WO2018112693A1 - 终端定位的方法和装置 - Google Patents

终端定位的方法和装置 Download PDF

Info

Publication number
WO2018112693A1
WO2018112693A1 PCT/CN2016/110737 CN2016110737W WO2018112693A1 WO 2018112693 A1 WO2018112693 A1 WO 2018112693A1 CN 2016110737 W CN2016110737 W CN 2016110737W WO 2018112693 A1 WO2018112693 A1 WO 2018112693A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
signal strength
transmission device
determining
Prior art date
Application number
PCT/CN2016/110737
Other languages
English (en)
French (fr)
Inventor
黄晓庆
江海涛
王振凯
Original Assignee
深圳前海达闼云端智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海达闼云端智能科技有限公司 filed Critical 深圳前海达闼云端智能科技有限公司
Priority to EP16924888.7A priority Critical patent/EP3537737A1/en
Priority to PCT/CN2016/110737 priority patent/WO2018112693A1/zh
Publication of WO2018112693A1 publication Critical patent/WO2018112693A1/zh
Priority to US16/431,793 priority patent/US10649062B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/14Systems for determining direction or position line using amplitude comparison of signals transmitted simultaneously from antennas or antenna systems having differently oriented overlapping directivity-characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • G01S5/02521Radio frequency fingerprinting using a radio-map
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present disclosure relates to the field of the Internet, and in particular, to a method and apparatus for terminal location.
  • GPS Global Positioning System
  • OTDOA Observed Time Difference of Arrival
  • the present disclosure provides a method and apparatus for terminal positioning to at least solve the technical problem of low terminal positioning accuracy in the prior art.
  • a method for positioning a terminal which is applied to a transmission device, includes: acquiring beam information corresponding to the terminal; and acquiring a timing advance of the terminal in the serving cell; Determining location information of the terminal according to the beam information and the timing advance.
  • a method for terminal location is provided, which is applied to a terminal, including: acquiring beam information; and transmitting the beam information to a transmission device, so that the transmission device After acquiring the timing advance of the terminal in the serving cell, determining location information of the terminal according to the beam information and the timing advance.
  • the third aspect provides a device for positioning a terminal, which is applied to a transmission device, and includes: a first acquiring module, configured to acquire beam information corresponding to the terminal; and a second acquiring module, configured to acquire time of the terminal in the serving cell. And a position determining module, configured to determine location information of the terminal according to the beam information and the timing advance.
  • a fourth aspect provides a device for positioning a terminal, which is applied to a terminal, and includes: an information acquiring module, configured to acquire beam information; and an information sending module, configured to send the beam information to a transmitting device, so that the transmitting device is After obtaining the timing advance of the terminal in the serving cell, determining location information of the terminal according to the beam information and the timing advance.
  • a fifth aspect a non-transitory computer readable storage medium comprising one or more programs for performing the first aspect described above Methods.
  • a sixth aspect a non-transitory computer readable storage medium comprising one or more programs for performing the second aspect described above Methods.
  • a transmission device where the transmission device includes:
  • One or more processors for executing a program in the non-transitory computer readable storage medium.
  • a terminal where the terminal includes:
  • One or more processors for executing a program in the non-transitory computer readable storage medium.
  • the terminal Acquiring beam information corresponding to the terminal by using the foregoing technical solution; acquiring the terminal in a small service a timing advancement amount in the area; determining location information of the terminal according to the beam information and the timing advance amount.
  • the terminal can be positioned by using the beam information corresponding to the terminal and the time advance of the terminal in the serving cell, so that the positioning of the terminal can be achieved only by using the beam information of one base station. Therefore, the positioning is implemented. Low complexity.
  • FIG. 1 is a schematic flowchart diagram of a method for positioning a terminal according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart diagram of another method for locating a terminal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart diagram of a method for positioning a third terminal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of calculation of horizontal analog beam positioning according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of calculation of vertical analog beam positioning according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart diagram of a fourth terminal positioning method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of calculation of horizontal analog beam positioning accuracy according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of calculation of vertical analog beam positioning accuracy according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an apparatus for positioning a terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another apparatus for positioning a terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a device for positioning a third terminal according to an embodiment of the present disclosure.
  • the present disclosure can be applied to 5G (Fifth Generation Mobile Communication Technology) technology.
  • 5G Fifth Generation Mobile Communication Technology
  • the mobile communication system will use the millimeter wave band, and in order to overcome the large increase in propagation loss, it is necessary to use a large-scale antenna for beamforming. And by providing the gain to compensate for the increase of propagation loss, one possible way is to use a hybrid beamforming method combining analog beamforming and digital beamforming.
  • the 3dB bandwidth of the analog beam is relatively wide but the gain is relatively high. Small, the 3dB bandwidth of the digital beam is relatively narrow but the gain is relatively large. Therefore, the large-scale antenna array technology is used in the millimeter wave band. After that, each cell will have more than 10 analog beams and more than 20 digital beams.
  • OTDOA Observed Time Difference of Arrival
  • OTDOA technology calculates the terminal position by measuring the arrival time difference of two or more base stations, but the positioning of the positioning technology is calculated.
  • the accuracy is about 50-100 meters, and the positioning accuracy is still low, which cannot meet the requirements of positioning for the future 5G services.
  • the technology requires multiple base stations to jointly perform positioning, and the positioning complexity is high.
  • the present disclosure provides a method and apparatus for positioning a terminal, which locates a terminal by using beam information and a timing advance, and has higher positioning accuracy (accuracy up to 10 meters), and the present disclosure does not need much
  • the joint positioning of the base stations only requires the beam information of one base station to achieve the positioning of the terminal, and the positioning complexity is lower than that of the prior art.
  • FIG. 1 is a method for positioning a terminal according to an embodiment of the present disclosure. As shown in FIG. 1 , the method may be applied to a transmission device, where the transmission device may be a base station or a transmission point, and the method includes:
  • S103 Determine location information of the terminal according to the beam information and the timing advance.
  • the above method can be used to locate the terminal by using the beam information corresponding to the terminal and the time advance of the terminal in the serving cell, so that the terminal can be positioned with high precision. Only the beam information of one base station can be used for positioning. Therefore, the positioning is performed. The implementation complexity is low.
  • FIG. 2 is a schematic diagram of a terminal positioning method according to an embodiment of the present disclosure. As shown in FIG. 2, the method may be applied to a terminal, where the method includes:
  • S202 Send the beam information to the transmission device, so that the transmission device is acquiring the terminal.
  • the location information of the terminal is determined according to the beam information and the timing advance.
  • the terminal sends the acquired beam information to the transmission device, so that the transmission device locates the terminal according to the beam information and the timing advance, thereby realizing high-precision terminal positioning, and the solution only needs the beam information of one base station. Positioning can be achieved, so the implementation of positioning is less complex.
  • FIG. 3 is a schematic diagram of a terminal positioning method according to an embodiment of the present disclosure. As shown in FIG. 3, the method includes:
  • the terminal detects a signal strength of the measurement signal on different beams of the transmission device.
  • the measurement device may be a base station, and the measurement signal may include: a Primary Synchronization Signal (PSS); or a Secondary Synchronization Signal (SSS); or a shared reference symbol, where the shared reference symbol is Reference symbols shared by all users under the beam.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • shared reference symbol where the shared reference symbol is Reference symbols shared by all users under the beam.
  • the terminal obtains beam information according to the measured signal strength, and sends the beam information to the transmission device.
  • the beam information can be obtained in the following three ways, and the beam information is sent to the transmission device:
  • Manner 1 The terminal determines a first beam whose signal strength is greater than or equal to the first preset intensity threshold, and obtains the beam information according to the first identification information of the first beam, and sends the beam information to the transmission device; The beam that the transmission device dispatches to the terminal can meet the normal signal transmission requirements.
  • Manner 2 The terminal determines the second beam with the highest signal strength, and obtains the beam information according to the second identifier information of the second beam, and sends the beam information to the transmission device.
  • the beam information further includes: a signal strength corresponding to the second beam, and the terminal obtains the beam information according to the signal strength, so that the transmission device can send according to the terminal.
  • the signal strength in the transmitted beam information is determined as the beam scheduled by the terminal.
  • the beam information may be a random access request
  • the terminal generates the random access request
  • determines a second beam with the highest signal strength and sends the random access request to the transmitting device on the second beam.
  • the transmission device receives beam information sent by the terminal, and determines an analog beam that is scheduled by the terminal according to the beam information.
  • the transmitting device determines the current load of each of the first beams according to the first identifier information, and determines that the load is less than or The first beam equal to the preset load threshold is the analog beam. This avoids scheduling a full-load beam to the terminal, causing the terminal to be inoperable.
  • the second beam is determined to be the analog beam according to the second identifier information, but considering that the signal strength corresponding to the second beam may still be
  • the signal strength of the second beam may also be included in the beam information, so that the transmission device determines the signal corresponding to the second beam according to the second identifier information, in another embodiment of the present disclosure.
  • the intensity is greater than or equal to the second preset intensity threshold; and when the signal strength is greater than or equal to the second preset intensity threshold, determining that the second beam is the analog beam, thereby ensuring that the analog beam scheduled for the terminal can meet the normal Communication needs.
  • the transmitting device receives the random access request sent by the terminal on the second beam, and determines that the second beam is the analog beam.
  • the transmission device acquires a first timing advance of the terminal in the serving cell.
  • the transmission device receives the random access request or the uplink reference signal sent by the terminal in the serving cell, where, in the case that the receiving terminal sends the random access request, the method 1 and mode 2 in the foregoing step S302 are performed.
  • the transmitting device After determining the analog beam, the transmitting device receives the random access request sent by the terminal, and for the third mode in the foregoing step S303, because the mode 3
  • the beam information in the packet is a random access request. Therefore, after receiving the random access request, the transmitting device can determine the analog beam, and after determining the analog beam, the terminal does not need to send the random access request again.
  • the transmitting device After receiving the uplink reference signal sent by the terminal, the transmitting device sends the uplink reference signal configuration information to the terminal after determining the analog beam, where the uplink reference signal configuration information includes the beam identifier and configuration information of the analog beam, and the configuration The information may be the frequency, the bandwidth, the modulation and coding mode, and the like of the uplink reference signal. The disclosure is not limited by the disclosure.
  • the terminal After receiving the configuration information of the uplink reference signal, the terminal is configured according to the configuration information on the analog beam marked by the beam identifier. The transmitting device sends an uplink reference signal.
  • the first time advance of the terminal is obtained according to the difference between the receiving time point and the preset time, where the preset time may be a transmission device.
  • Uplink unified receiving time configured for all terminals.
  • the transmission device acquires a first polarization angle of the terminal in a preset polarization coordinate system according to the determined analog beam, and acquires the terminal at the preset polarization according to the first time advance quantity acquired on the analog beam.
  • the first polarization distance in the coordinate system is a first polarization angle of the terminal in a preset polarization coordinate system according to the determined analog beam, and acquires the terminal at the preset polarization according to the first time advance quantity acquired on the analog beam.
  • the preset polarization coordinate system may be a polarization coordinate system generated by using a transmission device as a center and a preset direction as a polar axis.
  • the first polarization angle may be obtained by determining a location of the terminal according to the determined analog beam and a total number of beams under the transmission device and a width of each beam. A polarization angle.
  • the analog beam may include a horizontal analog beam and a vertical analog beam.
  • the first polarization angle and the first polarization distance may be calculated by using a horizontal analog beam or a vertical analog beam, or the level may be calculated. Simulating the first polarization angle and the first polarization distance under the beam, and calculating the first polarization angle and the first polarization distance under the vertical analog beam, generally, the first polarization angle under the vertical analog beam and the first The calculation of a polarization distance is optional.
