WO2022237423A1 - 参考设备确定方法及装置、网络侧设备 - Google Patents

参考设备确定方法及装置、网络侧设备 Download PDF

Info

Publication number
WO2022237423A1
WO2022237423A1 PCT/CN2022/086116 CN2022086116W WO2022237423A1 WO 2022237423 A1 WO2022237423 A1 WO 2022237423A1 CN 2022086116 W CN2022086116 W CN 2022086116W WO 2022237423 A1 WO2022237423 A1 WO 2022237423A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
positioning
reference device
candidate reference
lmf
Prior art date
Application number
PCT/CN2022/086116
Other languages
English (en)
French (fr)
Inventor
任斌
达人
任晓涛
李辉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP22806393.9A priority Critical patent/EP4340476A1/en
Publication of WO2022237423A1 publication Critical patent/WO2022237423A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present disclosure relates to the technical field of mobile communication, and in particular to a method and device for determining a reference device, and a network side device.
  • Embodiments of the present disclosure provide a reference device determination method and device, and a network side device, so as to improve the positioning accuracy of UE positioning in a 5G NR system.
  • an embodiment of the present disclosure provides a method for determining a reference device, which is applied to a location management function network element LMF, and the method includes:
  • the positioning reference parameter is obtained through at least one of the following:
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameters include at least one of the following:
  • An estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device is an estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device.
  • the precision indication parameter includes at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the position calculation value of the candidate reference device; the first error includes an error value and/or an error resolution;
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • the determining a target reference device among the candidate reference devices according to the positioning reference parameters includes:
  • the candidate reference device includes one reference device, then according to the positioning reference parameters and preset parameter requirements, determine whether the candidate reference device is a target reference device; wherein, the preset parameter requirements include at least one Requirements for positioning reference parameters described above;
  • the candidate reference devices include at least two reference devices, determining a target reference device among the candidate reference devices according to a preset selection manner.
  • the determining a target reference device among the candidate reference devices according to a preset selection method includes at least one of the following:
  • a target reference device among the candidate reference devices is selected based on at least two parameters of the positioning reference parameters.
  • the method further includes:
  • the target terminal is positioned.
  • the embodiment of the present disclosure further provides a parameter processing method, which is applied to a candidate reference device, and the method includes:
  • the positioning reference parameter is sent by at least one of the following:
  • the candidate reference device sends autonomously
  • the first indication information is sent by the LMF instructing the first network side device
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameters include at least one of the following:
  • An estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device is an estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device.
  • the precision indication parameter includes at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the position calculation value of the candidate reference device; the first error includes an error value and/or an error resolution;
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • the determining the positioning reference parameter includes:
  • the candidate reference device includes a network-side device, acquiring an estimated position value of the network-side device and/or a quality indication parameter of the estimated position value;
  • the candidate reference device includes a terminal device, performing positioning on the terminal device to obtain an estimated position value of the terminal device, and acquiring a quality indication parameter of the estimated position value.
  • the locating the terminal device to obtain the estimated position value of the terminal device includes:
  • the preset positioning method includes at least one of the following:
  • the acquiring the quality indication parameter of the estimated position value includes:
  • the position attribute includes: the position estimate value indicates a preset position and/or the location of the sending and receiving point of the target network side device.
  • the sending the positioning reference parameter to the location management function network element LMF includes:
  • the candidate reference device includes a network side device, based on the new air interface NR positioning protocol A signaling, send the positioning reference parameter to the location management function network element LMF;
  • the positioning reference parameter is sent to a location management function network element LMF based on long-term evolution LTE positioning protocol signaling.
  • the method includes:
  • the candidate reference device is a target reference device, receiving positioning assistance data sent by the LMF;
  • an embodiment of the present disclosure further provides a method for determining a reference device, which is applied to a network side device, and the method includes:
  • sending first indication information to a candidate reference device where the first indication information instructs the candidate reference device to send the positioning reference parameter to the LMF; the positioning reference parameter is used for the The LMF determines a target reference device in the candidate reference devices.
  • an embodiment of the present disclosure further provides a network-side device, the network-side device includes a location management function network element LMF, and the network-side device further includes:
  • the memory is configured to store a computer program;
  • the transceiver is configured to send and receive data under the control of the processor;
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the positioning reference parameter is obtained through at least one of the following:
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameters include at least one of the following:
  • An estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device is an estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device.
  • the precision indication parameter includes at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the position calculation value of the candidate reference device; the first error includes an error value and/or an error resolution;
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • the determining a target reference device among the candidate reference devices according to the positioning reference parameters includes:
  • the candidate reference device includes one reference device, then according to the positioning reference parameters and preset parameter requirements, determine whether the candidate reference device is a target reference device; wherein, the preset parameter requirements include at least one Requirements for positioning reference parameters described above;
  • the candidate reference devices include at least two reference devices, determining a target reference device among the candidate reference devices according to a preset selection manner.
  • the determining a target reference device among the candidate reference devices according to a preset selection method includes at least one of the following:
  • a target reference device among the candidate reference devices is selected based on at least two parameters of the positioning reference parameters.
  • the method further includes:
  • the target terminal is positioned.
  • an embodiment of the present disclosure further provides a terminal, where the terminal includes:
  • the memory is configured to store a computer program;
  • the transceiver is configured to send and receive data under the control of the processor;
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the positioning reference parameter is sent by at least one of the following:
  • the candidate reference device sends autonomously
  • the first indication information is sent by the LMF instructing the first network side device
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameters include at least one of the following:
  • An estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device is an estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device.
  • the precision indication parameter includes at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the position calculation value of the candidate reference device; the first error includes an error value and/or an error resolution;
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • the determining the positioning reference parameter includes:
  • the candidate reference device includes a network-side device, acquiring an estimated position value of the network-side device and/or a quality indication parameter of the estimated position value;
  • the candidate reference device includes a terminal device, performing positioning on the terminal device to obtain an estimated position value of the terminal device, and acquiring a quality indication parameter of the estimated position value.
  • the locating the terminal device to obtain the estimated position value of the terminal device includes:
  • the preset positioning method includes at least one of the following:
  • the acquiring the quality indication parameter of the estimated position value includes:
  • the position attribute includes: the position estimate value indicates a preset position and/or the location of the sending and receiving point of the target network side device.
  • the sending the positioning reference parameter to the location management function network element LMF includes:
  • the candidate reference device includes a network side device, based on the new air interface NR positioning protocol A signaling, send the positioning reference parameter to the location management function network element LMF;
  • the positioning reference parameter is sent to a location management function network element LMF based on long-term evolution LTE positioning protocol signaling.
  • the method includes:
  • the candidate reference device is a target reference device, receiving positioning assistance data sent by the LMF;
  • the embodiments of the present disclosure further provide a network side device, where the network side device includes:
  • the memory is configured to store a computer program;
  • the transceiver is configured to send and receive data under the control of the processor;
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • sending first indication information to a candidate reference device where the first indication information instructs the candidate reference device to send the positioning reference parameter to the LMF; the positioning reference parameter is used for the The LMF determines a target reference device in the candidate reference devices.
  • the embodiment of the present disclosure further provides a device for determining a reference device, which is applied to a location management function network element LMF, and the device includes:
  • a parameter obtaining module configured to obtain positioning reference parameters of candidate reference devices
  • a device determining module configured to determine a target reference device among the candidate reference devices according to the positioning reference parameters
  • the positioning reference parameter is obtained through at least one of the following:
  • an embodiment of the present disclosure further provides a parameter processing apparatus, which is applied to a candidate reference device, and the apparatus includes:
  • a parameter determination module configured to determine a positioning reference parameter
  • the parameter sending module is configured to send the positioning reference parameter to the location management function network element LMF;
  • the positioning reference parameter is sent by at least one of the following:
  • the candidate reference device sends autonomously
  • the first indication information is sent by the LMF instructing the first network side device
  • an embodiment of the present disclosure further provides an apparatus for determining a reference device, which is applied to a network side device, and the apparatus includes:
  • the information receiving module is configured to receive the third indication information sent by the location management function network element LMF;
  • An information response module configured to send first indication information to a candidate reference device in response to the third indication information, where the first indication information instructs the candidate reference device to send the positioning reference parameter to the LMF;
  • the positioning reference parameters are used by the LMF to determine a target reference device in the candidate reference devices.
  • an embodiment of the present disclosure further provides an electronic device, the electronic device includes a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor implements the computer program when executing the computer program. As in the steps in the method above.
  • the embodiments of the present disclosure further provide a processor-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps in the above method are implemented.
  • the LMF acquires the positioning reference parameters of the candidate reference devices; according to the positioning reference parameters, the target reference device among the candidate reference devices is determined; the positioning reference parameters can be sent automatically by the candidate reference devices, or through the first Acquisition of instruction information and/or second instruction information; the embodiments of the present disclosure provide a method of configuring or selecting a target reference device, and configure or select a target reference device through positioning reference parameters to improve the configuration accuracy or selection of the target reference device Accuracy, and then improve the positioning accuracy of UE positioning in the 5G NR system.
  • FIG. 1 is a flowchart of a method for determining a reference device provided by an embodiment of the present disclosure
  • Fig. 2 is one of the flowcharts of the parameter processing method provided by the embodiment of the present disclosure
  • Fig. 3 is the second flowchart of the parameter processing method provided by the embodiment of the present disclosure.
  • FIG. 4 is a structural block diagram of an apparatus for determining a reference device provided by an embodiment of the present disclosure
  • FIG. 5 is one of the structural block diagrams of a parameter processing device provided by an embodiment of the present disclosure.
  • FIG. 6 is the second structural block diagram of a parameter processing device provided by an embodiment of the present disclosure.
  • FIG. 7 is one of the structural block diagrams of network side equipment provided by an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 9 is a second structural block diagram of a network side device provided by an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a reference device determination method and device, a parameter processing method and device, and a storage medium, so as to improve the positioning accuracy of UE positioning in a 5G NR system.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the technical solutions provided by the embodiments of the present disclosure may be applicable to various systems, especially 5G systems.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal device can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • CN Core Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network side device involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network-side device can be used to exchange received air frames and Internet Protocol (Internet Protocol, IP) packets, and act as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network side device can also coordinate attribute management of the air interface.
  • the network-side device involved in the embodiments of the present disclosure may be the network-side device (Base Transceiver Station) in Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA). , BTS), it can also be the network side device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be the evolution type in the long term evolution (long term evolution, LTE) system
  • the network side equipment evolutional Node B, eNB or e-NodeB
  • the network side device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node, and the centralized unit and
  • a user terminal In a mobile communication system, it is necessary to perform uplink and downlink positioning on a user terminal (UE), including uplink time difference of arrival (Uplink Time Difference Of Arrival, DL TDOA), downlink time difference of arrival (Downlink Time Difference Of Arrival, UL TDOA), Positioning methods such as Multi cell-Round Trip Time (Multi-RTT), Uplink Angle Of Arrival (UL-AOA) and Downlink Angle Of Departure (DL-AOD) Way.
  • UE user terminal
  • uplink time difference of arrival Uplink Time Difference Of Arrival, DL TDOA
  • Downlink Time Difference Of Arrival UL TDOA
  • Positioning methods such as Multi cell-Round Trip Time (Multi-RTT), Uplink Angle Of Arrival (UL-AOA) and Downlink Angle Of Departure (DL-AOD) Way.
  • Multi-RTT Multi cell-Round Trip Time
  • UL-AOA Uplink Angle Of Arrival
  • DL-AOD Downlink Angle Of Departure
  • an embodiment of the present disclosure provides a flowchart of a method for determining a reference device, the method is applied to a location management function network element (Location Management Function, LMF), and the method includes:
  • LMF Location Management Function
  • Step 101 acquiring positioning reference parameters of candidate reference devices.
  • the reference device is used for positioning reference of the target UE; optionally, for the serving base station of the UE (or other network-side devices that provide network services for the UE, such as other access network devices), one or more A reference device is used to provide a positioning reference function when positioning the UE of the base station.
  • the LMF selects a target reference device among them as the reference device of the base station according to the positioning reference parameters of the candidate reference devices.
  • the candidate reference device and/or the reference device may be a network-side device or a user-side device, where the network-side device is such as a base station or other devices in the network, and the user-side device is such as a user terminal such as a mobile phone.
  • the candidate reference device and/or the reference device may be a device that is preconfigured as the reference device, or may be a device that is not preconfigured but has the capability of being the candidate reference device and/or the reference device.
  • the positioning reference parameter may include a position parameter of a candidate reference device and/or an accuracy indication parameter indicating the position parameter, and the like.
  • Location parameters such as location measurement data and/or location estimates.
  • LPP protocol TS 37.355
  • NR Rel-16 the signaling for the server to request location measurement data and/or location estimates from the target UE side is defined.
  • the UE can report the relevant positioning reference parameters obtained by it to the LMF.
  • Step 102 Determine a target reference device among the candidate reference devices according to the positioning reference parameters.
  • the positioning reference parameters are acquired through at least one of the following methods 1 to 3:
  • Way 1 Receive the positioning reference parameter sent by the candidate reference device.
  • Candidate reference devices can automatically report positioning reference parameters to the LMF.
  • Way 2 Instruct the first network side device to send first indication information to the candidate reference device, where the first indication information instructs the candidate reference device to send the positioning reference parameter to the LMF.
  • the first network side equipment includes a base station, and the LMF sends an indication signaling to the base station, which is triggered by the base station through broadcast signaling or radio resource control layer (Radio Resource Control, RRC) dedicated signaling.
  • the broadcast signaling can be transmitted through a system message (System Information Block, SIB) sent.
  • SIB System Information Block
  • the base station After receiving the indication signaling sent by the LMF, the base station sends a broadcast message or RRC signaling to all UEs in its coverage area, requesting all candidate reference devices (or reference devices) to send their positioning reference parameters to the LMF.
  • SIB System Information Block
  • a group of UEs may be pre-configured as candidate reference devices.
  • Manner 3 Send second indication information to the candidate reference device through a preset signaling message, where the second indication information instructs the candidate reference device to send the positioning reference parameter to the LMF.
  • the LMF may send a preset signaling message as a dedicated message to one or more candidate reference devices, and the preset signaling message is used to instruct the UE to send the positioning reference parameters to the LMF; for example: the LMF triggers the association of the LMF All UEs within the coverage of the base station first perform a UE-based positioning (UE-based positioning, such as: UL-based DL-TDOA or UE-based DL-AOD), and let all candidate UEs report the positioning reference parameters of the UE ;
  • the preset signaling message may be an LTE Positioning Protocol (LTE Positioning Protocol, LPP) signaling message.
  • the LMF After the LMF receives the positioning reference parameters of the candidate reference devices, it selects the optimal target reference device according to the positioning reference parameters, and/or determines whether the positioning reference parameters meet the requirements of being a target reference device according to the preset judgment rules. It can be understood that, in the embodiment of the present disclosure, for a serving base station, the target reference device may include one or at least two.
  • the known location information of the target reference device can be used as reference information when other user equipments are subsequently positioned, for example, to estimate and/or correct the sending and receiving errors of the positioning signal.
  • the positioning signal can be a base station And/or transmit and receive point (Transmission-Reception Point, TRP) positioning signal to improve positioning accuracy.
  • TRP Transmission-Reception Point
  • the LMF acquires the positioning reference parameters of the candidate reference devices; according to the positioning reference parameters, the target reference device among the candidate reference devices is determined; the positioning reference parameters can be sent automatically by the candidate reference devices, or through the first indication Acquisition of information and/or second indication information; the embodiment of the present disclosure provides a method of configuring or selecting a reference device, and configures or selects a reference device by positioning reference parameters to improve the configuration accuracy or selection accuracy of the target reference device, and then Improve the positioning accuracy of UE positioning in the 5G NR system.
  • the position information of the target reference device can be referred to, and the positioning accuracy for positioning the UE can be further improved.
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameter is used to indicate the location information of the candidate reference device, such as an estimated location value and a location calculation value; optionally, the location parameter includes at least one of the following:
  • the position estimate, velocity estimate, device capability parameter, and positioning method parameter of the candidate reference device wherein, the device capability parameter is used to represent the comprehensive capability of the candidate reference device or the capability as a reference device, such as UE network capability and UE wireless For access capability, in the process of transmitting the device capability parameter, 1-bit signaling may be used to transmit the device capability parameter.
  • the positioning method parameter is used to indicate the positioning method of the device, for example: different UE-based positioning methods, including: UL-based DL-TDOA, UE-basedDL-AOD.
  • the precision indication parameter includes at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the quality indication parameter indicates the position corresponding to the estimated position value, as the quality of the position of the target reference device;
  • the error range parameter indicates the error range between the estimated position value and the real position value;
  • the uncertainty of the estimated position value The parameter indicates the degree of uncertainty of the position corresponding to the estimated position value;
  • the reliability parameter of the positioning mode parameter indicates the degree of reliability of the positioning mode corresponding to the positioning mode parameter.
  • the precision indicating parameters thereof may be preset; for example, the specific value of the precision indicating parameter corresponding to each position parameter is preset.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the calculated position value of the candidate reference device; the first error includes an error value and/or an error resolution.
  • the error value indicates the optimal estimated value of the uncertainty corresponding to the position solution value; the error resolution indicates the quantization step size of the error value.
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • measurement means “measured value”, that is, the result of the measurement, that is, “positioning measurement” refers to “positioning measurement value”; the second error is the position
  • the error of the solution value and/or the position measurement for example: the error value based on the 1sigma or 3sigma criterion (where sigma represents the standard deviation of the measurement); the variance value; at the [X%] confidence level, the position solution value and/or the probability that the error of the positioning measurement is located in a certain error interval, etc., wherein, the value range of X is from 0 to 100, and the candidate values are 80, 90, and 95, etc.
  • the determining the target reference device among the candidate reference devices according to the positioning reference parameters includes case 1 and case 2:
  • Case 1 if the candidate reference device includes one reference device, determine whether the candidate reference device is a target reference device according to the positioning reference parameters and preset parameter requirements; wherein, the preset parameter requirements include At least one of said positioning reference parameters is required.
  • parameter requirements are preset, and the preset parameter requirements include requirements for at least one positioning reference parameter; after obtaining the positioning reference parameters, it is judged according to the preset parameter requirements whether the candidate reference device meets the requirements of being a target reference device; If it is satisfied, the candidate reference device can be used as a target reference device; if not, the polling will continue to be judged.
  • the candidate reference devices include at least two reference devices, then determine a target reference device among the candidate reference devices according to a preset selection manner.
  • the preset selection method may include selection based on one of the positioning reference parameters, or selection based on multiple positioning reference parameters, for example, by adopting a weighted summation method.
  • the above-mentioned case two includes at least one of the following cases three to eight:
  • a target reference device among the candidate reference devices is selected based on an order of values of the quality indication parameters of the estimated position value from small to large.
  • the quality of the position estimation values is preferentially selected as the target reference device, so as to ensure that the position of the target reference device is of high quality.
  • the target reference device with the smaller uncertainty of the position estimate is preferentially selected as the target reference device to improve the determination of the position estimate of the target reference device degree.
  • a target reference device among the candidate reference devices is selected based on the order of the speed estimation values from small to large.
  • the candidate reference devices with smaller uncertainties in the position estimation values are preferentially selected as target reference devices.
  • Case 6 Select a target reference device among the candidate reference devices based on the order of the device capability parameters of the candidate reference devices from small to large.
  • a target reference device among the candidate reference devices is selected based on the order of the reliability parameters of the positioning mode parameters from small to large.
  • the one with higher reliability parameters is preferentially selected as the target reference device.
  • a target reference device among the candidate reference devices is selected based on at least two parameters in the positioning reference parameters.
  • the method further includes:
  • the target terminal is positioned.
  • the LMF sends the downlink positioning assistance data obtained from the serving base station (serving base station of the positioned device) and neighboring base stations of the serving base station to the target reference device or the neighboring base station ;
  • the LMF notifies the adjacent base station of the UE of the uplink positioning assistance data obtained from the serving base station;
  • the LMF receives the downlink positioning measurements reported by the target reference device and non-target reference devices.
