WO2023151469A1 - 定位方法及装置 - Google Patents

定位方法及装置 Download PDF

Info

Publication number
WO2023151469A1
WO2023151469A1 PCT/CN2023/073638 CN2023073638W WO2023151469A1 WO 2023151469 A1 WO2023151469 A1 WO 2023151469A1 CN 2023073638 W CN2023073638 W CN 2023073638W WO 2023151469 A1 WO2023151469 A1 WO 2023151469A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
frequency
phase
information
distance
Prior art date
Application number
PCT/CN2023/073638
Other languages
English (en)
French (fr)
Inventor
李建锋
高鑫
刘梦婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023151469A1 publication Critical patent/WO2023151469A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • the present application relates to the technical field of communications, and in particular to a positioning method and device.
  • the positioning technology of the mobile communication system is a technology for estimating the position of the terminal equipment based on the distance from the terminal equipment to the base station. Therefore, how to accurately measure the distance from the terminal equipment to the base station is the key to the positioning technology of the mobile communication system.
  • time of arrival time of arrival
  • TDOA time difference of arrival
  • TOA time of arrival
  • TDOA time difference of arrival
  • TOA its ranging principle is to measure the transmission time of the received direct path signal by the base station or terminal equipment and then multiply it by the speed of light to obtain the distance between the base station and the terminal equipment.
  • TDOA time difference of arrival
  • its positioning principle is to obtain the distance difference between multiple base stations and terminal equipment by measuring the time difference between multiple base stations receiving signals from terminal equipment, and then when the distance difference between multiple base stations and terminal equipment is obtained After that, the location of the terminal device can be obtained in combination with the location of the sending end.
  • the ranging accuracy is related to the bandwidth, and generally the larger the bandwidth, the higher the corresponding ranging accuracy.
  • the maximum bandwidth supported by the "FR1 frequency band" in the fifth generation (5G) mobile communication system is 100M, resulting in the positioning error range of using TOA technology or TDOA technology from about one meter to tens of meters or more. Therefore, it is difficult to meet the higher precision requirements proposed by the 3rd generation partnership project (3GPP).
  • the present application provides a positioning method and device, which can improve the ranging accuracy of the measured distance between communication devices, thereby improving the positioning accuracy between communication devices.
  • the present application provides a positioning method applied to a first communication device, including: receiving one or more reference signals sent by a second communication device; sending N pieces of phase information, and the N pieces of phase information are based on the The N pieces of phase information are used to determine the distance between the first communication device and the second communication device, and N is a positive integer.
  • the one or more reference signals are sent by the second communication device on M frequency resources.
  • M the size relationship between M and N is not limited in this embodiment.
  • the second communication device sends one or more reference signals on M frequency resources, if the N pieces of phase information obtained based on the one or more reference signals are equal to the center frequencies of the M frequency resources One-to-one correspondence, M is equal to N.
  • the second communication device may transmit multiple reference signals on multiple carrier components (component carrier, CC), and obtain 1 based on each reference signal phase information (N>1), therefore, in this case, M is smaller than N.
  • component carrier component carrier
  • the N pieces of phase information are used to determine the distance between the first communication device and the second communication device. It should be understood that the determination of the distance between the first communication device and the second communication device described in this application includes obtaining the absolute position coordinates/relative position coordinates of the communication device, obtaining the distance from other communication devices, and obtaining the distance from other communication devices. Pseudorange, get direction/angle with other communication devices etc.
  • sending N phase information in this embodiment refers to the first communication
  • the device sends N pieces of phase information to a network server (for example, a location management function (LMF) server, also called a location server, or a location service management function), and when the ranging method in this embodiment is applied
  • a network server for example, a location management function (LMF) server, also called a location server, or a location service management function
  • sending N pieces of phase information in this embodiment means that the first communication device sends N pieces of phase information to the second communication device.
  • LMF location management function
  • the first communication device after the first communication device receives one or more reference signals sent by the second communication device, it can send N pieces of phase information, where the N pieces of phase information are used to determine the relationship between the first communication device and The distance between the second communication devices.
  • the N is a positive integer greater than or equal to 2.
  • the one or more reference signals are sent by the second communication device on M frequency resources, where M is a positive integer.
  • the N pieces of phase information are N carrier phase values of the one or more reference signals, and the N carrier phase values are related to the one or more
  • the N frequencies of the reference signal are in one-to-one correspondence, and the N frequencies are included in the M frequency resources. That is, any phase information in the N pieces of phase information includes a carrier phase value of a reference signal of a corresponding frequency received by the first communication device, and the N pieces of phase information are related to N in the M frequency resources.
  • the frequencies correspond to each other.
  • the first communication device may first acquire N frequencies in the one or more reference signals, and the N frequencies are included in the M frequency resources; and then determine the N frequencies Carrier phase values corresponding to each of the frequencies; and then determining the N carrier phase values one-to-one corresponding to the N frequencies as the N phase information.
  • the N frequencies may be acquired through the LMF, the second communication device, or local pre-configuration.
  • each phase information of the N phase information is obtained by linear combination of K carrier phase values of the one or more reference signals, and the K
  • the carrier phase value is in one-to-one correspondence with K frequencies of the one or more reference signals, the K frequencies are included in the M frequency resources, and K is a positive integer.
  • the first communication device may first obtain K frequencies in the one or more reference signals, and the K frequencies are included in the M frequency resources; and then determine the K frequencies The carrier phase values corresponding to each frequency in the K frequencies; then based on the K carrier phase values corresponding to the K frequencies, determine the N phase information, any phase information in the N phase information is obtained by a linear combination of the K carrier phase values. It is noted here that this embodiment does not limit how to obtain the K frequencies.
  • the K frequencies may be acquired through the LMF, the second communication device, or local pre-configuration.
  • the method further includes: sending N pieces of frequency information, where the N pieces of frequency information are in one-to-one correspondence with the N pieces of phase information.
  • the N frequencies may be acquired through the LMF, the second communication device, or local pre-configuration.
  • the positioning method is applied to an uplink and downlink positioning scenario in a fifth generation mobile communication system.
  • the first communication device is a terminal device
  • the second communication device is a access network equipment.
  • the first communication device is an access network device
  • the second communication device is an end device.
  • the positioning method is applied to a sidelink positioning scenario.
  • the first communication device is a first terminal device or a roadside unit (roadside unit, RSU), and the The second communication device is a second terminal device.
  • the first communication device is a first terminal device
  • the second communication device is a roadside unit (RSU).
  • RSU roadside unit
  • the method further includes: sending a first linear combination coefficient and/or a frequency set ", where the first linear combination coefficient indicates a first linear relationship, and the frequency set includes the N frequencies, and the N frequencies are in one-to-one correspondence with the N phase information.
  • the network device may send the first linear combination coefficient to the LMF server.
  • the second terminal device may send the first linear combination coefficient to the first terminal device or the RSU.
  • the reference signal includes one or more of the following information: positioning reference signal (positioning reference signal, PRS), sounding reference signal (sounding reference signal, SRS) , positioning sounding reference signal (POS-SRS), tracking reference signal (tracking reference signal, TRS), channel state information reference signal (channel state information reference signal, CSI-RS), demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference signal (phase tracking reference signal, PTRS), sidelink reference signal.
  • positioning reference signal positioning reference signal
  • PRS positioning reference signal
  • sounding reference signal sounding reference signal
  • SRS positioning reference signal
  • POS-SRS positioning sounding reference signal
  • TRS tracking reference signal
  • channel state information reference signal channel state information reference signal
  • CSI-RS channel state information reference signal
  • demodulation reference signal demodulation reference signal
  • phase tracking reference signal phase tracking reference signal
  • PTRS phase tracking reference signal
  • the reference signal may be a positioning reference signal PRS.
  • the reference signal may be a sounding reference signal SRS .
  • the present application provides a positioning method, including: receiving N pieces of phase information from a first communication device, where the N pieces of phase information are obtained based on one or more reference signals sent by a second communication device, the The N pieces of phase information are used to determine the distance between the first communication device and the second communication device, and N is a positive integer; according to the N pieces of phase information, determine the distance between the first communication device and the second communication device Distance between communicating devices.
  • determining the distance between the first communication device and the second communication device according to the N phase information includes: determining the distance between the first communication device and the second communication device according to the first frequency, the first phase, and the first mapping relationship.
  • the distance between the first communication device and the second communication device, the first frequency is a frequency value having a first linear relationship with the N pieces of frequency information, the N pieces of frequency information and the N pieces of phase information
  • the first phase is a phase value having the first linear relationship with the N pieces of phase information
  • the first mapping relationship includes a distance between communication devices, a mapping relationship between phase and frequency.
  • any first frequency can be determined according to the N frequencies corresponding to the N phase information one-to-one, which is conducive to more convenient determination of a high-precision target distance or determination of a higher precision target distance.
  • the first distance is, for example, the network server or the terminal device using the existing
  • a relatively rough distance between the first communication device and the second communication device is acquired by a method (for example, a TOA ranging method or a TDOA ranging method).
  • the The positioning method is more accurate.
  • the determining the distance between the first communication device and the second communication device according to the N pieces of phase information includes: according to the first frequency, the second A phase and a first mapping relationship determine the distance between the first communication device and the second communication device, the first frequency is a frequency value having a first linear relationship with N frequency information, and the N The frequency information is in one-to-one correspondence with the N pieces of phase information, the first phase is a phase value having the first linear relationship with the N pieces of phase information, and the first mapping relationship includes distances between communication devices, Mapping relationship between phase and frequency.
  • the determining the distance between the first communication device and the second communication device according to the first frequency, the first phase, and the first mapping relationship includes: Based on the first distance, the first frequency, the first phase, and the first mapping relationship, determine a first integer ambiguity; based on the first integer ambiguity, the first frequency, the The first phase and the first mapping relationship determine the distance between the first communication device and the second communication device.
  • the first mapping relationship satisfies the following relationship: Among them, ⁇ represents the distance between communication devices, N represents the integer ambiguity, f represents the frequency, denotes the phase, and c denotes the speed of light.
  • the method further includes: receiving a first linear combination coefficient and/or a frequency set, where the first linear combination coefficient indicates the first linear relationship, and the frequency The set includes the N frequencies.
  • the first linear combination coefficient and/or frequency set configured by the network server or the second communication device is received.
  • the first linear combination coefficient is one or more of 0, -1 and 1.
  • the present application provides a positioning method applied to a first communication device, including: receiving one or more reference signals sent by a second communication device; determining the first communication device and the The distance between the second communication devices, the N pieces of phase information are obtained based on the one or more reference signals, and the N pieces of phase information are used to determine the first communication device and the second communication device
  • the distance between N is a positive integer; sending first information, where the first information is used to indicate the distance between the first communication device and the second communication device.
  • the distance between the first communication device and the second communication device described in this application is also referred to as a target distance, which does not limit this application.
  • the one or more reference signals are sent by the second communication device on M frequency resources. More specifically, in this embodiment, M is an integer greater than or equal to 1, for example, M is a positive integer greater than or equal to 2.
  • sending the first information in this embodiment refers to that the first communication device Sending the first information to a network server (such as an LMF server), and when the positioning method in this embodiment is applied to a sidelink positioning scenario, the sending of the first information in this embodiment refers to the first communication device The first information is sent to a second communication device.
  • a network server such as an LMF server
  • any first frequency can be determined according to the N frequencies corresponding to the N phase information one-to-one, which is conducive to more convenient determination of a high-precision target distance or determination of a higher precision target distance.
  • it is also necessary to obtain the first distance where the first distance is obtained by the network server or the terminal device using the existing method ( For example, a relatively rough distance between the first communication device and the second communication device is acquired through TOA ranging method or TDOA ranging method).
  • the positioning method provided in this embodiment Greater precision.
  • the determining the distance between the first communication device and the second communication device according to the N pieces of phase information includes: according to the first frequency, the first phase and the first mapping relationship determine the distance between the first communication device and the second communication device, the first frequency is a frequency value having a first linear relationship with N frequency information, and the N frequency information One-to-one correspondence with the N pieces of phase information, the first phase is a phase value having the first linear relationship with the N pieces of phase information, and the first mapping relationship includes distance, phase and Mapping relationship between frequencies.
  • the determining the distance between the first communication device and the second communication device according to the first frequency, the first phase, and the first mapping relationship includes: Based on the first distance, the first frequency, the first phase, and the first mapping relationship, determine a first integer ambiguity; based on the first integer ambiguity, the first frequency, the The first phase and the first mapping relationship determine the distance between the first communication device and the second communication device.
  • the first mapping relationship satisfies the following relationship: Among them, ⁇ represents the distance between communication devices, N represents the integer ambiguity, f represents the frequency, denotes the phase, and c denotes the speed of light.
  • the method further includes: receiving a first linear combination coefficient and/or a frequency set, where the first linear combination coefficient indicates the first linear relationship, and the frequency The set includes the N frequencies.
  • the first linear combination coefficient and/or frequency set configured by the network server or the second communication device is received.
  • the first linear combination coefficient is one or more of 0, -1 and 1.
  • the first information includes a distance between the first communication device and the second communication device.
  • the first information includes one or more of the following information: the distance between the first communication device and the second communication device and the The difference information of the first distance, the identifier information of the source of the distance between the first communication device and the second communication device, and the accuracy of the distance between the first communication device and the second communication device information.
  • the positioning method is applied to an uplink and downlink positioning scenario in a fifth generation mobile communication system.
  • the first communication device is a terminal device, and the first communication device is a terminal device.
  • the second communication device is an access network device.
  • the first communication device is an access network device
  • the The second communication device is a terminal device.
  • the positioning method is applied to a sidelink positioning scenario.
  • the first communication device is a first terminal device or a roadside unit RSU
  • the second The communication device is a second terminal device.
  • the first communication device is a first terminal device
  • the second communication device is a roadside Unit RSU.
  • the reference signal includes one or more of the following information: positioning reference signal (positioning reference signal, PRS), sounding reference signal (sounding reference signal, SRS) , positioning sounding reference signal (POS-SRS), tracking reference signal (tracking reference signal, TRS), channel state information reference signal (channel state information reference signal, CSI-RS), demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference signal (phase tracking reference signal, PTRS), sidelink reference signal.
  • positioning reference signal positioning reference signal
  • PRS positioning reference signal
  • sounding reference signal sounding reference signal
  • SRS positioning reference signal
  • POS-SRS positioning sounding reference signal
  • TRS tracking reference signal
  • channel state information reference signal channel state information reference signal
  • CSI-RS channel state information reference signal
  • demodulation reference signal demodulation reference signal
  • phase tracking reference signal phase tracking reference signal
  • PTRS phase tracking reference signal
  • the first communication device is a terminal device
  • the second communication device is an access network device
  • the reference signal includes positioning reference signal PRS.
  • the first communication device is an access network device
  • the second communication device is a terminal device
  • the reference signals include sounding reference signals SRS.
  • the present application provides a positioning method applied to a second communication device, including: sending one or more reference signals, where M is a positive integer.
  • the sending one or more reference signals includes:
  • the method further includes: sending a first linear combination coefficient and/or a frequency set, where the first linear combination coefficient indicates a first linear relationship, and in the frequency set N frequencies are included, N is a positive integer, and the first linear relationship indicates a mapping relationship between the N frequencies and the first frequency.
  • the present application provides a positioning device applied to a first communication device, including: a transceiver module, configured to receive one or more reference signals sent by a second communication device; the transceiver module is also configured to send N pieces of phase information, the N pieces of phase information are obtained based on the one or more reference signals, and the N pieces of phase information are used to determine the distance between the first communication device and the second communication device, N is a positive integer.
  • the N is a positive integer greater than or equal to 2.
  • the one or more reference signals are sent by the second communication device on M frequency resources, where M is a positive integer.
  • the N pieces of phase information are N carrier phase values of the one or more reference signals, and the N carrier phase values are related to the one or more
  • the N frequencies of the reference signal are in one-to-one correspondence, and the N frequencies are included in the M frequency resources.
  • each phase information in the N pieces of phase information is obtained by linear combination of K carrier phase values of the one or more reference signals, and the K
  • the carrier phase value is in one-to-one correspondence with K frequencies of the one or more reference signals, the K frequencies are included in the M frequency resources, and K is a positive integer.
  • the positioning method is applied to an uplink and downlink positioning scenario in a fifth generation mobile communication system.
  • the first communication device is a terminal device
  • the second communication device is a access network equipment.
  • the first communication device is an access network device
  • the second communication device is an end device.
  • the positioning method is applied to a sidelink positioning scenario.
  • the first communication device is a first terminal device or a roadside unit (roadside unit, RSU), and the The second communication device is a second terminal device.
  • the first communication device is a first terminal device
  • the second communication device is a roadside unit (RSU).
  • RSU roadside unit
  • the reference signal includes one or more of the following information: positioning reference signal (positioning reference signal, PRS), sounding reference signal (sounding reference signal, SRS) , positioning sounding reference signal (POS-SRS), tracking reference signal (tracking reference signal, TRS), channel state information reference signal (channel state information reference signal, CSI-RS), demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference signal (phase tracking reference signal, PTRS), sidelink reference signal.
  • positioning reference signal positioning reference signal
  • PRS positioning reference signal
  • sounding reference signal sounding reference signal
  • SRS positioning reference signal
  • POS-SRS positioning sounding reference signal
  • TRS tracking reference signal
  • channel state information reference signal channel state information reference signal
  • CSI-RS channel state information reference signal
  • demodulation reference signal demodulation reference signal
  • phase tracking reference signal phase tracking reference signal
  • PTRS phase tracking reference signal
  • the present application provides a positioning device, including: a transceiver module, configured to receive N pieces of phase information from the first communication device, and the N pieces of phase information are based on one or more references sent by the second communication device
  • the N phase information is used to determine the distance between the first communication device and the second communication device, and N is a positive integer;
  • a processing module is configured to determine the distance according to the N phase information The distance between the first communication device and the second communication device.
  • the processing module is specifically configured to: determine the relationship between the first communication device and the second communication device according to the first frequency, the first phase, and the first mapping relationship.
  • the first frequency is a frequency value having a first linear relationship with the N pieces of frequency information
  • the N pieces of frequency information correspond to the N pieces of phase information one by one
  • the first phase is related to the
  • the N pieces of phase information have phase values in the first linear relationship
  • the first mapping relationship includes a mapping relationship between distances between communication devices, phases, and frequencies.
  • the processing module is specifically configured to: determine a first integer based on the first distance, the first frequency, the first phase, and the first mapping relationship. Circumferential ambiguity; based on the first integer ambiguity, the first frequency, the first phase, and the first mapping relationship, determine the relationship between the first communication device and the second communication device distance.
  • the first mapping relationship satisfies the following relationship: Among them, ⁇ represents the distance between communication devices, N represents the integer ambiguity, f represents the frequency, denotes the phase, and c denotes the speed of light.
