WO2021056566A1 - 发送角度测量结果的方法和装置 - Google Patents

发送角度测量结果的方法和装置 Download PDF

Info

Publication number
WO2021056566A1
WO2021056566A1 PCT/CN2019/109197 CN2019109197W WO2021056566A1 WO 2021056566 A1 WO2021056566 A1 WO 2021056566A1 CN 2019109197 W CN2019109197 W CN 2019109197W WO 2021056566 A1 WO2021056566 A1 WO 2021056566A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle measurement
angle
measurement result
quantities
measurement
Prior art date
Application number
PCT/CN2019/109197
Other languages
English (en)
French (fr)
Inventor
于莹洁
黄甦
王艺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180005568.0A priority Critical patent/CN114467266B/zh
Priority to EP19947381.0A priority patent/EP4030643A4/en
Priority to PCT/CN2019/109197 priority patent/WO2021056566A1/zh
Publication of WO2021056566A1 publication Critical patent/WO2021056566A1/zh
Priority to US17/707,649 priority patent/US11899121B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0268Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2200/00Transmission systems for measured values, control or similar signals

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for sending angle measurement results.
  • High-precision positioning has been identified as an important research project in the 5th generation wireless systems (5G) of the 3rd generation partnership project (3GPP).
  • 5G 5th generation wireless systems
  • 3GPP 3rd generation partnership project
  • eMBB enhanced mobile broadband
  • the positioning accuracy of eMBB is required to be less than 1 meter indoors and less than 10 meters outdoors.
  • This application provides a method and device for sending angle measurement results, so that the access network device reports multiple angle measurement values based on one measurement object, and the location management function (LMF) can select more reliable angle measurement according to the optimization algorithm
  • LMF location management function
  • a method for sending an angle measurement result including: a second device receives a reference signal sent by a first device.
  • the second device measures the reference signal and obtains the first angle measurement result, the first angle measurement result is the measurement result of the first measurement object, the first measurement object is the direct diameter or the reflection diameter, and the first angle measurement result includes M angles
  • the measurement quantity, at least one of the M angle measurement quantities in the first angle measurement result includes a plurality of angle measurement values, and M is a positive integer greater than or equal to 1.
  • the second device sends the first angle measurement result to the positioning management device.
  • the second device may measure multiple angle measurement values for a measurement object.
  • the second device reports all the angle measurement values in the angle measurement results to the positioning management device, so that the positioning management device can select more angle measurement values from the multiple angle measurement values. Reliable angle measurements determine the position of the first device, thereby helping to improve positioning accuracy.
  • the M angle measurement quantities are any M of the following angle measurement quantities: horizontal incident angle, vertical incident angle, incident angle of the antenna horizontal array, and incident angle of the antenna longitudinal array.
  • the second device can measure any one or more of the above four angles, making the choice of angle measurement more flexible, and the position of the first device can be determined according to any one of the above four angles.
  • the second device measures the reference signal to obtain the second angle measurement result
  • the second angle measurement result is the measurement result of the second measurement object
  • the second measurement object is the direct radiation diameter or the reflection diameter
  • the second angle measurement result is the measurement result of the second measurement object.
  • the second angle measurement result includes M angle measurement values, and at least one of the M angle measurement values in the second angle measurement result includes multiple angle measurement values.
  • the second device sends the second measurement result to the positioning management device.
  • the second measurement object is different from the first measurement object.
  • the first measurement object is a direct radiation diameter
  • the second measurement object is a reflection diameter
  • another example is the first measurement object is a reflection diameter and the second measurement object is a direct radiation
  • another example is that the first measurement object is a reflection diameter
  • the second measurement object is a reflection diameter. It is another reflection path different from the first measurement object.
  • the second device can measure the incident angle corresponding to any path of the signal sent by the first device, and the position of the first device can be determined according to the incident angle corresponding to any path.
  • a method for sending angle measurement results including: a positioning management device receives a first angle measurement result sent by a second device, the first angle measurement result is a measurement result of a first measurement object, and the first measurement object Is a direct radiation diameter or a reflection diameter, the first angle measurement result includes M angle measurement quantities, at least one of the M angle measurement quantities in the first angle measurement result includes multiple angle measurement values, and M is greater than or equal to A positive integer of 1.
  • the location management device determines the location of the first device according to the first angle measurement result.
  • the second device may measure multiple angle measurement values for a measurement object, and the positioning management device receives all the angle measurement values in the angle measurement result, so that the positioning management device can select a more reliable angle measurement value from the multiple angle measurement values to determine The location of the first device thus helps to improve positioning accuracy.
  • the M angle measurement quantities are any M of the following angle measurement quantities: horizontal incident angle, vertical incident angle, incident angle of the antenna horizontal array, and incident angle of the antenna longitudinal array.
  • the second device can measure any one or more of the above four angles, making the choice of angle measurement more flexible, and the position of the first device can be determined according to any one of the above four angles.
  • the positioning management device receives the second angle measurement result sent by the second device, the second angle measurement result is the measurement result of the second measurement object, the second measurement object is the direct radiation diameter or the reflection diameter, and the second angle measurement result is the measurement result of the second measurement object.
  • the angle measurement result includes M angle measurement values. At least one of the M angle measurement values in the second angle measurement result includes multiple angle measurement values.
  • the location management device determines the location of the first device according to the second angle measurement result. The second measurement object is different from the first measurement object.
  • the first measurement object is a direct radiation diameter, and the second measurement object is a reflection diameter; another example is the first measurement object is a reflection diameter and the second measurement object is a direct radiation; another example is that the first measurement object is a reflection diameter, and the second measurement object is a reflection diameter. It is another reflection path different from the first measurement object.
  • the positioning management device can determine the location of the first device according to the incident angle corresponding to any path of the signal sent by the first device.
  • a communication device in a third aspect, includes a module for executing the foregoing first aspect or any possible implementation of the first aspect.
  • a communication device in a fourth aspect, includes a module for executing the foregoing second aspect or any possible implementation of the second aspect.
  • a communication device may be the second device in the above method design, or may be a chip set in the second device.
  • the communication device includes a processor, which is coupled with a memory, and can be used to execute instructions in the memory to implement the method executed by the second device in the first aspect and any one of its possible implementation manners.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device may be the location management device in the above method design, or a chip set in the location management device.
  • the communication device includes a processor, which is coupled with a memory, and can be used to execute instructions in the memory to implement the method executed by the network device in the second aspect and any one of its possible implementation manners.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a program is provided, when the program is executed by a processor, it is used to execute any method in the first aspect or the second aspect and possible implementation manners thereof.
  • a program product comprising: program code, when the program code is run by a communication unit, a processing unit or a transceiver, or a processor of a communication device (for example, a first device),
  • the communication device is caused to execute any method in the above-mentioned first aspect and its possible implementation manners.
  • a program product includes: program code, when the program code is run by a communication unit, a processing unit or a transceiver, or a processor of a communication device (for example, a positioning management device), The communication device is caused to execute any method in the above-mentioned second aspect and its possible implementation manners.
  • a computer-readable storage medium stores a program, and the program causes a communication device (for example, a first device) to execute the above-mentioned first aspect and possible implementations thereof Any method.
  • a computer-readable storage medium stores a program that enables a communication device (for example, a positioning management device) to execute the second aspect and possible implementations thereof Any method in.
  • a communication device for example, a positioning management device
  • Fig. 1 is a schematic architecture diagram of a communication system of a positioning method and device in the prior art.
  • Figure 2 is a schematic flow chart of an AOA+TA positioning technology.
  • Figure 3 is a spectrum diagram generated by the DFT method when the antenna element spacing is ⁇ /2.
  • Figure 4 is a spectrum diagram generated by the DFT method when the antenna element spacing is 0.8 ⁇ .
  • Figure 5 is a spectrum diagram generated by the DFT method when the antenna element spacing is ⁇ .
  • Fig. 6 is a schematic structural diagram of a positioning system for locating terminal devices to which an embodiment of the present application is applied.
  • Fig. 7 is a schematic structural diagram of another positioning system for locating terminal devices to which an embodiment of the present application is applied.
  • Fig. 8 is a schematic flowchart of a method for sending an angle measurement result provided by the present application.
  • Fig. 9 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication device according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of the incident angle of the antenna horizontal array and the incident angle of the antenna vertical array.
  • a plurality of can be understood as “at least two”; “a plurality of” can be understood as “at least two”.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device in the embodiment of the present application may include a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in a power grid, wireless terminals in a smart city, wireless terminals in a smart home (smart home), wearable devices, in-vehicle devices, etc., are not limited in the embodiment of the present application.
  • the access network equipment in the embodiments of the present application may be equipment used to communicate with terminal equipment, and may take many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the access network equipment may be a new air interface.
  • the base station in (new radio, NR), where the base station in 5G NR can also be called the transmission reception point (TRP) or the next generation Node B (gNB), or it can be global mobile
  • the node B (nodeB, NB) in the access, WCDMA) system can also be the evolved NodeB (evolutional NodeB, eNB or eNodeB) in the long term evolution (LTE) system, or in the next generation communication system Base stations, such as 6G base stations.
  • the terminal device or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in this embodiment of the present application may be a terminal device or an access network device, or a functional module in the terminal device or the access network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Fig. 1 is a schematic architecture diagram of a communication system of a positioning method and device in the prior art. As shown in FIG. 1, the system 100 includes an access network device 110 and a terminal device 120.
  • the AOA measured by the access network device 110 obtains the direction in which the terminal device 120 is located, and the access network device 110 determines the timing advance (TA) according to the uplink transmission of the measurement terminal device 120, so that the terminal device 120 can be obtained.
