WO2024000525A1 - 感知方法、装置及系统 - Google Patents

感知方法、装置及系统 Download PDF

Info

Publication number
WO2024000525A1
WO2024000525A1 PCT/CN2022/103156 CN2022103156W WO2024000525A1 WO 2024000525 A1 WO2024000525 A1 WO 2024000525A1 CN 2022103156 W CN2022103156 W CN 2022103156W WO 2024000525 A1 WO2024000525 A1 WO 2024000525A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication device
blur function
function
waveform
Prior art date
Application number
PCT/CN2022/103156
Other languages
English (en)
French (fr)
Inventor
周保建
罗嘉金
彭晓辉
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/103156 priority Critical patent/WO2024000525A1/zh
Publication of WO2024000525A1 publication Critical patent/WO2024000525A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures

Definitions

  • the present application relates to the field of communication technology, and in particular to sensing methods, devices and systems.
  • Typical sensing applications include ranging, speed measurement, angle measurement, positioning, tracking, or identification, etc. Most of the sensing applications rely on measuring the time delay and Doppler signal from the transmitter to the target object, and then from the target object to the receiver. frequency or angle. Therefore, in current sensing applications, the target object can be sensed with the help of the fuzzy function of the measurement signal (or sensing signal). In other words, the blur function of a waveform affects the perceptual performance of that waveform as a perceptual signal.
  • the side-lobe level of the blur function is an important dimension to measure the waveform perception performance. For example, in a weak target detection scenario, if the side-lobe level of the blur function of the measurement signal is too high, it will easily cause great interference to the side-lobe area where the signal reflected by the weak target is located, resulting in the weak target being unable to be detected.
  • Embodiments of the present application provide a sensing method, device and system to solve the problem in sensing applications that interference within the side lobe range cannot be effectively suppressed due to the high side-lobe level of the fuzzy function of the sensing signal.
  • a sensing method is provided.
  • the method can be executed by a second communication device, or by a component of the second communication device (such as a processor, a chip, or a chip system, etc.), or by a device that can realize all Or a logical module or software implementation of part of the functions of the second communication device.
  • the following takes the second communication device to execute the method as an example.
  • the method includes: the second communication device receives the waveform information of the first signal and the echo signal of the first signal.
  • the first signal is the Nth signal sent by the first communication device. signal, where N is a positive integer greater than or equal to 1.
  • the second communication device determines the first signal based on the waveform information of the first signal.
  • the second communication device determines a first cross-correlation function based on the first signal and the echo signal of the first signal.
  • the first cross-correlation function is calculated by performing three operations on the first signal: time delay, Doppler frequency shift and angular deflection.
  • the cross-correlation value of at least one later obtained signal and the echo signal of the first signal is obtained.
  • the second communication device determines based on the first cross-correlation function that a first blur function needs to be suppressed, the first blur function being a blur function of the first signal.
  • the second communication device sends first indication information to the first communication device.
  • the first indication information is used to determine the second blur function, and the second blur function has local amplitude suppression relative to the first blur function.
  • the second communication device receives the echo signal of the second signal, the second signal is the M-th signal sent by the first communication device, and the blur function of the second signal is the second blur function, where M is equal to N+1.
  • the second communication device after receiving the echo signal of the first signal, if the second communication device determines that the blur function of the first signal needs to be suppressed based on the cross-correlation function of the first signal and the echo signal, it can The first communication device sends the first indication information, so that the first communication device can determine the second blur function obtained by suppressing the first blur function according to the first indication information, so that the corresponding second signal can be further determined.
  • the first communication device sends the second signal after determining the second signal.
  • the second communication device receives the echo signal of the second signal, because the second blur function is a partial response to the previous first blur function that needs to be suppressed.
  • the second fuzzy function helps to reduce the interference existing in the original local area, better matches the perceived scene, and improves the weak target detection ability or the suppression ability of active interference.
  • the first indication information includes position information that suppresses the first blur function.
  • the second communication device can feed back the position information for suppressing the first fuzzy function to the first communication device, so that the first communication device determines the position in the first fuzzy function that needs to be suppressed based on the position information.
  • the first indication information includes position information and amplitude information for suppressing the first blur function
  • the position information corresponds to the amplitude information.
  • the second communication device can feed back to the first communication device the position information that suppresses the first blur function and the amplitude information corresponding to the position information, so that the first communication device determines the first position information based on the position information and the amplitude information.
  • the position information includes at least one coordinate point and/or at least one coordinate range on the definition domain of the first fuzzy function. Based on this solution, the position that needs to be suppressed in the first blur function can be fed back through the coordinate point or coordinate range of the first blur function.
  • the coordinate point is determined by at least one of a delay value, a Doppler frequency value, and an angle value.
  • the coordinate range is determined by at least one of a delay range, a Doppler frequency range, and an angle range.
  • the amplitude information includes the amplitude value of the second blur function at the corresponding position, the value of the peak side lobe ratio of the second blur function at the corresponding position, or the value of the second blur function at the corresponding position.
  • the value of the integral side lobe ratio Based on this solution, the first communication device can determine to suppress the corresponding position in the first blur function by indicating the amplitude value, the value of the peak side lobe ratio or the value of the integrated side lobe ratio of the second blur function at the corresponding position.
  • the corresponding amplitude value, peak side-lobe ratio value or integrated side-lobe ratio value should be corresponding, thereby determining the amplitude information that needs to be suppressed for the first blur function.
  • the amplitude information includes the attenuation value of the amplitude value of the second blur function at the corresponding position compared with the first blur function or the third blur function; wherein, the third blur function is the blur function of the first signal sent by the first communication device.
  • the first communication device can directly determine the need to modify the first blur function or the third blur function by indicating the amplitude attenuation value of the second blur function compared to the first blur function or the third blur function corresponding to the initially transmitted signal. The amplitude value for suppression at the corresponding position in the function.
  • the first indication information includes waveform parameters, waveform index or waveform sequence of the second signal, wherein the waveform index corresponds to the waveform corresponding to the second signal in the waveform set, and the waveform set configuration in the first communication device and the second communication device.
  • the first communication device can determine the second signal corresponding to the second blur function by indicating the waveform parameters, waveform index or waveform sequence of the second signal.
  • a sensing method is provided.
  • the method can be executed by the first communication device, or by a component of the first communication device (such as a processor, a chip, or a chip system, etc.), or by a device that can realize all Or a logical module or software implementation of part of the functions of the first communication device.
  • the method is described below by taking the first communication device to execute the method as an example.
  • the method includes: the first communication device sends a first signal and the waveform information of the first signal.
  • the first signal is the Nth signal sent by the first communication device.
  • the fuzzy function of a signal is the first fuzzy function; where N is a positive integer greater than or equal to 1.
  • the first communication device receives the first indication information sent by the second communication device.
  • the first indication information is used to determine the second blur function, and the second blur function has local amplitude suppression relative to the first blur function.
  • the first communication device determines the second signal according to the first indication information, and the blur function of the second signal is the second blur function.
  • the first communication device sends a second signal; the second signal is the M-th signal sent by the first communication device, where M is equal to N+1.
  • the second communication device after receiving the echo signal of the first signal, if the second communication device determines that the blur function of the first signal needs to be suppressed based on the cross-correlation function of the first signal and the echo signal, it can The first communication device sends the first indication information, so that the first communication device can determine the second blur function obtained by suppressing the first blur function according to the first indication information, so that the corresponding second signal can be further determined.
  • the first communication device sends the second signal after determining the second signal.
  • the second communication device receives the echo signal of the second signal, because the second blur function is a partial response to the previous first blur function that needs to be suppressed.
  • the second fuzzy function helps to reduce the interference existing in the original local area, better matches the perceived scene, and improves the weak target detection ability or the suppression ability of active interference.
  • the first indication information includes position information that suppresses the first blur function.
  • the second communication device can feed back the position information for suppressing the first fuzzy function to the first communication device, so that the first communication device determines the position in the first fuzzy function that needs to be suppressed based on the position information.
  • the first indication information includes position information and amplitude information for suppressing the first blur function
  • the position information corresponds to the amplitude information.
  • the second communication device can feed back to the first communication device the position information that suppresses the first blur function and the amplitude information corresponding to the position information, so that the first communication device determines the first position information based on the position information and the amplitude information.
  • the position information includes at least one coordinate point and/or at least one coordinate range on the definition domain of the first fuzzy function. Based on this solution, the position that needs to be suppressed in the first blur function can be fed back through the coordinate point or coordinate range of the first blur function.
  • the coordinate point is determined by at least one of a delay value, a Doppler frequency value, and an angle value.
  • the coordinate range is determined by at least one of a delay range, a Doppler frequency range, and an angle range.
  • the amplitude information includes the amplitude value of the second blur function at the corresponding position, the value of the peak side lobe ratio of the second blur function at the corresponding position, or the value of the second blur function at the corresponding position.
  • the value of the integral side lobe ratio Based on this solution, the first communication device can determine to suppress the corresponding position in the first blur function by indicating the amplitude value, the value of the peak side lobe ratio or the value of the integrated side lobe ratio of the second blur function at the corresponding position.
  • the corresponding amplitude value, peak side-lobe ratio value or integrated side-lobe ratio value should be corresponding, thereby determining the amplitude information that needs to be suppressed for the first blur function.
  • the amplitude information includes the attenuation value of the amplitude value of the second blur function at the corresponding position compared with the first blur function or the third blur function; where, the third blur function is the blur function of the first signal sent by the first communication device.
  • the first communication device can directly determine the need to modify the first blur function or the third blur function by indicating the amplitude attenuation value of the second blur function compared to the first blur function or the third blur function corresponding to the initially transmitted signal. The amplitude value for suppression at the corresponding position in the function.
  • the first indication information includes waveform parameters, waveform index or waveform sequence of the second signal, wherein the waveform index corresponds to the waveform corresponding to the second signal in the waveform set, and the waveform set configuration in the first communication device and the second communication device.
  • the first communication device can determine the second signal corresponding to the second blur function by indicating the waveform parameters, waveform index or waveform sequence of the second signal.
  • a communication device for implementing the various methods mentioned above.
  • the communication device may be the second communication device in the above-mentioned first aspect, or a device including the above-mentioned second communication device, or a device included in the above-mentioned second communication device, such as a chip; or the communication device may be the above-mentioned second communication device.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method.
  • the modules, units, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a fourth aspect provides a communication device, including: a processor, the processor is configured to execute instructions stored in a memory, and when the processor executes the instructions, the communication device performs the method described in any of the above aspects.
  • the communication device may be the second communication device in the above-mentioned first aspect, or a device including the above-mentioned second communication device, or a device included in the above-mentioned second communication device, such as a chip; or the communication device may be the above-mentioned second communication device.
  • the first communication device in the aspect or a device including the above-mentioned first communication device, or a device included in the above-mentioned first communication device.
  • the communication device further includes a memory, which is used to store computer instructions.
  • the processor and the memory are integrated together, or the processor and the memory are provided separately.
  • the memory is coupled to the processor and is external to the communication device.
  • a communication device including: a processor and an interface circuit, the interface circuit is used to communicate with a module outside the communication device; the processor is used to execute through a logic circuit, or by running a computer program or instructions The method described in any of the above aspects.
  • the communication device may be the second communication device in the above-mentioned first aspect, or a device including the above-mentioned second communication device, or a device included in the above-mentioned second communication device, such as a chip; or the communication device may be the above-mentioned second communication device.
  • the first communication device in the aspect, or a device including the above-mentioned first communication device, or a device included in the above-mentioned first communication device.
  • the interface circuit can be a code/data read-write interface circuit, which is used to receive computer execution instructions (computer execution instructions are stored in the memory, may be read directly from the memory, or may pass through other devices) and transmitted to the A processor, such that the processor executes computer execution instructions to perform the method described in any of the above aspects.
  • the communication device may be a chip or a system on a chip.
  • a computer-readable storage medium Instructions are stored in the computer-readable storage medium, and when run on a communication device, the communication device can perform the method described in any of the above aspects.
  • the communication device may be the second communication device in the above-mentioned first aspect, or a device including the above-mentioned second communication device, or a device included in the above-mentioned second communication device, such as a chip; or the communication device may be the above-mentioned second communication device.
  • a seventh aspect provides a computer program product containing instructions that, when run on a communication device, enables the communication device to perform the method described in any of the above aspects.
  • the communication device may be the second communication device in the above-mentioned first aspect, or a device including the above-mentioned second communication device, or a device included in the above-mentioned second communication device, such as a chip; or the communication device may be the above-mentioned second communication device.
  • the first communication device in the aspect or a device including the above-mentioned first communication device, or a device included in the above-mentioned first communication device.
  • An eighth aspect provides a communication device (for example, the communication device may be a chip or a chip system).
  • the communication device includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device further includes a memory, which is used to store necessary program instructions and data.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices.
  • a ninth aspect provides a communication system, which includes a first communication device and a second communication device.
  • the second communication device is used to perform the method described in the first aspect; the first communication device is used to perform the method described in the second aspect.
  • Figure 1 is a schematic diagram of the main lobe and side lobes of a response function provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the cross-correlation function in the passive target measurement scenario provided by the embodiment of the present application;
  • Figure 3 is a schematic diagram of the blur function of the FMCW waveform and the blur function of the OFDM waveform provided by the embodiment of the present application;
  • Figure 4 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of an application scenario provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is an interactive schematic diagram of a sensing method provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a suppressed blur function provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the second cross-correlation function provided by the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the amplitude spectrum of some response functions shows the shape of petals, such as the autocorrelation function of certain waveforms, the radiation pattern of an array antenna, etc.
  • the lobe with the largest amplitude of the response function is called the main lobe, and the remaining lobes are called side lobes.
  • Figure 1 is an image of the response function A( ⁇ ), where ⁇ is a parameter,
  • a commonly used main lobe width is defined as the half-power main lobe width, that is, the main lobe width corresponding to the value of the response function when the power drops from the peak value to half of the peak value, also called the 3dB main lobe width.
  • the half-power main lobe width is shown as W 3dB .
  • Another commonly used main lobe width is defined as the zero-point main lobe width, that is, the main lobe width between the positions corresponding to the first local minimum on both sides of the main lobe.
  • the zero-point main lobe width is shown as W 0 .
  • the main lobe width of the waveform's autocorrelation function is proportional to the resolution and accuracy of the measurement. Therefore, the main lobe level is a measure of the waveform.
  • One dimension of perception performance, mainlobe broadening deteriorates the resolution and accuracy of waveforms used for perception.
  • lobes other than the main lobe are called side lobes. According to the position, the side lobes can be numbered as the first side lobe, the second side lobe, and so on.
