WO2023137592A1 - Wlan感知测量方法及装置、电子设备及存储介质 - Google Patents

Wlan感知测量方法及装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023137592A1
WO2023137592A1 PCT/CN2022/072593 CN2022072593W WO2023137592A1 WO 2023137592 A1 WO2023137592 A1 WO 2023137592A1 CN 2022072593 W CN2022072593 W CN 2022072593W WO 2023137592 A1 WO2023137592 A1 WO 2023137592A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
working parameter
wlan
feedback message
message frame
Prior art date
Application number
PCT/CN2022/072593
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/072593 priority Critical patent/WO2023137592A1/zh
Priority to CN202280000137.XA priority patent/CN116783927A/zh
Publication of WO2023137592A1 publication Critical patent/WO2023137592A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Embodiments of the present disclosure relate to the field of mobile communication technologies, and specifically, embodiments of the present disclosure relate to a WLAN perception measurement method and device, electronic equipment, and a storage medium.
  • Wi-Fi Wireless Fidelity
  • Wi-Fi technology is researching content such as 320MHz bandwidth transmission, aggregation and coordination of multiple frequency bands, etc., and its main application scenarios are video transmission, augmented reality (Augmented Reality, AR), virtual reality (Virtual Reality, VR) and so on.
  • Wi-Fi wireless local area network
  • WLAN Wireless Local Area Network
  • sensing application scenarios such as location discovery, proximity detection (Proximity Detection) and presence detection (Presence Detection) in dense environments (such as home environment and enterprise environment).
  • the non-Trigger Based Sounding (Non-TB) Sensing method is one of the main Sensing methods in the process of WLAN Sensing. In the Non-TB sensing measurement process, the measurement result can be fed back; therefore, it is necessary to provide a way to feed back the measurement result.
  • Embodiments of the present disclosure provide a WLAN sensing measurement method and device, electronic equipment, and a storage medium, so as to provide a manner of feeding back a measurement result in a Non-TB sensing measurement process.
  • an embodiment of the present disclosure provides a WLAN perception measurement method, which is applied to an access point device AP, and the method includes:
  • the first operating parameter of the feedback message frame is identical with the second operating parameter of the empty data packet announcing the NDPA frame and/or is identical with the third operating parameter of the downlink empty data packet DL NDP frame.
  • an embodiment of the present disclosure also provides a perception measurement method, which is applied to a station device STA, and the method includes:
  • the first working parameter of the feedback message frame is the same as the second working parameter of the empty data packet announcement NDPA frame and/or the same as the third working parameter of the downlink empty data packet DL NDP frame.
  • an embodiment of the present disclosure also provides an access point device AP, where the access point device includes:
  • the sending module is used to send the feedback message frame; wherein, the first working parameter of the feedback message frame is the same as the second working parameter of the empty data packet announcement NDPA frame and/or the same as the third working parameter of the downlink empty data packet DL NDP frame.
  • an embodiment of the present disclosure also provides a station device STA, where the station device includes:
  • the receiving module is configured to receive a feedback message frame; wherein, the first operating parameter of the feedback message frame is the same as the second operating parameter of the empty data packet announcement NDPA frame and/or the same as the third operating parameter of the downlink empty data packet DL NDP frame.
  • an embodiment of the present disclosure also provides a WLAN perception measurement device, which is applied to an access point device AP, and the device includes:
  • the message frame sending module is used to send the feedback message frame; wherein, the first working parameter of the feedback message frame is the same as the second working parameter of the empty data packet announcing the NDPA frame and/or the same as the third working parameter of the downlink empty data packet DL NDP frame.
  • an embodiment of the present disclosure also provides a WLAN perception measurement device, which is applied to a station device STA, and the device includes:
  • the message frame receiving module is used to receive the feedback message frame; wherein, the first operating parameter of the feedback message frame is the same as the second operating parameter of the empty data packet announcing the NDPA frame and/or the same as the third operating parameter of the downlink empty data packet DL NDP frame.
  • An embodiment of the present disclosure also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, the method as described in one or more of the embodiments of the present disclosure is implemented.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, one or more methods described in the embodiments of the present disclosure are implemented.
  • the AP sends a feedback message frame
  • the first working parameter of the feedback message frame is the same as the second working parameter of the NDPA frame and/or the same as the third working parameter of the packet DL NDP frame.
  • the embodiment of the present disclosure provides a manner of feeding back a measurement result in a Non-TB perception measurement process.
  • FIG. 1 is one of the flow charts of the WLAN sensing measurement method provided by an embodiment of the present disclosure
  • Fig. 2 is one of the schematic diagrams of the first example of the embodiment of the present disclosure
  • Fig. 3 is the second schematic diagram of the first example of the embodiment of the present disclosure.
  • Fig. 4 is the third schematic diagram of the first example of the embodiment of the present disclosure.
  • Fig. 5 is one of the schematic diagrams of the second example of the embodiment of the present disclosure.
  • Fig. 6 is the second schematic diagram of the second example of the embodiment of the present disclosure.
  • Fig. 7 is the third schematic diagram of the second example of the embodiment of the present disclosure.
  • FIG. 8 is the second flowchart of the WLAN sensing measurement method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an access point device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a site device provided by an embodiment of the present disclosure.
  • Fig. 11 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • word “if” as used herein could be interpreted as “at” or “when” or "in response to a determination.”
  • Embodiments of the present disclosure provide a WLAN sensing measurement method and device, electronic equipment, and a storage medium, so as to provide a manner of feeding back a measurement result in a Non-TB sensing measurement process.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • an embodiment of the present disclosure provides a WLAN perception measurement method.
  • the method can be applied to an access point device AP, and the method may include the following steps:
  • Step 101 sending a feedback message frame; wherein, the first working parameter of the feedback message frame is the same as the second working parameter of the empty data packet announcement NDPA frame and/or the same as the third working parameter of the downlink empty data packet DL NDP frame.
  • the WLAN Sensing architecture and the WLAN Sensing process of the WLAN sensing measurement method provided by the embodiments of the present disclosure are firstly introduced.
  • Fig. 2 shows a schematic diagram of a WLAN Sensing (process); wherein, the sensing initiator (or initiator) initiates WLAN Sensing (for example, initiates a WLAN sensing session), and there may be multiple sensing responders (Sensing Responder, or sensing receiving end) or responding ends responding to it, as shown in the responding end 1, the responding end 2 and the responding end 3 in Fig. 2 .
  • the sensing initiator initiates WLAN Sensing
  • multiple associated or non-associated WLAN Sensing perception responders can respond.
  • the sensing initiator and the sensing responder communicate through the communication connection, as shown in the communication connection S1; the sensing responding ends communicate through the communication connection S2.
  • each sensing initiator may be a client (Client); each sensing responder (in this example, sensing responding end 1 to sensing responding end 3) may be a station device (STA) or an access point device AP.
  • STAs and APs can assume multiple roles in the WLAN sensing process; for example, in the WLAN sensing process, STAs can also act as sensing initiators, and the sensing initiators may be sensing transmitters (Sensing Transmitters), sensing receivers (Sensing Receivers), or both, or neither.