  • the calculation of the first polarization angle in this step is described by taking a horizontal analog beam as an example, for example, As shown in Fig. 4, the polar axis is set at the starting position of the beam *1, and the first polarization angle is determined counterclockwise (also clockwise), and the dot in the figure is the position of the transmission device, and the rectangular frame in the figure is The location of the terminal, the coverage of the transmission device is composed of a number of areas covered by the beam.
  • the horizontal analog beam generated by the transmission device includes: beam *1, beam *2, beam *3, beam *4, beam * 5.
  • the angle corresponding to the starting position of the beam is used as the first polarization angle of the terminal or the angle corresponding to the termination position of the beam where the terminal is located as the first polarization angle of the terminal, and the starting position of the beam where the terminal is located may also be selected.
  • the first terminal of the polarization angle for example, may be selected corresponding to an intermediate position where the angle of the terminal as a first polarization beam angle, the present disclosure is not limited to this.
  • the calculation of the first polarization angle in this step is described by taking the vertical analog beam as an example.
  • the polar axis is set at the starting position of the beam *1 (ie, vertically downward as the polar axis direction), clockwise.
  • the direction determines the polarization angle (also counterclockwise), the dot in the figure is the position of the transmission device, the rectangular frame in the figure is the location where the terminal is located, and the coverage of the transmission device is composed of a region covered by several beams, the transmission
  • the vertical analog beam generated by the device includes: beam *1, beam *2, and beam *3, each beam has a width of x, and the beam identifier of the beam where the terminal is located is *2, and the value of the first polarization angle ⁇ of the terminal is The range is [x, 2x], that is, the angle between the angle (x) corresponding to the start position of the beam *2 and the angle (2x) corresponding to the end position. Similarly, the final value of ⁇ can also be used in various ways.
  • the mode determines, for example, the angle corresponding to the start position of the beam where the terminal is located is used as the first polarization angle of the terminal or the angle corresponding to the end position of the beam where the terminal is located is used as the first polarization angle of the terminal.
  • Select the beam from which the terminal is located The angle corresponding to any position between the start position and the end position is used as the first polarization angle of the terminal.
  • the angle corresponding to the middle position of the beam where the terminal is located may be selected as the first polarization angle. limited.
  • the first polarization angle ⁇ of the location where the terminal is located can be obtained by the above method.
  • the first polarization distance may be obtained by the method, where the first polarization distance may be a polarization distance calculated based on a horizontal analog beam, or may be based on a vertical simulation.
  • the calculation of the polarization distance of the beam is the same. In this embodiment, the calculation method is as follows:
  • the transmission device acquires the electromagnetic wave transmission speed of the beam where the terminal is located, and obtains the first polarization distance by the following formula:
  • Ts is the timing advance
  • V is the electromagnetic wave transmission speed
  • D is the distance between the terminal and the transmission device (ie, the first polarization distance).
  • the transmitting device obtains first location information of the terminal according to the first polarization angle and the first polarization distance.
  • the first position information (D, ⁇ ) is obtained.
  • the first location information is horizontal location information
  • the first polarization angle ⁇ and the first The polarization distance D is obtained based on the vertical analog beam
  • the first position information is the vertical position information
  • the following two processing manners may be included: one processing manner is to send the first location information to the terminal or the location server; and another processing manner is to make the Cartesian coordinates more intuitive, therefore,
  • the obtained first location information may be converted to a Cartesian coordinate system, and the converted first location information is sent to the terminal or the location server.
  • the first location information may be sent to the terminal or the location server through dedicated signaling or a MAC (Media Access Control) message or a NAS (Non-access stratum) message.
  • MAC Media Access Control
  • NAS Non-access stratum
  • the foregoing steps S304 to S306 are performed by the analog beam acquiring terminal.
  • the first location information the disclosure may also acquire the second location information of the terminal by using a digital beam, wherein since the analog beam is implemented by phase adjustment of the analog device, the number of formed beams is generally small, and the width of the single beam is wide.
  • the digital beam is formed by digital signal processing. The number of beams is large, and the width of a single beam is narrow, but the gain is high. Therefore, the accuracy of the first position information acquired by the analog beam is relatively second.
  • the location information is lower, but the location information is faster, and the second location information is higher in accuracy than the first location information, but the location information is slower because the logical sequence of beamforming is to form an analog beam first, and then The digital beam is formed, that is, after the analog beam is formed, some information needs to be exchanged between the base station and the terminal to obtain the information of the digital beam, and the delay caused by the process of information interaction makes the location information of the terminal later.
  • FIG. 6 The method for obtaining the second location information is described below with reference to FIG. 6, which includes:
  • the transmitting device After determining the analog beam scheduled by the terminal, the transmitting device sends the uplink reference signal configuration information to the terminal.
  • the uplink reference signal configuration information includes a beam identifier of the analog beam and configuration information, where the configuration information includes information such as a frequency, a bandwidth, a modulation and coding manner of the uplink reference signal.
  • the terminal sends an uplink reference signal to the transmission device on the analog beam indicated by the beam identifier in the uplink reference signal according to the configuration information in the uplink reference signal.
  • the transmission device determines, according to the uplink reference signal, a digital beam that is scheduled by the terminal.
  • the transmission device determines all channel information of the terminal in all or part of the bandwidth of the analog beam, and the transmission device can configure the weighting coefficient corresponding to the digital beam according to the channel information. Thereby, the digital beam scheduled for the terminal is determined according to the weighting coefficient.
  • the transmission device acquires a second timing advance of the terminal on the digital beam.
  • the transmission device acquires a second polarization angle of the terminal in a preset polarization coordinate system according to the determined digital beam, and acquires the terminal at the preset polarization according to the second timing advance obtained on the digital beam.
  • the second polarization distance in the coordinate system is a preset polarization coordinate system according to the determined digital beam, and acquires the terminal at the preset polarization according to the second timing advance obtained on the digital beam.
  • the transmission device obtains second location information of the terminal according to the second polarization angle and the second polarization distance.
  • one processing manner is to send the second location information to the terminal or the location server; and another processing manner is that the Cartesian coordinates are more intuitive, therefore,
  • the obtained second location information may be converted into a Cartesian coordinate system, and the converted second location information is sent to the terminal or the location server.
  • the second location information may be sent to the terminal or the location server through dedicated signaling or a MAC (Media Access Control) message or a NAS (Non-access stratum) message.
  • MAC Media Access Control
  • NAS Non-access stratum
  • the accuracy requirement and the delay requirement of the positioning service of the terminal it is determined whether the first location information is sent to the terminal or the location server (the accuracy requirement is not high, the delay requirement is high), or the second location.
  • the information (higher accuracy requirement) may also be sent after the first location information is sent (the initial location of the auxiliary terminal), and then the second location information (precise location) is not limited.
  • the terminal positioning method in the present disclosure can achieve accurate positioning. Compared with the prior art, the positioning accuracy of the terminal positioning in the present disclosure can reach within 10 meters. The following is the positioning of the terminal in the present disclosure. Positioning accuracy is explained,
  • the positioning accuracy of the terminal positioning by the horizontal analog beam is taken as an example.
  • the terminal is located in the beam *3, the actual position is C, the width of each beam is x, and the range of the polarization angle ⁇ of the terminal is [2x, 3x], assuming that the radial polarization distance of the terminal is D and the error is ⁇ D, the extreme radial distance of the terminal is D ⁇ D, and the coordinate of the A point is (2x+x/2, D+ ⁇ D), B The point coordinates are (3x, D- ⁇ D), and the maximum error is the distance between AB.
  • AB 2 2D 2 + 2 ( ⁇ D) 2 - 2 (D - ⁇ D) cos (x / 2).
  • the cell radius R 50 meters
  • each beam width x 12 degrees
  • the radial distance error is ⁇ D
  • the radial distance error depends on the estimation accuracy of the base station's time advancement to the terminal.
  • Ts 32.55 ns
  • the corresponding propagation distance is 9.77 meters (including the two-way propagation distance between the downlink and the uplink).
  • the conversion to a one-way distance is 4.89 meters, and the 5G technology may adopt a smaller granularity time advance.
  • the quantity is expected to further reduce the radial distance error.
  • the minimum unit of the time advance of the 5G technology is assumed to be 0.1Ts, and the corresponding distance error ⁇ D is approximately 0.5 meters.
  • AB 5 meters, indicating an error of 5 meters.
  • the height of the base station is H
  • the terminal is at point A (ie, the starting angular position of the vertical beam)
  • the point A and the base station are The angle between the points is ⁇
  • the distance from point A to the base station is D
  • the height of the terminal at point A is G1
  • H1 Dcos ⁇
  • G1 H-H1
  • the terminal is at point B (ie, the end angle position of the vertical beam)
  • the angle between the point B and the base station is ⁇
  • the distance from the point B to the base station is D
  • the positioning accuracy of the terminal positioning by the vertical analog beam can reach 10 meters or less.
  • the positioning accuracy of the terminal positioning by the digital beam can still reach within 10 meters.
  • the above method can be used to locate the terminal by using the beam information corresponding to the terminal and the timing advance of the terminal in the serving cell, so that high-precision terminal positioning can be realized, and only one base is needed in the solution.
  • the beam information of the station can be positioned, and therefore, the implementation complexity of the positioning is low.
  • FIG. 9 is a device for positioning a terminal, which is applied to a transmission device, as shown in FIG. 9, and includes:
  • the first obtaining module 901 is configured to acquire beam information corresponding to the terminal.
  • the second obtaining module 902 is configured to acquire a timing advance of the terminal in the serving cell.
  • the location determining module 903 is configured to determine location information of the terminal according to the beam information and the timing advance.
  • the location determining module 903 includes:
  • a beam determining sub-module 9031 configured to determine, according to the beam information, a beam scheduled for the terminal
  • the location determining sub-module 9032 is configured to determine location information of the terminal according to the determined beam and the timing advance.
  • the location determining submodule 9032 is configured to determine location information of the terminal by using a preset polarization coordinate system according to the determined beam and the timing advance; wherein the preset polarization coordinate system is a transmission device The center of the circle, the preset direction is the polarization coordinate system generated by the direction of the polar axis.
  • the location determining submodule 9032 is configured to acquire a polarization angle of the terminal in a preset polarization coordinate system according to the determined beam, and obtain the terminal according to the time advancement acquired on the serving cell.
  • the polarization distance in the polarization coordinate system is preset, and the position information of the terminal is obtained according to the polarization angle and the polarization distance.
  • the location determining submodule 9032 is configured to determine a polarization angle of the location of the terminal according to the determined beam and the total number of beams in the transmitting device and the width of each beam.
  • the location determining submodule 9032 is configured to select an angle corresponding to a starting location of a beam where the terminal is located as a polarization angle of the terminal, or an angle corresponding to a termination location of a beam where the terminal is located.
  • the polarization angle of the terminal; or the angle corresponding to any position between the start position and the end position of the beam where the terminal is located is used as the polarization angle of the terminal.
  • the first obtaining module 901 is configured to receive beam information reported by the terminal;
  • the beam determining submodule 9031 is configured to determine an analog beam scheduled for the terminal according to the beam information.
  • the beam information includes first identifier information of the first beam, where the first beam is used by the terminal to measure a signal strength of the measurement signal on different beams of the transmission device, and the obtained signal strength is greater than or equal to the first pre- a beam of intensity threshold;
  • the beam determining sub-module 9031 is configured to determine a current load of each of the first beams according to the first identification information, and determine that the first beam whose load is less than or equal to a preset load threshold is the analog beam.
  • the beam information includes second identifier information of the second beam, where the second beam is a beam that measures the signal strength of the measurement signal on the different beams of the transmission device, and the obtained beam with the highest signal strength is obtained;
  • the beam determining submodule 9031 is configured to determine, according to the second identifier information, the second beam as the analog beam.
  • the beam information further includes: a signal strength corresponding to the second beam, where the signal strength is a signal strength measured by the terminal on the measurement signal on the second beam,
