WO2022222772A1 - 一种定位信息上报方法、设备及通信系统 - Google Patents

一种定位信息上报方法、设备及通信系统 Download PDF

Info

Publication number
WO2022222772A1
WO2022222772A1 PCT/CN2022/085867 CN2022085867W WO2022222772A1 WO 2022222772 A1 WO2022222772 A1 WO 2022222772A1 CN 2022085867 W CN2022085867 W CN 2022085867W WO 2022222772 A1 WO2022222772 A1 WO 2022222772A1
Authority
WO
WIPO (PCT)
Prior art keywords
los
positioning
information
terminal device
positioning measurement
Prior art date
Application number
PCT/CN2022/085867
Other languages
English (en)
French (fr)
Inventor
李成
黄甦
高鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022222772A1 publication Critical patent/WO2022222772A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, device, and communication system for reporting positioning information.
  • High-precision positioning is one of the key technologies of the fifth generation (5th generation, 5G) new radio (NR) mobile communication network.
  • 5G fifth generation
  • NR new radio
  • cellular positioning is to obtain the geometric position relationship between the 5G base station and the terminal device by measuring the straight-line distance between multiple 5G base stations (gNodeB, gNB) and the terminal device, and then calculate the position of the terminal device according to the known gNB position.
  • gNodeB 5G base stations
  • the positioning of the terminal device depends on the measurement of the line of sight (LOS) between the terminal device and the gNB (that is, the straight-line distance between the terminal device and the gNB).
  • LOS line of sight
  • the signal propagation distance measured by gNB may be non-line of sight (NLOS) transmission distance.
  • NLOS non-line of sight
  • the present application provides a method, device and communication system for reporting positioning information, so that the positioning server can more accurately locate the terminal device by referring to the channel conditions between the terminal device and the access network device.
  • the present application provides a method for reporting positioning information.
  • the method for reporting positioning information can be performed by a terminal device.
  • the terminal device can be understood as a positioning tag, a vehicle-mounted device, a mobile phone, etc., which is not specifically limited in this application.
  • the terminal device can receive positioning reference signals from one or more access network devices; and send positioning measurement information to the serving access network device; the positioning measurement information includes: the terminal device is based on the positioning reference signal.
  • the signal determines one or more positioning measurements and LOS status information corresponding to the one or more positioning measurements, respectively.
  • the service access network device can provide communication services for the terminal device.
  • the terminal device can receive messages from other terminal devices through the service access network device, or the terminal device can forward messages through the service access network device.
  • This application does not limit what communication services the service access network device can provide for the terminal device.
  • the serving access network device may also be one of the access network devices, and the serving access network device may also send a positioning reference signal to the terminal device; or the serving access network device and the access network device are independent of each other Yes, the serving access network device does not send a positioning reference signal to the terminal device, but only receives positioning measurement information from the terminal device. No matter the serving access network device is in any of the above situations, the solution of the present application is applicable.
  • the access network device or the serving access network device may be a base station or a transmission reception point (transmission reception point, TRP), which is not specifically limited in this application.
  • the terminal device can estimate the channel between the terminal device and any access network device by using a maximum likelihood estimation method or a multiple signal classification algorithm (multiple signal classification algorithm, MUSIC) to determine the positioning measurement result.
  • a maximum likelihood estimation method or a multiple signal classification algorithm (multiple signal classification algorithm, MUSIC) to determine the positioning measurement result.
  • MUSIC multiple signal classification algorithm
  • the positioning measurement result may also be determined in other manners, which is not specifically limited in this application, and is only exemplified by the above-mentioned method or algorithm.
  • a positioning measurement result is determined by the terminal device according to a positioning reference signal sent by an access network device, and the positioning measurement result corresponds to LOS status information, which may indicate that the positioning measurement result is LOS. Still NLOS.
  • the positioning measurement result may be indicated by time of arrival (TOA) and/or angle of arrival, and certainly may be indicated by other indicators, which are not specifically limited in this application.
  • the terminal equipment can estimate the channel between the terminal equipment and the access network equipment through the consistency analysis algorithm (that is, after the different antenna units of the terminal equipment receive the positioning reference signal, the fluctuation degree of the reference signal determines the LOS state information) Determine LOS status information.
  • the present application may also determine the LOS state information according to other methods, which are not illustrated here. Any method that can determine the positioning measurement result and the LOS state information based on the positioning reference signal is applicable to the present application.
  • the LOS status information fed back by the terminal device during positioning may indicate whether the positioning measurement result is LOS or NLOS.
  • the positioning server can learn which positioning measurement result is based on the LOS status information corresponding to the positioning measurement result. Reliable, and facilitates more accurate determination of the location of the terminal device.
  • the positioning measurement result is determined by the terminal device using the first algorithm to calculate and determine the positioning reference signal between the terminal device and the access network device;
  • the LOS state information is the terminal device using the second algorithm to determine the terminal
  • the channel between the device and the access network device is determined by calculation.
  • the terminal device may determine the positioning measurement result between the terminal device and the access network device through the first algorithm.
  • the first algorithm may be a maximum likelihood estimation algorithm, or may also be a MUSIC algorithm, etc., which is not specifically limited in this application.
  • the maximum likelihood estimation algorithm is to perform a correlation operation between the locally generated positioning reference signal and the received positioning reference signal, and the time corresponding to all peak points greater than the threshold is the arrival time of the positioning reference signal through different paths.
  • the arrival time of a peak point is the TOA of the LOS path.
  • the MUSIC algorithm is a method based on matrix eigenspace decomposition.
  • the autocorrelation matrix of the observed reference signal is decomposed into a signal subspace and a noise subspace, and a spatial spectrum is constructed.
  • the TOA value corresponding to the spectral peak of the spatial spectrum is the measurement value.
  • the terminal device may perform LOS state detection on the channel between the terminal device and the access network device by using the second algorithm.
  • the second algorithm may be a consistency analysis algorithm or an artificial intelligence (artificial intelligence, AI)-based algorithm.
  • AI artificial intelligence
  • the consistency analysis algorithm determines the LOS state by detecting the fluctuation of the signal strength of the terminal equipment under different antenna units. For example, if the signal strength of the terminal equipment fluctuates little, the positioning measurement information is considered to be LOS; If the signal strength fluctuates greatly, the positioning measurement information is considered to be NLOS.
  • the AI-based algorithm uses the neural network to train the neural network model based on the historical channel data between the terminal and each access network. When making LOS judgment, the estimated channel coefficient or the received reference signal is directly input. Input the neural network model and output the LOS detection result.
  • the multiple positioning measurement results are sorted according to corresponding LOS probabilities, and the LOS status information corresponding to one or more positioning measurement results is indicated by sorting through sorting.
  • Sorting multiple positioning measurement results according to the corresponding LOS probability can implicitly indicate the relative relationship of the LOS probability between the various measurement quantities, and can save additional LOS status information bits (that is, save the information occupied by non-hermit indications). The number of bits), and at the same time achieve the purpose of indicating the weight of each measurement of the positioning server and improving the positioning accuracy.
  • the terminal device when it receives positioning reference signals from multiple access network devices, it can determine multiple positioning measurement results based on the multiple positioning reference signals.
  • the LOS probabilities corresponding to different positioning measurement results are different. It is agreed in advance with the serving access network equipment that only several positioning measurement results with the highest LOS probability are reported.
  • the LOS state information includes: the LOS decision result or LOS probability of the channel between the terminal device and each access network device.
  • the LOS status information is only a schematic description.
  • the LOS status information can indicate whether the channel between the terminal device and the access network device is LOS or NLOS.
  • the LOS status information can also be called LOS result, LOS status etc.
  • the LOS status information may also include LOS channel indication information of other names, which is not specifically limited in this application.
  • this application may also include LOS quality, LOS confidence, etc.
  • LOS quality or LOS confidence is a channel determined after LOS detection is performed on the channel based on the reference signal. The higher the LOS quality or LOS confidence, the greater the LOS probability, and the more likely the channel is LOS.
  • the LOS status information mentioned above is not only the LOS status of the channel between the terminal device and the access network device, but also the NLOS status of the channel between the terminal device and the access network device, that is, the LOS status information can be
  • the NLOS judgment result or NLOS probability of the channel between the terminal device and the access network device is not specifically limited in this application.
  • the LOS probability is obtained by performing LOS detection and calculation on the channel between the terminal device and the access network device through the LOS detection algorithm (such as the consistency analysis algorithm).
  • the reported LOS probability (the LOS probability can be quantified and reported) can indicate the channel LOS
  • the status information is beneficial to improve the positioning accuracy.
  • the LOS decision result is obtained by comparing the LOS probability with a certain threshold P LOS to perform LOS/NLOS decision on the channel, that is, when the LOS probability is greater than or equal to P LOS , the LOS channel is determined.
  • the channel with the access network equipment is the LOS channel. When the LOS probability is lower than the P LOS , it is determined to be an NLOS channel.
  • the bit is 0, it indicates that the channel between the terminal device and the access network device is an NLOS channel.
  • Reporting the LOS judgment result can effectively reduce the bit overhead reported by the physical layer, reduce the system load, and at the same time indicate the most basic LOS state of the current channel of the location server.
  • the LOS confidence is similar to the LOS probability. It is also a metric of the current LOS channel determined after LOS detection on the channel based on the reference signal. The higher the LOS confidence, the more likely the channel is LOS, and the lower the LOS confidence. , indicating that the channel is more likely to be NLOS.
  • LOS quality is a metric index of the current LOS channel determined after LOS detection on the channel based on the reference signal. The more likely it is the NLOS channel. This application only provides a schematic description here, and does not specifically limit the manner of determining the LOS state information.
  • the LOS state information includes: quality parameters of channels between the terminal device and each access network device; the quality parameters include one or more of the following: channel gain, variance, and standard deviation.
  • the quality parameter can feed back the channel status between the terminal equipment and the access network equipment, and can indirectly feed back the LOS status, such as the channel gain, variance and standard deviation, where the channel gain refers to the power of the received reference signal.
  • the variance refers to the variance of the current channel coefficient estimated based on the reference signal.
  • the standard deviation refers to the positive square root value of the variance of the channel coefficients.
  • the terminal device can send positioning configuration request information to a positioning server; and receive positioning reference signal configuration information and LOS detection configuration information from the positioning server; the LOS detection configuration information includes one of the following or Various: LOS detection algorithm, LOS detection access network device indication information, LOS detection positioning reference signal indication information.
  • the configuration information of the positioning reference signal includes the time domain resource configuration information of the positioning reference signal, that is, the time domain resource in which the positioning reference signal is sent, so that the terminal device can receive the positioning reference signal under the corresponding time domain resource.
  • the LOS detection configuration information can indicate which algorithm the terminal device uses to perform LOS detection, which channels between the access network device and the terminal device are detected, and which information to report specifically. This application is only described here as an example, and does not specifically limit what information is included in the LOS detection configuration information.
  • the algorithm used in LOS detection may include a consistency analysis algorithm, a detection algorithm based on a neural network model, etc., and the location server
  • the LOS detection configuration information can be used to instruct the terminal device to use the consistency analysis algorithm to perform LOS detection.
  • the indication information of the access network device detected by LOS may be indicated by the identifier of the access network device, and the indication information of the positioning reference signal detected by LOS may be indicated by the identifier of the reference signal.
  • the channels of which access network devices the terminal device specifically detects can be determined according to the identification of the access network device in the LOS detection configuration information, and can also be determined through the identification of the reference signal, which is not specifically limited in this application.
  • the terminal device may receive indication information from the serving access network device; the indication information is used to instruct the terminal device to perform positioning measurement and LOS detection.
  • the indication information may be sent through downlink control information, or a media access control layer (media access control, MAC), or a radio resource control (radio resource control, RRC).
  • MAC media access control
  • RRC radio resource control
  • the first LOS detection trigger state from the positioning server is received, and the LOS detection configuration information has a corresponding relationship with the LOS detection trigger state; according to the first LOS detection trigger state, the state value of the LOS detection trigger state and Corresponding relationship, determine the first LOS detection configuration information corresponding to the first LOS detection trigger state; detect the positioning reference signals of one or more access network devices through the first LOS detection configuration information, and determine one or more positioning measurement results Corresponding LOS status information respectively.
  • the LOS detection configuration information may include multiple types, and the LOS detection trigger state can enable the terminal device to clearly know which LOS detection configuration information is used to detect the channel between the terminal device and the access network device, and also It should be noted that the terminal device may detect all channels between the terminal device and the access network device according to the first LOS detection configuration information, or may detect some terminal devices and access network devices only according to the first LOS detection configuration information The channel between them is not specifically limited in this application.
  • the terminal device sends the LOS detection capability information of the terminal device to the positioning server;
  • the LOS detection capability information includes one or more of the following: whether the terminal device supports the single frequency point or multi-frequency point LOS detection, the maximum number of channels that the terminal device supports LOS detection at a single frequency or multiple frequencies, the LOS detection algorithm supported by the terminal device, and the confidence level of the LOS detection algorithm supported by the terminal device.
  • the terminal device can actively send the LOS detection capability information to the positioning server, or can send the LOS detection capability information to the positioning server when the positioning server sends a request to the terminal device.
  • the specific situation is not specified in this application. limited.
  • the present application provides a method for reporting positioning information, which can be performed by a serving access network device, and the serving access network device can receive positioning measurement information from a terminal device; the positioning measurement information includes: the terminal device is based on positioning One or more positioning measurement results determined by the reference signal and LOS state information respectively corresponding to the one or more positioning measurement results; sending the positioning measurement information to the positioning server.
  • the LOS state information includes multiple pieces of LOS status information, the multiple positioning measurement results are sorted according to corresponding LOS probabilities, and the LOS status information corresponding to one or more positioning measurement results is indicated by sorting through the sorting. .
  • the LOS state information includes: the LOS decision result or LOS probability of the channel between the terminal device and each access network device.
  • the LOS state information includes: quality parameters of channels between the terminal device and each access network device; the quality parameters include one or more of the following: channel gain, variance, and standard deviation.
  • the serving access network device may receive indication information from the positioning server; and send the indication information to the terminal device; the indication information is used to instruct the terminal device to perform positioning measurement and LOS detection.
  • an embodiment of the present application provides a method for reporting positioning information.
  • the method may be performed by a positioning server, where the positioning server receives positioning measurement information from a serving access network device, where the positioning measurement information includes: a terminal device based on a positioning reference signal The determined one or more positioning measurement results and the LOS status information corresponding to the one or more positioning measurement results respectively; according to the LOS status information in the positioning measurement information, one or more positioning measurement results are selected to determine the location information of the terminal device.
  • the location server may select the LOS state information to be the location measurement result of the LOS to calculate the location information of the terminal device.
  • the positioning server can weight different measurement quantities according to the LOS probability to calculate the location information of the terminal device to avoid such LOS misjudgments
  • the LOS probability corresponding to the positioning measurement result 1 is 0.1
  • the LOS probability corresponding to the positioning measurement result 2 is 0.9.
  • the positioning server can also select some measurement quantities to calculate the position of the positioning terminal according to the LOS probability.
  • the LOS probability corresponding to the positioning measurement result 1 is 0.3
  • the LOS probability corresponding to the positioning measurement result 2 is 0.9
  • the positioning measurement result 3 corresponds to
  • the LOS probability of 0.8 is 0.8
  • the LOS probability corresponding to the positioning measurement result 4 is 0.9.
  • the positioning server can select the measurement result 2, the measurement result 3, and the measurement result 4 with the LOS probability greater than 0.8, and use the terminal calculation function to solve the position of the terminal equipment.
  • the positioning server may receive the positioning configuration request information from the terminal device; send the positioning reference signal configuration information and the LOS detection configuration information to the terminal device; the LOS detection configuration information includes one or more of the following Types: LOS detection algorithm, LOS detection access network device indication information, LOS detection positioning reference signal indication information.
  • the location server may also send the first LOS detection trigger status to the terminal device, and the LOS detection configuration information has a corresponding relationship with the LOS detection trigger status, so that the terminal device can detect the trigger status according to the first LOS detection trigger status and Corresponding relationship, determine the first LOS detection configuration information corresponding to the first LOS detection trigger state; detect the positioning reference signals of one or more access network devices through the first LOS detection configuration information, and determine one or more positioning measurement results Corresponding LOS status information respectively.
  • the positioning server receives positioning measurement information from the serving access network device; the positioning measurement information includes: one or more positioning measurement results determined by the terminal device based on the positioning reference signal and one or more LOS status information corresponding to each positioning measurement result.
  • the LOS state information includes multiple pieces of LOS status information, the multiple positioning measurement results are sorted according to corresponding LOS probabilities, and the LOS status information corresponding to one or more positioning measurement results is indicated by sorting through the sorting. .
  • the LOS state information includes: the LOS decision result or LOS probability of the channel between the terminal device and each access network device.
  • the LOS state information includes: quality parameters of channels between the terminal device and each access network device; the quality parameters include one or more of the following: channel gain, variance, and standard deviation.
  • the location server receives LOS detection capability information from the terminal device;
  • the LOS detection capability information includes one or more of the following: whether the terminal device supports LOS detection at a single frequency or multiple frequencies , the maximum number of channels for LOS detection supported by the terminal device at a single frequency point or multiple frequency points, the LOS detection algorithm supported by the terminal device, and the confidence level of the LOS detection algorithm supported by the terminal device.
  • the present application provides a terminal device, comprising: a receiving unit, configured to receive positioning reference signals from one or more access network devices; a sending unit, configured to send positioning measurement information to the serving access network device;
  • the positioning measurement information includes: one or more positioning measurement results determined by the terminal device based on the positioning reference signal and LOS status information respectively corresponding to the one or more positioning measurement results.
  • the multiple positioning measurement results are sorted according to corresponding LOS probabilities, and the LOS status information corresponding to one or more positioning measurement results is indicated by sorting through sorting.
  • the LOS state information includes: the LOS decision result or LOS probability of the channel between the terminal device and each access network device.
  • the LOS state information includes: quality parameters of channels between the terminal device and each access network device; the quality parameters include one or more of the following: channel gain, variance, and standard deviation.
  • the sending unit is further configured to send positioning configuration request information to the positioning server; the receiving unit is further configured to receive positioning reference signal configuration information and LOS detection configuration information from the positioning server; LOS detection configuration information It includes one or more of the following: LOS detection algorithm, access network device indication information for LOS detection, and indication information for positioning reference signals for LOS detection.
  • the receiving unit is further configured to receive the first LOS detection trigger state from the positioning server, and the LOS detection configuration information has a corresponding relationship with the LOS detection trigger state; according to the first LOS detection trigger state and the corresponding relationship, determine the first LOS detection configuration information corresponding to the first LOS detection trigger state; use the first LOS detection configuration information to detect the positioning reference signals of one or more access network devices, and determine one or more positioning measurement results respectively. Corresponding LOS status information.
  • the receiving unit is further configured to receive indication information from the serving access network device; the indication information is used to instruct the terminal device to perform positioning measurement and LOS detection.
  • the sending unit is further configured to send the LOS detection capability information of the terminal device to the positioning server;
  • the LOS detection capability information includes one or more of the following: the terminal device operates at a single frequency point or multiple Whether the frequency supports LOS detection, the maximum number of channels supported by the terminal device for LOS detection at a single frequency or multiple frequencies, the LOS detection algorithm supported by the terminal device, and the confidence level of the LOS detection algorithm supported by the terminal device.
  • the present application provides a service access network device, including: a receiving unit configured to receive positioning measurement information from a terminal device; the positioning measurement information includes: one or more positioning measurements determined by the terminal device based on a positioning reference signal the result and the LOS state information corresponding to one or more positioning measurement results respectively; a sending unit, configured to send the positioning measurement information to the positioning server.
  • the multiple positioning measurement results are sorted according to corresponding LOS probabilities, and the LOS status information corresponding to one or more positioning measurement results is indicated by sorting through sorting.
  • the LOS state information includes: the LOS decision result or LOS probability of the channel between the terminal device and each access network device.
  • the LOS state information includes: quality parameters of channels between the terminal device and each access network device; the quality parameters include one or more of the following: channel gain, variance, and standard deviation.
  • the receiving unit is further configured to receive indication information from a positioning server; the sending unit is further configured to send the indication information to the terminal equipment; the indication information is used to instruct the terminal equipment to perform positioning measurement and LOS detection.
  • the present application provides a positioning server, comprising: a receiving unit configured to determine first LOS detection configuration information corresponding to the first LOS detection trigger state according to the first LOS detection trigger state and the corresponding relationship;
  • the first LOS detection configuration information detects one or more positioning reference signals, and determines LOS status information corresponding to one or more positioning measurement results respectively.
  • the receiving unit is configured to receive positioning configuration request information from the terminal device; the sending unit is configured to send the positioning reference signal configuration information and the LOS detection configuration information to the terminal device; the LOS detection configuration information includes the following One or more of: LOS detection algorithm, access network device indication information for LOS detection, and indication information for positioning reference signals for LOS detection.
  • the sending unit is further configured to send the first LOS detection trigger state to the terminal device, and the LOS detection configuration information has a corresponding relationship with the LOS detection trigger state, so that the terminal device detects the trigger state according to the first LOS detection trigger state and the corresponding relationship, determine the first LOS detection configuration information corresponding to the first LOS detection trigger state;
  • the processing unit is used to detect the positioning reference signals of one or more access network devices through the first LOS detection configuration information, and determine a or LOS status information corresponding to the multiple positioning measurement results respectively.
  • the receiving unit is configured to receive positioning measurement information from the serving access network device; the positioning measurement information includes: one or more positioning measurement results determined by the terminal device based on the positioning reference signal and LOS status information corresponding to one or more positioning measurement results.