  • the level of side lobes is a key indicator that affects system performance. To measure the level of side lobes, there are two commonly used indicators: peak side lobe ratio (PSLR) and integrated side lobe ratio (ISLR).
  • PSLR peak side lobe ratio
  • ISLR integrated side lobe ratio
  • PSLR is defined as the ratio of the power corresponding to the peak value of the response function and the power corresponding to the peak value of the side lobes of the response function
  • ISLR is defined as the ratio of the power included in the main lobe of the response function to the power included in the side lobes of the response function.
  • the PSLR is as shown in Figure 1.
  • the correlation operation refers to multiplying and then adding the values of the corresponding coordinate points of the two functions.
  • cross-correlation If two functions are different, then the correlation operation between them is called cross-correlation, and the function obtained by the correlation operation is called cross-correlation function.
  • the blur function is generally the autocorrelation function of a certain signal with respect to dimensions such as time delay, Doppler frequency, or angle. It represents the path of the echo signal reflected by the moving target after the signal reaches the moving target. Response function after matched filter.
  • typical sensing applications such as ranging, speed measurement, angle measurement, positioning, tracking, or identification
  • most sensing applications rely on measuring the signal from the transmitter to the target object, and then from the target object to the receiver. Time delay, Doppler frequency or angle. Therefore, in current sensing applications, the target object can be sensed with the help of the fuzzy function of the measurement signal (or sensing signal).
  • the blur function of a waveform affects the perceptual performance of that waveform as a perceptual signal.
  • the side lobe level of the blur function is also one of the dimensions to measure the waveform perception performance.
  • low side lobes help reduce the interference caused by strong signals in the side lobe area, thereby improving the target detection capability in the side lobe area.
  • interference suppression scenario interference can be effectively suppressed by constructing a low side lobe area.
  • a passive target means that the target itself does not emit signals.
  • the line of sight (LOS) signal between the transmitter and the receiver is much stronger than the echo signal reflected by the target, so that the matched filtering of the echo signal is
  • the output peak value is lower than the side lobe value of the matched filter output of the LOS path signal.
  • the main lobe value of the ambiguity function of the echo signal is lower than the side lobe value of the ambiguity function of the LOS path signal.
  • the strong signal caused by the LOS path is called a strong signal
  • the echo signal reflected by the target is called a weak signal.
  • Figure 2 shows the function image obtained by the transmitter in this scenario, after the transmitter transmits the measurement signal, and the receiver receives the signal and processes it.
  • the horizontal axis coordinate is the delay ⁇
  • the unit is seconds (seconds)
  • the vertical axis coordinate is the cross correlation value (cross correlation)
  • the unit is dB.
  • the curve with relatively thin lines is the cross-correlation function between the strong signal caused by the LOS path and the measurement signal
  • the curve with relatively thick lines is the cross-correlation function between the echo signal reflected by the target and the measurement signal.
  • These two cross-correlation functions are respectively the functions of the fuzzy function of the measurement signal after different time domain translation and amplitude scaling.
  • Figure 3 shows the image of the ambiguity function of the frequency modulated continuous wave (FMCW) waveform and the ambiguity function of the orthogonal frequency division multiplexing (OFDM) waveform.
  • the horizontal axis coordinate is the time delay ⁇
  • the vertical axis coordinate is the autocorrelation.
  • the side lobes of the FMCW waveform are significantly lower than the side lobes of the OFDM waveform. Therefore, it can be expected that in the scenario of delay measurement, using FMCW waveform to sense the target can better suppress interference in the side lobe area.
  • the method of windowing the waveform can currently be used to reduce interference in the side lobe area.
  • windowing can reduce the side lobe level, it can also cause the main lobe to broaden, resulting in a loss of resolution and accuracy.
  • embodiments of the present application propose a sensing method that can effectively suppress the local amplitude of the blur function of the signal without widening the main lobe level of the blur function, thereby suppressing interference in the side lobe area. , improve perception performance.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, a and b and c, where a, b, c Can be single or multiple.
  • words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • the technical solutions of the embodiments of the present application can be used in various communication systems.
  • the communication system can be a 3rd generation partnership project (3GPP) communication system, such as a long term evolution (LTE) system, a 5th generation partnership project (3GPP) system, etc.
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • 3GPP 5th generation partnership project
  • Generation (5th generation, 5G) communication system vehicle to everything (V2X) system, or device-to-device (D2D) communication system, machine to machine (machine to machine, M2M) communication system, Internet of things (IoT), or other similar new systems for the future, such as sixth-generation (6G) systems.
  • the communication system can also be a non-3GPP communication system, such as a wireless local area network (WLAN) system such as Wi-Fi, without limitation.
  • WLAN wireless local area network
  • the technical solutions of the embodiments of this application can be applied to various communication scenarios, for example, can be applied to one or more of the following communication scenarios: smart home, D2D, V2X, and IoT communication scenarios.
  • a communication system 40 provided by an embodiment of the present application includes a first communication device 401 and a second communication device 402 .
  • the communication system 40 shown in FIG. 4 is only a reference example.
  • the embodiment of the present application does not limit the number of first communication devices 401 and/or second communication devices 402 included in the communication system 40.
  • the communication system 40 may include multiple first communication devices 401 and/or second communication devices 402.
  • the first communication device 401 and the second communication device 402 may also be the same communication device.
  • the first communication device 401 and the second communication device 402 may be different types of equipment.
  • one of the first communication device 401 and the second communication device 402 is a network device and the other is a terminal device.
  • the first communication device 401 and the second communication device 402 may also be the same type of equipment.
  • the first communication device 401 and the second communication device 402 are both terminal devices, or the first communication device 401 and the second communication device 402 may be terminal devices.
  • the devices 402 are all network devices, which are not specifically limited in the embodiments of this application.
  • the second communication device receives the waveform information of the first signal and the echo signal of the first signal, and the first signal is the The Nth signal sent by a communication device, where N is a positive integer greater than or equal to 1. Then, the second communication device determines the first signal based on the waveform information of the first signal. The second communication device determines a first cross-correlation function based on the first signal and the echo signal of the first signal. The first cross-correlation function is calculated by performing three operations on the first signal: time delay, Doppler frequency shift and angular deflection.
  • the cross-correlation value of at least one later obtained signal and the echo signal of the first signal is obtained.
  • the second communication device determines based on the first cross-correlation function that a first blur function needs to be suppressed, the first blur function being a blur function of the first signal.
  • the second communication device sends first indication information to the first communication device.
  • the first indication information is used to determine the second blur function, and the second blur function has local amplitude suppression relative to the first blur function.
  • the second communication device receives the echo signal of the second signal, the second signal is the M-th signal sent by the first communication device, and the blur function of the second signal is the second blur function, where M is equal to N+1.
  • FIG. 5 it is a passive target measurement scenario.
  • the second communication device 502 is a receiver and the first communication device 501 is a transmitter.
  • the measurement signal After the transmitter sends a measurement signal, the measurement signal reaches the target and the target reflects the echo signal (the target in Figure 5 is the car 503).
  • the receiver hopes to detect the target through the echo signal reflected by the target, but it will be interfered by the LOS path signal between the transmitter and the receiver.
  • the interference caused by the LOS path signal to the echo signal reflected by the target can be suppressed and the sensing performance can be improved.
  • the second communication device 602 is a receiver
  • the first communication device 601 is a transmitter
  • the communication device 603 is an interference source.
  • the receiver hopes to sense the echo signal of the received measurement signal, such as measuring the distance between itself and the transmitter, that is, ranging.
  • the receiver's perception will be interfered by the signal from the interference source to the receiver.
  • the interference caused by the signal emitted by the interference source to the echo signal of the measurement signal can be suppressed, and the sensing performance can be improved.
  • the first communication device 401 or the second communication device 402 can be implemented by the communication device in FIG. 7 .
  • Figure 7 shows a schematic diagram of the hardware structure of the communication device 700 provided by this application.
  • the communication device 700 includes a processor 701, a communication line 702, and at least one communication interface (FIG. 7 is only an example of including the communication interface 704 for illustration).
  • the communication device 700 may also include a memory 703.
  • the processor 701 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors used to control the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 702 may include a path that carries information between the above-mentioned components.
  • Communication interface 704 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, wireless access network (radio access network, RAN), wireless local area networks (WLAN), etc. .
  • a transceiver to communicate with other devices or communication networks, such as Ethernet, wireless access network (radio access network, RAN), wireless local area networks (WLAN), etc. .
  • Memory 703 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • the memory may exist independently and be connected to the processor through a communication line 702 . Memory can also be integrated with the processor.
  • the memory 703 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 701 for execution.
  • the processor 701 is used to execute computer execution instructions stored in the memory 703, thereby implementing the sensing method provided by the following embodiments of the present application.
  • the computer execution instructions in the embodiments of the present application may also be called application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7 .
  • the communication device 700 may include multiple processors, and each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor. )processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication device 700 may also include an output device 705 and an input device 706.
  • Output device 705 communicates with processor 701 and can display information in a variety of ways.
  • the output device 705 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • Input device 706 communicates with processor 701 and can receive user input in a variety of ways.
  • the input device 706 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
  • the structure shown in FIG. 7 does not constitute a specific limitation on the communication device 700.
  • the communication device 700 may include more or fewer components than shown in the figures, or combine some components, or split some components, or arrange different components.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the terminal device may be a device used to implement communication functions.
  • Terminal equipment can also be called user equipment (UE), terminal, access terminal, user unit, user station, mobile station (MS), remote station, remote terminal, mobile terminal (MT) , user terminal, wireless communication equipment, user agent or user device, etc.
  • the terminal device may be, for example, a wireless terminal in IoT, V2X, D2D, M2M, fifth generation (5th generation, 5G) network, or future evolved public land mobile network (public land mobile network, PLMN).
  • a wireless terminal can refer to a device with wireless transceiver functions, which can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a drone, an IoT device (for example, a sensor, an electricity meter, a water meter, etc.), a V2X device, a station (ST) in a wireless local area network (WLAN), a cellular phone, Cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistant (PDA) devices, handheld devices with wireless communications capabilities, computing devices, or Other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices (also known as wearable smart devices), tablets or computers with wireless transceiver functions, virtual reality (VR) terminals, industrial control (industrial) Wireless terminals in control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, vehicle-mounted terminals, vehicles with vehicle-to-vehicle (V2V) communication capabilities, intelligent connected vehicles, UAVs with UAV to UAV (U).
  • the network device is a device that connects a terminal device to a wireless network, and may be an evolutionary base station (evolutional base station) in LTE or an evolved LTE system (LTE-Advanced, LTE-A).
  • an evolutionary base station evolutional base station
  • LTE-A evolved LTE system
  • Node B, eNB or eNodeB such as traditional macro base station eNB and micro base station eNB in heterogeneous network scenarios; or it can be the next generation node B (next generation node B, gNodeB or gNB) in the 5G system; or it can be Transmission reception point (TRP); or it can be a base station in a future evolved PLMN; or it can be a broadband network service gateway (BNG), aggregation switch or non-3GPP access equipment; or it can be a cloud A wireless controller in a wireless access network (cloud radio access network, CRAN); or it can be an access point (AP) in a WiFi system; or it can be a wireless relay node or a wireless backhaul node; or it can It is a device that implements base station functions in IoT, V2X, D2D, or M2M. This is not specifically limited in the embodiments of this application.
  • the base stations in the embodiments of the present application may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc., which are not specifically limited in the embodiments of the present application. .
  • the first communication device and/or the second communication device can perform some or all of the steps in the embodiment of the present application. These steps or operations are only examples, and the embodiment of the present application can also perform other steps. Operations or variations of various operations. In addition, various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.
  • the names of the messages between the devices or the names of the parameters in the messages are just examples, and other names may also be used in specific implementations. This is not specifically limited in the embodiments of the present application. .
  • the sensing method provided by the embodiment of the present application includes the following steps:
  • the first communication device sends a first signal and waveform information of the first signal.
  • the second communication device receives the waveform information of the first signal and the echo signal of the first signal.
  • the first signal is the Nth signal sent by the first communication device, where N is a positive integer greater than or equal to 1;
  • the second communication device determines the first signal according to the waveform information of the first signal.
  • the second communication device determines a first cross-correlation function based on the first signal and the echo signal of the first signal.
  • the first cross-correlation function is calculated based on three types of delay, Doppler frequency shift and angular deflection of the first signal.
  • the cross-correlation value of the signal obtained after at least one operation and the echo signal of the first signal is obtained.
  • the second communication device determines that the first blur function needs to be suppressed based on the first cross-correlation function, and the first blur function is the blur function of the first signal.
  • the second communication device sends first instruction information to the first communication device.
  • the first instruction information is used to determine the second blur function, and the second blur function has local amplitude suppression relative to the first blur function.
  • the first communication device determines the second signal according to the first instruction information, and the blur function of the second signal is the second blur function.
  • the first communication device sends a second signal, and the second communication device receives an echo signal of the second signal.
  • the second signal is the M-th signal sent by the first communication device, where M is equal to N+1.
  • waveform is an image abstraction of the distribution of a signal in time, frequency or angle.
  • signal can be interchanged with "waveform”.
  • the first communication device transmits the Nth signal.
  • the Nth signal is hereinafter referred to as the first signal.
  • the first signal may be used to sense or measure the target. In other words, it can also be said that the first communication device transmits the first signal in the Nth sensing or measurement.
  • the waveform of the first signal is not limited in the embodiments of the present application.
  • the first signal may be a continuous wave (CW) waveform, an FMCW waveform, an OFDM waveform, or other forms of waveforms.
  • the first communication device may send the first signal in an omnidirectional transmission or a directional transmission manner.
  • the first signal when it is used to sense the target, as a possible implementation, when the first communication device has no prior knowledge of the target's orientation, it can transmit the first signal uniformly to the entire space through omnidirectional transmission. Signal.
  • the smart device in the home when it is necessary to track a person's trajectory, the smart device in the home has no prior knowledge of the person's location and can send a first signal in all directions to detect the person's distance, location and other information.
  • the first signal when the first communication device has prior knowledge of the target's orientation, the first signal can be sent in a certain direction by means of directional transmission.
  • the first communication device when alerting a driver to drowsiness, the first communication device can grasp the driver's position information (such as the driving position) in advance and send a first signal to the position.
  • the second communication device After the first communication device sends the first signal, correspondingly, the second communication device receives the signal. It can be understood that after the first signal is transmitted through the channel, the signal received by the second communication device is not the first signal itself sent by the first communication device, but the echo signal after the first signal is transmitted through the channel. Due to environmental factors, the second communication device may receive one or more echo signals of the first signal.