  • the sensing responder may also be a sensing transmitter, a sensing receiver or both.
  • the sensing initiator and the sensing responder can both be clients, and the two can communicate by connecting to the same access point device (AP); in Figure 4, Client1 is the sensing initiator, and Client2 is the sensing responder.
  • AP access point device
  • the WLAN sensing process includes the establishment of a WLAN sensing session, the establishment of a WLAN sensing measurement, and the termination of a WLAN sensing measurement.
  • the WLAN sensing process usually includes a trigger frame (Triggered Based Sounding, TB) method and a Non-TB based sensing method.
  • TB Trigger Frame
  • the AP is the Initiator or Transmitter
  • the STA is the Initiator or Transmitter.
  • the AP sends a feedback message frame (Sensing Measurement Report) to the STA, and feedbacks the measurement result in the feedback message frame.
  • the first working parameter of the feedback message frame may be the same as the second working parameter of the null data packet notification NDPA frame; wherein, in the Non-TB Based scenario, the STA sends an NDPA frame to the AP, and the NDPA frame is used to indicate sending a Null Data Packet (Null Data Packet, NDP) frame.
  • the AP receives the NDPA frame, and subsequently, when sending the feedback message frame, sets the working parameter of the feedback message frame as the second working parameter of the NDPA frame; optionally, since the first working parameter is the same as the second working parameter, no indication information for indicating the first working parameter may be sent in the feedback message frame, so as to reduce message overhead.
  • the first working parameter of the feedback message frame may also be the same as the third working parameter of the downlink empty data packet DL NDP frame sent by the AP to the STA; similarly, since the first working parameter is the same as the third working parameter, the indication information for indicating the first working parameter may no longer be sent in the feedback message frame, so as to reduce message overhead.
  • SIFS Short Interframe Space
  • the sensing initiator STA first executes the first step, sending the sensing NDPA frame; then executes the second step, sending the I2R NDP frame, and the I2R NDP participates in the sensing measurement.
  • the perception responder can first perform step 3, send R2I NDP frame, and R2I NDP does not participate in perception measurement; then AP performs step 4, sends feedback message frame, and feedbacks the detection result (feedback).
  • the first working parameter of the feedback message frame can be the same as the second working parameter of the NDPA frame.
  • the sensing initiator STA first executes the first step, sending the sensing NDPA frame; then executes the second step, sending the I2R NDP frame. Thereafter, the perception responder AP executes step 3 to send an R2I NDP frame; then the AP executes step 4 to send a feedback message frame, and the first operating parameter of the feedback message frame can be the same as the second operating parameter of the NDPA frame and/or the third operating parameter of the I2R NDP frame.
  • the sensing initiator STA first executes the first step, sending the sensing NDPA frame; then executes the second step, sending the I2R NDP frame.
  • the perception responder AP executes step 3 to send an R2I NDP frame; then the AP executes step 4 to send a feedback message frame, and the first operating parameter of the feedback message frame can be the same as the second operating parameter of the NDPA frame and/or the third operating parameter of the I2R NDP frame.
  • both I2R NDP and R2I NDP participate
  • the perception initiator STA first executes the first step, sending the perception NDPA frame; then executes the second step, sending the I2R NDP frame, and the I2R NDP does not participate in the perception measurement. Thereafter, the perception responder AP performs step 3, performs the downlink perception detection, sends the R2I NDP frame, and the R2I NDP participates in the perception measurement. Thereafter, the AP may send a feedback message frame (not shown in FIG. 7 ), and the first operating parameter of the feedback message frame may be the same as the second operating parameter of the NDPA frame.
  • the AP sends a feedback message frame
  • the first working parameter of the feedback message frame is the same as the second working parameter of the NDPA frame and/or the same as the third working parameter of the packet DL NDP frame.
  • the embodiment of the present disclosure provides a manner of feeding back a measurement result in a Non-TB perception measurement process.
  • the method before sending the feedback message frame, the method further includes:
  • NDPA message frame is unicast message frame; If in NDPA frame, comprise the association identifier (Association ID, AID) of AP, for example 2043, then mark initiates UL sounding; , BW and other information.
  • association ID Association ID, AID
  • the method before sending the feedback message frame, the method further includes:
  • the STA sends an I2R NDP frame (UL NDP frame); optionally, the operating parameters of the UL NDP frame (such as NSS number information, BW information, and TX power information) can be the same as or different from the operating parameters of the DL NDP frame carried in the NDPA frame; the AP receives the UL NDP frame, and performs step 3 to send the R2I NDP frame (DL NDP frame).
  • the number of the long training field LTF in the DL NDP frame is a preset value, for example, the value of the long training field (Long Training Field, LTF) is 1.
  • the feedback message frame includes wireless local area network WLAN sensing measurement identification information and/or time information; sensing measurement identification information such as instance ID; the time information includes the sending time of the UL NDP frame, that is, the sending time of the UL NDP frame sent by the STA; in addition, the feedback time of the feedback message frame can be delayed feedback or real-time feedback.
  • the first working parameter, the second working parameter and/or the third working parameter are determined during a process of establishing a WLAN-aware session or a process of establishing a WLAN-aware measurement.
  • the Sensing Measurement Setup ID is determined by the Initiator, which occurs before the sensing measurement.
  • the time slot for sending can also be specified in this process, and for the unassociated (unassociated, that is, not establishing a communication connection with the AP) STA, it is necessary to obtain the Timer Synchronization Function (TSF) of the AP in advance.
  • TSF Timer Synchronization Function
  • the AP sends a feedback message frame
  • the first working parameter of the feedback message frame is the same as the second working parameter of the NDPA frame and/or the same as the third working parameter of the packet DL NDP frame.
  • the embodiment of the present disclosure provides a manner of feeding back a measurement result in a Non-TB perception measurement process.
  • an embodiment of the present disclosure provides a WLAN perception measurement method.
  • the method is applicable to a station device STA, and the method may include the following steps:
  • Step 801 receiving a feedback message frame; wherein, the first working parameter of the feedback message frame is the same as the second working parameter of the empty data packet announcement NDPA frame and/or the same as the third working parameter of the downlink empty data packet DL NDP frame.
  • the WLAN sensing process includes the establishment of a WLAN sensing session, the establishment of a WLAN sensing measurement, and the termination of a WLAN sensing measurement.
  • the WLAN sensing process usually includes a trigger frame (Triggered Based Sounding, TB) method and a Non-TB based sensing method.
  • TB Trigger Frame
  • the AP is the Initiator or Transmitter
  • the STA is the Initiator or Transmitter.
  • the STA receives the feedback message frame (Sensing Measurement Report) sent to the STA after the AP completes the sensing measurement, and feeds back the measurement result in the feedback message frame.
  • the first working parameter of the feedback message frame may be the same as the second working parameter of the empty data packet announcement NDPA frame; where, in the Non-TB Based scenario, the STA sends an NDPA frame to the AP, and the NDPA frame is used to indicate sending an NDP frame.