  • the receiving unit is further configured to receive positioning measurement information from the serving access network device; the positioning measurement information includes: one or more positioning measurement results determined by the terminal device based on the positioning reference signal and LOS status information corresponding to one or more positioning measurement results.
  • the LOS status information includes multiple pieces, and the multiple positioning measurement results are sorted according to corresponding LOS probabilities, and the LOS status information is indicated by sorting.
  • the LOS state information includes: the LOS decision result or LOS probability of the channel between the terminal device and each access network device.
  • the LOS state information includes: quality parameters of channels between the terminal device and each access network device; the quality parameters include one or more of the following: channel gain, variance, and standard deviation.
  • the receiving unit is further configured to receive LOS detection capability information from the terminal device;
  • the LOS detection capability information includes one or more of the following: whether the terminal device operates at a single frequency point or multiple frequency points Supports LOS detection, the maximum number of channels supported by the terminal device for LOS detection at a single frequency or multiple frequencies, the LOS detection algorithm supported by the terminal device, and the confidence level of the LOS detection algorithm supported by the terminal device.
  • the present application provides a communication system, including: a service access network device and a positioning server;
  • the serving access network device can forward the positioning measurement information to the positioning server, where the positioning measurement information includes: one or more positioning measurement results determined by the terminal device based on the positioning reference signal and LOS status information respectively corresponding to the one or more positioning measurement results;
  • the positioning server may select one or more positioning measurement results to determine the position information of the terminal device according to the LOS state information in the positioning measurement information.
  • the present application provides a terminal device, comprising at least one processor, when the device is running, the processor executes the computer program or instruction stored in the memory, so that the terminal device executes the above-mentioned first aspect or The method of various embodiments of the first aspect.
  • the memory may be located in the processor, or may be implemented by a chip independent of the processor, which is not specifically limited in this application.
  • the present application provides a service access network device, comprising at least one processor; when the apparatus is running, the processor executes the computer program or instruction stored in the memory, so that the service access network device executes A method as described above in the second aspect or various embodiments of the second aspect.
  • the memory may be located in the processor, or may be implemented by a chip independent of the processor, which is not specifically limited in this application.
  • the present application provides a positioning server, comprising at least one processor; the memory is used for storing a computer program, and when the apparatus runs, the processor executes the computer program or instruction stored in the memory, so as to make the positioning
  • the server performs the method as described above in the third aspect or the various embodiments of the third aspect.
  • the memory may be located in the processor, or may be implemented by a chip independent of the processor, which is not specifically limited in this application.
  • the present application further provides a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are executed on a computer, the computer executes the first aspect or The method in any of the possible designs of the first aspect, or the method of the second aspect or any of the possible designs of the second aspect, or the third aspect or any of the possible designs of the third aspect method.
  • the present application provides a computer program product comprising a computer program or instructions, which, when run on a computer, causes the computer to perform the method of the first aspect or the embodiments of the first aspect, or the second aspect or the method in any possible design of the second aspect, or the method in the third aspect or any possible design of the third aspect.
  • the present application provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the first aspect or the method in any possible design of the first aspect, or the first aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a communication system, where the system includes a terminal device, an access network device, and a positioning server, and the communication system is configured to execute the first aspect or the method in any possible design of the first aspect , or the second aspect or the method in any possible design of the second aspect, or the third aspect or the method in any possible design of the third aspect.
  • FIG. 1 shows a schematic diagram of a system architecture provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a positioning scenario provided by an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a method for reporting positioning information provided by an embodiment of the present application
  • FIG. 4 shows a schematic flowchart of a method for reporting positioning information provided by an embodiment of the present application
  • FIG. 5 shows a schematic flowchart of a method for reporting positioning information provided by an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 1 exemplarily provides a schematic diagram of a positioning system architecture, and the involved network elements/modules mainly include three parts: a next generation radio access network (NG-RAN), a terminal and a core network.
  • NG-RAN next generation radio access network
  • the core network includes a location management function (LMF) and a mobility management function (access and mobility management function, AMF).
  • the positioning server that is, the LMF is connected to the AMF, and the LMF and the AMF are connected through the NL1 interface.
  • the LMF is responsible for supporting different types of location services related to the terminal, including locating the terminal and delivering assistance data to the terminal.
  • AMF can receive terminal-related location service requests from 5th generation core network location services (5GC LCS) entities, or AMF itself can initiate some location services on behalf of a specific terminal and forward location service requests to LMF.
  • AMF obtains the location information returned by the terminal, and returns the location information to the 5GC LCS entity.
  • 5GC LCS 5th generation core network location services
  • the NG-RAN may include a gNB, a next generation evolved nodeB (ng-eNB), and the like.
  • the gNB and the ng-eNB are connected through the Xn interface, and the AMF and the ng-eNB/gNB are connected through the NG-C interface.
  • the terminal can measure downlink signals from the NG-RAN to support positioning.
  • the gNB/ng-eNB can provide the terminal with positioning measurement information, and communicate the positioning measurement information to the terminal.
  • the possible information exchange between LMF and terminal includes the following: 1) Information exchange between LMF and ng-eNB/gNB through NR positioning protocol a (NR positioning protocol a, NRPPa) message, such as obtaining positioning reference signal (positioning reference signal) signal, PRS), sounding reference signal (sounding reference signal, SRS) configuration information, cell timing, cell location information, etc.; 2) Long term evolution (LTE) positioning protocol (LTE positioning protocol) LPP) message for terminal capability information transfer, auxiliary information transfer, positioning measurement information transfer, etc.
  • NR positioning protocol a NR positioning protocol a, NRPPa
  • LTE positioning protocol Long term evolution
  • the present application is not limited to the system architecture shown in FIG. 1 , and can also be applied to other communication systems in the future, such as the 6th generation (6G) communication system architecture.
  • 6G 6th generation
  • the network elements involved in this application may keep the same functions in future communication systems, but their names will be changed.
  • the terminal device involved in the embodiments of the present application is an entity on the user side that is used to receive or transmit signals, and is used to send uplink signals to network devices or receive downlink signals from network devices. Included are devices that provide voice and/or data connectivity to a user, such as may include handheld devices with wireless connectivity, or processing devices connected to a wireless modem.
  • the terminal equipment may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), V2X terminal equipment, wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), wearable devices, in-vehicle devices, etc.
  • IoT Internet of things
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user agent user agent
  • user equipment user equipment
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as on-board terminal equipment.
  • the on-board terminal equipment is also called on-board unit (OBU). ).
  • the core network involved in the embodiments of this application may include network equipment that processes and forwards user signaling and data.
  • it includes core network devices such as AMF, session management function (SMF), and user plane gateways.
  • the user plane gateway can be a server with functions such as mobility management, routing, and forwarding of user plane data, and is generally located on the network side, such as serving gateway (serving gateway, SGW) or packet data network gateway (packet data network gateway, PGW) ) or user plane function entity (user plane function, UPF), etc.
  • AMF and SMF are equivalent to mobility management entities (mobility management entities, MMEs) in the LTE system.
  • AMF mobility management entities
  • SMF is mainly responsible for access
  • SMF is mainly responsible for session management.
  • the core network may also include other network elements, which are not listed here.
  • the NG-RAN involved in the embodiments of this application may include one or more access network devices.
  • the access network device in the NG-RAN may also be called a base station, or a RAN node, or a RAN device.
  • An access network device is an entity on the network side for transmitting and/or receiving signals, acting as a router between the terminal and the rest of the access network, where the rest of the access network may include the Internet protocol, IP) network, etc.
  • IP Internet protocol
  • the access network equipment can also coordinate the attribute management of the air interface.
  • the access network equipment may be an evolutional Node B (evolutional Node B, eNB or e-NodeB) in LTE, and an eNB is a device deployed in a radio access network that meets the 4G standard and provides a wireless communication function for a terminal.
  • the access network device can also be a new radio controller (NR controller), a gNode B (gNB) in a 5G system, a centralized unit, a new wireless base station, or a new wireless base station.
  • NR controller new radio controller
  • gNB gNode B
  • remote radio module which can be a micro base station (also called a small cell), a relay, a distributed unit, a macro base station in various forms, a TRP, Transmission measurement function (transmission measurement function, TMF) or transmission point (transmission point, TP) or any other wireless access device, or base station in next-generation communication, but the embodiments of the present application are not limited to this.
  • the positioning scenario shown in FIG. 2 may exist, and the positioning scenario includes: multiple base stations gNB1-gNB6, UE, LMF, and serving base station gNB-s.
  • the figure is only for schematic description, but in practical application, the number of base stations is not specifically limited.
  • the UE can only determine the position of the UE by calculating the positioning reference signals from at least three base stations.
  • the gNB1 to gNB6 in the figure can send the positioning reference signals PRS1, PRS2, PRS3, PRS4, PRS5 and PRS6 to the UE respectively.
  • the position of the UE can be solved.
  • the terminal equipment can feed back the calculated location information to the gNB-s, and feed it back to the LMF through the gNB-s.
  • the path between the UE and the gNB is NLOS.
  • the serving base station can provide communication services for the UE.
  • the UE can receive messages from other UEs through the serving base station, or the UE can forward messages through the serving base station.
  • This application does not limit what the serving base station can provide for the UE. Communication service.
  • the serving base station may be one of gNB1 ⁇ gNB6, that is, the serving base station may also send a positioning reference signal to the UE.
  • the serving base station and gNB1 to gNB6 are independent of each other, and the serving base station does not send a positioning reference signal to the UE, but only receives positioning measurement information from the UE here. Regardless of which base station the serving base station is in the above-mentioned situation, the solution of the present application is applicable.
  • the positioning requires the interaction of access network equipment, service access network equipment, terminal equipment and positioning server.
  • the terminal equipment is represented by UE, and gNB1 and gNB2
  • the access network equipment is indicated
  • the service access network equipment is indicated by gNB-s
  • the location server is indicated by LMF, but the number of access network equipment is not limited in practical application.
  • the positioning reference signal is sent for indication. When specifically executed, the following can be performed:
  • gNB1 sends positioning reference signal 1 to UE.
  • gNB2 sends positioning reference signal 2 to the UE.
  • the gNB-s sends the positioning reference signal 3 to the UE.
  • the UE will receive the positioning reference signal positioning reference signal 1, positioning reference signal 2 and positioning reference signal 3 from gNB1, gNB2 and gNB-s respectively.
  • the UE determines positioning measurement information 1 based on positioning reference signal 1 , determines positioning measurement information 2 based on positioning reference signal 2 , and determines positioning measurement information 3 based on positioning reference signal 3 .
  • a positioning measurement result is determined by the terminal device according to a positioning reference signal sent by an access network device, and the positioning measurement result corresponds to LOS status information, which may indicate whether the positioning measurement result is LOS or NLOS.
  • the positioning measurement result may be indicated by TOA and/or angle of arrival, and certainly may be indicated by other indicators, which are not specifically limited in this application.
  • the LOS status information may indicate whether the positioning measurement is for LOS or NLOS.
  • the positioning measurement information 1 includes the TOA and the angle of arrival obtained by the UE measuring the positioning reference signal 1, and the LOS state information obtained by the UE detecting the positioning reference signal 1.
  • the terminal device may determine the positioning measurement result between the terminal device and the access network device through the first algorithm.
  • the first algorithm may be a maximum likelihood estimation algorithm, or may also be a MUSIC algorithm, etc., which is not specifically limited in this application.
  • the maximum likelihood estimation algorithm is to perform a correlation operation between the locally generated positioning reference signal and the received positioning reference signal, and the time corresponding to all peak points greater than the threshold is the arrival time of the positioning reference signal through different paths.
  • the arrival time of a peak point is the TOA of the LOS path.
  • the MUSIC algorithm is a method based on matrix eigenspace decomposition.
  • the autocorrelation matrix of the observed reference signal is decomposed into a signal subspace and a noise subspace, and a spatial spectrum is constructed.
  • the TOA value corresponding to the spectral peak of the spatial spectrum is the measurement value.
  • the terminal device may perform LOS state detection on the channel between the terminal device and the access network device by using the second algorithm.
  • the second algorithm may be a consistency analysis algorithm or an AI-based algorithm.
  • the consistency analysis algorithm determines the LOS state by detecting the fluctuation of the signal strength of the terminal equipment under different antenna units. For example, if the signal strength of the terminal equipment fluctuates little, the positioning measurement information is considered to be LOS; If the signal strength fluctuates greatly, the positioning measurement information is considered to be NLOS.
  • the AI-based algorithm uses the neural network to train the neural network model based on the historical channel data between the terminal and each access network. When making LOS judgment, the estimated channel coefficient or the received reference signal is directly input. Input the neural network model and output the LOS detection result.
  • the positioning measurement result and the LOS state information may also be determined in other manners, which are not illustrated here. Any method that can determine the positioning measurement result and the LOS state information based on the positioning reference signal is applicable to the present application.
  • the UE sends positioning measurement information 1, positioning measurement information 2, and positioning measurement information 3 to gNB-s.
  • the gNB-s sends the positioning measurement information 1, the positioning measurement information 2, and the positioning measurement information 3 to the LMF.
  • the LOS status information fed back by the terminal device during positioning may indicate whether the positioning measurement result is LOS or NLOS.
  • the positioning server can learn which positioning measurement result is based on the LOS status information corresponding to the positioning measurement result. is reliable and facilitates a more precise determination of the location of the end device.
  • the LOS status information can be indicated in different ways, as follows:
  • the terminal device sorts the positioning measurement results according to the corresponding LOS probabilities, which can implicitly indicate the relative relationship between the LOS probabilities between the various measurement quantities, and can save additional LOS status information bits (that is, saving non- The number of information bits occupied by the hermit indication), at the same time, it can indicate the weight of each measurement of the positioning server and improve the positioning accuracy.
  • the terminal device when it receives positioning reference signals from multiple access network devices, it can determine multiple positioning measurement results based on the multiple positioning reference signals.
  • the LOS probabilities corresponding to different positioning measurement results are different. It is agreed in advance with the serving access network equipment that only several positioning measurement results with the highest LOS probability are reported.
  • the LOS state information includes: the LOS decision result or LOS probability of the channel between the terminal device and the access network device; the LOS state information may be indicated by one or more bits.
  • the LOS status information is only a schematic description.
  • the LOS status information can indicate whether the channel between the terminal device and the access network device is LOS or NLOS.
  • the LOS status information can also be called LOS result, LOS status etc.
  • the LOS status information may also include LOS channel indication information of other names, which is not specifically limited in this application.
  • this application may also include LOS quality, LOS confidence, etc.
  • the LOS status information mentioned above is not only the channel between the terminal device and the access network device
  • the LOS condition can also be the NLOS condition of the channel between the terminal device and the access network device, that is, the LOS state information can be the NLOS judgment result or NLOS probability of the channel between the terminal device and the access network device, etc. It is not specifically limited.
  • the LOS probability is obtained by performing LOS detection and calculation on the channel between the terminal device and the access network device through the LOS detection algorithm (such as the consistency analysis algorithm).
  • the reported LOS probability (the LOS probability can be quantified and reported) can indicate the channel LOS
  • the status information is beneficial to improve the positioning accuracy.
  • the LOS judgment result is obtained by comparing the LOS probability with a certain threshold PLOS to perform LOS/NLOS judgment on the channel, that is, when the LOS probability is greater than or equal to PLOS, the LOS channel is judged.
  • the channel between networked devices is the LOS channel. When the LOS probability is lower than the PLOS, it is determined to be an NLOS channel.
  • the bit is 0, it indicates that the channel between the terminal device and the access network device is an NLOS channel.
  • Reporting the LOS judgment result can effectively reduce the bit overhead reported by the physical layer, reduce the system load, and at the same time indicate the most basic LOS state of the current channel of the location server.
  • the LOS confidence is similar to the LOS probability. It is also a metric of the current LOS channel determined after LOS detection on the channel based on the reference signal. The higher the LOS confidence, the more likely the channel is LOS, and the lower the LOS confidence. , indicating that the channel is more likely to be NLOS.
  • LOS quality is a metric index of the current LOS channel determined after LOS detection on the channel based on the reference signal. The more likely it is the NLOS channel. This application only provides a schematic description here, and does not specifically limit the manner of determining the LOS state information.
  • the LOS probability, LOS quality, LOS confidence, etc. can be determined by LOS detection on the channel between the terminal and the access network device through the LOS detection algorithm.
  • the LOS judgment result can be determined by comparing the LOS probability, or LOS quality, LOS confidence, etc. with If the preset threshold is determined by comparing the size, this application only provides a schematic description here and does not specifically limit the way of determining the LOS state information.
  • the serving access network device and the terminal device may agree to select one or more of them to indicate the LOS status information, for example, indicate the LOS status information through the LOS judgment result, or indicate the LOS status information through the LOS judgment result and the LOS probability jointly LOS status information.
  • the LOS status information can be indicated by one bit or by multiple bits. In practical application, the serving access network device and the UE can agree to select several bits to indicate. LOS status information, which is not specifically limited in this application. As shown in Table 1, if the LOS status information is the LOS judgment result, it can be indicated by 1 bit. If the bit bit is displayed as 1, it indicates that the LOS status information corresponding to the positioning measurement result is LOS, and the bit bit is displayed as 0, indicating the positioning.
  • the state information of the LOS corresponding to the measurement result is NLOS.
  • the positioning measurement result determined by the UE on the PRS1 measurement from gNB1 is A, and the corresponding bit value is 0. It can be known that the channel between the UE and gNB1 is NLOS.
  • the LOS decision result in Table 1 above is indicated by one bit, but in practical applications, the LOS decision result may also be indicated by multiple bits, which is not specifically limited in this application.
  • the LOS state information includes: quality parameters of the channel between the terminal device and the access network device; the quality parameters include one or more of the following: channel gain, variance, and standard deviation.
  • the quality parameter can feed back the channel status between the terminal equipment and the access network equipment, and can indirectly feed back the LOS status, such as the channel gain, variance and standard deviation, where the channel gain refers to the power of the received reference signal.
  • the variance refers to the variance of the current channel coefficient estimated based on the reference signal.
  • the standard deviation refers to the positive square root value of the variance of the channel coefficients.
  • the terminal device of the present application may report the positioning measurement result and the LOS state information through specific examples and situations.
  • the methods for reporting positioning measurement results and LOS status information mentioned below are only illustrative, and do not specifically limit the reporting methods of terminal equipment. In practical applications, other reporting methods or ways of indicating LOS status information may also be involved. This application does not make any specific limitations here, and all methods involving reporting methods and indicating LOS status information are applicable to this application.
  • the LOS probability calculated by the UE is as follows: UE-gNB1: 0.95; UE-gNB2: 0.88; UE-gNB3: 0.92; UE-gNB4: 0.12; UE-gNB5: 0.96; UE-gNB6: 0.06. Since the physical layer first reports the amount of bits, it can be reported based on this example with reference to the following situations, as follows:
  • Case 1 The UE reports the measurement results of all base stations and the corresponding LOS probability.
  • the case 1 is only an exemplary description here, and does not specifically limit how to report the measurement results of all base stations and the corresponding LOS probability.
  • the UE determines six positioning measurement results based on the positioning reference signals from six gNBs. As shown in Table 2, the positioning measurement result determined by the UE for the PRS1 measurement from gNB1 is A, and the LOS probability is 0.95; the UE measures the PRS2 from gNB2.
  • the determined positioning measurement result is B, and the LOS probability is 0.88; the positioning measurement result determined by the UE on the PRS3 measurement from gNB3 is C, and the LOS probability is 0.92; the positioning measurement result determined by the UE on the PRS4 measurement from gNB4 is D, and the LOS probability is is 0.12; the positioning measurement result determined by the UE for the PRS5 measurement from gNB5 is E, and the LOS probability is 0.96; the positioning measurement result determined by the UE for the PRS6 measurement from gNB6 is F, and the LOS probability is 0.06; the UE can be as shown in Table 2 Report all positioning measurement results and the LOS probability corresponding to each measurement result.
  • Positioning reference signal identification Positioning measurement results LOS probability gNB1 PRS1 A 0.95 gNB2 PRS2 B 0.88 gNB3 PRS3 C 0.92 gNB 4 PRS4 D 0.12 gNB5 PRS5 E 0.96 gNB6 PRS6 F 0.06
  • Case 2 The UE can make a 0, 1 decision based on the LOS probability, 1 means that there is an LOS channel between the terminal and the access network device, or the corresponding measurement result is the measurement result of the LOS path; 0 means that there is no LOS channel between the terminal and the base station, or , and the corresponding measurement result is the measurement result of the NLOS diameter.
  • the terminal sets the decision threshold to 0.5, that is, the LOS probability is greater than or equal to 0.5, and the decision is 1, and the LOS probability is less than 0.5, and the decision is 0.
  • the case 2 is only an exemplary description here, and does not specifically limit how to determine the LOS channel between the base station and the terminal device.
  • the LOS probability between UE-gNB1 is 0.95 greater than 0.5 and the decision is 1; the LOS probability between UE-gNB2 is 0.88 greater than 0.5 and the decision is 1; the LOS probability between UE-gNB3 is 0.92 greater than 0.5
  • the decision is 1; the LOS probability between UE-gNB4 is 0.12 and less than 0.5, the decision is 0; the LOS probability between UE-gNB5 is 0.96 and greater than 0.5, the decision is 1; the LOS probability between UE-gNB6 is 0.06 and greater than 0.5, the decision is 0.
  • the UE may refer to Table 3 to feed back the positioning measurement result and the LOS state information.
  • Positioning reference signal identification Positioning measurement results LOS indication information gNB1 PRS1 A 1 gNB2 PRS2 B 1 gNB3 PRS3 C 1 gNB 4 PRS4 D 0 gNB5 PRS5 E 1 gNB6 PRS6 F 0
  • the UE may only report the location measurement results of the detected LOS, as shown in Table 4, that is, only report the location measurement results A, B, C, and E.
  • Case 3 The UE may report the positioning measurement results corresponding to the gNBs whose LOS probability is greater than a certain threshold, or report the positioning measurement results corresponding to several gNBs with the largest LOS probability.
  • the case 3 is only an exemplary description here, and does not specifically limit how to report the positioning measurement result whose LOS probability satisfies the threshold.
  • the positioning measurement results of access network devices with LOS probability greater than 0.9 are reported, or the measurement results of three access network devices with the highest LOS probability, and/or the corresponding LOS probability (or corresponding decision result), etc.
  • the UE reports a positioning measurement result with a LOS probability greater than 0.9.
  • the UE may also report the positioning measurement result whose decision result is 1, as shown in Table 6.
  • Case 4 The UE can report the measurement result and LOS probability of a specific gNB.
  • the case 4 is only an exemplary description here, and does not specifically limit how to report the measurement result of a specific base station and the corresponding LOS probability.
  • the positioning measurement results and LOS probability of the four base stations gNB1, gNB2, gNB4, and gNB5 are reported according to the LMF instruction, as shown in Table 7.
  • the LOS probability can also be indicated in the form of reporting the LOS decision result, as shown in Table 8.
  • Positioning reference signal identification Positioning measurement results LOS indication information gNB1 PRS1 A 1 gNB2 PRS2 B 1 gNB 4 PRS4 D 0 gNB5 PRS5 E 1
  • Case 5 The UE reports the positioning measurement results in descending order of the LOS probability based on the LOS probability, and the LMF determines the relative relationship between the LOS probability between each gNB and the UE according to the order of the positioning measurement results; The positioning measurement results are sorted according to the LOS probability from high to low, and only the positioning measurement results of the gNBs with the highest LOS probability are reported. The LMF determines the relative relationship of the LOS probability between each gNB and the UE according to the order of the positioning measurement results.
  • the case 5 is only an exemplary description here, and does not specifically limit how to sort the LOS probabilities and report the positioning measurement result.
  • the UE sorts the positioning measurement results according to the LOS probability from high to low, and reports the measurement results in sequence.
  • the LMF can determine the order of the LOS probability between each gNB and the UE according to the reporting order of the positioning measurement results.