  • TA timing advance
  • D represents the distance between the terminal device 120 and the access network device 110
  • TA represents the time advance
  • c represents the speed of light
  • the terminal device 120 is positioned according to the measured values of AOA and D.
  • the NR protocol stipulates that the next-generation evolutional Node B (ng-eNB) supports AOA measurement of terminal equipment.
  • the measured AOA takes the north direction as the normal direction and the counterclockwise direction as the positive.
  • TA can be obtained by joint measurement of terminal equipment and ng-eNB, or it can be obtained by ng-eNB alone.
  • the AOA+TA positioning method can achieve positioning using a single station, and positioning can still be achieved when the terminal device does not support the positioning function.
  • Figure 2 is a schematic flow chart of an AOA+TA positioning technology.
  • the location management unit sends a location request to the access network device.
  • the access network device receives the positioning request from the positioning management unit.
  • the positioning request includes the measurement request and the measurement time.
  • the positioning management unit and the access network device may communicate with the new air interface positioning protocol (NR positioning protocol annex, NRPPa).
  • the access network device performs measurement on the terminal device, and the measurement is implemented through a radio resource control measurement procedure (Radio Resource Control Measurement Procedure, RRC Measurement Procedure).
  • Radio Resource Control Measurement Procedure Radio Resource Control Measurement Procedure, RRC Measurement Procedure.
  • the access network device sends the measurement result to the location management unit, and correspondingly, the location management unit receives the measurement result sent from the access network device.
  • the measurement results include the measured values of AOA and TA. If the measurement fails, a failure message will be returned.
  • the AOA+TA positioning technology has a large positioning error and is only suitable for short-distance or low-precision occasions.
  • the access network device and the terminal device are far away, even a small AOA measurement error will cause a larger positioning distance deviation due to the longer distance.
  • Another positioning method is to use the antenna array to calculate the angle of arrival position.
  • the antenna sidelobes may be too large due to the unsatisfactory antenna element spacing, which leads to the problem of inaccurate angle estimation.
  • the antenna element spacing d is half of the received signal wavelength ⁇ , there is no problem of incorrectly estimated angle values due to excessive side lobes.
  • Figure 3 shows that when the antenna element spacing is the ideal value of ⁇ /2, the angle information calculated by the spectrum generated by the DFT method is The only solution. In actual engineering, it is often impossible to ensure that the antenna element spacing is the ideal value of ⁇ /2, and the actual spacing may be greater than ⁇ /2.
  • Figures 4 and 5 show that when the antenna element spacing is 0.8 ⁇ and 1 ⁇ , for the same incident angle, the spectrum generated by the DFT method has two peaks, and one of the two peaks in each spectrum belongs to the side lobe Incorrect estimates caused.
  • This application provides a method and device for sending angle measurement results, which supports reporting multiple angle measurement values for a measurement object, which can reduce the error of selecting angle measurement values when the antenna element spacing is greater than the ideal value of ⁇ /2. problem.
  • Fig. 6 is a schematic structural diagram of a positioning system for locating terminal devices to which an embodiment of the present application is applied.
  • terminal equipment is connected to the radio access network via ng-eNB and gNB via LTE-Uu and/or NR-Uu interfaces; the radio access network is connected to the radio access network via NG-C interface.
  • mobility management function (access and mobility management function, AMF) unit is connected to the core network.
  • the next-generation radio access network includes one or more ng-eNBs; NG-RAN may also include one or more gNBs; NG-RAN may also include one or more Ng-eNB and gNB.
  • the ng-eNB and gNB communicate through the Xn interface.
  • the ng-eNB is an LTE access network device that accesses the 5G core network
  • the gNB is a 5G access network device that accesses the 5G core network.
  • the core network includes units such as AMF and LMF (or evolved serving mobile location center (E-SMLC)).
  • AMF is used to implement functions such as access management
  • LMF or E-SMLC
  • the AMF and LMF are connected through the NLs interface.
  • LMF is a device or component that is deployed in the core network to provide positioning functions for terminal equipment.
  • Fig. 7 is a schematic structural diagram of another positioning system for locating terminal devices to which an embodiment of the present application is applied.
  • the difference between the positioning system architecture of Fig. 7 and Fig. 6 is that the location management component (LMC) of Fig. 7 is deployed in the gNB.
  • the LMC can undertake part of the functions of the LMF, and the gNB does not need to report the measurement results to the core network. The signaling overhead is saved, and the positioning delay is reduced.
  • the positioning function node collects the measurement information reported by the access network device to determine the location of the terminal device.
  • the interaction between the access network device and the E-SMLC is implemented through the LPPa protocol
  • the interaction between the access network device and the LMF is implemented through the NRPPa protocol.
  • the communication system of FIG. 6 or FIG. 7 may include one or more gNBs, and a single or multiple terminal devices.
  • a single gNB can transmit data or control signaling to a single terminal device or multiple terminal devices.
  • Multiple gNBs can also transmit data or control signaling for a single terminal device at the same time.
  • the devices or functional nodes included in the communication system of FIG. 6 or FIG. 7 are only described as examples, and do not constitute a limitation to the embodiment of the present application.
  • the positioning system of FIG. 6 or FIG. 7 may also include Other network elements or devices or functional nodes that have an interactive relationship with the devices or functional nodes illustrated in the figure are not specifically limited here.
  • FIG. 8 shows a schematic flowchart of a method 300 for sending an angle measurement result provided by the present application. As shown in FIG. 8, the method 300 includes:
  • S310 The first device sends a reference signal to the second device.
  • the second device receives the reference signal from the first device.
  • the first device may be a terminal device or a component (such as a chip or circuit, etc.) for the terminal device
  • the second device may be an access network device or a component (such as a chip or circuit, etc.) used for the access network device.
  • the access network device can measure different terminal devices, or different reference signals of the same terminal device, or different propagation paths of the same reference signal.
  • the first device may be an access network device or a component (such as a chip or circuit, etc.) for the access network device
  • the second device may be a terminal device or a component (such as a chip or circuit, etc.) used for the terminal device. ).
  • the reference signal in the embodiment of this application refers to the reference signal containing the positioning information of the first device. In the embodiment of this application, it is collectively denoted as “reference signal”, but it cannot be understood that the "reference signal” only includes the sounding reference signal SRS, as follows No longer.
  • the reference signal includes but is not limited to positioning reference signal (positioning reference signal, PRS), demodulation reference signal (de-modulation reference signal, DMRS), tracking reference signal (tracking reference signal, TRS), channel state information reference Signal (channel state information reference signal, CSI-RS).
  • the second device measures the reference signal to obtain a first angle measurement result, where the first angle measurement result is a measurement result of a first measurement object, and the first measurement object is a direct radiation diameter or a reflection diameter ,
  • the first angle measurement result includes M angle measurement quantities, and at least one of the M angle measurement quantities in the first angle measurement result includes a plurality of angle measurement values, and M is greater than or equal to 1. Positive integer.
  • the second device measures the reference signal to obtain a second angle measurement result, where the second angle measurement result is a measurement result of a second measurement object, and the second measurement object is different from the first measurement object .
  • the first measurement object is a direct radiation diameter
  • the second measurement object is a reflection diameter
  • another example is the first measurement object is a reflection diameter and the second measurement object is a direct radiation
  • another example is that the first measurement object is a reflection diameter
  • the second measurement object is a reflection diameter. It is another reflection path different from the first measurement object.
  • the first measurement object and the second measurement object may be the first straight path, the first reflection path, and the second reflection path. Any two measurement objects in the second reflection path and the third reflection path.
  • the second device can measure any number of measurement objects of the first device.
  • the reference signal received by the second device may be sent by the first device through a direct radiation path, or may be sent by the first device through a reflection path.
  • the angle measurement result can include any M of the following angle measurement quantities, where M is a positive integer greater than or equal to 1: horizontal incident angle, vertical incident angle, incident angle of antenna horizontal array, incident angle of antenna longitudinal array .
  • M is a positive integer greater than or equal to 1: horizontal incident angle, vertical incident angle, incident angle of antenna horizontal array, incident angle of antenna longitudinal array .
  • the horizontal incident angle refers to the angle between the incident direction projected to the horizontal plane and the true north direction
  • the vertical incident angle refers to the angle between the incident direction and the horizontal plane, or the angle between the incident direction and the zenith direction
  • the antenna horizontal array incident The angle refers to the angle between the incident direction and the antenna array (row);
  • the incident angle of the antenna longitudinal array refers to the angle between the incident direction and the antenna array (column).
  • the angle of incidence of the horizontal antenna array and the angle of incidence of the vertical antenna array refer to the antenna array as a rectangle, the antenna array is the length of the rectangle in the horizontal direction (row), and the length of the antenna array (column) is the width of the rectangle.
  • the angle ⁇ between the incident direction and the length of the rectangle is the incident angle of the antenna horizontal array
  • the angle ⁇ between the incident direction and the width of the rectangle is the incident angle of the antenna longitudinal array.
  • the angle measurement value of each angle measurement is one; when the antenna element spacing is greater than ⁇ /2, the angle measurement value of each angle measurement quantity is multiple, for example, it may be two, three or more.
  • the angle measurement value of each angle measurement quantity is one, the angle measurement value is the target angle measurement value that the positioning management unit needs to use for the terminal device positioning calculation; when the angle measurement value of each angle measurement quantity is more At this time, only one angle measurement value is the target angle measurement value that the positioning management unit needs to use for the terminal device positioning calculation.
  • the second device sends the angle measurement result to the positioning management device, where the angle measurement result may be the first angle measurement result and/or the second angle measurement result.
  • the positioning management device receives the angle measurement result from the second device.
  • Method 1 gNB sends M groups of angle measurement values to the LMF each time.
  • the angle measurement values corresponding to the M groups of angle measurement values are any M of the horizontal incident angle, the vertical incident angle, the incident angle of the antenna horizontal array and the incident angle of the antenna longitudinal array. .
  • M is 4 and each group of angle measurement values are 2, the angle measurement results can be reported as follows:
  • the incident angle of the antenna transverse array [measured value 1, measured value 2]
  • the incident angle of the antenna longitudinal array [measured value 1, measured value 2]
  • each group of angle measurement values may be multiple, may be one, or may be zero.
  • Method 2 gNB sends M groups of angle measurement values to the LMF each time, and the angle measurement values corresponding to the M groups of angle measurement values are any M of the horizontal incident angle, the vertical incident angle, the incident angle of the antenna horizontal array, and the incident angle of the antenna longitudinal array. .