  • the AP receives the NDPA frame, and subsequently, when sending the feedback message frame, sets the working parameter of the feedback message frame as the second working parameter of the NDPA frame; optionally, since the first working parameter is the same as the second working parameter, the indication information for indicating the first working parameter may no longer be sent in the feedback message frame, so as to reduce message overhead.
  • the first working parameter of the feedback message frame may also be the same as the third working parameter of the downlink empty data packet DL NDP frame sent by the AP to the STA; similarly, since the first working parameter is the same as the third working parameter, the indication information for indicating the first working parameter may no longer be sent in the feedback message frame, so as to reduce message overhead.
  • the sensing initiator STA first executes the first step, sending the sensing NDPA frame; then executes the second step, sending the I2R NDP frame, and the I2R NDP participates in the sensing measurement.
  • the perception responder can first perform step 3, send R2I NDP frame, and R2I NDP does not participate in perception measurement; then AP performs step 4, sends feedback message frame, feedbacks the detection result (feedback), and then STA receives the feedback message frame, and the first working parameter of the feedback message frame can be the same as the second working parameter of the NDPA frame.
  • the sensing initiator STA first executes the first step, sending the sensing NDPA frame; then executes the second step, sending the I2R NDP frame. Thereafter, the perception responder AP executes step 3 to send an R2I NDP frame; then the AP executes step 4 to send a feedback message frame, and then the STA receives the feedback message frame, and the first operating parameter of the feedback message frame can be the same as the second operating parameter of the NDPA frame and/or the third operating parameter of the I2R NDP frame.
  • both I2R NDP and R2I NDP participate in perception measurement.
  • the sensing initiator STA first executes the first step, sending the sensing NDPA frame; then executes the second step, sending the I2R NDP frame, and the I2R NDP does not participate in the sensing measurement. Thereafter, the perception responder AP performs step 3, performs the downlink perception detection, sends the R2I NDP frame, and the R2I NDP participates in the perception measurement. Thereafter, the AP may send a feedback message frame (not shown in FIG. 7 ), and then the STA receives the feedback message frame.
  • the first operating parameter of the feedback message frame may be the same as the second operating parameter of the NDPA frame.
  • the STA receives a feedback message frame, and the first working parameter of the feedback message frame is the same as the second working parameter of the NDPA frame and/or is the same as the third working parameter of the packet DL NDP frame.
  • the embodiment of the present disclosure provides a manner of feeding back a measurement result in a Non-TB perception measurement process.
  • the method before receiving the feedback message frame, the method further includes:
  • the NDPA frame includes perception detection type information and/or optional working parameters for sending the NDP frame.
  • the STA sends a perceived NDPA frame, and then the AP receives the NDPA frame to determine the second operating parameter of the NDPA frame; wherein, the NDPA message frame is a unicast message frame; if the STA carries an AP's association identifier (Association ID, AID), such as 2043, in the NDPA frame, then the flag initiates UL sounding; , BW and other information.
  • association ID AID
  • the method before receiving the feedback message frame, the method further includes:
  • the STA sends an I2R NDP frame (UL NDP frame); optionally, the operating parameters of the UL NDP frame (such as NSS quantity information, BW information, and TX power information) can be the same as or different from the operating parameters of the DL NDP frame carried in the NDPA frame; the AP receives the UL NDP frame, and performs step 3 to send an R2I NDP frame (DL NDP frame), then the STA receives the DL NDP frame.
  • the number of the long training field LTF in the DL NDP frame is a preset value, for example, the value of the long training field (Long Training Field, LTF) is 1.
  • the feedback message frame includes wireless local area network WLAN sensing measurement identification information and/or time information; sensing measurement identification information such as instance ID;
  • the time information includes the sending time of the UL NDP frame, that is, the sending time of the STA sending the UL NDP frame; in addition, the feedback time of the feedback message frame may be delayed feedback or real-time feedback.
  • the first working parameter, the second working parameter, and/or the third working parameter are determined during a process of establishing a WLAN-aware session or a process of establishing a WLAN-aware measurement.
  • the Sensing Measurement Setup ID is determined by the Initiator, which occurs before the sensing measurement.
  • the time slot for sending can also be specified in this process, and for the unassociated (unassociated, that is, not establishing a communication connection with the AP) STA, it is necessary to obtain the Timer Synchronization Function (TSF) of the AP in advance.
  • TSF Timer Synchronization Function
  • the STA receives the feedback message frame, and the first working parameter of the feedback message frame is the same as the second working parameter of the NDPA frame and/or the same as the third working parameter of the packet DL NDP frame.
  • the embodiment of the present disclosure provides a manner of feeding back a measurement result in a Non-TB perception measurement process.
  • the embodiment of the present disclosure also provides an access point device AP, and the access point device includes:
  • the sending module 901 is configured to send a feedback message frame; wherein, the first working parameter of the feedback message frame is the same as the second working parameter of the empty data packet announcement NDPA frame and/or the same as the third working parameter of the downlink empty data packet DL NDP frame.
  • the access point device further includes:
  • the NDPA receiving module is configured to receive the NDPA frame and determine the second working parameter of the NDPA frame before the sending module 901 sends the feedback message frame.
  • the access point device further includes:
  • the NDP receiving module is used to receive the uplink empty data packet UL NDP frame before the sending module 901 sends the feedback message frame;
  • a response module configured to send the DL NDP frame in response to the UL NDP frame.
  • the feedback message frame includes WLAN sensing measurement identification information and/or time information
  • the time information includes the sending time of the UL NDP frame.
  • the number of long training fields LTF in the DL NDP frame is a preset value.
  • the first working parameter, the second working parameter and/or the third working parameter are determined during a process of establishing a WLAN-aware session or a process of establishing a WLAN-aware measurement.
  • the first working parameter, the second working parameter and/or the third working parameter include at least one of the following:
  • Spatial stream number NSS information bandwidth BW information and transmit power TX power information.
  • the sending module 901 sends a feedback message frame, and the first working parameter of the feedback message frame is the same as the second working parameter of the NDPA frame and/or the same as the third working parameter of the packet DL NDP frame.
  • the embodiment of the present disclosure provides a manner of feeding back a measurement result in a Non-TB perception measurement process.
  • An embodiment of the present disclosure also provides a WLAN perception measurement device, which is applied to an access point device AP, and the device includes:
  • the message frame sending module is used to send the feedback message frame; wherein, the first working parameter of the feedback message frame is the same as the second working parameter of the empty data packet announcing the NDPA frame and/or the same as the third working parameter of the downlink empty data packet DL NDP frame.
  • the apparatus also includes other modules of the access point device in the foregoing embodiments, which will not be repeated here.
  • the embodiment of the present disclosure further provides a station device STA, and the station device includes:
  • the receiving module 1001 is configured to receive a feedback message frame; wherein, the first working parameter of the feedback message frame is the same as the second working parameter of the empty data packet announcement NDPA frame and/or the same as the third working parameter of the downlink empty data packet DL NDP frame.
  • the site equipment further includes:
  • the NDPA frame sending module is configured to send the NDPA frame before the receiving module 1001 receives the feedback message frame, and the NDPA frame includes sensing detection type information and/or optional working parameters for sending the NDP frame.