  • the UE sorts the measurement results according to the LOS probability from high to low based on the LOS detection probability, and only reports the positioning measurement results of the four gNBs with the highest LOS probability. Relative relationship of LOS probabilities.
  • the LMF can perform weighted calculation on different positioning measurement results according to the ranking of the positioning measurement results, so as to solve the UE's positioning measurement results. location information.
  • the location server may select the LOS state information to be the location measurement result of the LOS to calculate the location information of the terminal device.
  • the positioning server can weight different measurement quantities according to the LOS probability to calculate the location information of the terminal device to avoid such LOS misjudgments
  • the LOS probability corresponding to the positioning measurement result 1 is 0.1
  • the LOS probability corresponding to the positioning measurement result 2 is 0.9.
  • the positioning server can also select some measurement quantities to calculate the position of the positioning terminal according to the LOS probability.
  • the LOS probability corresponding to the positioning measurement result 1 is 0.3
  • the LOS probability corresponding to the positioning measurement result 2 is 0.9
  • the positioning measurement result 3 corresponds to
  • the LOS probability of 0.8 is 0.8
  • the LOS probability corresponding to the positioning measurement result 4 is 0.9.
  • the positioning server can select the measurement result 2, the measurement result 3, and the measurement result 4 with the LOS probability greater than 0.8, and use the terminal calculation function to solve the position of the terminal equipment.
  • the LOS probability in the above cases 1 to 5 can also be the NLOS probability, which is not specified in this application.
  • the UE reports the LOS probability it can be reported in the form of quantification. bits to indicate, as shown in Table 11. Among them, 1111 indicates that the value range of LOS probability is 15/16-1, and 0000 indicates that the value range of LOS probability is 0-1/16. 1110 indicates that the value range of LOS probability is 14/16-15/16, etc. , which are not indicated here in this application. For example, when the UE reports the positioning measurement result A with the LOS probability of 0.95, it can report 1111, because 0.95 is within the range of 15/16-1. This is only an example for illustration, and not all indications.
  • the terminal device can send the positioning configuration request information to the positioning server; and receive the positioning reference signal configuration information and LOS detection configuration information from the positioning server; LOS
  • the detection configuration information includes one or more of the following: a LOS detection algorithm, indication information of an access network device detected by LOS, and indication information of a positioning reference signal detected by LOS.
  • the positioning reference signal configuration information may include time domain resource configuration information of the positioning reference signal, that is, the time domain resource in which the positioning reference signal is sent, so that the terminal device can receive the positioning reference signal under the corresponding time domain resource.
  • the location server can indicate which algorithm the terminal device uses to perform LOS detection, which channels between the access network device and the terminal device are detected, and which information to report.
  • the algorithm used in LOS detection may include a consistency analysis algorithm, a detection algorithm based on a neural network model, etc., and the location server may instruct the terminal device to use the consistency analysis algorithm to perform LOS detection through the LOS detection configuration information.
  • the positioning server may also instruct the terminal device which access network device to feed back the LOS detection result of by using the indication information of the access network device detected by the LOS or the indicator information of the positioning reference signal detected by the LOS.
  • the access network device indication information detected by the LOS may be identified by an access network device identity (identity, ID), for example, TRP ID1, TRP ID2, and the like.
  • ID access network device identity
  • the indication information of the positioning reference signal detected by the LOS may be indicated by a reference signal ID identifier, for example, PRS ID1, PRS ID2, and the like.
  • the LPP protocol location information request message NR-DL-TDOA-RequestLocationInformation-r16 adds the TRP index nr-LOS-Detect-ID to be detected by LOS, which is only described here as an example.
  • the serving access network device may receive indication information from the positioning server, where the indication information may be used to instruct the terminal device to perform positioning measurement and LOS detection of the terminal device.
  • the serving access network device will forward the indication information to the terminal device.
  • the indication information may be sent through downlink control information, or MAC, or RRC, which is not specifically limited in this application.
  • the terminal device can receive the first LOS detection trigger state from the positioning server, and the LOS detection configuration information has a corresponding relationship with the LOS detection trigger state; according to the first LOS detection trigger state and the corresponding relationship, determine the first LOS detection trigger state.
  • the status value of the LOS detection trigger status is 11, indicating that the terminal device adopts the consistency analysis algorithm to analyze the channel between the terminal device and the access network device. Detect and report the LOS judgment result; the status value of 10 indicates that the terminal equipment uses the consistency analysis algorithm to detect the channel between the terminal equipment and the access network equipment, and reports the LOS probability; the status value of 01 indicates that the terminal equipment adopts the LOS probability.
  • the detection algorithm of the neural network model detects the channel between the terminal device and the access network device, and reports the LOS judgment result; the status value of 00 indicates that the terminal device adopts the detection algorithm based on the neural network model to detect the terminal device and the access network device. The channel between them is detected and the LOS probability is reported.
  • the positioning assistance information including the LOS detection trigger state can enable the terminal device to clearly know which LOS detection configuration information is specifically used to detect the LOS channel between the terminal device and the access network device.
  • the terminal device may, after receiving the request information from the location server to send the LOS detection capability information, feedback the LOS detection capability information, and also It may be that the terminal device autonomously feeds back LOS detection capability information, which is not specifically limited in this application.
  • the LOS detection capability information may include one or more of the following: whether the terminal device supports LOS detection at a single frequency or multiple frequencies, and the maximum channel supported by the terminal device for LOS detection at a single frequency or multiple frequencies The number, LOS detection algorithms supported by the terminal device, and the confidence level of the LOS detection algorithms supported by the terminal device.
  • the location server can configure the LOS detection configuration information according to the detection capability of the terminal device.
  • FIG. 4 illustrates the interaction flow between the UE (terminal device), the gNB (serving access network device) and the LMF (location server). Can be executed as follows:
  • the LMF receives a positioning request for the UE, where the positioning request can be understood as being sent by a network element in the core network.
  • the LMF requests the LOS detection capability information of the UE through the LPP protocol.
  • the UE feeds back LOS detection capability information to the LMF through the LPP protocol, where the LOS detection capability information may include whether the UE supports LOS detection at a single frequency or multiple frequencies, and whether the UE supports LOS detection at a single frequency or multiple frequencies.
  • the LMF and the gNB exchange configuration information through the NRPPa protocol, for example, the configuration information of the positioning reference signal PRS, and the like.
  • the UE requests the LMF for positioning assistance information.
  • the LMF feeds back positioning assistance information to the UE through the LPP protocol, where the positioning assistance information may include: configuration information of aperiodic PRS and LOS detection configuration information.
  • the LMF instructs the gNB to activate the measurement of the aperiodic PRS by the UE through DCI through NRPPa signaling.
  • the gNB instructs the UE to measure the aperiodic PRS through the DCI.
  • the UE determines the positioning measurement information based on the aperiodic PRS, and reports the positioning measurement information to the gNB through the physical layer.
  • the gNB feeds back the positioning measurement information to the LMF through NRPPa signaling.
  • the positioning server After the positioning server obtains the positioning measurement results, it can learn which positioning measurement results are reliable according to the LOS status information corresponding to the positioning measurement results. More precise location of end devices.
  • LOS detection configuration information may include multiple types.
  • LMF can indicate which LOS detection configuration information the terminal device uses to perform LOS detection through the state value corresponding to the LOS detection configuration information, as shown in Figure 5.
  • the executable is as follows:
  • the LMF receives a positioning request for the UE.
  • the LMF requests the LOS detection capability information of the UE through the LPP protocol.
  • the UE feeds back the LOS detection capability information to the LMF through the LPP protocol.
  • the configuration information is exchanged between the LMF and the gNB through the NRPPa protocol.
  • the UE requests the LMF for positioning assistance information.
  • the LMF feeds back positioning assistance information to the UE through the LPP protocol, where the positioning assistance information may include: configuration information of aperiodic PRS, LOS detection configuration information, and LOS detection trigger status.
  • the LMF instructs the gNB to activate the measurement of the aperiodic PRS by the UE through DCI through NRPPa signaling.
  • the gNB instructs the UE to measure the aperiodic PRS through the DCI.
  • the UE detects the aperiodic PRS based on the LOS detection configuration information corresponding to the LOS detection trigger state, determines the positioning measurement information, and reports the positioning measurement information to the gNB through the physical layer.
  • the gNB feeds back the positioning measurement information to the LMF through NRPPa signaling.
  • the LOS detection configuration information may include multiple types, and the positioning assistance information includes the LOS detection trigger status so that the terminal device can clearly know which LOS detection configuration information is used for the LOS channel between the terminal device and the access network device. test.
  • an embodiment of the present application provides a communication device, which includes a receiving unit 601 and a sending unit 602 as shown in FIG. 6 , wherein the communication device can be applied to the aforementioned terminal equipment or the aforementioned service access
  • the network device may also be the aforementioned access network device, or may be the aforementioned positioning server.
  • the receiving unit may be used to implement the sending function in the method embodiment, the receiving unit may be used to implement the receiving function in the method embodiment, and other functions in the method embodiment may be implemented by the processing unit.
  • the receiving unit can be realized through the output interface in the data processing chip, and the sending unit can be realized through the input interface of the data processing chip.
  • the sending and receiving in the method embodiment correspond to the output and input in the chip respectively. It can also be implemented by the same chip, which is not specifically limited in this application.
  • the communication device further includes a processing unit, and the processing unit may be implemented by a processor or the like, which is not specifically limited in this application.
  • the receiving unit 601 may be configured to receive positioning reference signals from one or more access network devices; the sending unit 602 may be configured to send the positioning measurement information to the serving access network device; the positioning measurement information It includes: one or more positioning measurement results and LOS status information respectively corresponding to the one or more positioning measurement results. It should also be noted that the processing unit may determine one or more positioning measurement results based on the positioning reference signal and LOS status information respectively corresponding to the one or more positioning measurement results.
  • the LOS status information fed back by the terminal device during positioning may indicate whether the positioning measurement result is LOS or NLOS.
  • the multiple positioning measurement results are sorted according to corresponding LOS probabilities, and the LOS status information corresponding to one or more positioning measurement results is indicated by sorting through sorting.
  • a terminal device receives positioning reference signals from multiple access network devices, it can determine multiple positioning measurement results based on the multiple positioning reference signals, and the LOS probabilities corresponding to different positioning measurement results are different.
  • the terminal device may agree in advance with the serving access network device to report only several positioning measurement results with the highest LOS probability ranking.
  • the LOS state information includes: the LOS decision result or the LOS probability of the channel between the terminal device and the access network device.
  • the LOS state information includes: a quality parameter of a channel between the terminal device and the access network device; the quality parameter includes one or more of the following: channel gain, variance, and standard deviation.
  • the sending unit 602 is further configured to send the positioning configuration request information to the positioning server; the receiving unit is further configured to receive the positioning reference signal configuration information and the LOS detection configuration information from the positioning server; the LOS detection configuration
  • the information includes one or more of the following: an LOS detection algorithm, indication information of an access network device detected by LOS, and indication information of a positioning reference signal detected by LOS.
  • the configuration information of the positioning reference signal includes the time domain resource configuration information of the positioning reference signal, that is, the time domain resource in which the positioning reference signal is sent, so that the terminal device can receive the positioning reference signal under the corresponding time domain resource.
  • the LOS detection configuration information can indicate which algorithm the terminal device uses to perform LOS detection, which channels between the access network device and the terminal device are detected, and which information to report specifically.
  • the algorithm used in LOS detection may include a consistency analysis algorithm, a detection algorithm based on a neural network model, etc., and the location server can instruct the terminal device to use the consistency analysis algorithm to perform LOS detection through the LOS detection configuration information.
  • the indication information of the access network equipment detected by LOS can be indicated by the identity of the access network equipment, and the indication information of the positioning reference signal detected by LOS can be indicated by the identity of the reference signal, wherein the terminal equipment specifically detects which channels of the access network equipment, It may be determined according to the identification of the access network device in the LOS detection configuration information, or may be determined according to the identification of the reference signal.
  • the receiving unit 601 is further configured to receive the first LOS detection trigger status from the positioning server, and the LOS detection configuration information has a corresponding relationship with the LOS detection trigger status;
  • the communication device further includes a processing unit for processing The unit is configured to determine the first LOS detection configuration information corresponding to the first LOS detection trigger state according to the first LOS detection trigger state and the corresponding relationship;
  • the positioning reference signal of one or more access network devices is determined by the first LOS detection configuration information The detection is performed to determine the LOS status information corresponding to the one or more positioning measurement results respectively.
  • the positioning assistance information including the LOS detection trigger state can enable the terminal device to clearly know which LOS detection configuration information is specifically used to detect the LOS channel between the terminal device and the access network device.
  • the receiving unit 601 is further configured to receive indication information from the serving access network device; the indication information is used to instruct the terminal device to perform positioning measurement and LOS detection.
  • the sending unit 602 is further configured to send the LOS detection capability information of the terminal device to the positioning server;
  • the LOS detection capability information includes one or more of the following: the terminal device is at a single frequency point or Whether multi-frequency points support LOS detection, the maximum number of channels that terminal equipment supports LOS detection at single frequency point or multi-frequency point, the LOS detection algorithm supported by terminal equipment, and the confidence level of LOS detection algorithm supported by terminal equipment.
  • the terminal device can actively send the LOS detection capability information to the positioning server, or can send the LOS detection capability information to the positioning server when the positioning server sends a request to the terminal device.
  • the specific situation is not specified in this application. limited.
  • the receiving unit 601 is configured to receive positioning measurement information from the terminal device; the positioning measurement information includes: one or more positioning measurement results determined by the terminal device based on the positioning reference signal and LOS state information corresponding to one or more positioning measurement results; the sending unit 602 is configured to send the positioning measurement information to the positioning server.
  • the LOS status information fed back by the terminal device during positioning may indicate whether the positioning measurement result is LOS or NLOS.
  • the multiple positioning measurement results are sorted according to corresponding LOS probabilities, and the LOS status information corresponding to one or more positioning measurement results is indicated by sorting through sorting.
  • a terminal device receives positioning reference signals from multiple access network devices, it can determine multiple positioning measurement results based on the multiple positioning reference signals, and the LOS probabilities corresponding to different positioning measurement results are different.
  • the terminal device may agree in advance with the serving access network device to report only several positioning measurement results with the highest LOS probability ranking.
  • the LOS state information includes: the LOS decision result or the LOS probability of the channel between the terminal device and the access network device.
  • the LOS state information includes: a quality parameter of a channel between the terminal device and the access network device; the quality parameter includes one or more of the following: channel gain, variance, and standard deviation.
  • the receiving unit 601 is further configured to receive indication information from the positioning server; the sending unit 602 is further configured to send the indication information to the terminal device; the indication information is used to instruct the terminal device to perform positioning measurement and LOS detection .
  • the receiving unit 601 is configured to determine the first LOS detection configuration information corresponding to the first LOS detection trigger state according to the first LOS detection trigger state and the corresponding relationship; the processing unit is configured to pass the first LOS detection trigger state
  • the detection configuration information detects the positioning reference signals of one or more access network devices, and determines the LOS status information corresponding to the one or more positioning measurement results respectively.
  • the location server may select the LOS state information to be the location measurement result of the LOS to calculate the location information of the terminal device.
  • the positioning server can weight different measurement quantities according to the LOS probability to calculate the location information of the terminal device to avoid such LOS misjudgments
  • the LOS probability corresponding to the positioning measurement result 1 is 0.1
  • the LOS probability corresponding to the positioning measurement result 2 is 0.9.
  • the positioning server can also select some measurement quantities to calculate the position of the positioning terminal according to the LOS probability.
  • the LOS probability corresponding to the positioning measurement result 1 is 0.3
  • the LOS probability corresponding to the positioning measurement result 2 is 0.9
  • the positioning measurement result 3 corresponds to
  • the LOS probability of 0.8 is 0.8
  • the LOS probability corresponding to the positioning measurement result 4 is 0.9.
  • the positioning server can select the measurement result 2, the measurement result 3, and the measurement result 4 with the LOS probability greater than 0.8, and use the terminal calculation function to solve the position of the terminal equipment.
  • the receiving unit 601 is used to receive the positioning configuration request information from the terminal equipment; the sending unit 602 is used to send the positioning reference signal configuration information and the LOS detection configuration information to the terminal equipment; the LOS detection configuration information includes One or more of the following: LOS detection algorithm, access network device indication information for LOS detection, and indication information for positioning reference signals for LOS detection.
  • the configuration information of the positioning reference signal includes the time domain resource configuration information of the positioning reference signal, that is, the time domain resource in which the positioning reference signal is sent, so that the terminal device can receive the positioning reference signal under the corresponding time domain resource.
  • the LOS detection configuration information can indicate which algorithm the terminal device uses to perform LOS detection, which channels between the access network device and the terminal device are detected, and which information to report specifically.
  • the algorithm used in LOS detection may include a consistency analysis algorithm, a detection algorithm based on a neural network model, etc., and the location server may instruct the terminal device to use the consistency analysis algorithm to perform LOS detection through the LOS detection configuration information.
  • the indication information of the access network equipment detected by LOS can be indicated by the identity of the access network equipment, and the indication information of the positioning reference signal detected by LOS can be indicated by the identity of the reference signal, wherein the terminal equipment specifically detects which channels of the access network equipment, It may be determined according to the identification of the access network device in the LOS detection configuration information, or may be determined according to the identification of the reference signal.
  • the sending unit 602 is further configured to send the first LOS detection trigger state to the terminal device, and the LOS detection configuration information has a corresponding relationship with the LOS detection trigger state, so that the terminal device triggers according to the first LOS detection The state value and the corresponding relationship of the state, determine the first LOS detection configuration information corresponding to the first LOS detection trigger state; detect the positioning reference signal of one or more access network devices through the first LOS detection configuration information, and determine one or more LOS status information corresponding to the multiple positioning measurement results respectively.
  • the LOS detection configuration information may include multiple types, and the LOS detection trigger state enables the terminal device to clearly know which LOS detection configuration information is used to detect the LOS channel between the terminal device and the access network device.
  • the receiving unit 601 is further configured to receive positioning measurement information from the serving access network device; the positioning measurement information includes: one or more positioning measurement results determined by the terminal device based on the positioning reference signal and the respective LOS status information corresponding to the positioning measurement results.
  • the LOS status information fed back by the terminal device during positioning may indicate whether the positioning measurement result is LOS or NLOS.
  • the multiple positioning measurement results are sorted according to corresponding LOS probabilities, and the LOS status information corresponding to one or more positioning measurement results is indicated by sorting through sorting.
  • a terminal device receives positioning reference signals from multiple access network devices, it can determine multiple positioning measurement results based on the multiple positioning reference signals, and the LOS probabilities corresponding to different positioning measurement results are different.
  • the terminal device may agree in advance with the serving access network device to report only several positioning measurement results with the highest LOS probability ranking.
  • the LOS state information includes: the LOS decision result or the LOS probability of the channel between the terminal device and the access network device.
  • the LOS state information includes: a quality parameter of a channel between the terminal device and the access network device; the quality parameter includes one or more of the following: channel gain, variance, and standard deviation.
  • the receiving unit 601 is further configured to receive LOS detection capability information from the terminal device;
  • the LOS detection capability information includes one or more of the following: the terminal device operates at a single frequency point or multiple frequency points Whether LOS detection is supported, the maximum number of channels that the terminal device supports LOS detection at a single frequency or multiple frequencies, the LOS detection algorithm supported by the terminal device, and the confidence level of the LOS detection algorithm supported by the terminal device.
  • the terminal device can actively send the LOS detection capability information to the positioning server, or can send the LOS detection capability information to the positioning server when the positioning server sends a request to the terminal device.
  • the specific situation is not specified in this application. limited.
  • the receiving unit and the transmitting unit may constitute a transceiver unit.
  • the present application provides a communication system, including: a serving access network device and a positioning server; the serving access network device can perform the steps performed by the serving access network device, such as forwarding positioning measurement information to the positioning server.
  • the positioning server may select one or more positioning measurement results to determine the position information of the terminal device according to the LOS state information in the positioning measurement information.
  • a communication device 700 is provided for this application.
  • the communication device 700 may be a chip or a system of chips.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 700 may include at least one processor 710, and the communication apparatus 700 may further include at least one memory 720 for storing computer programs, program instructions and/or data.
  • Memory 720 is coupled to processor 710 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 710 may cooperate with memory 720 .
  • the processor 710 may execute computer programs stored in the memory 720 .
  • the at least one memory 720 may be integrated in the processor 710 .
  • the communication apparatus 700 may further include a transceiver 730, and the communication apparatus 700 may exchange information with other devices through the transceiver 730.
  • the transceiver 730 can be a circuit, a bus, a transceiver, or any other device that can be used for communication.
  • the transceiver 730 may include a receiver and a transmitter. The receiver can be used to implement the receiving function in the method embodiment, the transmitter can be used to implement the sending function in the method embodiment, and other functions in the method embodiment can be implemented by a processor.
  • the communication apparatus 700 may be applied to the aforementioned terminal device, may also be the aforementioned service access network device, or may be the aforementioned positioning server.
  • the memory 720 holds the necessary computer programs, program instructions and/or data to implement the functions of the network device in any of the above-described embodiments.
  • the processor 710 can execute the computer program stored in the memory 720 to complete the method in any of the above embodiments.
  • connection medium between the transceiver 730, the processor 710, and the memory 720 is not limited in the embodiments of the present application.
  • the memory 720, the processor 710, and the transceiver 730 are connected through a bus in FIG. 7.
  • the bus is represented by a thick line in FIG. 7.
  • the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 7, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing computer programs, program instructions and/or data.
  • an embodiment of the present application further provides a readable storage medium, where an instruction is stored in the readable storage medium, and when the instruction is executed, the method for reporting positioning information in any of the foregoing embodiments is implemented.
  • the readable storage medium may include: a USB flash drive, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种定位信息上报方法、设备及通信系统,涉及通信技术领域。终端设备接收来自一个或多个接入网设备的定位参考信号;之后基于定位参考信号确定一个或多个定位测量结果和与一个或多个定位测量结果分别对应的视距LOS状态信息,也即定位测量信息,并将定位测量信息发送至服务接入网设备,服务接入网设备将该定位测量信息转发至定位服务器。终端设备反馈的LOS状态信息可以指示定位测量结果是LOS的还是非视距NLOS的,定位服务器获取定位测量结果后,根据定位测量结果对应的LOS状态信息可以获悉哪个定位测量结果是可靠的,在定位服务器明确知晓哪些定位测量结果是可靠的情况下,可以更加精确地确定终端设备的位置。