  • the beam determining sub-module 9031 is configured to determine, according to the second identifier information, whether a signal strength corresponding to the second beam is greater than or equal to a second preset intensity threshold; when the signal strength is greater than or equal to the second preset intensity threshold Determining that the second beam is the analog beam.
  • the beam information is a random access request
  • the beam determining submodule 9031 is configured to receive the random access request sent by the terminal on the second beam, where the second beam is the terminal for the transmission
  • the signal strength of the measurement signal on different beams of the device is measured, and the beam with the highest signal strength is obtained, and the second beam is determined to be the analog beam.
  • the first acquiring module 901 is configured to receive an uplink reference signal sent by the terminal, and determine beam information corresponding to the terminal according to the uplink reference signal;
  • the beam determining submodule 9031 is configured to determine, according to the beam information, a number that is scheduled for the terminal. Beam.
  • the terminal can be positioned by the beam information corresponding to the terminal and the time advance of the terminal in the serving cell, so that the terminal can be positioned with high precision, and only the beam information of one base station can be used for positioning. Therefore, the positioning is performed.
  • the implementation complexity is low.
  • Figure 11 is a device for positioning a terminal, which is applied to a terminal, as shown in Figure 11, and includes:
  • the information acquiring module 1101 is configured to acquire beam information.
  • the information sending module 1102 is configured to send the beam information to the transmission device, so that the transmission device determines the location information of the terminal according to the beam information and the timing advance after acquiring the timing advance of the terminal in the serving cell.
  • the information acquiring module 1101 is configured to detect a signal strength of the measurement signal on different beams of the transmission device, and obtain the beam information according to the signal strength.
  • the measurement signal comprises: a primary synchronization signal; or a secondary synchronization signal; or a shared reference symbol, which is a reference symbol shared by all users under the beam.
  • the beam information includes first identifier information of the first beam, where the first beam is a beam whose signal strength is greater than or equal to a first preset intensity threshold.
  • the information acquiring module 1101 is configured to determine the first beam whose signal strength is greater than or equal to the first preset intensity threshold, and generate the beam information according to the first identification information of the first beam.
  • the information sending module 1102 is configured to send the first identifier information of the first beam to the transmitting device, so that the transmitting device determines, according to the first identifier information of the first beam, an analog beam that is scheduled by the terminal.
  • the beam information includes second identifier information of the second beam, where the second beam is the a beam with the highest signal strength in the same beam;
  • the information acquiring module 1101 is configured to determine a second beam with the highest signal strength, and generate the beam information according to the second identifier information of the second beam.
  • the information sending module 1102 is configured to send the second identifier information of the second beam to the transmitting device, so that the transmitting device determines, according to the second identifier information of the second beam, an analog beam that is scheduled by the terminal.
  • the beam information further includes: a signal strength corresponding to the second beam,
  • the information acquiring module 1101 is configured to generate the beam information according to the signal strength
  • the information sending module 1102 is configured to send the signal strength to the transmitting device, so that the transmitting device determines an analog beam scheduled for the terminal according to the signal strength.
  • the beam information is a random access request.
  • the information obtaining module 1101 is configured to generate the random access request.
  • the information sending module 1102 is configured to determine a second beam with the highest signal strength, and send the random access request to the transmitting device on the second beam, so that the transmission determines that the terminal sends the random access request.
  • the two beams are analog beams that are scheduled for the terminal.
  • the beam information includes an uplink reference signal
  • the information acquiring module 1101 is configured to receive uplink reference signal configuration information that is sent by the transmission device, where the uplink reference signal configuration information includes a beam identifier and configuration information of the analog beam determined by the transmission device, and generate the information according to the configuration information.
  • uplink reference signal includes a beam identifier and configuration information of the analog beam determined by the transmission device, and generate the information according to the configuration information.
  • the information sending module 1102 is configured to send an uplink reference signal to the terminal on the analog beam marked by the beam identifier, so that the transmitting device determines the digital beam scheduled by the terminal according to the uplink reference signal.
  • the terminal sends the acquired beam information to the transmission device, so that the transmission device locates the terminal according to the beam information and the timing advance, thereby realizing high-precision terminal positioning, and the solution only needs the beam information of one base station. Positioning can be achieved, so the implementation of positioning is less complex.
  • the embodiment of the present disclosure further provides a non-transitory computer readable storage medium 1 including one or more programs for performing terminal positioning.
  • the method includes: acquiring beam information corresponding to the terminal; acquiring a timing advance of the terminal in the serving cell; and determining location information of the terminal according to the beam information and the timing advance.
  • determining the location information of the terminal according to the beam information and the timing advance includes: determining a beam scheduled for the terminal according to the beam information; and determining location information of the terminal according to the determined beam and the timing advance.
  • determining the location information of the terminal according to the determined beam and the timing advance includes: determining location information of the terminal by using a preset polarization coordinate system according to the determined beam and the timing advance; wherein the preset The polarization coordinate system is a polarization coordinate system generated by the direction of the polar axis of the transmission device and the preset direction being the polar axis.
  • determining the location information of the terminal by using the preset polarization coordinate system according to the determined beam and the timing advance includes: acquiring, according to the determined beam, a polarization angle of the terminal in a preset polarization coordinate system, and Obtaining a polarization distance of the terminal in the preset polarization coordinate system according to the time advance obtained on the serving cell; and obtaining location information of the terminal according to the polarization angle and the polarization distance.
  • acquiring the polarization angle of the terminal in the preset polarization coordinate system according to the determined beam comprises: determining, according to the determined beam and the total number of beams under the transmission device and the width of each beam, determining the terminal location The polarization angle of the position.
  • determining the polarization angle of the location where the terminal is located includes: selecting an angle corresponding to a starting position of a beam where the terminal is located as a polarization angle of the terminal; or selecting a terminal of the beam where the terminal is located The angle corresponding to the stop position is taken as the polarization angle of the terminal; or the angle corresponding to any position between the start position and the end position of the beam where the terminal is located is selected as the polarization angle of the terminal.
  • the acquiring the beam information corresponding to the terminal includes: receiving the beam information reported by the terminal; determining, according to the beam information, that the beam scheduled by the terminal comprises: determining, according to the beam information, an analog beam scheduled for the terminal.
  • the beam information includes first identifier information of the first beam, where the first beam is used by the terminal to measure a signal strength of the measurement signal on different beams of the transmission device, and the obtained signal strength is greater than or equal to the first pre- Setting the beam of the intensity threshold; determining the simulated beam scheduled by the terminal according to the beam message includes: determining a current load of each of the first beams according to the first identification information; determining that the load is less than or equal to a preset load threshold A beam is the analog beam.
  • the beam information includes second identification information of the second beam, where the second beam is a signal that the terminal measures the signal strength of the measurement signal on different beams of the transmission device, and the obtained beam with the highest signal strength; Determining, by the beam information, the simulated beam scheduled by the terminal includes: determining, according to the second identification information, that the second beam is the analog beam.
  • the beam information further includes: a signal strength corresponding to the second beam, where the signal strength is a signal strength measured by the terminal on the measurement signal on the second beam, where the second identifier information is determined according to the second identifier information.
  • the second beam is the analog beam includes: determining, according to the second identifier information, whether the signal strength corresponding to the second beam is greater than or equal to a second preset intensity threshold; when the signal strength is greater than or equal to the second preset intensity threshold, The second beam is determined to be the analog beam.
  • the beam information is a random access request
  • determining, according to the beam information, that the simulated beam is scheduled by the terminal includes: receiving the random access request sent by the terminal on the second beam, where the second beam is The signal strength of the measurement signal on the different beams of the transmission device is measured by the terminal, and the obtained beam with the highest signal strength is determined; the second beam is determined to be the analog beam.
  • the acquiring the beam information corresponding to the terminal includes: receiving an uplink reference signal sent by the terminal, and determining, according to the uplink reference signal, beam information corresponding to the terminal; Determining the beam scheduled for the terminal includes: determining a digital beam scheduled for the terminal according to the beam information.
  • the embodiment of the present disclosure further provides a non-transitory computer readable storage medium 2 including one or more programs for performing terminal positioning.
  • the method includes: acquiring beam information; and transmitting the beam information to the transmission device, so that the transmission device determines the time advance of the terminal in the serving cell, determining the terminal according to the beam information and the timing advance location information.
  • the acquiring the beam information comprises: detecting a signal strength of the measurement signal on different beams of the transmission device; and obtaining the beam information according to the signal strength.
  • the measurement signal comprises: a primary synchronization signal; or a secondary synchronization signal; or a shared reference symbol, which is a reference symbol shared by all users under the beam.
  • the beam information includes first identifier information of the first beam, where the first beam is a beam whose signal strength is greater than or equal to a first preset intensity threshold in the different beam; and the beam information obtained according to the signal strength includes Determining the first beam whose signal strength is greater than or equal to the first preset intensity threshold; generating the beam information according to the first identification information of the first beam; and sending the beam information to the transmission device includes: the first beam The first identification information is sent to the transmission device, so that the transmission device determines the analog beam scheduled for the terminal according to the first identification information of the first beam.
  • the beam information includes second identifier information of the second beam, where the second beam is a beam with the highest signal strength among the different beams; and obtaining the beam information according to the signal strength includes: determining a second signal strength maximum Generating the beam information according to the second identification information of the second beam; sending the beam information to the transmission device includes: sending the second identification information of the second beam to the transmission device, so that the transmission device is configured according to the The second identification information of the second beam is determined as an analog beam scheduled by the terminal.
  • the beam information further includes: a signal strength corresponding to the second beam, according to the second Generating the beam information by the second identification information of the beam includes: generating the beam information according to the signal strength; sending the beam information to the transmission device comprises: transmitting the signal strength to the transmission device, so that the transmission device is based on the signal strength Determine the analog beam that is scheduled for the terminal.
  • the beam information includes a random access request
  • the acquiring beam information includes: generating the random access request; sending the beam information to a transmission device; determining a second beam with the highest signal strength; and the second beam Sending the random access request to the transmitting device, so that the transmission determines that the second beam where the terminal sends the random access request is an analog beam scheduled for the terminal.
  • the beam information includes an uplink reference signal
  • the acquiring beam information includes: receiving uplink reference signal configuration information sent by the transmission device, where the uplink reference signal configuration information includes a beam identifier of the analog beam determined by the transmission device, and The configuration information is generated, and the uplink reference signal is generated according to the configuration information.
  • the transmitting the beam information to the transmission device includes: sending an uplink reference signal to the terminal on the analog beam marked by the beam identifier, so that the transmission device is configured according to the uplink reference signal. Determine the digital beam that is scheduled for the terminal.
  • the embodiment of the present disclosure further provides a transmission device 3, where the transmission device 3 includes:
  • the embodiment of the present disclosure further provides a terminal 4, where the transmission device 4 includes:

Abstract

本公开提供了一种终端定位的方法和装置,该方法包括:获取终端对应的波束信息;获取终端在服务小区内的时间提前量;根据波束信息和时间提前量确定终端的位置信息,本公开能够解决终端定位精度低的技术问题。

Description

终端定位的方法和装置 技术领域
本公开涉及互联网领域,尤其涉及一种终端定位的方法和装置。
背景技术
随着移动互联网的飞速发展,精确的位置信息对于移动互联网公司和用户而言都异常重要。一方面,移动互联网公司需要利用位置信息对用户进行画像,进行价值挖掘和精准的广告投放,另一方面,用户需要精确的位置信息来提升体验。
现有技术中,GPS(Global Positioning System,全球定位系统)是常用的定位方法,但其精度有限(几十米量级),且在很多场景下无法使用,而目前基于蜂窝移动通信网络的定位方法有多种,如OTDOA(Observed Time Difference ofarrival,可观察到达时间差)技术,但该定位技术的定位精度在50-100米左右,定位精度仍然较低,无法满足未来的业务需求。
发明内容
本公开提供一种终端定位的方法和装置,以至少解决现有技术中终端定位精度低的技术问题。
为了实现上述目的,根据本公开实施例的第一方面,提供一种终端定位的方法,应用于传输设备,包括:获取终端对应的波束信息;获取所述终端在服务小区内的时间提前量;根据所述波束信息和所述时间提前量确定所述终端的位置信息。
根据本公开实施例的第二方面,提供一种终端定位的方法,应用于终端,包括:获取波束信息;将所述波束信息发送至传输设备,以便所述传输设备 在获取到终端在服务小区内的时间提前量后,根据所述波束信息和所述时间提前量确定所述终端的位置信息。
第三方面,提供一种终端定位的装置,应用于传输设备,包括:第一获取模块,用于获取终端对应的波束信息;第二获取模块,用于获取所述终端在服务小区内的时间提前量;位置确定模块,用于根据所述波束信息和所述时间提前量确定所述终端的位置信息。
第四方面,提供一种终端定位的装置,应用于终端,包括:信息获取模块,用于获取波束信息;信息发送模块,用于将所述波束信息发送至传输设备,以便所述传输设备在获取到终端在服务小区内的时间提前量后,根据所述波束信息和所述时间提前量确定所述终端的位置信息。
第五方面,提供一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质中包括一个或多个程序,所述一个或多个程序用于执行上述第一方面所述的方法。
第六方面,提供一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质中包括一个或多个程序,所述一个或多个程序用于执行上述第二方面所述的方法。
第七方面,提供一种传输设备,所述传输设备包括:
上述第五方面中所述的非临时性计算机可读存储介质;以及
一个或者多个处理器,用于执行所述非临时性计算机可读存储介质中的程序。
第八方面,提供一种终端,所述终端包括:
上述第六方面中所述的非临时性计算机可读存储介质;以及
一个或者多个处理器,用于执行所述非临时性计算机可读存储介质中的程序。
采用上述技术方案,获取终端对应的波束信息;获取所述终端在服务小 区内的时间提前量;根据所述波束信息和所述时间提前量确定所述终端的位置信息。这样,通过终端对应的波束信息以及终端在服务小区的时间提前量对终端进行定位,能够实现高精度的终端定位,且本方案只需要一个基站的波束信息即可实现定位,因此,定位的实现复杂度低。
附图说明
图1为本公开实施例提供的一种终端定位的方法的流程示意图;
图2为本公开实施例提供的另一种终端定位的方法的流程示意图;
图3为本公开实施例提供的第三种终端定位的方法的流程示意图;
图4为本公开实施例提供的一种水平模拟波束定位的计算示意图;
图5为本公开实施例提供的一种垂直模拟波束定位的计算示意图;
图6为本公开实施例提供的第四种终端定位的方法的流程示意图;
图7为本公开实施例提供的一种水平模拟波束定位精度的计算示意图;
图8为本公开实施例提供的一种垂直模拟波束定位精度的计算示意图;
图9为本公开实施例提供的一种终端定位的装置的结构示意图;
图10为本公开实施例提供的另一种终端定位的装置的结构示意图;
图11为本公开实施例提供的第三种终端定位的装置的结构示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本公开可以应用于5G(第五代移动通信技术)技术中,在5G技术中,移动通信系统将使用毫米波频段,而为了克服传播损耗的大幅提升,需要采用大规模天线来进行波束赋形,并通过提供的增益来弥补传播损耗的提升,一种可能的方式是采用模拟波束赋形和数字波束赋形相结合的混合式波束赋形方式,模拟波束的3dB带宽相对较宽但增益相对较小,数字波束的3dB带宽相对较窄但增益相对较大,因此,在使用毫米波频段大规模天线阵技术 后,每个小区将有10个以上的模拟波束,20个以上的数字波束。
现有技术中,在对终端进行定位时,常用的定位技术为GPS,但随着移动互联网的飞速发展,GPS的定位精度已经无法满足用户的需求,而目前基于蜂窝移动通信网络的定位,常见的有OTDOA(Observed Time Difference ofarrival,可观察到达时间差)技术,OTDOA技术通过测量两个或者更多基站的到达时间差,在已知各基站位置的情况下计算出终端位置,但该定位技术的定位精度在50-100米左右,定位精度仍然较低,无法满足未来5G业务对定位的需求,且该技术需要多个基站联合进行定位,定位复杂度较高。
为了解决上述问题,本公开提供一种终端定位的方法和装置,该方法通过波束信息和时间提前量对终端进行定位,定位精度更高(可达10米以内的精度),且本公开无需多个基站联合定位,只需要一个基站的波束信息即可实现终端的定位,相比于现有技术,定位复杂度更低。
下面结合具体的实施例对本公开的方案进行详细说明。
图1为本公开实施例提供的一种终端定位的方法,如图1所示,该方法可以应用于传输设备,该传输设备可以是基站或者传输点,该方法包括:
S101、获取终端对应的波束信息。
S102、获取该终端在服务小区内的时间提前量。
S103、根据该波束信息和该时间提前量确定该终端的位置信息。
采用上述方法,通过终端对应的波束信息以及终端在服务小区的时间提前量对终端进行定位,能够实现高精度的终端定位,且本方案只需要一个基站的波束信息即可实现定位,因此,定位的实现复杂度低。
图2为本公开实施例提供的一种终端定位的方法,如图2所示,该方法可以应用于终端,该方法包括:
S201、获取波束信息。
S202、将该波束信息发送至传输设备,以便该传输设备在获取到终端在 服务小区内的时间提前量后,根据该波束信息和该时间提前量确定该终端的位置信息。
采用上述方法,终端将获取的波束信息发送至传输设备,使得传输设备根据该波束信息和该时间提前量对终端进行定位,从而实现高精度的终端定位,且本方案只需要一个基站的波束信息即可实现定位,因此,定位的实现复杂度低。
图3为本公开实施例提供的一种终端定位的方法,如图3所示,该方法包括:
S301、终端在传输设备的不同波束上检测测量信号的信号强度。
其中,该传输设备可以是基站,该测量信号可以包括:主同步信号(PSS,Primary Synchronization Signal);或者,辅同步信号(SSS,Secondary Synchronization Signal);或者,共享参考符号,该共享参考符号为波束下所有用户共享的参考符号。
S302、终端根据测量的信号强度得到波束信息,并将该波束信息发送至传输设备。
在本步骤中,可以通过以下三种方式得到波束信息,并将该波束信息发送至传输设备:
方式一:终端确定信号强度大于或者等于第一预设强度阈值的第一波束,并根据该第一波束的第一标识信息得到该波束信息,并将该波束信息发送至传输设备;从而确保后续传输设备调度给终端的波束能够满足正常的信号传输需求。
方式二:终端确定信号强度最大的第二波束,并根据该第二波束的第二标识信息得到该波束信息,并该波束信息发送至传输设备。
在本公开另一实施例中,该波束信息还包括:该第二波束对应的信号强度,终端根据该信号强度得到该波束信息,这样,传输设备能够根据终端发 送的波束信息中的信号强度确定为终端调度的波束。
方式三:该波束信息可以是随机接入请求,终端生成该随机接入请求,并确定信号强度最大的第二波束,并在该第二波束上向该传输设备发送该随机接入请求。
S303、传输设备接收终端发送的波束信息,并根据该波束信息确定为该终端调度的模拟波束。
在本步骤中,若上述步骤S302发送的波束信息中包括第一波束的第一标识信息,则传输设备根据该第一标识信息确定每个该第一波束当前的负载,并确定该负载小于或者等于预设负载阈值的第一波束为该模拟波束。从而避免给终端调度了一个满负载的波束,导致该终端无法工作。
若上述步骤S302发送的波束信息中包括第二波束的第二标识信息,从而根据该第二标识信息确定该第二波束为该模拟波束,但是,考虑到该第二波束对应的信号强度可能仍然无法满足正常的通信需求,因此,在本公开另一实施例中,该波束信息中还可以包括第二波束的信号强度,这样,传输设备根据该第二标识信息确定该第二波束对应的信号强度是否大于或者等于第二预设强度阈值;并在该信号强度大于或者等于该第二预设强度阈值时,确定该第二波束为该模拟波束,从而确保为终端调度的模拟波束能够满足正常的通信需求。
若上述步骤S302发送的波束信息为随机接入请求,传输设备接收该终端在第二波束上发送的该随机接入请求,并确定该第二波束为该模拟波束。
S304、传输设备获取该终端在服务小区内的第一时间提前量。
在本步骤中,首先,传输设备接收终端在服务小区发送的随机接入请求或者上行参考信号,这里,在接收终端发送随机接入请求的情况下,对于上述步骤S302中的方式一和方式二,可以在确定模拟波束后,传输设备接收终端发送的随机接入请求,而对于上述步骤S303中的方式三,由于方式三 中的波束信息即为随机接入请求,因此,传输设备接收到该随机接入请求后,即可确定该模拟波束,而在确定该模拟波束后,终端无需再次发送随机接入请求。在接收终端发送的上行参考信号的情况下,传输设备在确定模拟波束后,向终端发送上行参考信号配置信息,其中,该上行参考信号配置信息包括该模拟波束的波束标识以及配置信息,该配置信息可以是上行参考信号的频率、带宽、调制编码方式等信息,本公开对此不作限定,终端在接收到该上行参考信号配置信息后,根据该配置信息在该波束标识标示的模拟波束上向传输设备发送上行参考信号。
其次,传输设备在接收到随机接入请求或者上行参考信号后,根据接收时间点与预设时间之间的差值得到该终端的第一时间提前量,其中,该预设时间可以是传输设备为所有终端配置的上行统一接收时间。
S305、传输设备根据确定的模拟波束获取该终端在预设极化坐标系中的第一极化角,并根据在该模拟波束上获取的第一时间提前量获取该终端在该预设极化坐标系中的第一极化距离。
其中,该预设极化坐标系可以是以传输设备为圆心,预设方向为极轴的方向生成的极化坐标系。
在一种可能的实现方式中,可以通过以下方式获取该第一极化角:根据确定的模拟波束和该传输设备下波束的总数目以及每个波束的宽度,确定所述终端所在位置的第一极化角。