  • the default arrangement order can be set as shown in Table 1:
  • the default angle measurement values of M groups are based on the angle measurement value of the horizontal incident angle, the angle measurement value of the vertical incident angle, the angle measurement value of the incident angle of the antenna horizontal array, and the angle measurement value of the incident angle of the antenna longitudinal array.
  • Each group of angle measurement values includes two If there is no corresponding angle measurement value, fill in 0.
  • the angle measurement values reported this time are: the first and second angle measurement values are the horizontal incidence angle, the third and fourth angle measurement values are the vertical incidence angle, and the fifth and sixth angle measurement values are The angle measurement value of the incident angle of the antenna horizontal array, but the antenna element spacing is exactly equal to the ideal value of ⁇ /2, so there is only the angle measurement value 5, and the corresponding angle measurement value of the antenna longitudinal array incident angle is not measured.
  • the gNB sends a set of angle measurement values to the LMF each time, and the angle measurement value corresponding to the set of angle measurement values is any one of the horizontal incident angle, the vertical incident angle, the incident angle of the antenna horizontal array, and the incident angle of the antenna longitudinal array.
  • the angle measurement value corresponding to the set of angle measurement values is any one of the horizontal incident angle, the vertical incident angle, the incident angle of the antenna horizontal array, and the incident angle of the antenna longitudinal array.
  • it also includes:
  • the gNB sends configuration information to the LMF.
  • the LMF receives the configuration information from the gNB.
  • the configuration information is used to indicate which angle measurement value the gNB sends to the LMF next, such as horizontal incidence angle and vertical incidence angle. , Either of the incident angle of the horizontal antenna array and the incident angle of the vertical antenna array.
  • the LMF can determine which angle measurement value the angle measurement value received next belongs to based on the configuration information sent by the gNB. For example, if the configuration information indicates the horizontal incident angle, after receiving multiple angle measurement values, the LMF can determine that the multiple angle measurement values are all angle measurement results of the horizontal incident angle.
  • the location management device determines the location of the first device according to the angle measurement result.
  • the positioning management device may use a particle swarm optimization (PSO) algorithm for positioning.
  • PSO particle swarm optimization
  • an initialization particle swarm is established, including random positions.
  • the fitness function the fitness of each particle is evaluated. For each particle, compare its current fitness value with the fitness value corresponding to its individual historical best position. If the current fitness value is higher, update the historical best position with the current position. For each particle, compare its current fitness value with the fitness value corresponding to the global best position, and if the current fitness value is higher, update the global best position with the current position. In this way, the position of each particle is updated.
  • the algorithm stops when the algorithm reaches the maximum number of iterations or the increment of the optimal fitness value is less than a given threshold.
  • the corresponding first device location at this time is the first device location calculated by the PSO algorithm.
  • the angle measurement result corresponding to the direct beam can be substituted into the PSO algorithm to determine the position of the first device.
  • multiple angle measurement quantities of each angle measurement object for example, the horizontal incident angle and the vertical incident angle can be substituted into the PSO algorithm, so as to realize the three-dimensional positioning of the first device.
  • the weight of the first angle measurement value ⁇ is a
  • the weight of the second angle measurement value ⁇ is b
  • FIGS. 9-12 to FIG. It should be understood that the technical features described in the method embodiments are also applicable to the following device embodiments.
  • FIG. 9 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the device 400 is used to execute the method executed by the second device in the foregoing method embodiment.
  • the specific form of the apparatus 400 may be the second device or a chip in the second device.
  • the device 400 includes a receiving module 401, a processing module 402, and a sending module 403.
  • the receiving module 401 is configured to receive a reference signal sent by the first device.
  • the processing module 402 is configured to measure the reference signal received by the receiving module to obtain a first angle measurement result, where the first angle measurement result is a measurement result of a first measurement object, and the first measurement object is a direct radius or The reflection path, the first angle measurement result includes M angle measurement quantities, at least one of the M angle measurement quantities in the first angle measurement result includes multiple angle measurement values, and M is greater than or equal to A positive integer of 1;
  • the sending module 403 is configured to send the first angle measurement result determined by the processing module 402 to the positioning management device.
  • the M angle measurement quantities are any M of the following angle measurement quantities: horizontal incident angle, vertical incident angle, incident angle of the antenna horizontal array, and incident angle of the antenna longitudinal array.
  • the processing module 402 is further configured to measure the reference signal to obtain a second angle measurement result; the second angle measurement result is a measurement result of a second measurement object, and the second measurement object is a direct diameter or
  • the second angle measurement result includes M angle measurement values, and at least one of the M angle measurement values in the second angle measurement result includes multiple angle measurement values.
  • the sending module 403 is further configured to send the second measurement result to the positioning management device.
  • the specific functions and beneficial effects of the receiving module 401, the processing module 402, and the sending module 403 can be referred to the above-mentioned embodiments, and for the sake of brevity, it is unnecessary to repeat them here.
  • Fig. 10 is a structural block diagram of a communication device provided according to an embodiment of the present application.
  • the communication device 500 shown in FIG. 10 includes a processor 501, a memory 502, and a transceiver 503.
  • the processor 501, the memory 502, and the transceiver 503 communicate with each other through internal connection paths to transfer control and/or data signals.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 501 or implemented by the processor 501.
  • the processor 501 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 501 or instructions in the form of software.
  • the above-mentioned processor 501 may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. mature in the field Storage medium.
  • the storage medium is located in the memory 502, and the processor 501 reads the instructions in the memory 502, and completes the steps of the above method in combination with its hardware.
  • the memory 502 may store instructions for executing the method executed by the second device in the method shown in FIG. 8.
  • the processor 501 can execute the instructions stored in the memory 502 in combination with other hardware (for example, the transceiver 503) to complete the steps of the second device in the method shown in FIG. 8.
  • other hardware for example, the transceiver 503
  • FIG. 11 shows a schematic block diagram of a communication device 600 according to another embodiment of the present application.
  • the device 600 is used to execute the method executed by the positioning management device in the foregoing method embodiment.
  • the specific form of the apparatus 600 may be a location management device or a chip in a location management device.
  • the embodiment of the application does not limit this.
  • the device 600 includes a receiving module 601 and a processing module 602.
  • the receiving module 601 is configured to receive a first angle measurement result sent by a second device, where the first angle measurement result is a measurement result of a first measurement object, the first measurement object is a direct radiation diameter or a reflection diameter, and the first angle measurement result is a measurement result of a first measurement object.
  • An angle measurement result includes M angle measurement quantities. At least one of the M angle measurement quantities in the first angle measurement result includes multiple angle measurement values, and M is a positive integer greater than or equal to 1;
  • the processing module 602 is configured to determine the position of the first device according to the first angle measurement result received by the receiving module.
  • the M angle measurement quantities are any M of the following angle measurement quantities: horizontal incident angle, vertical incident angle, incident angle of the antenna horizontal array, and incident angle of the antenna longitudinal array.
  • the receiving module 601 is further configured to receive a second angle measurement result sent by the second device, where the second angle measurement result is a measurement result of a second measurement object, and the second measurement object is a direct radiation diameter or a reflection diameter.
  • the second angle measurement result includes M angle measurement values, at least one of the M angle measurement values in the second angle measurement result includes multiple angle measurement values;
  • the processing module 602 is further configured to determine the position of the first device according to the second angle measurement result.
  • receiving module 601 and the processing module 602 can be referred to the above-mentioned embodiments. For the sake of brevity, it is not necessary to repeat them here.
  • Fig. 12 is a structural diagram of a communication device provided according to another embodiment of the present application.
  • the communication device 700 shown in FIG. 12 includes a processor 701, a memory 702, and a transceiver 703.
  • the processor 701, the memory 702, and the transceiver 703 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the memory 702 may store instructions for executing the method executed by the second device in the method shown in FIG. 8.
  • the processor 701 can execute the instructions stored in the memory 702 in combination with other hardware (for example, the transceiver 703) to complete the steps of the second device in the method shown in FIG. 8.
  • other hardware for example, the transceiver 703
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • An embodiment of the present application also provides a chip, which includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the chip can execute the method of the second device or the positioning management device in the foregoing method embodiment.
  • An embodiment of the present application also provides a chip, which includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the chip can execute the method for locating the management device in the foregoing method embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium on which an instruction is stored.
  • the instruction is executed, the method of the second device or the positioning management device in the foregoing method embodiment is executed.
  • the embodiment of the present application also provides a computer-readable storage medium on which an instruction is stored, and when the instruction is executed, the method for locating the management device in the foregoing method embodiment is executed.
  • the embodiment of the present application also provides a computer program product containing instructions that, when executed, execute the method of the second device in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer program product containing instructions that, when executed, execute the method for locating the management device in the foregoing method embodiment.
  • the item can be any of the following: A; B ; C; A and B; A and C; B and C; A, B and C; A and A; A, A and A; A, A and B; A, A and C, A, B and B; A , C and C; B and B, B, B and B, B, B and C, C and C; C, C and C, and other combinations of A, B and C.
  • the item can be any of the following: A; B ; C; A and B; A and C; B and C; A, B and C; A and A; A and B; A, A and C, A, B and B; A , C and C; B and B, B, B and C, C and C; C, C and C, and other combinations of A, B and C.
  • the item includes at least one of the following: A, B, ..., and X"
  • the applicable items for the item can also be obtained in accordance with the aforementioned rules.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory ROM, random access memory RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请提供了一种发送角度测量结果的方法和装置,对于一个角度对象,第二设备将测量结果中所有角度测量值发送给定位管理设备,以便定位管理设备选择正确的角度测量值确定第一设备的位置。该方法包括:第二设备接收第一设备发送的参考信号;第二对参考信号进行测量,得到第一角度测量结果,第一角度测量结果是第一测量对象的测量结果,第一测量对象为直射径或反射径,第一角度测量结果包括M项角度测量量,第一角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值,M为大于或等于1的正整数;第二设备向定位管理设备发送第一角度测量结果;定位管理设备根据第一角度测量结果确定第一设备的位置。