Description

一种定位信息上报方法、设备及通信系统
相关申请的交叉引用
本申请要求在2021年04月23日提交中国专利局、申请号为202110442444.0、申请名称为“一种定位信息上报方法、设备及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种定位信息上报方法、设备及通信系统。
背景技术
高精度定位是第五代(5th generation,5G)新无线(new radio,NR)移动通信网络的关键技术之一。通过蜂窝定位能够准确识别终端设备的位置,从而为用户提供基于定位的服务,例如导航、货物配送等。其中,蜂窝定位是通过测量多个5G基站(gNodeB,gNB)与终端设备间的直线距离,获取5G基站与终端设备的几何位置关系,之后根据已知的gNB位置解算出终端设备的位置。
终端设备定位依赖于终端设备与gNB间的视距(line of sight,LOS)(也即终端设备与gNB间的直线距离)的测量。然而在生产生活的实际应用中,由于遮挡物(例如树、建筑、墙壁等)的存在会反射定位信号,因此gNB测量的信号传播距离有可能为非视距(non-line of sight,NLOS)传播距离。在对终端设备定位时,由于NLOS径的存在,使得终端设备的定位精度较差。
发明内容
本申请提供一种定位信息上报方法、设备及通信系统,以使定位服务器可参考终端设备与接入网设备之间的信道情况,更加准确地对终端设备进行定位。
第一方面,本申请提供一种定位信息上报方法,该定位信息上报方法可通过终端设备来执行,该终端设备可以理解为定位标签、车载设备、手机等,本申请在此不作具体限定。本申请在执行定位信息上报方法时,终端设备可接收来自一个或多个接入网设备的定位参考信号;并发送定位测量信息至服务接入网设备;定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息。
需要说明的是,服务接入网设备可以为终端设备提供通信服务,如:终端设备可通过服务接入网设备接收来自其他终端设备的消息,或者终端设备可通过服务接入网设备转发消息,本申请在此不限定服务接入网设备可以为终端设备提供哪些通信服务。本申请中,服务接入网设备也可以为接入网设备中的一个,服务接入网设备也可向终端设备发送定位参考信号;亦或者服务接入网设备与接入网设备是相互独立的,服务接入网设备并不向终端设备发送定位参考信号,在此仅接收来自终端设备的定位测量信息,无论服务接入网设备是上述的哪种情况均适用于本申请的方案。另外还要说明的是,接入网设备或服务接入 网设备可以为基站,也可以为传输接收点(transmission reception point,TRP),本申请在此不具体限定。
此外,终端设备可通过最大似然估计方法或者多重信号分类算法(multiple signal classification algorithm,MUSIC)对终端设备与任一接入网设备间的信道进行估计,确定定位测量结果。当然,在实际应用中也可通过其他方式确定定位测量结果,本申请在此并不具体限定,在此仅仅通过上述的方法或算法作示例性说明。
还要说明的是,一个定位测量结果是终端设备根据一个接入网设备发送的定位参考信号确定的,且该定位测量结果对应一个LOS状态信息,该LOS状态信息可以指示定位测量结果是LOS的还是NLOS的。其中,定位测量结果可通过到达时间(time of arrival,TOA),和/或,到达角度来指示,当然也可通过其他指标来指示,本申请在此不作具体限定。另外,终端设备可通过一致性分析算法(也即终端设备的不同的天线单元接收到定位参考信号后,参考信号的波动程度确定LOS状态信息)对终端设备与接入网设备间的信道进行估计确定LOS状态信息。此外本申请还可能根据其他方法确定LOS状态信息,在此不一一示意,凡是可以基于定位参考信号,确定定位测量结果和LOS状态信息的方法均适用于本申请。
本申请实施例中,终端设备在定位时反馈的LOS状态信息可以指示定位测量结果是LOS的还是NLOS的,在定位时,定位服务器根据定位测量结果对应的LOS状态信息可以获悉哪个定位测量结果是可靠的,便于更加精确地确定终端设备的位置。
在一种可选的实施方式中,定位测量结果为终端设备通过第一算法对终端设备与接入网设备间的定位参考信号解算确定的;LOS状态信息为终端设备通过第二算法对终端设备与接入网设备间的信道进行解算确定的。
需要说明的是,终端设备可通过第一算法确定终端设备与接入网设备间的定位测量结果。其中,第一算法可以为最大似然估计算法,还也可以为MUSIC算法等,本申请在此不具体限定。其中,最大似然估计算法也即通过将本地生成的定位参考信号与接收到的定位参考信号进行相关运算,大于阈值的所有峰值点对应的时间即为定位参考信号通过不同径的到达时间,第一个峰值点到达时间即为LOS径的TOA。MUSIC算法是一种基于矩阵特征空间分解的方法,将观测到的参考信号的自相关矩阵分解为信号子空间和噪声子空间,并构建空间谱,空间谱的谱峰对应的TOA值即为测量值。
终端设备可通过第二算法对终端设备与接入网设备间的信道进行LOS状态检测。其中,第二算法可以为一致性分析算法,还可以为基于人工智能(artificial intelligence,AI)的算法。其中,一致性分析算法是通过检测不同的天线单元下,终端设备的信号强度波动情况,来确定LOS状态,例如,若终端设备的信号强度波动小,则认为定位测量信息为LOS;若终端设备的信号强度波动大,则认为定位测量信息为NLOS。其中,基于AI的算法也即利用神经网络基于终端与各接入网间的历史信道数据进行神经网络模型的训练,在进行LOS判断时,直接输入估计得到的信道系数或者是接收到的参考信号输入神经网络模型,输出LOS检测结果。
在一种可选的实施方式中,LOS状态信息为多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示一个或多个定位测量结果对应的LOS状态信息通过排序进行指示。将多个定位测量结果按照对应的LOS概率进行排序,能够隐式的指示各个测量量之间的LOS概率大小的相对关系,能够节省额外的LOS状态信息比特(也即节省非隐士指示占用的信息比特数),同时达到指示定位服务器各测量量的权重大小,提升定位 精度的目的。
此外,终端设备在接收到来自多个接入网设备的定位参考信号时,可基于多个定位参考信号确定多个定位测量结果,不同的定位测量结果对应的LOS概率是不同的,终端设备可以与服务接入网设备提前约定仅仅上报LOS概率排序靠前的几个定位测量结果。
在一种可选的实施方式中,其中,LOS状态信息包括:终端设备与各接入网设备间信道的LOS判决结果或LOS概率。
需要说明的是,LOS状态信息仅仅是示意性说明,LOS状态信息可指示终端设备与接入网设备之间信道是LOS还是NLOS,在实际应用中LOS状态信息还可称为LOS结果,LOS状态等,LOS状态信息也可以包含其它名称的LOS信道指示信息,本申请在此并不具体限定。本申请中除了可包括上述提及的LOS判决结果、LOS概率以外还可以包括LOS质量、LOS置信度等,LOS质量或者LOS置信度是基于参考信号对信道进行LOS检测后,确定的信道的一种度量指标,LOS质量或者LOS置信度越高代表LOS概率越大,信道越有可能为LOS的,LOS质量或者LOS置信度越低LOS概率越小,信道越有可能为NLOS信道。另外上述提及的LOS状态信息也不仅仅为终端设备与接入网设备之间信道的LOS情况,还可以是终端设备与接入网设备之间信道的NLOS情况,也即LOS状态信息可以为终端设备与接入网设备间信道的NLOS判决结果或NLOS概率等,本申请在此并不具体限定。
其中,LOS概率是通过LOS检测算法(例如一致性分析算法)对终端设备和接入网设备间的信道进行LOS检测计算得到的,上报LOS概率(可对LOS概率量化后上报)能够指示信道LOS状态信息,有利于提升定位精度。LOS判决结果是通过将LOS概率与某个阈值P LOS进行比较从而对信道进行LOS/NLOS判决得到的,即当LOS概率大于或等于P LOS时判决为LOS信道,如比特位为1指示终端设备与接入网设备之间信道为LOS信道。当LOS概率低于P LOS时判决为NLOS信道,如比特位为0指示终端设备与接入网设备之间信道为NLOS信道。上报LOS判决结果,能够有效降低物理层上报的比特开销,降低系统的负载,同时指示定位服务器当前信道最基本的LOS状态。LOS置信度与LOS概率类似,也是基于参考信号对信道进行LOS检测后,确定的当前LOS信道的一种度量指标,LOS置信度越高,表示信道越有可能为LOS的,LOS置信度越低,表示信道越有可能为NLOS的。LOS质量是基于参考信号对信道进行LOS检测后,确定的当前LOS信道的一种度量指标,质量越高代表LOS概率越大,信道越有可能为LOS信道,质量越低LOS概率越小,信道越有可能为NLOS信道。本申请在此仅做示意性说明并不具体限定LOS状态信息的确定方式。
在一种可选的实施方式中,LOS状态信息包括:终端设备和各接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
需要说明的是,质量参数可以反馈终端设备与接入网设备之间的信道状况,可间接反馈LOS状态,如,信道增益、方差以及标准差,其中信道增益是指接收到的参考信号的功率除以参考信号的发射功率得到的结果。方差是指基于参考信号估计得到的当前信道系数的方差大小。标准差是指信道系数方差的正平方根值。若终端设备与接入网设备间的质量参数为信道增益,若信道增益的值超过信道增益的门限值,则可以确定信道的质量很好,只有在LOS信道状态下,信道增益才能超过门限值,因此可以确定该终端设备与接入网设备间的信道为LOS。本申请在此仅以质量参数为信道增益、方差以及标准差进行示意性描 述,但是在实际应用时,并不限定具体为哪些参数。
在一种可选的实施方式中,终端设备可发送定位配置请求信息至定位服务器;并接收来自定位服务器的定位参考信号配置信息以及LOS检测配置信息;LOS检测配置信息包括以下中的一种或多种:LOS检测算法、LOS检测的接入网设备指示信息、LOS检测的定位参考信号的指示信息。
需要说明的是,定位参考信号的配置信息包括定位参考信号的时域资源配置信息,也即定位参考信号在哪个时域资源发送,以便终端设备可以在对应的时域资源下接收定位参考信号。通过LOS检测配置信息可以指示终端设备到底采用什么算法进行LOS检测,到底检测哪些接入网设备与终端设备之间的信道,以及具体上报哪些信息等。本申请在此仅作示例性描述,并不具体限定LOS检测配置信息中具体包括哪些信息,例如,LOS检测时采用的算法可能包括一致性分析算法、基于神经网络模型的检测算法等,定位服务器可通过LOS检测配置信息指示终端设备采用一致性分析算法进行LOS检测。其中,LOS检测的接入网设备指示信息可通过接入网设备的标识指示,LOS检测的定位参考信号的指示信息可通过参考信号的标识进指示。终端设备具体检测哪些接入网设备的信道,可根据LOS检测配置信息中的接入网设备的标识确定,还可以通过参考信号的标识确定,本申请在此不作具体限定。
在一种可选的实施方式中,终端设备可接收来自服务接入网设备的指示信息;指示信息用于指示终端设备进行定位测量和LOS检测。
需要说明的是,指示信息可能是通过下行控制信息,或媒体接入控制层(media access control,MAC),或无线资源控制(radio resource control,RRC)发送的。
在一种可选的实施方式中,接收来自定位服务器的第一LOS检测触发状态,LOS检测配置信息与LOS检测触发状态存在对应关系;根据第一LOS检测触发状态LOS检测触发状态的状态值以及对应关系,确定第一LOS检测触发状态对应的第一LOS检测配置信息;通过第一LOS检测配置信息对一个或多个接入网设备的定位参考信号进行检测,确定一个或多个定位测量结果分别对应的LOS状态信息。
需要说明的是,LOS检测配置信息可能包括多种,通过LOS检测触发状态可以使得终端设备可以明确知道具体采用哪种LOS检测配置信息对终端设备与接入网设备之间的信道进行检测,还要说明的是,终端设备可按照第一LOS检测配置信息对终端设备与接入网设备之间的信道均进行检测,也可仅仅按照第一LOS检测配置信息检测部分终端设备与接入网设备之间的信道,本申请在此不作具体限定。
在一种可选的实施方式中,终端设备发送终端设备的LOS检测能力信息至定位服务器;LOS检测能力信息包括以下中的一种或多种:终端设备在单频点或多频点是否支持LOS检测、终端设备在单频点或多频点支持LOS检测的最大信道数量、终端设备支持的LOS检测算法以及终端设备支持的LOS检测算法的置信度。
需要说明的是,终端设备可以主动发送LOS检测能力信息给定位服务器,也可以在定位服务器向终端设备发送请求时,向定位服务器发送LOS检测能力信息,具体是哪种情况本申请在此不具体限定。
第二方面,本申请提供一种定位信息上报方法,该方法可通过服务接入网设备来执行,服务接入网设备可接收来自终端设备的定位测量信息;定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的 LOS状态信息;发送定位测量信息至定位服务器。
在一种可选的实施方式中,LOS状态信息包括多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示一个或多个定位测量结果对应的LOS状态信息通过排序进行指示。
在一种可选的实施方式中,LOS状态信息包括:终端设备与各接入网设备间信道的LOS判决结果或LOS概率。
在一种可选的实施方式中,LOS状态信息包括:终端设备和各接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
在一种可选的实施方式中,服务接入网设备可接收来自定位服务器的指示信息;并发送指示信息至终端设备;指示信息用于指示终端设备进行定位测量和LOS检测。
第三方面,本申请实施例提供一种定位信息上报方法,该方法可通过定位服务器来执行,定位服务器接收来自服务接入网设备的定位测量信息,定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息;根据定位测量信息中的LOS状态信息,选择一个或多个定位测量结果确定终端设备的位置信息。
需要说明的是,定位服务器可选择LOS状态信息均为LOS的定位测量结果解算终端设备的位置信息。但是,在实际应用时,由于LOS状态信息的判定可能存在误判的情况,故而在定位服务器可按照LOS概率对不同的测量量加权计算从而解算出终端设备的位置信息以规避这种LOS误判的情况,如,定位测量结果1对应的LOS概率为0.1,定位测量结果2对应的LOS概率为0.9,在解算终端设备的位置时可通过f(测量结果1对应的权重值*0.1+测量结果2对应的权重值*0.9)来确定,其中,f为终端解算函数。
此外,定位服务器也可以按照LOS概率,选取部分测量量进行定位终端的位置解算,如定位测量结果1对应的LOS概率为0.3,定位测量结果2对应的LOS概率为0.9,定位测量结果3对应的LOS概率为0.8,定位测量结果4对应的LOS概率为0.9。定位服务器在解算终端设备的位置时,定位服务器可选取LOS概率大于0.8的测量结果2,测量结果3,测量结果4,通过终端解算函数来解算除终端设备的位置。
在一种可选的实施方式中,定位服务器可接收来自终端设备的定位配置请求信息;发送定位参考信号配置信息以及LOS检测配置信息至终端设备;LOS检测配置信息包括以下中的一种或多种:LOS检测算法、LOS检测的接入网设备指示信息、LOS检测的定位参考信号的指示信息。
在一种可选的实施方式中,定位服务器还可发送第一LOS检测触发状态至终端设备,LOS检测配置信息与LOS检测触发状态存在对应关系,以使终端设备根据第一LOS检测触发状态以及对应关系,确定第一LOS检测触发状态对应的第一LOS检测配置信息;通过第一LOS检测配置信息对一个或多个接入网设备的定位参考信号进行检测,确定一个或多个定位测量结果分别对应的LOS状态信息。
在一种可选的实施方式中,定位服务器接收来自服务接入网设备的定位测量信息;定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息。
在一种可选的实施方式中,LOS状态信息包括多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示一个或多个定位测量结果对应的LOS状态信息通过排 序进行指示。
在一种可选的实施方式中,LOS状态信息包括:终端设备与各接入网设备间信道的LOS判决结果或LOS概率。
在一种可选的实施方式中,LOS状态信息包括:终端设备和各接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
在一种可选的实施方式中,定位服务器接收来自终端设备的LOS检测能力信息;LOS检测能力信息包括以下中的一种或多种:终端设备在单频点或多频点是否支持LOS检测、终端设备在单频点或多频点支持的LOS检测的最大信道数量、终端设备支持的LOS检测算法以及终端设备支持的LOS检测算法的置信度。
第四方面,本申请提供一种终端设备,包括:接收单元,用于接收来自一个或多个接入网设备的定位参考信号;发送单元,用于发送定位测量信息至服务接入网设备;定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息。
在一种可选的实施方式中,LOS状态信息为多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示一个或多个定位测量结果对应的LOS状态信息通过排序进行指示。在一种可选的实施方式中,LOS状态信息包括:终端设备与各接入网设备间信道的LOS判决结果或LOS概率。
在一种可选的实施方式中,LOS状态信息包括:终端设备和各接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
在一种可选的实施方式中,发送单元,还用于发送定位配置请求信息至定位服务器;接收单元,还用于接收来自定位服务器定位参考信号配置信息以及LOS检测配置信息;LOS检测配置信息包括以下中的一种或多种:LOS检测算法、LOS检测的接入网设备指示信息、LOS检测的定位参考信号的指示信息。
在一种可选的实施方式中,接收单元,还用于接收来自定位服务器的第一LOS检测触发状态,LOS检测配置信息与LOS检测触发状态存在对应关系;根据第一LOS检测触发状态以及对应关系,确定第一LOS检测触发状态对应的第一LOS检测配置信息;通过第一LOS检测配置信息对一个或多个接入网设备的定位参考信号进行检测,确定一个或多个定位测量结果分别对应的LOS状态信息。
在一种可选的实施方式中,接收单元,还用于接收来自服务接入网设备的指示信息;指示信息用于指示终端设备进行定位测量和LOS检测。
在一种可选的实施方式中,发送单元,还用于发送终端设备的LOS检测能力信息至定位服务器;LOS检测能力信息包括以下中的一种或多种:终端设备在单频点或多频点是否支持LOS检测、终端设备在单频点或多频点的支持的LOS检测的最大信道数量、终端设备支持的LOS检测算法以及终端设备支持的LOS检测算法的置信度。
第五方面,本申请提供一种服务接入网设备,包括:接收单元,用于接收来自终端设备的定位测量信息;定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息;发送单元,用于发送定位测量信息至定位服务器。
在一种可选的实施方式中,LOS状态信息为多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示一个或多个定位测量结果对应的LOS状态信息通过排 序进行指示。在一种可选的实施方式中,LOS状态信息包括:终端设备与各接入网设备间信道的LOS判决结果或LOS概率。
