权频谱上的传输方法和装置
CN105744048A (zh) * 2014-12-09 2016-07-06 中国移动通信集团公司 获取终端用户行为信息的方法、装置、终端及网络设备
JPWO2016121917A1 (ja) * 2015-01-29 2017-12-07 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
CN104540230B (zh) * 2015-01-30 2018-11-06 深圳酷派技术有限公司 一种上行调度方法及装置
CN105992373B (zh) * 2015-01-30 2020-09-15 中兴通讯股份有限公司 数据传输方法、装置、基站及用户设备
US10136452B2 (en) * 2015-02-24 2018-11-20 Qualcomm Incorporated Enhanced PRACH for standalone contention based communications including unlicensed spectrum
US10015778B2 (en) * 2015-03-17 2018-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for uplink control information signaling design
US10383102B2 (en) * 2015-04-09 2019-08-13 Lg Electronics Inc. Method for performing a PDCCH monitoring in a carrier aggregation with at least one SCell operating in an unlicensed spectrum and a device therefor
WO2017018762A1 (ko) * 2015-07-24 2017-02-02 삼성전자 주식회사 비 면허 대역을 사용하는 이동 통신 시스템에서의 제어 신호 및 채널 전송 방법
JP6653376B2 (ja) * 2015-08-13 2020-02-26 華為技術有限公司Huawei Technologies Co.,Ltd. アクセスネットワーク装置、ユーザ機器、通信システム、及び通信方法
JP2017063326A (ja) * 2015-09-24 2017-03-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10779180B2 (en) * 2015-11-03 2020-09-15 Lg Electronics Inc. Method and device for performing measurement report by terminal on basis of TTT abort timer
CN107534873B (zh) * 2015-11-06 2020-05-08 华为技术有限公司 无线资源管理测量的方法和装置
CN105451251B (zh) * 2015-11-06 2019-01-11 东莞酷派软件技术有限公司 一种非授权频谱的drs配置方法、测量方法和相关设备
CN107231688A (zh) * 2016-03-24 2017-10-03 北京信威通信技术股份有限公司 基于laa网络的上行数据传输方法及装置
CN107295676B (zh) * 2016-03-31 2019-07-23 中兴通讯股份有限公司 数据传输方法及装置
CN107733563B (zh) * 2016-08-12 2019-08-13 中兴通讯股份有限公司 参考信号的发送方法及装置
US10425139B2 (en) * 2016-09-21 2019-09-24 Samsung Electronics Co., Ltd. Method and apparatus for beam management reference signals in wireless communication systems
CN107889114B (zh) * 2016-09-30 2023-11-17 华为技术有限公司 一种非授权频谱信道占用的方法及设备
CN108391315B (zh) * 2016-11-03 2019-03-26 华为技术有限公司 一种信息传输方法及设备
EP3506694B1 (en) * 2016-11-03 2023-01-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device, and network device
CN108271261B (zh) * 2016-12-30 2023-06-27 华为技术有限公司 一种下行控制信道指示方法、终端设备及网络设备
BR112019013533A2 (pt) * 2017-01-05 2020-01-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método e dispositivos para transmissão de sinalização
CN108282297B (zh) * 2017-01-06 2023-11-10 华为技术有限公司 一种资源指示方法、装置及系统
CN108347273B (zh) * 2017-01-25 2021-06-29 华为技术有限公司 一种数据复用和数据解析方法、装置及系统
CN107659994A (zh) * 2017-09-05 2018-02-02 宇龙计算机通信科技(深圳)有限公司 资源指示方法、相关设备及通信系统
CN108206714A (zh) * 2017-12-29 2018-06-26 中兴通讯股份有限公司 信道状态信息获取方法及装置
BR112020014199A2 (pt) * 2018-01-10 2020-12-01 Idac Holdings, Inc. método para uso em uma unidade de transmissão/recepção sem fio, unidade de transmissão/recepção sem fio, e, gnb

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754396A (zh) * 2008-12-01 2010-06-23 大唐移动通信设备有限公司 一种指示传输模式的方法、系统和装置
CN102170644A (zh) * 2011-05-23 2011-08-31 新邮通信设备有限公司 一种终端设备内共存干扰避免的方法
US20180115992A1 (en) * 2015-05-13 2018-04-26 Lg Electronics Inc. Method for channel sensing in wireless communication system and apparatus therefor
CN107734666A (zh) * 2016-08-11 2018-02-23 中国移动通信有限公司研究院 控制信道传输指示方法、检测方法、基站及用户设备
CN108282876A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种上行传输方法、终端、网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3855848A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220263626A1 (en) * 2019-11-08 2022-08-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining position occupied by resource, user equipment, and storage medium

Also Published As

Publication number Publication date
HUE065372T2 (hu) 2024-05-28
CN110933764B (zh) 2022-03-11
ES2970131T3 (es) 2024-05-27
JP7210708B2 (ja) 2023-01-23
US20210212036A1 (en) 2021-07-08
KR102542746B1 (ko) 2023-06-14
EP3855848A4 (en) 2021-12-15
JP2022500951A (ja) 2022-01-04
KR20210058881A (ko) 2021-05-24
EP3855848B1 (en) 2024-01-03
PT3855848T (pt) 2024-01-18
CN110933764A (zh) 2020-03-27
EP3855848A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
EP3793121B1 (en) Quasi co-location configuration method, terminal, and network device
WO2020011180A1 (zh) 信道检测指示方法、终端及网络设备
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
US12058661B2 (en) Uplink information sending method and terminal
US11601902B2 (en) Synchronization signal block transmission method, network device, and terminal
WO2020151743A1 (zh) 随机接入方法及终端
WO2020156073A1 (zh) 非授权频段的信息传输方法、终端及网络设备
CN111182635B (zh) 非授权频段信息传输方法、终端及网络设备
CN111263393B (zh) 无线链路监测方法、终端及网络设备
CN110875808B (zh) 系统信息传输方法、网络设备及终端
WO2020151706A1 (zh) 随机接入传输方法及终端
WO2019242568A1 (zh) 功率分配方法及终端
US12052579B2 (en) Information transmission method, terminal and network device
WO2021208938A1 (zh) 确定数据传输层数的方法及装置、通信设备
WO2021088783A1 (zh) 物理下行控制信道的检测方法及装置
JP7532520B2 (ja) サイドリンクリファレンス信号受信パワーの測定方法及び装置、通信機器
US20240357576A1 (en) Uplink information sending method and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010463

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019862040

Country of ref document: EP

Effective date: 20210420