  • the second communication device may receive the echo signal of the first signal in an omnidirectional or directional manner. Further, the receiving mode of the second communication device matches the sending mode of the first signal. For example, when the first communication device transmits the first signal in an omnidirectional manner, the second communication device receives an echo signal of the first signal in an omnidirectional manner. When the first communication device transmits the first signal in a directional transmission manner, the second communication device receives an echo signal of the first signal in a directional manner.
  • the first communication device also sends the waveform information of the first signal to the second communication device.
  • the waveform information of the first signal is used to determine the first signal.
  • the second communication device may determine the first signal based on the waveform information of the first signal.
  • the waveform information of the first signal may be the waveform parameter, waveform index or waveform sequence of the first signal.
  • the waveform information of the first signal is the waveform parameter or waveform sequence of the first signal
  • the second communication device can directly determine the first signal based on the waveform parameter or waveform sequence of the first signal.
  • the waveform index corresponds to the waveform corresponding to the first signal in the waveform set preconfigured by the first communication device and the second communication device, or in other words, the waveform Index used to identify the waveform of the first signal in the waveform collection.
  • the second communication device may determine the waveform corresponding to the waveform index in the preconfigured waveform set as the waveform of the first signal.
  • the second communication device may perform an operation based on the first signal and the received echo signal of the first signal, thereby determining the first cross-correlation function.
  • the first cross-correlation function is obtained by calculating the cross-correlation value of the signal obtained by performing at least one of the three operations of time delay, Doppler frequency shift and angular deflection on the first signal and the echo signal of the first signal. .
  • the second communication device can perform at least one of three operations: time delay, Doppler frequency shift and angle deflection on the first signal to obtain the offset The first signal.
  • the second communication device can perform a correlation operation on the offset first signal and the received echo signal of the first signal to obtain the cross-correlation value of the offset first signal and the echo signal of the first signal. , thereby determining the first cross-correlation function.
  • how to perform the correlation operation to obtain the corresponding cross-correlation value can refer to the existing operation method, which will not be described here.
  • the second communication device may choose to perform at least one of the three operations of delay, Doppler frequency shift and angle deflection (hereinafter referred to as offset operation) on the first signal according to the application scenario.
  • offset operation For example, in a ranging scenario, the second communication device may choose to perform time delay and Doppler shift operations on the first signal.
  • the offset operation that the second communication device needs to perform on the first signal may also be preconfigured.
  • the offset operation performed by the second communication device on the first signal may also be selected by user operation.
  • the embodiments of the present application do not specifically limit how the second communication device selects the offset operation for the first signal.
  • the second communication device may determine whether it is necessary to suppress the blur function of the first signal based on the first cross-correlation function.
  • the blur function of the first signal is called the first blur function. If it is determined that the first fuzzy function needs to be suppressed, continue the following processes: S805-S807. If it is determined that the first fuzzy function does not need to be suppressed, the second communication device does not need to perform S805-S807 and can sense or measure according to the first cross-correlation function.
  • the second communication device may determine whether the first fuzzy function needs to be suppressed according to the configured algorithm, rule or model.
  • the conditions for determining whether the first fuzzy function needs to be suppressed can be set according to the application scenario.
  • the model preconfigured by the second communication device is based on the image of the first cross-correlation function
  • the model preconfigured by the second communication device finds, based on the image of the first cross-correlation function, that the main lobe level of the signal reflected by the target gradually decreases, and the signal reflected by the target gradually becomes weaker, making detection difficult, then the model The result of judging that the first fuzzy function needs to be suppressed can be output.
  • the preconfigured model of the second communication device finds that the signal of the interference source causes obvious interference in a specific area based on the image of the first cross-correlation function, and needs to be suppressed.
  • the second communication device can determine the position where the first fuzzy function needs to be suppressed.
  • the second communication device can determine the position that needs to be suppressed in the first fuzzy function according to the configured algorithm, rule or model.
  • the second communication device can determine the position in the first blur function that needs to be suppressed in combination with other information. For example, in the scenario of passive target measurement, the second communication device can determine the approximate location where the main lobe of the weak signal reflected by the target should exist based on upper layer signaling or previous tracking information. If the first cross-correlation function , the side lobes of the LOS path signal cause great interference at the approximate location where the main lobe of the weak signal reflected by the target should exist, and the main lobe of the weak signal reflected by the target cannot be well detected, then the second communication device can The approximate location where the main lobe of the weak signal reflected by the target should exist is determined as the location that needs to be suppressed in the first blur function.
  • the second communication device can also determine the amplitude that needs to be suppressed at the position that needs to be suppressed in the first fuzzy function, or in other words, the second communication device can also determine the amplitude that needs to be suppressed corresponding to the position that needs to be suppressed in the first fuzzy function. Amplitude.
  • the position that needs to be suppressed and/or the amplitude that needs to be suppressed in the first blur function can be represented or indicated by various forms of information, which will be explained specifically in the introduction to S805 below.
  • the second communication device can send first instruction information to the first communication device.
  • the first instruction information is used to determine the second fuzzy function.
  • the second fuzzy function is relative to the first fuzzy function.
  • the first instruction information is introduced below.
  • the first indication information may include position information that suppresses the first blur function.
  • the position to be suppressed in the first blur function may include at least one coordinate point and/or at least one coordinate range on the definition domain of the first blur function.
  • the coordinate point can be determined by at least one of a delay value, a Doppler frequency value, and an angle value.
  • the coordinate range may be determined by at least one of a delay range, a Doppler frequency range, and an angle range.
  • the position corresponding to the coordinate range of 5us, 6us] is suppressed.
  • the first indication information can also indicate the position that needs to be suppressed in the first blur function through other quantities outside the definition domain dimensions of the first blur function, such as the distance corresponding to the time delay, the speed corresponding to the Doppler frequency, etc. , the embodiments of this application do not specifically limit this.
  • the amplitude that needs to be suppressed corresponding to the position may be preconfigured to the first communication device.
  • the amplitude value that needs to be suppressed preconfigured by the first communication device is 10dB
  • the first communication device determines that the position corresponding to the coordinate point of 1us in the first blur function needs to be suppressed according to the first instruction information
  • the first communication device It can be determined that the amplitude value corresponding to the coordinate point of 1us in the first blur function needs to be suppressed by 10dB.
  • the first indication information may include position information and amplitude information that suppress the first blur function, where the position information corresponds to the amplitude information.
  • the amplitude information in the first indication information may include the amplitude value of the second blur function at the corresponding position, the value of the peak side-lobe ratio of the second blur function at the corresponding position, or the integral side of the second blur function at the corresponding position.
  • the amplitude value of the second blur function at the corresponding position can be understood as the autocorrelation value of the corresponding position.
  • the first communication device can determine, according to the first instruction information, that after suppressing the corresponding position of the first blur function, the suppressed blur function (ie, the second blur function) is next to the amplitude value and peak value of the corresponding position.
  • the value of the lobe ratio or the value of the integrated side-lobe ratio is used to determine how to suppress the first blur function to obtain the second blur function.
  • the first communication device may determine, according to the first indication information, if the first The amplitude value corresponding to the coordinate point of 1us in the blur function is suppressed.
  • the amplitude value of the suppressed blur function (ie, the second blur function) corresponding to the coordinate point of 1us should be 50dB.
  • the amplitude information in the first indication information may include the attenuation value of the amplitude value of the second blur function at the corresponding position compared with the first blur function or the third blur function.
  • the third fuzzy function is the fuzzy function of the first signal (or initial signal) sent by the first communication device. It can be understood that, in the case where the first fuzzy function, the second fuzzy function, and the third fuzzy function share a definition domain, the position information in the first indication information may indicate the first fuzzy function, the second fuzzy function, and the third fuzzy function. same position in the fuzzy function.
  • the first communication device can directly determine the attenuation value for suppressing the corresponding position of the first blur function or the third blur function according to the first instruction information, thereby determining how to suppress the first blur function or the third blur function. Suppression is performed to obtain the second blur function.
  • the amplitude information that needs to be suppressed can also be indicated through identification information pre-agreed by the first communication device and the second communication device.
  • the bit value of a certain field is 01, which means that compared with the amplitude value of the first blur function at the corresponding position, it needs to be suppressed by 10dB.
  • the bit value in the field is 00, which means that compared with the amplitude value of the third blur function at the corresponding position, it needs to be suppressed by 10dB.
  • the embodiment of the present application does not specifically limit the amplitude information indicated by the agreed identification information.
  • the first indication information may include waveform information of the second signal, where the waveform information of the second signal is used to determine the second signal.
  • the first indication information may include the waveform parameters, waveform index, or waveform sequence of the second signal, where the waveform index is in the waveform set preconfigured by the first communication device and the second communication device, and the waveform index corresponding to the second signal is The corresponding waveform, or in other words, the waveform index, is used to identify the waveform of the second signal in the waveform set.
  • the first communication device may determine the waveform corresponding to the waveform index in the preconfigured waveform set as the waveform of the second signal.
  • the first communication device and the second communication device pre-configure a waveform set including the waveform corresponding to the second signal.
  • the waveform information of the first signal is the first
  • the waveform set including the waveform corresponding to the first signal may be the same waveform set or different waveform sets, and this embodiment of the present application does not specifically limit this.
  • the second communication device needs to determine the second signal before it can carry the waveform parameters, waveform index or waveform sequence of the second signal in the first indication information and send it to the first communication device.
  • the second communication device can determine the second blur function after local amplitude suppression of the first blur function based on the determined position where the first blur function needs to be suppressed and the amplitude that needs to be suppressed corresponding to the position, A second signal corresponding to the second blur function is thereby determined.
  • the embodiments of the present application do not limit the specific implementation of the first indication information including the waveform parameters, waveform index or waveform sequence of the second signal.
  • the entire waveform of the second signal can be quantized and compressed and then fed back to the first communication device, where the quantized and compressed waveform fed back by the second communication device can be called is the first indication information including the waveform sequence of the second signal.
  • the second communication device can also feed back the second fuzzy function to the first communication device through the first indication information, so that the first communication device can determine the second signal according to the second fuzzy function.
  • the second communication device can feed back the second blur function in a lossy or lossless manner.
  • the second communication device can quantize the value of the second fuzzy function at uniform intervals in an interval of a certain definition domain of the second fuzzy function, and feed back the values of the quantized second fuzzy function in the interval. The value is fed back to the entire second fuzzy function.
  • the second communication device may quantize the key step points of the second fuzzy function and feed back the entire second fuzzy function by feeding back the values of the quantized key step points.
  • the first indication information includes position information that suppresses the first blur function or includes position information and amplitude information that suppresses the first blur function
  • the second blur function may be determined according to the first indication information, thereby determining the second signal.
  • How the first communication device determines the second signal corresponding to the second fuzzy function according to the second fuzzy function can refer to the existing determination method.
  • the alternating direction method of multipliers (ADMM) can be used.
  • Other numerical optimization methods are not specifically limited in this application.
  • the first communication device may also directly determine the second signal based on the first indication information.
  • the first communication device after determining the second signal, the first communication device sends the second signal for sensing or measurement. Therefore, compared with the first signal being the Nth signal sent by the first communication device, the second signal is the Mth signal sent by the first communication device, where M is equal to N+1.
  • the second communication device After the first communication device sends the second signal, correspondingly, the second communication device receives the echo signal of the second signal.
  • the way in which the first communication device sends the second signal and the way in which the second communication device receives the echo signal of the second signal can be referred to the way in which the first communication device sends the second signal in S801 above.
  • the introduction of the method of receiving the echo signal of the first signal with the second communication device will not be described again here.
  • the second communication device after receiving the echo signal of the first signal, if the second communication device determines that the blur function of the first signal needs to be suppressed based on the cross-correlation function of the first signal and the echo signal, it can The first communication device sends the first indication information, so that the first communication device can determine the second blur function obtained by suppressing the first blur function according to the first indication information, so that the corresponding second signal can be further determined.
  • the first communication device sends the second signal after determining the second signal.
  • the second communication device receives the echo signal of the second signal, because the second blur function is a partial response to the previous first blur function that needs to be suppressed.
  • the second fuzzy function helps to reduce the interference existing in the original local area, better matches the perceived scene, and improves the weak target detection ability or the suppression ability of active interference.
  • the second communication device may perform an operation based on the second signal and the echo signal of the second signal, thereby determining the second cross-correlation function.
  • the second cross-correlation function is obtained by calculating the cross-correlation value of the signal obtained by performing at least one of the three operations of time delay, Doppler frequency shift and angular deflection on the second signal and the echo signal of the second signal. .
  • the first cross-correlation function in S803 please refer to the above introduction on how to determine the first cross-correlation function in S803, which will not be described again here.
  • the second communication device can determine again whether the second blur function needs to be suppressed based on the second cross-correlation function. If it is determined that the second blur function needs to be suppressed, the second communication device may again send the instruction information for determining the fourth blur function to the first communication device, wherein the fourth blur function has local amplitude suppression compared to the second blur function. fuzzy function, so that the first communication device determines the third signal corresponding to the fourth fuzzy function according to the fourth fuzzy function, and sends the third signal to sense or measure again, and so on, and a similar process can be continued until The second communication device determines that there is no need to suppress the corresponding fuzzy function. If the second communication device determines that there is no need to suppress the second blur function, the second communication device may sense or measure according to the second cross-correlation function. For details, please refer to the introduction of S803-S806 above and will not go into details here.
  • determining the second cross-correlation function by the second communication device requires determining the second signal. If in S804-S806, the second communication device does not determine the second signal or does not determine the waveform information of the second signal, in S807, the first communication device needs to send the waveform information of the second signal to the second communication device to The second communication device can determine the second signal according to the waveform information of the second signal.
  • the first communication device sends a first signal to detect the passive target, and sends the waveform information of the first signal to the second communication device.
  • the second communication device determines the first signal based on the waveform information of the first signal, delays the first signal in the time domain, and obtains the delayed first signal.
  • the second communication device receives the response of the first signal. After receiving the wave signal, a correlation operation is performed on the delayed first signal and the received echo signal to obtain a first cross-correlation function.
  • the image of the first cross-correlation function is shown in Figure 2, including the cross-correlation function image of the strong signal of the LOS path between the first communication device and the second communication device and the measurement signal, and the echo signal reflected by the target ( Weak signal) and the cross-correlation function image of the measured signal.
  • the second communication device After determining the first cross-correlation function, the second communication device finds that the side lobe level of the strong signal is too high and almost drowns the main lobe of the weak signal in the side lobe area, resulting in the inability to detect the target.