在一种可选的实施方式中,LOS状态信息包括:终端设备和各接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
在一种可选的实施方式中,接收单元还用于接收来自定位服务器的指示信息;发送单元还用于发送指示信息至终端设备;指示信息用于指示终端设备进行定位测量和LOS检测。
第六方面,本申请提供一定位服务器,包括:接收单元,用于根据第一LOS检测触发状态以及对应关系,确定第一LOS检测触发状态对应的第一LOS检测配置信息;处理单元用于通过第一LOS检测配置信息对一个或多个定位参考信号进行检测,确定一个或多个定位测量结果分别对应的LOS状态信息。
在一种可选的实施方式中,接收单元用于接收来自终端设备的定位配置请求信息;发送单元用于发送定位参考信号配置信息以及LOS检测配置信息至终端设备;LOS检测配置信息包括以下中的一种或多种:LOS检测算法、LOS检测的接入网设备指示信息、LOS检测的定位参考信号的指示信息。
在一种可选的实施方式中,发送单元还用于发送第一LOS检测触发状态至终端设备,LOS检测配置信息与LOS检测触发状态存在对应关系,以使终端设备根据第一LOS检测触发状态以及对应关系,确定第一LOS检测触发状态对应的第一LOS检测配置信息;处理单元,用于通过第一LOS检测配置信息对一个或多个接入网设备的定位参考信号进行检测,确定一个或多个定位测量结果分别对应的LOS状态信息。
在一种可选的实施方式中,接收单元,用于接收来自服务接入网设备的定位测量信息;定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息。
在一种可选的实施方式中,接收单元还用于接收来自服务接入网设备的定位测量信息;定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息。
在一种可选的实施方式中,LOS状态信息包括多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示LOS状态信息。
在一种可选的实施方式中,LOS状态信息包括:终端设备与各接入网设备间信道的LOS判决结果或LOS概率。
在一种可选的实施方式中,LOS状态信息包括:终端设备和各接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
在一种可选的实施方式中,接收单元还用于接收来自终端设备的LOS检测能力信息;LOS检测能力信息包括以下中的一种或多种:终端设备在单频点或多频点是否支持LOS检测、终端设备在单频点或多频点的支持的LOS检测的最大信道数量、终端设备支持的LOS检测算法以及终端设备支持的LOS检测算法的置信度。
第七方面,本申请提供一种通信系统,包括:服务接入网设备以及定位服务器;
服务接入网设备可转发定位测量信息至定位服务器,定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息;定位服务器可根据定位测量信息中的LOS状态信息,选择一个或多个定位测量结果确定终端设备的位置信息。
第八方面,本申请提供一种终端设备,包括至少一个处理器,当该装置运行时,该处理器执行该存储器存储的该计算机程序或指令,以使该终端设备执行如上述第一方面或第一方面的各实施例的方法。该存储器可以位于处理器中,也可以为与处理器通过相互独立的芯片来实现,本申请在此不具体限定。
第九方面,本申请提供一种服务接入网设备,包括至少一个处理器;当该装置运行时,该处理器执行该存储器存储的该计算机程序或指令,以使该服务接入网设备执行如上述第二方面或第二方面的各实施例的方法。该存储器可以位于处理器中,也可以为与处理器通过相互独立的芯片来实现,本申请在此不具体限定。
第十方面,本申请提供一种定位服务器,包括至少一个处理器;该存储器用于存储计算机程序,当该装置运行时,该处理器执行该存储器存储的该计算机程序或指令,以使该定位服务器执行如上述第三方面或第三方面的各实施例的方法。该存储器可以位于处理器中,也可以为与处理器通过相互独立的芯片来实现,本申请在此不具体限定。
第十一方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机可读指令,当计算机可读指令在计算机上运行时,以使得计算机执行如第一方面或第一方面中任一种可能的设计中的方法,或第二方面或第二方面中任一种可能的设计中的方法,或第三方面或第三方面中任一种可能的设计中的方法。
第十二方面,本申请提供一种包含计算机程序或指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各实施例的方法,或第二方面或第二方面中任一种可能的设计中的方法,或第三方面或第三方面中任一种可能的设计中的方法。
第十三方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能的设计中的方法,或第二方面或第二方面中任一种可能的设计中的方法,或第三方面或第三方面中任一种可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,本申请提供了一种通信系统,系统包括终端设备、接入网设备以及定位服务器,通信系统用于执行上述第一方面或第一方面中任一种可能的设计中的方法,或第二方面或第二方面中任一种可能的设计中的方法,或第三方面或第三方面中任一种可能的设计中的方法。
上述第二方面至第十四方面可以达到的技术效果,请参照上述第一方面中相应可能设计方案可以达到的技术效果说明,本申请这里不再重复赘述。
附图说明
图1示出了本申请实施例提供的系统架构示意图;
图2示出了本申请实施例提供的定位场景的示意图;
图3示出了本申请实施例提供的定位信息上报方法的流程示意图;
图4示出了本申请实施例提供的定位信息上报方法的流程示意图;
图5示出了本申请实施例提供的定位信息上报方法的流程示意图;
图6示出了本申请实施例提供的通信装置的结构示意图;
图7示出了本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1示例性地提供一种定位系统架构的示意图,涉及的网元/模块主要包括下一代无线接入网络(next generation radio access network,NG-RAN)、终端和核心网三部分。
其中,核心网包括定位管理功能(location management function,LMF)、移动性管理功能(access and mobility management function,AMF)。定位服务器即LMF连接到AMF,LMF和AMF之间通过NL1接口连接。LMF负责支持有关终端的不同类型的位置服务,包括对终端的定位和向终端传递辅助数据。AMF可以从第5代核心网络位置服务(5th generation core network location services,5GC LCS)实体接收与终端相关的位置服务请求,或者AMF本身也可代表特定终端启动一些位置服务,并将位置服务请求转发给LMF。AMF得到终端返回的位置信息,将位置信息返回给5GC LCS实体。
NG-RAN可以包括gNB、下一代演进型基站(next generation evolved nodeB,ng-eNB)等。gNB、ng-eNB之间通过Xn接口连接,AMF与ng-eNB/gNB通过NG-C接口连接。
终端可以测量来自NG-RAN的下行信号以支持定位。gNB/ng-eNB可以为终端提供定位测量信息,并将此定位测量信息传达给终端。
LMF和终端可能进行的信息交互包括以下几种:1)LMF与ng-eNB/gNB之间通过NR定位协议a(NR positioning protocol a,NRPPa)消息进行信息交互,例如获取定位参考信号(positioning reference signals,PRS)、探测参考信号(sounding reference signal,SRS)配置信息、小区定时、小区位置信息等;2)LMF与终端之间通过长期演进(long term evolution,LTE)定位协议(LTE positioning protocol,LPP)消息进行终端能力信息传递、辅助信息传递、定位测量信息传递等。
需要说明的是,本申请并不限定于图1所示的系统架构,还可以应用于未来其它的通信系统,例如第六代(the 6th generation,6G)通信系统架构等。并且,本申请所涉及网元,在未来通信系统中,可能保持功能相同,但名称会改变。
本申请实施例中所涉及的终端设备,又可以称之为终端,是用户侧的一种用于接收或发射信号的实体,用于向网络设备发送上行信号,或从网络设备接收下行信号。包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、V2X终端设备、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)、可穿戴设备、车载设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智 能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中所涉及的核心网,可以包括对用户的信令和数据进行处理和转发的网络设备。例如,包括AMF、会话管理功能(session management function,SMF)以及用户面网关等核心网设备。其中用户面网关可以是具有对用户面数据进行移动性管理、路由、转发等功能的服务器,一般位于网络侧,如服务网关(serving gateway,SGW)或分组数据网络网关(packet data network gateway,PGW)或用户面网元功能实体(user plane function,UPF)等。AMF以及SMF相当于LTE系统中的移动管理实体(mobility management entity,MME)。AMF主要负责准入方面,SMF主要负责会话管理。当然,核心网中也可以包括其他网元,这里不一一列举。
本申请实施例中所涉及的NG-RAN,可以包括一个或多个接入网设备。NG-RAN中的接入网设备又可以称为基站,或者RAN节点,或者RAN设备。接入网设备是网络侧的一种用于发射和/或接收信号的实体,作为终端与接入网的其余部分之间的路由器,其中接入网的其余部分可以包括网际互连协议(internet protocol,IP)网络等。接入网设备还可以协调对空中接口的属性管理。例如,接入网设备可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),eNB是一种部署在无线接入网中满足4G标准的为终端提供无线通信功能的装置。接入网设备还可以是新无线控制器(new radio controller,NR controller),可以是5G系统中的gNode B(gNB),可以是集中式网元(centralized unit),可以是新无线基站,可以是射频拉远模块,可以是微基站(也称为小站),可以是中继(relay),可以是分布式网元(distributed unit),可以是各种形式的宏基站,可以是TRP、传输测量功能(transmission measurement function,TMF)或传输点(transmission point,TP)或者任何其它无线接入设备,或者下一代通信中的基站,但本申请实施例不限于此。
在应用图1所示的定位架构时,可能存在图2示出的定位场景,该定位场景中包括:多个基站gNB1~gNB6、UE、LMF以及服务基站gNB-s。图中仅作示意性描述,但是在实际应用时,并不具体限定基站的数量。需要说明的是,在实际应用时,UE只有对来自至少3个基站的定位参考信号进行解算才能确定UE的位置。图中的gNB1~gNB6可分别向UE发送定位参考信号PRS1、PRS2、PRS3、PRS4、PRS5以及PRS6,UE可基于定位参考信号,测量不同基站与UE的距离,之后根据已知的基站位置,则可解算出UE的位置。终端设备可将解算的位置信息反馈给gNB-s,并通过gNB-s反馈给LMF。此外,图2中示意的UE与gNB之间存在障碍物,也即UE与gNB之间的路径为NLOS。
需要说明的是,服务基站可以为UE提供通信服务,如:UE可通过服务基站接收来自其他UE的消息,或者UE可通过服务基站转发消息,本申请在此不限定服务基站可以为UE提供哪些通信服务。在实际应用时,服务基站可以为gNB1~gNB6中的一个,也即服务 基站也可向UE发送定位参考信号。亦或者如图2所示,服务基站与gNB1~gNB6相互独立,服务基站并不向UE发送定位参考信号,在此仅接收来自UE的定位测量信息。无论服务基站是上述哪种情况的基站均适用于本申请的方案。
接下来参考图3具体介绍本申请提供的定位流程,定位需要接入网设备、服务接入网设备、终端设备以及定位服务器的交互来实现,图3中以UE示意终端设备,以gNB1、gNB2示意接入网设备,以gNB-s示意服务接入网设备,以LMF示意定位服务器,但是在实际应用时并不限定接入网设备的数量,图3以服务接入网设备也向终端设备发送定位参考信号进行示意,在具体执行时,可执行如下:
301A,gNB1发送定位参考信号1至UE。
301B,gNB2发送定位参考信号2至UE。
301C,gNB-s发送定位参考信号3至UE。
相应地,UE会分别接收来自gNB1、gNB2以及gNB-s的定位参考信号定位参考信号1、定位参考信号2以及定位参考信号3。
302,UE基于定位参考信号1确定定位测量信息1,基于定位参考信号2确定定位测量信息2以及基于定位参考信号3确定定位测量信息3。
其中,一个定位测量结果是终端设备根据一个接入网设备发送的定位参考信号确定的,且该定位测量结果对应一个LOS状态信息,该LOS状态信息可以指示定位测量结果是LOS的还是NLOS的。其中,定位测量结果可通过TOA,和/或,到达角度来指示,当然也可通过其他指标来指示,本申请在此不作具体限定。LOS状态信息可以指示定位测量结果是LOS的还是NLOS的。如:定位测量信息1中包括UE对定位参考信号1测量得到的TOA、到达角度,以及UE对定位参考信号1进行检测得到的LOS状态信息。
需要说明的是,终端设备可通过第一算法确定终端设备与接入网设备间的定位测量结果。其中,第一算法可以为最大似然估计算法,还也可以为MUSIC算法等,本申请在此不具体限定。其中,最大似然估计算法也即通过将本地生成的定位参考信号与接收到的定位参考信号进行相关运算,大于阈值的所有峰值点对应的时间即为定位参考信号通过不同径的到达时间,第一个峰值点到达时间即为LOS径的TOA。MUSIC算法是一种基于矩阵特征空间分解的方法,将观测到的参考信号的自相关矩阵分解为信号子空间和噪声子空间,并构建空间谱,空间谱的谱峰对应的TOA值即为测量值。
终端设备可通过第二算法对终端设备与接入网设备间的信道进行LOS状态检测。其中,第二算法可以为一致性分析算法,还可以为基于AI的算法。其中,一致性分析算法是通过检测不同的天线单元下,终端设备的信号强度波动情况,来确定LOS状态,例如,若终端设备的信号强度波动小,则认为定位测量信息为LOS;若终端设备的信号强度波动大,则认为定位测量信息为NLOS。其中,基于AI的算法也即利用神经网络基于终端与各接入网间的历史信道数据进行神经网络模型的训练,在进行LOS判断时,直接输入估计得到的信道系数或者是接收到的参考信号输入神经网络模型,输出LOS检测结果。
此外还可根据其他方式确定位测量结果和LOS状态信息,在此不一一示意,凡是可以基于定位参考信号,确定定位测量结果和LOS状态信息的方法均适用于本申请。
303,UE发送定位测量信息1、定位测量信息2以及定位测量信息3至gNB-s。
304,gNB-s发送定位测量信息1、定位测量信息2以及定位测量信息3至LMF。
本申请实施例中,终端设备在进行定位时反馈的LOS状态信息可以指示定位测量结果 是LOS的还是NLOS的,在定位时,定位服务器根据定位测量结果对应的LOS状态信息可以获悉哪个定位测量结果是可靠的,便于更加精确地确定终端设备的位置。
在一种可选的方式中,LOS状态信息可通过不同的方式来指示,具体如下:
方式1,LOS状态信息为多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示一个或多个定位测量结果对应的LOS状态信息通过排序进行指示。需要说明的是,终端设备对定位测量结果按照对应的LOS概率进行排序,能够隐式的指示各个测量量之间的LOS概率大小的相对关系,能够节省额外的LOS状态信息比特(也即节省非隐士指示占用的信息比特数),同时达到指示定位服务器各测量量的权重大小,提升定位精度的目的。
此外,终端设备在接收到来自多个接入网设备的定位参考信号时,可基于多个定位参考信号确定多个定位测量结果,不同的定位测量结果对应的LOS概率是不同的,终端设备可以与服务接入网设备提前约定仅仅上报LOS概率排序靠前的几个定位测量结果。
方式2,LOS状态信息包括:终端设备与接入网设备间信道的LOS判决结果或LOS概率;LOS状态信息可通过一个或多个比特位指示。
需要说明的是,LOS状态信息仅仅是示意性说明,LOS状态信息可指示终端设备与接入网设备之间信道是LOS还是NLOS,在实际应用中LOS状态信息还可称为LOS结果,LOS状态等,LOS状态信息也可以包含其它名称的LOS信道指示信息,本申请在此并不具体限定。本申请中除了可包括上述提及的LOS判决结果、LOS概率以外还可以包括LOS质量、LOS置信度等,另外上述提及的LOS状态信息也不仅仅为终端设备与接入网设备之间信道的LOS情况,还可以是终端设备与接入网设备之间信道的NLOS情况,也即LOS状态信息可以为终端设备与接入网设备间信道的NLOS判决结果或NLOS概率等,本申请在此并不具体限定。
其中,LOS概率是通过LOS检测算法(例如一致性分析算法)对终端设备和接入网设备间的信道进行LOS检测计算得到的,上报LOS概率(可对LOS概率量化后上报)能够指示信道LOS状态信息,有利于提升定位精度。LOS判决结果是通过将LOS概率与某个阈值PLOS进行比较从而对信道进行LOS/NLOS判决得到的,即当LOS概率大于或等于PLOS时判决为LOS信道,如比特位为1指示终端设备与接入网设备之间信道为LOS信道。当LOS概率低于PLOS时判决为NLOS信道,如比特位为0指示终端设备与接入网设备之间信道为NLOS信道。上报LOS判决结果,能够有效降低物理层上报的比特开销,降低系统的负载,同时指示定位服务器当前信道最基本的LOS状态。LOS置信度与LOS概率类似,也是基于参考信号对信道进行LOS检测后,确定的当前LOS信道的一种度量指标,LOS置信度越高,表示信道越有可能为LOS的,LOS置信度越低,表示信道越有可能为NLOS的。LOS质量是基于参考信号对信道进行LOS检测后,确定的当前LOS信道的一种度量指标,质量越高代表LOS概率越大,信道越有可能为LOS信道,质量越低LOS概率越小,信道越有可能为NLOS信道。本申请在此仅做示意性说明并不具体限定LOS状态信息的确定方式。
此外,LOS概率,LOS质量,LOS置信度等可通过LOS检测算法对终端与接入网设备间的信道进行LOS检测确定,LOS判决结果可通过将LOS概率,或者LOS质量,LOS置信度等与预设阈值进行大小比较确定的,本申请在此仅做示意性说明并不具体限定LOS 状态信息的确定方式。在实际应用时,服务接入网设备与终端设备可约定选择其中的一种或多种来指示LOS状态信息,如,通过LOS判决结果指示LOS状态信息,或通过LOS判决结果以及LOS概率共同指示LOS状态信息。