  • the positioning measurements include Reference Signal Time Difference (RSTD) or UE sending and receiving time difference, etc.;
  • RSTD Reference Signal Time Difference
  • the LMF receives the uplink positioning measurement reported by the serving base station and the adjacent base station, and the positioning measurement includes the link relative arrival time (Row link arrival time, RTOA) or the base station transceiver time difference.
  • RSTD Reference Signal Time Difference
  • RTOA link arrival time difference
  • position calculation is performed to position the target terminal.
  • the LMF acquires the positioning reference parameters of the candidate reference devices; according to the positioning reference parameters, the target reference device among the candidate reference devices is determined; the positioning reference parameters can be sent automatically by the candidate reference devices, or through the first indication Acquisition of information and/or second indication information; the embodiment of the present disclosure provides a method of configuring or selecting a reference device, and configures or selects a reference device by positioning reference parameters to improve the configuration accuracy or selection accuracy of the target reference device, and then Improve the positioning accuracy of UE positioning in the 5G NR system.
  • the position information of the target reference device can be referred to, and the positioning accuracy for positioning the UE can be further improved.
  • an embodiment of the present disclosure also provides a parameter processing method, which is applied to a candidate reference device.
  • the candidate reference device and/or the reference device may be a network-side device or a user-side device, and the network-side device is such as a base station Or other devices in the network, user-side devices such as mobile phones and other user terminals.
  • the candidate reference device and/or the reference device may be a device that is preconfigured as the reference device, or may be a device that is not preconfigured but has the capability of being the candidate reference device and/or the reference device.
  • the methods include:
  • Step 201 determine positioning reference parameters.
  • the reference device is used for positioning reference of the target UE; optionally, for the serving base station of the UE (or other network-side devices that provide network services for the UE, such as other access network devices), one or more A reference device is used to provide a positioning reference function when positioning the UE of the base station.
  • the LMF selects a target reference device among them as the reference device of the base station according to the positioning reference parameters of the candidate reference devices.
  • the positioning reference parameter may include a position parameter of a candidate reference device and/or an accuracy indication parameter indicating a position parameter, and the like.
  • Location parameters such as location measurement data and/or location estimates.
  • the signaling for the server to request location measurement data and/or location estimates from the target UE side is defined.
  • the UE can report the relevant positioning reference parameters obtained by it to the LMF.
  • Step 202 sending the positioning reference parameters to the location management function network element LMF;
  • the positioning reference parameter is sent through at least one of the following methods 4 to 6:
  • Way 4 The candidate reference device sends autonomously.
  • Candidate reference devices can automatically report positioning reference parameters to the LMF.
  • Manner 5 sending when receiving first indication information sent by the first network side device, the first indication information being sent by the LMF instructing the first network side device.
  • the first network side device includes a base station, and the LMF sends an indication signaling to the base station, which is triggered by the base station through broadcast signaling or RRC dedicated signaling, and the broadcast signaling can be sent through a system message.
  • the base station After receiving the indication signaling sent by the LMF, the base station sends the first indication information to all UEs in its coverage area, requesting all candidate reference devices (or reference devices) to send their positioning reference parameters to the LMF.
  • the candidate reference device receives the first indication information, it sends the positioning reference parameter to the LMF.
  • the LMF may send a preset signaling message as a dedicated message to one or more candidate reference devices, and the preset signaling message is used to instruct the UE to send the positioning reference parameters to the LMF; for example: the LMF triggers the association of the LMF All UEs within the coverage of the base station first perform a UE-based positioning (UE-based positioning, such as: UL-based DL-TDOA or UE-based DL-AOD), and let all candidate UEs report the positioning reference parameters of the UE ;
  • the preset signaling message may be an LPP signaling message, and when the candidate reference device receives the LPP signaling message, it sends the positioning reference parameter to the LMF.
  • the LMF selects the optimal target reference device according to the positioning reference parameters, and/or determines whether the positioning reference parameters meet the requirements of being a target reference device according to the preset judgment rules.
  • the target reference device may include one or at least two.
  • the known location information of the target reference device can be used as reference information when other user equipments are subsequently positioned, for example, to estimate and/or correct the sending and receiving errors of the positioning signal.
  • the positioning signal can be a base station And/or transmit and receive point (Transmission-Reception Point, TRP) positioning signal to improve positioning accuracy.
  • TRP Transmission-Reception Point
  • the candidate reference device determines the positioning reference parameter; sends the positioning reference parameter to the location management function network element LMF; the positioning reference parameter can be automatically sent by the candidate reference device, or through the first indication information and/or the second indication Information acquisition:
  • the embodiment of the present disclosure provides a way to configure or select reference equipment, and LMF configures or selects reference equipment through positioning reference parameters to improve the configuration accuracy or selection accuracy of target reference equipment, thereby improving the 5GNR system. Positioning accuracy of the UE for positioning.
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameter is used to indicate the location information of the candidate reference device, such as an estimated location value and a location calculation value; optionally, the location parameter includes at least one of the following:
  • the position estimate, velocity estimate, device capability parameter, and positioning method parameter of the candidate reference device wherein, the device capability parameter is used to represent the comprehensive capability of the candidate reference device or the capability as a reference device, such as UE network capability and UE wireless For access capability, in the process of transmitting the device capability parameter, 1-bit signaling may be used to transmit the device capability parameter.
  • the positioning method parameter is used to indicate the positioning method of the device, for example: different UE-based positioning methods, including: UL-based DL-TDOA, UE-basedDL-AOD.
  • the precision indication parameter includes at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the quality indication parameter indicates the position corresponding to the estimated position value, as the quality of the position of the target reference device;
  • the error range parameter indicates the error range between the estimated position value and the real position value;
  • the uncertainty of the estimated position value The parameter indicates the degree of uncertainty of the position corresponding to the estimated position value;
  • the reliability parameter of the positioning mode parameter indicates the degree of reliability of the positioning mode corresponding to the positioning mode parameter.
  • the precision indicating parameters thereof may be preset; for example, the specific value of the precision indicating parameter corresponding to each position parameter is preset.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the calculated position value of the candidate reference device; the first error includes an error value and/or an error resolution.
  • the error value indicates the optimal estimated value of the uncertainty corresponding to the position solution value; the error resolution indicates the quantization step size of the error value.
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • measurement means “measured value”, that is, the result of the measurement, that is, “positioning measurement” refers to “positioning measurement value”; the second error is the position
  • the error of the solution value and/or the position measurement for example: the error value based on the 1sigma or 3sigma criterion (where sigma represents the standard deviation of the measurement); the variance value; at the [X%] confidence level, the position solution value and/or the probability that the error of the positioning measurement is located in a certain error interval, etc., wherein, the value range of X is from 0 to 100, and the candidate values are 80, 90, and 95, etc.
  • the determining the positioning reference parameter includes:
  • the candidate reference device includes a network-side device, acquiring an estimated position value of the network-side device and/or a quality indication parameter of the estimated position value.
  • the candidate reference device includes a terminal device, positioning the terminal device to obtain an estimated position value of the terminal device, and acquiring a quality indication parameter of the estimated position value.
  • the candidate reference device includes a network-side device, for example, when the reference device is a base station whose location is known in advance, it is enough to directly acquire the estimated position value of the base station and/or the quality indicator parameter of the estimated position value.
  • the candidate reference device includes a terminal device, for example, when the reference device is a UE, positioning the terminal device to obtain an estimated position value of the terminal device, and acquiring a quality indication parameter of the estimated position value; optional Specifically, the positioning of the terminal device to obtain the estimated position of the terminal device includes:
  • the preset positioning method includes at least one of the following:
  • RAT-independent UE-based positioning such as Global Navigation Satellite System (Global Navigation Satellite System, GNSS) positioning, Bluetooth positioning, WiFi positioning and Ultra Wide Band (UWB) positioning; RAT-based positioning such as downlink time difference of arrival positioning Or downward departure angle positioning.
  • GNSS Global Navigation Satellite System
  • UWB Ultra Wide Band
  • the acquiring the quality indication parameter of the estimated position value includes:
  • the position attribute includes: the position estimate value indicates a preset position and/or the location of the sending and receiving point of the target network side device.
  • quality indication parameters corresponding to different preset positioning methods and/or position attributes are preset.
  • the location attribute is a preset location.
  • a terminal placed in a known location in advance has a higher corresponding quality indicator parameter; higher.
  • quality indicator parameters For preset positioning methods, since different positioning methods have different positioning accuracy, different positioning methods correspond to different quality indicator parameters.
  • GNSS positioning methods are higher than Bluetooth, WiFi, UWB and other positioning methods.
  • the level corresponding to the preset transceiver point position of a terminal placed in a known position in advance is the first level (highest); the GNSS positioning method corresponds to the second level ; Positioning methods such as downlink time difference of arrival and downlink time of arrival correspond to the third level; positioning methods such as Bluetooth, WiFi, and UWB correspond to the fourth level.
  • the sending the positioning reference parameter to the location management function network element LMF includes:
  • the candidate reference device includes a network side device, then based on the new air interface NR positioning protocol A signaling (NR PPa signaling), send the positioning reference parameter to the location management function network element LMF;
  • NR PPa signaling new air interface NR positioning protocol A signaling
  • the positioning reference parameter is sent to a location management function network element LMF based on Long Term Evolution LTE Positioning Protocol signaling (LPP signaling).
  • LPF signaling Long Term Evolution LTE Positioning Protocol
  • the method after sending the positioning reference parameter to the location management function network element LMF, the method includes:
  • the candidate reference device is a target reference device, receiving positioning assistance data sent by the LMF;
  • the LMF sends the downlink positioning assistance data obtained from the serving base station (the serving base station of the positioned device) and the adjacent base stations of the serving base station to the target reference device, and the target reference device receives the positioning assistance data; positioning assistance Data such as RSTD or UE sending and receiving time difference, etc.
  • the target reference device After receiving the positioning assistance data, the target reference device measures the positioning measurement quantity according to the positioning assistance data, and sends the positioning measurement quantity to the LMF; the positioning measurement quantity is such as RTOA or base station transceiver time difference; finally, the LMF based on the positioning measurement quantity , and the position of the target reference device, base station and/or TRP that have been acquired in advance, perform position calculation, and position the target terminal.
  • the positioning measurement quantity is such as RTOA or base station transceiver time difference
  • the candidate reference device determines the positioning reference parameter; sends the positioning reference parameter to the location management function network element LMF; the positioning reference parameter can be automatically sent by the candidate reference device, or through the first indication information and/or the second indication Information acquisition; the embodiment of the present disclosure provides a method of configuring or selecting a reference device, and the LMF configures or selects a reference device through positioning reference parameters to improve the configuration accuracy or selection accuracy of the target reference device, thereby improving the 5G NR system. Positioning accuracy for positioning the UE.
  • an embodiment of the present disclosure also provides a method for determining a reference device, which is applied to a network-side device.
  • the network-side device may be a base station, for example, a serving base station that is not a reference device.
  • the methods include:
  • Step 301 receiving third indication information sent by a location management function network element LMF.
  • the third indication information is sent by the LMF as indication signaling, for example, through broadcast signaling or RRC dedicated signaling, and the broadcast signaling may be sent through an SIB message.
  • Step 302 in response to the third indication information, send first indication information to a candidate reference device, where the first indication information instructs the candidate reference device to send the positioning reference parameter to the LMF; the positioning reference parameter Used by the LMF to determine a target reference device in the candidate reference devices.
  • the base station After receiving the third indication information order sent by the LMF, the base station sends the first indication information to all candidate reference equipments in its coverage area.
  • the first indication information can be sent by broadcast message or RRC signaling, requesting all candidate reference equipment ( or reference device) sends its positioning reference parameters to the LMF, and the LMF selects the optimal target reference device according to the positioning reference parameters after receiving the positioning reference parameters of the candidate reference devices, and/or determines the positioning reference parameters according to the preset judgment rules Whether it meets the requirements as a target reference device.
  • the LMF determines the target reference device, it can use the known location information of the target reference device as reference information when positioning other user equipments, for example, to estimate and/or correct the sending and receiving errors of the positioning signal.
  • the positioning signal can be Positioning signals of base stations and/or transceiver points TRP to improve positioning accuracy.
  • the network side device receives the third indication information sent by the location management function network element LMF, responds to the third indication information, and sends the first indication information to the candidate reference equipment, and the first indication information indicates the
  • the candidate reference device sends the positioning reference parameter to the LMF, so that the LMF determines the target reference device among the candidate reference devices according to the positioning reference parameter;
  • an embodiment of the present disclosure provides a configuration or selection of a reference device By means of positioning reference parameter configuration or selection of reference equipment, the configuration accuracy or selection accuracy of the target reference equipment is improved, thereby improving the positioning accuracy of UE positioning in the 5G NR system.
  • the candidate reference device as the user UE and the network-side device (first network-side device) as the base station as an example
  • the LMF, the user UE, and the base station respectively perform the following procedures:
  • the LMF performs the following steps 111 to 115:
  • Step 111 The LMF triggers or configures the reference device through at least one of the following methods 1 to 3.
  • the LMF receives automatic reports from candidate reference devices.
  • the reported content includes: the candidate reference device capability parameter (used to judge whether the candidate reference device is capable of serving as a reference device), the estimated position value and the estimated speed value, and the accuracy indication parameters of the estimated position value and the estimated speed value (the accuracy indication parameters include reliability level, margin of error and quality indication, etc.).
  • the above reported amount is used for the LMF to select a reference device based on a certain criterion when there are multiple candidate reference devices.
  • the LMF sends an indication signaling to the base station, which is triggered by the base station through broadcast signaling (SIB message) or RRC dedicated signaling.
  • SIB message broadcast signaling
  • the serving gNB sends the first indication information to all UEs in the coverage area, and requests all (or pre-configured) candidate reference devices (including UEs capable of serving as reference devices) to receive DL according to the requirements and configuration of the first indication information.
  • the PRS and sends the measured values acquired by the survey to the LMF together with its position information.
  • Broadcast messages or RRC signaling may also request pre-configured reference devices to send UL SRS-POS, where SRS is a Sounding Reference Signal (SRS), and SRS-POS represents an SRS signal for positioning.
  • SRS Sounding Reference Signal
  • SRS-POS represents an SRS signal for positioning.
  • a group of devices can be pre-configured as reference devices.
  • the LMF is triggered through a dedicated preset signaling message.
  • the LMF can send a dedicated message (or extend the existing LPP signaling message: provide UE capability request message, provide positioning assistance data message, or define a new LPP signaling message) to one or more candidate reference devices.
  • the command message is used to indicate whether a certain device is selected as a reference device, and to request the reference device to report together with its position coordinate information and positioning measurement.
  • the LMF triggers all capabilities within the coverage area of the LMF-associated base station as a reference device to perform a UE-based positioning first, and let all candidate UEs report the UE's estimated position, velocity, and uncertainty.
  • Step 112 when there are multiple candidate reference devices, the LMF selects one or more reference devices based on any one of the following criteria or a combination of criteria.
  • Criterion 1 Selection based on the order of the quality indicators of the estimated position value reported by the UE from high to low (or from small to large uncertainty);
  • Criterion 2 Select based on the order of the estimated speed reported by the UE from small to large, and preferentially select the UE whose UE speed is 0 (that is, the UE is stationary);
  • Criterion 3 Based on the order selection of the UE capability level reported by the UE from high to low, the UE with the strongest UE capability is preferentially selected as the reference device;
  • Criterion 4 Select in descending order based on the accuracy and reliability levels corresponding to different UE-based positioning methods reported by the UE.
  • step 113 the LMF notifies the candidate reference device of the downlink positioning assistance data obtained from the serving base station and neighboring base stations.
  • the message sent by the LMF to the reference device may include configuration information for measurement reporting, including: content of positioning measurement (downlink RSTD and UE sending and receiving time difference, etc.), reporting timing and reporting method (periodic or aperiodic reporting).
  • the LMF receives the positioning measurements reported by the reference device and the non-reference device (RST, time difference between sending and receiving from the UE, etc.).
  • step 115 the LMF performs position calculation based on the downlink positioning measurements (RSTD and UE sending and receiving time difference, etc.) acquired in step 114, as well as the position of the reference device and the position of the base station/TRP acquired in advance.
  • RSTD and UE sending and receiving time difference, etc. the downlink positioning measurements
  • high-precision target UE location information is obtained based on real-time double-difference or one-time single-difference processing.
  • the candidate reference equipment performs the following steps 121 to 124:
  • Step 121 The candidate reference device calculates an estimated position value based on different positioning schemes, and an accuracy indicating parameter corresponding to the estimated position value.
  • the positioning scheme includes pre-known or calibration, laser mapping acquisition, RAT-independent positioning scheme (GNSS positioning, Bluetooth, WiFi, UWB, etc.), UE-based DL-TDOA+UE-based DL-AOD positioning defined by 5G NR .
  • the estimated position value can be in the form of position coordinates.
  • the position coordinates include the following two options, which can be based on the position coordinates defined in the current 37.355 protocol:
  • Option 1 (x, y, z) in the GCS coordinate system, where Option 1 adopts the Cartesian coordinate system;
  • Option 2 (north and south hemisphere indication, dimension, precision) under the GCS coordinate system, where Option 2 adopts a spherical coordinate system.
  • the accuracy indication parameter of the position coordinates may be a reliability level (reliability parameter), or an error range and quality indication of the position of the reference device.
  • reliability parameter reliability parameter
  • option 1 is used for the candidate reference device.
  • Option 1-1 Pre-placed at a known location (e.g. acquired by laser mapping);
  • the RAT-independent positioning scheme obtains the position of the reference device, including: GNSS, Bluetooth, WiFi, UWB;
  • Option 1-3 Obtain the initial reference device location based on the existing UE-based DL-TDOA+UE-based DL-AOD positioning method
  • Option 1-1 and Option 1-4 as the first level; GNSS positioning in Option 1-2 as the second level; Option 1-3 as the third level; Bluetooth, WiFi, UWB, etc. in Option 1-2 as the fourth level).
  • step 122 the candidate reference device simultaneously reports the position parameter and the precision indication parameter corresponding to the position parameter to the LMF.
  • Step 123 the candidate reference device receives the downlink positioning assistance data notified by the LMF.
  • Step 124 Based on the configuration information of the downlink PRS included in the downlink positioning assistance data in step 123, receive and measure the downlink PRS, obtain the downlink positioning measurement and report it to the LMF.
  • the base station of the non-reference device performs the following steps 131 to 132:
  • Step 131 Allocate the resource configuration parameters of the downlink positioning reference signal PRS as positioning assistance data based on the target UE and the candidate reference equipment, and report the positioning assistance data information to the LMF;
  • Step 132 Send downlink PRS to all UEs in the serving cell.
  • the LMF, the user UE, and the base station respectively perform the following procedures:
  • the LMF performs the following steps 211 to 215:
  • Step 211 The LMF triggers or configures the reference device through at least one of the following ways 1 to 3.
  • the LMF receives automatic reports from candidate reference devices.
  • the reported content includes: the candidate reference device capability parameter (used to judge whether the candidate reference device is capable of serving as a reference device), the estimated position value and the estimated speed value, and the accuracy indication parameters of the estimated position value and the estimated speed value (the accuracy indication parameters include reliability level, margin of error and quality indication, etc.).
  • the above reported amount is used for the LMF to select a reference device based on a certain criterion when there are multiple candidate reference devices.
  • the LMF sends an indication signaling to the base station, which is triggered by the base station through broadcast signaling (SIB message) or RRC dedicated signaling.
  • SIB message broadcast signaling
  • the serving gNB sends the first indication information to all UEs in the coverage area, and requests all (or pre-configured) candidate reference devices (including UEs capable of serving as reference devices) to receive DL according to the requirements and configuration of the first indication information.
  • the PRS and sends the measured values acquired by the survey to the LMF together with its position information. It is also possible that a broadcast message or RRC signaling requests a pre-configured reference device to send UL SRS-POS. Among them, a group of devices can be pre-configured as reference devices.
  • the LMF is triggered by a dedicated DE preset signaling message.
  • the LMF can send a dedicated message (or extend the existing LPP signaling message: provide UE capability request message, provide positioning assistance data message, or define a new LPP signaling message) to one or more candidate reference devices.
  • the command message is used to indicate whether a certain device is selected as a reference device, and to request the reference device to report together with its position coordinate information and positioning measurement.
  • the LMF triggers all capabilities within the coverage area of the LMF-associated base station as a reference device to perform a UE-based positioning first, and let all candidate UEs report the UE's estimated position, velocity, and uncertainty.
  • Step 212 when there are multiple candidate reference devices, the LMF selects one or more reference devices based on any one of the following criteria or a combination of criteria.
  • Criterion 1 Selection based on the order of the quality indicators of the estimated position value reported by the UE from high to low (or from small to large uncertainty);
  • Criterion 2 Select based on the order of the estimated speed reported by the UE from small to large, and preferentially select the UE whose UE speed is 0 (that is, the UE is stationary);
  • Criterion 3 Based on the order selection of the UE capability level reported by the UE from high to low, the UE with the strongest UE capability is preferentially selected as the reference device;
  • Criterion 4 Select in descending order based on the accuracy and reliability levels corresponding to different UE-based positioning methods reported by the UE.
  • step 213 the LMF notifies the neighbor base station of the target UE of the uplink positioning assistance data obtained from the serving base station and the neighbor base station.
  • the LMF receives the positioning measurements (for example: RTOA, or AOA) reported by the serving base station and neighboring base stations.
  • RTOA RTOA, or AOA
  • step 215 the LMF performs position calculation based on the uplink positioning measurement (for example: RTOA, or AOA) acquired in step 214, and the position of the reference device and the position of the base station/TRP acquired in advance.
  • the uplink positioning measurement for example: RTOA, or AOA
  • high-precision target UE location information is obtained based on real-time double-difference or one-time single-difference processing.
  • the candidate reference equipment (user UE) performs the following steps 221 to 224:
  • Step 221 The candidate reference device calculates a position estimate based on different positioning schemes, and an accuracy indicating parameter corresponding to the position estimate.