  • the site equipment further includes:
  • the NDP frame sending module is used for sending the uplink empty data packet UL NDP frame and receiving the DL NDP frame before the receiving module 1001 receives the feedback message frame.
  • the feedback message frame includes WLAN sensing measurement identification information and/or time information
  • the time information includes the sending time of the UL NDP frame.
  • the number of long training fields LTF in the DL NDP frame is a preset value.
  • the first working parameter, the second working parameter and/or the third working parameter are determined during a process of establishing a WLAN-aware session or a process of establishing a WLAN-aware measurement.
  • the first working parameter, the second working parameter and/or the third working parameter include at least one of the following:
  • Spatial stream number NSS information bandwidth BW information and transmit power TX power information.
  • the receiving module 1001 receives a feedback message frame, and the first working parameter of the feedback message frame is the same as the second working parameter of the NDPA frame and/or the same as the third working parameter of the packet DL NDP frame.
  • the embodiment of the present disclosure provides a manner of feeding back a measurement result in a Non-TB perception measurement process.
  • An embodiment of the present disclosure also provides a WLAN perception measurement device, which is applied to a station device STA, and the device includes:
  • the message frame receiving module is used to receive the feedback message frame; wherein, the first operating parameter of the feedback message frame is the same as the second operating parameter of the empty data packet announcing the NDPA frame and/or the same as the third operating parameter of the downlink empty data packet DL NDP frame.
  • the apparatus also includes other modules of the site equipment in the foregoing embodiments, which will not be described in detail here.
  • an embodiment of the present disclosure further provides an electronic device, as shown in FIG. 11
  • the electronic device 11000 shown in FIG. 11 may be a server, and includes: a processor 11001 and a memory 11003 .
  • the processor 11001 is connected to the memory 11003, such as through a bus 11002.
  • the electronic device 11000 may further include a transceiver 11004 .
  • the transceiver 11004 is not limited to one, and the structure of the electronic device 11000 does not limit the embodiment of the present disclosure.
  • the processor 11001 can be a CPU (Central Processing Unit, central processing unit), a general-purpose processor, a DSP (Digital Signal Processor, a data signal processor), an ASIC (Application Specific Integrated Circuit, an application specific integrated circuit), an FPGA (Field Programmable Gate Array, a field programmable gate array) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor 11001 may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • Bus 11002 may include a path for carrying information between the components described above.
  • the bus 11002 may be a PCI (Peripheral Component Interconnect, Peripheral Component Interconnect Standard) bus or an EISA (Extended Industry Standard Architecture, Extended Industry Standard Architecture) bus, etc.
  • the bus 11002 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 11 , but it does not mean that there is only one bus or one type of bus.
  • Memory 11003 can be ROM (Read Only Memory, read-only memory) or other types of static storage devices that can store static information and instructions, RAM (Random Access Memory, random access memory) or other types of dynamic storage devices that can store information and instructions, or EEPROM (Electrically Erasable Programmable Read Only Memory, electrically erasable programmable read-only memory), CD-ROM (Compact Disc Read Only Memory, CD-ROM) or other optical disk storage, optical disk storage (including compact disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.), magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, without limitation.
  • ROM Read Only Memory, read-only memory
  • RAM Random Access Memory, random access memory
  • EEPROM Electrically Erasable Programmable Read Only Memory, electrically erasable programmable read-only memory
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact
  • the memory 11003 is used to store application program codes for implementing the solutions of the present disclosure, and the execution is controlled by the processor 11001 .
  • the processor 11001 is configured to execute the application program code stored in the memory 11003, so as to realize the contents shown in the foregoing method embodiments.
  • electronic devices include but are not limited to: mobile phones, notebook computers, digital broadcast receivers, PDAs (Personal Digital Assistants), PADs (Tablet Computers), PMPs (Portable Multimedia Players), mobile terminals such as vehicle-mounted terminals (such as vehicle-mounted navigation terminals), and fixed terminals such as digital TVs and desktop computers.
  • PDAs Personal Digital Assistants
  • PADs Tablet Computers
  • PMPs Portable Multimedia Players
  • mobile terminals such as vehicle-mounted terminals (such as vehicle-mounted navigation terminals)
  • fixed terminals such as digital TVs and desktop computers.
  • the electronic device shown in FIG. 11 is only an example, and should not limit the functions and application scope of the embodiments of the present disclosure.
  • the server provided in this disclosure may be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or a cloud server that provides basic cloud computing services such as cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
  • the terminal may be a smart phone, a tablet computer, a laptop computer, a desktop computer, a smart speaker, a smart watch, etc., but is not limited thereto.
  • the terminal and the server may be connected directly or indirectly through wired or wireless communication, which is not limited in the present disclosure.
  • Embodiments of the present disclosure provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is run on a computer, the computer can execute the corresponding content in the foregoing method embodiments.
  • the computer-readable medium mentioned above in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the two.
  • a computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples of computer-readable storage media may include, but are not limited to, electrical connections having one or more wires, portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable medium may be transmitted by any appropriate medium, including but not limited to wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device, or may exist independently without being incorporated into the electronic device.
  • the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by the electronic device, the electronic device is made to execute the methods shown in the above-mentioned embodiments.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the methods provided in the various optional implementation manners above.
  • Computer program code for carrying out operations of the present disclosure may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional procedural programming languages—such as the “C” language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (e.g., through the Internet using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each block in the flowchart or block diagram may represent a module, program segment, or portion of code that includes one or more executable instructions for implementing specified logical functions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the modules involved in the embodiments described in the present disclosure may be implemented by software or by hardware. Wherein, the name of the module does not constitute a limitation of the module itself under certain circumstances, for example, the A module may also be described as "the A module for performing the B operation".