还需要说明的是,LOS的状态信息可通过1个比特位来指示,也可以通过多个比特位来指示,在实际应用时,服务接入网设备与UE可约定选择几个比特位来指示LOS状态信息,本申请在此不做具体限定。如表1所示,若LOS状态信息为LOS判决结果,可通过1比特进行指示,如比特位显示为1则指示定位测量结果对应的LOS的状态信息为LOS,比特位显示为0则指示定位测量结果对应的LOS的状态信息为NLOS。如,UE对来自gNB1的PRS1测量确定的定位测量结果为A,对应的比特位取值为0,可知,UE与gNB1间信道为NLOS的。
表1
Figure PCTCN2022085867-appb-000001
上述表1中LOS判决结果是通过一个比特位指示,但是在实际应用时也可通过多个比特位来指示LOS判决结果,本申请在此不作具体限定。
方式3,LOS状态信息包括:终端设备和接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
需要说明的是,质量参数可以反馈终端设备与接入网设备之间的信道状况,可间接反馈LOS状态,如,信道增益、方差以及标准差,其中信道增益是指接收到的参考信号的功率除以参考信号的发射功率得到的结果。方差是指基于参考信号估计得到的当前信道系数的方差大小。标准差是指信道系数方差的正平方根值。若终端设备与接入网设备间的质量参数为信道增益,若信道增益的值超过信道增益的门限值,则可以确定信道的质量很好,只有在LOS信道状态下,信道增益才能超过门限值,因此可以确定该终端设备与接入网设备间的信道为LOS。本申请在此仅以质量参数为信道增益、方差以及标准差进行示意性描述,但是在实际应用时,并不限定具体为哪些参数。
为了更好地说明本申请的方案,接下来通过具体示例分情况来说明本申请终端设备可能如何上报定位测量结果和LOS状态信息。下述提及的上报定位测量结果和LOS状态信息的方式仅作示例性描述,并不具体限定终端设备的上报方法,在实际应用中,可能还涉及其他上报方法或指示LOS状态信息的方式,本申请在此不作具体限定,凡是涉及上报方法和指示LOS状态信息的方式均适用于本申请。
假定在图2的基础上,若UE根据上述提及任一LOS检测算法中的一种或多种分别确定出,UE与gNB1,gNB2,gNB3,gNB4,gNB5,gNB6之间的LOS概率,假定UE计算得到的LOS概率如下;UE-gNB1:0.95;UE-gNB2:0.88;UE-gNB3:0.92;UE-gNB4:0.12;UE-gNB5:0.96;UE-gNB6:0.06。由于物理层首先上报比特量,具体可在该示例的基础上参照如下情况进行上报,具体如下:
情况1:UE上报所有基站的测量结果以及对应的LOS概率。当然情况1在此仅仅是 示例性说明,并不具体限定如何上报所有基站的测量结果以及对应的LOS概率。
UE基于来自6个gNB的定位参考信号确定6个定位测量结果,如表2所示,UE对来自gNB1的PRS1测量确定的定位测量结果为A,LOS概率为0.95;UE对来自gNB2的PRS2测量确定的定位测量结果为B,LOS概率为0.88;UE对来自gNB3的PRS3测量确定的定位测量结果为C,LOS概率为0.92;UE对来自gNB4的PRS4测量确定的定位测量结果为D,LOS概率为0.12;UE对来自gNB5的PRS5测量确定的定位测量结果为E,LOS概率为0.96;UE对来自gNB6的PRS6测量确定的定位测量结果为F,LOS概率为0.06;UE可如表2所示上报所有的定位测量结果以及各测量结果对应的LOS概率。
另外,LOS概率越大表示定位测量结果可靠性越高,定位测量结果受到NLOS的干扰越小,LOS概率越小表示定位测量结果越不可靠,定位测量结果受到NLOS的干扰越大。
表2
接入网设备标识 定位参考信号标识 定位测量结果 LOS概率
gNB1 PRS1 A 0.95
gNB2 PRS2 B 0.88
gNB3 PRS3 C 0.92
gNB 4 PRS4 D 0.12
gNB5 PRS5 E 0.96
gNB6 PRS6 F 0.06
情况2:UE可基于LOS概率进行0,1判决,1代表终端与接入网设备间存在LOS信道,或者,对应测量结果为LOS径的测量结果;0代表终端与基站间无LOS信道,或者,对应的测量结果为NLOS径的测量结果。终端设定判决门限为0.5,即LOS概率大于或等于0.5判决为1,LOS概率小于0.5判决为0。当然情况2在此仅仅是示例性说明,并不具体限定如何判决基站与终端设备之间的LOS信道。
由此可知,UE-gNB1之间的LOS概率为0.95大于0.5判决为1;UE-gNB2之间的LOS概率为0.88大于0.5判决为1;UE-gNB3之间的LOS概率为0.92大于0.5判决为1;UE-gNB4之间的LOS概率为0.12小于0.5判决为0;UE-gNB5之间的LOS概率为0.96大于0.5判决为1;UE-gNB6之间的LOS概率为0.06大于0.5判决为0。基于上述的判决结果,UE可参照表3反馈定位测量结果和LOS状态信息。
表3
接入网设备标识 定位参考信号标识 定位测量结果 LOS指示信息
gNB1 PRS1 A 1
gNB2 PRS2 B 1
gNB3 PRS3 C 1
gNB 4 PRS4 D 0
gNB5 PRS5 E 1
gNB6 PRS6 F 0
亦或者,UE可仅仅上报检测到的LOS的定位测量结果,如表4所示,也即仅上报定位测量结果A、B、C、E。
表4
接入网设备标识 定位参考信号标识 定位测量结果 LOS指示信息
gNB1 PRS1 A 1
gNB2 PRS2 B 1
gNB3 PRS3 C 1
gNB5 PRS5 E 1
情况3:UE可上报LOS概率大于某一阈值的gNB对应的定位测量结果,或者上报LOS概率最大的几个gNB对应的定位测量结果。当然情况3在此仅仅是示例性说明,并不具体限定如何上报LOS概率满足阈值的定位测量结果。
例如上报LOS概率大于0.9的接入网设备的定位测量结果,或者上报LOS概率最大的三个接入网设备的测量结果,和/或,对应的LOS概率(或者对应的判决结果)等。如表5所示,UE上报LOS概率大于0.9的定位测量结果。
表5
接入网设备标识 定位参考信号标识 定位测量结果 LOS概率
gNB1 PRS1 A 0.95
gNB3 PRS3 C 0.92
gNB5 PRS5 E 0.96
UE上报LOS概率大于0.9的定位测量结果时,还可通过上报判决结果为1的定位测量结果,如表6所示。
表6
接入网设备标识 定位参考信号标识 定位测量结果 LOS指示信息
gNB1 PRS1 A 1
gNB3 PRS3 C 1
gNB5 PRS5 E 1
情况4:UE可上报特定gNB的测量结果和LOS概率。当然情况4在此仅仅是示例性说明,并不具体限定如何上报特定基站的测量结果以及对应的LOS概率。
例如,根据LMF指示上报gNB1,gNB2,gNB4,gNB5四个基站的定位测量结果和LOS概率,可如表7所示。
表7
接入网设备标识 定位参考信号标识 定位测量结果 LOS概率
gNB1 PRS1 A 0.95
gNB2 PRS2 B 0.88
gNB 4 PRS4 D 0.12
gNB5 PRS5 E 0.96
在实际应用时,还可通过上报LOS判决结果的形式来指示LOS概率,可如表8所示。
表8
接入网设备标识 定位参考信号标识 定位测量结果 LOS指示信息
gNB1 PRS1 A 1
gNB2 PRS2 B 1
gNB 4 PRS4 D 0
gNB5 PRS5 E 1
情况5:UE基于LOS概率,将定位测量结果按照LOS概率从高到低排序进行上报,LMF根据定位测量结果的顺序,确定各个gNB与UE间的LOS概率的相对关系;或者基于LOS概率,将定位测量结果按照LOS概率从高到低排序,仅上报LOS概率最高的几个gNB的定位测量结果,LMF根据定位测量结果的顺序,确定各个gNB与UE间的LOS概率的相对关系。当然情况5在此仅仅是示例性说明,并不具体限定如何对LOS概率进行排序,以及上报定位测量结果。
如表9所示,UE将定位测量结果按照LOS概率从高到低排序后,依序上报测量结果,LMF可根据定位测量结果的上报顺序确定各个gNB与UE间的LOS概率的排序。
表9
接入网设备标识 定位参考信号标识 定位测量结果
gNB5 PRS5 E
gNB 1 PRS1 A
gNB3 PRS3 C
gNB 2 PRS2 B
gNB 4 PRS4 D
gNB6 PRS6 F
如表10所示,UE基于LOS检测概率,将测量结果按照LOS概率从高到低排序,仅上报LOS概率最高的4个gNB的定位测量结果,LMF根据测量结果的顺序,确定各个基站间的LOS概率的相对关系。
表10
接入网设备标识 定位参考信号标识 定位测量结果
gNB5 PRS5 E
gNB 1 PRS1 A
gNB3 PRS3 C
gNB 2 PRS2 B
在上述情况1~情况5中,UE在根据LOS概率排序上报定位测量结果时,LMF收到定位测量结果后可根据定位测量结果的排序情况对不同的定位测量结果进行加权计算从而解算出UE的位置信息。
需要说明的是,定位服务器可选择LOS状态信息均为LOS的定位测量结果解算终端设备的位置信息。但是,在实际应用时,由于LOS状态信息的判定可能存在误判的情况,故而在定位服务器可按照LOS概率对不同的测量量加权计算从而解算出终端设备的位置信息以规避这种LOS误判的情况,如,定位测量结果1对应的LOS概率为0.1,定位测量结果2对应的LOS概率为0.9,在解算终端设备的位置时可通过f(测量结果1对应的权重 值*0.1+测量结果2对应的权重值*0.9)来确定,其中,f为终端解算函数。
此外,定位服务器也可以按照LOS概率,选取部分测量量进行定位终端的位置解算,如定位测量结果1对应的LOS概率为0.3,定位测量结果2对应的LOS概率为0.9,定位测量结果3对应的LOS概率为0.8,定位测量结果4对应的LOS概率为0.9。定位服务器在解算终端设备的位置时,定位服务器可选取LOS概率大于0.8的测量结果2,测量结果3,测量结果4,通过终端解算函数来解算除终端设备的位置。
当然上述情况1~情况5中的LOS概率也可以为NLOS概率,本申请在此不具体定,UE上报LOS概率时可以通过量化的形式上报,如将0~1量化为16个等级,通过4比特进行指示,如表11所示。其中,1111指示LOS概率的取值范围为15/16-1,0000则指示LOS概率的取值范围为0-1/16。1110指示LOS概率的取值范围为14/16-15/16等,本申请在此不一一示意。例如,UE上报LOS概率为0.95的定位测量结果A时,可上报1111,由于0.95位于15/16-1的范围内。在此仅作举例说明,并不一一示意。
表11
LOS概率 比特位的取值
15/16-1 1111
14/16-15/16 1110
13/16-14/16 1101
2/16-3/16 0010
1/16-2/16 0001
0-1/16 0000
还要说明的是,本申请在执行图3所示的定位信息上报方法之前,终端设备可发送定位配置请求信息至定位服务器;并接收来自定位服务器定位参考信号配置信息以及LOS检测配置信息;LOS检测配置信息包括以下中的一种或多种:LOS检测算法、LOS检测的接入网设备的指示信息、LOS检测的定位参考信号的指示信息。
其中,定位参考信号配置信息可包括定位参考信号的时域资源配置信息,也即定位参考信号在哪个时域资源发送,便于终端设备在对应的时域资源下接收定位参考信号。定位服务器通过LOS检测配置信息可以指示终端设备到底采用什么算法进行LOS检测,到底检测哪些接入网设备与终端设备之间的信道,以及具体上报哪些信息等。例如,LOS检测时采用的算法可能包括一致性分析算法、基于神经网络模型的检测算法等,定位服务器可通过LOS检测配置信息指示终端设备采用一致性分析算法进行LOS检测。定位服务器还可通过LOS检测的接入网设备指示信息或LOS检测的定位参考信号的指示信息来指示终端设备反馈哪些接入网设备的LOS检测结果。
其中,LOS检测的接入网设备指示信息可通过接入网设备标识(identity,ID)的标识,例如,TRP ID1、TRP ID2等。LOS检测的定位参考信号的指示信息可通过参考信号ID标识进行指示,例如,PRS ID1、PRS ID2等。相应的,LPP协议定位信息请求消息NR-DL-TDOA-RequestLocationInformation-r16中添加待LOS检测的TRP索引nr-LOS-Detect-ID,在此仅作示例性描述。
Figure PCTCN2022085867-appb-000002
Figure PCTCN2022085867-appb-000003
在一种可选的方式中,服务接入网设备可接收来自定位服务器的指示信息,该指示信息可用于指示终端设备进行定位测量和LOS检测终端设备。相应的,服务接入网设备会向终端设备转发指示信息。
需要说明的是,指示信息可能是通过下行控制信息,或MAC,或RRC发送的,本申请在此不具体限定。
在一种可选的方式中,终端设备可接收来自定位服务器的第一LOS检测触发状态,LOS检测配置信息与LOS检测触发状态存在对应关系;根据第一LOS检测触发状态以及对应关系,确定第一LOS检测触发状态对应的第一LOS检测配置信息;通过第一LOS检测配置信息对一个或多个接入网设备的定位参考信号进行检测,确定一个或多个定位测量结果分别对应的LOS状态信息。
其中,LOS检测触发状态与LOS检测配置信息存在对应关系可如下表12所示,LOS检测触发状态的状态值为11指示终端设备采用一致性分析算法对终端设备与接入网设备之间的信道进行检测,并上报LOS判决结果;状态值为10指示终端设备采用一致性分析算法对终端设备与接入网设备之间的信道进行检测,并上报LOS概率;状态值为01指示终端设备采用于神经网络模型的检测算法对终端设备与接入网设备之间的信道进行检测,并上报LOS判决结果;状态值为00指示终端设备采用基于神经网络模型的检测算法对终端设备与接入网设备之间的信道进行检测,并上报LOS概率。
表12
状态值 LOS检测算法 LOS上报形式
11 一致性分析算法 LOS判决结果
10 一致性分析算法 LOS概率
01 基于神经网络模型的检测算法 LOS判决结果
00 基于神经网络模型的检测算法 LOS概率
需要说明的是,定位辅助信息包括LOS检测触发状态可以使得终端设备明确知道具体采用哪种LOS检测配置信息对终端设备与接入网设备之间的LOS信道进行检测。
在一种可选的方式中,终端设备在向定位服务器发送定位配置请求信息之前,此时终端设备可在接收到定位服务器发送LOS检测能力信息的请求信息后,反馈的LOS检测能力信息,也可以是终端设备自主反馈LOS检测能力信息,本申请在此不具体限定。
其中,LOS检测能力信息可包括以下中的一种或多种:终端设备在单频点或多频点是否支持LOS检测、终端设备在单频点或多频点的支持的LOS检测的最大信道数量、终端 设备支持的LOS检测算法以及终端设备支持的LOS检测算法的置信度。
需要说明的是,不同的终端设备的设备性能不同,终端设备将LOS检测能力信息反馈给定位服务器后,定位服务器可根据终端设备的检测能力进行LOS检测配置信息的配置。
接下来通过图4示例性地说明本申请中定位信息上报方法的执行流程,图4中示意了UE(终端设备)、gNB(服务接入网设备)以及LMF(定位服务器)之间交互流程,可执行如下:
400,LMF接收对UE的定位请求,该定位请求可以理解为核心网中的网元发送的。
401,LMF通过LPP协议请求UE的LOS检测能力信息。
402,UE通过LPP协议反馈LOS检测能力信息至LMF,该LOS检测能力信息可包括UE在单频点或多频点是否支持LOS检测、UE在单频点或多频点的支持的LOS检测的最大信道数量、UE支持的LOS检测算法以及UE支持的LOS检测算法的置信度等。
403,LMF与gNB之间通过NRPPa协议交互配置信息,例如,定位参考信号PRS的配置信息等。
404,UE向LMF请求定位辅助信息。
405,LMF通过LPP协议反馈定位辅助信息给UE,该定位辅助信息可包括:非周期PRS的配置信息、LOS检测配置信息。
406,LMF通过NRPPa信令指示gNB通过DCI激活UE对非周期PRS的测量。
407,gNB通过DCI指示UE测量非周期PRS。
408,UE基于非周期PRS确定定位测量信息,并将定位测量信息通过物理层上报给gNB。
409,gNB将定位测量信息通过NRPPa信令反馈给LMF。
需要说明的是,定位服务器在获取了定位测量结果后,根据定位测量结果对应的LOS状态信息可以获悉哪个定位测量结果是可靠的,在定位服务器明确知晓那些定位测量结果是可靠的情况下,便于更加精确地确定终端设备的位置。
在图4的基础上,LOS检测配置信息可能包括多种,LMF可以通过与LOS检测配置信息对应的状态值来指示到底终端设备采用哪种LOS检测配置信息来进行LOS检测,如图5所示,可执行体如下:
500,LMF接收对UE的定位请求。
501,LMF通过LPP协议请求UE的LOS检测能力信息。
502,UE通过LPP协议反馈LOS检测能力信息至LMF。
503,LMF与gNB之间通过NRPPa协议交互配置信息。
504,UE向LMF请求定位辅助信息。
505,LMF通过LPP协议反馈定位辅助信息给UE,该定位辅助信息可包括:非周期PRS的配置信息、LOS检测配置信息以及LOS检测触发状态。
506,LMF通过NRPPa信令指示gNB通过DCI激活UE对非周期PRS的测量。
507,gNB通过DCI指示UE测量非周期PRS。
508,UE基于LOS检测触发状态对应的LOS检测配置信息对非周期PRS检测,确定定位测量信息,并将定位测量信息通过物理层上报给gNB。
509,gNB将定位测量信息通过NRPPa信令反馈给LMF。
需要说明的是,LOS检测配置信息可能包括多种,定位辅助信息包括LOS检测触发状态可以使得终端设备可以明确知道具体采用哪种LOS检测配置信息对终端设备与接入网设备之间的LOS信道进行检测。
基于同样的构思,本申请实施例提供一种通信装置,如图6所示包括接收单元601以及发送单元602,其中,该通信装置可以应用于前述的终端设备,也可以是前述的服务接入网设备,也可以是前述的接入网设备,还可以是前述的定位服务器。其中接收单元可用于实现方法实施例中发送功能,接收单元可用以实现方法实施例中的接收功能,方法实施例中其他的功能可通过处理单元来实现。接收单元可通过数据处理芯片中的输出接口来实现,发送单元可通过数据处理芯片的输入接口来实现,方法实施例中的发送与接收分别对应芯片中的输出和输入,此外发送单元和处理单元也可通过同一芯片来实现,本申请在此不作具体限定。此外该通信装置还包括处理单元,处理单元可通过处理器等来实现,本申请在此不作具体限定。
在该通信装置为终端设备时,接收单元601,可用于接收来自一个或多个接入网设备的定位参考信号;发送单元602,可用于发送定位测量信息至服务接入网设备;定位测量信息包括:一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息。还要说明的是,处理单元可基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息。
本申请实施例中,终端设备在进行定位时反馈的LOS状态信息可以指示定位测量结果是LOS的还是NLOS的,在定位时,根据定位测量结果对应的LOS状态信息可以获悉哪个定位测量结果是可靠的,便于更加精确地确定终端设备的位置。
在一种可选的实施方式中,LOS状态信息为多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示一个或多个定位测量结果对应的LOS状态信息通过排序进行指示。需要说明的是,终端设备在接收到来自多个接入网设备的定位参考信号时,可基于多个定位参考信号确定多个定位测量结果,不同的定位测量结果对应的LOS概率是不同的,终端设备可以与服务接入网设备提前约定仅仅上报LOS概率排序靠前的几个定位测量结果。
在一种可选的实施方式中,LOS状态信息包括:终端设备与接入网设备间信道的LOS判决结果或LOS概率。