  • the positioning scheme includes pre-known or calibration, laser mapping acquisition, RAT-independent positioning scheme (GNSS positioning, Bluetooth, WiFi, UWB, etc.), 5G NR defined UE-based DL-TDOA positioning and UE-based DL-AOD position.
  • the estimated position value can be in the form of position coordinates.
  • the position coordinates include the following two options, which can be based on the position coordinates defined in the current 37.355 protocol:
  • Option 1 (x, y, z) in the GCS coordinate system, where Option 1 adopts the Cartesian coordinate system;
  • Option 2 (north and south hemisphere indication, dimension, precision) under the GCS coordinate system, where Option 2 adopts a spherical coordinate system.
  • the accuracy indication parameter of the position coordinates may be the reliability level (reliability parameter), or the error range and quality indication of the position of the reference device.
  • option 2 is adopted for the candidate reference device.
  • the error range and quality indication of the position parameter of the candidate reference device further include a quality indication parameter of the positioning measurement of the reference device, and an error range parameter of the calculated position value of the reference device.
  • Option 2-1 Quality indication of the reference positioning measurement of the reference device, quality indication of the position solution value of the reference device, including the following two fields:
  • Error value indicates the optimal estimated value of the uncertainty of the position solution value
  • Error Resolution Indicates the quantization step size of the error value.
  • Option 2-2 The error range of the reference device's positioning measurement or position solution, such as: error value based on 1sigma or 3sigma criterion; variance value; at [95%] confidence level, the position solution and/or Or the probability that the error of the positioning measurement is located in a certain error interval, etc.
  • step 222 the candidate reference device simultaneously reports the position parameter and the precision indication parameter corresponding to the position parameter to the LMF.
  • the candidate reference device receives the uplink positioning assistance data (SRS-POS) notified by the LMF.
  • SRS-POS uplink positioning assistance data
  • Step 224 the reference device sends an uplink SRS-POS.
  • the serving base station of the non-reference device performs the following steps 231 to 234:
  • Step 231 the serving base station triggers or configures the reference device.
  • the serving base station receives the indication signaling from the LMF, and triggers or configures the reference device through broadcast signaling (SIB message) or RRC dedicated signaling.
  • SIB message broadcast signaling
  • RRC dedicated signaling The serving base station sends a broadcast message or RRC signaling to all UEs in the coverage area, requesting all candidate reference devices (or UEs capable of serving as reference devices) to send their positioning reference parameters to the LMF.
  • Step 232 assign positioning reference signal (uplink SRS-POS) based on the target UE and the reference device, and report the positioning assistance data information to the LMF;
  • positioning reference signal uplink SRS-POS
  • Step 233 receiving uplink SRS-POS sent by all UEs in the serving cell, and performing measurement to obtain uplink positioning measurement (for example: RTOA, or AOA);
  • Step 234 for uplink positioning or uplink-downlink joint positioning, report the uplink measurement quantity to the LMF.
  • the LMF uses the first base station and the second base station Perform the following processes respectively:
  • the LMF performs the following steps 311 to 315:
  • Step 311 The LMF triggers or configures the reference device through at least one of the following ways 1 to 3.
  • the LMF receives automatic reports from candidate reference devices.
  • the reported content includes: the candidate reference device capability parameter (used to judge whether the candidate reference device is capable of serving as a reference device), the estimated position value and the estimated speed value, and the accuracy indication parameters of the estimated position value and the estimated speed value (the accuracy indication parameters include reliability level, margin of error and quality indication, etc.).
  • the above reported amount is used for the LMF to select a reference device based on a certain criterion when there are multiple candidate reference devices.
  • the LMF sends an indication signaling to the second base station, which is triggered by the second base station through broadcast signaling (SIB message) or RRC dedicated signaling.
  • SIB message broadcast signaling
  • the serving gNB sends the first indication information to all first base stations in the coverage area, and requests all (or pre-configured) candidate reference devices (including the first base station capable of serving as reference devices) to follow the requirements of the first indication information and Configure, receive DL PRS and send the measured values acquired by the survey to the LMF together with its position information.
  • a broadcast message or RRC signaling requests a pre-configured reference device to send UL SRS-POS.
  • a group of devices can be pre-configured as reference devices.
  • the LMF is triggered through a dedicated preset signaling message.
  • the LMF can send a dedicated message (or extend the existing LPP signaling message: provide the first base station capability request message, provide the positioning assistance data message, or define a new LPP signaling message) to one or more candidate reference devices, the predetermined It is assumed that a signaling message is used to indicate whether a certain device is selected as a reference device, and to request the reference device to report together with its position coordinate information and positioning measurement. For example, the LMF triggers all capabilities within the coverage area of the second base station associated with the LMF. The first base station as a reference device first performs a base station-based positioning, and asks all candidate first base stations to report the estimated position and speed of the first base station. values, and uncertainties.
  • Step 312 when there are multiple candidate reference devices, the LMF selects one or more reference devices based on any one of the following criteria or a combination of criteria.
  • Criterion 1 Selection based on the order of the quality indicators of the estimated position value reported by the first base station from high to low (or from small to large uncertainty);
  • Criterion 2 Select based on the order of speed estimates reported by the first base station from small to large, and preferentially select the first base station whose speed of the first base station is 0 (that is, the first base station is stationary);
  • Criterion 3 Based on the order selection of the first base station capability level reported by the first base station from high to low, the first base station with the strongest first base station capability is preferentially selected as the reference device;
  • Criterion 4 Select in order from high to low based on the accuracy and reliability levels corresponding to different base station-based positioning methods reported by the first base station.
  • step 313 the LMF notifies the candidate reference device of the downlink positioning assistance data acquired from the serving second base station and adjacent second base stations.
  • the message sent by the LMF to the reference device may include configuration information for the measurement report, including: the content of the positioning measurement (downlink RSTD, and the time difference between sending and receiving of the first base station, etc.), reporting timing and reporting method (periodic or aperiodic reporting ).
  • the LMF receives the positioning measurements (RSTD) reported by the reference device and the non-reference device.
  • RSTD positioning measurements
  • step 315 the LMF performs position calculation based on the downlink positioning measurement (RSTD) acquired in step 314, and the position of the reference device and the position of the second base station/TRP acquired in advance.
  • RSTD downlink positioning measurement
  • high-precision target first base station location information is obtained.
  • the candidate reference device (first base station) performs the following steps 321 to 324:
  • Step 321 The position parameter (position estimate value) of the candidate reference device, and the precision indication parameter corresponding to the position estimate value.
  • the candidate reference device When the candidate reference device is a base station whose ideal position is known in advance, it does not need to be positioned separately, and directly acquires a position estimate and an accuracy indication parameter corresponding to the first position estimate.
  • Step 322 based on the current NRPPa signaling, the candidate reference device simultaneously reports the location parameter and the precision indication parameter corresponding to the location parameter to the LMF.
  • Step 323 for downlink positioning (or uplink and downlink positioning), the candidate reference device receives the downlink positioning assistance data (time-frequency resource configuration information of the PRS) notified by the LMF;
  • the candidate reference device receives the uplink positioning assistance data (SRS-POS time-frequency resource configuration information) notified by the serving base station.
  • SRS-POS time-frequency resource configuration information the uplink positioning assistance data
  • Step 324 for downlink positioning (or uplink and downlink positioning), the candidate reference device receives and measures the downlink PRS based on the configuration information of the downlink PRS contained in the downlink positioning assistance data, obtains the downlink positioning measurement amount and reports it to the LMF;
  • the reference device For uplink positioning (or uplink and downlink positioning), the reference device sends uplink SRS-POS.
  • the second base station that is not the reference device performs the following steps 331 to 332:
  • Step 331 allocate the resource configuration parameters of the downlink positioning reference signal PRS as positioning assistance data based on the target first base station and the candidate reference equipment, and report the positioning assistance data information to the LMF;
  • Step 332 sending downlink PRS to all UEs in the serving cell.
  • the candidate reference device determines the positioning reference parameter, and sends the positioning reference parameter to the location management function network element LMF, and the LMF obtains the positioning reference parameter of the candidate reference device, and determines the positioning reference parameter according to the positioning reference parameter.
  • the target reference device among the candidate reference devices; the positioning reference parameters can be sent automatically by the candidate reference device, or obtained through the first indication information and/or the second indication information; an embodiment of the present disclosure provides a configuration or selection target reference By means of positioning reference parameters configuration or selection of target reference equipment, the configuration accuracy or selection accuracy of the target reference equipment is improved, thereby improving the positioning accuracy of UE positioning in the 5G NR system.
  • an embodiment of the present disclosure also provides an apparatus for determining a reference device, which is applied to a location management function network element LMF, and the apparatus includes:
  • a parameter acquisition module 401 configured to acquire positioning reference parameters of candidate reference devices
  • the device determining module 402 is configured to determine a target reference device among the candidate reference devices according to the positioning reference parameters;
  • the positioning reference parameter is obtained through at least one of the following:
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameter includes at least one of the following:
  • An estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device is an estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device.
  • the precision indication parameter includes at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the position calculation value of the candidate reference device; the first error includes an error value and/or an error resolution;
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • the device determining module 402 includes:
  • the first determination submodule is configured to determine whether the candidate reference device is a target reference device according to the positioning reference parameters and preset parameter requirements if the candidate reference device includes one reference device; wherein, the preset The parameter requirement includes a requirement for at least one of the positioning reference parameters;
  • the second determination submodule is configured to determine a target reference device among the candidate reference devices according to a preset selection manner if the candidate reference devices include at least two reference devices.
  • the second determining submodule is configured to perform at least one of the following:
  • a target reference device among the candidate reference devices is selected based on at least two parameters of the positioning reference parameters.
  • the device further includes:
  • a first positioning module configured to send positioning assistance data to the target reference device or a neighboring network side device of the target reference device
  • the target terminal is positioned.
  • the parameter acquisition module 401 acquires the positioning reference parameters of the candidate reference devices; the device determination module 402 determines the target reference device among the candidate reference devices according to the positioning reference parameters; the positioning reference parameters can be automatically determined by the candidate reference devices Send, or obtain through the first indication information and/or the second indication information; the embodiment of the present disclosure provides a way to configure or select a reference device, and configure or select a reference device through positioning reference parameters to improve the target reference device Configuration accuracy or selection accuracy, thereby improving the positioning accuracy of UE positioning in the 5G NR system.
  • the position information of the target reference device can be referred to, and the positioning accuracy for positioning the UE can be further improved.
  • an embodiment of the present disclosure also provides a parameter processing device, which is applied to a candidate reference device, and the device includes:
  • a parameter determination module 501 configured to determine a positioning reference parameter
  • the parameter sending module 502 is configured to send the positioning reference parameter to the location management function network element LMF;
  • the positioning reference parameter is sent by at least one of the following:
  • the candidate reference device sends autonomously
  • the first indication information is sent by the LMF instructing the first network side device
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameters include at least one of the following:
  • An estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device is an estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device.
  • the precision indication parameter includes at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the position calculation value of the candidate reference device; the first error includes an error value and/or an error resolution;
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • the parameter determination module 501 includes:
  • the first obtaining submodule is configured to obtain the estimated position value of the network side device and/or the quality indication parameter of the estimated position value if the candidate reference device includes a network side device;
  • the second obtaining submodule is configured to, if the candidate reference device includes a terminal device, locate the terminal device to obtain an estimated position value of the terminal device, and acquire a quality indication parameter of the estimated position value.
  • the second acquiring submodule is used for:
  • the preset positioning method includes at least one of the following:
  • the second acquiring submodule is used for:
  • the position attribute includes: the position estimate value indicates a preset position and/or the location of the sending and receiving point of the target network side device.
  • the parameter sending module 502 includes:
  • the first sending submodule is configured to send the positioning reference parameter to the location management function network element LMF based on the new air interface NR positioning protocol A signaling if the candidate reference device includes a network side device;
  • the second sending submodule is configured to send the positioning reference parameter to a location management function network element LMF based on Long Term Evolution LTE positioning protocol signaling if the candidate reference device includes a terminal device.
  • the device includes:
  • a data receiving module configured to receive positioning assistance data sent by the LMF if the candidate reference device is a target reference device
  • a data sending module configured to measure a positioning measurement according to the positioning assistance data, and send the positioning measurement to the LMF.
  • the parameter determination module 501 determines the positioning reference parameter; the parameter sending module 502 sends the positioning reference parameter to the location management function network element LMF; the positioning reference parameter can be automatically sent by the candidate reference device, or through the first indication information and /or second instruction information acquisition; the embodiment of the present disclosure provides a way to configure or select a reference device, and the LMF configures or selects a reference device through positioning reference parameters to improve the configuration accuracy or selection accuracy of the target reference device, thereby improving In the 5G NR system, the positioning accuracy of UE positioning.
  • an embodiment of the present disclosure also provides an apparatus for determining a reference device, which is applied to a network side device, and the apparatus includes:
  • the information receiving module 601 is configured to receive the third indication information sent by the location management function network element LMF;
  • An information response module 602 configured to send first indication information to a candidate reference device in response to the third indication information, where the first indication information instructs the candidate reference device to send the positioning reference parameter to the LMF;
  • the positioning reference parameters are used by the LMF to determine a target reference device in the candidate reference devices.
  • the information receiving module 601 receives the third indication information sent by the location management function network element LMF, and the information response module 602 sends the first indication information to the candidate reference device in response to the third indication information, and the first indication information is sent to the candidate reference device.
  • the indication information instructs the candidate reference device to send the positioning reference parameter to the LMF, so that the LMF determines the target reference device among the candidate reference devices according to the positioning reference parameter; an embodiment of the present disclosure provides a The method of configuring or selecting a reference device, and through positioning reference parameter configuration or selecting a reference device, the configuration accuracy or selection accuracy of the target reference device is improved, thereby improving the positioning accuracy of UE positioning in the 5G NR system.
  • each functional module in each embodiment of the present disclosure may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the integrated modules are realized in the form of software function modules and sold or used as independent products, they can be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network side device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the embodiment of the present disclosure also provides a network side device, the network side device includes a location management function network element LMF, and also includes a memory 720, a transceiver 740, and a processor 710;
  • memory 720 configured to store computer programs
  • transceiver 740 configured to receive and transmit data under the control of the processor 710
  • the processor 710 is configured to read the computer program in the memory 720 and perform the following operations:
  • the positioning reference parameter is obtained through at least one of the following:
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameters include at least one of the following:
  • An estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device is an estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device.
  • the precision indication parameters include at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the position calculation value of the candidate reference device; the first error includes an error value and/or an error resolution;
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • the determining a target reference device among the candidate reference devices according to the positioning reference parameters includes:
  • the candidate reference device includes one reference device, then according to the positioning reference parameters and preset parameter requirements, determine whether the candidate reference device is a target reference device; wherein, the preset parameter requirements include at least one Requirements for positioning reference parameters described above;
  • the candidate reference devices include at least two reference devices, determining a target reference device among the candidate reference devices according to a preset selection manner.
  • the determining the target reference device among the candidate reference devices according to a preset selection method includes at least one of the following:
  • a target reference device among the candidate reference devices is selected based on at least two parameters of the positioning reference parameters.
  • the method further includes:
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors 710 represented by the processor 710 and various circuits of the memory 720 represented by the memory 720 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • Bus interface 730 provides the interface.
  • Transceiver 740 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 710 is responsible for managing the bus architecture and general processing, and the memory 720 may store data used by the processor 710 when performing operations.
  • the processor 710 may be a central processing device (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device , CPLD), the processor 710 may also adopt a multi-core architecture.
  • CPU central processing device
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor 710 is configured to execute any one of the methods provided in the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory 720 .
  • the processor 710 and the memory 720 may also be arranged physically separately.
  • an embodiment of the present disclosure also provides a terminal, including a memory 820, a transceiver 840, and a processor 810;
  • memory 820 configured to store computer programs
  • transceiver 840 configured to receive and transmit data under the control of the processor 810;
  • the processor 810 is configured to read the computer program in the memory 820 and perform the following operations:
  • the positioning reference parameter is sent by at least one of the following:
  • the candidate reference device sends autonomously
  • the first indication information is sent by the LMF instructing the first network side device
  • the positioning reference parameters include at least one of the following:
  • a location parameter of the candidate reference device and an accuracy indicating parameter of the location parameter are provided.
  • the location parameters include at least one of the following:
  • An estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device is an estimated position value, an estimated speed value, a device capability parameter, and a positioning mode parameter of the candidate reference device.
  • the precision indication parameter includes at least one of the following:
  • a quality indicator parameter of the position estimate an error range parameter of the position estimate, an uncertainty parameter of the position estimate, and a reliability parameter of the positioning mode parameter.
  • the error range parameter includes a first error range parameter and/or a second error range parameter
  • the first error range parameter includes a first error of the position calculation value of the candidate reference device; the first error includes an error value and/or an error resolution;
  • the second error range parameter includes a second error of the candidate reference device, and the second error is an error of a calculated position value and/or a positioning measurement.
  • the determining the positioning reference parameter includes:
  • the candidate reference device includes a network-side device, acquiring an estimated position value of the network-side device and/or a quality indication parameter of the estimated position value;
  • the candidate reference device includes a terminal device, positioning the terminal device to obtain an estimated position value of the terminal device, and acquiring a quality indication parameter of the estimated position value.
  • the locating the terminal device to obtain the estimated position value of the terminal device includes:
  • the preset positioning method includes at least one of the following:
  • the acquiring the quality indication parameter of the estimated position value includes:
  • the position attribute includes: the position estimate value indicates a preset position and/or the location of the sending and receiving point of the target network side device.
  • the sending the positioning reference parameter to the location management function network element LMF includes:
  • the candidate reference device includes a network side device, based on the new air interface NR positioning protocol A signaling, send the positioning reference parameter to the location management function network element LMF;
  • the positioning reference parameter is sent to a location management function network element LMF based on long-term evolution LTE positioning protocol signaling.
  • the method after sending the positioning reference parameter to the location management function network element LMF, the method includes:
  • the candidate reference device is a target reference device, receiving positioning assistance data sent by the LMF;
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors 810 represented by the processor 810 and various circuits of the memory 820 represented by the memory 820 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • Bus interface 830 provides the interface.
  • Transceiver 840 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 810 is responsible for managing the bus architecture and general processing, and the memory 820 may store data used by the processor 810 when performing operations.
  • the user interface 850 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 810 can be a central processing device (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device , CPLD), the processor 810 may also adopt a multi-core architecture.
  • CPU central processing device
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor 810 is configured to execute any one of the methods provided in the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory 820 .
  • the processor 810 and the memory 820 may also be arranged physically separately.
  • an embodiment of the present disclosure also provides a network side device, and the network includes a memory 920, a transceiver 940, and a processor 910;
  • memory 920 configured to store computer programs
  • transceiver 940 configured to receive and transmit data under the control of the processor 910
  • the processor 910 is configured to read the computer program in the memory 920 and perform the following operations:
  • sending first indication information to a candidate reference device where the first indication information instructs the candidate reference device to send the positioning reference parameter to the LMF; the positioning reference parameter is used for the The LMF determines a target reference device in the candidate reference devices.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors 910 represented by the processor 910 and various circuits of the memory 920 represented by the memory 920 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • Bus interface 930 provides the interface.
  • Transceiver 940 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 910 is responsible for managing the bus architecture and general processing, and the memory 920 may store data used by the processor 910 when performing operations.
  • the processor 910 may be a central processing device (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device , CPLD), the processor 910 may also adopt a multi-core architecture.
  • CPU central processing device
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor 910 is configured to execute any one of the methods provided in the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory 920 .
  • the processor 910 and the memory 920 may also be arranged physically separately.
  • An embodiment of the present disclosure also provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is configured to cause the processor to execute the aforementioned method.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (e.g., CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage e.g., CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本公开实施例涉及移动通信技术领域,公开了一种参考设备确定方法及装置、网络侧设备;所述参考设备确定方法包括:获取候选参考设备的定位参考参数;根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;其中,所述定位参考参数通过以下至少一项获取:接收所述候选参考设备发送的所述定位参考参数;指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数。