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例涉及移动通信技术领域,提供了一种WLAN感知测量方法及装置、电子设备及存储介质,所述WLAN感知测量方法包括:发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。本公开实施例提供了一种在Non-TB的感知测量流程中反馈测量结果的方式。

Description

WLAN感知测量方法及装置、电子设备及存储介质 技术领域
本公开实施例涉及移动通信技术领域,具体而言,本公开实施例涉及一种WLAN感知测量方法及装置、电子设备及存储介质。
背景技术
随着移动通信技术的迅速发展,无线保真(Wireless Fidelity,Wi-Fi)技术在传输速率以及吞吐量等方面已经取得了巨大的进步。目前,Wi-Fi技术所研究的内容例如320MHz的带宽传输、多个频段的聚合及协同等,其主要的应用场景例如视频传输、增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)等。
在目前所研究的Wi-Fi技术中,可能会支持无线局域网(Wireless Local Area Network,WLAN)感知(Sensing)技术。例如,在密集环境下(例如家庭环境及企业环境)的位置发现、接近检测(Proximity Detection)及存在检测(Presence Detection)等应用场景。非基于触发帧(Non-Trigger Based Sounding,Non-TB)的Sensing方式是WLAN Sensing的过程中的主要Sensing方式之一,在Non-TB的感知测量流程中,可以反馈测量结果;因此,需要提供一种反馈测量结果的方式。
发明内容
本公开实施例提供了一种WLAN感知测量方法及装置、电子设备及存储介质,以提供一种在Non-TB的感知测量流程中反馈测量结果的方式。
一方面,本公开实施例提供了一种WLAN感知测量方法,应用于接入点设备AP,所述方法包括:
发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包 通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
另一方面,本公开实施例还提供了一种感知测量方法,应用于站点设备STA,所述方法包括:
接收反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
另一方面,本公开实施例还提供了一种接入点设备AP,所述接入点设备包括:
发送模块,用于发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
另一方面,本公开实施例还提供了一种站点设备STA,所述站点设备包括:
接收模块,用于接收反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
另一方面,本公开实施例还提供了一种WLAN感知测量装置,应用于接入点设备AP,所述装置包括:
消息帧发送模块,用于发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
另一方面,本公开实施例还提供了一种WLAN感知测量装置,应用于站点设备STA,所述装置包括:
消息帧接收模块,用于接收反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
本公开实施例还提供了一种电子设备,包括存储器、处理器及存储在 存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如本公开实施例中一个或多个所述的方法。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本公开实施例中一个或多个所述的方法。
本公开实施例中,AP发送反馈消息帧,所述反馈消息帧的第一工作参数与NDPA帧的第二工作参数相同和/或与包DL NDP帧的第三工作参数相同。本公开实施例提供了一种在Non-TB的感知测量流程中反馈测量结果的方式。
本公开实施例附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的WLAN感知测量方法的流程图之一;
图2为本公开实施例的第一示例的示意图之一;
图3为本公开实施例的第一示例的示意图之二;
图4为本公开实施例的第一示例的示意图之三;
图5为本公开实施例的第二示例的示意图之一;
图6为本公开实施例的第二示例的示意图之二;
图7为本公开实施例的第二示例的示意图之三;
图8为本公开实施例的提供的WLAN感知测量方法的流程图之二;
图9为本公开实施例提供的接入点设备的结构示意图;
图10为本公开实施例提供的站点设备的结构示意图;
图11为本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种WLAN感知测量方法及装置、电子设备及存储介质,用以提供一种在Non-TB的感知测量流程中反馈测量结果的方式。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图1中所示,本公开实施例提供了一种WLAN感知测量方法,可选地,所述方法可应用于接入点设备AP,该方法可以包括以下步骤:
步骤101,发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
作为第一示例,参见图2至图4,首先介绍本公开实施例提供的WLAN感知测量方法的WLAN Sensing的架构以及WLAN Sensing过程。
图2示出了一种WLAN Sensing(过程)的架构示意图;其中,感知发起端(或发起端)发起WLAN Sensing(例如,发起WLAN感知会话),可能存在着多个感知响应端(Sensing Responder,或感知接收端)或响应端对其响应,如图2中的响应端1、响应端2和响应端3所示。当感知发起端发起WLAN Sensing时,多个关联或者非关联的WLAN Sensing的感知响应端可以进行响应。
参见图3,感知发起端与感知响应端之间通过通信连接通信,如通信连接S1所示;感知响应端之间通过通信连接S2通信。
其中,每个感知发起端可以是一个客户端(Client);每个感知响应端(在本示例中,即感知响应端1至感知响应端3)可以是一个站点设备(STA)或接入点设备AP。此外,STA和AP可以在WLAN感知过程中承担多个角色;例如,在WLAN感知过程中,STA还可以作为感知发起者,感知发起者可能是感知发射器(Sensing Transmitter)、感知接收器(Sensing Receiver),或两者都是,或都不是。在WLAN感知过程中,感知响应端也可能是感知发射器、感知接收器或两者都是。
作为另一种架构,如图4所示,感知发起端、感知响应端还可以均为 客户端,二者可以通过连接到同一接入点设备(AP)进行通信;图4中Client1为感知发起端,Client2为感知响应端。
通常情况下,WLAN sensing过程包括WLAN sensing session的建立、WLAN sensing测量建立以及WLAN sensing测量终止等过程。WLAN sensing过程通常包括基于触发帧(Triggered Based Sounding,TB)的方式以及Non-TB based sensing的方式。具体地,TB-based方式即AP为Initiator或Transmitter,Non-TB Based方式即为STA为Initiator或Transmitter。
具体地,在Non-TB Based的场景中,AP在完成感知测量之后,向STA发送反馈消息帧(Sensing Measurement Report),在反馈消息帧中反馈测量结果。反馈消息帧的第一工作参数(或配置参数)可以与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同;可选地,所述第一工作参数、所述第二工作参数和/或所述第三工作参数包括以下至少一种:空间流数(Number of spatial streams,NSS)信息、带宽(Bandwidth,BW)信息以及发射功率TX power信息等;例如NSS=1,且BW为20MHz带宽。
反馈消息帧的第一工作参数可以与空数据包通告NDPA帧的第二工作参数相同;其中,在Non-TB Based的场景中,STA向AP发送NDPA帧,NDPA帧用于指示发送空数据包(Null Data Packet,NDP)帧。AP接收NDPA帧,后续在发送反馈消息帧时,将反馈消息帧的工作参数设定为NDPA帧的第二工作参数;可选地,由于第一工作参数与第二工作参数相同,则在反馈消息帧中可以不再发送用于指示第一工作参数的指示信息,以减少消息开销。
反馈消息帧的第一工作参数还可以与AP发送至STA的下行空数据包DL NDP帧的第三工作参数相同;同理,由于第一工作参数与第三工作参数相同,则在反馈消息帧中也可以不再发送用于指示第一工作参数的指示信息,以减少消息开销。
作为第二示例,参见图5至图7,分别示出了Non-TB Based的几种 场景,其中,SIFS表示短帧间隔(Short Interframe Space)。具体地,参见图5,在I2R感知探测(UL sounding)过程中,感知发起端STA首先执行第1步,发送感知NDPA帧;然后再执行第2步,发送I2R NDP帧,I2R NDP参与感知测量。在R2I感知探测(DL sounding)过程中,感知响应端可以先执行第3步,发送R2I NDP帧,R2I NDP不参与感知测量;然后AP执行第4步,发送反馈消息帧,反馈探测结果(feedback),反馈消息帧的第一工作参数可以与NDPA帧的第二工作参数相同。
图6,在I2R感知探测(UL sounding)过程中,感知发起端STA首先执行第1步,发送感知NDPA帧;然后再执行第2步,发送I2R NDP帧。此后,感知响应端AP执行第3步,发送R2I NDP帧;然后AP执行第4步,发送反馈消息帧,反馈消息帧的第一工作参数可以与NDPA帧的第二工作参数和/或I2R NDP帧的第三工作参数相同。在此过程中,I2R NDP与R2I NDP均参与感知测量。