在一种可选的实施方式中,LOS状态信息包括:终端设备和接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
在一种可选的实施方式中,发送单元602,还用于发送定位配置请求信息至定位服务器;接收单元,还用于接收来自定位服务器定位参考信号配置信息以及LOS检测配置信息;LOS检测配置信息包括以下中的一种或多种:LOS检测算法、LOS检测的接入网设备的指示信息、LOS检测的定位参考信号的指示信息。
需要说明的是,定位参考信号的配置信息包括定位参考信号的时域资源配置信息,也即定位参考信号在哪个时域资源发送,以便终端设备可以在对应的时域资源下接收定位参考信号。通过LOS检测配置信息可以指示终端设备到底采用什么算法进行LOS检测,到底检测哪些接入网设备与终端设备之间的信道,以及具体上报哪些信息等。例如,LOS检测时采用的算法可能包括一致性分析算法、基于神经网络模型的检测算法等,定位服务器 可通过LOS检测配置信息指示终端设备采用一致性分析算法进行LOS检测。LOS检测的接入网设备指示信息可通过接入网设备的标识,LOS检测的定位参考信号的指示信息可通过参考信号的标识进行指示,其中,终端设备具体检测哪些接入网设备的信道,可根据LOS检测配置信息中的接入网设备的标识确定,还可以通过参考信号的标识确定。
在一种可选的实施方式中,接收单元601,还用于接收来自定位服务器的第一LOS检测触发状态,LOS检测配置信息与LOS检测触发状态存在对应关系;通信装置还包括处理单元,处理单元用于根据第一LOS检测触发状态以及对应关系,确定第一LOS检测触发状态对应的第一LOS检测配置信息;通过第一LOS检测配置信息对一个或多个接入网设备的定位参考信号进行检测,确定一个或多个定位测量结果分别对应的LOS状态信息。
需要说明的是,定位辅助信息包括LOS检测触发状态可以使得终端设备可以明确知道具体采用哪种LOS检测配置信息对终端设备与接入网设备之间的LOS信道进行检测。
在一种可选的实施方式中,接收单元601,还用于接收来自服务接入网设备的指示信息;指示信息用于指示终端设备进行定位测量和LOS检测。
在一种可选的实施方式中,发送单元602,还用于发送终端设备的LOS检测能力信息至定位服务器;LOS检测能力信息包括以下中的一种或多种:终端设备在单频点或多频点是否支持LOS检测、终端设备在单频点或多频点的支持LOS检测的最大信道数量、终端设备支持的LOS检测算法以及终端设备支持的LOS检测算法的置信度。
需要说明的是,终端设备可以主动发送LOS检测能力信息给定位服务器,也可以在定位服务器向终端设备发送请求时,向定位服务器发送LOS检测能力信息,具体是哪种情况本申请在此不具体限定。
在该通信装置为服务接入网设备时,接收单元601,用于接收来自终端设备的定位测量信息;定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与一个或多个定位测量结果对应的LOS状态信息;发送单元602,用于发送定位测量信息至定位服务器。
本申请实施例中,终端设备在进行定位时反馈的LOS状态信息可以指示定位测量结果是LOS的还是NLOS的,在定位时,根据定位测量结果对应的LOS状态信息可以获悉哪个定位测量结果是可靠的,便于更加精确地确定终端设备的位置。
在一种可选的实施方式中,LOS状态信息为多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示一个或多个定位测量结果对应的LOS状态信息通过排序进行指示。需要说明的是,终端设备在接收到来自多个接入网设备的定位参考信号时,可基于多个定位参考信号确定多个定位测量结果,不同的定位测量结果对应的LOS概率是不同的,终端设备可以与服务接入网设备提前约定仅仅上报LOS概率排序靠前的几个定位测量结果。
在一种可选的实施方式中,LOS状态信息包括:终端设备与接入网设备间信道的LOS判决结果或LOS概率。
在一种可选的实施方式中,LOS状态信息包括:终端设备和接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
在一种可选的实施方式中,接收单元601还用于接收来自定位服务器的指示信息;发送单元602还用于发送指示信息至终端设备;指示信息用于指示终端设备进行定位测量和LOS检测。
在该通信装置为定位服务器时,接收单元601,用于根据第一LOS检测触发状态以及对应关系,确定第一LOS检测触发状态对应的第一LOS检测配置信息;处理单元用于通过第一LOS检测配置信息对一个或多个接入网设备的定位参考信号进行检测,确定一个或多个定位测量结果分别对应的LOS状态信息。
需要说明的是,定位服务器可选择LOS状态信息均为LOS的定位测量结果解算终端设备的位置信息。但是,在实际应用时,由于LOS状态信息的判定可能存在误判的情况,故而在定位服务器可按照LOS概率对不同的测量量加权计算从而解算出终端设备的位置信息以规避这种LOS误判的情况,如,定位测量结果1对应的LOS概率为0.1,定位测量结果2对应的LOS概率为0.9,在解算终端设备的位置时可通过f(测量结果1对应的权重值*0.1+测量结果2对应的权重值*0.9)来确定,其中,f为终端解算函数。
此外,定位服务器也可以按照LOS概率,选取部分测量量进行定位终端的位置解算,如定位测量结果1对应的LOS概率为0.3,定位测量结果2对应的LOS概率为0.9,定位测量结果3对应的LOS概率为0.8,定位测量结果4对应的LOS概率为0.9。定位服务器在解算终端设备的位置时,定位服务器可选取LOS概率大于0.8的测量结果2,测量结果3,测量结果4,通过终端解算函数来解算除终端设备的位置。
在一种可选的实施方式中,接收单元用601于接收来自终端设备的定位配置请求信息;发送单元602用于发送定位参考信号配置信息以及LOS检测配置信息至终端设备;LOS检测配置信息包括以下中的一种或多种:LOS检测算法、LOS检测的接入网设备指示信息、LOS检测的定位参考信号的指示信息。
需要说明的是,定位参考信号的配置信息包括定位参考信号的时域资源配置信息,也即定位参考信号在哪个时域资源发送,以便终端设备可以在对应的时域资源下接收定位参考信号。通过LOS检测配置信息可以指示终端设备到底采用什么算法进行LOS检测,到底检测哪些接入网设备与终端设备之间的信道,以及具体上报哪些信息等。例如,LOS检测时采用的算法可能包括一致性分析算法、基于神经网络模型的检测算法等,定位服务器可通过LOS检测配置信息指示终端设备采用一致性分析算法进行LOS检测。LOS检测的接入网设备指示信息可通过接入网设备的标识,LOS检测的定位参考信号的指示信息可通过参考信号的标识进行指示,其中,终端设备具体检测哪些接入网设备的信道,可根据LOS检测配置信息中的接入网设备的标识确定,还可以通过参考信号的标识确定。
在一种可选的实施方式中,发送单元602还用于发送第一LOS检测触发状态至终端设备,LOS检测配置信息与LOS检测触发状态存在对应关系,以使终端设备根据第一LOS检测触发状态的状态值以及对应关系,确定第一LOS检测触发状态对应的第一LOS检测配置信息;通过第一LOS检测配置信息对一个或多个接入网设备的定位参考信号进行检测,确定一个或多个定位测量结果分别对应的LOS状态信息。
需要说明的是,LOS检测配置信息可能包括多种,通过LOS检测触发状态可以使得终端设备可以明确知道具体采用哪种LOS检测配置信息对终端设备与接入网设备之间的LOS信道进行检测。
在一种可选的实施方式中,接收单元601还用于接收来自服务接入网设备的定位测量信息;定位测量信息包括:终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与定位测量结果对应的LOS状态信息。
本申请实施例中,终端设备在进行定位时反馈的LOS状态信息可以指示定位测量结果 是LOS的还是NLOS的,在定位时,根据定位测量结果对应的LOS状态信息可以获悉哪个定位测量结果是可靠的,便于更加精确地确定终端设备的位置。
在一种可选的实施方式中,LOS状态信息为多个,将多个定位测量结果按照对应的LOS概率进行排序,通过排序指示一个或多个定位测量结果对应的LOS状态信息通过排序进行指示。需要说明的是,终端设备在接收到来自多个接入网设备的定位参考信号时,可基于多个定位参考信号确定多个定位测量结果,不同的定位测量结果对应的LOS概率是不同的,终端设备可以与服务接入网设备提前约定仅仅上报LOS概率排序靠前的几个定位测量结果。
在一种可选的实施方式中,LOS状态信息包括:终端设备与接入网设备间信道的LOS判决结果或LOS概率。
在一种可选的实施方式中,LOS状态信息包括:终端设备和接入网设备间信道的质量参数;质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
在一种可选的实施方式中,接收单元601还用于接收来自终端设备的LOS检测能力信息;LOS检测能力信息包括以下中的一种或多种:终端设备在单频点或多频点是否支持LOS检测、终端设备在单频点或多频点的支持LOS检测的最大信道数量、终端设备支持的LOS检测算法以及终端设备支持的LOS检测算法的置信度。
需要说明的是,终端设备可以主动发送LOS检测能力信息给定位服务器,也可以在定位服务器向终端设备发送请求时,向定位服务器发送LOS检测能力信息,具体是哪种情况本申请在此不具体限定。
上述实施例中,接收单元和发送单元可以组成收发单元。
此外,本申请提供一种通信系统,包括:服务接入网设备以及定位服务器;服务接入网设备可执行上述服务接入网设备执行的步骤,如转发定位测量信息至定位服务器等。定位服务器可根据定位测量信息中的LOS状态信息,选择一个或多个定位测量结果确定终端设备的位置信息。基于相同的构思,如图7所示,为本申请提供的一种通信装置700。示例性地,通信装置700可以是芯片或芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置700可以包括至少一个处理器710,通信装置700还可以包括至少一个存储器720,用于存储计算机程序、程序指令和/或数据。存储器720和处理器710耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器710可能和存储器720协同操作。处理器710可能执行存储器720中存储的计算机程序。可选的,所述至少一个存储器720可集成于处理器710中。
通信装置700中还可以包括收发器730,通信装置700可以通过收发器730和其它设备进行信息交互。收发器730可以是电路、总线、收发器或者其它任意可以用于进行信互的装置。该收发器730可以包括接收器和发送器。接收器可用于实现方法实施例中接收功能,发送器可用以实现方法实施例中的发送功能,方法实施例中其他的功能可通过处理器来实现。
在一种可能的实施方式中,该通信装置700可以应用于前述的终端设备,也可以是前述的服务接入网设备,还可以是前述的定位服务器。存储器720保存实施上述任一实施例中的网络设备的功能的必要计算机程序、程序指令和/或数据。所述处理器710可执行所述 存储器720存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中不限定上述收发器730、处理器710以及存储器720之间的具体连接介质。本申请实施例在图7中以存储器720、处理器710以及收发器730之间通过总线连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、程序指令和/或数据。
基于以上实施例,本申请实施例还提供一种可读存储介质,该可读存储介质存储有指令,当所述指令被执行时,使上述任一实施例中定位信息上报方法被实施。该可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种定位信息上报方法,应用于终端设备,其特征在于,包括:
    接收来自一个或多个接入网设备的定位参考信号;
    发送定位测量信息至服务接入网设备;所述定位测量信息包括:所述终端设备基于所述定位参考信号确定的一个或多个定位测量结果和分别与所述一个或多个定位测量结果对应的视距LOS状态信息。
  2. 根据权利要求1所述的方法,其特征在于,所述LOS状态信息为多个,所述多个所述定位测量结果按照对应的LOS概率进行排序,所述一个或多个定位测量结果对应的LOS状态信息通过所述排序进行指示。
  3. 根据权利要求1所述的方法,其特征在于,所述LOS状态信息包括:所述终端设备与各所述接入网设备间信道的LOS判决结果或LOS概率。
  4. 根据权利要求1所述的方法,其特征在于,所述LOS状态信息包括:所述终端设备和各所述接入网设备间信道的质量参数;所述质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
  5. 根据权利要求1-4中任一所述的方法,其特征在于,还包括:
    发送定位配置请求信息至定位服务器;
    接收来自所述定位服务器的定位参考信号配置信息以及LOS检测配置信息;所述LOS检测配置信息包括以下中的一种或多种:LOS检测算法、LOS检测的接入网设备的指示信息、LOS检测的定位参考信号的指示信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法,还包括:
    接收来自所述定位服务器的第一LOS检测触发状态,所述LOS检测配置信息与LOS检测触发状态存在对应关系;
    根据所述第一LOS检测触发状态以及所述对应关系,确定所述第一LOS检测触发状态对应的第一LOS检测配置信息;
    通过所述第一LOS检测配置信息对所述一个或多个接入网设备的定位参考信号进行检测,确定所述一个或多个定位测量结果分别对应的LOS状态信息。
  7. 根据权利要求5或6所述的方法,其特征在于,还包括:
    接收来自所述服务接入网设备的指示信息;所述指示信息用于指示所述终端设备进行定位测量和LOS检测。
  8. 根据权利要求1-7中任一所述的方法,其特征在于,还包括:
    发送终端设备的LOS检测能力信息至定位服务器;所述LOS检测能力信息包括以下中的一种或多种:所述终端设备在单频点或多频点是否支持LOS检测、所述终端设备在单频点或多频点支持LOS检测的最大信道数量、所述终端设备支持的LOS检测算法、所述终端设备支持的LOS检测算法的置信度。
  9. 一种定位信息上报方法,应用于服务接入网设备,其特征在于,包括:
    接收来自终端设备的定位测量信息;所述定位测量信息包括:所述终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与所述一个或多个定位测量结果对应的视距LOS状态信息;
    发送所述定位测量信息至定位服务器。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    接收来自所述定位服务器的指示信息;
    发送所述指示信息至所述终端设备;所述指示信息用于指示所述终端设备进行定位测量和LOS检测。
  11. 一种终端设备,其特征在于,包括:
    接收单元,用于接收来自一个或多个接入网设备的定位参考信号;
    发送单元,用于发送定位测量信息至服务接入网设备;所述定位测量信息包括:所述终端设备基于所述定位参考信号确定的一个或多个定位测量结果和分别与所述一个或多个定位测量结果对应的视距LOS状态信息。
  12. 根据权利要求11所述的终端设备,其特征在于,所述LOS状态信息为多个,所述多个所述定位测量结果按照对应的LOS概率进行排序,所述一个或多个定位测量结果对应的LOS状态信息通过所述排序进行指示。
  13. 根据权利要求11所述的终端设备,其特征在于,所述LOS状态信息包括:所述终端设备与所述接入网设备间信道的LOS判决结果或LOS概率。
  14. 根据权利要求11所述的终端设备,其特征在于,所述LOS状态信息包括:所述终端设备和所述接入网设备间信道的质量参数;所述质量参数包括以下中的一种或多种:信道增益、方差以及标准差。
  15. 根据权利要求11-14中任一所述的终端设备,其特征在于,所述发送单元,还用于发送定位配置请求信息至定位服务器;
    所述接收单元,还用于接收来自所述定位服务器的定位参考信号配置信息以及LOS检测配置信息;所述LOS检测配置信息包括以下中的一种或多种:LOS检测算法、LOS检测的接入网设备的指示信息、LOS检测的定位参考信号的指示信息。
  16. 根据权利要求15所述的终端设备,其特征在于,
    所述接收单元,还用于接收来自所述定位服务器的第一LOS检测触发状态,所述LOS检测配置信息与LOS检测触发状态存在对应关系;
    根据所述第一LOS检测触发状态以及所述对应关系,确定所述第一LOS检测触发状态对应的第一LOS检测配置信息;
    通过所述第一LOS检测配置信息对所述一个或多个接入网设备的定位参考信号进行检测,确定所述一个或多个定位测量结果分别对应的LOS状态信息。
  17. 根据权利要求15或16所述的终端设备,其特征在于,所述接收单元,还用于接收来自所述服务接入网设备的指示信息;所述指示信息用于指示所述终端设备进行定位测量和LOS检测。
  18. 根据权利要求11-17中任一所述的终端设备,其特征在于,所述发送单元,还用于发送终端设备的LOS检测能力信息至定位服务器;所述LOS检测能力信息包括以下中的一种或多种:所述终端设备在单频点或多频点是否支持LOS检测、所述终端设备在单频点或多频点支持LOS检测的最大信道数量、所述终端设备支持的LOS检测算法、所述终端设备支持的LOS检测算法的置信度。
  19. 一种服务接入网设备,其特征在于,包括:
    接收单元,用于接收来自终端设备的定位测量信息;所述定位测量信息包括:所述终端设备基于定位参考信号确定的一个或多个定位测量结果和分别与所述一个或多个定位 测量结果对应的视距LOS状态信息;
    发送单元,用于发送所述定位测量信息至定位服务器。
  20. 根据权利要求19所述的服务接入网设备,其特征在于,所述接收单元还用于接收来自所述定位服务器的指示信息;
    所述发送单元还用于发送所述指示信息至所述终端设备;所述指示信息用于指示所述终端设备进行定位测量和LOS检测。
  21. 一种通信设备,其特征在于,包括:至少一个处理器;
    所述处理器,用于执行存储器中存储的计算机程序或指令,以使得所述终端设备执行如权利要求1-8中任一项或如权利要求9-10中任一项所述的方法。
  22. 一种通信系统,其特征在于,包括:如权利要求19或20所述的服务接入网设备以及定位服务器;
    所述定位服务器根据定位测量信息中的LOS状态信息,选择一个或多个定位测量结果确定终端设备的位置信息。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,当所述指令被执行时,以使得计算机执行如权利要求1-8中任一项或如权利要求9-10中任一项所述的方法。
  24. 一种包含计算机程序或指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行上述权利要求1-8中任一项或如权利要求9-10中任一项所述的方法。
PCT/CN2022/085867 2021-04-23 2022-04-08 一种定位信息上报方法、设备及通信系统 WO2022222772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110442444.0 2021-04-23
CN202110442444.0A CN115243312A (zh) 2021-04-23 2021-04-23 一种定位信息上报方法、设备及通信系统