  • the second communication device determines that the ambiguity function of the first signal transmitted by the first communication device needs to be suppressed, that is, the first ambiguity function needs to be suppressed.
  • the first communication device determines the corresponding second signal according to the second fuzzy function, and the fuzzy function of the second signal is the second fuzzy function.
  • the first communication device sends the second signal again to detect the passive target, and sends the waveform information of the second signal to the second communication device.
  • the second communication device determines the second signal according to the waveform information of the second signal, and delays the second signal in the time domain to obtain the delayed second signal.
  • the second communication device receives the response of the second signal. After receiving the wave signal, perform a correlation operation on the delayed second signal and the received echo signal to obtain a second cross-correlation function.
  • the image of the second cross-correlation function is shown in Figure 10, including the cross-correlation function image of the strong signal of the LOS path between the first communication device and the second communication device and the measurement signal, and the echo signal reflected by the target ( Weak signal) and the cross-correlation function image of the measured signal. It can be seen that in the cross-correlation function image obtained this time, the main lobe of the weak signal can be clearly observed.
  • the perception performance of the second signal is better than that of the first signal. The performance is improved and the interference caused by the side lobes of the LOS path is suppressed.
  • the methods and/or steps implemented by the first communication device can also be implemented by components (such as chips or circuits) that can be used in the first communication device.
  • the methods and/or steps implemented by the second communication device may also be implemented by components (such as chips or circuits) that can be used in the second communication device.
  • embodiments of the present application also provide a communication device, which is used to implement the above various methods.
  • the communication device may be the first communication device in the above method embodiment, or a device including the above first communication device, or a component usable for the first communication device; or the communication device may be the first communication device in the above method embodiment.
  • the second communication device is either a device including the above-mentioned second communication device, or a component usable in the second communication device. It can be understood that, in order to implement the above functions, the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • Embodiments of the present application can divide the communication device into functional modules according to the above method embodiments.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG 11 shows a schematic structural diagram of a communication device 1100.
  • the communication device 1100 includes an interface module 1101 and a processing module 1102.
  • the interface module 1101 may also be called a transceiver module or a transceiver unit.
  • the interface module 1101 is used to implement transceiver functions. For example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the interface module 1101 is configured to receive the waveform information of the first signal and the echo signal of the first signal. is the Nth signal sent by the first communication device, where N is a positive integer greater than or equal to 1.
  • the processing module 1102 is used to determine the first signal according to the waveform information of the first signal.
  • the processing module 1102 is also configured to determine a first cross-correlation function based on the first signal and the echo signal of the first signal.
  • the first cross-correlation function is calculated by calculating the time delay, Doppler frequency shift and angular deflection of the first signal.
  • the cross-correlation value of the signal obtained after at least one of the above operations and the echo signal of the first signal is obtained.
  • the processing module 1102 is also configured to determine the need to suppress the first blur function according to the first cross-correlation function, where the first blur function is the blur function of the first signal.
  • the interface module 1101 is also configured to send first indication information to the first communication device. The first indication information is used to determine the second blur function. The second blur function has local amplitude suppression relative to the first blur function.
  • the interface module 1101 is also used to receive the echo signal of the second signal.
  • the second signal is the M-th signal sent by the first communication device.
  • the blur function of the second signal is the second blur function, where M is equal to N+1. .
  • the first indication information includes position information that suppresses the first blur function.
  • the first indication information includes position information and amplitude information for suppressing the first blur function, and the position information corresponds to the amplitude information.
  • the position information includes at least one coordinate point and/or at least one coordinate range on the definition domain of the first fuzzy function.
  • the coordinate point is determined by at least one of a delay value, a Doppler frequency value, and an angle value.
  • the coordinate range is determined by at least one of a delay range, a Doppler frequency range, and an angle range.
  • the amplitude information includes the amplitude value of the second blur function at the corresponding position, the value of the peak side-lobe ratio of the second blur function at the corresponding position, or the value of the integrated side-lobe ratio of the second blur function at the corresponding position. value.
  • the amplitude information includes the attenuation value of the amplitude value of the second blur function at the corresponding position compared with the first blur function or the third blur function; wherein the third blur function is the value sent by the first communication device.
  • the fuzzy function of the first signal includes the attenuation value of the amplitude value of the second blur function at the corresponding position compared with the first blur function or the third blur function; wherein the third blur function is the value sent by the first communication device.
  • the fuzzy function of the first signal includes the attenuation value of the amplitude value of the second blur function at the corresponding position compared with the first blur function or the third blur function; wherein the third blur function is the value sent by the first communication device.
  • the first indication information includes waveform parameters, waveform index or waveform sequence of the second signal, wherein the waveform index corresponds to the waveform corresponding to the second signal in the waveform set, and the waveform set is configured on the first communication device and in the second communication device.
  • the interface module 1101 is used to send a first signal and waveform information of the first signal.
  • the first signal is the first communication device.
  • the blur function of the first signal is the first blur function; where N is a positive integer greater than or equal to 1.
  • the interface module 1101 is also configured to receive first indication information sent by the second communication device.
  • the first indication information is used to determine the second blur function.
  • the second blur function has local amplitude suppression relative to the first blur function.
  • the processing module 1102 is configured to determine the second signal according to the first indication information, and the blur function of the second signal is the second blur function.
  • the interface module 1101 is also used to send a second signal; the second signal is the M-th signal sent by the first communication device, where M is equal to N+1.
  • the first indication information includes position information that suppresses the first blur function.
  • the first indication information includes position information and amplitude information for suppressing the first blur function, and the position information corresponds to the amplitude information.
  • the position information includes at least one coordinate point and/or at least one coordinate range on the definition domain of the first fuzzy function. Based on this solution, the position that needs to be suppressed in the first blur function can be fed back through the coordinate point or coordinate range of the first blur function.