Description

发送角度测量结果的方法和装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种发送角度测量结果的方法和装置。
背景技术
随着通讯技术快速发展,高精度定位的需求越来越高。高精度定位被确定为第三代合作伙伴计划(3rd generation partnership project,3GPP)第五代移动通信系统(5th generation wireless systems,5G)中重要研究项目。以增强移动宽带(enhanced mobile broadband,eMBB)为例,eMBB的定位精度要求为:室内小于1米,室外小于10米。
因此如何提高设备的定位精度是一个亟待解决的问题。
发明内容
本申请提供一种发送角度测量结果的方法和装置,使得接入网设备基于一个测量对象上报多个角度测量值,定位管理功能(location management function,LMF)可根据优化算法选择更可靠的角度测量值用于终端设备定位,有助于提高定位精度。
第一方面,提供了一种发送角度测量结果的方法,包括:第二设备接收第一设备发送的参考信号。第二设备对参考信号进行测量,得到第一角度测量结果,第一角度测量结果是第一测量对象的测量结果,第一测量对象为直射径或反射径,第一角度测量结果包括M项角度测量量,第一角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值,M为大于或等于1的正整数。第二设备向定位管理设备发送所述第一角度测量结果。第二设备对于一个测量对象可能测出多个角度测量值,第二设备将角度测量结果中的所有角度测量值都上报给定位管理设备,以便定位管理设备可以从多个角度测量值中选择更可靠的角度测量值确定第一设备的位置,从而有助于提高定位精度。
在一种可能的设计中,M项角度测量量为以下角度测量量中的任意M个:水平入射角、垂直入射角、天线横向阵列入射角、天线纵向阵列入射角。第二设备可以测量以上四种角度中的任一个或任意多个,使得角度测量量的选择更加灵活,根据以上四种角度中的任意一种都可以确定第一设备的位置。
在一种可能的设计中,第二设备对参考信号进行测量,得到第二角度测量结果,第二角度测量结果是第二测量对象的测量结果,第二测量对象为直射径或反射径,第二角度测量结果包括M项角度测量量,第二角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值。第二设备向定位管理设备发送所述第二测量结果。第二测量对象与第一测量对象不同。例如第一测量对象为直射径,第二测量对象为反射径;又如第一测量对象为反射径,第二测量对象为直射径;又如,第一测量对象为反射径,第二测量对象是不同于第一测量对象的另一个反射径。这样,第二设备可以测量第一设备发送信号任意一条路径对应的入射角,根据任一路径对应的入射角均可确定第一设备的位置。
第二方面,提供了一种发送角度测量结果的方法,包括:定位管理设备接收第二设备发送的第一角度测量结果,第一角度测量结果是第一测量对象的测量结果,第一测量对象为直射径或反射径,第一角度测量结果包括M项角度测量量,第一角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值,M为大于或等于1的正整数。定位管理设备根据所述第一角度测量结果确定第一设备的位置。第二设备对于一个测量对象可能测出多个角度测量值,定位管理设备接收角度测量结果中的所有角度测量值,以便定位管理设备可以从多个角度测量值中选择更可靠的角度测量值确定第一设备的位置,从而有助于提高定位精度。
在一种可能的设计中,M项角度测量量为以下角度测量量中的任意M个:水平入射角、垂直入射角、天线横向阵列入射角、天线纵向阵列入射角。第二设备可以测量以上四种角度中的任一个或任意多个,使得角度测量量的选择更加灵活,根据以上四种角度中的任意一种都可以确定第一设备的位置。
在一种可能的设计中,定位管理设备接收第二设备发送的第二角度测量结果,第二角度测量结果是第二测量对象的测量结果,第二测量对象为直射径或反射径,第二角度测量结果包括M项角度测量量所述第二角度测量结果中的M项角度测量量中至少有一项测量量包括多个角度测量值。定位管理设备根据所述第二角度测量结果确定第一设备的位置。第二测量对象与第一测量对象不同。例如第一测量对象为直射径,第二测量对象为反射径;又如第一测量对象为反射径,第二测量对象为直射径;又如,第一测量对象为反射径,第二测量对象是不同于第一测量对象的另一个反射径。这样,定位管理设备可以根据第一设备发送信号任意一条路径对应的入射角来确定第一设备的位置。
第三方面,提供了一种通信装置,该通信装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块。
第四方面,提供了一种通信装置,该通信装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块。
第五方面,提供一种通信装置,该通信装置可以为上述方法设计中的第二设备,或者,为设置在第二设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面及其任意一种可能的实现方式中第二设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为第二设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为设置于第二设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供一种通信装置,该通信装置可以为上述方法设计中的定位管理设备,或者,为设置在定位管理设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面及其任意一种可能的实现方式中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为定位管理设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为设置于定位管理设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第七方面,提供了一种程序,该程序在被处理器执行时,用于执行第一方面或第二方面及其可能的实施方式中的任一方法。
第八方面,提供了一种程序产品,所述程序产品包括:程序代码,当所述程序代码被通信装置(例如,第一设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面及其可能的实施方式中的任一方法。
第九方面,提供了一种程序产品,所述程序产品包括:程序代码,当所述程序代码被通信装置(例如,定位管理设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第二方面及其可能的实施方式中的任一方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得通信装置(例如,第一设备)执行上述第一方面及其可能的实施方式中的任一方法。
第十一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得通信装置(例如,定位管理设备)执行上述第二面及其可能的实施方式中的任一方法。
附图说明
图1是现有技术中的一种定位方法和设备的通信系统的示意性架构图。
图2是一种AOA+TA定位技术的示意性流程图。
图3是天线阵元间隔为λ/2时采用DFT法生成的谱图。
图4是天线阵元间隔为0.8λ时采用DFT法生成的谱图。
图5是天线阵元间隔为λ时采用DFT法生成的谱图。
图6是应用本申请实施例的用于定位终端设备的一个定位系统的架构示意图。
图7是应用本申请实施例的用于定位终端设备的另一个定位系统的架构示意图。
图8是本申请提供的一种发送角度测量结果的方法的示意性流程图。
图9是根据本申请实施例的通信装置的示意性框图。
图10是根据本申请实施例的通信装置的示意性结构图。
图11是根据本申请另一实施例的通信装置的示意性框图。
图12是根据本申请另一实施例的通信装置的示意性结构图。
图13为天线横向阵列入射角和天线纵向阵列入射角的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例中,“多个”可以理解为“至少两个”;“多项”可以理解为“至少两项”。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access, WiMAX)通信系统、未来的5G系统或NR等。
本申请实施例中的终端设备可以包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴设备、车载设备等,本申请实施例对此并不限定。