Description

参考设备确定方法及装置、网络侧设备
相关申请的交叉引用
本公开要求于2021年5月11日在中国国家知识产权局提交的申请号为CN202110513336.8的中国专利申请的优先权,其全部内容通过引用整体并入本文。
技术领域
本公开涉及移动通信技术领域,尤其涉及一种参考设备确定方法及装置、网络侧设备。
背景技术
随着在第五代移动通信技术的新空口技术(5th Generation New Radio,5G NR)的迅速发展,物联网等智能化系统对其位置服务提出了更高的要求,因此,如何提高用户终端(User Terminal,UE)的定位精度成为一个亟待解决的问题。
发明内容
本公开实施例提供一种参考设备确定方法及装置、网络侧设备,以提高5G NR系统中,对UE进行定位的定位精度。
第一方面,本公开实施例提供了参考设备确定方法,应用于位置管理功能网元LMF,所述方法包括:
获取候选参考设备的定位参考参数;
根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;
其中,所述定位参考参数通过以下至少一项获取:
接收所述候选参考设备发送的所述定位参考参数;
指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;
通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数。
可选地,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
可选地,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
可选地,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
可选地,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
可选地,所述根据所述定位参考参数,确定所述候选参考设备中的目标参考设备,包括:
若所述候选参考设备包括一个参考设备,则根据所述定位参考参数以及预设参数要求,确定所述候选参考设备是否为目标参考设备;其中,所述预设参数要求中包括对至少一个所述定位参考参数的要求;
若所述候选参考设备包括至少两个参考设备,则根据预设选择方式,确定所述候选参考设备中的目标参考设备。
可选地,所述根据预设选择方式,确定所述候选参考设备中的目标参考设备,包括以下至少一项:
基于所述位置估计值的质量指示参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述位置估计值的不确定度参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述速度估计值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述候选参考设备的设备能力参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述定位方式参数的可靠性参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述定位参考参数中的至少两项参数,选择所述候选参考设备中的目标参考设备。
可选地,所述确定所述候选参考设备中的目标参考设备之后,所述方法还包括:
将定位辅助数据发送至所述目标参考设备或所述目标参考设备的相邻网络侧设备;
接收定位测量量;
基于所述定位测量量,对目标终端进行定位。
第二方面,本公开实施例还提供一种参数处理方法,应用于候选参考设备,所述方法包括:
确定定位参考参数;
向位置管理功能网元LMF发送所述定位参考参数;
其中,所述定位参考参数通过以下至少一项发送:
所述候选参考设备自主发送;
接收到第一网络侧设备发送的第一指示信息时发送,所述第一指示信息为所述LMF指示所述第一网络侧设备发送的;
接收到所述LMF指发送的预设信令消息时发送。
可选地,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
可选地,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
可选地,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
可选地,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
可选地,若所述位置参数包括所述位置估计值,则所述确定定位参考参数包括:
若所述候选参考设备包括网络侧设备,获取所述网络侧设备的位置估计值和/或所述位置估计值的质量指示参数;
若所述候选参考设备包括终端设备,对所述终端设备进行定位得到所述终端设备的位置估计值,并获取所述位置估计值的质量指示参数。
可选地,所述对所述终端设备进行定位得到所述终端设备的位置估计值,包括:
根据预设定位方式对所述终端设备进行定位,得到所述终端设备的位置估计值;
所述预设定位方式包括以下至少一种:
激光测绘方式、独立于无线网络接入技术RAT-independent的UE-based定位、基于无线网络接入技术RAT的UE-based定位。
可选地,所述获取所述位置估计值的质量指示参数,包括:
基于所述预设定位方式和/或所述终端设备的位置估计值的位置属性,确定所述位置估计值的质量指示参数;其中,所述位置属性包括:所述位置估计值指示预设位置和/或目标网络侧设备的收发点位置。
可选地,所述向位置管理功能网元LMF发送所述定位参考参数,包括:
若所述候选参考设备包括网络侧设备,则基于新空口NR定位协议A信令,向位置管理功能网元LMF发送所述定位参考参数;
若所述候选参考设备包括终端设备,则基于长期演进LTE定位协议信令,向位置管理功能网元LMF发送所述定位参考参数。
可选地,所述向位置管理功能网元LMF发送所述定位参考参数之后,所述方法包括:
若所述候选参考设备为目标参考设备,则接收所述LMF发送的定位辅助数据;
根据所述定位辅助数据测量定位测量量,并将所述定位测量量发送至所述LMF。
第三方面,本公开实施例还提供了一种参考设备确定方法,应用于网络侧设备,所述方法包括:
接收位置管理功能网元LMF发送的第三指示信息;
响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;所述定位参考参数用于所述LMF确定所述候选参考设备中的目标参考设备。
第四方面,本公开实施例还提供了一种网络侧设备,所述网络侧设备包括位置管理功能网元LMF,所述网络侧设备还包括:
存储器,收发机,处理器:
存储器,被配置为存储计算机程序;收发机,被配置为在所述处理器的控制下收发数据;处理器,被配置为读取所述存储器中的计算机程序并执行以下操作:
获取候选参考设备的定位参考参数;
根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;
其中,所述定位参考参数通过以下至少一项获取:
接收所述候选参考设备发送的所述定位参考参数;
指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;
通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所 述候选参考设备向所述LMF发送所述定位参考参数。
可选地,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
可选地,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
可选地,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
可选地,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
可选地,所述根据所述定位参考参数,确定所述候选参考设备中的目标参考设备,包括:
若所述候选参考设备包括一个参考设备,则根据所述定位参考参数以及预设参数要求,确定所述候选参考设备是否为目标参考设备;其中,所述预设参数要求中包括对至少一个所述定位参考参数的要求;
若所述候选参考设备包括至少两个参考设备,则根据预设选择方式,确定所述候选参考设备中的目标参考设备。
可选地,所述根据预设选择方式,确定所述候选参考设备中的目标参考设备,包括以下至少一项:
基于所述位置估计值的质量指示参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述位置估计值的不确定度参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述速度估计值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述候选参考设备的设备能力参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述定位方式参数的可靠性参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述定位参考参数中的至少两项参数,选择所述候选参考设备中的目标参考设备。
可选地,所述确定所述候选参考设备中的目标参考设备之后,所述方法还包括:
将定位辅助数据发送至所述目标参考设备或所述目标参考设备的相邻网络侧设备;
接收定位测量量;
基于所述定位测量量,对目标终端进行定位。
第五方面,本公开实施例还提供了一种终端,所述终端包括:
存储器,收发机,处理器:
存储器,被配置为存储计算机程序;收发机,被配置为在所述处理器的控制下收发数据;处理器,被配置为读取所述存储器中的计算机程序并执行以下操作:
确定定位参考参数;
向位置管理功能网元LMF发送所述定位参考参数;
其中,所述定位参考参数通过以下至少一项发送:
所述候选参考设备自主发送;
接收到第一网络侧设备发送的第一指示信息时发送,所述第一指示信息为所述LMF指示所述第一网络侧设备发送的;
接收到所述LMF指发送的预设信令消息时发送。
可选地,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
可选地,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
可选地,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
可选地,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
可选地,若所述位置参数包括所述位置估计值,则所述确定定位参考参数包括:
若所述候选参考设备包括网络侧设备,获取所述网络侧设备的位置估计值和/或所述 位置估计值的质量指示参数;
若所述候选参考设备包括终端设备,对所述终端设备进行定位得到所述终端设备的位置估计值,并获取所述位置估计值的质量指示参数。
可选地,所述对所述终端设备进行定位得到所述终端设备的位置估计值,包括:
根据预设定位方式对所述终端设备进行定位,得到所述终端设备的位置估计值;
所述预设定位方式包括以下至少一种:
激光测绘方式、独立于无线网络接入技术RAT-independent的UE-based定位、基于无线网络接入技术RAT的UE-based定位。
可选地,所述获取所述位置估计值的质量指示参数,包括:
基于所述预设定位方式和/或所述终端设备的位置估计值的位置属性,确定所述位置估计值的质量指示参数;其中,所述位置属性包括:所述位置估计值指示预设位置和/或目标网络侧设备的收发点位置。
可选地,所述向位置管理功能网元LMF发送所述定位参考参数,包括:
若所述候选参考设备包括网络侧设备,则基于新空口NR定位协议A信令,向位置管理功能网元LMF发送所述定位参考参数;
若所述候选参考设备包括终端设备,则基于长期演进LTE定位协议信令,向位置管理功能网元LMF发送所述定位参考参数。
可选地,所述向位置管理功能网元LMF发送所述定位参考参数之后,所述方法包括:
若所述候选参考设备为目标参考设备,则接收所述LMF发送的定位辅助数据;
根据所述定位辅助数据测量定位测量量,并将所述定位测量量发送至所述LMF。
第六方面,本公开实施例还提供了一种网络侧设备,所述网络侧设备包括:
存储器,收发机,处理器:
存储器,被配置为存储计算机程序;收发机,被配置为在所述处理器的控制下收发数据;处理器,被配置为读取所述存储器中的计算机程序并执行以下操作:
接收位置管理功能网元LMF发送的第三指示信息;
响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;所述定位参考参数用于所述LMF确定所述候选参考设备中的目标参考设备。
第七方面,本公开实施例还提供了一种参考设备确定装置,应用于位置管理功能网元LMF,所述装置包括:
参数获取模块,被配置为获取候选参考设备的定位参考参数;
设备确定模块,被配置为根据所述定位参考参数,确定所述候选参考设备中的目标参 考设备;
其中,所述定位参考参数通过以下至少一项获取:
接收所述候选参考设备发送的所述定位参考参数;
指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;
通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数。
第八方面,本公开实施例还提供了一种参数处理装置,应用于候选参考设备,所述装置包括:
参数确定模块,被配置为确定定位参考参数;
参数发送模块,被配置为向位置管理功能网元LMF发送所述定位参考参数;
其中,所述定位参考参数通过以下至少一项发送:
所述候选参考设备自主发送;
接收到第一网络侧设备发送的第一指示信息时发送,所述第一指示信息为所述LMF指示所述第一网络侧设备发送的;
接收到所述LMF指发送的预设信令消息时发送。
第九方面,本公开实施例还提供一种参考设备确定装置,应用于网络侧设备,所述装置包括:
信息接收模块,被配置为接收位置管理功能网元LMF发送的第三指示信息;
信息响应模块,被配置为响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;所述定位参考参数用于所述LMF确定所述候选参考设备中的目标参考设备。
第十方面,本公开实施例还提供一种电子设备,该电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述方法中的步骤。
第十一方面,本公开实施例还提供一种处理器可读存储介质,该处理器可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上方法中的步骤。
在本公开实施例中,LMF获取候选参考设备的定位参考参数;根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;定位参考参数可由候选参考设备自动发送,或通过第一指示信息和/或第二指示信息获取;本公开实施例中提供了一种配置或选取目标参考设备的方式,且通过定位参考参数配置或选取目标参考设备,提升目标参考设备的配置精度或选取精度,进而提高5GNR系统中,对UE进行定位的定位精度。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的参考设备确定方法的流程图;
图2为本公开实施例提供的参数处理方法的流程图之一;
图3为本公开实施例提供的参数处理方法的流程图之二;
图4为本公开实施例提供的参考设备确定装置的结构框图;
图5为本公开实施例提供的参数处理装置的结构框图之一;
图6为本公开实施例提供的参数处理装置的结构框图之二;
图7为本公开实施例提供的网络侧设备的结构框图之一;
图8为本公开实施例提供的终端的结构框图;
图9为本公开实施例提供的网络侧设备的结构框图之二。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种参考设备确定方法及装置、参数处理方法及装置及存储介质,用以提高5GNR系统中,对UE进行定位的定位精度。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
此外,本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division  Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络侧设备。系统中还可以包括核心网部分,例如演进的分组系统(Evolved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络侧设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络侧设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络侧设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络侧设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络侧设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division MultipleAccess,WCDMA)中的网络侧设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进 型网络侧设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络侧设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
在移动通信系统中,需要对用户终端(User Terminal,UE)进行上下行定位,包括上行到达时间差(Uplink Time Difference Of Arrival,DL TDOA)、下行到达时间差(Downlink Time Difference Of Arrival,UL TDOA)、多小区往返时延(Multi cell-Round Trip Time,Multi-RTT)、上行到达角(Uplink Angle Of Arrival,UL-AOA)以及下行离开角(Downlink Angle Of Departure,DL-AOD)等定位方式等定位方式。而在5G NR系统中,随着物联网等智能化系统的迅速发展,5G NR系统需提供更高精度的定位功能服务。
如图1所示,本公开实施例提供了一种参考设备确定方法的流程图,所述方法应用于位置管理功能网元(Location Management Function,LMF),所述方法包括:
步骤101,获取候选参考设备的定位参考参数。
其中,参考设备用于对目标UE进行定位参考;可选地,对于UE的服务基站(或其他为UE提供网络服务的网络侧设备,例如其他接入网设备),可为其配置一个或多个参考设备,用于对该基站的UE进行定位时,提供定位参考功能。当存在基站对应的候选参考设备时,LMF根据候选参考设备的定位参考参数,选择其中的目标参考设备,作为该基站的参考设备。
可选地,候选参考设备和/或参考设备可以是网络侧设备或用户侧设备,网络侧设备例如基站或网络中其他设备,用户侧设备例如手机等用户终端。候选参考设备和/或参考设备可以是预先配置为参考设备的设备,也可以是未预先配置但具有作为候选参考设备和/或参考设备的能力的设备。
具体地,定位参考参数可以包括候选参考设备的位置参数和/或指示位置参数的精度指示参数等等。位置参数例如位置测量数据和/或位置估计数,在NR Rel-16的LPP协议(TS 37.355)中,定义了服务器从目标UE侧请求位置测量数据和/或位置估计的信令,利用该信令UE可以把其获取的相关定位参考参数上报给LMF。
步骤102,根据所述定位参考参数,确定所述候选参考设备中的目标参考设备。
其中,所述定位参考参数通过以下方式一至方式三中的至少一项获取:
方式一:接收所述候选参考设备发送的所述定位参考参数。
候选参考设备可以自动向LMF上报定位参考参数。
方式二:指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示 信息指示所述候选参考设备向所述LMF发送所述定位参考参数。
比如,第一网络侧设备包括基站,LMF发送指示信令给基站,由基站通过广播信令或者无线资源控制层(Radio Resource Control,RRC)专用信令触发,广播信令可以通过系统消息(System Information Block,SIB)发送。基站接收到LMF发送的指示信令后,向其覆盖区域内的所有UE发送广播消息或RRC信令,请求所有的候选参考设备(或参考设备)将其定位参考参数发送到LMF。其中,一组UE可以被预先配置为候选参考设备。
方式三:通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数。
LMF可以向一个或多个候选参考设备发送作为专用消息的预设信令消息,该预设信令消息用于指示UE向所述LMF发送所述定位参考参数;例如:LMF触发该LMF的关联基站的覆盖范围内的所有UE首先进行一次基于UE的定位(UE-based定位,例如:UL-based DL-TDOA或者UE-based DL-AOD),让所有候选UE来上报该UE的定位参考参数;可选地,预设信令消息可以是LTE定位协议(LTE Positioning Protocol,LPP)信令消息。
LMF收到候选参考设备的定位参考参数之后,根据定位参考参数选择最优的目标参考设备,和/或根据预设的判断规则确定定位参考参数是否满足作为目标参考设备的要求。可以理解的是,本公开实施例中,对于一个服务基站,目标参考设备可以包括一个或至少两个。
确定目标参考设备后,后续对其他用户设备进行定位时,可以将目标参考设备的已知位置信息作为参考信息,例如用于估计和/或校正定位信号的发送和接收误差,定位信号可以是基站和/或收发点(Transmission-Reception Point,TRP)的定位信号,以提升定位精度。
本公开实施例中,LMF获取候选参考设备的定位参考参数;根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;定位参考参数可由候选参考设备自动发送,或通过第一指示信息和/或第二指示信息获取;本公开实施例中提供了一种配置或选取参考设备的方式,且通过定位参考参数配置或选取参考设备,提升目标参考设备的配置精度或选取精度,进而提高5GNR系统中,对UE进行定位的定位精度。
并且,后续在定位过程中,可参考目标参考设备的位置信息,可进一步提高对UE进行定位的定位精度。
可选地,本公开实施例中,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
其中,位置参数用于指示候选参考设备的位置信息,例如位置估计值和位置解算值;可选地,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数;其中,设备能力参数用于表示候选参考设备的综合能力或作为参考设备的能力,例如UE网络能力和UE无线接入能力,在传输设备能力参数的过程中,可使用1比特信令传输设备能力参数。定位方式参数用于表示设备的定位方式,例如:不同的UE-based定位方式,包括:UL-based DL-TDOA,UE-basedDL-AOD。
可选地,本公开实施例中,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
其中,质量指示参数指示该位置估计值对应的位置,作为目标参考设备的位置的质量高低;误差范围参数表示位置估计值与真实位置值之间的误差范围;所述位置估计值的不确定度参数指示该位置估计值对应的位置的不确定程度;所述定位方式参数的可靠性参数指示该定位方式参数对应的定位方式的可靠性程度。
可选地,对于不同的位置参数,其精度指示参数可预先设定;比如预先设定每个位置参数对应的精度指示参数的具体值。
在一个可选实施例中,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率。
误差取值指示位置解算值对应的不确定性的最优估计值;误差分辨率指示误差取值的量化步长。
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
可以理解的是,本公开实施例中,“测量量”表示“测量的量值”,即测量所得结果,即“定位测量量”指“定位测量的量值”;所述第二误差为位置解算值和/或定位测量量的误差,例如:基于1sigma或者3sigma准则的误差值(其中,sigma表示测量量的标准差);方差值;在[X%]置信水平下,位置解算值和/或定位测量量的误差位于某误差区间的概率等,其中,X取值范围是从0到100,候选取值为80、90和95等。