需要说明的是,该模拟波束可以包括水平模拟波束和垂直模拟波束,在实际应用中,可以以水平模拟波束或者垂直模拟波束计算第一极化角和第一极化距离,也可以既计算水平模拟波束下的第一极化角和第一极化距离,又计算垂直模拟波束下的第一极化角和第一极化距离,一般地,垂直模拟波束下的第一极化角和第一极化距离的计算是可选的。
以水平模拟波束为例对本步骤中第一极化角的计算进行说明,例如,如 图4所示,以波束*1起始位置设置极轴,逆时针方向确定第一极化角(也可顺时针),图中的圆点即为传输设备的位置,图中的矩形框为终端所在的位置,传输设备的覆盖范围是由若干波束覆盖的区域组成,如图中该传输设备生成的水平模拟波束包括:波束*1、波束*2、波束*3、波束*4、波束*5、波束*6、波束*7以及波束*8,每个波束的宽度为x,终端所在波束的波束标识为*3,则终端的第一极化角β的取值范围为[2x,3x],即在波束*3的起始位置对应的角度(2x)和终止位置对应的角度(3x)之间取值,而β的最终取值可以采用多种方式确定,例如,选择该终端所在波束的起始位置所对应的角度作为该终端的第一极化角或者选择该终端所在波束的终止位置对应的角度作为该终端第一极化角,也可选择该终端所在波束的起始位置与终止位置之间的任一位置所对应的角度作为终端的第一极化角,例如,可以选择该终端所在波束的中间位置对应的角度作为第一极化角,本公开对此不作限定。
以垂直模拟波束为例对本步骤中第一极化角的计算进行说明,例如,如图5所示,以波束*1起始位置设置极轴(即垂直向下作为极轴方向),顺时针方向确定极化角(也可逆时针),图中的圆点即为传输设备的位置,图中的矩形框为终端所在的位置,传输设备的覆盖范围是由若干波束覆盖的区域组成,该传输设备生成的垂直模拟波束包括:波束*1、波束*2以及波束*3,每个波束的宽度为x,终端所在波束的波束标识为*2,则终端的第一极化角β的取值范围为[x,2x],即在波束*2的起始位置对应的角度(x)和终止位置对应的角度(2x)之间取值,同样地,β的最终取值也可以采用多种方式确定,例如,选择该终端所在波束的起始位置所对应的角度作为该终端的第一极化角或者选择该终端所在波束的终止位置对应的角度作为该终端第一极化角,也可选择该终端所在波束的起始位置与终止位置之间的任一位置所对应的角度作为终端的第一极化角,例如,可以选择该终端所在波束的中间位置对应的角度作为第一极化角,本公开对此不作限定。
这样,通过上述方式即可得到终端所在位置的第一极化角β。
在得到第一时间提前量后,本步骤还可以通过以下方式得到该第一极化距离,其中,该第一极化距离可以是基于水平模拟波束计算的极化距离,也可以是基于垂直模拟波束计算的极化距离,具体的计算方式相同,在本实施例中,计算方式如下:
传输设备获取该终端所在波束的电磁波传输速度,并通过以下公式得到第一极化距离:
Ts*V=2D
其中,Ts为该时间提前量,V为该电磁波传输速度,D为该终端与传输设备之间的距离(即第一极化距离)。
S306、传输设备根据该第一极化角和该第一极化距离得到该终端的第一位置信息。
其中,在确定第一极化角β和第一极化距离D后,即可得到该第一位置信息(D,β)。
需要说明的是,若第一极化角β和第一极化距离D是基于水平模拟波束得到的,则该第一位置信息即为水平位置信息,若该第一极化角β和第一极化距离D是基于垂直模拟波束得到的,则该第一位置信息即为垂直位置信息。
在得到该第一位置信息后,可以包括以下两种处理方式:一种处理方式是将该第一位置信息发送至终端或者位置服务器;另一种处理方式是考虑到直角坐标更直观,因此,可以将得到的第一位置信息转换到直角坐标系下,并将转换后的第一位置信息发送至终端或者位置服务器。
示例地,可以通过专用信令或MAC(Media Access Control,媒介访问控制)消息或NAS(Non-access stratum,非接入层)消息将该第一位置信息发送至终端或者位置服务器。
需要说明的是,上述步骤S304至步骤S306是通过模拟波束获取终端的 第一位置信息,本公开还可以通过数字波束获取终端的第二位置信息,其中,由于模拟波束是通过模拟器件的相位调整来实现的,通常形成的波束数目较少,单个波束的宽度较宽,增益较低;而数字波束是通过数字信号处理方式形成的,波束数目较多,单个波束的宽度较窄,但增益较高,因此,通过模拟波束获取的第一位置信息精度相对于第二位置信息较低,但获得位置信息较快,而第二位置信息虽然精度相对于第一位置信息较高,但获得位置信息较慢,这是因为波束形成的逻辑顺序是先形成模拟波束,然后形成数字波束,也就是说在形成模拟波束后,需要基站和终端之间交互一些信息才能获得数字波束的信息,而信息交互的过程导致的时延使得获得终端的位置信息的时间较晚。
下面通过图6对该第二位置信息的获取方法进行说明,该方法包括:
S601、在确定为终端调度的模拟波束后,传输设备向终端发送上行参考信号配置信息。
其中,确定为终端调度的模拟波束的具体步骤可以参考上述步骤S301至步骤S303,此处不再赘述。
该上行参考信号配置信息包括该模拟波束的波束标识以及配置信息,该配置信息包括上行参考信号的频率、带宽、调制编码方式等信息。
S602、终端根据该上行参考信号中的配置信息在该上行参考信号中的波束标识指示的模拟波束上向传输设备发送上行参考信号。
S603、传输设备根据该上行参考信号确定为终端调度的数字波束。
在本步骤中,传输设备在接收到该上行参考信号后,确定该终端在该模拟波束内全部带宽或部分带宽下所有信道信息,传输设备根据这个信道信息即可配置数字波束对应的加权系数,从而根据该加权系数确定为终端调度的数字波束。
S604、传输设备获取该终端在该数字波束上的第二时间提前量。
S605、传输设备根据确定的数字波束获取该终端在预设极化坐标系中的第二极化角,并根据在该数字波束上获取的第二时间提前量获取该终端在该预设极化坐标系中的第二极化距离。
其中,对于第二极化角和第二极化距离的计算可以参考上述步骤S305中的描述,此处不再赘述。
S606、传输设备根据该第二极化角和该第二极化距离得到该终端的第二位置信息。
在得到该第二位置信息后,可以包括以下两种处理方式:一种处理方式是将该第二位置信息发送至终端或者位置服务器;另一种处理方式是考虑到直角坐标更直观,因此,可以将得到的第二位置信息转换到直角坐标系下,并将转换后的第二位置信息发送至终端或者位置服务器。
示例地,可以通过专用信令或MAC(Media Access Control,媒介访问控制)消息或NAS(Non-access stratum,非接入层)消息将该第二位置信息发送至终端或者位置服务器。
需要说明的是,实际中可以根据终端的定位业务的精度要求和时延要求,确定是向终端或者位置服务器发送第一位置信息(精度要求不高,时延要求较高),还是第二位置信息(精度要求较高),也可以在发送第一位置信息后(辅助终端初步定位),再发送第二位置信息(精确定位),本公开对此不作限定。
综上所述,采用本公开中的终端定位方法,能够实现精确的定位,相比于现有技术,本公开中的终端定位的定位精度可以达到10米以内,下面对本公开中的终端定位的定位精度进行说明,
以通过水平模拟波束进行终端定位的定位精度为例进行说明,如图7所示,终端位于波束*3,实际位置为C,每个波束的宽度为x,终端的极化角β的范围是[2x,3x],假设终端的径向极化距离为D,误差为ΔD,则终端 的极端径向距离为D±ΔD,A点坐标为(2x+x/2,D+ΔD),B点坐标为(3x,D-ΔD),则最大误差为AB间距离,根据余弦定理可知,AB2=2D2+2(ΔD)2-2(D-ΔD)cos(x/2)。假设,小区半径R=50米,每个波束宽度x=12度,径向上距离误差为ΔD,且该径向上距离误差取决于基站对终端的时间提前量的估算精度,目前4G技术中,最小颗粒度的时间提前量为Ts=32.55ns,对应传播距离为9.77米(包括下行和上行的双向传播距离),换算为单向距离为4.89米,5G技术将可能采用更小颗粒度的时间提前量,有望进一步缩减径向距离误差,参考5G子帧设计(5G子帧长度为4G子帧的1/10),假设5G技术的时间提前量的最小单位为0.1Ts,对应距离误差ΔD约为0.5米。则代入公式后,AB=5米,则表示误差为5米。
以通过垂直模拟波束进行终端定位的定位精度为例进行说明,如图8所示,基站的高度为H,终端在A点(即垂直波束的起始角度位置),且该A点与基站之间的夹角为ω,A点距离基站的距离为D,且终端在A点的高度为G1,H1=Dcosω,则G1=H-H1,终端在B点(即垂直波束的终止角度位置),且该B点与基站之间的夹角为γ,B点距离基站的距离为D,且终端在A点的高度为G2,H2=Dcosγ,则G2=H-H2,最大误差即为AB间距离,则AB=G2-G1=D(cosγ-cosω),假设D为20米,ω取30度,γ取60度,则AB约为7.32米,则表示误差为7.32米。
由上可知,采用本方案通过垂直模拟波束进行终端定位的定位精度可以达到10米以内。
另外,通过数字波束进行终端定位的定位精度仍然可以达到10米以内,具体的定位精度的具体描述可以参考上述通过模拟波束进行终端定位的定位精度的说明,此处不再赘述了。
采用上述方法,通过终端对应的波束信息以及终端在服务小区的时间提前量对终端进行定位,能够实现高精度的终端定位,且本方案只需要一个基 站的波束信息即可实现定位,因此,定位的实现复杂度低。
图9为本公开提供的一种终端定位的装置,应用于传输设备,如图9所示,包括:
第一获取模块901,用于获取终端对应的波束信息;
第二获取模块902,用于获取该终端在服务小区内的时间提前量;
位置确定模块903,用于根据该波束信息和该时间提前量确定该终端的位置信息。
可选地,如图10所示,该位置确定模块903包括:
波束确定子模块9031,用于根据该波束信息确定为该终端调度的波束;
位置确定子模块9032,用于根据确定的波束和该时间提前量确定该终端的位置信息。
可选地,该位置确定子模块9032,用于根据确定的波束和该时间提前量通过预设极化坐标系确定该终端的位置信息;其中,该预设极化坐标系是以传输设备为圆心,预设方向为极轴的方向生成的极化坐标系。
可选地,该位置确定子模块9032,用于根据确定的波束获取该终端在预设极化坐标系中的极化角,并根据在该服务小区上获取的时间提前量获取该终端在该预设极化坐标系中的极化距离,并根据该极化角和该极化距离得到该终端的位置信息。
可选地,该位置确定子模块9032,用于根据确定的波束和该传输设备下波束的总数目以及每个波束的宽度,确定该终端所在位置的极化角。
可选地,该位置确定子模块9032,用于选择该终端所在波束的起始位置所对应角度作为该终端的极化角;或者,用于选择该终端所在波束的终止位置所对应角度作为该终端的极化角;或者,用于选择该终端所在波束的起始位置与终止位置之间的任一位置所对应角度作为该终端的极化角。
可选地,该第一获取模块901,用于接收该终端上报的波束信息;
该波束确定子模块9031,用于根据该波束信息确定为该终端调度的模拟波束。
可选地,该波束信息包括第一波束的第一标识信息,该第一波束为该终端对该传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度大于或者等于第一预设强度阈值的波束;
该波束确定子模块9031,用于根据该第一标识信息确定每个该第一波束当前的负载,并确定该负载小于或者等于预设负载阈值的第一波束为该模拟波束。