  • the transceiver module is further configured to: receive a first linear combination coefficient and/or a frequency set, where the first linear combination coefficient indicates the first linear relationship, and the The frequency set includes the N frequencies.
  • the first linear combination coefficient is one or more of 0, -1 and 1.
  • the present application provides a positioning device, which is applied to a first communication device, including: a transceiver module, configured to receive one or more reference signals sent by a second communication device; a processing module, configured to use N phase information determining a distance between the first communication device and the second communication device, the N pieces of phase information are obtained based on the one or more reference signals, and the N pieces of phase information are used to determine the first The distance between a communication device and the second communication device, N is a positive integer; the transceiver module is also used to send first information, and the first information is used to indicate that the first communication device and the The distance between the second communication devices.
  • the processing module is specifically configured to: determine the relationship between the first communication device and the second communication device according to the first frequency, the first phase, and the first mapping relationship.
  • the distance between The first frequency is a frequency value having a first linear relationship with N pieces of frequency information
  • the N pieces of frequency information correspond one-to-one with the N pieces of phase information
  • the first phase is a frequency value corresponding to the N pieces of phase information
  • the first mapping relationship includes a mapping relationship among distances between communication devices, phases, and frequencies.
  • the processing module is specifically configured to: determine a first integer based on the first distance, the first frequency, the first phase, and the first mapping relationship. Circumferential ambiguity; based on the first integer ambiguity, the first frequency, the first phase, and the first mapping relationship, determine the relationship between the first communication device and the second communication device distance.
  • the first mapping relationship satisfies the following relationship: Among them, ⁇ represents the distance between communication devices, N represents the integer ambiguity, f represents the frequency, denotes the phase, and c denotes the speed of light.
  • the transceiver module is further configured to: receive a first linear combination coefficient and/or a frequency set, where the first linear combination coefficient indicates the first linear relationship, and the The frequency set includes the N frequencies.
  • the first linear combination coefficient is one or more of 0, -1 and 1.
  • the first information includes a distance between the first communication device and the second communication device.
  • the first information includes one or more of the following information: the distance between the first communication device and the second communication device and the The difference information of the first distance, the identifier information of the source of the distance between the first communication device and the second communication device, and the accuracy of the distance between the first communication device and the second communication device information.
  • the positioning method is applied to an uplink and downlink positioning scenario in a fifth generation mobile communication system.
  • the first communication device is a terminal device, and the first communication device is a terminal device, and the first communication device is a terminal device.
  • the second communication device is an access network device.
  • the first communication device is an access network device
  • the The second communication device is a terminal device.
  • the positioning method is applied to a sidelink positioning scenario.
  • the first communication device is a first terminal device or a roadside unit RSU
  • the second The communication device is a second terminal device.
  • the first communication device is a first terminal device
  • the second communication device is a roadside Unit RSU.
  • the reference signal includes one of the following information Or multiple: positioning reference signal (positioning reference signal, PRS), sounding reference signal (sounding reference signal, SRS), positioning sounding reference signal (positioning sounding reference signal, POS-SRS), tracking reference signal (tracking reference signal, TRS ), channel state information reference signal (CSI-RS), demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference signal (phase tracking reference signal, PTRS), sidelink reference signal .
  • positioning reference signal positioning reference signal, PRS
  • sounding reference signal sounding reference signal
  • SRS positioning sounding reference signal
  • POS-SRS positioning sounding reference signal
  • tracking reference signal tracking reference signal
  • TRS channel state information reference signal
  • CSI-RS channel state information reference signal
  • demodulation reference signal demodulation reference signal
  • DMRS phase tracking reference signal
  • phase tracking reference signal phase tracking reference signal
  • sidelink reference signal sidelink reference signal
  • the present application provides a positioning device applied to a second communication device, including: a transceiver module, configured to send one or more reference signals, where M is a positive integer.
  • the transceiver module is specifically configured to: transmit the one or more reference signals on M frequency resources, where M is a positive integer.
  • the transceiver module is further configured to: send a first linear combination coefficient and/or a frequency set, the first linear combination coefficient indicates a first linear relationship, and the frequency
  • the set includes N frequencies, N is a positive integer, and the first linear relationship indicates a mapping relationship between the N frequencies and the first frequency.
  • the present application provides a positioning device, which includes one or more processors, one or more processors, for running computer programs or instructions, when one or more processors execute computer instructions or instructions , so that the communication device executes the method described in the first aspect to the fourth aspect or any possible implementation manner thereof.
  • the communication device further includes one or more communication interfaces; the one or more communication interfaces are coupled to one or more processors, and the one or more communication interfaces are used to communicate with other modules outside the communication device communication.
  • the communication interface may also be described as an input and output interface; the input and output interface may include an input interface and an output interface.
  • the communication device further includes one or more memories, the one or more memories are coupled to the one or more processors, and the one or more memories are used to store the above-mentioned computer programs or instructions.
  • the memory is located outside the communication device.
  • the memory is located in the communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the present application provides a computer-readable medium, the computer-readable medium stores program code for computer execution, and the program code includes a program code for implementing the first aspect to the fourth aspect or any possible one of them. Instructions for implementing the methods described in the mode.
  • the present application provides a computer program product, the computer program product includes computer program code, and when the computer program code is run on a computer, the computer implements the first aspect to the fourth aspect Or the method described in any one of the possible implementations.
  • the technical effect brought by any one of the implementation manners from the fifth aspect to the eleventh aspect can refer to the technical effect brought by any possible implementation method of the above-mentioned first aspect, and details are not repeated here.
  • FIG. 1 is a schematic diagram of the architecture of the application scenario provided by the present application.
  • FIG. 2 is a schematic structural diagram of a positioning system provided by an embodiment of the present application.
  • FIG. 3 is a structural schematic diagram of a carrier phase ranging technology provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a positioning method provided by another embodiment of the present application.
  • FIG. 6 is a structural schematic diagram of communication between communication devices based on carriers of multiple frequencies provided by an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of constructing K first frequencies provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • Fig. 9 is a structural schematic diagram of a positioning device provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a positioning device provided by another embodiment of the present application.
  • the transmission of positioning reference signals between user equipment (user equipment, UE), the transmission of positioning assistance data, positioning measurement results and other information are all carried out through the universal user network interface (user to network interface universal, Uu).
  • Uu user to network interface universal
  • Sidelink positioning is a technology that uses Sidelink to send a sidelink positioning reference signal (sidelink positioning reference signal, S-PRS) and perform terminal positioning measurement.
  • S-PRS sidelink positioning reference signal
  • the positioning reference signal is sent between terminal devices through a direct connection communication interface 5 (pose communication 5, PC5) interface, but information such as positioning assistance data and positioning measurement results can be transmitted through the PC5 or Uu interface.
  • the PC port is a direct communication interface without the participation of the base station.
  • UE is responsible for position calculation (in case of assistance data) and can also provide measurement results.
  • the positioning method based on the location management function is also called UE-assisted positioning.
  • the UE only provides measurement and does not perform position calculation.
  • the LMF is responsible for position calculation (in the case of auxiliary data).
  • both Uu positioning and Sidelink positioning can be divided into UE-based positioning and LMF-based positioning according to whether the location calculation unit is UE or LMF.
  • UE-based positioning is also called Sidelink-UE-based positioning Method positioning
  • LMF positioning is also called Sidelink-assisted positioning.
  • the downlink positioning reference signal refers to the signal used in the downlink positioning method and the uplink and downlink joint positioning method.
  • Uplink sounding reference signal (uplink sounding reference signal, UL-SRS), from a broad point of view, SRS includes uplink reference signal for multi-input multi-output (MIMO) and uplink dedicated for positioning positioning reference signal.
  • MIMO multi-input multi-output
  • a positioning reference signal includes a downlink positioning reference signal (also called DL-PRS) and an uplink positioning reference signal (also called UL-SRS).
  • DL-PRS downlink positioning reference signal
  • UL-SRS uplink positioning reference signal
  • the sidelink positioning reference signal refers to the positioning reference signal transmitted on the sidelink and dedicated to the sidelink scenario.
  • Transmission point is also called a transmission node or a sending node, which means a group of transmitting antennas (such as an antenna array (with one or more antenna elements)) that are geographically located at the same location.
  • This concept applies to a cell, Part of a cell or a TP that only supports DL-PRS.
  • the transmission node may include the antenna of the base station (ng-eNB or gNB), remote radio heads (RRH), the remote antenna of the base station, the antenna of the TP that only supports DL-PRS, etc.
  • a cell may include one or more transmission points.
  • Reception point is also called a receiving node, which means a group of receiving antennas (such as antenna arrays (with one or more antenna elements)) that are geographically located at the same location. This concept is applicable to a cell, a cell A part or a RP that only supports UL-SRS.
  • the transmission node may include an antenna of a base station (ng-eNB or gNB), a remote radio module, a remote antenna of a base station, an antenna of an RP that only supports UL-SRS, and the like.
  • a cell may include one or more reception points.
  • a transmission-reception point represents a group of geographically co-located antennas (such as an antenna array (with one or more antenna elements)) supporting TP and/or RP functions.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the wireless communication system applicable to the embodiment of the present application is described in detail by taking the communication system shown in FIG. 1 as an example.
  • the communication system includes a network device 101 , a terminal device 102 communicating with the network device 101 , a terminal device 103 communicating with the terminal device 102 , and a terminal device 104 communicating with the terminal device 103 .
  • the network device 101 may also communicate with the terminal device 103 .
  • the specific forms of the network device 101 and the terminal device are not limited.
  • a terminal device may be a device that provides voice and/or data connectivity to a user.
  • the terminal equipment may also be called user equipment (user equipment, UE), access terminal (access terminal), user unit (user unit), user station (user station), mobile station (mobile station), mobile station (mobile), remote station, remote terminal, mobile equipment, user terminal, wireless telecom equipment, user agent, user equipment or user device.
  • the terminal device can be a wireless local area network (wireless A station (station, STA) in a local area network (WLAN), which can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital Processing (personal digital assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, vehicles, drones, helicopters, aircraft, ships, robots , robotic arms, smart home devices, and terminals in the next-generation communication system (for example, the sixth-generation (6G) communication network) or the terminal in the future evolution of the public land mobile network (public land mobile network, PLMN) network terminal equipment, etc.
  • 5G can also be called new air interface (new radio, NR).
  • a chip deployed in the above-mentioned device, or a chip may also be referred to as a terminal device.
  • the main function of the network device 101 in FIG. 1 is to control the terminal device to access the mobile communication network through wireless.
  • the network device 101 is a part of the mobile communication system, and it implements a wireless access technology.
  • the network device 101 may be, for example, a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), or a next generation base station (next generation NodeB) in a 5G mobile communication system , gNB), the next-generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes some functions of the base station , for example, can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network equipment may be a macro base station, a micro base station or an indoor station, or a relay node or a donor node. It can be understood that all or part of the functions of the radio access network device in this application may also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • Terminal devices and network devices 101 can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airplanes, balloons and artificial satellites in the air.
  • the embodiment of the present application does not limit the application scenarios of the network device 101 and the terminal device.
  • Communication between the network device 101 and the terminal device may be performed through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time; For communication, it is also possible to communicate through a frequency spectrum above 6 GHz, and it is also possible to use a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz for communication at the same time.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the application scenarios of the above-mentioned terminals such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • terminal devices shown in FIG. 1 may all be within the coverage of the network device 101; or, some terminal devices may be within the coverage of the network device 101, and some of the terminal devices may not be within the coverage of the network device 101; or , are not within the coverage of the network device 101.
  • This embodiment of the present application does not limit it.
  • the network device 101 is divided between the terminal device 102 and the terminal device 103 Each has a first communication interface, and there is a second interface between the terminal device 102 and the terminal device 103 .
  • the first interface may be a Uu interface
  • the second interface may be a PC5 interface
  • the first communication scenario includes communication between a terminal device and a network device, for example, communication between the terminal device 102 and the network device 101 . More specifically, the communication between the terminal device 102 and the network device 101 is referred to as uplink and downlink communication.
  • the terminal device 102 may provide an uplink to send information to the network device 101, and the network device 101 may send information to the terminal device 102 through a downlink.
  • the second communication scenario includes communication between terminal devices, such as communication between terminal device 102 and terminal device 103 . More specifically, the communication link between the terminal device 102 and the terminal device 103 is called a sidelink, and the terminal device 102 and the terminal device 103 can transmit data on the sidelink.
  • the embodiment of the present application does not limit specific communication scenarios between terminal devices.
  • the terminal device and the terminal device may communicate with each other between vehicle-mounted devices.
  • the numbers of network devices and terminal devices shown in FIG. 1 are only an example. In an actual process, the number of network device terminal devices may also be other numbers.
  • the communication system may also include other network elements (for example, core network equipment). Access network equipment may be connected to the core network equipment.
  • the core network device may be a network element in a 4G core network (for example, evolved packet core (EPC) or a 5G core network (5G Core, 5GC).
  • EPC evolved packet core
  • 5G Core 5G Core
  • the positioning method provided in this application can be used in any communication system, for example, the communication system can be a new air interface (new radio, NR) communication system, NR vehicle-to-everything (V2X) system and other Next-generation communication systems, etc., are not limited.
  • the communication system can be a new air interface (new radio, NR) communication system, NR vehicle-to-everything (V2X) system and other Next-generation communication systems, etc., are not limited.
  • the positioning method provided by the present application can be applied to various scenarios, for example, it can be applied to one or more of the following communication scenarios: enhanced mobile broadband (eMBB), high reliability and low delay (ultra-reliable and low latency communications, URLLC), massive machine type of communication (mMTC)/Internet of Things (internet of things, IOT), device to device (device to device, D2D), vehicle to vehicle (vehicle to vehicle, V2V) and so on.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications
  • mMTC massive machine type of communication
  • IOT Internet of Things
  • device to device device to device
  • D2D vehicle to vehicle
  • V2V vehicle to vehicle
  • FIG. 2 is a schematic diagram of a positioning architecture provided by an embodiment of the present application.
  • the network architecture is a (5th generation, 5G) positioned architecture.
  • the architecture 200 may include a user equipment (user equipment, UE) 201, an access network (access network, AN) 202, an access and mobility management function (access and mobility management function, AMF) network A network element 203 and a location management function (location management function, LMF) network element 204.
  • UE user equipment
  • AMF access and mobility management function
  • LMF location management function
  • the AMF network element 203 is responsible for user access management, and controls the user's service access. Specifically, in the positioning architecture, the AMF network element can be used to initiate a positioning request, or control the base station to perform positioning, and the like.
  • the LMF network element 204 is responsible for location management. For example, receiving positioning requests from other network elements, collecting user positioning data, and obtaining the position of UE 201 through positioning calculation. The LMF network element 204 may also calculate or verify the final position and any velocity estimates, and may estimate the accuracy achieved. For example, the LMF network element 204 uses "Nlmf" The interface receives the location request of the target UE from the serving AMF. The LMF network element 204 can also manage and configure the base station or the location management unit, and realize the configuration of the location reference signal.
  • the LMF network element 204 may include an enhanced serving mobile location center (enhanced serving mobile location centre, E-SMLC) and a secure user plane location (secure user plane location, SUPL) location platform (SUPL location platform, SLP), where , SLP is used for user plane positioning, and E-SMLC is used for control plane positioning.
  • E-SMLC enhanced serving mobile location centre
  • SUPL secure user plane location
  • SUPL secure user plane location platform
  • UE 201 can be connected with AMF network element 203 through AN 202, and AMF network element 203 is connected with LMF network element 204.
  • the interfaces and connections in the architecture 200 may include: “LTE-Uu”, “NR-Uu”, “NG-C” and "NL1".
  • “NG-C” is the control plane connection between AN 202 and AMF network element 203
  • “LTE-Uu” is the protocol interface between ng-eNB2021 and UE201
  • NR-Uu is UE 201 and gNB 2022
  • the protocol interface between, "NL1” is the protocol interface between the LMF network element 204 and the AMF network element 203.
  • time of arrival time of arrival
  • TDOA time difference of arrival
  • TOA its positioning principle is to measure the transmission time of the received direct path carrier signal by the base station or terminal equipment and then multiply it by the speed of light to obtain the distance between the base station and the terminal equipment, and then when the distance is obtained, the terminal equipment can be obtained by combining the position of the transmitter Location.
  • TDOA its positioning principle is to obtain the distance difference between multiple base stations and terminal equipment by measuring the time difference between multiple base stations receiving the carrier signal of terminal equipment, and then when the distance difference between multiple base stations and terminal equipment is obtained After that, the location of the terminal device can be obtained in combination with the location of the sending end.
  • the trajectory of the UE to be positioned is a curve with the arbitrary two base stations as the focus and the distance difference as the fixed difference.
  • the positioned user equipment can obtain at least two curves by measuring and calculating at least three base stations, and the position of the positioned UE is the intersection point of the at least two curves.
  • the LMF network element requests multiple base stations near the UE to send auxiliary information for TDOA positioning, and multiple base stations send their respective positioning auxiliary information to the LMF network element after receiving the request.
  • the LMF network element then sends the received positioning assistance information to the positioned UE, the LMF network element initiates a positioning information measurement request to the positioned UE, and the positioned UE measures the time difference of arrival of multiple base station signals to complete the measurement and sends the measurement information to the LMF network element , and finally the LMF network element calculates the position of the positioned UE based on the measurement information reported by the positioned UE.
  • the ranging accuracy is related to the bandwidth, and generally the larger the bandwidth, the higher the corresponding ranging accuracy.
  • the maximum bandwidth supported by the "FR1 frequency band" in the fifth generation (5th generation, 5G) mobile communication system is 100M, resulting in the ranging error range of using TOA technology or TDOA technology from about one meter to tens of meters or larger. Therefore, it is difficult to meet the higher precision requirements proposed in TS 22.261 of the 3rd generation partnership project (3GPP). Therefore, how to improve the ranging accuracy has become an urgent technical problem to be solved.
  • the carrier phase ranging technology is one of the main technologies for high-precision positioning at present. It realizes the measurement of distance with integer ambiguity by measuring the carrier phase change of the reference signal from the sending end to the receiving end. Taking a radio frequency signal with a frequency of 3 GHz as an example, the corresponding carrier wavelength is 0.1 meters. Therefore, when the carrier phase integer ambiguity can be solved correctly, theoretically, the accuracy of carrier phase ranging can reach centimeter to millimeter level, thus obtaining high-precision ranging results.
  • FIG. 3 the principle of the carrier phase ranging technology may be shown in FIG. 3 .
  • the figure shows the distance between the communication device 301 and the communication device 302; ⁇ is the measured value of the carrier phase; N represents the ambiguity of the whole cycle, which is an integer and represents the N carriers for a full week.
  • f is the carrier frequency and c is the speed of light, then f, c, d and satisfy the following formula:
  • an embodiment of the present application provides a ranging method between communication devices.
  • the ranging method provided by the present application, after obtaining the first distance between communication devices (for example, the distance obtained by TDOA or the distance obtained by TOA or the distance obtained by a cell identifier (identifier, ID), it is also called rough distance in this application. distance), first determine the integer ambiguity based on the first distance and carrier phase ranging technology, and then further determine the communication distance based on the mapping relationship between the determined integer ambiguity, carrier frequency and carrier phase The distance between the devices, thereby improving the ranging accuracy of the measured distance between the communication devices.
  • Fig. 4 is a schematic flowchart of a positioning method provided by an embodiment of the present application. As shown in FIG. 4, the method includes step S401, step S402 and step S403.
  • this embodiment takes the communication between the first communication device and the second communication device as uplink and downlink communication as an example, that is, the ranging method provided by the implementation of this application can be applied to the fifth generation mobile communication system In the uplink and downlink positioning scenario, and among the first communication device and the second communication device, one communication device is a network device, and the other communication device is a terminal device.