在一个可选实施例中,所述根据所述定位参考参数,确定所述候选参考设备中的目标参考设备,包括情况一以及情况二:
情况一,若所述候选参考设备包括一个参考设备,则根据所述定位参考参数以及预设 参数要求,确定所述候选参考设备是否为目标参考设备;其中,所述预设参数要求中包括对至少一个所述定位参考参数的要求。
比如,预先设定参数要求,预设参数要求中包括对至少一个所述定位参考参数的要求;得到定位参考参数后,依据预设参数要求判断该候选参考设备是否满足作为目标参考设备的要求;若满足,则该候选参考设备可以作为目标参考设备;若不满足,则后续继续轮询判断。
情况二,若所述候选参考设备包括至少两个参考设备,则根据预设选择方式,确定所述候选参考设备中的目标参考设备。其中,预设选择方式中,可以包括依据其中一个定位参考参数选择,还可以包括依据其中多个定位参考参数选择,例如采用加权求和的方式。
在一个可选实施例中,上述情况二包括以下情况三至情况八至少一项:
情况三,基于所述位置估计值的质量指示参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备。
基于候选参考设备的位置估计值的质量指示参数示从高到低顺序,优先选择位置估计值的质量较高的作为目标参考设备,以确保目标参考设备的所处位置质量较高。
情况四,基于所述位置估计值的不确定度参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备。
基于候选参考设备的位置估计值的不确定度参数的数值由小及大的顺序,优先选择位置估计值的不确定度较小的作为目标参考设备,以提升目标参考设备的位置估计值的确定程度。
情况五,基于所述速度估计值由小及大的顺序,选择所述候选参考设备中的目标参考设备。
基于候选参考设备的位置估计值的不确定度参数的数值由小及大的顺序,优先选择位置估计值的不确定度较小的作为目标参考设备。
情况六,基于所述候选参考设备的设备能力参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备。
优先选择设备能力较强的候选参考设备作为目标参考设备。
情况七,基于所述定位方式参数的可靠性参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备。
基于所述定位方式参数的可靠性参数的数值由小及大的顺序,优先选择可靠性参数较高的作为目标参考设备。
情况八,基于所述定位参考参数中的至少两项参数,选择所述候选参考设备中的目标参考设备。
比如,选择定位参考参数中的位置估计值的不确定度参数以及速度估计值,根据预设的权值,对二者加权求和,得到综合权值,选择综合权值较高的候选参考设备作为目标参考设备,以实现多维度选择目标参考设备。
在一个可选实施例中,所述确定所述候选参考设备中的目标参考设备之后,所述方法还包括:
将定位辅助数据发送至所述目标参考设备或所述目标参考设备的相邻网络侧设备;
接收定位测量量;
基于所述定位测量量,对目标终端进行定位。
例如,针对下行定位或者上下行联合定位,LMF把从服务基站(被定位设备的服务基站)以及服务基站的相邻基站获取的下行定位辅助数据,发送至该目标参考设备或所述相邻基站;针对上行定位或者上下行联合定位,LMF把从服务基站获取的上行定位辅助数据通知该UE的相邻基站;
针对下行定位或者上下行联合定位,LMF接收目标参考设备和非目标参考设备上报的下行定位测量量,定位测量量包括参考信号时间差(Reference Signal Time Difference,RSTD)或者UE收发时间差等;针对上行定位或者上下行联合定位,LMF接收服务基站以及相邻基站上报的上行定位测量量,定位测量量包括链路相对到达时间(Row link arrival time,RTOA)或者基站收发时间差。
最后基于定位测量量,以及预先已经获取的目标参考设备的位置、基站和/或TRP位置,进行位置解算,对目标终端进行定位。
本公开实施例中,LMF获取候选参考设备的定位参考参数;根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;定位参考参数可由候选参考设备自动发送,或通过第一指示信息和/或第二指示信息获取;本公开实施例中提供了一种配置或选取参考设备的方式,且通过定位参考参数配置或选取参考设备,提升目标参考设备的配置精度或选取精度,进而提高5G NR系统中,对UE进行定位的定位精度。并且,后续在定位过程中,可参考目标参考设备的位置信息,可进一步提高对UE进行定位的定位精度。
参见图2,本公开实施例还提供了一种参数处理方法,应用于候选参考设备,可选地,候选参考设备和/或参考设备可以是网络侧设备或用户侧设备,网络侧设备例如基站或网络中其他设备,用户侧设备例如手机等用户终端。候选参考设备和/或参考设备可以是预先配置为参考设备的设备,也可以是未预先配置但具有作为候选参考设备和/或参考设备的能力的设备。
所述方法包括:
步骤201,确定定位参考参数。
其中,参考设备用于对目标UE进行定位参考;可选地,对于UE的服务基站(或其他为UE提供网络服务的网络侧设备,例如其他接入网设备),可为其配置一个或多个参考设备,用于对该基站的UE进行定位时,提供定位参考功能。当存在基站对应的候选参考设备时,LMF根据候选参考设备的定位参考参数,选择其中的目标参考设备,作为该基站的参考设备。
定位参考参数可以包括候选参考设备的位置参数和/或指示位置参数的精度指示参数等等。位置参数例如位置测量数据和/或位置估计数,在NR Rel-16的LPP协议(TS 37.355)中,定义了服务器从目标UE侧请求位置测量数据和/或位置估计的信令,利用该信令UE可以把其获取的相关定位参考参数上报给LMF。
步骤202,向位置管理功能网元LMF发送所述定位参考参数;
其中,所述定位参考参数通过以下方式四至方式六中的至少一项发送:
方式四:所述候选参考设备自主发送。
候选参考设备可以自动向LMF上报定位参考参数。
方式五:接收到第一网络侧设备发送的第一指示信息时发送,所述第一指示信息为所述LMF指示所述第一网络侧设备发送的。
比如,第一网络侧设备包括基站,LMF发送指示信令给基站,由基站通过广播信令或者RRC专用信令触发,广播信令可以通过系统消息发送。基站接收到LMF发送的指示信令后,向其覆盖区域内的所有UE发送第一指示信息,请求所有的候选参考设备(或参考设备)将其定位参考参数发送到LMF。候选参考设备接收到第一指示信息时,向所述LMF发送定位参考参数。
方式六:接收到所述LMF指发送的预设信令消息时发送。
LMF可以向一个或多个候选参考设备发送作为专用消息的预设信令消息,该预设信令消息用于指示UE向所述LMF发送所述定位参考参数;例如:LMF触发该LMF的关联基站的覆盖范围内的所有UE首先进行一次基于UE的定位(UE-based定位,例如:UL-based DL-TDOA或者UE-based DL-AOD),让所有候选UE来上报该UE的定位参考参数;可选地,预设信令消息可以是LPP信令消息,候选参考设备接收到LPP信令消息时,向所述LMF发送定位参考参数。
候选参考设备向LMF发送定位参考参数后,LMF根据定位参考参数选择最优的目标参考设备,和/或根据预设的判断规则确定定位参考参数是否满足作为目标参考设备的要求。可以理解的是,本公开实施例中,对于一个服务基站,目标参考设备可以包括一个或至少两个。
确定目标参考设备后,后续对其他用户设备进行定位时,可以将目标参考设备的已知 位置信息作为参考信息,例如用于估计和/或校正定位信号的发送和接收误差,定位信号可以是基站和/或收发点(Transmission-Reception Point,TRP)的定位信号,以提升定位精度。
本公开实施例中,候选参考设备确定定位参考参数;向位置管理功能网元LMF发送所述定位参考参数;定位参考参数可由候选参考设备自动发送,或通过第一指示信息和/或第二指示信息获取;本公开实施例中提供了一种配置或选取参考设备的方式,且LMF通过定位参考参数配置或选取参考设备,提升目标参考设备的配置精度或选取精度,进而提高5GNR系统中,对UE进行定位的定位精度。
可选地,本公开实施例中,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
其中,位置参数用于指示候选参考设备的位置信息,例如位置估计值和位置解算值;可选地,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数;其中,设备能力参数用于表示候选参考设备的综合能力或作为参考设备的能力,例如UE网络能力和UE无线接入能力,在传输设备能力参数的过程中,可使用1比特信令传输设备能力参数。定位方式参数用于表示设备的定位方式,例如:不同的UE-based定位方式,包括:UL-based DL-TDOA,UE-basedDL-AOD。
可选地,本公开实施例中,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
其中,质量指示参数指示该位置估计值对应的位置,作为目标参考设备的位置的质量高低;误差范围参数表示位置估计值与真实位置值之间的误差范围;所述位置估计值的不确定度参数指示该位置估计值对应的位置的不确定程度;所述定位方式参数的可靠性参数指示该定位方式参数对应的定位方式的可靠性程度。
可选地,对于不同的位置参数,其精度指示参数可预先设定;比如预先设定每个位置参数对应的精度指示参数的具体值。
在一个可选实施例中,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率。
误差取值指示位置解算值对应的不确定性的最优估计值;误差分辨率指示误差取值的量化步长。
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
可以理解的是,本公开实施例中,“测量量”表示“测量的量值”,即测量所得结果,即“定位测量量”指“定位测量的量值”;所述第二误差为位置解算值和/或定位测量量的误差,例如:基于1sigma或者3sigma准则的误差值(其中,sigma表示测量量的标准差);方差值;在[X%]置信水平下,位置解算值和/或定位测量量的误差位于某误差区间的概率等,其中,X取值范围是从0到100,候选取值为80、90和95等。
在一个可选实施例中,若所述位置参数包括所述位置估计值,则所述确定定位参考参数,包括:
若所述候选参考设备包括网络侧设备,则获取所述网络侧设备的位置估计值和/或所述位置估计值的质量指示参数。
若所述候选参考设备包括终端设备,则对所述终端设备进行定位得到所述终端设备的位置估计值,并获取所述位置估计值的质量指示参数。
若所述候选参考设备包括网络侧设备,例如,当参考设备是预先已知位置的基站时,则直接获取该基站的位置估计值和/或所述位置估计值的质量指示参数即可。
若所述候选参考设备包括终端设备,例如当参考设备是UE时,则对所述终端设备进行定位得到所述终端设备的位置估计值,并获取所述位置估计值的质量指示参数;可选地,所述对所述终端设备进行定位得到所述终端设备的位置估计值,包括:
根据预设定位方式对所述终端设备进行定位,得到所述终端设备的位置估计值;
所述预设定位方式包括以下至少一种:
激光测绘方式、独立于无线网络接入技术RAT-independent的UE-based定位、基于无线网络接入技术RAT的UE-based定位。
RAT-independent的UE-based定位例如全球导航卫星系统(Global Navigation Satellite System,GNSS)定位、蓝牙定位、WiFi定位和超宽带技术(Ultra Wide Band,UWB)定位;基于RAT的定位例如下行到达时间差定位或下行离开角度定位。
在一个可选实施例中,所述获取所述位置估计值的质量指示参数,包括:
基于所述预设定位方式和/或所述终端设备的位置估计值的位置属性,确定所述位置估计值的质量指示参数;其中,所述位置属性包括:所述位置估计值指示预设位置和/或目标网络侧设备的收发点位置。
对于位置估计值的质量指示参数,预先设定不同的预设定位方式和/或位置属性对应的质量指示参数。
以位置属性为例,对于位置属性为预设位置,比如预先放置在已知位置的终端其对应 的质量指示参数较高;或,位置估计值为预设收发点位置,其对应的质量指示参数较高。对于预设定位方式,由于不同定位方式的定位精度不同,因此不同定位方式对应的不同的质量指示参数,比如,GNSS定位方式高于蓝牙、WiFi、UWB等定位方式。
作为示例,预先设定四个等级的质量指示参数,预先放置在已知位置的终端、位置估计值为预设收发点位置对应的等级为第一等级(最高);GNSS定位方式对应第二等级;下行到达时间差、下行到达时间等定位方式对应第三等级;蓝牙、WiFi、UWB等定位方式对应第四等级。
在一个可选实施例中,所述向位置管理功能网元LMF发送所述定位参考参数,包括:
若所述候选参考设备包括网络侧设备,则基于新空口NR定位协议A信令(NR PPa信令),向位置管理功能网元LMF发送所述定位参考参数;
若所述候选参考设备包括终端设备,则基于长期演进LTE定位协议信令(LPP信令),向位置管理功能网元LMF发送所述定位参考参数。
在一个可选实施例中,所述向位置管理功能网元LMF发送所述定位参考参数之后,所述方法包括:
若所述候选参考设备为目标参考设备,则接收所述LMF发送的定位辅助数据;
根据所述定位辅助数据测量定位测量量,并将所述定位测量量发送至所述LMF。
例如,针对下行定位,LMF把从服务基站(被定位设备的服务基站)以及服务基站的相邻基站获取的下行定位辅助数据,发送至该目标参考设备,目标参考设备接收定位辅助数据;定位辅助数据例如RSTD或者UE收发时间差等。
接收到定位辅助数据之后,目标参考设备根据所述定位辅助数据测量定位测量量,并将所述定位测量量发送至所述LMF;定位测量量例如RTOA或者基站收发时间差;最后LMF基于定位测量量,以及预先已经获取的目标参考设备的位置、基站和/或TRP位置,进行位置解算,对目标终端进行定位。
本公开实施例中,候选参考设备确定定位参考参数;向位置管理功能网元LMF发送所述定位参考参数;定位参考参数可由候选参考设备自动发送,或通过第一指示信息和/或第二指示信息获取;本公开实施例中提供了一种配置或选取参考设备的方式,且LMF通过定位参考参数配置或选取参考设备,提升目标参考设备的配置精度或选取精度,进而提高5G NR系统中,对UE进行定位的定位精度。
参见图3,本公开实施例还提供了一种参考设备确定方法,应用于网络侧设备,所述网络侧设备可以是基站,例如非参考设备的服务基站。
所述方法包括:
步骤301,接收位置管理功能网元LMF发送的第三指示信息。
其中,第三指示信息作为指示信令由LMF发送,例如通过广播信令或者RRC专用信令发送发,广播信令可以通过SIB消息发送。
步骤302,响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;所述定位参考参数用于所述LMF确定所述候选参考设备中的目标参考设备。
基站接收到LMF发送的第三指示信息令后,向其覆盖区域内的所有候选参考设备发送第一指示信息,第一指示信息可以通过广播消息或RRC信令发送,请求所有的候选参考设备(或参考设备)将其定位参考参数发送到LMF,LMF收到候选参考设备的定位参考参数之后,根据定位参考参数选择最优的目标参考设备,和/或根据预设的判断规则确定定位参考参数是否满足作为目标参考设备的要求。
LMF确定目标参考设备后,后续对其他用户设备进行定位时,可以将目标参考设备的已知位置信息作为参考信息,例如用于估计和/或校正定位信号的发送和接收误差,定位信号可以是基站和/或收发点TRP的定位信号,以提升定位精度。
本公开实施例中,网络侧设备接收位置管理功能网元LMF发送的第三指示信息,响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数,使得LMF根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;本公开实施例中提供了一种配置或选取参考设备的方式,且通过定位参考参数配置或选取参考设备,提升目标参考设备的配置精度或选取精度,进而提高5GNR系统中,对UE进行定位的定位精度。
作为第一示例,以候选参考设备为用户UE、网络侧设备(第一网络侧设备)为基站为例,对目标UE进行下行定位为例,LMF、用户UE、基站分别执行以下流程:
一,LMF执行下述步骤111至步骤115:
步骤111:LMF通过以下方式1至方式3中至少一项触发或者配置参考设备。
方式1,LMF接收候选参考设备的自动上报。
上报内容包括:该候选参考设备能力参数(用于判断候选参考设备是否有能力作为参考设备),位置估计值和速度估计值,以及位置估计值和速度估计值的精度指示参数(精度指示参数包括可靠性等级、误差范围和质量指示等)。上述上报量用于当存在多个候选的参考设备时LMF基于一定的准则选择参考设备。
方式2,LMF发送指示信令给基站,由基站通过广播信令(SIB消息)或者RRC专用信令触发。服务gNB向覆盖区域内的所有UE发送第一指示信息,请求所有(或预先配置)的候选参考设备(包括具有作为参考设备的能力的UE),按第一指示信息的要求 和配置,接收DL PRS并将测量获取的测量值连同其位置信息一起发送到LMF。广播消息或RRC信令也有可能请求预先配置参考设备发送UL SRS-POS,SRS为侦听参考信号(Sounding Reference Signal,SRS),SRS-POS表示用于定位的SRS信号。其中,一组设备可以被预先配置为参考设备。
方式3,LMF通过专用的预设信令消息触发。
LMF可以向一个或多个候选参考设备发送专用消息(或扩展现有的LPP信令消息:提供UE能力请求消息、提供定位辅助数据消息,或者定义新的LPP信令消息),该预设信令消息用于指示某个设备是否被选择为参考设备,并请求该参考设备连同它的位置坐标信息和定位测量量一起上报。例如LMF触发该LMF关联的基站覆盖范围内的所有能力作为参考设备的UE首先进行一次UE-based定位,让所有候选UE来上报该UE的位置估计值和速度估计值,以及不确定度。
步骤112,当存在多个候选的参考设备时,LMF基于以下任意一个准则或者准则的组合来选择出一个或者多个参考设备。
准则1:基于UE上报的位置估计值的质量指示从高到低(或者不确定度从小到大)的顺序选择;
准则2:基于UE上报的速度估计值从小到大的顺序选择,优先选择UE速度为0(即UE静止不动)的UE;
准则3:基于UE上报的UE能力等级从高到低的顺序选择,优先选择UE能力最强的UE作为参考设备;
准则4:基于UE上报的不同UE-based定位方式对应的精度可靠性等级从高到低的顺序选择。
步骤113,LMF把从服务基站以及相邻基站获取的下行定位辅助数据通知该候选参考设备。
其中,LMF发送到参考设备的消息可以包括用于测量报告的配置信息,包括:定位测量量的内容(下行RSTD和UE收发时间差等)、上报时机和上报方式(周期或者非周期上报)。
步骤114,LMF接收参考设备、非参考设备上报的定位测量量(RST、和UE收发时间差等)。
步骤115,LMF基于步骤114获取的下行定位测量量(RSTD和UE收发时间差等),以及提前获取的参考设备的位置和基站/TRP位置,进行位置解算。
例如基于实时的双差分或者一次性单差分处理,获取高精度的目标UE位置信息。
二,候选参考设备(用户UE)执行下述步骤121至步骤124:
步骤121:候选参考设备基于不同的定位方案计算得到位置估计值,以及对应于该位置估计值的精度指示参数。
其中,定位方案包括预先已知或者标定、激光测绘获取、RAT-independent定位方案(GNSS定位、蓝牙、WiFi、UWB等)、5G NR定义的UE-based DL-TDOA+UE-based DL-AOD定位。
位置估计值可以是位置坐标的形式,位置坐标包括以下两种选项,可以基于当前37.355协议定义的位置坐标:
选项1:GCS坐标系下的(x,y,z),其中,选项1采用笛卡尔坐标系;
选项2:GCS坐标系下的(南北半球指示,维度,精度),其中,选项2采用球面坐标系。
位置坐标的精度指示参数可以是可靠性等级(可靠性参数),也可以是该参考设备位置的误差范围和质量指示等,作为示例,候选参考设备的采用选项1。
具体地,可以定义不同精度可靠性等级(从高到低的顺序),分别对应于不同的定位方式:
选项1-1:预先放置在已知位置(例如:通过激光测绘获取);
选项1-2:RAT-independent定位方案获取参考设备的位置,包括:GNSS、蓝牙、WiFi、UWB;
选项1-3:基于现有UE-based DL-TDOA+UE-based DL-AOD定位方式获取初步的参考设备的位置;
选项1-4:参考设备放置在当前基站TRP的位置。
例如,选项1-1和选项1-4作为第一等级;选项1-2中的GNSS定位作为第二等级;选项1-3作为第三等级;选项1-2中的蓝牙、WiFi、UWB等作为第四等级)。
步骤122,候选参考设备向LMF同时上报位置参数,以及对应于该位置参数的精度指示参数。
步骤123,候选参考设备接收LMF通知的下行定位辅助数据。
步骤124,基于步骤123中下行定位辅助数据包含的下行PRS的配置信息,接收并测量下行PRS,获取下行定位测量量并上报给LMF。
三,非参考设备的基站执行下述步骤131至步骤132:
步骤131:基于目标UE和候选参考设备分配下行定位参考信号PRS的资源配置参数作为定位辅助数据,并且把定位辅助数据信息上报给LMF;
步骤132:向服务小区内所有UE发送下行PRS。
作为第二示例,以候选参考设备为用户UE、网络侧设备(第一网络侧设备)为基站 为例,对目标UE进行上行定位为例,LMF、用户UE、基站分别执行以下流程:
一,LMF执行下述步骤211至步骤215:
步骤211:LMF通过以下方式1至方式3中至少一项触发或者配置参考设备。
方式1,LMF接收候选参考设备的自动上报。
上报内容包括:该候选参考设备能力参数(用于判断候选参考设备是否有能力作为参考设备),位置估计值和速度估计值,以及位置估计值和速度估计值的精度指示参数(精度指示参数包括可靠性等级、误差范围和质量指示等)。上述上报量用于当存在多个候选的参考设备时LMF基于一定的准则选择参考设备。
方式2,LMF发送指示信令给基站,由基站通过广播信令(SIB消息)或者RRC专用信令触发。服务gNB向覆盖区域内的所有UE发送第一指示信息,请求所有(或预先配置)的候选参考设备(包括具有作为参考设备的能力的UE),按第一指示信息的要求和配置,接收DL PRS并将测量获取的测量值连同其位置信息一起发送到LMF。广播消息或RRC信令也有可能请求预先配置参考设备发送UL SRS-POS。其中,一组设备可以被预先配置为参考设备。
方式3,LMF通过专用DE预设信令消息触发。
LMF可以向一个或多个候选参考设备发送专用消息(或扩展现有的LPP信令消息:提供UE能力请求消息、提供定位辅助数据消息,或者定义新的LPP信令消息),该预设信令消息用于指示某个设备是否被选择为参考设备,并请求该参考设备连同它的位置坐标信息和定位测量量一起上报。例如LMF触发该LMF关联的基站覆盖范围内的所有能力作为参考设备的UE首先进行一次UE-based定位,让所有候选UE来上报该UE的位置估计值和速度估计值,以及不确定度。
步骤212,当存在多个候选的参考设备时,LMF基于以下任意一个准则或者准则的组合来选择出一个或者多个参考设备。
准则1:基于UE上报的位置估计值的质量指示从高到低(或者不确定度从小到大)的顺序选择;
准则2:基于UE上报的速度估计值从小到大的顺序选择,优先选择UE速度为0(即UE静止不动)的UE;
准则3:基于UE上报的UE能力等级从高到低的顺序选择,优先选择UE能力最强的UE作为参考设备;
准则4:基于UE上报的不同UE-based定位方式对应的精度可靠性等级从高到低的顺序选择。
步骤213,LMF把从服务基站以及相邻基站获取的上行定位辅助数据通知该目标UE 的相邻基站。
步骤214,LMF接收服务基站以及相邻基站上报的定位测量量(例如:RTOA,或者AOA)。
步骤215,LMF基于步骤214获取的上行定位测量量(例如:RTOA,或者AOA),以及提前获取的参考设备的位置和基站/TRP位置,进行位置解算。
例如,基于实时的双差分或者一次性单差分处理,获取高精度的目标UE位置信息。
二,候选参考设备(用户UE)执行下述步骤221至步骤224:
步骤221:候选参考设备基于不同的定位方案计算得到位置估计值,以及对应于该位置估计值的精度指示参数。
其中,定位方案包括预先已知或者标定、激光测绘获取、RAT-independent定位方案(GNSS定位、蓝牙、WiFi、UWB等)、5G NR定义的UE-based DL-TDOA定位以及UE-based DL-AOD定位。
位置估计值可以是位置坐标的形式,位置坐标包括以下两种选项,可以基于当前37.355协议定义的位置坐标:
选项1:GCS坐标系下的(x,y,z),其中,选项1采用笛卡尔坐标系;
选项2:GCS坐标系下的(南北半球指示,维度,精度),其中,选项2采用球面坐标系。
位置坐标的精度指示参数可以是可靠性等级(可靠性参数),也可以是该参考设备位置的误差范围和质量指示等,作为示例,候选参考设备的采用选项2。