  • the coordinate point is determined by at least one of a delay value, a Doppler frequency value, and an angle value.
  • the coordinate range is determined by at least one of a delay range, a Doppler frequency range, and an angle range.
  • the amplitude information includes the amplitude value of the second blur function at the corresponding position, the value of the peak side-lobe ratio of the second blur function at the corresponding position, or the value of the integrated side-lobe ratio of the second blur function at the corresponding position. value.
  • the amplitude information includes the attenuation value of the amplitude value of the second blur function at the corresponding position compared with the first blur function or the third blur function; wherein the third blur function is the value sent by the first communication device.
  • the fuzzy function of the first signal includes the attenuation value of the amplitude value of the second blur function at the corresponding position compared with the first blur function or the third blur function; wherein the third blur function is the value sent by the first communication device.
  • the fuzzy function of the first signal includes the attenuation value of the amplitude value of the second blur function at the corresponding position compared with the first blur function or the third blur function; wherein the third blur function is the value sent by the first communication device.
  • the first indication information includes waveform parameters, waveform index or waveform sequence of the second signal, wherein the waveform index corresponds to the waveform corresponding to the second signal in the waveform set, and the waveform set configuration in the first communication device and the second communication device.
  • the communication device 1100 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that may provide the above functions.
  • the communication device 1100 may take the form of the communication device 700 shown in FIG. 7 .
  • the processor 701 in the communication device 700 shown in Figure 7 can cause the communication device 700 to execute the sensing method in the above method embodiment by calling the computer execution instructions stored in the memory 703.
  • the functions/implementation processes of the interface module 1101 and the processing module 1102 in Figure 11 can be implemented by the processor 701 in the communication device 700 shown in Figure 7 calling the computer execution instructions stored in the memory 703.
  • the function/implementation process of the processing module 1102 in Figure 11 can be realized by the processor 701 in the communication device 700 shown in Figure 7 calling the computer execution instructions stored in the memory 703.
  • the function of the interface module 1101 in Figure 11 /The implementation process can be implemented through the communication interface 704 in the communication device 700 shown in FIG. 7 .
  • the communication device 1100 provided in this embodiment can perform the above-mentioned sensing method, the technical effects it can obtain can be referred to the above-mentioned method embodiments, which will not be described again here.
  • the above modules or units can be implemented in software, hardware, or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory.
  • the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built into an SoC (System on a Chip) or ASIC, or it can be an independent semiconductor chip.
  • the processor can further include necessary hardware accelerators, such as field programmable gate array (FPGA), programmable logic device (programmable logic device) , PLD), or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be a CPU, microprocessor, DSP chip, microcontroller unit (MCU), artificial intelligence processor, ASIC, SoC, FPGA, PLD, or dedicated digital circuit , any one or any combination of hardware accelerators or non-integrated discrete devices, which can run the necessary software or do not rely on software to perform the above method process.
  • MCU microcontroller unit
  • ASIC application specific integrated circuit
  • SoC SoC
  • FPGA field-programmable gate array
  • PLD dedicated digital circuit
  • any one or any combination of hardware accelerators or non-integrated discrete devices which can run the necessary software or do not rely on software to perform the above method process.
  • embodiments of the present application also provide a chip system, including: at least one processor and an interface.
  • the at least one processor is coupled to the memory through the interface.
  • the at least one processor executes the computer program or instructions in the memory
  • the communication device further includes a memory.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • the present application provides a computer program product including one or more computer instructions, which when run on a communication device, causes any method in the embodiment of the present application to be executed.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in computer-readable storage media.
  • Embodiments of the present application provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium, and when run on a communication device, any method in the embodiment of the present application is executed.
  • Computer instructions may be transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center over wired (e.g., coaxial cable, optical fiber, digital subscriber Transmit to another website, computer, server or data center via digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • Computer-readable storage media can be any available media that can be accessed by a computer or include one or more data storage devices such as servers and data centers that can be integrated with the media. Available media may be magnetic media (for example, floppy disks, hard disks, tapes), optical media (for example, digital versatile disc (DVD)), or semiconductor media (for example, solid state drive (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了感知方法、装置及系统,应用于通信技术领域。本申请提供的感知方法包括:第二通信装置接收第一信号的波形信息和第一信号的回波信号。第二通信装置根据第一信号和第一信号的回波信号确定第一互相关函数。第二通信装置根据第一互相关函数确定需要抑制第一模糊函数。第二通信装置向第一通信装置发送第一指示信息,第一指示信息用于确定第二模糊函数,第二模糊函数相对于第一模糊函数存在局部幅度抑制。第二通信装置接收第二信号的回波信号。基于该方法,若接收机判断需要抑制感知信号的模糊函数,则向发射机发送指示信息,使发射机可以根据该指示信息确定抑制后的模糊函数并对应调整感知信号,从而提高感知信号的感知性能。

Description

感知方法、装置及系统 技术领域
本申请涉及通信技术领域,尤其涉及感知方法、装置及系统。
背景技术
典型的感知应用包括测距、测速、测角、定位、跟踪、或者识别等,其中大部分感知应用依赖于测量信号从发射机到目标对象、再从目标对象到接收机的时延、多普勒频率或角度。因此,目前在感知应用中,可以借助测量信号(或者说感知信号)的模糊函数,对目标对象进行感知。换言之,波形的模糊函数影响该波形作为感知信号时的感知性能。
具体地,模糊函数的旁瓣水平是衡量波形感知性能的重要维度。例如,在弱目标探测场景中,如果测量信号的模糊函数的旁瓣水平过高,容易对弱目标反射的信号所在的旁瓣区域造成很大的干扰,导致弱目标无法被探测到。
发明内容
本申请实施例提供一种感知方法、装置及系统,用于解决感知应用中,由于感知信号的模糊函数的旁瓣水平过高,无法有效抑制旁瓣范围内的干扰的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种感知方法,该方法可以由第二通信装置执行,也可以由第二通信装置的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分第二通信装置功能的逻辑模块或软件实现。以下以第二通信装置执行该方法为例进行说明,该方法包括:第二通信装置接收第一信号的波形信息和第一信号的回波信号,第一信号是第一通信装置发送的第N次信号,其中,N为大于或等于1的正整数。第二通信装置根据第一信号的波形信息确定第一信号。第二通信装置根据第一信号和第一信号的回波信号确定第一互相关函数,第一互相关函数是计算对第一信号进行时延、多普勒频移和角度偏转三种操作中的至少一个后得到的信号与第一信号的回波信号的互相关值得到的。第二通信装置根据第一互相关函数确定需要抑制第一模糊函数,第一模糊函数是第一信号的模糊函数。第二通信装置向第一通信装置发送第一指示信息,第一指示信息用于确定第二模糊函数,第二模糊函数相对于第一模糊函数存在局部幅度抑制。第二通信装置接收第二信号的回波信号,第二信号是第一通信装置发送的第M次信号,第二信号的模糊函数是第二模糊函数,其中,M等于N+1。
基于本申请实施例提供的感知方法,第二通信装置接收第一信号的回波信号后,若根据第一信号和回波信号的互相关函数确定需要抑制第一信号的模糊函数,则可以向第一通信装置发送第一指示信息,使第一通信装置可以根据第一指示信息确定对第一模糊函数进行抑制后得到的第二模糊函数,从而可以进一步确定对应的第二信号。第一通信装置确定第二信号后发送第二信号,相对应的,第二通信装置接收第二信号的回波信号后,因为第二模糊函数是对之前的第一模糊函数中需要抑制的局部区域进行抑制的模糊函数,所以第二模糊函数有助于降低原先局部区域存在的干扰,更加匹配感知场景,提升了弱目标探测能力或有源干扰的抑制能力。
结合上述第一方面,在一种可能的设计中,第一指示信息包括对第一模糊函数进行抑制的位置信息。基于本方案,第二通信装置可以向第一通信装置反馈对第一模糊函数进行抑制的位置信息,从而使第一通信装置根据位置信息确定第一模糊函数中需要抑制的位置。
结合上述第一方面,在一种可能的设计中,第一指示信息包括对第一模糊函数进行抑制的位置信息和幅度信息,位置信息与幅度信息对应。基于本方案,第二通信装置可以向第一通信装置反馈对第一模糊函数进行抑制的位置信息以及与位置信息对应的幅度信息,从而使第一通信装置根据位置信息与幅度信息,确定第一模糊函数中需要抑制的位置,以及与位置对应的需要抑制的幅度。
结合上述第一方面,在一种可能的设计中,位置信息包括第一模糊函数的定义域上的至少一个坐标点和/或至少一个坐标范围。基于本方案,可以通过第一模糊函数的坐标点或坐标范围反馈第一模糊函数中需要抑制的位置。
结合上述第一方面,在一种可能的设计中,坐标点由时延值、多普勒频率值、角度值中的至少一个确定。
结合上述第一方面,在一种可能的设计中,坐标范围由时延范围、多普勒频率范围、角度范围中的至少一个确定。
结合上述第一方面,在一种可能的设计中,幅度信息包括第二模糊函数在对应位置的幅度值、第二模糊函数在对应位置的峰值旁瓣比的值或第二模糊函数在对应位置的积分旁瓣比的值。基于本方案,可以通过指示第二模糊函数在对应位置的幅度值、峰值旁瓣比的值或积分旁瓣比的值,使第一通信装置确定对第一模糊函数中对应位置进行抑制后,应该对应的幅度值、峰值旁瓣比的值或积分旁瓣比的值,从而确定需要对第一模糊函数进行抑制的幅度信息。
结合上述第一方面,在一种可能的设计中,幅度信息包括与第一模糊函数或者第三模糊函数相比,第二模糊函数在对应位置的幅度值的衰减值;其中,第三模糊函数是第一通信装置发送的第一次信号的模糊函数。基于本方案,可以通过指示第二模糊函数相比第一模糊函数或者初始发送的信号对应的第三模糊函数的幅度衰减值,使第一通信装置直接确定需要对第一模糊函数或者第三模糊函数中对应位置进行抑制的幅度值。
结合上述第一方面,在一种可能的设计中,第一指示信息包括第二信号的波形参数、波形索引或波形序列,其中,波形索引对应波形集合中第二信号对应的波形,波形集合配置在第一通信装置和第二通信装置中。基于本方案,可以通过指示第二信号的波形参数、波形索引或波形序列,使第一通信装置确定第二模糊函数对应的第二信号。
第二方面,提供了一种感知方法,该方法可以由第一通信装置执行,也可以由第一通信装置的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分第一通信装置功能的逻辑模块或软件实现。以下以第一通信装置执行该方法为例进行说明,该方法包括:第一通信装置发送第一信号和第一信号的波形信息,第一信号是第一通信装置发送的第N次信号,第一信号的模糊函数是第一模糊函数;其中,N为大于或等于1的正整数。第一通信装置接收由第二通信装置发送的第一指示信息,第一指示信息用于确定第二模糊函数,第二模糊函数相对于第一模糊函数存在局部幅度抑制。第一通信装置根据第一指示信息确定第二信号,第二信号的模糊函数是第二模糊函数。第一通信装置发送第二信号;第二信号是第一通信装置发送的第M次信号,其中,M等于N+1。