本申请实施例中的接入网设备可以是用于与终端设备通信的设备,可以有多种形式,比如宏基站、微基站、中继站和接入点等,该接入网设备可以是新空口(new radio,NR)中的基站,其中,5G NR中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(next generation Node B,gNB),也可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站收发台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的节点B(nodeB,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型节点B(evolutional Node B,eNB或eNodeB),或者下一代通信系统中的基站,比如6G的基站。
在本申请实施例中,终端设备或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是现有技术中的一种定位方法和设备的通信系统的示意性架构图。如图1所示,该系统100包括接入网设备110和终端设备120。
接入网设备110测得的AOA得到终端设备120所处的方向,再接入网设备110根据测量终端设备120的上行传输来确定时间提前量(timing advance,TA),从而可得到终 端设备120和接入网设备110之间的距离:
D=0.5×TA×c
其中D表示终端设备120到接入网设备110之间的距离,TA表示时间提前量,c表示光速。
最后根据AOA和D的测量值实现对终端设备120的定位。
NR协议中规定下一代演进型节点(next-generation evolutional Node B,ng-eNB)支持对终端设备的AOA测量,测得AOA以正北方向为法线方向,逆时针方向为正。TA可以通过终端设备和ng-eNB联合测量得到,也可以通过ng-eNB单独测量得到。该AOA+TA定位方法使用单站即可实现定位,且当终端设备不支持定位功能时仍能实现定位。
图2是一种AOA+TA定位技术的示意性流程图。
210,定位管理单元向接入网设备发送定位请求。相应的,该接入网设备接收来自于该定位管理单元的定位请求。定位请求中包含对测量的请求和测量时间的规定。该定位管理单元与该接入网设备可以通过附加新空口定位协议(NR positioning protocol annex,NRPPa)进行通信。
220,接入网设备对终端设备进行测量,所述测量通过无线资源控制测量过程(radio resource control measurement procedure,RRC Measurement Procedure)实现。
230,接入网设备将测量结果发送给定位管理单元,相应的,定位管理单元接收来自接入网设备发送的测量结果。测量结果包括AOA和TA等测量值。若测量失败则返回失败信息。
AOA+TA定位技术的定位误差较大,仅适用于近距离或精度要求不高的场合。当接入网设备和终端设备距离较远时,即使存在微小的AOA测量误差也会因为较远距离而造成较大的定位距离偏差。
另一种定位方法是利用天线阵列进行到达角位置计算。在该方法中,可能由于天线阵元间隔不理想使得天线旁瓣过大,从而导致角度估计不准的问题。理论研究中,当天线阵元间隔d为接收信号波长λ的一半时,则不存在旁瓣过大而错误估计的角度值的问题。
以采用离散傅里叶变换(Discrete Fourier Transform,DFT)法估计入射角为例,图3示出了当天线阵元间隔为λ/2理想值时,DFT法生成的谱计算出的角度信息为唯一解。在实际工程中,往往不能保证天线阵元间隔为λ/2理想值,实际的间隔可能大于λ/2。图4和图5示出了天线阵元间隔为0.8λ和1λ时,对同一入射角,采用DFT法生成的谱分别出现两个峰值,每张谱图中两个峰值的其中一个属于旁瓣引起的错误估计值。
也就是说,当天线阵元间隔大于λ/2理想值时,针对一个测量对象可能估计出多个测量值,如果只选择一个测量值上报,可能会选择错误的值,而目前没有相应的角度选择方案。
本申请提供了一种发送角度测量结果的方法和设备,支持针对一个测量对象,上报多个角度测量值,可以减少当天线阵元间隔大于λ/2理想值时导致的角度测量值选择错误的问题。
图6是应用本申请实施例的用于定位终端设备的一个定位系统的架构示意图。如图6所示,该定位系统中,终端设备通过LTE-Uu和/或NR-Uu接口分别经由ng-eNB和gNB连接到无线接入网;无线接入网通过NG-C接口经由接入和移动管理功能(access and  mobility management function,AMF)单元连接到核心网。其中,下一代无线接入网(next-generation radio access network,NG-RAN)包括一个或多个ng-eNB;NG-RAN也可以包括一个或多个gNB;NG-RAN还可以包括一个或多个ng-eNB以及gNB。ng-eNB和gNB之间通过Xn接口进行通信。ng-eNB为接入5G核心网的LTE接入网设备,gNB为接入5G核心网的5G接入网设备。核心网包括AMF与LMF(或演进服务定位中心(evolved serving mobile location center,E-SMLC))等单元。其中,AMF用于实现接入管理等功能,LMF(或E-SMLC)用于实现定位等功能。AMF与LMF之间通过NLs接口连接。LMF是一种部署在核心网中为终端设备提供定位功能的装置或组件。
图7是应用本申请实施例的用于定位终端设备的另一个定位系统的架构示意图。图7与图6的定位系统架构的区别在于,图7的定位管理组件(location management component,LMC)部署在gNB中,LMC可承担LMF的一部分功能,gNB不需要将测量结果上报至核心网,节省了信令开销,降低了定位时延。
在本申请实施例中,定位功能节点(比如E-SMLC或LMF)通过收集接入网设备上报的测量信息,以确定终端设备的位置。可选地,接入网设备和E-SMLC之间的交互通过LPPa协议实现,接入网设备和LMF之间的交互通过NRPPa协议实现。
应理解,上述图6或图7的通信系统中,可以包括一个或多个gNB,单个或多个终端设备。单个gNB可以向单个终端设备或多个终端设备传输数据或控制信令。多个gNB也可以同时为单个终端设备传输数据或控制信令。
还应理解,上述图6或图7的通信系统中包括的设备或功能节点只是示例性地描述,并不对本申请实施例构成限定,事实上,图6或图7的定位系统中还可以包含其他与图中示意的设备或功能节点具有交互关系的网元或设备或功能节点,这里不作具体限定。
图8示出了本申请提供的一种发送角度测量结果的方法300的示意性流程图。如图8所示,所述方法300包括:
S310,第一设备向第二设备发送参考信号。相应地,该第二设备接收来自该第一设备的该参考信号。
可选地,第一设备可以为终端设备或者用于终端设备的部件(例如芯片或电路等),第二设备可以为接入网设备或者用于接入网设备的部件(例如芯片或电路等),接入网设备可以对不同的终端设备,或者同一终端设备的不同参考信号,或者同一参考信号的不同传播路径进行测量。
可选地,第一设备可以为接入网设备或者用于接入网设备的部件(例如芯片或电路等),第二设备可以为终端设备或者用于终端设备的部件(例如芯片或电路等)。
本申请实施例中的参考信号是指包含第一设备定位信息的参考信号,本申请实施例中统一记作“参考信号”,但不能理解为该“参考信号”仅包括探测参考信号SRS,以下不再赘述。可选地,参考信号包括但不限于定位参考信号(positioning reference signal,PRS)、解调参考信号(de-modulation reference signal,DMRS)、跟踪参考信号(tracking reference signal,TRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)。
S320,所述第二设备对所述参考信号进行测量,得到第一角度测量结果,所述第一角度测量结果是第一测量对象的测量结果,所述第一测量对象为直射径或反射径,所述第一角度测量结果包括M项角度测量量,所述第一角度测量结果中的M项角度测量量中的至 少一项测量量包括多个角度测量值,M为大于或等于1的正整数。
可选地,所述第二设备对所述参考信号进行测量,得到第二角度测量结果,所述第二角度测量结果是第二测量对象的测量结果,第二测量对象与第一测量对象不同。例如第一测量对象为直射径,第二测量对象为反射径;又如第一测量对象为反射径,第二测量对象为直射径;又如,第一测量对象为反射径,第二测量对象是不同于第一测量对象的另一个反射径。
可选地,直射径可以为一条,反射径可以为多条。例如,对于第一设备,包含第一直射径、第一反射径、第二反射径、第三反射径,第一测量对象和第二测量对象可以是第一直射径、第一反射径、第二反射径、第三反射径中的任意两个测量对象。按照本申请实施例的方法,第二设备可以测量第一设备的任意多个测量对象。
可选地,第二设备接收到的参考信号可以是第一设备通过直射径发送,也可以是第一设备通过反射径发送。