具体地,候选参考设备位置参数的误差范围和质量指示,进一步包括参考设备的定位测量量的质量指示参数,和参考设备的位置解算值的误差范围参数。
选项2-1:参考设备的参考定位测量量的质量指示,参考设备的位置解算值的质量指示,包括以下两个域:
误差取值:指示位置解算值不确定性的最优估计值;
误差分辨率:指示误差取值的量化步长。
选项2-2:参考设备的定位测量量或者位置解算值的误差范围,例如:基于1sigma或者3sigma准则的误差值;方差值;在[95%]置信水平下,位置解算值和/或定位测量量的误差位于某误差区间的概率等。
步骤222,候选参考设备向LMF同时上报位置参数,以及对应于该位置参数的精度指示参数。
步骤223,候选参考设备接收LMF通知的上行定位辅助数据(SRS-POS)。
步骤224,参考设备发送上行SRS-POS。
三,非参考设备的服务基站执行下述步骤231至步骤234:
步骤231,服务基站触发或者配置参考设备。
服务基站接收来自LMF的指示信令,通过广播信令(SIB消息)或者RRC专用信令触发或者配置参考设备。服务基站向覆盖区域内的所有UE发送广播消息或RRC信令,请求所有的候选参考设备(或具有作为参考设备的能力的UE)将其定位参考参数发送到LMF。
步骤232,基于目标UE和参考设备分配定位参考信号(上行SRS-POS),把定位辅助数据信息上报给LMF;
步骤233,接收服务小区内所有UE发送的上行SRS-POS,并且进行测量获得上行定位测量量(例如:RTOA,或者AOA);
步骤234,针对上行定位或者上下行联合定位,把上行测量量上报给LMF。
作为第三示例,以候选参考设备为第一基站,网络侧设备(第一网络侧设备)为第二基站为例,对目标UE进行下行定位为例,LMF、用第一基站、第二基站分别执行以下流程:
一,LMF执行下述步骤311至步骤315:
步骤311:LMF通过以下方式1至方式3中至少一项触发或者配置参考设备。
方式1,LMF接收候选参考设备的自动上报。
上报内容包括:该候选参考设备能力参数(用于判断候选参考设备是否有能力作为参考设备),位置估计值和速度估计值,以及位置估计值和速度估计值的精度指示参数(精度指示参数包括可靠性等级、误差范围和质量指示等)。上述上报量用于当存在多个候选的参考设备时LMF基于一定的准则选择参考设备。
方式2,LMF发送指示信令给第二基站,由第二基站通过广播信令(SIB消息)或者RRC专用信令触发。服务gNB向覆盖区域内的所有第一基站发送第一指示信息,请求所有(或预先配置)的候选参考设备(包括具有作为参考设备的能力的第一基站),按第一指示信息的要求和配置,接收DL PRS并将测量获取的测量值连同其位置信息一起发送到LMF。广播消息或RRC信令也有可能请求预先配置参考设备发送UL SRS-POS。其中,一组设备可以被预先配置为参考设备。
方式3,LMF通过专用的预设信令消息触发。
LMF可以向一个或多个候选参考设备发送专用消息(或扩展现有的LPP信令消息:提供第一基站能力请求消息、提供定位辅助数据消息,或者定义新的LPP信令消息),该预设信令消息用于指示某个设备是否被选择为参考设备,并请求该参考设备连同它的位置坐标信息和定位测量量一起上报。例如LMF触发该LMF关联的第二基站覆盖范围内的 所有能力作为参考设备的第一基站首先进行一次基站-based定位,让所有候选第一基站来上报该第一基站的位置估计值和速度估计值,以及不确定度。
步骤312,当存在多个候选的参考设备时,LMF基于以下任意一个准则或者准则的组合来选择出一个或者多个参考设备。
准则1:基于第一基站上报的位置估计值的质量指示从高到低(或者不确定度从小到大)的顺序选择;
准则2:基于第一基站上报的速度估计值从小到大的顺序选择,优先选择第一基站速度为0(即第一基站静止不动)的第一基站;
准则3:基于第一基站上报的第一基站能力等级从高到低的顺序选择,优先选择第一基站能力最强的第一基站作为参考设备;
准则4:基于第一基站上报的不同基站-based定位方式对应的精度可靠性等级从高到低的顺序选择。
步骤313,LMF把从服务第二基站以及相邻第二基站获取的下行定位辅助数据通知该候选参考设备。
其中,LMF发送到参考设备的消息可以包括用于测量报告的配置信息,包括:定位测量量的内容(下行RSTD、和第一基站收发时间差等)、上报时机和上报方式(周期或者非周期上报)。
步骤314,LMF接收参考设备、非参考设备上报的定位测量量(RSTD)。
步骤315,LMF基于步骤314获取的下行定位测量量(RSTD),以及提前获取的参考设备的位置和第二基站/TRP位置,进行位置解算。
例如基于实时的双差分或者一次性单差分处理,获取高精度的目标第一基站位置信息。
二,候选参考设备(第一基站)执行下述步骤321至步骤324:
步骤321:候选参考设备的位置参数(位置估计值),以及对应于该位置估计值的精度指示参数。
当候选参考设备是预先已知理想位置的基站时,不需要单独做定位,直接获取位置估计值,以及对应于该第一位置估计值的精度指示参数。
步骤322,基于当前的NRPPa信令,候选参考设备向LMF同时上报位置参数,以及对应于该位置参数的精度指示参数。
步骤323,针对下行定位(或者上行与下行定位),候选参考设备接收LMF通知的下行定位辅助数据(PRS的时频资源配置信息);
针对上行定位(或者上行与下行定位),候选参考设备接收服务基站通知的上行定位 辅助数据(SRS-POS时频资源配置信息)。
步骤324,针对下行定位(或者上行与下行定位),候选参考设备基于下行定位辅助数据包含的下行PRS的配置信息,接收并测量下行PRS,获取下行定位测量量并上报给LMF;
针对上行定位(或者上行与下行定位),参考设备发送上行SRS-POS。
三,非参考设备的第二基站执行下述步骤331至步骤332:
步骤331,基于目标第一基站和候选参考设备分配下行定位参考信号PRS的资源配置参数作为定位辅助数据,并且把定位辅助数据信息上报给LMF;
步骤332,向服务小区内所有UE发送下行PRS。
在本公开实施例的上述示例中,候选参考设备确定定位参考参数,向位置管理功能网元LMF发送所述定位参考参数,LMF获取候选参考设备的定位参考参数,根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;定位参考参数可由候选参考设备自动发送,或通过第一指示信息和/或第二指示信息获取;本公开实施例中提供了一种配置或选取目标参考设备的方式,且通过定位参考参数配置或选取目标参考设备,提升目标参考设备的配置精度或选取精度,进而提高5G NR系统中,对UE进行定位的定位精度。
以上介绍了本公开实施例提供的方法,下面将结合附图介绍本公开实施例提供的装置。
参见图4,本公开实施例还提供了一种参考设备确定装置,应用于位置管理功能网元LMF,所述装置包括:
参数获取模块401,被配置为获取候选参考设备的定位参考参数;
设备确定模块402,被配置为根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;
其中,所述定位参考参数通过以下至少一项获取:
接收所述候选参考设备发送的所述定位参考参数;
指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;
通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数。
可选地,本公开实施例中,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
可选地,本公开实施例中,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
可选地,本公开实施例中,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
可选地,本公开实施例中,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
可选地,本公开实施例中,所述设备确定模块402包括:
第一确定子模块,被配置为若所述候选参考设备包括一个参考设备,则根据所述定位参考参数以及预设参数要求,确定所述候选参考设备是否为目标参考设备;其中,所述预设参数要求中包括对至少一个所述定位参考参数的要求;
第二确定子模块,被配置为若所述候选参考设备包括至少两个参考设备,则根据预设选择方式,确定所述候选参考设备中的目标参考设备。
可选地,本公开实施例中,所述第二确定子模块用于执行以下至少一项:
基于所述位置估计值的质量指示参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述位置估计值的不确定度参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述速度估计值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述候选参考设备的设备能力参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述定位方式参数的可靠性参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述定位参考参数中的至少两项参数,选择所述候选参考设备中的目标参考设备。
可选地,本公开实施例中,所述装置还包括:
第一定位模块,被配置为将定位辅助数据发送至所述目标参考设备或所述目标参考设备的相邻网络侧设备;
接收定位测量量;
基于所述定位测量量,对目标终端进行定位。
本公开实施例中,参数获取模块401获取候选参考设备的定位参考参数;设备确定模块402根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;定位参考参数可由候选参考设备自动发送,或通过第一指示信息和/或第二指示信息获取;本公开实施例中提供了一种配置或选取参考设备的方式,且通过定位参考参数配置或选取参考设备,提升目标参考设备的配置精度或选取精度,进而提高5G NR系统中,对UE进行定位的定位精度。并且,后续在定位过程中,可参考目标参考设备的位置信息,可进一步提高对UE进行定位的定位精度。
参见图5,本公开实施例还提供了一种参数处理装置,应用于候选参考设备,所述装置包括:
参数确定模块501,被配置为确定定位参考参数;
参数发送模块502,被配置为向位置管理功能网元LMF发送所述定位参考参数;
其中,所述定位参考参数通过以下至少一项发送:
所述候选参考设备自主发送;
接收到第一网络侧设备发送的第一指示信息时发送,所述第一指示信息为所述LMF指示所述第一网络侧设备发送的;
接收到所述LMF指发送的预设信令消息时发送。
在一个可选实施例中,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
在一个可选实施例中,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
在一个可选实施例中,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
在一个可选实施例中,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
在一个可选实施例中,若所述位置参数包括所述位置估计值,则所述参数确定模块501包括:
第一获取子模块,被配置为若所述候选参考设备包括网络侧设备,则获取所述网络侧 设备的位置估计值和/或所述位置估计值的质量指示参数;
第二获取子模块,被配置为若所述候选参考设备包括终端设备,则对所述终端设备进行定位得到所述终端设备的位置估计值,并获取所述位置估计值的质量指示参数。
在一个可选实施例中,所述第二获取子模块用于:
根据预设定位方式对所述终端设备进行定位,得到所述终端设备的位置估计值;
所述预设定位方式包括以下至少一种:
激光测绘方式、独立于无线网络接入技术RAT-independent的UE-based定位、基于无线网络接入技术RAT的UE-based定位。
在一个可选实施例中,所述第二获取子模块用于:
基于所述预设定位方式和/或所述终端设备的位置估计值的位置属性,确定所述位置估计值的质量指示参数;其中,所述位置属性包括:所述位置估计值指示预设位置和/或目标网络侧设备的收发点位置。
在一个可选实施例中,所述参数发送模块502包括:
第一发送子模块,被配置为若所述候选参考设备包括网络侧设备,则基于新空口NR定位协议A信令,向位置管理功能网元LMF发送所述定位参考参数;
第二发送子模块,被配置为若所述候选参考设备包括终端设备,则基于长期演进LTE定位协议信令,向位置管理功能网元LMF发送所述定位参考参数。
在一个可选实施例中,所述装置包括:
数据接收模块,被配置为若所述候选参考设备为目标参考设备,则接收所述LMF发送的定位辅助数据;
数据发送模块,被配置为根据所述定位辅助数据测量定位测量量,并将所述定位测量量发送至所述LMF。
本公开实施例中,参数确定模块501确定定位参考参数;参数发送模块502向位置管理功能网元LMF发送所述定位参考参数;定位参考参数可由候选参考设备自动发送,或通过第一指示信息和/或第二指示信息获取;本公开实施例中提供了一种配置或选取参考设备的方式,且LMF通过定位参考参数配置或选取参考设备,提升目标参考设备的配置精度或选取精度,进而提高5GNR系统中,对UE进行定位的定位精度。
参见图6,本公开实施例还提供了一种参考设备确定装置,应用于网络侧设备,所述装置包括:
信息接收模块601,被配置为接收位置管理功能网元LMF发送的第三指示信息;
信息响应模块602,被配置为响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数; 所述定位参考参数用于所述LMF确定所述候选参考设备中的目标参考设备。
本公开实施例中,信息接收模块601接收位置管理功能网元LMF发送的第三指示信息,信息响应模块602响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数,使得LMF根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;本公开实施例中提供了一种配置或选取参考设备的方式,且通过定位参考参数配置或选取参考设备,提升目标参考设备的配置精度或选取精度,进而提高5GNR系统中,对UE进行定位的定位精度。
需要说明的是,本公开实施例中对模块(单元)的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图7所示,本公开的实施例还提供了一种网络侧设备,网络侧设备包括位置管理功能网元LMF,还包括存储器720、收发机740、处理器710;
存储器720,被配置为存储计算机程序;
收发机740,被配置为在处理器710的控制下接收和发送数据;
处理器710,被配置为读取所述存储器720中的计算机程序并执行以下操作:
获取候选参考设备的定位参考参数;
根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;
其中,所述定位参考参数通过以下至少一项获取:
接收所述候选参考设备发送的所述定位参考参数;
指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;
通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数。
在一个可选实施例中,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
在一个可选实施例中,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
在一个可选实施例中,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
在一个可选实施例中,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
在一个可选实施例中,所述根据所述定位参考参数,确定所述候选参考设备中的目标参考设备,包括:
若所述候选参考设备包括一个参考设备,则根据所述定位参考参数以及预设参数要求,确定所述候选参考设备是否为目标参考设备;其中,所述预设参数要求中包括对至少一个所述定位参考参数的要求;
若所述候选参考设备包括至少两个参考设备,则根据预设选择方式,确定所述候选参考设备中的目标参考设备。
在一个可选实施例中,所述根据预设选择方式,确定所述候选参考设备中的目标参考设备,包括以下至少一项:
基于所述位置估计值的质量指示参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述位置估计值的不确定度参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述速度估计值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述候选参考设备的设备能力参数的数值由小及大的顺序,选择所述候选参考设 备中的目标参考设备;
基于所述定位方式参数的可靠性参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
基于所述定位参考参数中的至少两项参数,选择所述候选参考设备中的目标参考设备。
在一个可选实施例中,所述确定所述候选参考设备中的目标参考设备之后,所述方法还包括:
将定位辅助数据发送至所述目标参考设备或所述目标参考设备的相邻网络侧设备;
接收定位测量量;
基于所述定位测量量,对目标终端进行定位。其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器710代表的一个或多个处理器710和存储器720代表的存储器720的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口730提供接口。收发机740可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器710负责管理总线架构和通常的处理,存储器720可以存储处理器710在执行操作时所使用的数据。
处理器710可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器710也可以采用多核架构。
处理器710通过调用存储器720存储的计算机程序,被配置为按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器710与存储器720也可以物理上分开布置。
如图8所示,本公开的实施例还提供了一种终端,包括存储器820、收发机840、处理器810;
存储器820,被配置为存储计算机程序;
收发机840,被配置为在处理器810的控制下接收和发送数据;
处理器810,被配置为读取所述存储器820中的计算机程序并执行以下操作:
确定定位参考参数;
向位置管理功能网元LMF发送所述定位参考参数;
其中,所述定位参考参数通过以下至少一项发送:
所述候选参考设备自主发送;
接收到第一网络侧设备发送的第一指示信息时发送,所述第一指示信息为所述LMF指示所述第一网络侧设备发送的;
接收到所述LMF指发送的预设信令消息时发送。
在一个可选实施例中,所述定位参考参数包括以下至少一项:
所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
在一个可选实施例中,所述位置参数包括以下至少一项:
所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
在一个可选实施例中,所述精度指示参数包括以下至少一项:
所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
在一个可选实施例中,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
在一个可选实施例中,若所述位置参数包括所述位置估计值,则所述确定定位参考参数包括:
若所述候选参考设备包括网络侧设备,则获取所述网络侧设备的位置估计值和/或所述位置估计值的质量指示参数;
若所述候选参考设备包括终端设备,则对所述终端设备进行定位得到所述终端设备的位置估计值,并获取所述位置估计值的质量指示参数。
在一个可选实施例中,所述对所述终端设备进行定位得到所述终端设备的位置估计值,包括:
根据预设定位方式对所述终端设备进行定位,得到所述终端设备的位置估计值;
所述预设定位方式包括以下至少一种:
激光测绘方式、独立于无线网络接入技术RAT-independent的UE-based定位、基于无线网络接入技术RAT的UE-based定位。
在一个可选实施例中,所述获取所述位置估计值的质量指示参数,包括:
基于所述预设定位方式和/或所述终端设备的位置估计值的位置属性,确定所述位置估计值的质量指示参数;其中,所述位置属性包括:所述位置估计值指示预设位置和/或目标网络侧设备的收发点位置。
在一个可选实施例中,所述向位置管理功能网元LMF发送所述定位参考参数,包括:
若所述候选参考设备包括网络侧设备,则基于新空口NR定位协议A信令,向位置管理功能网元LMF发送所述定位参考参数;
若所述候选参考设备包括终端设备,则基于长期演进LTE定位协议信令,向位置管理功能网元LMF发送所述定位参考参数。
在一个可选实施例中,所述向位置管理功能网元LMF发送所述定位参考参数之后,所述方法包括:
若所述候选参考设备为目标参考设备,则接收所述LMF发送的定位辅助数据;
根据所述定位辅助数据测量定位测量量,并将所述定位测量量发送至所述LMF。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器810代表的一个或多个处理器810和存储器820代表的存储器820的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口830提供接口。收发机840可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器810负责管理总线架构和通常的处理,存储器820可以存储处理器810在执行操作时所使用的数据。针对不同的用户设备,用户接口850还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器810可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器810也可以采用多核架构。
处理器810通过调用存储器820存储的计算机程序,被配置为按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器810与存储器820也可以物理上分开布置。
如图9所示,本公开的实施例还提供了一种网络侧设备,网包括存储器920、收发机940、处理器910;
存储器920,被配置为存储计算机程序;
收发机940,被配置为在处理器910的控制下接收和发送数据;
处理器910,被配置为读取所述存储器920中的计算机程序并执行以下操作:
接收位置管理功能网元LMF发送的第三指示信息;
响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;所述定位参考参数用于所述 LMF确定所述候选参考设备中的目标参考设备。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器910代表的一个或多个处理器910和存储器920代表的存储器920的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口930提供接口。收发机940可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器910负责管理总线架构和通常的处理,存储器920可以存储处理器910在执行操作时所使用的数据。
处理器910可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器910也可以采用多核架构。
处理器910通过调用存储器920存储的计算机程序,被配置为按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器910与存储器920也可以物理上分开布置。
在此需要说明的是,本公开实施例提供的上述装置,能够实现各自对应的上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开的实施例还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行前述方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算 机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (26)