图7,在R2I(receivertoinitiator)感知探测(DL sounding)过程中,感知发起端STA首先执行第1步,发送感知NDPA帧;然后再执行第2步,发送I2R NDP帧,I2R NDP不参与感知测量。此后,感知响应端AP执行第3步,执行所述下行感知探测,发送R2I NDP帧,R2I NDP参与感知测量。此后,AP可以发送反馈消息帧(图7中未示出),反馈消息帧的第一工作参数可以与NDPA帧的第二工作参数相同。
本公开实施例中,AP发送反馈消息帧,所述反馈消息帧的第一工作参数与NDPA帧的第二工作参数相同和/或与包DL NDP帧的第三工作参数相同。本公开实施例提供了一种在Non-TB的感知测量流程中反馈测量结果的方式。
可选地,本公开实施例中,所述发送反馈消息帧之前,所述方法还包括:
接收所述NDPA帧,确定所述NDPA帧的所述第二工作参数。
参见图5至图7中的第一步,STA发送感知NDPA帧;则AP接收NDPA帧,确定所述NDPA帧的所述第二工作参数;其中,NDPA消息帧 为单播消息帧;若在NDPA帧中包含了AP的关联标识符(Association ID,AID),例如2043,则标识发起UL sounding;若为2047,则标识发起DL sounding;在NDPA帧中可包含第一工作参数的可选范围,例如NSS数量、BW等信息。
可选地,本公开实施例中,所述发送反馈消息帧之前,所述方法还包括:
接收上行空数据包UL NDP帧;
响应于所述UL NDP帧,发送所述DL NDP帧。
参见图5至图7中的第2步,STA发送I2R NDP帧(UL NDP帧);可选地,ULNDP帧的工作参数(例如NSS数量信息、BW信息以及TX power信息)与所述NDPA帧中携带的DL NDP帧的操作参数可以相同或不同;AP接收UL NDP帧,并执行第3步,发送R2I NDP帧(DL NDP帧)。可选地,所述DL NDP帧中长训练域LTF的数量为预设数值,例如长训练域(Long Training Field,LTF)的值为1。
可选地,所述反馈消息帧中包括无线局域网WLAN感知测量标识信息和/或时间信息;感知测量标识信息例如instance ID;所述时间信息包括所述UL NDP帧的发送时间,即STA发送UL NDP帧的发送时间;此外,反馈消息帧的反馈时间可以是延时反馈或实时反馈。
可选地,本公开实施例中,所述第一工作参数、所述第二工作参数和/或所述第三工作参数为在WLAN感知会话建立过程或WLAN感知测量建立过程中确定的。例如,在WLAN感知测量建立的过程中,Sensing Measurement Setup ID由Initiator确定,发生在感知测量之前。且发送的时隙也可在该过程中进行规定,而对于未关联(unassociated,即未与AP建立通信连接)的STA来说,需预先获得AP的时间同步函数(Timer Synchronization Function,TSF)。
本公开实施例中,AP发送反馈消息帧,所述反馈消息帧的第一工作 参数与NDPA帧的第二工作参数相同和/或与包DL NDP帧的第三工作参数相同。本公开实施例提供了一种在Non-TB的感知测量流程中反馈测量结果的方式。
参见图8,本公开实施例提供了一种WLAN感知测量方法,可选地,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
步骤801,接收反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
其中,本公开实施例提供的WLAN感知测量方法的所应用WLAN Sensing的架构以及WLAN Sensing过程参考前述第一示例,在此不再赘述。
通常情况下,WLAN sensing过程包括WLAN sensing session的建立、WLAN sensing测量建立以及WLAN sensing测量终止等过程。WLAN sensing过程通常包括基于触发帧(Triggered Based Sounding,TB)的方式以及Non-TB based sensing的方式。具体地,TB-based方式即AP为Initiator或Transmitter,Non-TB Based方式即为STA为Initiator或Transmitter。
具体地,在Non-TB Based的场景中,STA接收AP在完成感知测量之后,向STA发送的反馈消息帧(Sensing Measurement Report),在反馈消息帧中反馈测量结果。反馈消息帧的第一工作参数(或配置参数)可以与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同;可选地,所述第一工作参数、所述第二工作参数和/或所述第三工作参数包括以下至少一种:空间流数(Number of spatial streams,NSS)信息、带宽(Bandwidth,BW)信息以及发射功率TX power信息等;例如NSS=1,且BW为20MHz带宽。
反馈消息帧的第一工作参数可以与空数据包通告NDPA帧的第二工作参数相同;其中,在Non-TB Based的场景中,STA向AP发送NDPA帧,NDPA帧用于指示发送NDP帧。AP接收NDPA帧,后续在发送反馈 消息帧时,将反馈消息帧的工作参数设定为NDPA帧的第二工作参数;可选地,由于第一工作参数与第二工作参数相同,则在反馈消息帧中可以不再发送用于指示第一工作参数的指示信息,以减少消息开销。
反馈消息帧的第一工作参数还可以与AP发送至STA的下行空数据包DL NDP帧的第三工作参数相同;同理,由于第一工作参数与第三工作参数相同,则在反馈消息帧中也可以不再发送用于指示第一工作参数的指示信息,以减少消息开销。
作为第二示例,参见图5至图7,分别示出了Non-TB Based的几种场景。具体地,参见图5,在I2R感知探测(UL sounding)过程中,感知发起端STA首先执行第1步,发送感知NDPA帧;然后再执行第2步,发送I2R NDP帧,I2R NDP参与感知测量。在R2I感知探测(DL sounding)过程中,感知响应端可以先执行第3步,发送R2I NDP帧,R2I NDP不参与感知测量;然后AP执行第4步,发送反馈消息帧,反馈探测结果(feedback),然后STA接收反馈消息帧,反馈消息帧的第一工作参数可以与NDPA帧的第二工作参数相同。
图6,在I2R感知探测(UL sounding)过程中,感知发起端STA首先执行第1步,发送感知NDPA帧;然后再执行第2步,发送I2R NDP帧。此后,感知响应端AP执行第3步,发送R2I NDP帧;然后AP执行第4步,发送反馈消息帧,然后STA接收反馈消息帧,反馈消息帧的第一工作参数可以与NDPA帧的第二工作参数和/或I2R NDP帧的第三工作参数相同。在此过程中,I2R NDP与R2I NDP均参与感知测量。
图7,在R2I感知探测(DL sounding)过程中,感知发起端STA首先执行第1步,发送感知NDPA帧;然后再执行第2步,发送I2R NDP帧,I2R NDP不参与感知测量。此后,感知响应端AP执行第3步,执行所述下行感知探测,发送R2I NDP帧,R2I NDP参与感知测量。此后,AP可以发送反馈消息帧(图7中未示出),然后STA接收反馈消息帧,反馈消息帧的第一工作参数可以与NDPA帧的第二工作参数相同。
本公开实施例中,STA接收反馈消息帧,所述反馈消息帧的第一工作参数与NDPA帧的第二工作参数相同和/或与包DL NDP帧的第三工作参 数相同。本公开实施例提供了一种在Non-TB的感知测量流程中反馈测量结果的方式。
可选地,本公开实施例中,所述接收反馈消息帧之前,所述方法还包括:
发送所述NDPA帧,所述NDPA帧中包括感知探测类型信息和/或发送NDP帧的可选工作参数。
参见图5至图7中的第一步,STA发送感知NDPA帧,然后AP接收NDPA帧,确定所述NDPA帧的所述第二工作参数;其中,NDPA消息帧为单播消息帧;若STA在NDPA帧中携带了AP的关联标识符(Association ID,AID),例如2043,则标识发起UL sounding;若为2047,则标识发起DL sounding;在NDPA帧中可包含第一工作参数的可选范围,例如NSS数量、BW等信息。
可选地,本公开实施例中,所述接收反馈消息帧之前,所述方法还包括:
发送上行空数据包UL NDP帧,并接收所述DL NDP帧。
参见图5至图7中的第2步,STA发送I2R NDP帧(UL NDP帧);可选地,ULNDP帧的工作参数(例如NSS数量信息、BW信息以及TX power信息)与所述NDPA帧中携带的DL NDP帧的操作参数可以相同或不同;AP接收UL NDP帧,并执行第3步,发送R2I NDP帧(DL NDP帧),则STA接收所述DL NDP帧。可选地,所述DL NDP帧中长训练域LTF的数量为预设数值,例如长训练域(Long Training Field,LTF)的值为1。
可选地,所述反馈消息帧中包括无线局域网WLAN感知测量标识信息和/或时间信息;感知测量标识信息例如instance ID;
所述时间信息包括所述UL NDP帧的发送时间,即STA发送UL NDP帧的发送时间;此外,反馈消息帧的反馈时间可以是延时反馈或实时反馈。
可选地,本公开实施例中,,所述第一工作参数、所述第二工作参数和/或所述第三工作参数为在WLAN感知会话建立过程或WLAN感知测量建立过程中确定的。
例如,在WLAN感知测量建立的过程中,Sensing Measurement Setup ID由Initiator确定,发生在感知测量之前。且发送的时隙也可在该过程中进行规定,而对于未关联(unassociated,即未与AP建立通信连接)的STA来说,需预先获得AP的时间同步函数(Timer Synchronization Function,TSF)。
本公开实施例中,STA接收反馈消息帧,所述反馈消息帧的第一工作参数与NDPA帧的第二工作参数相同和/或与包DL NDP帧的第三工作参数相同。本公开实施例提供了一种在Non-TB的感知测量流程中反馈测量结果的方式。