  • the second communication device sends one or more reference signals; correspondingly, the first communication device receives the one or more reference signals sent by the second communication device.
  • the first communication device may also be called a receiving device, and the second communication device may also be called a sending device.
  • the second communications device may send one or more reference signals to the first communications device on the M frequency resources.
  • the first communications device receives the one or more reference signals on the M frequency resources.
  • the frequency resource in this implementation refers to a continuous spectrum resource in the frequency domain, which can be a subcarrier, resource block (resource block, RB), bandwidth part (bandwidth part, BWP), carrier component (component carrier, One or more of CC), frequency band or frequency band (band, such as frequency band/frequency band n41 (2515-2675MHz)), frequency layer (frequency layer), frequency point (frequency point), frequency range (frequency range, FR) .
  • the second communication device may first select M frequency resources, and then send reference signals on the selected M frequency resources.
  • the reference signal includes one or more of the following information: positioning reference signal (positioning reference signal, PRS), sounding reference signal (sounding reference signal, SRS), positioning sounding reference signal (positioning sounding reference signal, POS -SRS), tracking reference signal (tracking reference signal, TRS), channel state information reference signal (channel state information reference signal, CSI-RS) reference signal, demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference Signal (phase tracking reference signal, PTRS), sidelink reference signal.
  • positioning reference signal positioning reference signal, PRS
  • sounding reference signal sounding reference signal
  • SRS positioning sounding reference signal
  • positioning sounding reference signal positioning sounding reference signal
  • POS -SRS positioning sounding reference signal
  • tracking reference signal tracking reference signal
  • TRS tracking reference signal
  • channel state information reference signal channel state information reference signal
  • CSI-RS channel state information reference signal
  • demodulation reference signal demodulation reference signal
  • phase tracking reference Signal phase tracking reference signal
  • PTRS phase tracking reference signal
  • the first communication device in this embodiment may be a terminal device, and the second communication device may be an access network device . That is, the access network device first determines M frequency resources, and then sends reference signals to the terminal device on the M frequency resources.
  • the reference signal may be a PRS.
  • the first communication device in this embodiment may also be an access network device, and the second communication device may be Terminal Equipment. That is, the terminal device first determines M frequency resources, and then sends reference signals to the access network device on the M frequency resources.
  • the reference signal may be SRS.
  • PRS and SRS are only examples, and other reference signals may also be used, which is not limited in this embodiment of the present application.
  • the first communication device sends N pieces of phase information to the network server, where the N pieces of phase information are obtained based on the one or more reference signals, and the N pieces of phase information are used to determine the relationship between the first communication device and
  • the distance between the second communication devices, N is a positive integer; correspondingly, the network server receives N pieces of phase information.
  • the communication device when the communication device receives a certain electromagnetic wave signal, it can obtain the phase value of the electromagnetic wave signal. Therefore, in this embodiment, after the first communication device receives one or more reference signals sent by the second communication device on M frequency resources, it can measure the phase information corresponding to the one or more reference signals respectively .
  • the N pieces of phase information are N carrier phase values of the one or more reference signals, and the N carrier phase values are in one-to-one correspondence with N frequencies of the one or more reference signals , the N frequencies are included in the M frequency resources. That is, any phase information in the N pieces of phase information includes a carrier phase value of a reference signal of a corresponding frequency received by the first communication device, and the N pieces of phase information are related to N in the M frequency resources.
  • the frequencies correspond to each other.
  • the first communication device may first acquire N frequencies in the one or more reference signals, and the N frequencies are included in the M frequency resources; and then determine the N frequencies Carrier phase values corresponding to each of the frequencies; and then determining the N carrier phase values one-to-one corresponding to the N frequencies as the N phase information.
  • each phase information in the N phase information is obtained by linear combination of K carrier phase values of the one or more reference signals, and the K carrier phase values and the one or The K frequencies of the plurality of reference signals are in one-to-one correspondence, the K frequencies are included in the M frequency resources, and K is a positive integer.
  • the first communication device may first obtain K frequencies in the one or more reference signals, and the K frequencies are included in the M frequency resources; and then determine the K frequencies The carrier phase value corresponding to each frequency in the frequency; then based on the K carrier phase values corresponding to the K frequencies, the N phase information is determined, and any phase information in the N phase information is determined by the K A linear combination of carrier phase values is obtained.
  • the second device when the second device sends one or more reference signals on M frequency resources, if the N phase information obtained based on the one or more reference signals and the M frequency resources The center frequencies are in one-to-one correspondence, so M is equal to N.
  • the first device may send multiple reference signals on multiple CCs, and obtain one phase based on each reference signal information (N>1), therefore, M is less than N in this case.
  • the frequency mentioned above may refer to an absolute frequency, or may refer to one or more of a subcarrier frequency, a carrier frequency, a resource element (resource element, RE) frequency, a center frequency, and a frequency point (frequency point). item, which is not limited in this embodiment of the present application.
  • the first communication device after obtaining N pieces of phase information, the first communication device will send the N pieces of phase information to a network server (for example, an LMF server), and correspondingly, the network server receives the N pieces of phase information.
  • a network server for example, an LMF server
  • the second communication device uses 4 carrier frequencies to send reference signals to the first communication device, at this time, the first communication device will measure 4 phase values, and then send the 4 phase values to the network server.
  • this embodiment does not limit the specific manner of sending the N pieces of phase information.
  • the N pieces of phase information may be sent directly, or indication information may be sent, where the indication information is used to indicate the N pieces of phase information.
  • the network server determines the distance between the first communication device and the second communication device according to the N pieces of phase information.
  • the distance between the first communication device and the second communication device may also be referred to as a target distance, which does not constitute a limitation to this embodiment of the present application.
  • the network server can determine the target distance based on the N pieces of phase information.
  • the network server determines the target distance according to the N phase information, including: determining the target distance according to the first frequency, the first phase, and the first mapping relationship, and the first frequency includes frequency, the N frequencies correspond to the N phase information one-to-one, the first phase includes phase information determined by the N phase information, and the first mapping relationship includes the distance and phase between communication devices The mapping relationship between and frequency.
  • the network server needs to determine the first frequency based on the N frequencies corresponding to the N phase information one-to-one.
  • the first frequency includes frequency values having a first linear relationship with the N frequencies.
  • the second communication device sends reference signals to the first communication device on 4 frequencies, and assuming that the 4 frequencies are f1, f2, f3, f4 respectively, then f1, f2, f3, f4 can be The corresponding values are linearly combined through the linear combination coefficients to obtain the first frequency.
  • the linear combination coefficient also referred to as the first linear combination coefficient in this application
  • the network device is configured, which is not limited in this embodiment of the application.
  • the network server also determines the first phase based on the N pieces of phase information.
  • the first phase is a corresponding phase when the first communication device communicates with the second communication device through a signal of the first frequency.
  • the new phase value corresponding to the new frequency will be equal to the same pair of linear combination coefficients corresponding to N frequencies
  • the value obtained by performing the same linear combination calculation on the N phase values of For the detailed derivation process of this part, reference may be made to the description in related technologies, which will not be repeated here. Therefore, in this embodiment, when N is greater than or equal to 2
  • the first phase includes phase values having the first linear relationship with the N pieces of phase information.
  • the target distance can be determined.
  • the network server may determine the first integer ambiguity according to the first frequency, the first phase, and the first mapping relationship in combination with the first distance. Then, based on the first integer ambiguity, the first frequency, the first phase, and the first mapping relationship, the distance between the first communication device and the second communication device is determined.
  • the TOA ranging method, the TDOA ranging method, or other ranging methods are usually used to measure the distance between the first communication device and the second communication device. the distance between.
  • the first distance may be obtained based on TOA, that is, the distance between the base station and the terminal device is obtained by multiplying the transmission time of the received direct path carrier signal by the base station or the terminal device and multiplying it by the speed of light.
  • the first distance can be obtained based on TDOA technology, that is, the distance difference between multiple base stations and the terminal device is obtained by measuring the time difference between multiple base stations receiving the carrier signal of the terminal device, and then when the multiple base stations and the terminal device are obtained After the distance difference between the devices, the location of the terminal device can be obtained in combination with the location of the base station.
  • TDOA technology that is, the distance difference between multiple base stations and the terminal device is obtained by measuring the time difference between multiple base stations receiving the carrier signal of the terminal device, and then when the multiple base stations and the terminal device are obtained After the distance difference between the devices, the location of the terminal device can be obtained in combination with the location of the base station.
  • the existing distance measuring method will be used to measure The obtained distance is called the first distance, which is used to indicate a relatively rough distance between the first communication device and the second communication device.
  • the first mapping relationship satisfies the following relationship: Among them, ⁇ represents the distance between communication devices, N represents the integer ambiguity, f represents the frequency, denotes the phase, and c denotes the speed of light.
  • the first communication device after the first communication device receives one or more reference signals sent by the second communication device, it can send N pieces of phase information, where the N pieces of phase information are used to determine the relationship between the first communication device and The distance between the second communication devices.
  • the network server may determine the distance between the first communication device and the second communication device based on the N pieces of phase information.
  • the first distance is adjusted in combination with N phase information. Therefore, the positioning method provided by this embodiment Greater precision.
  • the first linear combination coefficient and/or frequency set configured by the network server or the second communication device may be obtained first, wherein the The first linear combination coefficient is used to indicate the first linear relationship, and the frequency set includes the aforementioned N pieces of frequency information.
  • the first linear combination coefficient is one or more of 0, -1 and 1.
  • the communication between the first communication device and the second communication device is an uplink and downlink communication as an example for introduction.
  • the above-mentioned ranging method can also be applied to the communication field of the sidelink scene.
  • one communication device is a first terminal device or an RSU, and the other communication device is a second terminal device.
  • the principle of the ranging method between the first communication device and the second communication device is the same as the ranging method in the above-mentioned embodiment shown in FIG.
  • the difference is that the first communication device After determining the N pieces of phase information, the N pieces of information are sent to the second communication device, and then the second communication device continues to perform the process of determining the distance between the first communication device and the second communication device according to the N pieces of phase information step.
  • the step of determining the target distance may also be directly performed by the first communication device.
  • the "steps" in this embodiment are only used as an illustration, for better understanding of an expression method adopted by the embodiment, and do not constitute a substantial limitation on the implementation of the solution of this application, for example :
  • This "step” can also be understood as a "feature”.
  • this step does not constitute any limitation on the execution order of the solution of this application, and all the “steps" appearing in this application are applicable to this agreement, which will be described in a unified manner here, and will not be repeated when it appears again.
  • FIG. 5 is a schematic flowchart of a ranging method between communication devices provided by an embodiment of the present application. As shown in Fig. 5, the method includes step S501, step S502 and step S503.
  • the second communication device sends one or more reference signals; correspondingly, the first communication device receives the one or more reference signals sent by the second communication device.
  • the first communication device may also be called a receiving device, and the second communication device may also be called a sending device.
  • the second communications device sends one or more reference signals.
  • the first communications device receives the one or more reference signals.
  • the second communications device may send one or more reference signals to the first communications device on the M frequency resources.
  • reference may be made to the description in S401 in the embodiment shown in FIG. 4 , which will not be repeated here.
  • the second communication device may first select M frequency resources, and then send reference signals on the selected M frequency resources.
  • the reference signal includes one or more of the following information: PRS, SRS, POS-SRS, TRS, CSI-RS, demodulation reference signal DM-RS, PT-RS, sidelink reference signal.
  • the first communication device in this embodiment may be a terminal device, and the second communication device may be an access network device . That is, the access network device first determines M frequency resources, and then sends reference signals to the terminal device on the M frequency resources.
  • the reference signal may be a PRS.
  • the first communication device in this embodiment may also be an access network device, and the second communication device may be Terminal Equipment. That is, the terminal device first determines M frequency resources, and then sends reference signals to the access network device on the M frequency resources.
  • the reference signal may be SRS.
  • PRS and SRS are only examples, and other reference signals may also be used, which is not limited in this embodiment of the present application.
  • the The first communication device is a first terminal device or RSU
  • the second communication device is a second terminal device.
  • the first communication device determines the distance between the first communication device and the second communication device according to N pieces of phase information, where the N pieces of phase information are obtained based on the one or more reference signals, so The N pieces of phase information are used to determine the distance between the first communication device and the second communication device, and N is a positive integer.
  • the communication device when the communication device receives a certain electromagnetic wave signal, it can obtain the phase value of the electromagnetic wave signal. Therefore, in this embodiment, after receiving one or more reference signals sent by the second communication device, the first communication device may measure phase information respectively corresponding to the one or more reference signals.
  • the first communication device may measure phase information respectively corresponding to the one or more reference signals. It is noted here that, for the relationship between M and N, reference may be made to the description in S402 in the embodiment shown in FIG. 4 of the present application, and details will not be repeated for storage.
  • the first communication device can determine the distance between the first communication device and the second communication device according to the N pieces of phase information. It is noted here that determining the distance between the first communication device and the second communication device in this embodiment is also referred to as determining the target distance.
  • the first communication device determines the target distance according to the N phase information, including: determining the target distance according to the first frequency, the first phase, and the first mapping relationship, the first frequency including the N frequency
  • the determined frequency, the N frequencies correspond to the N phase information one by one
  • the first phase includes the phase information determined by the N phase information
  • the first mapping relationship includes the distance between communication devices , the mapping relationship between phase and frequency.
  • the first communication device needs to determine the first frequency based on the N frequencies corresponding to the N phase information one-to-one.
  • the first frequency includes frequency values having a first linear relationship with the N frequencies.
  • the second communication device sends reference signals to the first communication device on three frequencies, and assuming that the three frequencies are f1, f2, and f3 respectively, then the values corresponding to f1, f2, and f3 can be passed to
  • the linear combination coefficients are linearly combined to obtain the first frequency.
  • the linear combination coefficient also referred to as the first linear combination coefficient in this application
  • used when performing linear combination on the N frequencies may be provided by the LMF server, or may also be provided by the access
  • the network device is configured, which is not limited in this embodiment of the application.
  • the first communication device further determines the first phase based on the N phase values.
  • the first phase is a corresponding phase when the first communication device communicates with the second communication device through a signal of the first frequency.
  • the target distance can be determined.
  • the first communication device may first determine the first integer ambiguity based on the first frequency, the first phase, and the first mapping relationship, and then combine the first distance; wherein, the first distance may be considered to be determined by the first communication device A rough distance out.
  • the first distance may be based on the TOA ranging method or the TDOA ranging method of the first communication device. method or other ranging and positioning methods.
  • the target distance is determined based on the first integer ambiguity, the first frequency, the first phase, and the first mapping relationship.
  • the first mapping relationship satisfies the following relationship: Among them, ⁇ represents the distance between communication devices, N represents the integer ambiguity, f represents the frequency, denotes the phase, and c denotes the speed of light.
  • the first communication device sends first information, where the first information is used to indicate a distance between the first communication device and the second communication device.
  • the first communication device after the first communication device determines the distance between the first communication device and the second communication device, that is, after determining the target distance, it can send the first information to the network server, wherein the first The information is used to indicate the target distance.
  • the first information includes the target distance. That is, after determining the target distance, the first communication device directly reports the target distance to the network server.
  • the first information includes information indicating a difference between the target distance and the first distance. That is, the information reported by the first communication device is used to indicate the difference between the target distance and the first distance. For example, if the first communication device can achieve sub-meter positioning through the TOA, it may choose to report the fractional part of the determined target distance.
  • TDOA is the time difference reported to two base stations
  • Consistency processing refers to processing the distance measurement results of the two as measuring the same measurement quantity with the same unit.
  • the first information includes an identifier used to indicate the source of the target distance. That is, the information reported by the first communication device includes an identifier to indicate the source of the ranging result through the identifier, for example, 0 indicates that the ranging result comes from TDOA measurement, and 1 indicates that the ranging result comes from multi-frequency carrier phase measurement.
  • the first information includes information used to indicate ranging accuracy.
  • the information used to indicate the ranging accuracy is called a ranging accuracy value.
  • the measurement accuracy value can be described by [0, 1, ..., 15]. The larger the value, the worse the measurement accuracy of the distance measurement result; for example, it can be a linear measurement, for example, 0 means that the measurement accuracy is 0 cm, and 1 means The measurement accuracy is 10 cm, and 15 means the measurement accuracy is 1.5 meters. It can also be an exponential measure, for example, 0 means that the measurement accuracy is 1 mm, 1 means that the measurement accuracy is 2 mm, and 15 means that the measurement accuracy is 32 meters. This embodiment of the present application does not limit this.
  • the first communication device after the first communication device receives one or more reference signals sent by the second communication device, it can determine N pieces of phase information based on the one or more reference signals, and then based on the The N pieces of phase information determine the target distance, and send the first information for indicating the target distance.
  • the target distance is further determined in combination with the distance between communication devices, the mapping relationship between phase and frequency, therefore, in this embodiment The positioning method provided is more accurate.
  • the first communication device is a terminal device
  • the second communication device is an access network device
  • the reference signal includes a PRS.
  • the first communication device is an access network device
  • the second communication device is a terminal device
  • the reference signal includes an SRS
  • the first communication device is a first terminal device or an RSU
  • the second The communication device is a second terminal device.
  • the target distance is obtained only by synthesizing a first frequency and a first phase.
  • generally low frequencies correspond to long wavelengths, and it is easier to solve the integer ambiguity, but the ranging accuracy is poor; while high frequencies correspond to short wavelengths, it is difficult to solve the integer ambiguity, but the ranging accuracy is higher. Therefore, in specific implementation, in order to obtain a higher-precision target distance, a series of first frequencies can also be obtained through N frequencies, and then a series of first phases corresponding to the series of first frequencies are respectively obtained, and then The integer ambiguities of different first frequencies and corresponding first phases are determined step by step, so as to realize high-precision ranging.
  • the uplink and downlink communication A high-precision ranging method is implemented in the scene. Specifically, during implementation, the following steps may be included:
  • Step 1 Select four frequencies within the frequency band.
  • the four selected frequencies are denoted as f 1 , f 2 , f 3 and f 4 respectively.
  • the selected frequency can be agreed in advance by the 5G network to send the reference signal of the corresponding frequency; it can also be selected and configured by the LMF server or the access network device before the reference signal is sent; it can also be configured by the access network device or The terminal device transmits the selected frequency before transmitting the reference signal.
  • a frequency selection method may be to find several first frequencies satisfying the geometric sequence or close to the geometric sequence after making differences between the four frequencies.
  • the step-by-step multiples (proportional coefficients) of the sequence can be considered close to the geometric sequence if the difference is within one time.
  • Step 2 The sending end sends a reference signal to the receiving end.
  • the transmitting end may transmit the reference signal on the above four selected frequencies or the frequency band of the transmitted reference signal includes the above four frequencies.