基于本申请实施例提供的感知方法,第二通信装置接收第一信号的回波信号后,若根据第一信号和回波信号的互相关函数确定需要抑制第一信号的模糊函数,则可以向第一通信装置发送第一指示信息,使第一通信装置可以根据第一指示信息确定对第一模糊函数进行抑制后得到的第二模糊函数,从而可以进一步确定对应的第二信号。第一通信装置确定第二信号后发送第二信号,相对应的,第二通信装置接收第二信号的回波信号后,因为第二模糊函数是对之前的第一模糊函数中需要抑制的局部区域进行抑制的模糊函数,所以第二模糊函数有助于降低原先局部区域存在的干扰,更加匹配感知场景,提升了弱目标探测能力或有源干扰的抑制能力。
结合上述第二方面,在一种可能的设计中,第一指示信息包括对第一模糊函数进行抑制的位置信息。基于本方案,第二通信装置可以向第一通信装置反馈对第一模糊函数进行抑制的位置信息,从而使第一通信装置根据位置信息确定第一模糊函数中需要抑制的位置。
结合上述第二方面,在一种可能的设计中,第一指示信息包括对第一模糊函数进行抑制的位置信息和幅度信息,位置信息与幅度信息对应。基于本方案,第二通信装置可以向第一通信装置反馈对第一模糊函数进行抑制的位置信息以及与位置信息对应的幅度信息,从而使第一通信装置根据位置信息与幅度信息,确定第一模糊函数中需要抑制的位置,以及与位置对应的需要抑制的幅度。
结合上述第二方面,在一种可能的设计中,位置信息包括第一模糊函数的定义域上的至少一个坐标点和/或至少一个坐标范围。基于本方案,可以通过第一模糊函数的坐标点或坐标范围反馈第一模糊函数中需要抑制的位置。
结合上述第二方面,在一种可能的设计中,坐标点由时延值、多普勒频率值、角度值中的至少一个确定。
结合上述第二方面,在一种可能的设计中,坐标范围由时延范围、多普勒频率范围、角度范围中的至少一个确定。
结合上述第二方面,在一种可能的设计中,幅度信息包括第二模糊函数在对应位置的幅度值、第二模糊函数在对应位置的峰值旁瓣比的值或第二模糊函数在对应位置的积分旁瓣比的值。基于本方案,可以通过指示第二模糊函数在对应位置的幅度值、峰值旁瓣比的值或积分旁瓣比的值,使第一通信装置确定对第一模糊函数中对应位置进行抑制后,应该对应的幅度值、峰值旁瓣比的值或积分旁瓣比的值,从而确定需要对第一模糊函数进行抑制的幅度信息。
结合上述第二方面,在一种可能的设计中,幅度信息包括与第一模糊函数或者第三模糊函数相比,第二模糊函数在对应位置的幅度值的衰减值;其中,第三模糊函数是第一通信装置发送的第一次信号的模糊函数。基于本方案,可以通过指示第二模糊函数相比第一模糊函数或者初始发送的信号对应的第三模糊函数的幅度衰减值,使第一通信装置直接确定需要对第一模糊函数或者第三模糊函数中对应位置进行抑制的幅度值。
结合上述第二方面,在一种可能的设计中,第一指示信息包括第二信号的波形参数、波形索引或波形序列,其中,波形索引对应波形集合中第二信号对应的波形,波形集合配置在第一通信装置和第二通信装置中。基于本方案,可以通过指示第二信号的波形参数、波形索引或波形序列,使第一通信装置确定第二模糊函数对应的第二信号。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一 方面中的第二通信装置,或者包含上述第二通信装置的装置,或者上述第二通信装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一通信装置,或者包含上述第一通信装置的装置,或者上述第一通信装置中包含的装置。
所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,包括:处理器,该处理器用于执行存储器存储的指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第二通信装置,或者包含上述第二通信装置的装置,或者上述第二通信装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一通信装置,或者包含上述第一通信装置的装置,或者上述第一通信装置中包含的装置。
一种可能的设计中,该通信装置还包括存储器,该存储器用于存储计算机指令。可选的,处理器和存储器集成在一起,或者,处理器和存储器分开设置。
一种可能的设计中,该存储器与处理器耦合,且在该通信装置之外。
第五方面,提供了一种通信装置,包括:处理器和接口电路,该接口电路用于与该通信装置之外的模块通信;该处理器用于通过逻辑电路,或者通过运行计算机程序或指令执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第二通信装置,或者包含上述第二通信装置的装置,或者上述第二通信装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一通信装置,或者包含上述第一通信装置的装置,或者上述第一通信装置中包含的装置。
或者,该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器,以使该处理器运行计算机执行指令以执行上述任一方面所述的方法。
在一些可能的设计中,该通信装置可以为芯片或芯片系统。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第二通信装置,或者包含上述第二通信装置的装置,或者上述第二通信装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一通信装置,或者包含上述第一通信装置的装置,或者上述第一通信装置中包含的装置。
第七方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第二通信装置,或者包含上述第二通信装置的装置,或者上述第二通信装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一通信装置,或者包含上述第一通信装置的装置,或者上述第一通信装置中包含的装置。
第八方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第八方面中任一种设计方式所带来的技术效果可参见上述第一方面 至第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第九方面,提供一种通信系统,该通信系统包括第一通信装置和第二通信装置。第二通信装置,用于执行上述第一方面所述的方法;第一通信装置,用于执行上述第二方面所述的方法。
附图说明
图1为本申请实施例提供的一种响应函数的主瓣和旁瓣的示意图;
图2为本申请实施例提供的无源目标测量场景中的互相关函数示意图;
图3为本申请实施例提供的FMCW波形的模糊函数和OFDM波形的模糊函数的示意图;
图4为本申请实施例提供的通信系统的架构示意图;
图5为本申请实施例提供的一种应用场景的示意图;
图6为本申请实施例提供的另一种应用场景的示意图;
图7为本申请实施例提供的一种通信装置的结构示意图;
图8为本申请实施例提供的一种感知方法的交互示意图;
图9为本申请实施例提供的抑制后的模糊函数的示意图;
图10为本申请实施例提供的第二互相关函数的示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了便于理解本申请实施例的技术方案,首先给出本申请涉及的相关技术的简要介绍如下。
1、主瓣:
一些响应函数的幅度谱呈现出一个个花瓣的形状,例如某些波形的自相关函数、阵列天线的辐射方向图等。其中,响应函数幅度最大的瓣称为主瓣,其余的瓣称为旁瓣。示例性的,图1为响应函数A(τ)的图像,其中τ为参数,|A(τ)|为该响应函数的幅度,该响应函数的主瓣如图1所示。一种常用的主瓣宽度定义为半功率主瓣宽度,即响应函数的值对应的功率从峰值下降到峰值的一半时对应的主瓣宽度,也叫3dB主瓣宽度,示例性的,在如图1所示的响应函数A(τ)中,半功率主瓣宽度如W 3dB所示。另一种常用的主瓣宽度定义为零点主瓣宽度,即主瓣两侧的首个局部极小值对应的位置之间的主瓣宽度,示例性的,在如图1所示的响应函数A(τ)中,零点主瓣宽度如W 0所示。
目前,当波形用于感知时,比如在测距、测速、测角等感知应用中,波形的自相关函数的主瓣宽度与测量的分辨率和精度成正比,因此,主瓣水平是衡量波形感知性能的维度之一,主瓣展宽会恶化波形用于感知时的分辨率和精度。
2、旁瓣:
响应函数幅度谱中,除了主瓣之外的瓣都称为旁瓣。按照位置,旁瓣可以编号为第一旁瓣、第二旁瓣等等。在很多应用中,旁瓣的高低是一个影响系统性能的关键指标。衡量旁瓣的高低,有两个常用的指标:峰值旁瓣比(peak side lobe ratio,PSLR)和积分旁瓣比(integrated side lobe ratio,ISLR)。其中,PSLR定义为响应函数的峰值对应的功率和响应函数的旁瓣的峰值对应的功率的比值,ISLR定义为响应函数的主瓣包含的功率和响应函数 的旁瓣包含的功率的比值。示例性的,在如图1所示的响应函数A(τ)中,PSLR如图1所示。
3、相关运算:
相关运算是指将两个函数的对应坐标点的取值相乘再相加。
1)、自相关:
如果两个函数相同,那么它们之间的相关运算称为自相关,相关运算得到的函数称为自相关函数。
2)、互相关:
如果两个函数不同,那么它们之间的相关运算称为互相关,相关运算得到的函数称为互相关函数。
4、模糊函数
在脉冲雷达和声呐信号处理场景中,模糊函数一般为某一信号关于时延、多普勒频率或者角度等维度的自相关函数,表征了信号到达运动目标后,运动目标反射的回波信号经过匹配滤波器后的响应函数。而在典型的感知应用,例如测距、测速、测角、定位、跟踪、或者识别等感知应用中,大部分感知应用依赖于测量信号从发射机到目标对象、再从目标对象到接收机的时延、多普勒频率或角度。因此,目前在感知应用中,可以借助测量信号(或者说感知信号)的模糊函数,对目标对象进行感知。换言之,波形的模糊函数影响该波形作为感知信号时的感知性能。
具体地,除了上文介绍的主瓣水平对波形感知性能的影响,模糊函数的旁瓣水平亦是衡量波形感知性能的维度之一。在弱目标探测的场景下,低旁瓣有助于降低强信号在旁瓣区域造成的干扰,从而提高在旁瓣区域内的目标探测能力。对应地,在干扰抑制场景,通过构造低旁瓣区域,能够有效抑制干扰。
以下以一个无源目标测量的场景进行举例说明,其中无源目标指目标本身不会发射信号。该场景中,发射机发射测量信号后,发射机和接收机之间的直视径(line ofsight,LOS)的信号比目标反射的回波信号要强得多,以至于回波信号的匹配滤波的输出的峰值要比LOS径的信号的匹配滤波的输出的旁瓣值更低,换言之,回波信号的模糊函数的主瓣值要比LOS径的信号的模糊函数的旁瓣值更低。以下将LOS径造成的强信号称为强信号,将目标反射的回波信号称为弱信号,图2为该场景中,发射机发射测量信号后,接收机接收信号并进行处理得到的函数图像。其中,横轴坐标为时延τ,单位为秒(seconds),纵轴坐标为互相关值(cross correlation),单位为dB。图2中,线条相对较细的曲线为LOS径造成的强信号与测量信号的互相关函数,线条相对较粗的曲线为目标反射的回波信号与测量信号的互相关函数。这两个互相关函数分别是测量信号的模糊函数做不同时域平移和幅度缩放后的函数。可以理解的是,这两个互相关函数的组合就是测量信号与测量信号的回波信号的互相关函数。由图2中可见,强信号的高旁瓣水平几乎淹没了弱信号的主瓣,导致其对弱信号所在的时延区域造成了很大的干扰,从而使目标无法被探测到。
目前,为了降低旁瓣区域内的干扰,通常采用本身旁瓣水平较低的波形。例如,图3为调频连续波(frequency modulated continuous wave,FMCW)波形的模糊函数和正交频分复用(orthogonal frequency division multiplexing,OFDM)波形的模糊函数的图像。其中,横轴坐标为时延τ,纵轴坐标为自相关性,如图3所示,FMCW波形的旁瓣显著低于OFDM 波形的旁瓣。因此,可以预计,在时延测量的场景下,使用FMCW波形对目标进行感知,能够更好地抑制旁瓣区域内的干扰。
进一步的,目前还可以采用对波形进行加窗的方法,来降低旁瓣区域内的干扰。但是,加窗虽然可以降低旁瓣水平,也会导致主瓣展宽,从而造成分辨率和精度的损失。
基于上述问题,本申请实施例提出一种感知方法,可以在不加宽模糊函数的主瓣水平的基础上,有效地对信号的模糊函数的局部幅度进行抑制,从而抑制旁瓣区域内的干扰,提升感知性能。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,a和b和c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例的技术方案可用于各种通信系统,该通信系统可以为第三代合作伙伴计划(3rd generationpartnership project,3GPP)通信系统,例如,长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)通信系统、车联网(vehicle to everything,V2X)系统,或者设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of things,IoT),或者其他面向未来的类似新系统,例如第6代(sixth-generation,6G)系统。该通信系统也可以为非3GPP通信系统,例如Wi-Fi等无线局域网(wireless local area network,WLAN)系统,不予限制。
本申请实施例的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:智能家居、D2D、V2X、和IoT等通信场景。
其中,上述适用本申请的通信系统和通信场景仅是举例说明,适用本申请的通信系统和通信场景不限于此,在此统一说明,以下不再赘述。
以下结合附图,对本申请提供的通信系统进行介绍。参考图4,本申请实施例提供的一种通信系统40包括第一通信装置401和第二通信装置402。
需要说明的是,图4所示的通信系统40仅为一种参考的示例。本申请实施例并不限制通信系统40包括的第一通信装置401和/或第二通信装置402的数量,通信系统40可以包括多个第一通信装置401和/或第二通信装置402。或者,本申请实施例的通信系统40 中,第一通信装置401和第二通信装置402也可以为同一通信装置。
可选的,第一通信装置401和第二通信装置402可以为不同类型的设备,例如,第一通信装置401和第二通信装置402中的一个为网络设备,另一个为终端设备。或者,第一通信装置401和第二通信装置402也可以为相同类型的设备,例如,第一通信装置401和第二通信装置402均为终端设备,或,第一通信装置401和第二通信装置402均为网络设备,本申请实施例对此不做具体限定。
以图4所示的第一通信装置401和第二通信装置402交互为例,本申请中,第二通信装置接收第一信号的波形信息和第一信号的回波信号,第一信号是第一通信装置发送的第N次信号,其中,N为大于或等于1的正整数。然后,第二通信装置根据第一信号的波形信息确定第一信号。第二通信装置根据第一信号和第一信号的回波信号确定第一互相关函数,第一互相关函数是计算对第一信号进行时延、多普勒频移和角度偏转三种操作中的至少一个后得到的信号与第一信号的回波信号的互相关值得到的。第二通信装置根据第一互相关函数确定需要抑制第一模糊函数,第一模糊函数是第一信号的模糊函数。第二通信装置向第一通信装置发送第一指示信息,第一指示信息用于确定第二模糊函数,第二模糊函数相对于第一模糊函数存在局部幅度抑制。第二通信装置接收第二信号的回波信号,第二信号是第一通信装置发送的第M次信号,第二信号的模糊函数是第二模糊函数,其中,M等于N+1。该方案的具体实现和技术效果将在后续方法实施例中详细描述,在此不予赘述。
以下结合图4,对本申请实施例的两种示例性的应用场景进行说明。如图5所示,为无源目标测量场景。该场景中,第二通信装置502为接收机,第一通信装置501为发射机,发射机发送测量信号后,测量信号到达目标后目标反射回波信号(图5中的目标为汽车503),接收机希望通过目标反射的回波信号对目标进行探测,但是会受到发射机和接收机之间LOS径信号的干扰。在如图5所示的场景中,应用本申请实施例提供的感知方法,可以抑制LOS径信号对目标反射的回波信号造成的干扰,提高感知性能。
如图6所示,为有源干扰抑制场景。该场景中,第二通信装置602为接收机,第一通信装置601为发射机,通信装置603为干扰源。发射机发送测量信号后,接收机希望通过接收到的测量信号的回波信号进行感知,例如测量自身到发射机之间的距离,即测距。但是接收机的感知会受到干扰源到接收机之间的信号的干扰。在如图6所示的场景中,应用本申请实施例提供的感知方法,可以抑制干扰源发射的信号对测量信号的回波信号造成的干扰,提高感知性能。
可选的,第一通信装置401或第二通信装置402可以通过图7中的通信装置来实现。图7所示为本申请提供的通信装置700的硬件结构示意图。该通信装置700包括处理器701,通信线路702,以及至少一个通信接口(图7中仅是示例性的以包括通信接口704为例进行说明)。可选的,该通信装置700还可以包括存储器703。
处理器701可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路702可包括一通路,在上述组件之间传送信息。
通信接口704,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks, WLAN)等。
存储器703可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路702与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器703用于存储执行本申请方案的计算机执行指令,并由处理器701来控制执行。处理器701用于执行存储器703中存储的计算机执行指令,从而实现本申请下述实施例提供的感知方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置700可以包括多个处理器,这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置700还可以包括输出设备705和输入设备706。输出设备705和处理器701通信,可以以多种方式来显示信息。例如,输出设备705可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备706和处理器701通信,可以以多种方式接收用户的输入。例如,输入设备706可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图7所示的结构并不构成对通信装置700的具体限定。比如,在本申请另一些实施例中,通信装置700可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
可选的,本申请实施例中,终端设备可以是用于实现通信功能的设备。终端设备也可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal,MT)、用户终端、无线通信设备、用户代理或用户装置等。终端设备例如可以是IoT、V2X、D2D、M2M、第五代(5th generation,5G)网络、或者未来演进的公共陆地移动网络(public landmobile network,PLMN)中的无线终端。无线终端可以是指一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
示例性的,终端设备可以是无人机、IoT设备(例如,传感器,电表,水表等)、V2X设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiationprotocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)、平板电脑或带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有车对车(vehicle-to-vehicle,V2V)通信能力的车辆、智能网联车、具有无人机对无人机(UAVto UAV,U2U)通信能力的无人机等等。终端可以是移动的,也可以是固定的,本申请对此不作具体限定。