对于一个测量对象,角度测量结果可以包括以下角度测量量中的任意M个,M为大于1或等于1的正整数:水平入射角、垂直入射角、天线横向阵列入射角、天线纵向阵列入射角。其中,水平入射角指的是入射方向投影到水平面与正北方向的夹角;垂直入射角指的是入射方向与水平面的夹角,或入射方向与天顶方向的夹角;天线横向阵列入射角指的是入射方向与天线阵列(行)的夹角;天线纵向阵列入射角指的是入射方向与天线阵列(列)的夹角。图13为天线横向阵列入射角和天线纵向阵列入射角的示意图。所述天线横向阵列入射角和天线纵向阵列入射角是指,将天线阵列看做一个长方形,天线阵列横向(行)为长方形的长,天线阵列纵向(列)为长方形的宽,则当参考信号到达天线阵列时,入射方向与长方形的长的夹角α为天线横向阵列入射角,入射方向与长方形的宽的夹角β为天线纵向阵列入射角。
对于M个角度测量量中的每一个角度测量量,当天线阵元间隔等于λ/2理想值时,每个角度测量量的角度测量值是一个;当天线阵元间隔大于λ/2时,每个角度测量量的角度测量值为多个,例如可以是两个、三个或者更多。
应理解,当每个角度测量量的角度测量值是一个时,该角度测量值即定位管理单元需要用于终端设备定位计算的目标角度测量值;当每个角度测量量的角度测量值为多个时,仅有一个角度测量值是定位管理单元需要用于终端设备定位计算的目标角度测量值。
S330,第二设备将角度测量结果发送至定位管理设备,所述角度测量结果可以是第一角度测量结果和/或第二角度测量结果。相应地,定位管理设备接收来自于第二设备的角度测量结果。
第二设备发送M个角度测量量的角度测量值时可按照如下方式:
方式一,gNB每次向LMF发送M组角度测量值,M组角度测量值对应的角度测量量为水平入射角、垂直入射角、天线横向阵列入射角和天线纵向阵列入射角中的任意M个。如,M为4,每组角度测量值均为2个时,角度测量结果可按如下方式上报:
水平入射角 [测量值1,测量值2]
垂直入射角 [测量值1,测量值2]
天线横向阵列入射角 [测量值1,测量值2]
天线纵向阵列入射角 [测量值1,测量值2]
应理解,每组角度测量值可能为多个,可能为1个,可能为0个。
方式二,gNB每次向LMF发送M组角度测量值,M组角度测量值对应的角度测量量为水平入射角、垂直入射角、天线横向阵列入射角和天线纵向阵列入射角中的任意M个。设置gNB将M组角度测量值按照默认顺序排列,作为示例而非限定,可设置默认排列顺序如表1所示:
表1角度测量值上报顺序
Figure PCTCN2019109197-appb-000001
默认M组角度测量值按照水平入射角的角度测量值、垂直入射角的角度测量值、天线横向阵列入射角的角度测量值、天线纵向阵列入射角的角度测量值,每组角度测量值包括两个角度测量值,没有相应的角度测量值则填充0。如表1所示,则该次上报的角度测量值为:第1、2个为水平入射角的角度测量值,第3、4个为垂直入射角的角度测量值,第5、6个为天线横向阵列入射角的角度测量值,但天线阵元间隔恰好等于λ/2理想值,因此只有角度测量值5,而天线纵向阵列入射角没有测相应的角度测量值。
方式三,gNB每次向LMF发送一组角度测量值,该组角度测量值对应的角度测量量为水平入射角、垂直入射角、天线横向阵列入射角和天线纵向阵列入射角中的任一个。可选地,S330之前还包括:
S331,gNB向LMF发送配置信息,对应地,LMF接收来自gNB的配置信息,配置信息用于指示gNB接下来向LMF发送的角度测量值属于哪一个角度测量量,如水平入射角、垂直入射角、天线横向阵列入射角和天线纵向阵列入射角中的任一个。LMF可以基于gNB发送的配置信息,确定接下来接收到的角度测量值属于哪一个角度测量量。例如,配置信息指示为水平入射角,则LMF在接收到多个角度测量值后,可以确定多个角度测量值都是水平入射角的角度测量结果。
S340,定位管理设备根据角度测量结果确定第一设备位置。
可选地,定位管理设备接收到来自第二设备发送的角度测量结果后,可以采用粒子群优化(particle swarm optimization,PSO)算法进行定位。具体地,建立初始化粒子群,包括随机位置。根据适应函数,评价每个粒子的适应度。对每个粒子,将其当前适应值与其个体历史最佳位置对应的适应值作比较,如果当前适应值更高,则用当前位置更新历史最佳位置。对每个粒子,将其当前适应值与全局最佳位置对应的适应值作比较,如果当前的适应值更高,则用当前的位置更新全局最佳位置。如此更新每个粒子的位置。当算法达到最大迭代次数或者最佳适应值的增量小于某个给定的阈值时算法停止。此时对应的第一设备位置为PSO算法计算的第一设备位置。可选地,如果是多站联合角度定位,可以将直射径对应的角度测量结果代入PSO算法,确定第一设备的位置。可选地,每个角度测量对象的多个角度测量量,例如水平入射角和垂直入射角都可以代入PSO算法,从而实现对第一设备的三维定位。
可选地,定位管理设备接收到来自第二设备发送的角度测量结果后,可以采用加权方法进行定位。具体地,角度测量结果中,每个角度测量量包含多个角度测量值,例如,包含两个角度测量值,则第一个角度测量值α的权重为a,第二个角度测量值β的权重为b,其中a+b=1,计算出的目标角度值γ即为信号入射角。则γ=aα+bβ。或者,包含三个角度 测量值,则第一个角度测量值α的权重为a,第二个角度测量值β的权重为b,第三个角度测量值δ的权重为c,其中a+b+c=1,目标角度值γ为信号入射角,则γ=aα+bβ+cδ。
图1至8详细描述了根据本申请实施例的发送角度测量结果的方法。下面将结合图9至12至图描述本申请实施例用于发送角度测量结果的装置。应理解,方法实施例所描述的技术特征同样适用于以下装置实施例。
图9示出了根据本申请实施例的通信装置400的示意性框图。所述装置400用于执行前文方法实施例中第二设备执行的方法。可选地,所述装置400的具体形态可以是第二设备或第二设备中的芯片。所述装置400包括接收模块401、处理模块402和发送模块403。
接收模块401,用于接收第一设备发送的参考信号。
处理模块402,用于对接收模块接收到的参考信号进行测量,得到第一角度测量结果,所述第一角度测量结果是第一测量对象的测量结果,所述第一测量对象为直射径或反射径,所述第一角度测量结果包括M项角度测量量,所述第一角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值,M为大于或等于1的正整数;
发送模块403,用于向定位管理设备发送处理模块402确定的第一角度测量结果。
可选的,所述M项角度测量量为以下角度测量量中的任意M个:水平入射角、垂直入射角、天线横向阵列入射角、天线纵向阵列入射角。
可选的,处理模块402,还用于对所述参考信号进行测量,得到第二角度测量结果;所述第二角度测量结果是第二测量对象的测量结果,第二测量对象为直射径或反射径,所述第二角度测量结果包括M项角度测量量,所述第二角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值。
发送模块403,还用于向所述定位管理设备发送所述第二测量结果。
接收模块401、处理模块402和发送模块403的具体功能和有益效果可以参见上述实施例,为了简洁,在此就不必赘述。
图10是根据本申请实施例提供的通信装置的结构框图。图10所示的通信装置500包括:处理器501、存储器502和收发器503。
处理器501、存储器502和收发器503之间通过内部连接通路互相通信,传递控制和/或数据信号。
上述本申请实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读 取存储器502中的指令,结合其硬件完成上述方法的步骤。
可选的,在一些实施例中,存储器502可以存储用于执行如图8所示方法中第二设备执行的方法的指令。处理器501可以执行存储器502中存储的指令结合其他硬件(例如收发器503)完成如图8示方法中第二设备的步骤,具体工作过程和有益效果可以参图8所示实施例中的描述。
图11示出了根据本申请另一实施例的通信装置600的示意性框图。所述装置600用于执行前文方法实施例中定位管理设备执行的方法。可选地,所述装置600的具体形态可以是定位管理设备或定位管理设备中的芯片。本申请实施例对此不作限定。所述装置600包括接收模块601、处理模块602。
接收模块601,用于接收第二设备发送的第一角度测量结果,所述第一角度测量结果是第一测量对象的测量结果,所述第一测量对象为直射径或反射径,所述第一角度测量结果包括M项角度测量量所述第一角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值,M为大于或等于1的正整数;
处理模块602,用于根据接收模块接收的所述第一角度测量结果确定第一设备的位置。
可选地,所述M项角度测量量为以下角度测量量中的任意M个:水平入射角、垂直入射角、天线横向阵列入射角、天线纵向阵列入射角。
可选地,接收模块601还用于接收第二设备发送的第二角度测量结果,所述第二角度测量结果是第二测量对象的测量结果,所述第二测量对象为直射径或反射径,所述第二角度测量结果包括M项角度测量量所述第二角度测量结果中的M项角度测量量中至少有一项测量量包括多个角度测量值;