  • the terminal device sends an SRS to the access network device at the above four frequencies, and accordingly, the access network device receives the SRS; or the access network device sends a PRS to the terminal device at the above four frequencies, and correspondingly, the terminal device Receive the PRS.
  • Step 3 The receiving end determines the linear combination coefficients respectively corresponding to the synthesized four first frequencies according to the above four selected frequencies, and calculates the first phases respectively corresponding to the four first frequencies.
  • the number of synthesized first frequencies and the corresponding linear combination coefficients can be configured by the LMF server or the access network device, or can be implemented by the receiving end (which can be an access network device or a terminal device).
  • a principle for synthesizing the first frequency may be that the linear combination coefficient k i is as small as possible, for example, try to select between ⁇ 0, 1, -1 ⁇ , and the synthesized four first frequencies satisfy the geometric sequence or close to the geometric sequence.
  • the linear combination coefficients corresponding to the four first frequencies are as follows:
  • the corresponding first phase is calculated as follows: in, Expressed with the first frequency corresponding to the first phase, Expressed with the first frequency corresponding to the first phase, Expressed with the first frequency corresponding to the first phase, Expressed with the first frequency corresponding first phase.
  • Step 4 The receiving end determines the integer ambiguities corresponding to the four first frequencies step by step to obtain the target distance.
  • the first distance d ⁇ comes from enhanced cell identity (ECID)
  • the measurement error is 500m
  • the carrier phase measurement error is 1/60 carrier wavelength (6 degrees).
  • the integer ambiguities corresponding to the four virtual frequencies are determined step by step as follows:
  • the target distance information is obtained as: Its ranging error is about 0.002 meters, thus meeting the requirements of high-precision ranging.
  • Step 5 The receiving end reports the ranging result information to the LMF server.
  • the sending end is a terminal device
  • the receiving end is an access network device.
  • the access network device can transmit the ranging result information to the LMF through the NR Positioning Protocol A (also called "NRPPa") message .
  • the sending end is an access network device
  • the receiving end is a terminal device.
  • the terminal device can transmit the ranging result information to the LMF through a long-term evolution positioning protocol (LTE positioning protocol, LPP) message.
  • LTE positioning protocol LPP
  • the ranging results of the first distance are reported in a unified manner.
  • the resolution of the uniformly reported reference signal time difference (reference signal time difference, RSTD) should reach the picosecond level. Since RSTD is the time difference between the two base stations, it may be necessary to perform consistent processing on the ranging results of the multi-frequency carrier phase and the ranging results of TDOA before reporting uniformly, such as differential processing on the high-precision ranging results .
  • the reporting identifier indicates the source of the ranging result, for example, 0 indicates that the ranging result comes from TOA measurement, and 1 indicates that the ranging result comes from multi-frequency carrier phase measurement. Or report the measurement accuracy value to indicate the measurement accuracy of the distance measurement result.
  • the measurement accuracy value can be used in [0, 1, ..., 15], the larger the value, the worse the measurement accuracy of the ranging result; for example, it can be a linear measurement, for example, 0 represents the measurement accuracy of 0 cm, 1 represents the measurement accuracy of 10 cm, and 15 represents the measurement accuracy of 1.5 meters. It can also be an exponential measure, for example, 0 means that the measurement accuracy is 1 mm, 1 means that the measurement accuracy is 2 mm, and 15 means that the measurement accuracy is 32 meters.
  • the ranging method between communication devices provided by this embodiment is to transmit/receive reference signals on multiple frequencies and measure multiple phases corresponding to multiple frequencies, and then obtain a series of new ranges by linearly combining multiple frequencies.
  • the first frequency of the first frequency and a series of first phases corresponding to the series of first frequencies, and then based on the first distance and the first mapping relationship, the integer ambiguities corresponding to different first frequencies are determined step by step, so as to achieve high-precision measurement distance.
  • the ranging method in the second scenario is introduced.
  • the method for realizing high-precision ranging is introduced.
  • the implementation architecture is sidelink positioning. Specifically, during implementation, the following steps may be included:
  • Step 1 Select three frequencies in the frequency band.
  • the three selected frequencies are denoted as f 1 , f 2 and f 3 respectively.
  • the selected frequency can be agreed in advance by the 5G network to send the reference signal of the corresponding frequency; it can also be selected and configured by the LMF server or the access network device before the reference signal is sent; it can also be sent by the access network device or the terminal device The selected frequency is sent before the reference signal.
  • a method for selecting the carrier frequency may be to find a number of first frequencies satisfying the geometric sequence or close to the geometric sequence after making differences between the three frequencies.
  • the step-by-step multiples (proportional coefficients) of the sequence can be considered close to the geometric sequence if the difference is within one time.
  • Step 2 Send a reference signal between the terminal device and the terminal device or send a reference signal between the terminal device and the RSU.
  • the end that sends the reference signal sends the reference signal on the above-mentioned three selected frequencies or the frequency band of the sent reference signal includes the above-mentioned three frequencies.
  • Step 3 The terminal device receiving the reference signal determines the linear combination coefficients respectively corresponding to the synthesized three first frequencies according to the above three selected frequencies, and calculates the first phases respectively corresponding to the three first frequencies.
  • the number of synthesized first frequencies and the corresponding linear combination coefficients may be configured by the LMF server or the access network device, and may also be implemented by the end receiving the reference signal.
  • a principle for synthesizing the first frequency may be that the linear combination coefficient k i is as small as possible, such as selecting among ⁇ 0, 1, -1 ⁇ as much as possible, and the three synthesized first frequencies satisfy the geometric sequence or close to the geometric sequence.
  • it can be configured to synthesize three virtual frequencies in, represents the first frequency synthesized, represents the synthesized second first frequency, Indicates the synthesized third first frequency, and the linear combination coefficients corresponding to the three first frequencies are as follows:
  • the corresponding first phase is calculated as follows: in, Expressed with the first frequency corresponding to the first phase, Expressed with the first frequency corresponding to the first phase, Expressed with the first frequency corresponding to the first phase.
  • Step 4 The terminal device receiving the reference signal determines the integer ambiguities corresponding to the three first frequencies step by step to obtain the target distance.
  • the first distance d ⁇ comes from TDOA ranging
  • the measurement error is 1m
  • the carrier phase measurement error is 1/10 of the carrier wavelength (36 degrees).
  • the integer ambiguities corresponding to the four virtual frequencies are determined step by step as follows:
  • the target distance information is obtained as: Its ranging error is about 0.008 meters, thus meeting the requirements of high-precision ranging.
  • Step 5 The terminal device receiving the reference signal reports the ranging result information to the terminal device or RSU sending the reference signal.
  • the end that sends the reference signal is a terminal device or RSU, and the end that receives the reference signal is a terminal device, then the end that receives the reference signal can send the ranging result information through the Sidelink message Sent to the terminal equipment or RSU that sent the reference signal.
  • the RSU can send the ranging result information to the terminal device that sent the reference signal through a Sidelink message.
  • this embodiment has the following options when reporting the ranging result:
  • the ranging results of the first distance are reported in a unified manner.
  • the RSTD is reported uniformly, and the resolution of the RSTD should reach On the order of picoseconds. Since RSTD is the time difference between the two base stations, it may be necessary to perform consistent processing on the ranging results of the multi-frequency carrier phase and the ranging results of TDOA before reporting uniformly, such as differential processing on the high-precision ranging results .
  • the reporting identifier indicates the source of the ranging result, for example, 0 indicates that the ranging result comes from TOA measurement, and 1 indicates that the ranging result comes from multi-frequency carrier phase measurement. Or report the measurement accuracy value to indicate the measurement accuracy of the distance measurement result.
  • the measurement accuracy value can be described by [0, 1, ..., 15].
  • 0 means that the measurement accuracy is 0 cm
  • 1 means that the measurement accuracy is 10 cm
  • 15 means that the measurement accuracy is 1.5 meters.
  • 0 means that the measurement accuracy is 1 mm
  • 1 means that the measurement accuracy is 2 mm
  • 15 means that the measurement accuracy is 32 meters.
  • the positioning method provided in this embodiment also considers a Sidelink positioning scenario.
  • the terminal device may choose to send high-precision ranging information, including the form of the high-precision ranging result, measurement accuracy, source of the ranging result, and the like.
  • each device includes a corresponding hardware structure and/or software module for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • each device may be divided according to the above method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 8 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • the apparatus 800 may be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software capable of realizing all or part of the functions of the communication device.
  • the device 800 includes: a transceiver module 801 .
  • the transceiver module 801 is included in the first communication device.
  • the transceiver module 801 is configured to receive one or more reference signals sent by the second communication device; the transceiver module 801 is also configured to send N phase information, and the N phase information is based on the one or a plurality of reference signals, the N pieces of phase information are used to determine the distance between the first communication device and the second communication device, and N is a positive integer number.
  • the transceiver module 801 may be configured to perform the step of receiving one or more reference signals sent by the second communication device in the methods described in FIG. 4 or to FIG. 5 .
  • the transceiving module 801 may be configured to execute the step of the first communication device sending N pieces of phase information to the network server in the method described in FIG. 4 .
  • the N is a positive integer greater than or equal to 2.
  • the one or more reference signals are sent by the second communication device on M frequency resources, where M is a positive integer.
  • the N pieces of phase information are N pieces of the one or more reference signals Carrier phase values, where the N carrier phase values correspond one-to-one to N frequencies of the one or more reference signals, and the N frequencies are included in the M frequency resources.
  • each phase information in the N pieces of phase information is obtained by linear combination of K carrier phase values of the one or more reference signals, and the K carrier phase values and the The K frequencies of the one or more reference signals are in one-to-one correspondence, the K frequencies are included in the M frequency resources, and K is a positive integer.
  • the positioning method is applied to an uplink and downlink positioning scenario in a fifth generation mobile communication system.
  • the first communication device is a terminal device
  • the second communication device is an access network device.
  • the first communication device is an access network device
  • the second communication device is a terminal device.
  • the positioning method is applied to a sidelink positioning scenario.
  • the first communication device is a first terminal device or an RSU
  • the second communication device is a second terminal device.
  • the first communication device is a first terminal device
  • the second communication device is an RSU.
  • the reference signal includes one or more of the following information: PRS, SRS, POS-SRS, TRS, CSI-RS, DMRS, PTRS, and sidelink reference signal.
  • the transceiver module 801 is included in the second communication device.
  • the transceiver module 801 is configured to send one or more reference signals, and M is a positive integer.
  • the transceiving module 801 is specifically configured to: transmit the one or more reference signals on M frequency resources, where M is a positive integer.
  • the transceiver module 801 is further configured to: send a first linear combination coefficient and/or a frequency set, the first linear combination coefficient indicates a first linear relationship, and the frequency set includes N frequencies, N is a positive integer, and the first linear relationship indicates a mapping relationship between the N frequencies and the first frequency.
  • the transceiver module 801 may be configured to execute the step of the second communication device sending one or more reference signals in the method shown in FIG. 4 or FIG. 5 .
  • Fig. 9 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • the apparatus 900 may be a communication device, or a component of a communication device (for example, a processor, a chip, or a chip system, etc.), or a logic module or software capable of realizing all or part of the functions of the communication device.
  • the apparatus 900 includes: a transceiver module 901 and a processing module 902 .
  • the transceiver module 901 and the processing module 902 are included in a network server.
  • the transceiver module 901 is configured to receive N pieces of phase information from the first communication device, where the N pieces of phase information are obtained based on one or more reference signals sent by the second communication device, The N pieces of phase information are used to determine the distance between the first communication device and the second communication device, and N is a positive integer;
  • the processing module 902 is configured to determine the first distance according to the N pieces of phase information. The distance between the communication device and the second communication device.
  • the processing module 902 can be used to execute the network server in the method described in FIG. 4 according to The N phase information determines the distance step between the first communication device and the second communication device.
  • the processing module 902 is specifically configured to: determine the distance between the first communication device and the second communication device according to the first frequency, the first phase, and the first mapping relationship,
  • the first frequency is a frequency value having a first linear relationship with N pieces of frequency information
  • the N pieces of frequency information correspond one-to-one with the N pieces of phase information
  • the first phase is a frequency value corresponding to the N pieces of phase information
  • the first mapping relationship includes a mapping relationship among distances between communication devices, phases, and frequencies.
  • the processing module 902 is specifically configured to: determine a first integer ambiguity based on the first distance, the first frequency, the first phase, and the first mapping relationship; Based on the first integer ambiguity, the first frequency, the first phase, and the first mapping relationship, determine a distance between the first communication device and the second communication device.
  • the first mapping relationship satisfies the following relationship: Among them, ⁇ represents the distance between communication devices, N represents the integer ambiguity, f represents the frequency, denotes the phase, and c denotes the speed of light.
  • the transceiver module 901 is further configured to: receive a first linear combination coefficient and/or a frequency set, where the first linear combination coefficient indicates the first linear relationship, and in the frequency set The N frequencies are included.
  • the first linear combination coefficient is one or more of 0, -1 and 1.
  • the transceiver module 901 and the processing module 902 are included in the first communication device.
  • the transceiver module 901 is configured to receive one or more reference signals sent by the second communication device;
  • the processing module 902 is configured to determine the first communication device and the The distance between the second communication devices, the N pieces of phase information are obtained based on the one or more reference signals, and the N pieces of phase information are used to determine the first communication device and the second communication device
  • the distance between N is a positive integer;
  • the transceiver module 901 is further configured to send first information, where the first information is used to indicate the distance between the first communication device and the second communication device.
  • the transceiver module 901 can be used to execute the step of sending the first information by the first communication device in the method shown in FIG. distance.
  • the processing module 902 is specifically configured to: determine the distance between the first communication device and the second communication device according to the first frequency, the first phase, and the first mapping relationship,
  • the first frequency is a frequency value having a first linear relationship with N pieces of frequency information
  • the N pieces of frequency information correspond one-to-one with the N pieces of phase information
  • the first phase is a frequency value corresponding to the N pieces of phase information
  • the first mapping relationship includes a mapping relationship among distances between communication devices, phases, and frequencies.
  • the processing module 902 is specifically configured to: determine a first integer ambiguity based on the first distance, the first frequency, the first phase, and the first mapping relationship; Based on the first integer ambiguity, the first frequency, the first phase, and the first mapping relationship, determine a distance between the first communication device and the second communication device.
  • the first mapping relationship satisfies the following relationship: Among them, ⁇ represents the distance between communication devices, N represents the integer ambiguity, f represents the frequency, denotes the phase, and c denotes the speed of light.
  • the transceiver module 901 is further configured to: receive a first linear combination coefficient and/or a frequency set, where the first linear combination coefficient indicates the first linear relationship, and in the frequency set The N frequencies are included.
  • the first linear combination coefficient is one or more of 0, -1 and 1.
  • the first information includes a distance between the first communication device and the second communication device.
  • the first information includes one or more items of the following information: the difference between the distance between the first communication device and the second communication device and the first distance Value information, identifier information of the source of the distance between the first communication device and the second communication device, and accuracy information of the distance between the first communication device and the second communication device.
  • the positioning method is applied to an uplink and downlink positioning scenario in a fifth generation mobile communication system.
  • the first communication device is a terminal device
  • the second communication device is an access network access equipment
  • the first communication device is an access network device, and the second communication device for terminal equipment.
  • the positioning method is applied to a sidelink positioning scenario.
  • the first communication device is a first terminal device or a RSU
  • the second communication device is a second Terminal Equipment
  • the first communication device is a first terminal device
  • the second communication device is a roadside unit (RSU).
  • the reference signal includes one or more of PRS, SRS, POS-SRS, TRS, CSI-RS, DMRS, PTRS, and sidelink reference signal in the following information.
  • the transceiver module described in FIG. 8 or FIG. 9 may also include a receiving module and a sending module, the receiving module may be used to perform the receiving operation performed by the above-mentioned transceiver module; the sending module may be used to perform the above-mentioned transceiver module. The send operation performed.
  • the transceiver module described in FIG. 8 or FIG. 9 may be replaced by a transceiver, and the transceiver may integrate functions of the transceiver module, which does not constitute a limitation to the present application.
  • the transceiver may further include a receiver and a transmitter, and the receiver may be used to perform the receiving operation performed by the above-mentioned transceiver; the transmitter may be used to perform the sending operation performed by the above-mentioned transceiver.
  • transceiver module or transceiver described in this application can also be described as an input and output unit, wherein the input and output unit can also include an input unit and an output unit; the input unit can be used to implement the above transceiver module or transceiver For the receiving action performed, the output unit may be used to perform the sending action performed by the above-mentioned transceiver module or transceiver.
  • FIG. 10 is a schematic structural diagram of a terminal device 1000 provided in the present application. For illustration purposes, Figure 10 Only the main components of the terminal device are shown. As shown in FIG. 10 , a terminal device 1000 includes a processor, a memory, a control circuit, an antenna, and an input and output device. The terminal device 1000 may be applied to the system shown in FIG. 1 to perform functions of the terminal device in the foregoing method embodiments.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device, execute software programs, and process data of the software programs, for example, to control the terminal device to perform the actions described in the above method embodiments.
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device, execute A software program that processes data for a software program.
  • the processor in FIG. 10 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected through technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function may be regarded as the transceiver unit 1001 of the terminal device 1000
  • the processor with the processing function may be regarded as the processing unit 1002 of the terminal device 1000
  • a terminal device 1000 includes a transceiver unit 1001 and a processing unit 1002 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 1001 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 1001 for realizing the sending function can be regarded as a sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the terminal device 1000 shown in FIG. 10 can implement various processes involving the terminal device in the method embodiment shown in FIG. 4 or 5 .
  • the operations and/or functions of the various modules in the terminal device 1000 are respectively for realizing the corresponding processes in the above method embodiments.
  • Fig. 11 is a schematic structural diagram of a positioning device provided by another embodiment of the present application.
  • the management device shown in FIG. 11 may be used to execute the method described in any one of the foregoing embodiments.
  • an apparatus 1100 in this embodiment includes: a memory 1101 , a processor 1102 , a communication interface 1103 and a bus 1104 .
  • the memory 1101 , the processor 1102 , and the communication interface 1103 are connected to each other through a bus 1104 .
  • the apparatus 1100 may specifically be the first communication device or the second communication device in the above embodiments, or the functions of the first communication device or the second communication device in the above embodiments may be integrated in the apparatus 1100, and the apparatus 1100 It may be used to execute various steps and/or processes corresponding to the first communication device or the second communication device in the foregoing embodiments.
  • the memory 1101 may be a read only memory (read only memory, ROM), a static storage device, a dynamic storage device or a random access memory (random access memory, RAM).
  • the memory 1101 may store a program, and when the program stored in the memory 1101 is executed by the processor 1102, the processor 1102 is configured to execute each step of the method shown in FIG. 4 to FIG. 5 .
  • the processor 1102 may adopt a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application specific integrated circuit (application specific integrated circuit, ASIC), or one or more integrated circuits, for executing related programs, to Implement the method of the method embodiment of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the processor 1102 may also be an integrated circuit chip with signal processing capability. During implementation, each step of the method for planning an autonomous vehicle according to the embodiment of the present application may be completed by an integrated logic circuit of hardware in the processor 1102 or instructions in the form of software.
  • the above-mentioned processor 1102 can also be a general-purpose processor, a digital signal processor (digital signal processing, DSP), an application-specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, Discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 1101, and the processor 1102 reads the information in the memory 1101, and combines its hardware to complete the functions required by the units included in the device of the present application. /Function.
  • the communication interface 1103 may use, but is not limited to, a transceiver device such as a transceiver to implement communication between the device 1100 and other devices or communication networks.
  • the bus 1104 may include a pathway for transferring information between various components of the device 1100 (eg, memory 1101 , processor 1102 , communication interface 1103 ).
  • the apparatus 1100 shown in the embodiment of the present application may be an electronic device, or may also be a chip configured in the electronic device.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate Array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory Access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请提供一种定位方法及装置。本申请提供的技术方案中,网络服务器能够接收第一通信设备发送的N个相位信息,所述N个相位信息是基于第二通信设备发送的一个或多个参考信号得到的;然后根据所述N个相位信息确定第一通信设备与第二通信设备之间的距离。本申请提供的定位方法,能够提升测量出的第一通信设备与第二通信设备之间的距离的测量精度。