可选地,该波束信息包括第二波束的第二标识信息,该第二波束为该终端对该传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度最大的波束;
该波束确定子模块9031,用于根据该第二标识信息确定该第二波束为该模拟波束。
可选地,该波束信息还包括:该第二波束对应的信号强度,该信号强度为该终端对该第二波束上的测量信号测量得到的信号强度,
该波束确定子模块9031,用于根据该第二标识信息确定该第二波束对应的信号强度是否大于或者等于第二预设强度阈值;在该信号强度大于或者等于该第二预设强度阈值时,确定该第二波束为该模拟波束。
可选地,该波束信息为随机接入请求,该波束确定子模块9031,用于接收该终端在第二波束上发送的该随机接入请求,其中,该第二波束为该终端对该传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度最大的波束,并确定该第二波束为该模拟波束。
可选地,该第一获取模块901,用于接收终端发送的上行参考信号,并根据该上行参考信号确定该终端对应的波束信息;
该波束确定子模块9031,用于根据该波束信息确定为该终端调度的数字 波束。
需要说明的是,所属本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系装置的具体工作过程和描述,可以参考上述图1所示方法实施例中的对应过程,在此不再赘述。
采用上述装置,通过终端对应的波束信息以及终端在服务小区的时间提前量对终端进行定位,能够实现高精度的终端定位,且本方案只需要一个基站的波束信息即可实现定位,因此,定位的实现复杂度低。
图11为本公开提供的一种终端定位的装置,应用于终端,如图11所示,包括:
信息获取模块1101,用于获取波束信息;
信息发送模块1102,用于将该波束信息发送至传输设备,以便该传输设备在获取到终端在服务小区内的时间提前量后,根据该波束信息和该时间提前量确定该终端的位置信息。
可选地,该信息获取模块1101,用于在该传输设备的不同波束上检测测量信号的信号强度,并根据该信号强度得到该波束信息。
可选地,该测量信号包括:主同步信号;或者,辅同步信号;或者,共享参考符号,该共享参考符号为波束下所有用户共享的参考符号。
可选地,该波束信息包括第一波束的第一标识信息,该第一波束为该不同波束中信号强度大于或者等于第一预设强度阈值的波束;
该信息获取模块1101,用于确定该信号强度大于或者等于第一预设强度阈值的第一波束,并根据该第一波束的第一标识信息生成该波束信息;
该信息发送模块1102,用于将该第一波束的第一标识信息发送至该传输设备,以便该传输设备根据该第一波束的第一标识信息确定为该终端调度的模拟波束。
可选地,该波束信息包括第二波束的第二标识信息,该第二波束为该不 同波束中信号强度最大的波束;
该信息获取模块1101,用于确定信号强度最大的第二波束,并根据该第二波束的第二标识信息生成该波束信息;
该信息发送模块1102,用于将该第二波束的第二标识信息发送至该传输设备,以便该传输设备根据该第二波束的第二标识信息确定为该终端调度的模拟波束。
可选地,该波束信息还包括:该第二波束对应的信号强度,
该信息获取模块1101,用于根据该信号强度生成该波束信息;
该信息发送模块1102,用于将该信号强度发送至该传输设备,以便该传输设备根据该信号强度确定为该终端调度的模拟波束。
可选地,该波束信息为随机接入请求,
该信息获取模块1101,用于生成该随机接入请求;
该信息发送模块1102,用于确定信号强度最大的第二波束,并在该第二波束上向该传输设备发送该随机接入请求,以便该传输确定该终端发送该随机接入请求所在的第二波束是为该终端调度的模拟波束。
可选地,该波束信息包括上行参考信号,
该信息获取模块1101,用于接收该传输设备发送的上行参考信号配置信息,其中,该上行参考信号配置信息包括该传输设备确定的模拟波束的波束标识以及配置信息,并根据该配置信息生成该上行参考信号;
该信息发送模块1102,用于在该波束标识标示的模拟波束上向该终端发送上行参考信号,以便该传输设备根据该上行参考信号确定为该终端调度的数字波束。
需要说明的是,所属本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系装置的具体工作过程和描述,可以参考上述图2所示方法实施例中的对应过程,在此不再赘述。
采用上述装置,终端将获取的波束信息发送至传输设备,使得传输设备根据该波束信息和该时间提前量对终端进行定位,从而实现高精度的终端定位,且本方案只需要一个基站的波束信息即可实现定位,因此,定位的实现复杂度低。
本公开实施例还提供一种非临时性计算机可读存储介质1,该非临时性计算机可读存储介质1中包括一个或多个程序,该一个或多个程序用于执行一种终端定位的方法,该方法包括:获取终端对应的波束信息;获取该终端在服务小区内的时间提前量;根据该波束信息和该时间提前量确定该终端的位置信息。
可选地,该根据该波束信息和该时间提前量确定该终端的位置信息包括:根据该波束信息确定为该终端调度的波束;根据确定的波束和该时间提前量确定该终端的位置信息。
可选地,该根据确定的波束和该时间提前量确定该终端的位置信息包括:根据确定的波束和该时间提前量通过预设极化坐标系确定该终端的位置信息;其中,该预设极化坐标系是以传输设备为圆心,预设方向为极轴的方向生成的极化坐标系。
可选地,该根据确定的波束和该时间提前量通过预设极化坐标系确定该终端的位置信息包括:根据确定的波束获取该终端在预设极化坐标系中的极化角,并根据在该服务小区上获取的时间提前量获取该终端在该预设极化坐标系中的极化距离;根据该极化角和该极化距离得到该终端的位置信息。
可选地,该根据确定的波束获取该终端在预设极化坐标系中的极化角包括:根据确定的波束和该传输设备下波束的总数目以及每个波束的宽度,确定该终端所在位置的极化角。
可选地,该确定该终端所在位置的极化角包括:选择该终端所在波束的起始位置所对应角度作为该终端的极化角;或者,选择该终端所在波束的终 止位置所对应角度作为该终端的极化角;或者,选择该终端所在波束的起始位置与终止位置之间的任一位置所对应角度作为该终端的极化角。
可选地,该获取该终端对应的波束信息包括:接收该终端上报的波束信息;该根据该波束信息确定为该终端调度的波束包括:根据该波束信息确定为该终端调度的模拟波束。
可选地,该波束信息包括第一波束的第一标识信息,该第一波束为该终端对该传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度大于或者等于第一预设强度阈值的波束;该根据该波束消息确定为该终端调度的模拟波束包括:根据该第一标识信息确定每个该第一波束当前的负载;确定该负载小于或者等于预设负载阈值的第一波束为该模拟波束。
可选地,该波束信息包括第二波束的第二标识信息,该第二波束为该终端对该传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度最大的波束;该根据该波束信息确定为该终端调度的模拟波束包括:根据该第二标识信息确定该第二波束为该模拟波束。
可选地,该波束信息还包括:该第二波束对应的信号强度,该信号强度为该终端对该第二波束上的测量信号测量得到的信号强度,该根据该第二标识信息确定该第二波束为该模拟波束包括:根据该第二标识信息确定该第二波束对应的信号强度是否大于或者等于第二预设强度阈值;在该信号强度大于或者等于该第二预设强度阈值时,确定该第二波束为该模拟波束。
可选地,该波束信息为随机接入请求,该根据该波束信息确定为该终端调度的模拟波束包括:接收该终端在第二波束上发送的该随机接入请求,其中,该第二波束为该终端对该传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度最大的波束;确定该第二波束为该模拟波束。
可选地,该获取该终端对应的波束信息包括:接收终端发送的上行参考信号,并根据该上行参考信号确定该终端对应的波束信息;该根据该波束信 息确定为该终端调度的波束包括:根据该波束信息确定为该终端调度的数字波束。
本公开实施例还提供一种非临时性计算机可读存储介质2,该非临时性计算机可读存储介质2中包括一个或多个程序,该一个或多个程序用于执行一种终端定位的方法,该方法包括:获取波束信息;将该波束信息发送至传输设备,以便该传输设备在获取到终端在服务小区内的时间提前量后,根据该波束信息和该时间提前量确定该终端的位置信息。
可选地,该获取波束信息包括:在该传输设备的不同波束上检测测量信号的信号强度;根据该信号强度得到该波束信息。
可选地,该测量信号包括:主同步信号;或者,辅同步信号;或者,共享参考符号,该共享参考符号为波束下所有用户共享的参考符号。
可选地,该波束信息包括第一波束的第一标识信息,该第一波束为该不同波束中信号强度大于或者等于第一预设强度阈值的波束;该根据该信号强度得到该波束信息包括:确定该信号强度大于或者等于第一预设强度阈值的第一波束;根据该第一波束的第一标识信息生成该波束信息;该将该波束信息发送至传输设备包括:将该第一波束的第一标识信息发送至该传输设备,以便该传输设备根据该第一波束的第一标识信息确定为该终端调度的模拟波束。
可选地,该波束信息包括第二波束的第二标识信息,该第二波束为该不同波束中信号强度最大的波束;该根据该信号强度得到该波束信息包括:确定信号强度最大的第二波束;根据该第二波束的第二标识信息生成该波束信息;该将该波束信息发送至传输设备包括:将该第二波束的第二标识信息发送至该传输设备,以便该传输设备根据该第二波束的第二标识信息确定为该终端调度的模拟波束。
可选地,该波束信息还包括:该第二波束对应的信号强度,根据该第二 波束的第二标识信息生成该波束信息包括:根据该信号强度生成该波束信息;该将该波束信息发送至传输设备包括:将该信号强度发送至该传输设备,以便该传输设备根据该信号强度确定为该终端调度的模拟波束。
可选地,该波束信息包括随机接入请求,该获取波束信息包括:生成该随机接入请求;该将该波束信息发送至传输设备;确定信号强度最大的第二波束;在该第二波束上向该传输设备发送该随机接入请求,以便该传输确定该终端发送该随机接入请求所在的第二波束是为该终端调度的模拟波束。
可选地,该波束信息包括上行参考信号,该获取波束信息包括:接收该传输设备发送的上行参考信号配置信息,其中,该上行参考信号配置信息包括该传输设备确定的模拟波束的波束标识以及配置信息;根据该配置信息生成该上行参考信号;该将该波束信息发送至传输设备包括:在该波束标识标示的模拟波束上向该终端发送上行参考信号,以便该传输设备根据该上行参考信号确定为该终端调度的数字波束。
本公开实施例还提供一种传输设备3,该传输设备3包括:
上述的非临时性计算机可读存储介质1;以及
一个或者多个处理器,用于执行上述的非临时性计算机可读存储介质1中的程序。
本公开实施例还提供一种终端4,该传输设备4包括:
上述的非临时性计算机可读存储介质2;以及
一个或者多个处理器,用于执行上述的非临时性计算机可读存储介质2中的程序。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征, 在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (44)