参见图9,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种接入点设备AP,所述接入点设备包括:
发送模块901,用于发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
在一个可选实施例中,所述接入点设备还包括:
NDPA接收模块,用于在所述发送模块901发送反馈消息帧之前,接收所述NDPA帧,确定所述NDPA帧的所述第二工作参数。
在一个可选实施例中,所述接入点设备还包括:
NDP接收模块,用于在所述发送模块901发送反馈消息帧之前,接收上行空数据包UL NDP帧;
响应模块,用于响应于所述UL NDP帧,发送所述DL NDP帧。
在一个可选实施例中,所述反馈消息帧中包括无线局域网WLAN感知测量标识信息和/或时间信息;
所述时间信息包括所述UL NDP帧的发送时间。
在一个可选实施例中,所述DL NDP帧中长训练域LTF的数量为预设数值。
在一个可选实施例中,所述第一工作参数、所述第二工作参数和/或所述第三工作参数为在WLAN感知会话建立过程或WLAN感知测量建立过程中确定的。
在一个可选实施例中,所述第一工作参数、所述第二工作参数和/或所述第三工作参数包括以下至少一种:
空间流数NSS信息、带宽BW信息以及发射功率TX power信息。
本公开实施例中,发送模块901发送反馈消息帧,所述反馈消息帧的第一工作参数与NDPA帧的第二工作参数相同和/或与包DL NDP帧的第三工作参数相同。本公开实施例提供了一种在Non-TB的感知测量流程中反馈测量结果的方式。
本公开实施例还提供了一种WLAN感知测量装置,应用于接入点设备AP,所述装置包括:
消息帧发送模块,用于发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
所述装置还包括前述实施例中接入点设备的其他模块,在此不再赘述。
参见图10,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种站点设备STA,所述站点设备包括:
接收模块1001,用于接收反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
在一个可选实施例中,所述站点设备还包括:
NDPA帧发送模块,用于所述接收模块1001接收反馈消息帧之前,发送所述NDPA帧,所述NDPA帧中包括感知探测类型信息和/或发送NDP帧的可选工作参数。
在一个可选实施例中,所述站点设备还包括:
NDP帧发送模块,用于所述接收模块1001接收反馈消息帧之前,发送上行空数据包UL NDP帧,并接收所述DL NDP帧。
在一个可选实施例中,所述反馈消息帧中包括WLAN感知测量标识信息和/或时间信息;
所述时间信息包括所述UL NDP帧的发送时间。
在一个可选实施例中,所述DL NDP帧中长训练域LTF的数量为预设数值。
在一个可选实施例中,所述第一工作参数、所述第二工作参数和/或所述第三工作参数为在WLAN感知会话建立过程或WLAN感知测量建立过程中确定的。
在一个可选实施例中,所述第一工作参数、所述第二工作参数和/或所述第三工作参数包括以下至少一种:
空间流数NSS信息、带宽BW信息以及发射功率TX power信息。
本公开实施例中,接收模块1001接收反馈消息帧,所述反馈消息帧的第一工作参数与NDPA帧的第二工作参数相同和/或与包DL NDP帧的第三工作参数相同。本公开实施例提供了一种在Non-TB的感知测量流程中反馈测量结果的方式。
本公开实施例还提供了一种WLAN感知测量装置,应用于站点设备STA,所述装置包括:
消息帧接收模块,用于接收反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
所述装置还包括前述实施例中站点设备的其他模块,在此不再赘述。
在一个可选实施例中,本公开实施例还提供了一种电子设备,如图11所示,图11所示的电子设备11000可以为服务器,包括:处理器11001和存储器11003。其中,处理器11001和存储器11003相连,如通过总线 11002相连。可选地,电子设备11000还可以包括收发器11004。需要说明的是,实际应用中收发器11004不限于一个,该电子设备11000的结构并不构成对本公开实施例的限定。
处理器11001可以是CPU(Central Processing Unit,中央处理器),通用处理器,DSP(Digital Signal Processor,数据信号处理器),ASIC(Application Specific Integrated Circuit,专用集成电路),FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器11001也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
总线11002可包括一通路,在上述组件之间传送信息。总线11002可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(Extended Industry Standard Architecture,扩展工业标准结构)总线等。总线11002可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器11003可以是ROM(Read Only Memory,只读存储器)或可存储静态信息和指令的其他类型的静态存储设备,RAM(Random Access Memory,随机存取存储器)或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器11003用于存储执行本公开方案的应用程序代码,并由处理器11001来控制执行。处理器11001用于执行存储器11003中存储的应用程序代码,以实现前述方法实施例所示的内容。
其中,电子设备包括但不限于:移动电话、笔记本电脑、数字广播接 收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图11示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
本公开提供的服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等基础云计算服务的云服务器。终端可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表等,但并不局限于此。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本公开在此不做限制。
本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当其在计算机上运行时,使得计算机可以执行前述方法实施例中相应内容。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读 存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备执行上述实施例所示的方法。
根据本公开的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各种可选实现方式中提供的方法。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,模块的名称在某种情况下并不构成对该模块本身的限定,例如,A模块还可以被描述为“用于执行B操作的A模块”。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (20)

  1. 一种WLAN感知测量方法,应用于接入点设备AP,其特征在于,所述方法包括:
    发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
  2. 根据权利要求1所述的WLAN感知测量方法,其特征在于,所述发送反馈消息帧之前,所述方法还包括:
    接收所述NDPA帧,确定所述NDPA帧的所述第二工作参数。
  3. 根据权利要求1所述的WLAN感知测量方法,其特征在于,所述发送反馈消息帧之前,所述方法还包括:
    接收上行空数据包UL NDP帧;
    响应于所述UL NDP帧,发送所述DL NDP帧。
  4. 根据权利要求3所述的WLAN感知测量方法,其特征在于,所述反馈消息帧中包括无线局域网WLAN感知测量标识信息和/或时间信息;
    所述时间信息包括所述UL NDP帧的发送时间。
  5. 根据权利要求1所述的WLAN感知测量方法,其特征在于,所述DL NDP帧中长训练域LTF的数量为预设数值。
  6. 根据权利要求1所述的WLAN感知测量方法,其特征在于,所述第一工作参数、所述第二工作参数和/或所述第三工作参数为在WLAN感知会话建立过程或WLAN感知测量建立过程中确定的。
  7. 根据权利要求1至6中任一项所述的WLAN感知测量方法,其特征在于,所述第一工作参数、所述第二工作参数和/或所述第三工作参数包括以下至少一种:
    空间流数NSS信息、带宽BW信息以及发射功率TX power信息。
  8. 一种WLAN感知测量方法,应用于站点设备STA,其特征在于,所述方法包括:
    接收反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
  9. 根据权利要求8所述的WLAN感知测量方法,其特征在于,所述接收反馈消息帧之前,所述方法还包括:
    发送所述NDPA帧,所述NDPA帧中包括感知探测类型信息和/或发送NDP帧的可选工作参数。
  10. 根据权利要求8所述的WLAN感知测量方法,其特征在于,所述接收反馈消息帧之前,所述方法还包括:
    发送上行空数据包UL NDP帧,并接收所述DL NDP帧。