可选的,本申请实施例中,网络设备是一种将终端设备接入到无线网络的设备,可以是LTE或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolutional Node B,eNB或eNodeB),如传统的宏基站eNB和异构网络场景下的微基站eNB;或者可以是5G系统中的下一代节点B(next generation node B,gNodeB或gNB);或者可以是传输接收点(transmission reception point,TRP);或者可以是未来演进的PLMN中的基站;或者可以是宽带网络业务网关(broadband network gateway,BNG)、汇聚交换机或非3GPP接入设备;或者可以是云无线接入网络(cloud radio access network,CRAN)中的无线控制器;或者可以是WiFi系统中的接入节点(access point,AP);或者可以是无线中继节点或无线回传节点;或者可以是IoT、V2X、D2D、或者M2M中实现基站功能的设备,本申请实施例对此不作具体限定。
示例性的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
下面将结合图1至图7,以图4所示的第一通信装置401与第二通信装置402进行交互为例,对本申请实施例提供的感知方法进行展开说明。
可以理解的,本申请实施例中,第一通信装置和/或第二通信装置可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
需要说明的是,本申请下述实施例中各个装置之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图8所示,为本申请实施例提供的感知方法,该方法包括如下步骤:
S801、第一通信装置发送第一信号和第一信号的波形信息,相对应的,第二通信装置接收第一信号的波形信息和第一信号的回波信号。第一信号是第一通信装置发送的第N次信号,其中,N为大于或等于1的正整数;
S802、第二通信装置根据第一信号的波形信息确定第一信号。
S803、第二通信装置根据第一信号和第一信号的回波信号确定第一互相关函数,第一互相关函数是计算对第一信号进行时延、多普勒频移和角度偏转三种操作中的至少一个后 得到的信号与第一信号的回波信号的互相关值得到的。
S804、第二通信装置根据第一互相关函数确定需要抑制第一模糊函数,第一模糊函数是第一信号的模糊函数。
S805、第二通信装置向第一通信装置发送第一指示信息,第一指示信息用于确定第二模糊函数,第二模糊函数相对于第一模糊函数存在局部幅度抑制。
S806、第一通信装置根据第一指示信息确定第二信号,第二信号的模糊函数是第二模糊函数。
S807、第一通信装置发送第二信号,第二通信装置接收第二信号的回波信号,第二信号是第一通信装置发送的第M次信号,其中,M等于N+1。
可以理解的是,波形是信号在时间、频率或角度上分布情况的图像抽象,本申请中,术语“信号”可以和“波形”相互替换。
S801中,第一通信装置发射第N次信号,为了便于说明,以下将第N次信号称为第一信号。本申请实施例中,第一信号可以用于感知或测量目标。换言之,也可以称为第一通信装置在第N次感知或测量中,发射第一信号。
需要说明的是,本申请实施例中不限制第一信号的波形。示例性的,第一信号可以为连续波(continuous wave,CW)波形、FMCW波形或者OFDM波形或者其他形式的波形。
可选的,第一通信装置可以以全向发送或定向发送的方式发送第一信号。在感知场景中,若第一信号用于感知目标,作为一种可能的实现,当第一通信装置对目标的方位没有先验知识时,可以通过全向发送的方式向全空间均匀发射第一信号。例如在智能家居场景中,需要对人进行轨迹追踪时,家中的智能设备对人的方位没有先验知识,可以全向发送第一信号来探测人的距离、方位等信息。作为另一种可能的实现,当第一通信装置对目标的方位有先验知识时,可以通过定向发送的方式向某个方向发送第一信号。例如在车内感知场景中,对驾驶人进行瞌睡报警时,第一通信装置可以预先掌握驾驶人的方位信息(例如驾驶位),对该方位发送第一信号即可。
第一通信装置发送第一信号后,相对应的,第二通信装置接收信号。可以理解的是,第一信号经过信道传输后,第二通信装置接收到的信号并非第一通信装置发送的第一信号本身,而是第一信号经过信道传输后的回波信号。因为环境因素,第二通信装置可能接收到一个或多个第一信号的回波信号。
可选的,第二通信装置可以以全向或者定向的方式接收第一信号的回波信号。进一步的,第二通信装置的接收方式与第一信号的发送方式相匹配。例如,第一通信装置以全向发送的方式发送第一信号时,第二通信装置以全向的方式接收第一信号的回波信号。第一通信装置以定向发送的方式发送第一信号时,第二通信装置以定向的方式接收第一信号的回波信号。
另外,第一通信装置还将第一信号的波形信息发送给第二通信装置,第一信号的波形信息用于确定第一信号,其具体实现在下文对S802的介绍中进行说明。
S802中,第二通信装置接收到第一信号的波形信息后,可以根据第一信号的波形信息确定第一信号。
可选的,第一信号的波形信息可以为第一信号的波形参数、波形索引或波形序列。其中,第一信号的波形信息为第一信号的波形参数或者波形序列时,可以理解的是,第二通 信装置可以直接根据第一信号的波形参数或者波形序列确定第一信号。第一信号的波形信息为第一信号的波形索引时,该波形索引在第一通信装置和第二通信装置预配置的波形集合中,与第一信号对应的波形相对应,或者说,该波形索引,用于标识波形集合中第一信号的波形。第二通信装置接收到第一信号的波形索引后,可以将预配置的波形集合中,与该波形索引对应的波形确定为第一信号的波形。
S803中,第二通信装置确定第一信号后,可以根据第一信号和接收到的第一信号的回波信号进行运算,从而确定第一互相关函数。其中,第一互相关函数是计算对第一信号进行时延、多普勒频移和角度偏转三种操作中的至少一个后得到的信号与第一信号的回波信号的互相关值得到的。
具体地,因为第二通信装置确定了第一信号,所以第二通信装置可以对第一信号进行时延、多普勒频移和角度偏转三种操作中的至少一个操作,得到偏移后的第一信号。之后,第二通信装置可以将偏移后的第一信号与接收到的第一信号的回波信号进行相关运算,得到偏移后的第一信号与第一信号的回波信号的互相关值,从而确定第一互相关函数。其中,如何进行相关运算得到对应的互相关值,可以参考现有的运算方式,在此不做阐述。
可选的,第二通信装置可以根据应用场景选择对第一信号进行时延、多普勒频移和角度偏转三种操作中的至少一个操作(以下简称为偏移操作)。例如,在测距场景中,第二通信装置可以选择对第一信号进行时延和多普勒频移操作。或者,第二通信装置需要对第一信号进行的偏移操作也可以是预配置的。或者,也可以由用户操作来选择第二通信装置对第一信号进行的偏移操作。当然,本申请实施例不对第二通信装置如何选择对第一信号进行的偏移操作进行具体限制。
S804中,第二通信装置确定第一互相关函数后,可以根据第一互相关函数,判断是否需要抑制第一信号的模糊函数。本申请实施例中,将第一信号的模糊函数称为第一模糊函数。若判断需要抑制第一模糊函数,则继续之后的流程:S805-S807。若判断无需抑制第一模糊函数,则第二通信装置可以无需执行S805-S807,可以根据第一互相关函数进行感知或测量。
可选的,第二通信装置可以根据配置的算法、规则或者模型,判断是否需要抑制第一模糊函数。一种可能的实现中,判断是否需要抑制第一模糊函数的条件,可以根据应用场景设置。
示例性的,在无源目标测量的场景中,若第二通信装置确定的第一互相关函数的图像如图2所示,第二通信装置预配置的模型根据第一互相关函数的图像,判断LOS径信号的旁瓣水平几乎淹没了目标反射的弱信号的主瓣,不能很好地检测到目标反射的弱信号的主瓣,则模型可以输出判断需要抑制第一模糊函数的结果。或者,在跟踪场景中,第二通信装置预配置的模型根据第一互相关函数的图像,发现目标反射的信号的主瓣水平逐渐降低,目标反射的信号逐渐变弱,以致检测困难,则模型可以输出判断需要抑制第一模糊函数的结果。或者,在有源干扰抑制场景中,第二通信装置预配置的模型根据第一互相关函数的图像,发现干扰源的信号在特定区域造成明显的干扰,需要对其进行抑制。
本申请实施例中,若第二通信装置判断第一模糊函数需要抑制,则第二通信装置可以确定需要对第一模糊函数进行抑制的位置。
可选的,第二通信装置可以根据配置的算法、规则或者模型,确定第一模糊函数中需 要抑制的位置。
可选的,第二通信装置可以结合其他信息,确定第一模糊函数中需要抑制的位置。示例性的,在无源目标测量的场景中,第二通信装置可以根据上层信令或者之前的跟踪信息,确定目标反射的弱信号的主瓣应该存在的大致位置,若第一互相关函数中,LOS径信号的旁瓣在目标反射的弱信号的主瓣应该存在的大致位置处造成了很大干扰,不能很好地检测到目标反射的弱信号的主瓣,则第二通信装置可以将目标反射的弱信号的主瓣应该存在的大致位置确定为第一模糊函数中需要进行抑制的位置。
可选的,第二通信装置还可以确定第一模糊函数中需要抑制的位置处需要抑制的幅度,或者说,第二通信装置还可以确定与第一模糊函数中需要抑制的位置对应的需要抑制的幅度。
本申请实施例中,第一模糊函数中需要抑制的位置和/或需要抑制的幅度可以通过多种形式的信息表征或者指示,具体在下文对S805的介绍中展开解释。
S805中,第二通信装置确定需要抑制第一模糊函数后,可以向第一通信装置发送第一指示信息,第一指示信息用于确定第二模糊函数,第二模糊函数相对于第一模糊函数存在局部幅度抑制。也可以说,第二模糊函数是对第一模糊函数进行局部幅度抑制后的模糊函数。
以下对第一指示信息进行展开介绍。
一种可能的实现中,第一指示信息可以包括对第一模糊函数进行抑制的位置信息。
可选的,第一模糊函数中需要抑制的位置可以包括第一模糊函数的定义域上的至少一个坐标点和/或至少一个坐标范围。其中,坐标点可以由时延值、多普勒频率值、角度值中的至少一个确定。坐标范围可以由时延范围、多普勒频率范围、角度范围中的至少一个确定。
示例性的,假设第一模糊函数的定义域包括时延维度,时延用参数τ表征,则第一模糊函数中需要抑制的位置可以通过{τ i}={1us,5us}指示,指示需要对第一模糊函数中1us或者5us的坐标点对应的位置进行抑制。或者,第一模糊函数中需要抑制的位置可以通过{[l,r] i}={[1us,2us],[5us,6us]}指示,指示需要对第一模糊函数中[1us,2us]或者5us,6us]的坐标范围对应的位置进行抑制。又例如,假设第一模糊函数的定义域包括多普勒频率维度,多普勒频率用参数f表征,则第一模糊函数中需要抑制的位置可以通过{f i}={10kHz,50kHz}指示,指示需要对第一模糊函数中10kHz或者50kHz的坐标点对应的位置进行抑制。或者,第一模糊函数中需要抑制的位置可以通过{[b,u]}={[10kHz,20kHz],[50kHz,60kHz]}指示,指示需要对第一模糊函数中[10kHz,20kHz]或者[50kHz,60kHz]的坐标范围对应的位置进行抑制。
可选的,第一指示信息还可以通过第一模糊函数定义域维度之外的其他量指示第一模糊函数中需要抑制的位置,比如时延对应的距离、多普勒频率对应的速度等量,本申请实施例对此不作具体限制。
该实现中,第一通信装置在根据第一指示信息,确定对第一模糊函数进行抑制的位置后,与位置对应的需要抑制的幅度可以是预配置给第一通信装置的。例如,第一通信装置预配置的需要抑制的幅度值为10dB,第一通信装置根据第一指示信息,确定需要对第一模糊函数中1us的坐标点对应的位置进行抑制,则第一通信装置可以确定需要将第一模糊函 数中1us的坐标点对应的幅度值抑制10dB。
另一种可能的实现中,第一指示信息可以包括对第一模糊函数进行抑制的位置信息和幅度信息,其中,位置信息与幅度信息对应。
可选的,第一指示信息中的幅度信息可以包括第二模糊函数在对应位置的幅度值、第二模糊函数在对应位置的峰值旁瓣比的值或第二模糊函数在对应位置的积分旁瓣比的值。其中,第二模糊函数在对应位置的幅度值,可以理解为对应位置的自相关性的值。
该实现方式中,第一通信装置可以根据第一指示信息,确定对第一模糊函数的对应位置进行抑制后,抑制后的模糊函数(即第二模糊函数)在对应位置的幅度值、峰值旁瓣比的值或积分旁瓣比的值,从而确定如何对第一模糊函数进行抑制来得到第二模糊函数。示例性的,第一指示信息中的位置信息可以包括τ i=1us,其对应的第二模糊函数的幅度值可以为50dB,则第一通信装置可以根据第一指示信息,确定若对第一模糊函数中1us的坐标点对应的幅度值进行抑制,抑制后的模糊函数(即第二模糊函数)在1us的坐标点对应的幅度值应该为50dB。
可选的,第一指示信息中的幅度信息可以包括与第一模糊函数或者第三模糊函数相比,第二模糊函数在对应位置的幅度值的衰减值。其中,第三模糊函数是第一通信装置发送的第一次信号(或者说初始信号)的模糊函数。可以理解的是,在第一模糊函数、第二模糊函数、以及第三模糊函数共用定义域的情况下,第一指示信息中的位置信息可以指示第一模糊函数、第二模糊函数以及第三模糊函数中的同一位置。
该实现方式中,第一通信装置可以根据第一指示信息,直接确定对第一模糊函数或者第三模糊函数的对应位置进行抑制的衰减值,从而确定如何对第一模糊函数或者第三模糊函数进行抑制来得到第二模糊函数。示例性的,第一指示信息中包括:{(τ,s) i}={(1us,15dB),(5us,10dB)},即需要对第一模糊函数进行抑制的位置信息包括τ i=1us和τ i=5us,其分别对应的衰减值为15dB和10dB,则第一通信装置可以根据第一指示信息,确定需要对第一模糊函数中1us的坐标点对应的幅度值抑制15dB,即需要将第一模糊函数中1us的坐标点对应的幅度值降低15dB,以及需要对第一模糊函数中5us的坐标点对应的幅度值抑制10dB,即需要将第一模糊函数中5us的坐标点对应的幅度值降低10dB。
可选的,还可以通过第一通信装置和第二通信装置预先约定的标识信息,来指示需要抑制的幅度信息。示例性的,第一通信装置和第二通信装置预先约定第一指示信息中,某一字段的比特值为01,则代表相比第一模糊函数在对应位置的幅度值,需要抑制10dB,该字段为的比特值为00,则代表相比第三模糊函数在对应位置的幅度值,需要抑制10dB。本申请实施例对约定的标识信息指示的幅度信息不作具体限制。
又一种可能的实现中,第一指示信息可以包括第二信号的波形信息,其中,第二信号的波形信息用于确定第二信号。例如,第一指示信息可以包括第二信号的波形参数、波形索引或波形序列等,其中,该波形索引在第一通信装置和第二通信装置预配置的波形集合中,与第二信号对应的波形相对应,或者说,该波形索引,用于标识波形集合中第二信号的波形。第一通信装置接收到第一指示信息后,可以将预配置的波形集合中,与该波形索引对应的波形确定为第二信号的波形。
可选的,该实现中,第一通信装置和第二通信装置预配置的,包括第二信号对应的波形的波形集合,与上文对S801的介绍中,第一信号的波形信息为第一信号的波形索引时, 包括第一信号对应的波形的波形集合,可以是同一波形集合,也可以为不同的波形集合,本申请实施例对此不作具体限制。
可以理解的是,该实现中,第二通信装置需要确定第二信号,才可以将第二信号的波形参数、波形索引或波形序列携带在第一指示信息中发送给第一通信装置。可选的,第二通信装置可以根据确定的需要对第一模糊函数进行抑制的位置,以及与位置对应的需要抑制的幅度,确定对第一模糊函数进行局部幅度抑制后的第二模糊函数,从而确定与第二模糊函数对应的第二信号。
需要说明的是,本申请实施例不限制第一指示信息包括第二信号的波形参数、波形索引或波形序列的具体实现。示例性的,第二通信装置确定第二信号后,可以将第二信号的整个波形进行量化和压缩后反馈给第一通信装置,其中,第二通信装置反馈的量化压缩后的波形,可以称为包括第二信号的波形序列的第一指示信息。
可选的,第二通信装置还可以通过第一指示信息,向第一通信装置反馈第二模糊函数,以使第一通信装置可以根据第二模糊函数确定第二信号。其中,第二通信装置可以以有损或者无损的方式反馈第二模糊函数。例如,第二通信装置得到第二模糊函数后,可以在第二模糊函数的某个定义域的区间上,均匀间隔量化第二模糊函数的值,通过反馈该区间中量化的第二模糊函数的值的方式反馈整个第二模糊函数。又例如,第二通信装置可以以量化第二模糊函数的关键阶跃点,并通过反馈量化的关键阶跃点的值的方式反馈整个第二模糊函数。
S806中,在第一指示信息包括对第一模糊函数进行抑制的位置信息或者包括对第一模糊函数进行抑制的位置信息和幅度信息的情况下,第一通信装置接收到第一指示信息后,可以根据第一指示信息确定第二模糊函数,从而确定第二信号。其中,第一通信装置如何根据第一指示信息确定第二模糊函数,可以参考上文对S805中第一指示信息的介绍,在此不再赘述。
第一通信装置如何根据第二模糊函数,确定第二模糊函数对应的第二信号,可以参考现有的确定方法,示例性的,可以通过交替方向乘子法(alternating direction method of multipliers,ADMM)等数值优化方法,本申请对比不作具体限制。
或者,在第一指示信息包括第二信号的波形信息的情况下,第一通信装置也可以直接根据第一指示信息确定第二信号。
S807中,第一通信装置确定第二信号后,发送第二信号用于感知或测量。因此,相比于第一信号是第一通信装置发送的第N次信号,第二信号是第一通信装置发送的第M次信号,其中,M等于N+1。
第一通信装置发送第二信号后,相对应的,第二通信装置接收第二信号的回波信号。可选的,第一通信装置发送第二信号的方式,与第二通信装置接收第二信号的回波信号的方式,可以参考上文对S801中,第一通信装置发送第与信号的方式,与第二通信装置接收第一信号的回波信号的方式的介绍,在此不再赘述。
基于本申请实施例提供的感知方法,第二通信装置接收第一信号的回波信号后,若根据第一信号和回波信号的互相关函数确定需要抑制第一信号的模糊函数,则可以向第一通信装置发送第一指示信息,使第一通信装置可以根据第一指示信息确定对第一模糊函数进行抑制后得到的第二模糊函数,从而可以进一步确定对应的第二信号。第一通信装置确定 第二信号后发送第二信号,相对应的,第二通信装置接收第二信号的回波信号后,因为第二模糊函数是对之前的第一模糊函数中需要抑制的局部区域进行抑制的模糊函数,所以第二模糊函数有助于降低原先局部区域存在的干扰,更加匹配感知场景,提升了弱目标探测能力或有源干扰的抑制能力。
可选的,第二通信装置接收第二信号的回波信号后,可以根据第二信号和第二信号的回波信号进行运算,从而确定第二互相关函数。其中,第二互相关函数是计算对第二信号进行时延、多普勒频移和角度偏转三种操作中的至少一个后得到的信号与第二信号的回波信号的互相关值得到的。具体实现可参考上文对S803中如何确定第一互相关函数的介绍,在此不再赘述。
进一步地,第二通信装置可以根据第二互相关函数,再次判断是否需要抑制第二模糊函数。如果判断需要抑制第二模糊函数,则第二通信装置可以再次向第一通信装置发送用于确定第四模糊函数的指示信息,其中,第四模糊函数为相比第二模糊函数存在局部幅度抑制的模糊函数,以使第一通信装置根据第四模糊函数确定与第四模糊函数对应的第三信号,并发送第三信号来再次进行感知或测量,以此类推,可以持续进行类似的流程直至第二通信装置判断无需抑制对应的模糊函数。如果第二通信装置判断无需抑制第二模糊函数,则第二通信装置可以根据第二互相关函数,进行感知或测量。具体可参考上文对S803-S806的介绍,在此不再赘述。
需要说明的是,上文中第二通信装置确定第二互相关函数需要确定第二信号。如果在S804-S806中,第二通信装置没有确定第二信号或者没有确定第二信号的波形信息,在S807中,第一通信装置需要将第二信号的波形信息发送给第二通信装置,以使第二通信装置可以根据第二信号的波形信息确定第二信号。
为了便于理解,以下结合图2、图9和图10,对本申请实施例提供的感知方法应用的一个示例进行说明。
假设无源目标测量场景中,第一通信装置发送第一信号对无源目标进行探测,并将第一信号的波形信息发送给第二通信装置。第二通信装置根据第一信号的波形信息,确定第一信号,并将第一信号在时域上进行时延,得到时延后的第一信号,第二通信装置接收到第一信号的回波信号后,将时延后的第一信号与接收到的回波信号进行相关运算,得到第一互相关函数。其中,第一互相关函数的图像如图2所示,包括第一通信装置和第二通信装置之间的LOS径的强信号与测量信号的互相关函数图像,和目标反射的回波信号(弱信号)与测量信号的互相关函数图像。
第二通信装置确定出第一互相关函数后,发现强信号的旁瓣水平过高,在旁瓣区域几乎淹没了弱信号的主瓣,导致无法探测到目标。第二通信装置判断需要抑制第一通信装置发射的第一信号的模糊函数,即需要抑制第一模糊函数。第二通信装置确定第一模糊函数中需要抑制的位置为τ=0.5us的坐标点对应的位置,τ=0.5us的坐标点处需要抑制的幅度值为8dB。第二通信装置将包括(τ,s)=(0.5us,8dB)的第一指示信息发送给第一通信装置。
第一通信装置接收到第一指示信息后,确定第一模糊函数需要抑制的位置为τ=0.5us,该位置对应的幅度值的衰减值为8dB,从从而确定抑制后的模糊函数,即第二模糊函数。第二模糊函数的图像如图9所示,可以看出,第二模糊函数在τ=0.5us的坐标点处的旁瓣水平大幅下降。