  1. 一种终端定位的方法,其特征在于,应用于传输设备,包括:
    获取终端对应的波束信息;
    获取所述终端在服务小区内的时间提前量;
    根据所述波束信息和所述时间提前量确定所述终端的位置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述波束信息和所述时间提前量确定所述终端的位置信息包括:
    根据所述波束信息确定为所述终端调度的波束;
    根据确定的波束和所述时间提前量确定所述终端的位置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述根据确定的波束和所述时间提前量确定所述终端的位置信息包括:
    根据确定的波束和所述时间提前量通过预设极化坐标系确定所述终端的位置信息;其中,所述预设极化坐标系是以传输设备为圆心,预设方向为极轴的方向生成的极化坐标系。
  4. 根据权利要求3所述的方法,其特征在于,所述根据确定的波束和所述时间提前量通过预设极化坐标系确定所述终端的位置信息包括:
    根据确定的波束获取所述终端在预设极化坐标系中的极化角,并根据在所述服务小区上获取的时间提前量获取所述终端在所述预设极化坐标系中的极化距离;
    根据所述极化角和所述极化距离得到所述终端的位置信息。
  5. 根据权利要求4所述的方法,其特征在于,所述根据确定的波束获 取所述终端在预设极化坐标系中的极化角包括:
    根据确定的波束和所述传输设备下波束的总数目以及每个波束的宽度,确定所述终端所在位置的极化角。
  6. 根据权利要求5所述的方法,其特征在于,所述确定所述终端所在位置的极化角包括:
    选择所述终端所在波束的起始位置所对应角度作为所述终端的极化角;或者,
    选择所述终端所在波束的终止位置所对应角度作为所述终端的极化角;或者,
    选择所述终端所在波束的起始位置与终止位置之间的任一位置所对应角度作为所述终端的极化角。
  7. 根据权利要求2至6任一项所述的方法,其特征在于,所述获取所述终端对应的波束信息包括:
    接收所述终端上报的波束信息;
    所述根据所述波束信息确定为所述终端调度的波束包括:
    根据所述波束信息确定为所述终端调度的模拟波束。
  8. 根据权利要求7所述的方法,其特征在于,所述波束信息包括第一波束的第一标识信息,所述第一波束为所述终端对所述传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度大于或者等于第一预设强度阈值的波束;
    所述根据所述波束消息确定为所述终端调度的模拟波束包括:
    根据所述第一标识信息确定每个所述第一波束当前的负载;
    确定所述负载小于或者等于预设负载阈值的第一波束为所述模拟波束。
  9. 根据权利要求7所述的方法,其特征在于,所述波束信息包括第二波束的第二标识信息,所述第二波束为所述终端对所述传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度最大的波束;
    所述根据所述波束信息确定为所述终端调度的模拟波束包括:
    根据所述第二标识信息确定所述第二波束为所述模拟波束。
  10. 根据权利要求9所述的方法,其特征在于,所述波束信息还包括:所述第二波束对应的信号强度,所述信号强度为所述终端对所述第二波束上的测量信号测量得到的信号强度,
    所述根据所述第二标识信息确定所述第二波束为所述模拟波束包括:
    根据所述第二标识信息确定所述第二波束对应的信号强度是否大于或者等于第二预设强度阈值;
    在所述信号强度大于或者等于所述第二预设强度阈值时,确定所述第二波束为所述模拟波束。
  11. 根据权利要求7所述的方法,其特征在于,所述波束信息为随机接入请求,所述根据所述波束信息确定为所述终端调度的模拟波束包括:
    接收所述终端在第二波束上发送的所述随机接入请求,其中,所述第二波束为所述终端对所述传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度最大的波束;
    确定所述第二波束为所述模拟波束。
  12. 根据权利要求2至6任一项所述的方法,其特征在于,所述获取所 述终端对应的波束信息包括:
    接收终端发送的上行参考信号,并根据所述上行参考信号确定所述终端对应的波束信息;
    所述根据所述波束信息确定为所述终端调度的波束包括:
    根据所述波束信息确定为所述终端调度的数字波束。
  13. 一种终端定位的方法,其特征在于,应用于终端,包括:
    获取波束信息;
    将所述波束信息发送至传输设备,以便所述传输设备在获取到终端在服务小区内的时间提前量后,根据所述波束信息和所述时间提前量确定所述终端的位置信息。
  14. 根据权利要求13所述的方法,其特征在于,所述获取波束信息包括:
    在所述传输设备的不同波束上检测测量信号的信号强度;
    根据所述信号强度得到所述波束信息。
  15. 根据权利要求14所述的方法,其特征在于,所述测量信号包括:
    主同步信号;或者,
    辅同步信号;或者,
    共享参考符号,所述共享参考符号为波束下所有用户共享的参考符号。
  16. 根据权利要求14或15所述的方法,其特征在于,所述波束信息包括第一波束的第一标识信息,所述第一波束为所述不同波束中信号强度大于或者等于第一预设强度阈值的波束;
    所述根据所述信号强度得到所述波束信息包括:
    确定所述信号强度大于或者等于第一预设强度阈值的第一波束;
    根据所述第一波束的第一标识信息生成所述波束信息;
    所述将所述波束信息发送至传输设备包括:
    将所述第一波束的第一标识信息发送至所述传输设备,以便所述传输设备根据所述第一波束的第一标识信息确定为所述终端调度的模拟波束。
  17. 根据权利要求14或15所述的方法,其特征在于,所述波束信息包括第二波束的第二标识信息,所述第二波束为所述不同波束中信号强度最大的波束;所述根据所述信号强度得到所述波束信息包括:
    确定信号强度最大的第二波束;
    根据所述第二波束的第二标识信息生成所述波束信息;
    所述将所述波束信息发送至传输设备包括:
    将所述第二波束的第二标识信息发送至所述传输设备,以便所述传输设备根据所述第二波束的第二标识信息确定为所述终端调度的模拟波束。
  18. 根据权利要求17所述的方法,其特征在于,所述波束信息还包括:所述第二波束对应的信号强度,根据所述第二波束的第二标识信息生成所述波束信息包括:
    根据所述信号强度生成所述波束信息;
    所述将所述波束信息发送至传输设备包括:
    将所述信号强度发送至所述传输设备,以便所述传输设备根据所述信号强度确定为所述终端调度的模拟波束。
  19. 根据权利要求14或15所述的方法,其特征在于,所述波束信息包 括随机接入请求,所述获取波束信息包括:
    生成所述随机接入请求;
    所述将所述波束信息发送至传输设备包括:
    确定信号强度最大的第二波束;
    在所述第二波束上向所述传输设备发送所述随机接入请求,以便所述传输确定所述终端发送所述随机接入请求所在的第二波束是为所述终端调度的模拟波束。
  20. 根据权利要求13所述的方法,其特征在于,所述波束信息包括上行参考信号,所述获取波束信息包括:
    接收所述传输设备发送的上行参考信号配置信息,其中,所述上行参考信号配置信息包括所述传输设备确定的模拟波束的波束标识以及配置信息;
    根据所述配置信息生成所述上行参考信号;
    所述将所述波束信息发送至传输设备包括:
    在所述波束标识标示的模拟波束上向所述终端发送上行参考信号,以便所述传输设备根据所述上行参考信号确定为所述终端调度的数字波束。
  21. 一种终端定位的装置,其特征在于,应用于传输设备,包括:
    第一获取模块,用于获取终端对应的波束信息;
    第二获取模块,用于获取所述终端在服务小区内的时间提前量;
    位置确定模块,用于根据所述波束信息和所述时间提前量确定所述终端的位置信息。
  22. 根据权利要求21所述的装置,其特征在于,所述位置确定模块包括:
    波束确定子模块,用于根据所述波束信息确定为所述终端调度的波束;
    位置确定子模块,用于根据确定的波束和所述时间提前量确定所述终端的位置信息。
  23. 根据权利要求22所述的装置,其特征在于,所述位置确定子模块,用于根据确定的波束和所述时间提前量通过预设极化坐标系确定所述终端的位置信息;其中,所述预设极化坐标系是以传输设备为圆心,预设方向为极轴的方向生成的极化坐标系。
  24. 根据权利要求23所述的装置,其特征在于,所述位置确定子模块,用于根据确定的波束获取所述终端在预设极化坐标系中的极化角,并根据在所述服务小区上获取的时间提前量获取所述终端在所述预设极化坐标系中的极化距离,并根据所述极化角和所述极化距离得到所述终端的位置信息。
  25. 根据权利要求24所述的装置,其特征在于,所述位置确定子模块,用于根据确定的波束和所述传输设备下波束的总数目以及每个波束的宽度,确定所述终端所在位置的极化角。
  26. 根据权利要求25所述的装置,其特征在于,所述位置确定子模块,用于选择所述终端所在波束的起始位置所对应角度作为所述终端的极化角;或者,用于选择所述终端所在波束的终止位置所对应角度作为所述终端的极化角;或者,用于选择所述终端所在波束的起始位置与终止位置之间的任一位置所对应角度作为所述终端的极化角。
  27. 根据权利要求22至26任一项所述的装置,其特征在于,所述第一获取模块,用于接收所述终端上报的波束信息;
    所述波束确定子模块,用于根据所述波束信息确定为所述终端调度的模拟波束。
  28. 根据权利要求27所述的装置,其特征在于,所述波束信息包括第一波束的第一标识信息,所述第一波束为所述终端对所述传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度大于或者等于第一预设强度阈值的波束;
    所述波束确定子模块,用于根据所述第一标识信息确定每个所述第一波束当前的负载,并确定所述负载小于或者等于预设负载阈值的第一波束为所述模拟波束。
  29. 根据权利要求27所述的装置,其特征在于,所述波束信息包括第二波束的第二标识信息,所述第二波束为所述终端对所述传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度最大的波束;
    所述波束确定子模块,用于根据所述第二标识信息确定所述第二波束为所述模拟波束。
  30. 根据权利要求29所述的装置,其特征在于,所述波束信息还包括:所述第二波束对应的信号强度,所述信号强度为所述终端对所述第二波束上的测量信号测量得到的信号强度,
    所述波束确定子模块,用于根据所述第二标识信息确定所述第二波束对应的信号强度是否大于或者等于第二预设强度阈值;在所述信号强度大于或者等于所述第二预设强度阈值时,确定所述第二波束为所述模拟波束。
  31. 根据权利要求27所述的装置,其特征在于,所述波束信息为随机接入请求,
    所述波束确定子模块,用于接收所述终端在第二波束上发送的所述随机接入请求,其中,所述第二波束为所述终端对所述传输设备不同波束上的测量信号的信号强度进行测量,得到的信号强度最大的波束,并确定所述第二波束为所述模拟波束。
  32. 根据权利要求22至26任一项所述的装置,其特征在于,
    所述第一获取模块,用于接收终端发送的上行参考信号,并根据所述上行参考信号确定所述终端对应的波束信息;
    所述波束确定子模块,用于根据所述波束信息确定为所述终端调度的数字波束。
  33. 一种终端定位的装置,其特征在于,应用于终端,包括:
    信息获取模块,用于获取波束信息;
    信息发送模块,用于将所述波束信息发送至传输设备,以便所述传输设备在获取到终端在服务小区内的时间提前量后,根据所述波束信息和所述时间提前量确定所述终端的位置信息。
  34. 根据权利要求33所述的装置,其特征在于,所述信息获取模块,用于在所述传输设备的不同波束上检测测量信号的信号强度,并根据所述信号强度得到所述波束信息。
  35. 根据权利要求34所述的装置,其特征在于,所述测量信号包括:
    主同步信号;或者,
    辅同步信号;或者,
    共享参考符号,所述共享参考符号为波束下所有用户共享的参考符号。
  36. 根据权利要求34或35所述的装置,其特征在于,所述波束信息包括第一波束的第一标识信息,所述第一波束为所述不同波束中信号强度大于或者等于第一预设强度阈值的波束;
    所述信息获取模块,用于确定所述信号强度大于或者等于第一预设强度阈值的第一波束,并根据所述第一波束的第一标识信息生成所述波束信息;
    所述信息发送模块,用于将所述第一波束的第一标识信息发送至所述传输设备,以便所述传输设备根据所述第一波束的第一标识信息确定为所述终端调度的模拟波束。
  37. 根据权利要求34或35所述的装置,其特征在于,所述波束信息包括第二波束的第二标识信息,所述第二波束为所述不同波束中信号强度最大的波束;
    所述信息获取模块,用于确定信号强度最大的第二波束,并根据所述第二波束的第二标识信息生成所述波束信息;
    所述信息发送模块,用于将所述第二波束的第二标识信息发送至所述传输设备,以便所述传输设备根据所述第二波束的第二标识信息确定为所述终端调度的模拟波束。
  38. 根据权利要求37所述的装置,其特征在于,所述波束信息还包括:所述第二波束对应的信号强度,
    所述信息获取模块,用于根据所述信号强度生成所述波束信息;
    所述信息发送模块,用于将所述信号强度发送至所述传输设备,以便所 述传输设备根据所述信号强度确定为所述终端调度的模拟波束。
  39. 根据权利要求34或35所述的装置,其特征在于,所述波束信息为随机接入请求,
    所述信息获取模块,用于生成所述随机接入请求;
    所述信息发送模块,用于确定信号强度最大的第二波束,并在所述第二波束上向所述传输设备发送所述随机接入请求,以便所述传输确定所述终端发送所述随机接入请求所在的第二波束是为所述终端调度的模拟波束。
  40. 根据权利要求33所述的装置,其特征在于,所述波束信息包括上行参考信号,
    所述信息获取模块,用于接收所述传输设备发送的上行参考信号配置信息,其中,所述上行参考信号配置信息包括所述传输设备确定的模拟波束的波束标识以及配置信息,并根据所述配置信息生成所述上行参考信号;
    所述信息发送模块,用于在所述波束标识标示的模拟波束上向所述终端发送上行参考信号,以便所述传输设备根据所述上行参考信号确定为所述终端调度的数字波束。
  41. 一种非临时性计算机可读存储介质,其特征在于,所述非临时性计算机可读存储介质中包括一个或多个程序,所述一个或多个程序用于执行权利要求1至12中任一项所述的方法。
  42. 一种非临时性计算机可读存储介质,其特征在于,所述非临时性计算机可读存储介质中包括一个或多个程序,所述一个或多个程序用于执行权利要求13至20中任一项所述的方法。
  43. 一种传输设备,其特征在于,所述传输设备包括:
    权利要求41中所述的非临时性计算机可读存储介质;以及
    一个或者多个处理器,用于执行所述非临时性计算机可读存储介质中的程序。
  44. 一种终端,其特征在于,所述终端包括:
    权利要求42中所述的非临时性计算机可读存储介质;以及
    一个或者多个处理器,用于执行所述非临时性计算机可读存储介质中的程序。
PCT/CN2016/110737 2016-12-19 2016-12-19 终端定位的方法和装置 WO2018112693A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16924888.7A EP3537737A1 (en) 2016-12-19 2016-12-19 Terminal positioning method and device
PCT/CN2016/110737 WO2018112693A1 (zh) 2016-12-19 2016-12-19 终端定位的方法和装置
US16/431,793 US10649062B2 (en) 2016-12-19 2019-06-05 Terminal positioning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/110737 WO2018112693A1 (zh) 2016-12-19 2016-12-19 终端定位的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/431,793 Continuation US10649062B2 (en) 2016-12-19 2019-06-05 Terminal positioning method and apparatus