  1. 一种参考设备确定方法,应用于位置管理功能网元LMF,所述方法包括:
    获取候选参考设备的定位参考参数;
    根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;
    其中,所述定位参考参数通过以下至少一项获取:
    接收所述候选参考设备发送的所述定位参考参数;
    指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;
    通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数。
  2. 根据权利要求1所述的参考设备确定方法,其中,所述定位参考参数包括以下至少一项:
    所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
  3. 根据权利要求2所述的参考设备确定方法,其中,所述位置参数包括以下至少一项:
    所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
  4. 根据权利要求3所述的参考设备确定方法,其中,所述精度指示参数包括以下至少一项:
    所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
  5. 根据权利要求4所述的参考设备确定方法,其中,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
    其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
    所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
  6. 根据权利要求4所述的参考设备确定方法,其中,所述根据所述定位参考参数,确定所述候选参考设备中的目标参考设备,包括:
    若所述候选参考设备包括一个参考设备,则根据所述定位参考参数以及预设参数要求,确定所述候选参考设备是否为目标参考设备;其中,所述预设参数要求中包括对至少一个所述定位参考参数的要求;
    若所述候选参考设备包括至少两个参考设备,则根据预设选择方式,确定所述候选参考设备中的目标参考设备。
  7. 根据权利要求6所述的参考设备确定方法,其中,所述根据预设选择方式,确定所述候选参考设备中的目标参考设备,包括以下至少一项:
    基于所述位置估计值的质量指示参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
    基于所述位置估计值的不确定度参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
    基于所述速度估计值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
    基于所述候选参考设备的设备能力参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
    基于所述定位方式参数的可靠性参数的数值由小及大的顺序,选择所述候选参考设备中的目标参考设备;
    基于所述定位参考参数中的至少两项参数,选择所述候选参考设备中的目标参考设备。
  8. 根据权利要求1至7中任一项所述的参考设备确定方法,其中,所述确定所述候选参考设备中的目标参考设备之后,所述方法还包括:
    将定位辅助数据发送至所述目标参考设备或所述目标参考设备的相邻网络侧设备;
    接收定位测量量;
    基于所述定位测量量,对目标终端进行定位。
  9. 一种参数处理方法,应用于候选参考设备,所述方法包括:
    确定定位参考参数;
    向位置管理功能网元LMF发送所述定位参考参数;
    其中,所述定位参考参数通过以下至少一项发送:
    所述候选参考设备自主发送;
    接收到第一网络侧设备发送的第一指示信息时发送,所述第一指示信息为所述LMF指示所述第一网络侧设备发送的;
    接收到所述LMF指发送的预设信令消息时发送。
  10. 根据权利要求9所述的参数处理方法,其中,所述定位参考参数包括以下至少一项:
    所述候选参考设备的位置参数以及所述位置参数的精度指示参数。
  11. 根据权利要求10所述的参数处理方法,其中,所述位置参数包括以下至少一项:
    所述候选参考设备的位置估计值、速度估计值、设备能力参数、定位方式参数。
  12. 根据权利要求11所述的参数处理方法,其中,所述精度指示参数包括以下至少一项:
    所述位置估计值的质量指示参数、所述位置估计值的误差范围参数、所述位置估计值的不确定度参数、所述定位方式参数的可靠性参数。
  13. 根据权利要求12所述的参数处理方法,其中,若所述精度指示参数包括所述位置估计值的误差范围参数,则所述误差范围参数包括第一误差范围参数和/或第二误差范围参数;
    其中,所述第一误差范围参数包括所述候选参考设备的位置解算值的第一误差;所述第一误差包括误差取值和/或误差分辨率;
    所述第二误差范围参数包括所述候选参考设备的第二误差,所述第二误差为位置解算值和/或定位测量量的误差。
  14. 根据权利要求12所述的参数处理方法,其中,若所述位置参数包括所述位置估计值,则所述确定定位参考参数包括:
    若所述候选参考设备包括网络侧设备,获取所述网络侧设备的位置估计值和/或所述位置估计值的质量指示参数;
    若所述候选参考设备包括终端设备,对所述终端设备进行定位得到所述终端设备的位置估计值,并获取所述位置估计值的质量指示参数。
  15. 根据权利要求11所述的参数处理方法,其中,所述对所述终端设备进行定位得 到所述终端设备的位置估计值,包括:
    根据预设定位方式对所述终端设备进行定位,得到所述终端设备的位置估计值;
    所述预设定位方式包括以下至少一种:
    激光测绘方式、独立于无线网络接入技术RAT-independent的UE-based定位、基于无线网络接入技术RAT-dependent的UE-based定位。
  16. 根据权利要求15所述的参数处理方法,其中,所述获取所述位置估计值的质量指示参数,包括:
    基于所述预设定位方式和/或所述终端设备的位置估计值的位置属性,确定所述位置估计值的质量指示参数;其中,所述位置属性包括:所述位置估计值指示预设位置和/或目标网络侧设备的收发点位置。
  17. 根据权利要求9所述的参数处理方法,其中,所述向位置管理功能网元LMF发送所述定位参考参数,包括:
    若所述候选参考设备包括网络侧设备,则基于新空口NR定位协议A信令,向位置管理功能网元LMF发送所述定位参考参数;
    若所述候选参考设备包括终端设备,则基于长期演进LTE定位协议信令,向位置管理功能网元LMF发送所述定位参考参数。
  18. 根据权利要求9所述的参数处理方法,其中,所述向位置管理功能网元LMF发送所述定位参考参数之后,所述方法包括:
    若所述候选参考设备为目标参考设备,则接收所述LMF发送的定位辅助数据;
    根据所述定位辅助数据测量定位测量量,并将所述定位测量量发送至所述LMF。
  19. 一种参考设备确定方法,应用于网络侧设备,所述方法包括:
    接收位置管理功能网元LMF发送的第三指示信息;
    响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;所述定位参考参数用于所述LMF确定所述候选参考设备中的目标参考设备。
  20. 一种网络侧设备,所述网络侧设备包括位置管理功能网元LMF,所述网络侧设备还包括:
    存储器,收发机,处理器:
    存储器,被配置为存储计算机程序;收发机,被配置为在所述处理器的控制下收发数据;处理器,被配置为读取所述存储器中的计算机程序并执行以下操作:
    获取候选参考设备的定位参考参数;
    根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;
    其中,所述定位参考参数通过以下至少一项获取:
    接收所述候选参考设备发送的所述定位参考参数;
    指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;
    通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数。
  21. 一种终端,所述终端包括:
    存储器,收发机,处理器:
    存储器,被配置为存储计算机程序;收发机,被配置为在所述处理器的控制下收发数据;处理器,被配置为读取所述存储器中的计算机程序并执行以下操作:
    确定定位参考参数;
    向位置管理功能网元LMF发送所述定位参考参数;
    其中,所述定位参考参数通过以下至少一项发送:
    所述候选参考设备自主发送;
    接收到第一网络侧设备发送的第一指示信息时发送,所述第一指示信息为所述LMF指示所述第一网络侧设备发送的;
    接收到所述LMF指发送的预设信令消息时发送。
  22. 一种网络侧设备,所述网络侧设备包括:
    存储器,收发机,处理器:
    存储器,被配置为存储计算机程序;收发机,被配置为在所述处理器的控制下收发数据;处理器,被配置为读取所述存储器中的计算机程序并执行以下操作:
    接收位置管理功能网元LMF发送的第三指示信息;
    响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;所述定位参考参数用于所述LMF确定所述候选参考设备中的目标参考设备。
  23. 一种参考设备确定装置,应用于位置管理功能网元LMF,所述装置包括:
    参数获取模块,被配置为获取候选参考设备的定位参考参数;
    设备确定模块,被配置为根据所述定位参考参数,确定所述候选参考设备中的目标参考设备;
    其中,所述定位参考参数通过以下至少一项获取:
    接收所述候选参考设备发送的所述定位参考参数;
    指示第一网络侧设备向所述候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;
    通过预设信令消息向所述候选参考设备发送第二指示信息,所述第二指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数。
  24. 一种参数处理装置,应用于候选参考设备,所述装置包括:
    参数确定模块,被配置为确定定位参考参数;
    参数发送模块,被配置为向位置管理功能网元LMF发送所述定位参考参数;
    其中,所述定位参考参数通过以下至少一项发送:
    所述候选参考设备自主发送;
    接收到第一网络侧设备发送的第一指示信息时发送,所述第一指示信息为所述LMF指示所述第一网络侧设备发送的;
    接收到所述LMF指发送的预设信令消息时发送。
  25. 一种参考设备确定装置,应用于网络侧设备,所述装置包括:
    信息接收模块,被配置为接收位置管理功能网元LMF发送的第三指示信息;
    信息响应模块,被配置为响应于所述第三指示信息,向候选参考设备发送第一指示信息,所述第一指示信息指示所述候选参考设备向所述LMF发送所述定位参考参数;所述定位参考参数用于所述LMF确定所述候选参考设备中的目标参考设备。
  26. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至19中任一项所述的方法。
PCT/CN2022/086116 2021-05-11 2022-04-11 参考设备确定方法及装置、网络侧设备 WO2022237423A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22806393.9A EP4340476A1 (en) 2021-05-11 2022-04-11 Reference device determining method and apparatus, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110513336.8A CN115413016A (zh) 2021-05-11 2021-05-11 参考设备确定方法及装置、网络侧设备
CN202110513336.8 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022237423A1 true WO2022237423A1 (zh) 2022-11-17