处理模块602,还用于根据所述第二角度测量结果确定第一设备的位置。
接收模块601、处理模块602的具体功能和有益效果可以参见上述实施例,为了简洁,在此就不必赘述。
图12是根据本申请另一实施例提供的通信装置的结构图。图12所示的通信装置700包括:处理器701、存储器702和收发器703。
处理器701、存储器702和收发器703之间通过内部连接通路互相通信,传递控制和/或数据信号。
可选的,在一些实施例中,存储器702可以存储用于执行如图8所示方法中第二设备执行的方法的指令。处理器701可以执行存储器702中存储的指令结合其他硬件(例如收发器703)完成如图8示方法中第二设备的步骤,具体工作过程和有益效果可以参图8所示实施例中的描述。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机 存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种芯片,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。该芯片可以执行上述方法实施例中第二设备或定位管理设备的方法。
本申请实施例还提供一种芯片,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。该芯片可以执行上述方法实施例中定位管理设备的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中第二设备或定位管理设备的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中定位管理设备的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中第二设备的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中定位管理设备的方法。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如,为了区分不同的设备等,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种发送角度测量结果的方法,其特征在于,包括:
    接收第一设备发送的参考信号;
    对所述参考信号进行测量,得到第一角度测量结果,所述第一角度测量结果是第一测量对象的测量结果,所述第一测量对象为直射径或反射径,所述第一角度测量结果包括M项角度测量量,所述第一角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值,M为大于或等于1的正整数;
    向定位管理设备发送所述第一角度测量结果。
  2. 根据权利要求1所述的方法,其特征在于,所述M项角度测量量为以下角度测量量中的任意M个:水平入射角、垂直入射角、天线横向阵列入射角、天线纵向阵列入射角。
  3. 根据权利要求1和2所述的方法,其特征在于,所述方法还包括:
    对所述参考信号进行测量,得到第二角度测量结果;所述第二角度测量结果是第二测量对象的测量结果,第二测量对象为直射径或反射径,所述第二角度测量结果包括M项角度测量量,所述第二角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值;
    向所述定位管理设备发送所述第二测量结果。
  4. 一种发送角度测量结果的方法,其特征在于,包括:
    接收第二设备发送的第一角度测量结果,所述第一角度测量结果是第一测量对象的测量结果,所述第一测量对象为直射径或反射径,所述第一角度测量结果包括M项角度测量量所述第一角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值,M为大于或等于1的正整数;
    根据所述第一角度测量结果确定第一设备的位置。
  5. 根据权利要求4所述的方法,其特征在于,所述M项角度测量量为以下角度测量量中的任意M个:水平入射角、垂直入射角、天线横向阵列入射角、天线纵向阵列入射角。
  6. 根据权利要求4和5所述的方法,其特征在于,所述方法还包括:
    接收第二设备发送的第二角度测量结果,所述第二角度测量结果是第二测量对象的测量结果,所述第二测量对象为直射径或反射径,所述第二角度测量结果包括M项角度测量量所述第二角度测量结果中的M项角度测量量中至少有一项测量量包括多个角度测量值;
    根据所述第二角度测量结果确定第一设备的位置。
  7. 一种通信装置,其特征在于,包括:
    接收模块,用于接收第一设备发送的参考信号;
    处理模块,用于对所述接收模块接收到的所述参考信号进行测量,得到第一角度测量结果,所述第一角度测量结果是第一测量对象的测量结果,所述第一测量对象为直射径或反射径,所述第一角度测量结果包括M项角度测量量,所述第一角度测量结果中的M项 角度测量量中的至少一项测量量包括多个角度测量值,M为大于或等于1的正整数;
    发送模块,用于向定位管理设备发送所述处理模块确定的所述第一角度测量结果。
  8. 根据权利要求7所述的装置,其特征在于,所述M项角度测量量为以下角度测量量中的任意M个:水平入射角、垂直入射角、天线横向阵列入射角、天线纵向阵列入射角。
  9. [根据细则91更正 18.02.2020]
    根据权利要求7或8所述的装置,其特征在于,所述处理模块,还用于对所述参考信号进行测量,得到第二角度测量结果;所述第二角度测量结果是第二测量对象的测量结果,第二测量对象为直射径或反射径,所述第二角度测量结果包括M项角度测量量,所述第二角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值;
    所述发送模块,还用于向所述定位管理设备发送所述处理模块确定的所述第二测量结果。
  10. 一种通信装置,其特征在于,包括:
    接收模块,用于接收第二设备发送的第一角度测量结果,所述第一角度测量结果是第一测量对象的测量结果,所述第一测量对象为直射径或反射径,所述第一角度测量结果包括M项角度测量量所述第一角度测量结果中的M项角度测量量中的至少一项测量量包括多个角度测量值,M为大于或等于1的正整数;
    处理模块,用于根据所述接收模块接收的所述第一角度测量结果确定第一设备的位置。
  11. 根据权利要求10所述的装置,其特征在于,所述M项角度测量量为以下角度测量量中的任意M个:水平入射角、垂直入射角、天线横向阵列入射角、天线纵向阵列入射角。
  12. 根据权利要求10和11所述的装置,其特征在于,所述接收模块还用于接收第二设备发送的第二角度测量结果,所述第二角度测量结果是第二测量对象的测量结果,所述第二测量对象为直射径或反射径,所述第二角度测量结果包括M项角度测量量所述第二角度测量结果中的M项角度测量量中至少有一项测量量包括多个角度测量值;
    所述处理模块,还用于根据所述接收模块接收的所述第二角度测量结果确定第一设备的位置。
PCT/CN2019/109197 2019-09-29 2019-09-29 发送角度测量结果的方法和装置 WO2021056566A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180005568.0A CN114467266B (zh) 2019-09-29 2019-09-29 发送角度测量结果的方法和装置
EP19947381.0A EP4030643A4 (en) 2019-09-29 2019-09-29 METHOD AND APPARATUS FOR SENDING ANGLE MEASUREMENT RESULT
PCT/CN2019/109197 WO2021056566A1 (zh) 2019-09-29 2019-09-29 发送角度测量结果的方法和装置
US17/707,649 US11899121B2 (en) 2019-09-29 2022-03-29 Angle measurement result sending method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109197 WO2021056566A1 (zh) 2019-09-29 2019-09-29 发送角度测量结果的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/707,649 Continuation US11899121B2 (en) 2019-09-29 2022-03-29 Angle measurement result sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2021056566A1 true WO2021056566A1 (zh) 2021-04-01