第一通信装置根据第二模糊函数,确定对应的第二信号,第二信号的模糊函数为第二模糊函数。第一通信装置再次发送第二信号对无源目标进行探测,并将第二信号的波形信息发送给第二通信装置。第二通信装置根据第二信号的波形信息,确定第二信号,并将第二信号在时域上进行时延,得到时延后的第二信号,第二通信装置接收到第二信号的回波信号后,将时延后的第二信号与接收到的回波信号进行相关运算,得到第二互相关函数。其中,第二互相关函数的图像如图10所示,包括第一通信装置和第二通信装置之间的LOS径的强信号与测量信号的互相关函数图像,和目标反射的回波信号(弱信号)与测量信号的互相关函数图像。可以看出,此次测量得到的互相关函数图像中,可以较清楚地观测到弱信号的主瓣,基于本申请实施例提供的感知方法,第二信号的感知性能相比第一信号的感知性能得到提高,抑制了LOS径的旁瓣造成的干扰。
可以理解的是,以上各个实施例中,由第一通信装置实现的方法和/或步骤,也可以由可用于第一通信装置的部件(例如芯片或者电路)实现。由第二通信装置实现的方法和/或步骤,也可以由可用于第二通信装置的部件(例如芯片或者电路)实现。
上述主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一通信装置,或者包含上述第一通信装置的装置,或者为可用于第一通信装置的部件;或者,该通信装置可以为上述方法实施例中的第二通信装置,或者包含上述第二通信装置的装置,或者为可用于第二通信装置的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图11示出了一种通信装置1100的结构示意图。该通信装置1100包括接口模块1101和处理模块1102。所述接口模块1101,也可以称为收发模块或收发单元,接口模块1101用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
以通信装置为上述方法实施例中的第二通信装置为例,在一种可能的设计中,接口模块1101,用于接收第一信号的波形信息和第一信号的回波信号,第一信号是第一通信装置发送的第N次信号,其中,N为大于或等于1的正整数。处理模块1102,用于根据第一信号的波形信息确定第一信号。处理模块1102,还用于根据第一信号和第一信号的回波信号确定第一互相关函数,第一互相关函数是计算对第一信号进行时延、多普勒频移和角度偏转三种操作中的至少一个后得到的信号与第一信号的回波信号的互相关值得到的。处理模块1102,还用于根据第一互相关函数确定需要抑制第一模糊函数,第一模糊函数是第一信 号的模糊函数。接口模块1101,还用于向第一通信装置发送第一指示信息,第一指示信息用于确定第二模糊函数,第二模糊函数相对于第一模糊函数存在局部幅度抑制。接口模块1101,还用于接收第二信号的回波信号,第二信号是第一通信装置发送的第M次信号,第二信号的模糊函数是第二模糊函数,其中,M等于N+1。
在一种可能的设计中,第一指示信息包括对第一模糊函数进行抑制的位置信息。
在一种可能的设计中,第一指示信息包括对第一模糊函数进行抑制的位置信息和幅度信息,位置信息与幅度信息对应。
在一种可能的设计中,位置信息包括第一模糊函数的定义域上的至少一个坐标点和/或至少一个坐标范围。
在一种可能的设计中,坐标点由时延值、多普勒频率值、角度值中的至少一个确定。
在一种可能的设计中,坐标范围由时延范围、多普勒频率范围、角度范围中的至少一个确定。
在一种可能的设计中,幅度信息包括第二模糊函数在对应位置的幅度值、第二模糊函数在对应位置的峰值旁瓣比的值或第二模糊函数在对应位置的积分旁瓣比的值。
在一种可能的设计中,幅度信息包括与第一模糊函数或者第三模糊函数相比,第二模糊函数在对应位置的幅度值的衰减值;其中,第三模糊函数是第一通信装置发送的第一次信号的模糊函数。
在一种可能的设计中,第一指示信息包括第二信号的波形参数、波形索引或波形序列,其中,波形索引对应波形集合中第二信号对应的波形,波形集合配置在第一通信装置和第二通信装置中。
以通信装置为上述方法实施例中的第一通信装置为例,在一种可能的设计中,接口模块1101,用于发送第一信号和第一信号的波形信息,第一信号是第一通信装置发送的第N次信号,第一信号的模糊函数是第一模糊函数;其中,N为大于或等于1的正整数。接口模块1101,还用于接收由第二通信装置发送的第一指示信息,第一指示信息用于确定第二模糊函数,第二模糊函数相对于第一模糊函数存在局部幅度抑制。处理模块1102,用于根据第一指示信息确定第二信号,第二信号的模糊函数是第二模糊函数。接口模块1101,还用于发送第二信号;第二信号是第一通信装置发送的第M次信号,其中,M等于N+1。
在一种可能的设计中,第一指示信息包括对第一模糊函数进行抑制的位置信息。
在一种可能的设计中,第一指示信息包括对第一模糊函数进行抑制的位置信息和幅度信息,位置信息与幅度信息对应。
在一种可能的设计中,位置信息包括第一模糊函数的定义域上的至少一个坐标点和/或至少一个坐标范围。基于本方案,可以通过第一模糊函数的坐标点或坐标范围反馈第一模糊函数中需要抑制的位置。
在一种可能的设计中,坐标点由时延值、多普勒频率值、角度值中的至少一个确定。
在一种可能的设计中,坐标范围由时延范围、多普勒频率范围、角度范围中的至少一个确定。
在一种可能的设计中,幅度信息包括第二模糊函数在对应位置的幅度值、第二模糊函数在对应位置的峰值旁瓣比的值或第二模糊函数在对应位置的积分旁瓣比的值。
在一种可能的设计中,幅度信息包括与第一模糊函数或者第三模糊函数相比,第二模 糊函数在对应位置的幅度值的衰减值;其中,第三模糊函数是第一通信装置发送的第一次信号的模糊函数。
结合上述第二方面,在一种可能的设计中,第一指示信息包括第二信号的波形参数、波形索引或波形序列,其中,波形索引对应波形集合中第二信号对应的波形,波形集合配置在第一通信装置和第二通信装置中。
在本实施例中,该通信装置1100以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到该通信装置1100可以采用图7所示的通信装置700的形式。
比如,图7所示的通信装置700中的处理器701可以通过调用存储器703中存储的计算机执行指令,使得通信装置700执行上述方法实施例中的感知方法。具体的,图11中的接口模块1101和处理模块1102的功能/实现过程可以通过图7所示的通信装置700中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图11中的处理模块1102的功能/实现过程可以通过图7所示的通信装置700中的处理器701调用存储器703中存储的计算机执行指令来实现,图11中的接口模块1101的功能/实现过程可以通过图7所示的通信装置700中的通信接口704来实现。
由于本实施例提供的通信装置1100可执行上述感知方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(fieldprogrammable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、DSP芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式中,该通信装置还包括存储器。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。
本申请提供一种计算机程序产品包括一个或多个计算机指令,当其在通信装置上运行时,使得本申请实施例的任一方法被执行。
在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。
计算机指令可以存储在计算机可读存储介质中。本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得本申请实施例的任一方法被执行。
计算机指令可以从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质[例如,数字通用光盘(digital versatile disc,DVD)]、或者半导体介质(例如固态硬盘(solid state drive,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种感知方法,其特征在于,所述方法包括:
    第二通信装置接收第一信号的波形信息和所述第一信号的回波信号,所述第一信号是第一通信装置发送的第N次信号,其中,N为大于或等于1的正整数;
    所述第二通信装置根据所述第一信号的波形信息确定所述第一信号;
    所述第二通信装置根据所述第一信号和所述第一信号的回波信号确定第一互相关函数,所述第一互相关函数是计算对所述第一信号进行时延、多普勒频移和角度偏转三种操作中的至少一个后得到的信号与所述第一信号的回波信号的互相关值得到的;
    所述第二通信装置根据所述第一互相关函数确定需要抑制第一模糊函数,所述第一模糊函数是所述第一信号的模糊函数;
    所述第二通信装置向所述第一通信装置发送第一指示信息,所述第一指示信息用于确定第二模糊函数,所述第二模糊函数相对于所述第一模糊函数存在局部幅度抑制;
    所述第二通信装置接收第二信号的回波信号,所述第二信号是所述第一通信装置发送的第M次信号,所述第二信号的模糊函数是所述第二模糊函数,其中,M等于N+1。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括对所述第一模糊函数进行抑制的位置信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括对所述第一模糊函数进行抑制的位置信息和幅度信息,所述位置信息与所述幅度信息对应。
  4. 根据权利要求2或3所述的方法,其特征在于,所述位置信息包括所述第一模糊函数的定义域上的至少一个坐标点和/或至少一个坐标范围。
  5. 根据权利要求4所述的方法,其特征在于,所述坐标点由时延值、多普勒频率值、角度值中的至少一个确定。
  6. 根据权利要求4或5所述的方法,其特征在于,所述坐标范围由时延范围、多普勒频率范围、角度范围中的至少一个确定。
  7. 根据权利要求3所述的方法,其特征在于,所述幅度信息包括所述第二模糊函数在对应位置的幅度值、所述第二模糊函数在对应位置的峰值旁瓣比的值或所述第二模糊函数在对应位置的积分旁瓣比的值。
  8. 根据权利要求3所述的方法,其特征在于,所述幅度信息包括与所述第一模糊函数或者第三模糊函数相比,所述第二模糊函数在对应位置的幅度值的衰减值;其中,所述第三模糊函数是所述第一通信装置发送的第一次信号的模糊函数。
  9. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括所述第二信号的波形参数、波形索引或波形序列,其中,所述波形索引对应波形集合中所述第二信号对应的波形,所述波形集合配置在所述第一通信装置和所述第二通信装置中。
  10. 一种感知方法,其特征在于,所述方法包括:
    第一通信装置发送第一信号和所述第一信号的波形信息,所述第一信号是所述第一通信装置发送的第N次信号,所述第一信号的模糊函数是第一模糊函数;其中,N为大于或等于1的正整数;
    所述第一通信装置接收由第二通信装置发送的第一指示信息,所述第一指示信息 用于确定第二模糊函数,所述第二模糊函数相对于所述第一模糊函数存在局部幅度抑制;
    所述第一通信装置根据所述第一指示信息确定第二信号,所述第二信号的模糊函数是第二模糊函数;
    所述第一通信装置发送所述第二信号;所述第二信号是所述第一通信装置发送的第M次信号,其中,M等于N+1。
  11. 根据权利要求10所述的方法,其特征在于,所述第一指示信息包括对所述第一模糊函数进行抑制的位置信息。
  12. 根据权利要求10所述的方法,其特征在于,所述第一指示信息包括对所述第一模糊函数进行抑制的位置信息和幅度信息,所述位置信息与所述幅度信息对应。
  13. 根据权利要求11或12所述的方法,其特征在于,所述位置信息包括所述第一模糊函数的定义域上的至少一个坐标点和/或至少一个坐标范围。
  14. 根据权利要求13所述的方法,其特征在于,所述坐标点由时延值、多普勒频率值、角度值中的至少一个确定。
  15. 根据权利要求13或14所述的方法,其特征在于,所述坐标范围由时延范围、多普勒频率范围、角度范围中的至少一个确定。
  16. 根据权利要求12所述的方法,其特征在于,所述幅度信息包括所述第二模糊函数在对应位置的幅度值、所述第二模糊函数在对应位置的峰值旁瓣比的值或所述第二模糊函数在对应位置的积分旁瓣比的值。
  17. 根据权利要求12所述的方法,其特征在于,所述幅度信息包括与所述第一模糊函数或者第三模糊函数相比,所述第二模糊函数在对应位置的幅度值的衰减值;其中,所述第三模糊函数是所述第一通信装置发送的第一次信号的模糊函数。
  18. 根据权利要求10所述的方法,其特征在于,所述第一指示信息包括所述第二信号的波形参数、波形索引或波形序列,其中,所述波形索引对应波形集合中所述第二信号对应的波形,所述波形集合配置在所述第一通信装置和所述第二通信装置中。
  19. 一种通信装置,其特征在于,包括:用于实现权利要求1-9任一项所述的方法的模块或单元;或者,用于实现权利要求10-18任一项所述的方法的模块或单元。
  20. 一种通信装置,其特征在于,所述通信装置包括:处理器,所述处理器用于执行存储器存储的指令;当所述指令被所述处理器运行时,使得所述通信装置执行权利要求1-9中任一项所述的方法,或者,使得所述通信装置实现权利要求10-18中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时,使得权利要求1-9中任一项所述的方法被执行,或者,使得权利要求10-18中任一项所述的方法被执行。
  22. 一种通信系统,其特征在于,所述通信系统包括第一通信装置和第二通信装置;所述第一通信装置,用于执行权利要求1-9中任一项所述的方法;所述第二通信装置,用于执行权利要求10-18中任一项所述的方法。
PCT/CN2022/103156 2022-06-30 2022-06-30 感知方法、装置及系统 WO2024000525A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103156 WO2024000525A1 (zh) 2022-06-30 2022-06-30 感知方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103156 WO2024000525A1 (zh) 2022-06-30 2022-06-30 感知方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2024000525A1 true WO2024000525A1 (zh) 2024-01-04

Family

ID=89383858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103156 WO2024000525A1 (zh) 2022-06-30 2022-06-30 感知方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2024000525A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280293A1 (en) * 2007-08-08 2011-11-17 Thales Methods and Devices for Determining the Impulse Response of Propagation Channels Involving Emitters, Reflectors and Sensors that are Fixed or Mobile
CN103344948A (zh) * 2013-06-18 2013-10-09 北京理工大学 一种利用稀疏傅里叶变换计算外辐射源雷达互模糊函数的方法
CN109085549A (zh) * 2018-07-27 2018-12-25 西安电子科技大学 外辐射源雷达中多普勒维模糊副峰抑制方法
CN113884998A (zh) * 2021-09-27 2022-01-04 中国人民解放军32802部队 一种多载波相参和非相参联合累积处理方法
CN114397649A (zh) * 2021-12-14 2022-04-26 西安电子科技大学 一种基于子载波的目标匹配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280293A1 (en) * 2007-08-08 2011-11-17 Thales Methods and Devices for Determining the Impulse Response of Propagation Channels Involving Emitters, Reflectors and Sensors that are Fixed or Mobile
CN103344948A (zh) * 2013-06-18 2013-10-09 北京理工大学 一种利用稀疏傅里叶变换计算外辐射源雷达互模糊函数的方法
CN109085549A (zh) * 2018-07-27 2018-12-25 西安电子科技大学 外辐射源雷达中多普勒维模糊副峰抑制方法
CN113884998A (zh) * 2021-09-27 2022-01-04 中国人民解放军32802部队 一种多载波相参和非相参联合累积处理方法
CN114397649A (zh) * 2021-12-14 2022-04-26 西安电子科技大学 一种基于子载波的目标匹配方法

Similar Documents

Publication Publication Date Title
EP3986018A1 (en) Sensing measurement method and device
US20200333427A1 (en) Method, apparatus, and system for positioning terminal device
US11977143B2 (en) Radar probing using radio communication terminals
RU2632475C1 (ru) Инициированное точкой доступа позиционирование по времени распространения
EP3465256A1 (en) Coexistence of radio communication and radar probing
US11860293B2 (en) Radar probing employing pilot signals
WO2021120023A1 (zh) 一种定位方法及装置
US20220349984A1 (en) Low power radar in radio communication terminal
EP3972331A1 (en) Positioning method and device
US20240023078A1 (en) Communication method and communication apparatus
CN117471485A (zh) 一种基于无人机激光雷达的高速公路路基高边坡位移监测的方法
WO2024000525A1 (zh) 感知方法、装置及系统
WO2024027343A1 (zh) 定位方法及装置
WO2024032562A1 (zh) 一种通信方法及装置
WO2023116273A1 (zh) 定位方法及装置、存储介质、程序产品
CN117499979B (zh) 一种相控阵天线的目标探测方法及装置
WO2023185526A1 (zh) 通信方法和通信装置
CN117687013B (zh) 基于5g的安防高精度定位方法
US20230156429A1 (en) Radio frequency switch circuit, communication unit and method therefor
WO2023138457A1 (zh) 一种测量上报方法及通信装置
WO2023185775A1 (zh) 感知方法及装置
WO2023098561A1 (zh) 一种通信方法及装置
US20240014936A1 (en) Sensing method and communication apparatus
WO2023036123A1 (zh) 一种通信方法及装置
EP4181537A1 (en) Multi-path single anchor point positioning method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948627

Country of ref document: EP

Kind code of ref document: A1