Family

ID=84029383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086116 WO2022237423A1 (zh) 2021-05-11 2022-04-11 参考设备确定方法及装置、网络侧设备

Country Status (3)

Country Link
EP (1) EP4340476A1 (zh)
CN (1) CN115413016A (zh)
WO (1) WO2022237423A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116489766B (zh) * 2023-06-26 2023-09-29 中国电信股份有限公司 定位方法、定位系统、定位装置、接入网设备和网元设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583078A (zh) * 2009-06-15 2009-11-18 北京邮电大学 一种蜂窝定位方法
WO2019009578A1 (en) * 2017-07-03 2019-01-10 Lg Electronics Inc. METHOD AND APPARATUS FOR SELECTING A RAT BASED POSITIONING SCHEME IN A WIRELESS COMMUNICATION SYSTEM

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197036A1 (en) * 2018-04-13 2019-10-17 Huawei Technologies Co., Ltd. Devices and methods for determining the position of a target user equipment
CN117062218A (zh) * 2018-10-31 2023-11-14 华为技术有限公司 一种定位方法及设备
CN111562546B (zh) * 2019-02-14 2022-10-28 大唐移动通信设备有限公司 一种定位方法、装置、系统、终端、lmf实体及介质
CN111586742B (zh) * 2019-02-15 2022-11-25 华为技术有限公司 一种定位信息上报的方法及装置
CN111756494A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 用于定位的方法与装置
CN115278765A (zh) * 2019-07-04 2022-11-01 大唐移动通信设备有限公司 信号传输方法及装置
CN114503704B (zh) * 2019-08-08 2024-02-13 上海诺基亚贝尔股份有限公司 用于发送prs的方法、设备和计算机可读介质
CN112399330A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种基于相对角度的定位方法及装置
WO2021056566A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 发送角度测量结果的方法和装置
WO2021076037A1 (en) * 2019-10-18 2021-04-22 Telefonaktiebolaget Lm Ericsson (Publ) Positioning and timing advance determination
CN111770435B (zh) * 2020-02-06 2022-04-29 广州极飞科技股份有限公司 基准站选择方法、装置、存储介质和服务器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583078A (zh) * 2009-06-15 2009-11-18 北京邮电大学 一种蜂窝定位方法
WO2019009578A1 (en) * 2017-07-03 2019-01-10 Lg Electronics Inc. METHOD AND APPARATUS FOR SELECTING A RAT BASED POSITIONING SCHEME IN A WIRELESS COMMUNICATION SYSTEM

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Capturing RAN1 parameters for positioning", 3GPP DRAFT; R2-2000474, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Elbonia; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051849060 *
INTEL CORPORATION: "Introduction of NR positioning", 3GPP DRAFT; R2-2002243, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Elbonia; 20200224 - 20200306, 11 March 2020 (2020-03-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051864776 *

Also Published As

Publication number Publication date
EP4340476A1 (en) 2024-03-20
CN115413016A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2020125434A1 (zh) 一种多站点的定位方法及装置
US20220386265A1 (en) Positioning method and apparatus
TWI760931B (zh) 資訊傳輸方法、裝置及電腦存儲介質
US11496992B2 (en) Conditional termination of RSTD measurements
US20220330198A1 (en) Signal transmission method and apparatus
KR20220031086A (ko) 포지셔닝 방법 및 통신 장치
US20230362867A1 (en) Measurement method and apparatus for positioning, and storage medium
WO2022237423A1 (zh) 参考设备确定方法及装置、网络侧设备
WO2020207222A1 (zh) 一种基于cu-du架构的定位方法及装置
KR20210147023A (ko) 포지셔닝 측정치를 결정하기 위한 방법 및 장치
WO2022206306A1 (zh) 一种通信方法和装置
WO2023201628A1 (zh) 侧行定位方法、装置、设备及存储介质
WO2023193251A1 (zh) 下行定位方法、装置、设备及存储介质
WO2023232074A1 (zh) 定位方法、装置及存储介质
WO2024027643A1 (zh) 一种信息传输方法、装置及设备
WO2024027642A1 (zh) 一种信息传输方法、装置及设备
WO2023193252A1 (zh) 上行定位方法、装置、设备及存储介质
CN117641565A (zh) 信号传输方法及装置
WO2014176733A1 (zh) 用于定位的方法、小基站和宏基站
CN116973838A (zh) 信息传输方法、定位方法、装置及设备
CN115243366A (zh) 定位方法、装置、网络设备、基站及存储介质
CN117014794A (zh) 信息传输方法、定位方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18560133

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022806393

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022806393

Country of ref document: EP

Effective date: 20231211