Family

ID=75165443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109197 WO2021056566A1 (zh) 2019-09-29 2019-09-29 发送角度测量结果的方法和装置

Country Status (4)

Country Link
US (1) US11899121B2 (zh)
EP (1) EP4030643A4 (zh)
CN (1) CN114467266B (zh)
WO (1) WO2021056566A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413016A (zh) * 2021-05-11 2022-11-29 大唐移动通信设备有限公司 参考设备确定方法及装置、网络侧设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065773A1 (en) * 2022-09-30 2024-04-04 Nokia Shanghai Bell Co., Ltd. Location identification and verification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107438955A (zh) * 2015-04-09 2017-12-05 三星电子株式会社 在使用多个天线的无线通信系统中控制传输功率的方法和设备
WO2019147305A1 (en) * 2018-01-26 2019-08-01 Litepoint Corporation System and method for testing a device under test (dut) capable of determining relative times of arrival or angles of arrival of multiple radio frequency signals

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377522B2 (en) * 2013-08-22 2016-06-28 Qualcomm Incorporated Utilizing a reference signal for indoor positioning
CN105589506B (zh) 2016-02-29 2017-10-17 华为技术有限公司 功率跟踪方法、装置及光伏发电系统
CN108702726B (zh) * 2016-03-24 2021-06-01 苹果公司 用于5g系统的定位方法
CN109905224B (zh) * 2017-06-16 2020-06-26 华为技术有限公司 传输方法、网络设备和终端
US10736074B2 (en) * 2017-07-31 2020-08-04 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
CN110012536B (zh) * 2018-01-05 2021-10-01 华为技术有限公司 用于终端设备的定位方法、装置及系统
CN110149689B (zh) * 2018-02-11 2022-03-25 华为技术有限公司 一种功率控制的方法和装置
CN111447543B (zh) * 2018-12-27 2021-10-26 华为技术有限公司 定位方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107438955A (zh) * 2015-04-09 2017-12-05 三星电子株式会社 在使用多个天线的无线通信系统中控制传输功率的方法和设备
WO2019147305A1 (en) * 2018-01-26 2019-08-01 Litepoint Corporation System and method for testing a device under test (dut) capable of determining relative times of arrival or angles of arrival of multiple radio frequency signals

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "NR positioning measurements", 3GPP TSG RAN WG1 #97 R1-1906054, 17 May 2019 (2019-05-17), XP051708096, DOI: 20200615153332X *
INTEL CORPORATION: "UE and gNB Measurements for NR Positioning", 3GPP DRAFT; R1-1904321 INTEL - NRPOS_MEASUREMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707191 *
QUALCOMM INCORPORATED: "DL and UL NR Positioning Procedures", 3GPP DRAFT; R2-1906779_(POSITIONING PROCEDURES)_V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051730235 *
See also references of EP4030643A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413016A (zh) * 2021-05-11 2022-11-29 大唐移动通信设备有限公司 参考设备确定方法及装置、网络侧设备

Also Published As

Publication number Publication date
US20220221545A1 (en) 2022-07-14
CN114467266A (zh) 2022-05-10
EP4030643A4 (en) 2022-10-05
CN114467266B (zh) 2023-11-17
US11899121B2 (en) 2024-02-13
EP4030643A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
TWI778607B (zh) 定位方法、裝置及電腦存儲介質
US9451579B2 (en) Positioning information determination method and device
US11899121B2 (en) Angle measurement result sending method and apparatus
US20220224488A1 (en) Reference signal configuration determining method and apparatus
EP3993451A1 (en) Method for positioning and communication apparatus
WO2020135266A1 (zh) 定位方法及装置
EP4161107A1 (en) Terminal positioning method and device
JP2009517988A (ja) 無線ネットワークにおいて動作するモバイル機器の位置を算出するためのシステムおよび方法
WO2013136128A1 (en) Generating radio channel models parameter values
US20230262647A1 (en) Positioning method and apparatus
WO2021046820A1 (zh) 一种测量上报方法及装置
CN111431638A (zh) 一种信道模型参数方法及装置
CN105026950B (zh) 终端定位的方法、定位服务器和终端
BR112021016036A2 (pt) Posicionamento de múltiplas células
WO2023056965A1 (zh) 数据传输方法、装置、基站、终端及存储介质
WO2023178569A1 (zh) 位置确定方法、装置、设备、介质、芯片、产品及程序
WO2023169253A1 (zh) 一种通信方法及装置
WO2022141592A1 (zh) 一种定位方法和装置
WO2023221931A1 (zh) 用于定位的方法和装置
WO2023151469A1 (zh) 定位方法及装置
CN113132894B (zh) 定位方法及装置、wlan设备、计算设备及存储介质
WO2024027643A1 (zh) 一种信息传输方法、装置及设备
WO2023011129A1 (zh) 定位方法、定位装置及非暂态计算机可读存储介质
US20220413085A1 (en) Node positioning
WO2024069617A1 (en) Device orientation and positioning using local and global coordinate systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947381

Country of ref document: EP

Effective date: 20220412