Description

定位方法及装置
本申请要求于2022年02月11日提交中国国家知识产权局、申请号为202210130537.4、申请名称为“定位方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种定位方法及装置。
背景技术
移动通信系统的定位技术是基于终端设备到基站的距离来估计终端设备的位置的技术。因此,如何精确地测量出终端设备到基站的距离是移动通信系统实现定位技术的关键。
目前,在移动通信系统中,常用的定位技术主要包括到达时延(time of arrival,TOA)和到达时间差(time difference of arrival,TDOA)。对于TOA,其测距原理是通过基站或终端设备测量接收到的直射径信号的传输时间再乘以光速得到基站与终端设备的距离。而对于TDOA技术,其定位原理是通过测量多个基站接收到终端设备的信号的时间差来得到多个基站与终端设备之间的距离差,然后当得到多个基站与终端设备之间的距离差后,可以结合发送端位置求得终端设备位置。
然而,根据研究发现,不论是TOA技术还是TDOA技术,其测距精度与带宽相关,通常带宽越大时对应的测距精度越高。但由于频谱资源是有限的,例如第五代(5th generation,5G)移动通信系统中的“FR1频段”支持的最大带宽为100M,导致使用TOA技术或者TDOA技术的定位误差范围从一米左右到几十米或者更大。从而很难满足第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的更高精度需求。
因此,如何能够使得测距精度得以提升成为亟待解决的技术问题。
发明内容
本申请提供了一种定位方法及装置,能够提升测量出的通信设备之间的距离的测距精度,从而提升通信设备之间的定位精度。
第一方面,本申请提供一种定位方法,应用于第一通信设备,包括:接收第二通信设备发送的一个或多个参考信号;发送N个相位信息,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数。
在一种实现方式中,所述一个或多个参考信号由第二通信设备在M个频率资源上发送。在此说明的是,本实施例对M和N的大小关系不做限定。作为一种示例,当第二通信设备在M个频率资源上发送一个或多个参考信号时,若基于所述一个或多个参考信号得到的N个相位信息与M个频率资源的中心频率一一对应,M等于N。作为 另一种示例,当所述M个频率资源为频段(M=1)时,第二通信设备可以在多个载波分量(component carrier,CC)发送多个参考信号,基于每个参考信号得到1个相位信息(N>1),因此,在这种情况下,M小于N。作为又一种示例,当所述M个频率资源为子载波(M>1)时,第二通信设备可以在单个CC上发送单个参考信号,基于参考信号得到单个CC中心频率的相位信息(N=1),因此,在这种情况下,M大于N。
本实施例中,N个相位信息用于确定第一通信设备与第二通信设备之间的距离。应理解,本申请中所述的确定第一通信设备与第二通信设备之间的距离包括得到通信设备的绝对位置坐标/相对位置坐标,得到与其他通信设备的距离,得到与其他通信设备的伪距,得到与其他通信设备的方向/角度等。并且,在一种可能的实现方式中,当本实施例中的定位方法应用于第五代移动通信系统中的定位场景时,本实施例中所述的发送N个相位信息是指第一通信设备向网络服务器(例如是位置管理功能(location management function,LMF)服务器,也可以称为定位服务器,又或者定位服务管理功能)发送N个相位信息,而当本实施例中的测距方法应用于侧行链路定位场景时,本实施例中所述的发送N个相位信息是指第一通信设备向第二通信设备发送N个相位信息。
本实施例提供的定位方法,当第一通信设备接收到第二通信设备发送的一个或多个参考信号后,能够发送N个相位信息,其中该N个相位信息用于确定第一通信设备与第二通信设备之间的距离。
结合第一方面,在一种可能的实现方式中,所述N为大于或等于2的正整数。
结合第一方面,在一种可能的实现方式中,所述一个或多个参考信号由所述第二通信设备在M个频率资源上发送,M为正整数。
结合第一方面,在一种可能的实现方式中,所述N个相位信息为所述一个或多个参考信号的N个载波相位值,所述N个载波相位值与所述一个或多个参考信号的N个频率一一对应,所述N个频率包含于所述M个频率资源中。即,所述N个相位信息中的任意一个相位信息包括所述第一通信设备接收到的对应频率的参考信号的载波相位值,所述N个相位信息与所述M个频率资源中的N个频率一一对应。
例如,在具体实现时,第一通信设备可以先获取所述一个或多个参考信号中的N个频率,所述N个频率包含于所述M个频率资源中;然后确定所述N个频率中的每个频率对应的载波相位值;再将与所述N个频率一一对应的N个载波相位值确定为所述N个相位信息。
在此说明的是,本实施例对如何获取这N个频率不做限定。例如,可以通过LMF、第二通信设备或本地预配置等方式获取N个频率。
结合第一方面,在一种可能的实现方式中,所述N个相位信息中的每个相位信息由所述一个或多个参考信号的K个载波相位值通过线性组合得到,所述K个载波相位值与所述一个或多个参考信号的K个频率一一对应,所述K个频率包含于所述M个频率资源中,K为正整数。
例如,在具体实现时,第一通信设备可以先获取所述一个或多个参考信号中的K个频率,所述K个频率包含于所述M个频率资源中;然后确定所述K个频率中的每个频率对应的载波相位值;再基于所述K个频率对应的K个载波相位值,确定所述N 个相位信息,所述N个相位信息中的任意一个相位信息由所述K个载波相位值的线性组合得到。在此说明的是,本实施例对如何获取这K个频率不做限定。例如,可以通过LMF、第二通信设备或本地预配置等方式获取K个频率。
结合第一方面,在一种可能的实现方式中,所述方法还包括:发送N个频率信息,所述N个频率信息与所述N个相位信息一一对应。
在此说明的是,本实施例对如何获取这N个频率不做限定。例如,可以通过LMF、第二通信设备或本地预配置等方式获取N个频率。
结合第一方面,在一种可能的实现方式中,所述定位方法应用于第五代移动通信系统中的上下行链路定位场景。
结合第一方面,在一种可能的实现方式中,在所述第五代移动通信系统中的上下行链路定位场景下,所述第一通信设备为终端设备,所述第二通信设备为接入网设备。
结合第一方面,在一种可能的实现方式中,在所述第五代移动通信系统中的上下行链路定位场景下,所述第一通信设备为接入网设备,所述第二通信设备为终端设备。
结合第一方面,在一种可能的实现方式中,所述定位方法应用于侧行链路定位场景。
结合第一方面,在一种可能的实现方式中,在所述侧行链路定位场景中,所述第一通信设备为第一终端设备或路侧单元(road side unit,RSU),所述第二通信设备为第二终端设备。
结合第一方面,在一种可能的实现方式中,在所述侧行链路定位场景中,所述第一通信设备为第一终端设备,所述第二通信设备为路侧单元RSU。
结合第一方面,在一种可能的实现方式中,所述方法还包括:发送第一线性组合系数和/或频率集合”,其中,第一线性组合系数指示第一线性关系,所述频率集合中包括所述N个频率,所述N个频率与N个相位信息一一对应。
示例性地,在第五代移动通信系统中的上下行链路定位场景下,网络设备可以向LMF服务器发送第一线性组合系数。又例如,在侧行链路定位场景中,第二终端设备可以向第一终端设备或RSU发送第一线性组合系数。
结合第一方面,在一种可能的实现方式中,所述参考信号包括以下信息中的一种或者多种:定位参考信号(positioning reference signal,PRS)、探测参考信号(sounding reference signal,SRS)、定位探测参考信号(positioning sounding reference signal,POS-SRS)、跟踪参考信号(tracking reference signal,TRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、侧行链路参考信号。
示例性地,在第五代移动通信系统中的上下行链路定位场景下,当第一通信设备为终端设备,第二通信设备为接入网设备时,所述参考信号可以是定位参考信号PRS。
示例性地,在第五代移动通信系统中的上下行链路定位场景下,当第一通信设备为接入网设备,第二通信设备为终端设备,所述参考信号可以是探测参考信号SRS。
第二方面,本申请提供一种定位方法,包括:接收来自第一通信设备的N个相位信息,所述N个相位信息是基于第二通信设备发送的一个或多个参考信号得到的,所 述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;根据所述N个相位信息确定所述第一通信设备与所述第二通信设备之间的距离。
在此说明的是,本申请中所述的第一通信设备与所述第二通信设备之间的距离也称为目标距离,不构成对本申请的限定。在一种实现方式中,根据所述N个相位信息确定所述第一通信设备与所述第二通信设备之间的距离,包括:根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
可选地,所述N大于或等于2时,可以根据与N个相位信息一一对应的N个频率确定任意的第一频率,从而有利于更方便确定高精度的目标距离或确定更高精度的目标距离。并且,在一种可能的实现方式中,本实施例中在根据N个相位信息确定目标距离时,还需要获取第一距离,其中,该第一距离例如是网络服务器或者终端设备使用现有的方法(例如是TOA测距方法或TDOA测距方法)获取的第一通信设备与第二通信设备之间的一个比较粗略的距离。
可以理解的是,在本实施例中,由于在网络服务器或者终端设备确定出的第一距离的基础之上,再结合N个相位信息对第一距离进行了调整,因此,本实施例提供的定位方法精确度更高。
结合第二方面,在一种可能的实现方式中,所述根据所述N个相位信息确定所述第一通信设备与所述第二通信设备之间的距离,包括:根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
结合第二方面,在一种可能的实现方式中,所述根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,包括:基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
结合第二方面,在一种可能的实现方式中,所述第一映射关系满足如下关系式:

其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示所述频率,表示
所述相位,c表示光速。
结合第二方面,在一种可能的实现方式中,所述方法还包括:接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率。
示例性地,接收网络服务器或第二通信设备配置的第一线性组合系数和/或频率集合。
结合第二方面,在一种可能的实现方式中,所述第一线性组合系数为0,-1和1中的一个或多个。
第三方面,本申请提供一种定位方法,应用于第一通信设备,包括:接收第二通信设备发送的一个或多个参考信号;根据N个相位信息确定所述第一通信设备和所述第二通信设备之间的距离,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;发送第一信息,所述第一信息用于指示所述第一通信设备和所述第二通信设备之间的距离。
在此说明的是,本申请中所述的第一通信设备与所述第二通信设备之间的距离也称为目标距离,不构成对本申请的限定。在一种实现方式中,所述一个或多个参考信号由第二通信设备在M个频率资源上发送。更具体地,本实施例中,M为大于1或等于1的整数,例如所述M为大于或等于2的正整数。并且,在一种可能的实现方式中,当本实施例中的定位方法应用于第五代移动通信系统中的定位场景时,本实施例中所述的发送第一信息是指第一通信设备向网络服务器(例如是LMF服务器)发送第一信息,而当本实施例中的定位方法应用于侧行链路定位场景时,本实施例中所述的发送第一信息是指第一通信设备向第二通信设备发送第一信息。
可选地,所述N大于或等于2时,可以根据与N个相位信息一一对应的N个频率确定任意的第一频率,从而有利于更方便确定高精度的目标距离或确定更高精度的目标距离。并且,在一种可能的实现方式中,本实施例在根据N个相位信息确定目标距离时,还需要获取第一距离,其中,该第一距离是网络服务器或者终端设备使用现有的方法(例如通过TOA测距方法或TDOA测距方法)获取的第一通信设备与第二通信设备之间的一个比较粗略的距离。
可以理解的是,在本实施例中,由于在第一通信设备确定出第一距离的基础之上,再结合N个相位信息对第一距离进行了调整,因此,本实施例提供的定位方法精确度更高。
结合第三方面,在一种可能的实现方式中,所述根据N个相位信息确定所述第一通信设备和所述第二通信设备之间的距离,包括:根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
结合第三方面,在一种可能的实现方式中,所述根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,包括:基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
结合第三方面,在一种可能的实现方式中,所述第一映射关系满足如下关系式:

其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示所述频率,表示
所述相位,c表示光速。
结合第三方面,在一种可能的实现方式中,所述方法还包括:接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率。
示例性地,接收网络服务器或第二通信设备配置的第一线性组合系数和/或频率集合。
结合第三方面,在一种可能的实现方式中,所述第一线性组合系数为0,-1和1中的一个或多个。
结合第三方面,在一种可能的实现方式中,所述第一信息包括所述第一通信设备与所述第二通信设备之间的距离。
结合第三方面,在一种可能的实现方式中,所述第一信息包括以下信息中的一项或多项:所述第一通信设备与所述第二通信设备之间的距离与所述第一距离的差值信息、所述第一通信设备与所述第二通信设备之间的距离来源的标识符信息、所述第一通信设备与所述第二通信设备之间的距离的精度信息。
结合第三方面,在一种可能的实现方式中,所述定位方法应用于第五代移动通信系统中的上下行链路定位场景。
结合第三方面,在一种可能的实现方式中,在所述定位方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为终端设备,所述第二通信设备为接入网设备。
结合第三方面,在一种可能的实现方式中,在所述定位方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为接入网设备,所述第二通信设备为终端设备。
结合第三方面,在一种可能的实现方式中,所述定位方法应用于侧行链路定位场景。
结合第三方面,在一种可能的实现方式中,在所述定位方法应用于侧行链路定位场景时,所述第一通信设备为第一终端设备或路侧单元RSU,所述第二通信设备为第二终端设备。
结合第三方面,在一种可能的实现方式中,在所述定位方法应用于侧行链路定位场景时,所述第一通信设备为第一终端设备,所述第二通信设备为路侧单元RSU。
结合第三方面,在一种可能的实现方式中,所述参考信号包括以下信息中的一种或者多种:定位参考信号(positioning reference signal,PRS)、探测参考信号(sounding reference signal,SRS)、定位探测参考信号(positioning sounding reference signal,POS-SRS)、跟踪参考信号(tracking reference signal,TRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、侧行链路参考信号。
示例性地,在所述定位方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为终端设备,所述第二通信设备为接入网设备,所述参考信号 包括定位参考信号PRS。
示例性地,在所述定位方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为接入网设备,所述第二通信设备为终端设备,所述参考信号包括探测参考信号SRS。
第四方面,本申请提供一种定位方法,应用于第二通信设备,包括:发送一个或多个参考信号,M为正整数。
结合第四方面,在一种可能的实现方式中,所述发送一个或多个参考信号,包括:
在M个频率资源上发送所述一个或多个参考信号,M为正整数。
结合第四方面,在一种可能的实现方式中,所述方法还包括:发送第一线性组合系数和/或频率集合,所述第一线性组合系数指示第一线性关系,所述频率集合中包括N个频率,N为正整数,所述第一线性关系指示所述N个频率与第一频率之间的映射关系。
第五方面,本申请提供一种定位装置,应用于第一通信设备,包括:收发模块,用于接收第二通信设备发送的一个或多个参考信号;所述收发模块,还用于发送N个相位信息,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数。
结合第五方面,在一种可能的实现方式中,所述N为大于或等于2的正整数。
结合第五方面,在一种可能的实现方式中,所述一个或多个参考信号由所述第二通信设备在M个频率资源上发送,M为正整数。
结合第五方面,在一种可能的实现方式中,所述N个相位信息为所述一个或多个参考信号的N个载波相位值,所述N个载波相位值与所述一个或多个参考信号的N个频率一一对应,所述N个频率包含于所述M个频率资源中。
结合第五方面,在一种可能的实现方式中,所述N个相位信息中的每个相位信息由所述一个或多个参考信号的K个载波相位值通过线性组合得到,所述K个载波相位值与所述一个或多个参考信号的K个频率一一对应,所述K个频率包含于所述M个频率资源中,K为正整数。
结合第五方面,在一种可能的实现方式中,所述定位方法应用于第五代移动通信系统中的上下行链路定位场景。
结合第五方面,在一种可能的实现方式中,在所述第五代移动通信系统中的上下行链路定位场景下,所述第一通信设备为终端设备,所述第二通信设备为接入网设备。
结合第五方面,在一种可能的实现方式中,在所述第五代移动通信系统中的上下行链路定位场景下,所述第一通信设备为接入网设备,所述第二通信设备为终端设备。
结合第五方面,在一种可能的实现方式中,所述定位方法应用于侧行链路定位场景。
结合第五方面,在一种可能的实现方式中,在所述侧行链路定位场景中,所述第一通信设备为第一终端设备或路侧单元(road side unit,RSU),所述第二通信设备为第二终端设备。
结合第五方面,在一种可能的实现方式中,在所述侧行链路定位场景中,所述第一通信设备为第一终端设备,所述第二通信设备为路侧单元RSU。
结合第五方面,在一种可能的实现方式中,所述参考信号包括以下信息中的一种或者多种:定位参考信号(positioning reference signal,PRS)、探测参考信号(sounding reference signal,SRS)、定位探测参考信号(positioning sounding reference signal,POS-SRS)、跟踪参考信号(tracking reference signal,TRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、侧行链路参考信号。
第六方面,本申请提供一种定位装置,包括:收发模块,用于接收来自第一通信设备的N个相位信息,所述N个相位信息是基于第二通信设备发送的一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;处理模块,用于根据所述N个相位信息确定所述第一通信设备与所述第二通信设备之间的距离。
结合第六方面,在一种可能的实现方式中,所述处理模块具体用于:根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
结合第六方面,在一种可能的实现方式中,所述处理模块具体用于:基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
结合第六方面,在一种可能的实现方式中,所述第一映射关系满足如下关系式:

其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示所述频率,表示
所述相位,c表示光速。
结合第六方面,在一种可能的实现方式中,所述收发模块还用于:接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率。
结合第六方面,在一种可能的实现方式中,所述第一线性组合系数为0,-1和1中的一个或多个。
第七方面,本申请提供一种定位装置,应用于第一通信设备,包括:收发模块,用于接收第二通信设备发送的一个或多个参考信号;处理模块,用于根据N个相位信息确定所述第一通信设备和所述第二通信设备之间的距离,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;所述收发模块,还用于发送第一信息,所述第一信息用于指示所述第一通信设备和所述第二通信设备之间的距离。
结合第七方面,在一种可能的实现方式中,所述处理模块具体用于:根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离, 所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
结合第七方面,在一种可能的实现方式中,所述处理模块具体用于:基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
结合第七方面,在一种可能的实现方式中,所述第一映射关系满足如下关系式:

其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示所述频率,表示
所述相位,c表示光速。
结合第七方面,在一种可能的实现方式中,所述收发模块还用于:接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率。
结合第七方面,在一种可能的实现方式中,所述第一线性组合系数为0,-1和1中的一个或多个。
结合第七方面,在一种可能的实现方式中,所述第一信息包括所述第一通信设备与所述第二通信设备之间的距离。
结合第七方面,在一种可能的实现方式中,所述第一信息包括以下信息中的一项或多项:所述第一通信设备与所述第二通信设备之间的距离与所述第一距离的差值信息、所述第一通信设备与所述第二通信设备之间的距离来源的标识符信息、所述第一通信设备与所述第二通信设备之间的距离的精度信息。
结合第七方面,在一种可能的实现方式中,所述定位方法应用于第五代移动通信系统中的上下行链路定位场景。
结合第七方面,在一种可能的实现方式中,在所述定位方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为终端设备,所述第二通信设备为接入网设备。
结合第七方面,在一种可能的实现方式中,在所述定位方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为接入网设备,所述第二通信设备为终端设备。
结合第七方面,在一种可能的实现方式中,所述定位方法应用于侧行链路定位场景。
结合第七方面,在一种可能的实现方式中,在所述定位方法应用于侧行链路定位场景时,所述第一通信设备为第一终端设备或路侧单元RSU,所述第二通信设备为第二终端设备。
结合第七方面,在一种可能的实现方式中,在所述定位方法应用于侧行链路定位场景时,所述第一通信设备为第一终端设备,所述第二通信设备为路侧单元RSU。
结合第七方面,在一种可能的实现方式中,所述参考信号包括以下信息中的一种 或者多种:定位参考信号(positioning reference signal,PRS)、探测参考信号(sounding reference signal,SRS)、定位探测参考信号(positioning sounding reference signal,POS-SRS)、跟踪参考信号(tracking reference signal,TRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、侧行链路参考信号。
第八方面,本申请提供一种定位装置,应用于第二通信设备,包括:收发模块,用于发送一个或多个参考信号,M为正整数。
结合第八方面,在一种可能的实现方式中,所述收发模块具体用于:在M个频率资源上发送所述一个或多个参考信号,M为正整数。
结合第八方面,在一种可能的实现方式中,所述收发模块还用于:发送第一线性组合系数和/或频率集合,所述第一线性组合系数指示第一线性关系,所述频率集合中包括N个频率,N为正整数,所述第一线性关系指示所述N个频率与第一频率之间的映射关系。
第九方面,本申请提供一种定位装置,该装置包括一个或多个处理器,一个或多个处理器,用于运行计算机程序或指令,当一个或多个处理器执行计算机指令或指令时,使得通信装置执行如第一方面至第四方面或其中任意一种可能的实现方式所述的方法。
在一些实现方式中,该通信装置还包括一个或多个通信接口;一个或多个通信接口和一个或多个处理器耦合,一个或多个通信接口用于与通信装置之外的其它模块进行通信。其中,通信接口也可以描述为输入输出接口;输入输出接口可以包括输入接口和输出接口。
在一些实现方式中,该通信装置还包括一个或多个存储器,一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储上述计算机程序或指令。在一种可能的实现方式中,存储器位于所述通信装置之外。在另一种可能的实现方式中,存储器位于所述通信装置之内。本申请中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可以被集成在一起。
第十方面,本申请提供一种计算机可读介质,所述计算机可读介质存储用于计算机执行的程序代码,该程序代码包括用于执行第一方面至第四方面或其中任意一种可能的实现方式所述的方法的指令。
第十一方面,本申请提供一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机实现如第一方面至第四方面或其中任意一种可能的实现方式所述的方法。
其中,第五方面至第十一方面中任一种实现方式所带来的技术效果可参见上述第一方面的任一种可能的实现方法所带来的技术效果,不予赘述。
附图说明
图1为本申请提供的应用场景的架构示意图;
图2为本申请一个实施例提供的定位系统的架构示意图;
图3为本申请一个实施例提供的载波相位测距技术的结构性示意图;
图4为本申请一个实施例提供的定位方法的流程性示意图;
图5为本申请另一个实施例提供的定位方法的流程性示意图;
图6为本申请一个实施例提供的通信设备之间基于多个频率的载波进行通信的结构性示意图;
图7为本申请一个实施例提供的构建K个第一频率的结构性示意图;
图8为本申请一个实施例提供的定位装置的结构性示意图;
图9为本申请另一个实施例提供的定位装置的结构性示意图;
图10为本申请一个实施例提供的终端设备的结构性示意图;
图11为本申请又一个实施例提供的定位装置的结构性示意图。
具体实施方式
下面,为了更好地理解本申请提供的技术方案,先对本申请实施例中使用到的一些概念进行介绍。
1、Uu定位
用户设备(user equipment,UE)之间定位参考信号的发送、定位辅助数据、定位测量结果等信息的传输均通过通用用户网络接口(user to network interface universal,Uu)口进行。其中,Uu定位需要基站参与。
2、Sidelink定位
侧行链路(Sidelink)定位是一种利用Sidelink发送侧行链路定位参考信号(sidelink positioning reference signal,S-PRS)并进行终端定位测量的技术。
具体地,终端设备之间通过直连通信接口5(pose communication 5,PC5)接口发送定位参考信号,但定位辅助数据、定位测量结果等信息可以通过PC5或者Uu接口进行传输。其中,PC口为直连通信接口,无需基站参与。
3、基于UE的定位方法
UE负责进行位置计算(在有辅助数据的情况下),并且还可以提供测量结果。
4、基于LMF定位方法
基于位置管理功能(location management function,LMF)定位方法也称UE辅助定位,UE仅提供测量,不进行位置计算,LMF处负责位置计算(在有辅助数据的情况下)。
应注意:Uu定位和Sidelink定位均可根据位置计算单元为UE还是LMF分为基于UE的定位和基于LMF定位,其中,在Sidelink定位场景中,基于UE的定位也称为Sidelink-基于UE的定位方法定位,基于LMF定位也称为Sidelink-辅助定位。
5、下行定位参考信号
下行定位参考信号(downlink positioning reference signal,DL-PRS)是指用于下行定位方法和上下行联合定位方法的信号。
6、上行探测参考信号
上行探测参考信号(uplink sounding reference signal,UL-SRS),从广义的角度来说,SRS包括用于多输入多输出(multi-input multi-output,MIMO)的上行参考信号和专用于定位的上行定位参考信号。
7、定位参考信号
定位参考信号(positioning reference signal,PRS)包括下行定位参考信号(也称为DL-PRS)和上行定位参考信号(也称为UL-SRS)。
8、侧行链路定位参考信号
侧行链路定位参考信号(sidelink positioning reference signal,S-PRS)是指在侧行链路上传输并专用于sidelink场景的定位参考信号。
9、传输点
传输点(transmission point,TP)也称为传输节点或者发送节点,表示一组地理上位于同一位置的发射天线(例如天线阵列(具有一个或多个天线元件)),该概念适用于一个小区、一个小区的一部分或一个仅支持DL-PRS的TP。传输节点可以包括基站(ng-eNB或gNB)的天线、射频拉远模块(remote radio heads,RRH)、基站的远程天线、仅支持DL-PRS的TP的天线等。一个小区可以包括一个或多个传输点。
10、接收点
接收点(reception point,RP)也称为接收节点,表示一组地理上位于同一位置的接收天线(例如天线阵列(具有一个或多个天线元件)),该概念适用于一个小区、一个小区的一部分或一个仅支持UL-SRS的RP。传输节点可以包括基站(ng-eNB或gNB)的天线、射频拉远模块、基站的远程天线、仅支持UL-SRS的RP的天线等。一个小区可以包括一个或多个接收点。
11、发送-接收节点
发送-接收节点(transmission-reception point,TRP),表示一组地理上位于同一位置、支持TP和/或RP功能的天线(例如天线阵列(具有一个或多个天线元件))。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解,以图1中示出的通信系统为例详细说明适用于本申请实施例的无线通信系统。如图1所示,该通信系统包括网络设备101,与网络设备101通信的终端设备102、与终端设备102通信的终端设备103以及与终端设备103通信的终端设备104。可选的,网络设备101还可以与终端设备103通信。
其中,本申请实施例中对于网络设备101和终端设备的具体形式不进行限定。
示例性地,终端设备可以是一种向用户提供语音和/或数据连通性的设备。终端设备也可以称为用户设备(user equipment,UE)、接入终端(access terminal)、用户单元(user unit)、用户站(user station)、移动站(mobile station)、移动台(mobile)、远方站(remote station)、远程终端(remote terminal)、移动设备(mobile equipment)、用户终端(user terminal)、无线通信设备(wireless telecom equipment)、用户代理(user agent)、用户装备(user equipment)或用户装置。终端设备可以是无线局域网(wireless  local area networks,WLAN)中的站点(station,STA),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备以及下一代通信系统(例如,第6代(sixth-generation,6G)通信网络)中的终端或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。其中,5G还可以被称为新空口(new radio,NR)。在本申请中,为了便于叙述,部署在上述设备中的芯片,或者芯片也可以称为终端设备。
示例性地,图1中的网络设备101的主要功能是控制终端设备通过无线接入到移动通信网络。网络设备101是移动通信系统的一部分,它实现了一种无线接入技术。示例性地,网络设备101例如可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。可以理解,本申请中的无线接入网设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端设备和网络设备101可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请实施例对网络设备101和终端设备的应用场景不做限定。
网络设备101和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述终端的应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
此外,图1中所示的终端设备既可以均在网络设备101的覆盖范围内;或者,也可以一部分终端设备在网络设备101的覆盖范围内,一部分不在网络设备101的覆盖范围内;又或者,均不在网络设备101的覆盖范围内。本申请实施例对此不做限定。
对于图1所示的通信系统,网络设备101与终端设备102和终端设备103之间分 别具有第一通信接口,终端设备102与终端设备103之间具有第二接口。可选的,终端设备103与终端设备104之间也具有第二接口。
示例性地,第一接口可以为Uu接口,第二接口可以为PC5接口。
应理解,对于图1所示的通信系统,可以存在两种通信场景。
其中,第一种通信场景包括终端设备与网络设备之间的通信,例如终端设备102和网络设备101之间的通信。更具体地,将终端设备102与网络设备101之间的通信称为上下行链路通信。例如,终端设备102可以提供上行链路向网络设备101发送信息,而网络设备101可以通过下行链路向终端设备102发送信息。
在第二种通信场景中,包括终端设备与终端设备之间的通信,例如终端设备102和终端设备103之间的通信。更具体地,将终端设备102和终端设备103之间通信的链路称为侧行链路,终端设备102和终端设备103可以在侧行链路上传输数据。
在此说明的是,本申请实施例对终端设备与终端设备之间的具体通信场景并不进行限定。例如,终端设备和终端设备可以是车载设备与车载设备之间相互通信。
可以理解的是,图1中示出的网络设备和终端设备的数量仅是一种示例。在实际过程中网络设备终端设备的数量还可以为其它数量。当然,该通信系统还可以包括其他网元(例如,核心网设备)。接入网设备可以与该核心网设备连接。核心网设备可以是4G核心网(例如,核心分组网演进(evolved packet core,EPC)或者5G核心网(5G Core,5GC)中的网元。
需要说明的是,本申请提供的定位方法可用于任一通信系统,例如,通信系统可以为新空口(new radio,NR)通信系统、NR车联网(vehicle-to-everything,V2X)系统以及其他下一代通信系统等,不予限制。并且,还应理解,本申请提供的定位方法可以应用于各种场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延(ultra-reliable and low latency communications,URLLC)、海量机器类通信(massive machine type of communication,mMTC)/物联网(internet of things,IOT)、设备到设备(device to device,D2D)、车辆到车辆(vehicle to vehicle,V2V)等。
对于图1所示的通信系统,不论是上述终端设备与网络设备之间的通信场景,还是终端设备与终端设备之间的通信场景,如何准确地定位出终端设备的位置成为目前研究的热点。
以终端设备与网络设备之间的通信场景为例,图2为本申请一个实施例提供的定位的架构示意图。该网络架构为(5th generation,5G)定位的架构。如图2所示,该架构200中可以包括用户设备(user equipment,UE)201,接入网(acess network,AN)202、接入及移动性管理功能(access and mobility management function,AMF)网元203以及位置管理功能(location management function,LMF)网元204。
AMF网元203负责用户的接入管理,并对用户的业务的接入进行管控。具体地,在定位架构中,AMF网元可以用于发起定位请求,或者控制基站进行定位等。
LMF网元204负责定位管理。如接收其他网元的定位请求,并对用户的定位数据进行收集,通过定位计算后获得UE 201的位置。LMF网元204还可以计算或验证最终位置和任何速度估计值,并可以估计达到的精度。例如,LMF网元204使用“Nlmf” 接口从服务AMF接收对目标UE的位置请求LMF网元204还可以对基站或定位管理单元进行管理和配置,实现定位参考信号的配置等。具体地,LMF网元204中可以包括增强服务移动位置中心(enhanced serving mobile location centre,E-SMLC)和安全用户面定位(secure user plane location,SUPL)定位平台(SUPL location platform,SLP),其中,SLP用于用户面定位,E-SMLC用于控制面定位。
如图2所示,UE 201可以通过AN 202与AMF网元203连接,AMF网元203与LMF网元204连接。该架构200中的接口和连接可以包括:“LTE-Uu”、“NR-Uu”、“NG-C”以及“NL1”。其中,“NG-C”为AN 202和AMF网元203之间的控制面连接,“LTE-Uu”为ng-eNB2021和UE201之间的协议接口、“NR-Uu”为UE 201和gNB 2022之间的协议接口、“NL1”是LMF网元204和AMF网元203之间的协议接口。
目前,在所有定位UE的方法中,到达时延(time of arrival,TOA)和到达时间差(time difference of arrival,TDOA)方法被广泛使用。对于TOA,其定位原理是通过基站或终端设备测量接收到的直射径载波信号的传输时间再乘以光速得到基站与终端设备的距离,然后当得到距离之后,可以结合发送端位置求得终端设备位置。而对于TDOA,其定位原理是通过测量多个基站接收到终端设备的载波信号的时间差来得到多个基站与终端设备之间的距离差,然后当得到多个基站与终端设备之间的距离差后,可以结合发送端位置求得终端设备位置。从数学的观点来看,该被定位UE的运动轨迹,就是以该任意两个基站为焦点、以其距离差为定差的曲线。被定位用户设备通过对至少三个基站的测量与计算,可以得到至少两条曲线,而被定位UE的位置就是至少两条曲线的交点。
以TDOA为例,在具体实现时,LMF网元请求被定位UE附近的多个基站发送用于TDOA定位的辅助信息,多个基站在收到请求后向LMF网元发送各自的定位辅助信息,LMF网元再将接收到的定位辅助信息发送给被定位UE,LMF网元向被定位UE发起定位信息测量请求,被定位UE测量多个基站信号到达时间差完成测量并将测量信息发送LMF网元,最后LMF网元基于被定位UE上报的测量信息计算被定位UE的位置。
然而,根据研究发现,不论是TOA技术还是TDOA技术,其测距精度与带宽相关,通常带宽越大时对应的测距精度越高。但由于频谱资源是有限的,例如第五代(5th generation,5G)移动通信系统中的“FR1频段”支持的最大带宽为100M,导致使用TOA技术或者TDOA技术的测距误差范围从一米左右到几十米或者更大。从而很难满足第三代合作伙伴计划(the 3rd generation partnership project,3GPP)的TS 22.261中提出的更高精度需求。因此,如何能够使得测距精度得以提升成为亟待解决的技术问题。
而载波相位测距技术是目前高精度定位的主要技术之一,其通过测量参考信号从发送端到接收端的载波相位变化实现测量带有整周模糊度的距离。以频率3GHz的射频信号为例,对应的载波波长为0.1米。因而当可以正确求解载波相位整周模糊度后,理论上载波相位测距精度可以达到厘米级到毫米级,从而得到高精度测距结果。
具体地,载波相位测距技术的原理可以如图3所示。图中表示通信设备301与通信设备302之间的距离;φ为载波相位测量值;N代表整周模糊度,为整数,代表经过了 N个载波整周。假设f为载波频率,c为光速,则f、c、d与之间满足下式:
因此,若能够求出载波相位整周模糊度,可以获得通信设备301与通信设备302之间的高精度测距结果。
鉴于此,本申请实施例提供一种通信设备间的测距方法。本申请提供的测距方法中,在获得通信设备之间的第一距离(例如通过TDOA获得的距离或者TOA获得的距离或者小区标识(identifier,ID)获得的距离,本申请中也称为粗略距离)后、首先基于第一距离和载波相位测距技术确定出整周模糊度,然后再进一步地基于确定出的整周模糊度、载波频率和载波相位测量值之间的映射关系确定出通信设备之间的距离,从而提升测量出的通信设备之间的距离的测距精度。
图4为本申请一个实施例提供的定位方法的流程性示意图。如图4所示,该方法中包括步骤S401、步骤S402和步骤S403。
在此说明的是,本实施例以第一通信设备与第二通信设备之间的通信为上下行通信为例进行介绍,即本申请实施提供的测距方法可以应用于第五代移动通信系统中的上下行链路定位场景,并且第一通信设备与第二通信设备中,一个通信设备为网络设备,另一个通信设备为终端设备。
S401,第二通信设备发送一个或多个参考信号;相应地,第一通信设备接收第二通信设备发送的一个或多个参考信号。
其中,第一通信设备也可以称为接收设备,第二通信设备也可以称为发送设备。
在一种实现方式中,第二通信设备可以在M个频率资源上向第一通信设备发送一个或多个参考信号。相应地,第一通信设备在M个频率资源上接收该一个或多个参考信号。其中,该实现方式中的频率资源是指在频域上连续的一段频谱资源,可以是子载波、资源块(resource block,RB)、带宽部分(bandwidth part,BWP)、载波分量(component carrier,CC)、频带或频段(band,如频带/频段n41(2515-2675MHz))、频率层(frequency layer)、频点(frequency point)、频率范围(frequency range,FR)中的一项或者多项。
在具体实施在M个频率资源上发送一个或多个参考信号时,第二通信设备可以先选取M个频率资源,然后在选取的M个频率资源上发送参考信号。
在此说明的是,本实施例对参考信号的具体形式不做限定。例如,所述参考信号包括以下信息中的一种或者多种:定位参考信号(positioning reference signal,PRS)、探测参考信号(sounding reference signal,SRS)、定位探测参考信号(positioning sounding reference signal,POS-SRS)、跟踪参考信号(tracking reference signal,TRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)的参考信号、解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、侧行链路参考信号。
作为一种示例,当该定位方法应用于第五代移动通信系统中的上下行链路定位场景时,本实施例中的第一通信设备可以是终端设备,第二通信设备是接入网设备。即,接入网设备先确定M个频率资源,然后在M个频率资源上向终端设备发送参考信号。 示例性地,在这种情况下,参考信号可以是PRS。
作为另一种示例,当该定位方法应用于第五代移动通信系统中的上下行链路定位场景时,本实施例中的第一通信设备还可以是接入网设备,第二通信设备是终端设备。即,终端设备先确定M个频率资源,然后在该M个频率资源上向接入网设备发送参考信号。示例性地,在这种情况下,参考信号可以是SRS。
在此说明的是,上述PRS和SRS仅是一种示例,也可以用其他参考信号,本申请实施例对此不做限定。
S402,第一通信设备向网络服务器发送N个相位信息,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;相应地,网络服务器接收N个相位信息。
可以理解的是,当通信设备接收到某个电磁波信号时,可以获得该电磁波信号的相位值。因此,在本实施例中,当第一通信设备接收到第二通信设备在M个频率资源上发送的一个或多个参考信号后,可以测量出该一个或多个参考信号分别对应的相位信息。
在此说明的是,本实施例对N个相位信息中每个相位信息的具体内容不做限定。
作为一种示例,所述N个相位信息为所述一个或多个参考信号的N个载波相位值,所述N个载波相位值与所述一个或多个参考信号的N个频率一一对应,所述N个频率包含于所述M个频率资源中。即,所述N个相位信息中的任意一个相位信息包括所述第一通信设备接收到的对应频率的参考信号的载波相位值,所述N个相位信息与所述M个频率资源中的N个频率一一对应。例如,在具体实现时,第一通信设备可以先获取所述一个或多个参考信号中的N个频率,所述N个频率包含于所述M个频率资源中;然后确定所述N个频率中的每个频率对应的载波相位值;再将与所述N个频率一一对应的N个载波相位值确定为所述N个相位信息。
作为另一种示例,所述N个相位信息中的每个相位信息由所述一个或多个参考信号的K个载波相位值通过线性组合得到,所述K个载波相位值与所述一个或多个参考信号的K个频率一一对应,所述K个频率包含于所述M个频率资源中,K为正整数。例如,在具体实现时,第一通信设备可以先获取所述一个或多个参考信号中的K个频率,所述K个频率包含于所述M个频率资源中;然后确定所述K个频率中的每个频率对应的载波相位值;再基于所述K个频率对应的K个载波相位值,确定所述N个相位信息,所述N个相位信息中的任意一个相位信息由所述K个载波相位值的线性组合得到。
还在此说明的是,本实施例对M和N之间的大小关系不做限定。
例如,在一种实现方式中,当第二设备在M个频率资源上发送一个或多个参考信号时,若基于所述一个或多个参考信号得到的N个相位信息与M个频率资源的中心频率一一对应,则M等于N。
例如,在另一种实现方式中,当所述M个频率资源为频段(M=1)时,第一设备可以在多个CC上发送多个参考信号,基于每个参考信号得到1个相位信息(N>1),因此,在这种情况下,M小于N。
例如,在又一种实现方式中,当所述M个频率资源为子载波(M>1)时,第一设 备可以在单个CC上发送单个参考信号,基于参考信号得到单个CC中心频率的相位信息(N=1),因此,在这种情况下,M大于N。
应理解,以上所述的频率可以是指绝对频率,也可以是指子载波频率、载波频率、资源单元(resource element,RE)频率、中心频率、频点(frequency point)中的一项或者多项,本申请实施例对此不做限定。
在此说明的是,有关通信设备在接收到某个电磁波信号后如何测量该电磁波信号的相位信息的详细描述可以参考相关技术中的实现,此处不再赘述。
本实施例中,当第一通信设备获得N个相位信息之后,会向网络服务器(例如是LMF服务器)发送用于该N个相位信息,相应地,网络服务器接收该N个相位信息。
示例性地,假设第二通信设备使用4个载波频率向第一通信设备发送了参考信号,此时,第一通信设备就会测量出4个相位值,然后将该4个相位值发送给网络服务器。
在此说明的是,本实施例对发送该N个相位信息的具体方式不做限定。例如,可以直接发送该N个相位信息,或者可以发送一个指示信息,该指示信息用于指示该N个相位信息。
S403,网络服务器根据所述N个相位信息确定所述第一通信设备与所述第二通信设备之间的距离。
在此说明的是,本实施例中,将第一通信设备与所述第二通信设备之间的距离也可以称为是目标距离,不构成对本申请实施例的限定。本实施例中,网络服务器在获取到N个相位信息后,能够基于该N个相位信息确定出目标距离。
在一种可实现方式中,网络服务器根据N个相位信息确定目标距离,包括:根据第一频率、第一相位和第一映射关系确定目标距离,所述第一频率包括由N个频率确定的频率,所述N个频率与所述N个相位信息一一对应,所述第一相位包括由所述N个相位信息确定的相位信息,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
该实现方式中,网络服务器需要基于与N个相位信息一一对应的N个频率确定出第一频率。
示例性地,在N大于或等于2的情况下,第一频率包括与N个频率具有第一线性关系的频率值。示例性地,假设第二通信设备在4个频率上向第一通信设备发送参考信号,并且假设该4个频率分别为f1,f2,f3,f4,那么就可以将f1,f2,f3,f4对应的值通过线性组合系数进行线性组合,获得第一频率。在此说明的是,在本实施例中,对N个频率进行线性组合时使用的线性组合系数(本申请中也称为第一线性组合系数)可以是由LMF服务器,或者也可以由接入网设备进行配置,本申请实施例对此不做限定。
本实施例中,网络服务器还基于该N个相位信息确定出第一相位。其中,该第一相位是第一通信设备与第二通信设备之间通过第一频率的信号通信时应对应的相位。
需要说明的是,当使用线性组合系数对N个频率进行线性组合计算得到一个新的频率时,该新的频率对应的新的相位值就会等于该同样的线性组合系数对与N个频率对应的N个相位值进行同样的线性组合计算得到的值。有关该部分的详细推导过程可以参考相关技术中的描述,此处不再赘述。因此,在本实施例中,在N大于或等于2 的情况下,第一相位包括与N个相位信息具有所述第一线性关系的相位值。
该实现方式中,当网络服务器确定了第一频率、第一相位和第一映射关系之后,就可以确定出目标距离。
具体地,网络服务器可以根据第一频率、第一相位和第一映射关系,再结合第一距离确定出第一整周模糊度。然后再基于第一整周模糊度、第一频率、第一相位和第一映射关系,确定第一通信设备与所述第二通信设备之间的距离。
应理解,在上下行链路通信场景中,通常会使用TOA测距方法或TDOA测距方法又或者其他测距方法(统称为现有测距方法)测量得到第一通信设备与第二通信设备之间的距离。
示例性地,可以基于TOA获取第一距离,即通过基站或终端设备测量接收到的直射径载波信号的传输时间再乘以光速得到基站与终端设备的距离。
示例性地,可以基于TDOA技术获取第一距离,即通过测量多个基站接收到终端设备的载波信号的时间差来得到多个基站与终端设备之间的距离差,然后当得到多个基站与终端设备之间的距离差后,可以结合基站位置求得终端设备位置。
还应理解,在使用现有测距方法时,获取到的第一通信设备与第二通信设备之间的距离精度都不是特别高,因此,本实施例中,将使用现有测距方法测量得到的距离称为第一距离,用于指示第一通信设备与第二通信设备之间的一个比较粗略的距离。
在具体实施时,所述第一映射关系满足如下关系式:

其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示频率,表示所述
相位,c表示光速。
那么可以先根据公式确定第一整周模糊度N,其中,[]表示四舍五入取整,d表示第一距离;然后再根据公式确定出目标距离。
本实施例提供的定位方法,当第一通信设备接收到第二通信设备发送的一个或多个参考信号后,能够发送N个相位信息,其中该N个相位信息用于确定第一通信设备与第二通信设备之间的距离。相应地,网络服务器可以基于N个相位信息确定出第一通信设备与所述第二通信设备之间的距离。
可以理解的是,在本实施例中,在网络服务器或者终端设备确定出第一距离的基础之上,再结合N个相位信息对第一距离进行了调整,因此,本实施例提供的定位方法精确度更高。
作为一个可选的实施例,在获得第一频率和第一相位的一种实施方案中,可以先获取网络服务器或第二通信设备配置的第一线性组合系数和/或频率集合,其中,该第一线性组合系数用于指示第一线性关系,所述频率集合中包括上述所述的N个频率信息。例如,第一线性组合系数为0,-1和1中的一个或多个。
在此说明的是,图4所示实施例中,是以第一通信设备与第二通信设备之间的通信为上下行通信为例进行介绍的。此外,上述测距方法还可以应用于侧行链路的通信场 景中。应理解,侧行链路的通信场景中,在第一通信设备与第二通信设备中,一个通信设备为第一终端设备或RSU,另一个通信设备为第二终端设备。还应理解,在侧行链路场景中,第一通信设备与第二通信设备之间的测距方法与上述图4所示实施例中的测距方法的原理一样,区别在于第一通信设备在确定出N个相位信息后,是将包括N个信息发送给第二通信设备,然后由第二通信设备继续执行根据N个相位信息确定第一通信设备与第二通信设备之间的距离的步骤。
应理解,在另一种实现方式中,以上所述实施例中所述的测距方法也可以由第一通信设备直接执行确定目标距离的步骤。在此说明的是,本实施例中的“步骤”仅是作为一种示意,是为了更好的理解实施例所采用的一种表现方法,不对本申请的方案的执行构成实质性限定,例如:该“步骤”还可以理解成“特征”。此外,该步骤不对本申请方案的执行顺序构成任何限定,并且,本申请中出现的所有“步骤”都适用于该约定,在此做统一说明,当再次出现时,不再对其进行赘述。
下面,结合图5,说明一种由第一通信设备来执行确定目标距离的步骤。
图5为本申请一个实施例提供的通信设备间的测距方法的流程性示意图。如图5所示,该方法中包括步骤S501、步骤S502和步骤S503。
S501,第二通信设备发送一个或多个参考信号;相应地,第一通信设备接收第二通信设备发送的一个或多个参考信号。其中,第一通信设备也可以称为接收设备,第二通信设备也可以称为发送设备。
本实施例中,第二通信设备发送一个或多个参考信号。相应地,第一通信设备接收该一个或多个参考信号。
在一种实现方式中,第二通信设备可以在M个频率资源上向第一通信设备发送一个或多个参考信号。其中,有关频率资源的概念可以参考图4所示实施例中的S401中的描述,此处不再赘述。
在具体实施在M个频率资源上发送一个或多个参考信号时,第二通信设备可以先选取M个频率资源,然后在选取的M个频率资源上发送参考信号。
在此说明的是,本实施例对参考信号的具体形式不做限定。例如,所述参考信号包括以下信息中的一种或者多种:PRS、SRS、POS-SRS、TRS、CSI-RS、解调参考信号DM-RS、PT-RS、侧行链路参考信号。
作为一种示例,当该定位方法应用于第五代移动通信系统中的上下行链路定位场景时,本实施例中的第一通信设备可以是终端设备,第二通信设备是接入网设备。即,接入网设备先确定M个频率资源,然后在该M个频率资源上向终端设备发送参考信号。示例性地,在这种情况下,参考信号可以是PRS。
作为另一种示例,当该定位方法应用于第五代移动通信系统中的上下行链路定位场景时,本实施例中的第一通信设备还可以是接入网设备,第二通信设备是终端设备。即,终端设备先确定M个频率资源,然后在该M个频率资源上向接入网设备发送参考信号。示例性地,在这种情况下,参考信号可以是SRS。
在此说明的是,上述PRS和SRS仅是一种示例,也可以用其他参考信号,本申请实施例对此不做限定。
作为又一种示例,当在通信设备间的测距方法应用于侧行链路定位场景时,所述 第一通信设备为第一终端设备或RSU,所述第二通信设备为第二终端设备。
S502,第一通信设备根据N个相位信息确定所述第一通信设备和所述第二通信设备之间的距离,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数。
可以理解的是,当通信设备接收到某个电磁波信号时,可以获得该电磁波信号的相位值。因此,在本实施例中,当第一通信设备接收到第二通信设备发送的一个或多个参考信号后,可以测量出该一个或多个参考信号分别对应的相位信息。
例如,当第一通信设备接收到第二通信设备在M个频率资源上发送的一个或多个参考信号后,可以测量出该一个或多个参考信号分别对应的相位信息。在此说明的是,有关M和N之间的关系可以参考本申请图4所示实施例中S402中的描述,存储不再赘述。
本实施例中,第一通信设备获得N个相位信息之后,第一通信设备能够根据N个相位信息确定第一通信设备与所述第二通信设备之间的距离。在此说明的是,本实施例中的确定第一通信设备与所述第二通信设备之间的距离,也称为是确定目标距离。
在一种可实现方式中,第一通信设备根据N个相位信息确定目标距离,包括:根据第一频率、第一相位和第一映射关系确定目标距离,所述第一频率包括由N个频率确定的频率,所述N个频率与所述N个相位信息一一对应,所述第一相位包括由所述N个相位信息确定的相位信息,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
该实现方式中,第一通信设备需要基于与N个相位信息一一对应的N个频率确定出第一频率。
示例性地,在N大于或等于2的情况下,第一频率包括与N个频率具有第一线性关系的频率值。示例性地,假设第二通信设备在3个频率上向第一通信设备发送参考信号,并且假设该3个频率分别为f1,f2,f3,那么就可以将f1,f2,f3对应的值通过线性组合系数进行线性组合,获得第一频率。在此说明的是,在本实施例中,对N个频率进行线性组合时使用的线性组合系数(本申请中也称为第一线性组合系数)可以是由LMF服务器,或者也可以由接入网设备进行配置,本申请实施例对此不做限定。
本实施例中,第一通信设备还基于该N个相位值确定出第一相位。其中,该第一相位是第一通信设备与第二通信设备之间通过第一频率的信号通信时应对应的相位。需要说明的是,当使用线性组合系数对N个频率进行线性组合计算得到一个新的频率时,该新的频率对应的新的相位值就会等于该同样的线性组合系数对与N个频率对应的N个相位值进行同样的线性组合计算得到的值。有关该部分的详细推导过程可以参考相关技术中的描述,此处不再赘述。因此,在本实施例中,在N大于或等于2的情况下,第一相位包括与N个相位信息具有所述第一线性关系的相位值。
该实现方式中,当第一通信设备确定了第一频率、第一相位和第一映射关系之后,就可以确定出目标距离。
具体地,第一通信设备可以先基于第一频率、第一相位和第一映射关系,再结合第一距离确定出第一整周模糊度;其中,第一距离可以认为是第一通信设备确定出的一个粗略距离。该第一距离可以是第一通信设备基于TOA测距方法或者TDOA测距方 法又或者其他测距及定位方法获得的。
然后,当确定出第一整周模糊度之后,再基于第一整周模糊度、第一频率、第一相位和第一映射关系,确定目标距离。
在具体实施时,所述第一映射关系满足如下关系式:

其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示频率,表示所述
相位,c表示光速。
那么可以先根据公式确定第一整周模糊度N,其中,[]表示四舍五入取整;然后再根据公式确定出目标距离。
S503,第一通信设备发送第一信息,所述第一信息用于指示所述第一通信设备和所述第二通信设备之间的距离。
本实施例中,当第一通信设备确定出第一通信设备和所述第二通信设备之间的距离之后,即确定出目标距离后,便可以向网络服务器发送第一信息,其中该第一信息用于指示目标距离。
在一种实现方式中,所述第一信息中包括所述目标距离。即,第一通信设备在确定出目标距离后,直接将该目标距离上报给网络服务器。
在另一种实现方式中,第一信息中包括用于指示目标距离与第一距离之差的信息。即第一通信设备上报的信息用于指示目标距离与第一距离之差。例如,第一通信设备通过TOA可以实现亚米级定位,则可选择确定的目标距离中的小数部分上报。但是,应理解,由于TDOA是上报到两个基站的时间差,因此在补充上报高精度测距结果之前需要先做一致性处理,比如可以和TDOA一样先做差分处理。一致性处理指将两者的测距结果处理为度量同一个测量量且单位一致。
在又一种实现方式中,第一信息中包括用于指示目标距离来源的标识符。即,第一通信设备上报的信息中包括标识符,以通过标识符指示测距结果来源,比如0代表测距结果来自TDOA测量,1代表测距结果来自多频载波相位测量。
在又一种实现方式中,第一信息中包括用于指示测距精度的信息。示例性地,用于指示测距精度的信息称为测距精度值。比如测量精度值可以用[0,1,…….,15]来描述,其值越大代表测距结果测量精度越差;比如可以是线性度量,例如0代表测量精度为0厘米,1代表测量精度为10厘米,15代表测量精度为1.5米。也可以是指数度量,例如0代表测量精度为1毫米,1代表测量精度为2毫米,15代表测量精度为32米。本申请实施例对此不做限定。
本申请实施例提供的定位方法,当第一通信设备接收到第二通信设备发送的一个或多个参考信号后,能够基于该一个或多个参考信号确定出N个相位信息,然后再基于该N个相位信息确定出目标距离,并发送用于指示该目标距离的第一信息。
可以理解的是,在本实施例中,在第一通信设备确定出第一距离后,再结合通信设备间的距离、相位和频率之间的映射关系来进一步确定目标距离,因此,本实施例 提供的定位方法精确度更高。
结合图5,作为一个可选的实施例,在所述通信设备间的测距方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为终端设备,所述第二通信设备为接入网设备,所述参考信号包括PRS。
结合图5,作为一个可选的实施例,在所述通信设备间的测距方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为接入网设备,所述第二通信设备为终端设备,所述参考信号包括SRS。
结合图5,作为一个可选的实施例,在所述通信设备间的测距方法应用于侧行链路定位场景时,所述第一通信设备为第一终端设备或RSU,所述第二通信设备为第二终端设备。
可以理解的是,图4和图5所示实施例中仅是通过合成一个第一频率、第一相位来获得目标距离的。应理解,一般低频对应长波长,整周模糊度求解较易,但测距精度较差;而高频对应短波长,整周模糊度求解较难,但测距精度较高。因此,在具体实施时,为了获得更高精度的目标距离,还可以通过N个频率获得一系列的第一频率,然后再分别获得该一系列的第一频率对应的一系列第一相位,再逐级确定不同第一频率与对应的第一相位的整周模糊度,从而实现高精度测距。
示例性地,如图6所示,假设发射端601和接收端602之间可以通过多个频率(f1,f2,…….fL)进行通信,且假设f1,f2,…….fL的大小关系为依次减小,即f1的频率最高,fL频率最低。那么,对于接收端602,可以同时测量不同频率上的参考信号的载波相位,假设将与f1,f2,…….fL分别对应的载波相位表示为如图6所示,则可以根据公式:
构建K个有梯度的从低到高的第一频率如图7所示,并计算与该K个第一频率分别对应的载波相位测量值现假设可以通过一些现有的方式,例如是TOA方式或者TDOA方式获得发射端601和接收端602之间的粗距ρ,由于低频对应长波长,因此整周模糊度求解较易,但测量误差较差;而高频对应短波长,整周模糊度求解较难,但测量误差较高。因此,通过可以合成该K个具有梯度的第一频率,然后从低频到高频逐级求解各个第一频率对应的载波相位测量值的整周模糊度,从而可以获得高精度测距结果。
下面,为便于理解,以图5所示实施例中的描述为基础,分别介绍两种场景下第一通信设备进行定位的具体实施过程。
其中,第一个示例中,以在频段2.515G~2.615G内选取4个频率(即M等于4),合成4个第一频率以及4个第一相位为例,介绍在上下行链路通信场景中实现高精度测距方法。具体地,在实施时,可以包括以下步骤:
步骤一:在频段内选取四个频率。
本实施例中,将选取的四个频率分别表示为f1,f2,f3和f4
选取的频率可以由5G网络提前约定好发对应频率的参考信号;也可以由LMF服务器或接入网设备在参考信号发送之前进行频率的选择配置;还可以由接入网设备或 终端设备在发送参考信号之前发送选取的频率。
一种频率选取方法可以是四个频率彼此做差后可以找到若干个满足等比数列或接近等比数列的第一频率。其中,数列的逐级倍数(比例系数)相差一倍以内的可以认为接近等比数列。
比如,可以配置或约定选取的四个频率为f1=2.515G、f2=2.609G、f3=2.6093G、f4=2.615G。
步骤二:发送端向接收端发送参考信号。
具体地,发送端可以在上述选取的四个频率上发送参考信号或者发送的参考信号频段包含上述四个频率。
示例性地,终端设备在上述四个频率向接入网设备发送SRS,相应地,接入网设备接收SRS;或者接入网设备在上述四个频率向终端设备发送PRS,相应地,终端设备接收该PRS。
步骤三:接收端根据上述选取四个频率确定合成的四个第一频率分别对应的线性组合系数,以及计算四个第一频率分别对应的第一相位。
在具体实施时,合成的第一频率的个数及对应线性组合系数可以由LMF服务器或接入网设备配置,也可以由接收端(可以是接入网设备,也可以是终端设备)实现。
示例性地,一种合成第一频率的原则可以是线性组合系数ki尽量较小,比如尽量在{0、1、-1}之间选取,以及合成的四个第一频率满足等比数列或接近等比数列。
比如,可以配置合成四个第一频率 其中,表示合成的第一个第一频率,表示合成的第二个第一频率,表示合成的第三个第一频率,表示合成的第四个第一频率。其中,与四个第一频率对应的线性组合系数如下:
即:
对应的第一相位计算如下:

其中,表示与第一频率对应的第一相位,表示与第一频率对应的第
一相位,表示与第一频率对应的第一相位,表示与第一频率对应的第一 相位。
步骤四:接收端逐级确定与四个第一频率对应的整周模糊度,得到目标距离。
具体地,假设真实距离为1100m,第一距离dρ来自增强型小区标识(enhanced cell identity,ECID),测量误差为500m,载波相位测量误差为1/60个载波波长(6度)。
那么,可以先根据公式确定出第一频率对应的整周模糊度,其中,[]表示四舍五入取整;然后再根据公式得到精度有所提高的距离测量值,进一步地,再将该精度有所提高的距离测量值作为第一距离,继续确定出第二频率对应的整周模糊度以及精度有所提高的距离测量值,如此逐级进行求解,最终得到发送端与接收端之间的目标距离。
在本实施例中,逐级确定四个虚拟频率对应的整周模糊度如下:
最终得到目标距离信息为:其测距误差约为0.002米,从而满足高精度测距要求。
步骤五:接收端向LMF服务器上报测距结果信息。
本实施例中,若发送端是终端设备,则接收端是接入网设备,此时接入网设备可以将测距结果信息通过NR定位协议A(也称为“NRPPa”)消息传给LMF。而若发送端是接入网设备,则接收端是终端设备,此时终端设备可以将测距结果信息通过长期演进定位协议(LTE positioning protocol,LPP)消息传给LMF。
具体地,在上报测距结果信息时有下述选择:
a)上报第二测距结果信息。
b)补充上报高精度测距信息;例如上报与TOA测距之差;由于TOA可以实现亚米级定位,因此可选择上报第二测距结果的小数部分。
c)和第一距离的测距结果统一上报。例如统一上报参考信号时间差(reference signal time difference,RSTD)的分辨率应达到皮秒量级。由于RSTD是到两个基站的时间差,因此在统一上报之前,可能需要对多频载波相位的测距结果和TDOA的测距结果做一致性处理,比如说对高精度测距结果也做差分处理。同时上报标识符指示测距结果来源,比如0代表测距结果来自TOA测量,1代表测距结果来自多频载波相位测量。或者上报测量精度值指示测距结果测量精度,比如测量精度值可以用[0,1,……, 15]来描述,其值越大代表测距结果测量精度越差;比如可以是线性度量,例如0代表测量精度为0厘米,1代表测量精度为10厘米,15代表测量精度为1.5米。也可以是指数度量,例如0代表测量精度为1毫米,1代表测量精度为2毫米,15代表测量精度为32米。
本实施例提供的通信设备间的测距方法,通过在多个频率上发送/接收参考信号并测量与多个频率对应的多个相位,然后再通过对多个频率的线性组合得到一系列新的第一频率和与该一系列第一频率对应的一系列第一相位,然后再基于第一距离和第一映射关系逐级确定不同第一频率对应的整周模糊度,从而实现高精度测距。
下面,介绍第二个场景中的测距方法。该场景中,以在“FR1”内选取三个频率(即M等于3),合成三个第一频率以及3个第一相位为例,介绍实现高精度测距方法。该场景中,实现架构为侧行链路定位。具体地,在实施时,可以包括以下步骤:
步骤一:在频段内选取三个频率。
本实施例中,将选取的三个频率分别表示为f1,f2和f3
选取的频率可以由5G网络提前约定好发对应频率的参考信号;也可以由LMF服务器或接入网设备在参考信号发送之前进行频率的选择配置;还可以由接入网设备或终端设备在发送参考信号之前发送选取的频率。
一种载波频率选取方法可以是三个频率彼此做差后可以找到若干个满足等比数列或接近等比数列的第一频率。其中,数列的逐级倍数(比例系数)相差一倍以内的可以认为接近等比数列。
比如,可以配置或约定选取的三个载波频率为f1=3G、f2=3.15G、f3=3.75G。
步骤二:终端设备与终端设备之间发送参考信号或终端设备与RSU之间发送参考信号。
具体地,发送参考信号的一端在上述选取的三个频率上发送参考信号或者发送的参考信号频段包含上述三个频率。
步骤三:接收参考信号的终端设备根据上述选取的三个频率确定合成的三个第一频率分别对应的线性组合系数,以及计算三个第一频率分别对应的第一相位。
在具体实施时,合成的第一频率的个数及对应的线性组合系数可以由LMF服务器或接入网设备配置,也可以由接收参考信号的一端实现。
示例性地,一种合成第一频率的原则可以是线性组合系数ki尽量较小,比如尽量在{0、1、-1}之间选取,以及合成的三个第一频率满足等比数列或接近等比数列。
比如,可以配置合成三个虚拟频率其中,表示合成的第一个频率,表示合成的第二个第一频率,表示合成的第三个第一频率,与三个第一频率对应的线性组合系数如下:
即:
对应的第一相位计算如下:

其中,表示与第一频率对应的第一相位,表示与第一频率对应的第
一相位,表示与第一频率对应的第一相位。
步骤四:接收参考信号的终端设备逐级确定与三个第一频率对应的整周模糊度,得到目标距离。
具体地,假设真实距离为100m,第一距离dρ来自TDOA测距,测量误差为1m,载波相位测量误差为1/10个载波波长(36度)。
那么,可以先根据公式确定出第一频率对应的整周模糊度,其中,[]表示四舍五入取整;然后再根据公式得到精度有所提高的距离测量值,进一步地,再将该精度有所提高的距离测量值作为第一距离,继续确定出第二频率对应的整周模糊度以及精度有所提高的距离测量值,如此逐级进行求解,最终得到发送端与接收端之间的目标距离。
在本实施例中,逐级确定四个虚拟频率对应的整周模糊度如下:
最终得到目标距离信息为:其测距误差约为0.008米,从而满足高精度测距要求。
步骤五:接收参考信号的终端设备向发送参考信号的终端设备或RSU上报测距结果信息。
具体地,在该侧行链路通场景中,若发送参考信号的一端是终端设备或RSU,接收参考信号的一端是终端设备,那么接收参考信号的一端就可以将测距结果信息通过Sidelink消息发送给发送参考信号的终端设备或RSU。又或者,若发送参考信号的一端是终端设备,接收参考信号的一端为RSU,那么RSU就可以将将测距结果信息通过Sidelink消息发送给发送参考信号的终端设备。
具体地,本实施例在上报测距结果时有下述选择:
a)上报目标距离结果信息;
b)补充上报高精度测距信息;例如上报与TOA测距之差;由于TOA可以实现亚米级定位,因此可选择上报目标距离的小数部分。
c)和第一距离的测距结果统一上报。例如统一上报RSTD,RSTD的分辨率应达到 皮秒量级。由于RSTD是到两个基站的时间差,因此在统一上报之前,可能需要对多频载波相位的测距结果和TDOA的测距结果做一致性处理,比如说对高精度测距结果也做差分处理。同时上报标识符指示测距结果来源,比如0代表测距结果来自TOA测量,1代表测距结果来自多频载波相位测量。或者上报测量精度值指示测距结果测量精度,比如测量精度值可以用[0,1,……,15]来描述,其值越大代表测距结果测量精度越差;比如可以是线性度量,例如0代表测量精度为0厘米,1代表测量精度为10厘米,15代表测量精度为1.5米。也可以是指数度量,例如0代表测量精度为1毫米,1代表测量精度为2毫米,15代表测量精度为32米。
本实施例提供的定位方法,还考虑了Sidelink定位场景。在本实施例中,终端设备可选择发送高精度测距信息,包括高精度测距结果形式、测量精度、测距结果来源等。
上述主要从设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对各个设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图8为本申请一个实施例提供的定位装置的结构示意图。该装置800可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分通信设备功能的逻辑模块或软件。该装置800包括:收发模块801。
在一个实施例中,该收发模块801包含于第一通信设备中。该示例中,收发模块801,用于接收第二通信设备发送的一个或多个参考信号;所述收发模块801,还用于发送N个相位信息,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数数。
作为一种示例,收发模块801可以用于执行图4或至图5所述方法中的接收第二通信设备发送的一个或多个参考信号的步骤。
作为另一种示例,收发模块801可以用于执行图4所述的方法中的第一通信设备向网络服务器发送N个相位信息的步骤。
在一种可能的实现方式中,所述N为大于或等于2的正整数。
在一种可能的实现方式中,所述一个或多个参考信号由所述第二通信设备在M个频率资源上发送,M为正整数。
在一种可能的实现方式中,所述N个相位信息为所述一个或多个参考信号的N个 载波相位值,所述N个载波相位值与所述一个或多个参考信号的N个频率一一对应,所述N个频率包含于所述M个频率资源中。
在一种可能的实现方式中,所述N个相位信息中的每个相位信息由所述一个或多个参考信号的K个载波相位值通过线性组合得到,所述K个载波相位值与所述一个或多个参考信号的K个频率一一对应,所述K个频率包含于所述M个频率资源中,K为正整数。
在一种可能的实现方式中,所述定位方法应用于第五代移动通信系统中的上下行链路定位场景。
在一种可能的实现方式中,在所述第五代移动通信系统中的上下行链路定位场景下,所述第一通信设备为终端设备,所述第二通信设备为接入网设备。
在一种可能的实现方式中,在所述第五代移动通信系统中的上下行链路定位场景下,所述第一通信设备为接入网设备,所述第二通信设备为终端设备。
在一种可能的实现方式中,所述定位方法应用于侧行链路定位场景。
在一种可能的实现方式中,在所述侧行链路定位场景中,所述第一通信设备为第一终端设备或RSU,所述第二通信设备为第二终端设备。
在一种可能的实现方式中,在所述侧行链路定位场景中,所述第一通信设备为第一终端设备,所述第二通信设备为RSU。
在一种可能的实现方式中,所述参考信号包括以下信息中的一种或者多种:PRS、探SRS、POS-SRS、TRS、CSI-RS、DMRS、PTRS、侧行链路参考信号。
在另一个实施例中,收发模块801包含于第二通信设备中。该实施例中,收发模块801用于发送一个或多个参考信号,M为正整数。
在一种可能的实现方式中,所述收发模块801具体用于:在M个频率资源上发送所述一个或多个参考信号,M为正整数。
在一种可能的实现方式中,所述收发模块801还用于:发送第一线性组合系数和/或频率集合,所述第一线性组合系数指示第一线性关系,所述频率集合中包括N个频率,N为正整数,所述第一线性关系指示所述N个频率与第一频率之间的映射关系。
作为一种示例,收发模块801可以用于执行图4或图5所述方法中的第二通信设备发送一个或多个参考信号的步骤。
图9为本申请一个实施例提供的定位装置的结构示意图。该装置900可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分通信设备功能的逻辑模块或软件。该装置900包括:收发模块901和处理模块902。
在一个实施例中,收发模块901和处理模块902包含于网络服务器中。具体地,在该实施例中,收发模块901,用于接收来自第一通信设备的N个相位信息,所述N个相位信息是基于第二通信设备发送的一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;处理模块902,用于根据所述N个相位信息确定所述第一通信设备与所述第二通信设备之间的距离。
作为一种示例,处理模块902可以用于执行图4所述的方法中的网络服务器根据 N个相位信息确定第一通信设备与第二通信设备之间的距离步骤。
在一种可能的实现方式中,所述处理模块902具体用于:根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
在一种可能的实现方式中,所述处理模块902具体用于:基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
在一种可能的实现方式中,所述第一映射关系满足如下关系式:

其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示所述频率,表示
所述相位,c表示光速。
在一种可能的实现方式中,所述收发模块901还用于:接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率。
在一种可能的实现方式中,所述第一线性组合系数为0,-1和1中的一个或多个。
在又一个实施例中,收发模块901和处理模块902包含于第一通信设备中。具体地,在该实施例中,收发模块901,用于接收第二通信设备发送的一个或多个参考信号;处理模块902,用于根据N个相位信息确定所述第一通信设备和所述第二通信设备之间的距离,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;所述收发模块901,还用于发送第一信息,所述第一信息用于指示所述第一通信设备和所述第二通信设备之间的距离。
作为一种示例,收发模块901可以用于执行图5所述方法中的第一通信设备发送第一信息的步骤,又或者根据N个相位信息确定第一通信设备和第二通信设备之间的距离。
在一种可能的实现方式中,所述处理模块902具体用于:根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
在一种可能的实现方式中,所述处理模块902具体用于:基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
在一种可能的实现方式中,所述第一映射关系满足如下关系式:

其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示所述频率,表示
所述相位,c表示光速。
在一种可能的实现方式中,所述收发模块901还用于:接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率。
所述第一线性组合系数为0,-1和1中的一个或多个。
在一种可能的实现方式中,所述第一信息包括所述第一通信设备与所述第二通信设备之间的距离。
在一种可能的实现方式中,所述第一信息包括以下信息中的一项或多项:所述第一通信设备与所述第二通信设备之间的距离与所述第一距离的差值信息、所述第一通信设备与所述第二通信设备之间的距离来源的标识符信息、所述第一通信设备与所述第二通信设备之间的距离的精度信息。
在一种可能的实现方式中,所述定位方法应用于第五代移动通信系统中的上下行链路定位场景。
在一种可能的实现方式中,在所述定位方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为终端设备,所述第二通信设备为接入网设备。
在一种可能的实现方式中,在所述定位方法应用于第五代移动通信系统中的上下行链路定位场景时,所述第一通信设备为接入网设备,所述第二通信设备为终端设备。
在一种可能的实现方式中,所述定位方法应用于侧行链路定位场景。
在一种可能的实现方式中,在所述定位方法应用于侧行链路定位场景时,所述第一通信设备为第一终端设备或路侧单元RSU,所述第二通信设备为第二终端设备。
在一种可能的实现方式中,在所述定位方法应用于侧行链路定位场景时,所述第一通信设备为第一终端设备,所述第二通信设备为路侧单元RSU。
在一种可能的实现方式中,所述参考信号包括以下信息中的一种或者多种PRS、SRS、POS-SRS、TRS、CSI-RS、DMRS、PTRS、侧行链路参考信号。
需要说明的是,图8或图9中所述的收发模块也可以包括接收模块和发送模块,接收模块可以用于执行上述收发模块所执行的接收操作;发送模块可以用于执行上述收发模块所执行的发送操作。
另外,图8或图9中所述的收发模块可以由收发器代替,该收发器可以集成收发模块的功能,不构成对本申请的限定。在这种情况下,收发器还可以包括接收器和发送器,接收器可以用于执行上述收发器所执行的接收操作;发送器可以用于执行上述收发器所执行的发送操作。
还应理解,本申请中的所述的收发模块或者收发器也可以描述为输入输出单元,其中,输入输出单元也可以包括输入单元和输出单元;输入单元可以用于执行上述收发模块或收发器所执行的接收动作,输出单元可以用于执行上述收发模块或收发器所执行的发送动作。
图10为本申请提供的一种终端设备1000的结构示意图。为了便于说明,图10 仅示出了终端设备的主要部件。如图10所示,终端设备1000包括处理器、存储器、控制电路、天线以及输入输出装置。该终端设备1000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于控制终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图10中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在图10的实施例中,可以将具有收发功能的天线和控制电路视为终端设备1000的收发单元1001,将具有处理功能的处理器视为终端设备1000的处理单元1002。如图10所示,终端设备1000包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图10所示的终端设备1000能够实现图4或图5所示的方法实施例中涉及终端设备的各个过程。终端设备1000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图11为本申请另一个实施例提供的定位装置的结构示意图。图11所示的管理装置可以用于执行前述任意一个实施例所述的方法。
如图11所示,本实施例的装置1100包括:存储器1101、处理器1102、通信接口1103以及总线1104。其中,存储器1101、处理器1102、通信接口1103通过总线1104实现彼此之间的通信连接。
应理解,装置1100可以具体为上述实施例中的第一通信设备或第二通信设备,或者,上述实施例中的第一通信设备或第二通信设备的功能可以集成在装置1100中,装置1100可以用于执行上述实施例中的第一通信设备或第二通信设备对应的各个步骤和/或流程。
存储器1101可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器1101可以存储程序,当存储器1101中存储的程序被处理器1102执行时,处理器1102用于执行图4至图5所示的方法的各个步骤。
处理器1102可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本申请方法实施例的方法。
处理器1102还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请实施例的规划自动驾驶车辆的方法的各个步骤可以通过处理器1102中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器1102还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1101,处理器1102读取存储器1101中的信息,结合其硬件完成本申请装置包括的单元所需执行的功能,例如,可以执行图4至图5所示实施例的各个步骤/功能。
通信接口1103可以使用但不限于收发器一类的收发装置,来实现装置1100与其他设备或通信网络之间的通信。
总线1104可以包括在装置1100各个部件(例如,存储器1101、处理器1102、通信接口1103)之间传送信息的通路。
应理解,本申请实施例所示的装置1100可以是电子设备,或者,也可以是配置于电子设备中的芯片。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门 阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
应理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
还应理解,本申请实施例的各个方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限”。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。

Claims (39)

  1. 一种定位方法,其特征在于,应用于第一通信设备,包括:
    接收第二通信设备发送的一个或多个参考信号;
    发送N个相位信息,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述一个或多个参考信号由所述第二通信设备在M个频率资源上发送,M为正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述N个相位信息为所述一个或多个参考信号的N个载波相位值,所述N个载波相位值与所述一个或多个参考信号的N个频率一一对应,所述N个频率包含于所述M个频率资源中。
  4. 根据权利要求2所述的方法,其特征在于,所述N个相位信息中的每个相位信息由所述一个或多个参考信号的K个载波相位值通过线性组合得到,所述K个载波相位值与所述一个或多个参考信号的K个频率一一对应,所述K个频率包含于所述M个频率资源中,K为正整数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    发送N个频率信息,所述N个频率信息与所述N个相位信息一一对应。
  6. 一种定位方法,其特征在于,包括:
    接收来自第一通信设备的N个相位信息,所述N个相位信息是基于第二通信设备发送的一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;
    根据所述N个相位信息确定所述第一通信设备与所述第二通信设备之间的距离。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述N个相位信息确定所述第一通信设备与所述第二通信设备之间的距离,包括:
    根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
  8. 根据权利要求7所述的方法,其特征在于,所述根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,包括:
    基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;
    基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率信息。
  10. 一种定位方法,其特征在于,应用于第一通信设备,包括:
    接收第二通信设备发送的一个或多个参考信号;
    根据N个相位信息确定所述第一通信设备和所述第二通信设备之间的距离,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;
    发送第一信息,所述第一信息用于指示所述第一通信设备和所述第二通信设备之间的距离。
  11. 根据权利要求10所述的方法,其特征在于,所述根据N个相位信息确定所述第一通信设备和所述第二通信设备之间的距离,包括:
    根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
  12. 根据权利要求11所述的方法,其特征在于,所述根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,包括:
    基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;
    基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率信息。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一信息包括所述第一通信设备与所述第二通信设备之间的距离。
  15. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一信息包括以下信息中的一项或多项:所述第一通信设备与所述第二通信设备之间的距离与所述第一距离的差值信息、所述第一通信设备与所述第二通信设备之间的距离来源的标识符信息、所述第一通信设备与所述第二通信设备之间的距离的精度信息。
  16. 根据权利要求7至9中任一项或权利要求11至13中任一项所述的方法,其特征在于,所述第一映射关系满足如下关系式:
    其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示频率,表示相位,c表示光速。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述参考信号包括以下信息中的一种或者多种:定位参考信号PRS、探测参考信号SRS、定位探测参考信号POS-SRS、跟踪参考信号TRS、信道状态信息参考信号CSI-RS、解调参考信号DMRS、相位跟踪参考信号PTRS、侧行链路参考信号。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述N为大于或 等于2的正整数。
  19. 一种定位装置,其特征在于,应用于第一通信设备,包括:
    接收模块,用于接收第二通信设备发送的一个或多个参考信号;
    发送模块,用于发送N个相位信息,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数。
  20. 根据权利要求19所述的装置,其特征在于,所述一个或多个参考信号由所述第二通信设备在M个频率资源上发送,M为正整数。
  21. 根据权利要求20所述的装置,其特征在于,所述N个相位信息为所述一个或多个参考信号的N个载波相位值,所述N个载波相位值与所述一个或多个参考信号的N个频率一一对应,所述N个频率包含于所述M个频率资源中。
  22. 根据权利要求20所述的装置,其特征在于,所述N个相位信息中的每个相位信息由所述一个或多个参考信号的K个载波相位值通过线性组合得到,所述K个载波相位值与所述一个或多个参考信号的K个频率一一对应,所述K个频率包含于所述M个频率资源中,K为正整数。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,所述发送模块还用于:
    发送N个频率信息,所述N个频率信息与所述N个相位信息一一对应。
  24. 一种定位装置,其特征在于,包括:
    收发模块,用于接收来自第一通信设备的N个相位信息,所述N个相位信息是基于第二通信设备发送的一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;
    处理模块,用于根据所述N个相位信息确定所述第一通信设备与所述第二通信设备之间的距离。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块具体用于:
    根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
  26. 根据权利要求25所述的装置,其特征在于,所述处理模块还用于:
    基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;
    基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
  27. 根据权利要求25或26所述的装置,其特征在于,所述收发模块还用于:
    接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率信息。
  28. 一种通信系统,其特征在于,所述通信系统包括用于执行如权利要求19至 23中任一项所述的方法的第一通信设备,以及包括用于执行如权利要求24至27中任一项所述的方法的网络服务器。
  29. 一种定位装置,其特征在于,应用于第一通信设备,包括:
    收发模块,用于接收第二通信设备发送的一个或多个参考信号;
    处理模块,用于根据N个相位信息确定所述第一通信设备和所述第二通信设备之间的距离,所述N个相位信息是基于所述一个或多个参考信号得到的,所述N个相位信息用于确定所述第一通信设备与所述第二通信设备之间的距离,N为正整数;
    所述收发模块,还用于发送第一信息,所述第一信息用于指示所述第一通信设备和所述第二通信设备之间的距离。
  30. 根据权利要求29所述的装置,其特征在于,所述处理模块,具体用于:
    根据第一频率、第一相位和第一映射关系确定所述第一通信设备与所述第二通信设备之间的距离,所述第一频率为与N个频率信息具有第一线性关系的频率值,所述N个频率信息与所述N个相位信息一一对应,所述第一相位为与所述N个相位信息具有所述第一线性关系的相位值,所述第一映射关系包括通信设备间的距离、相位和频率之间的映射关系。
  31. 根据权利要求30所述的装置,其特征在于,所述处理模块,还用于:
    基于第一距离、所述第一频率、所述第一相位和所述第一映射关系,确定第一整周模糊度;
    基于所述第一整周模糊度、所述第一频率、所述第一相位和所述第一映射关系,确定所述第一通信设备与所述第二通信设备之间的距离。
  32. 根据权利要求30或31所述的装置,其特征在于,所述收发模块,还用于:
    接收第一线性组合系数和/或频率集合,所述第一线性组合系数指示所述第一线性关系,所述频率集合中包括所述N个频率信息。
  33. 根据权利要求29至32中任一项所述的装置,其特征在于,所述第一信息包括所述第一通信设备与所述第二通信设备之间的距离。
  34. 根据权利要求29至32中任一项所述的装置,其特征在于,所述第一信息包括以下信息中的一项或多项:所述第一通信设备与所述第二通信设备之间的距离与所述第一距离的差值信息、所述第一通信设备与所述第二通信设备之间的距离来源的标识符信息、所述第一通信设备与所述第二通信设备之间的距离的精度信息。
  35. 根据权利要求25至27中任一项或权利要求30至32中任一项所述的装置,其特征在于,所述第一映射关系满足如下关系式:
    其中,ρ表示通信设备间的距离,N表示整周模糊度,f表示频率,表示相位,c表示光速。
  36. 根据权利要求19至35中任一项所述的装置,其特征在于,所述参考信号包括以下信息中的一种或者多种:定位参考信号PRS、探测参考信号SRS、定位探测参考信号POS-SRS、跟踪参考信号TRS、信道状态信息参考信号CSI-RS、解调参考信号DMRS、相位跟踪参考信号PTRS、侧行链路参考信号。
  37. 根据权利要求19至36中任一项所述的装置,其特征在于,所述N为大于或等于2的正整数。
  38. 一种定位装置,其特征在于,包括:处理器;
    所述处理器用于执行如权利要求1至18中任一项所述的方法。
  39. 一种计算机可读介质,其特征在于,所述计算机可读介质存储用于计算机执行的程序代码,该程序代码包括用于执行如权利要求1至18中任一项所述的方法的指令。
PCT/CN2023/073638 2022-02-11 2023-01-29 定位方法及装置 WO2023151469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210130537.4 2022-02-11
CN202210130537.4A CN116634353A (zh) 2022-02-11 2022-02-11 定位方法及装置

Publications (1)

Publication Number Publication Date
WO2023151469A1 true WO2023151469A1 (zh) 2023-08-17

Family

ID=87563560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073638 WO2023151469A1 (zh) 2022-02-11 2023-01-29 定位方法及装置

Country Status (2)

Country Link
CN (1) CN116634353A (zh)
WO (1) WO2023151469A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030638A1 (en) * 2013-08-27 2015-03-05 Telefonaktiebolaget L M Ericsson (Publ) Positioning of wireless devices
US20170332192A1 (en) * 2016-05-13 2017-11-16 Qualcomm Incorporated Method and/or system for positioning of a mobile device
CN110062457A (zh) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 一种定位方法和相关设备
CN111343579A (zh) * 2018-12-19 2020-06-26 电信科学技术研究院有限公司 一种定位方法和相关设备
WO2021256586A1 (ko) * 2020-06-19 2021-12-23 엘지전자 주식회사 수신 신호의 각도 추정 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030638A1 (en) * 2013-08-27 2015-03-05 Telefonaktiebolaget L M Ericsson (Publ) Positioning of wireless devices
US20170332192A1 (en) * 2016-05-13 2017-11-16 Qualcomm Incorporated Method and/or system for positioning of a mobile device
CN110062457A (zh) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 一种定位方法和相关设备
CN111343579A (zh) * 2018-12-19 2020-06-26 电信科学技术研究院有限公司 一种定位方法和相关设备
WO2021256586A1 (ko) * 2020-06-19 2021-12-23 엘지전자 주식회사 수신 신호의 각도 추정 방법 및 장치

Also Published As

Publication number Publication date
CN116634353A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
TWI778607B (zh) 定位方法、裝置及電腦存儲介質
EP3372024B1 (en) Positioning in wlan systems
US20210345285A1 (en) Method and Device for User Equipment Positioning
CN112513662A (zh) 对无线网络中的用户装备(ue)定位的测量和报告
CN111356075A (zh) 一种多站点的定位方法及装置
US11785622B2 (en) Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations
WO2017113072A1 (zh) 基于到达时间差定位方法、用户设备及网络设备
WO2021031714A1 (zh) 一种基于相对角度的定位方法及装置
CN103548400A (zh) 用于估计蜂窝网络中的定时偏移差的方法和装置
WO2021227901A1 (zh) 一种定位方法、定位管理装置、接入网设备以及终端
WO2024088041A1 (zh) 发送与接收信息的方法及通信装置
US20220330041A1 (en) Method for angle based positioning measurement and apparatus therefor
TW202239230A (zh) 通訊方法以及通訊裝置
WO2022141219A1 (zh) 一种定位方法及相关装置
WO2023151469A1 (zh) 定位方法及装置
CN114095855A (zh) 一种定位方法及装置
WO2023116273A1 (zh) 定位方法及装置、存储介质、程序产品
WO2023185526A1 (zh) 通信方法和通信装置
WO2023216974A1 (zh) 一种定位方法和定位装置
WO2023143114A1 (zh) 通信方法和通信装置
WO2023151434A1 (zh) 通信方法和通信装置
US20230258760A1 (en) Method of transmitting and receiving information for measurement of prs in wireless communication system and apparatus therefor
WO2023226746A1 (zh) 资源配置方法及通信装置
WO2023226749A1 (zh) 资源配置方法及通信装置
WO2022077409A1 (zh) 天线校准方法、设备、存储介质、通信系统及芯片系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752249

Country of ref document: EP

Kind code of ref document: A1