Publications (1)

Publication Number Publication Date
WO2018112693A1 true WO2018112693A1 (zh) 2018-06-28

Family

ID=62624045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110737 WO2018112693A1 (zh) 2016-12-19 2016-12-19 终端定位的方法和装置

Country Status (3)

Country Link
US (1) US10649062B2 (zh)
EP (1) EP3537737A1 (zh)
WO (1) WO2018112693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020253359A1 (zh) * 2019-06-20 2020-12-24 中兴通讯股份有限公司 终端设备的定位方法及装置、存储介质、电子装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108668370B (zh) * 2017-01-05 2019-08-06 华为技术有限公司 一种上行测量信号的指示方法及装置
KR102268720B1 (ko) * 2019-09-20 2021-06-23 주식회사 엘지유플러스 위치 측위 서버 및 이의 동작 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546963A (zh) * 2012-07-10 2014-01-29 电信科学技术研究院 一种确定定位信息的方法和设备
CN105578404A (zh) * 2014-10-17 2016-05-11 中兴通讯股份有限公司 一种定位方法及相应的终端、系统
US20160291589A1 (en) * 2015-03-30 2016-10-06 International Business Machines Corporation Implementing A Restricted-Operation Region For Unmanned Vehicles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2320162C (en) * 1996-12-06 2011-08-03 Immarsat Ltd Communication method and apparatus
US9602990B2 (en) * 2011-04-11 2017-03-21 Qualcomm Incorporated Method for providing network-based measurements for user equipment-based positioning
KR101839386B1 (ko) * 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
KR102036210B1 (ko) * 2013-12-20 2019-10-24 삼성전자주식회사 빔포밍 시스템에서 단말의 셀 탐색을 위한 방법 및 장치
KR102346981B1 (ko) * 2014-11-28 2022-01-04 삼성전자주식회사 무선 통신 시스템에서 채널 추정 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546963A (zh) * 2012-07-10 2014-01-29 电信科学技术研究院 一种确定定位信息的方法和设备
CN105578404A (zh) * 2014-10-17 2016-05-11 中兴通讯股份有限公司 一种定位方法及相应的终端、系统
US20160291589A1 (en) * 2015-03-30 2016-10-06 International Business Machines Corporation Implementing A Restricted-Operation Region For Unmanned Vehicles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"UE Positioning Based on AoA+TA for LTE Rel-9", 3GPP TSG RAN WG1 MEETING #56, no. R1-090936, 13 February 2009 (2009-02-13), XP050318776 *
See also references of EP3537737A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020253359A1 (zh) * 2019-06-20 2020-12-24 中兴通讯股份有限公司 终端设备的定位方法及装置、存储介质、电子装置
CN112203214A (zh) * 2019-06-20 2021-01-08 中兴通讯股份有限公司 终端设备的定位方法及装置、存储介质、电子装置

Also Published As

Publication number Publication date
US20190285723A1 (en) 2019-09-19
US10649062B2 (en) 2020-05-12
EP3537737A4 (en) 2019-09-11
EP3537737A1 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
US20200333427A1 (en) Method, apparatus, and system for positioning terminal device
CN110971326B (zh) 一种时间同步的方法和装置
US9829563B2 (en) Positioning method and apparatus
CN113728693B (zh) 用于装置的定位的方法
CN108370551B (zh) 基于到达时间差定位方法、用户设备及网络设备
CN107113762B (zh) 一种定位方法、定位服务器及定位系统
US20140235273A1 (en) Method for determining position of terminal in cellular mobile communication system
US11026242B2 (en) Fingerprinting enhancement with multi-band AoA measurements
US11782121B2 (en) Method and device for positioning utilizing beam information
US9451534B2 (en) Carrier selection method for positioning measurement, positioning measurement method, positioning processing apparatus, and terminal
EP4152776A1 (en) Information reporting method, apparatus and device, and readable storage medium
US10649062B2 (en) Terminal positioning method and apparatus
JP2022544963A (ja) オンデマンド位置決め関連アプリケーションデータのための方法及びデバイス
CN110149589A (zh) 一种基于到达角之差的定位方法
CN115942454A (zh) 用于定位的方法及装置
CN107404757B (zh) 一种用户设备ue的定位方法和系统
WO2022180596A1 (en) Sidelink ranging for positioning reference signal types
EP4228345A1 (en) Method of transmitting and receiving information for measurement of prs in wireless communication system and apparatus therefor
WO2024027664A1 (zh) 载波相位定位方法、装置、设备及介质
CN117528772A (zh) 终端定位方法、装置、设备及存储介质
CN116648964A (zh) 一种定位方法和装置
WO2023033836A1 (en) Apparatus and method of performing an anti-multipath function to calibrate an antenna array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016924888

Country of ref document: EP

Effective date: 20190606

NENP Non-entry into the national phase

Ref country code: DE