  11. 根据权利要求10所述的WLAN感知测量方法,其特征在于,所述反馈消息帧中包括WLAN感知测量标识信息和/或时间信息;
    所述时间信息包括所述UL NDP帧的发送时间。
  12. 根据权利要求8所述的WLAN感知测量方法,其特征在于,所述DL NDP帧中长训练域LTF的数量为预设数值。
  13. 根据权利要求8所述的WLAN感知测量方法,其特征在于,所述第一工作参数、所述第二工作参数和/或所述第三工作参数为在WLAN感知会话建立过程或WLAN感知测量建立过程中确定的。
  14. 根据权利要求8至13中任一项所述的WLAN感知测量方法,其特征在于,所述第一工作参数、所述第二工作参数和/或所述第三工作参数包括以下至少一种:
    空间流数NSS信息、带宽BW信息以及发射功率TX power信息。
  15. 一种接入点设备AP,其特征在于,所述接入点设备包括:
    发送模块,用于发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
  16. 一种站点设备STA,其特征在于,所述站点设备包括:
    接收模块,用于接收反馈消息帧;其中,所述反馈消息帧的第一工作 参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
  17. 一种WLAN感知测量装置,应用于接入点设备AP,其特征在于,所述装置包括:
    消息帧发送模块,用于发送反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
  18. 一种WLAN感知测量装置,应用于站点设备STA,其特征在于,所述装置包括:
    消息帧接收模块,用于接收反馈消息帧;其中,所述反馈消息帧的第一工作参数与空数据包通告NDPA帧的第二工作参数相同和/或与下行空数据包DL NDP帧的第三工作参数相同。
  19. 一种电子设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至14中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至14中任一项所述的方法。
PCT/CN2022/072593 2022-01-18 2022-01-18 Wlan感知测量方法及装置、电子设备及存储介质 WO2023137592A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/072593 WO2023137592A1 (zh) 2022-01-18 2022-01-18 Wlan感知测量方法及装置、电子设备及存储介质
CN202280000137.XA CN116783927A (zh) 2022-01-18 2022-01-18 Wlan感知测量方法及装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072593 WO2023137592A1 (zh) 2022-01-18 2022-01-18 Wlan感知测量方法及装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023137592A1 true WO2023137592A1 (zh) 2023-07-27

Family

ID=87347591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072593 WO2023137592A1 (zh) 2022-01-18 2022-01-18 Wlan感知测量方法及装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN116783927A (zh)
WO (1) WO2023137592A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534472A (zh) * 2015-04-16 2018-01-02 Lg 电子株式会社 在无线通信系统中的信道探测方法及其装置
US20190165883A1 (en) * 2015-07-07 2019-05-30 Lg Electronics Inc. Method for operating sounding in wireless lan system, and apparatus therefor
CN112218328A (zh) * 2019-07-11 2021-01-12 华为技术有限公司 一种感知测量方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534472A (zh) * 2015-04-16 2018-01-02 Lg 电子株式会社 在无线通信系统中的信道探测方法及其装置
US20190165883A1 (en) * 2015-07-07 2019-05-30 Lg Electronics Inc. Method for operating sounding in wireless lan system, and apparatus therefor
CN112218328A (zh) * 2019-07-11 2021-01-12 华为技术有限公司 一种感知测量方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHMAD SHAKEEB; SUNBERG ZACHARY N.; HUMBERT J. SEAN: "APF-PF: Probabilistic Depth Perception for 3D Reactive Obstacle Avoidance", 2021 AMERICAN CONTROL CONFERENCE (ACC), AMERICAN AUTOMATIC CONTROL COUNCIL, 25 May 2021 (2021-05-25), pages 32 - 39, XP033946089, DOI: 10.23919/ACC50511.2021.9482894 *

Also Published As

Publication number Publication date
CN116783927A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2023155074A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023212936A1 (zh) Wlan感知测量建立终止方法及装置、电子设备及存储介质
WO2023197321A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2023137592A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2023130331A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2023193265A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
CN117015948B (zh) 通信方法及装置、电子设备及存储介质
WO2023133695A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2024036625A1 (zh) 信息指示方法及电子设备、存储介质
WO2023000152A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023193204A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023087319A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024060015A1 (zh) 感知测量建立方法、电子设备及存储介质
WO2023082269A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023142008A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023092499A1 (zh) Wlan感知方法及装置、电子设备及存储介质
CN115023965B (zh) Wlan感知测量建立终止方法及装置、电子设备及存储介质
WO2023197323A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2023201732A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024007225A1 (zh) 通信方法及电子设备、存储介质
WO2024011391A1 (zh) 代理感知测量方法及装置
WO2024011390A1 (zh) 代理感知测量方法及装置
WO2023193202A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023141821A1 (zh) 通信方法及装置、电子设备及存储介质
CN118202628A (zh) 感知测量方法、电子设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000137.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202447061688

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022921041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022921041

Country of ref document: EP

Effective date: 20240819