Publications (1)

Publication Number Publication Date
WO2022222772A1 true WO2022222772A1 (zh) 2022-10-27

Family

ID=83666729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085867 WO2022222772A1 (zh) 2021-04-23 2022-04-08 一种定位信息上报方法、设备及通信系统

Country Status (2)

Country Link
CN (1) CN115243312A (zh)
WO (1) WO2022222772A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117998278A (zh) * 2022-11-01 2024-05-07 华为技术有限公司 通信方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392089A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 用于定位的方法和装置
CN111447543A (zh) * 2018-12-27 2020-07-24 华为技术有限公司 定位方法及装置
CN113676832A (zh) * 2020-05-15 2021-11-19 大唐移动通信设备有限公司 一种测量上报方法、测量上报设备及定位服务器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392089A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 用于定位的方法和装置
CN111447543A (zh) * 2018-12-27 2020-07-24 华为技术有限公司 定位方法及装置
CN113676832A (zh) * 2020-05-15 2021-11-19 大唐移动通信设备有限公司 一种测量上报方法、测量上报设备及定位服务器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Views on potential positioning enhancements", 3GPP DRAFT; R1-2008301, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Shanghai, 16 October 2020 (2020-10-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939529 *
SONY: "Considerations on potential positioning enhancements", 3GPP DRAFT; R1-2008365, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051940107 *

Also Published As

Publication number Publication date
CN115243312A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2020119727A1 (zh) 一种测量上报的方法及装置
WO2020042081A1 (en) Method and apparatus for location services
US9220081B2 (en) Access point location discovery in unmanaged networks
WO2022011565A1 (zh) 相对定位的方法、终端、基站、通信设备及存储介质
US9226260B2 (en) Initiator-conditioned fine timing measurement service request
EP3623836A1 (en) Location estimation component, localization module, computer program product and proximity system for enabling proximity services in mobile networks
US20200187151A1 (en) Methods of identifying aerial user equipment in cellular networks
CN110121907B (zh) Rstd测量的条件终止
US20220263557A1 (en) A method of reporting channel state information, a communication system, and a method of scheduling tci
CN111989959B (zh) 一种信息发送、接收方法及装置
US11949621B2 (en) System and method for phase noise-based signal design for positioning in a communication system
WO2020187122A1 (zh) 用户设备定位的装置和方法
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2022222772A1 (zh) 一种定位信息上报方法、设备及通信系统
WO2018053766A1 (zh) 通信方法、终端设备和网络设备
WO2022090315A1 (en) Dual asset tracking based on different radio access technologies
WO2018228554A1 (zh) 用于测量信道状态的方法和装置
WO2022061545A1 (zh) 一种通信方法和装置
WO2022027386A1 (zh) 一种天线选择方法及装置
TWI687067B (zh) 無線通信方法和裝置
WO2016082225A1 (zh) 一种业务分布的获取方法、装置及系统
WO2020154923A1 (zh) 一种drs发送方法及装置
CN115150937B (zh) 一种通信方法和装置
WO2024017301A1 (zh) 通信方法及装置
WO2017070956A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790881

Country of ref document: EP

Kind code of ref document: A1