WO2023011129A1 - 定位方法、定位装置及非暂态计算机可读存储介质 - Google Patents

定位方法、定位装置及非暂态计算机可读存储介质 Download PDF

Info

Publication number
WO2023011129A1
WO2023011129A1 PCT/CN2022/105520 CN2022105520W WO2023011129A1 WO 2023011129 A1 WO2023011129 A1 WO 2023011129A1 CN 2022105520 W CN2022105520 W CN 2022105520W WO 2023011129 A1 WO2023011129 A1 WO 2023011129A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
target
reported
base station
difference
Prior art date
Application number
PCT/CN2022/105520
Other languages
English (en)
French (fr)
Inventor
方荣一
任斌
张振宇
任晓涛
达人
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/681,454 priority Critical patent/US20240340844A1/en
Priority to KR1020247006852A priority patent/KR20240034861A/ko
Priority to EP22851843.7A priority patent/EP4383861A1/en
Priority to JP2024507099A priority patent/JP2024529056A/ja
Publication of WO2023011129A1 publication Critical patent/WO2023011129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0218Multipath in signal reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/26Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/25Monitoring; Testing of receivers taking multiple measurements
    • H04B17/252Monitoring; Testing of receivers taking multiple measurements measuring signals from different transmission points or directions of arrival, e.g. in multi RAT or dual connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/25Monitoring; Testing of receivers taking multiple measurements
    • H04B17/253Monitoring; Testing of receivers taking multiple measurements measuring at different locations or reception points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/012Identifying whether indoors or outdoors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to the technical field of wireless communication, and in particular, the present application relates to a positioning method, a positioning device, and a non-transitory computer-readable storage medium.
  • Finger-Printing positioning is also called Pattern-Matching positioning (Pattern-Matching positioning). Fingerprint positioning has a good effect on overcoming the influence of NLOS (Non Line of Sight, non-line-of-sight).
  • the positioning scheme is to use the received signal fingerprint to match with the pre-constructed location fingerprint database, so as to realize the positioning of the target UE (User Equipment, user equipment).
  • the scheme mainly consists of two parts: the offline training phase of constructing the location fingerprint library and the online positioning phase of fingerprint matching.
  • the offline stage of building the location fingerprint library mainly completes the sorting of signal fingerprints captured by each monitoring station and the fingerprint collection of each location in the monitoring area; the online positioning stage of fingerprint matching mainly completes the matching of the fingerprint of the target UE with the database and the final location estimate.
  • the CSI Channel State Information, channel state information
  • the online positioning phase mainly completes the matching of the fingerprint of the target UE with the database and the final location estimate.
  • the CSI Channel State Information, channel state information
  • the application proposes a positioning method, a positioning device and a non-transitory computer storage medium.
  • a positioning method is provided, which is performed by a location management function LMF, including: receiving first information reported by at least one base station, or first information reported by a target user equipment UE and a reference UE respectively, the first information includes multiple at least one of path information or time offset information; according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, and a preset positioning database, determine the position of the target UE.
  • the first information further includes at least one of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the target UE is located indoors or outdoors, according to the at least one base station
  • the first information reported respectively, as well as the known location coordinates of the base station and the known location coordinates of the reference UE determine a first feature vector; respectively match the first feature vector with each second feature vector in a preset positioning database, Determine a second eigenvector with a maximum matching degree with the first eigenvector; and determine a location coordinate corresponding to the second eigenvector with a maximum matching degree with the first eigenvector as the location of the target UE.
  • the positioning method before determining the location of the target UE, further includes: receiving delay values reported by multiple base stations, and comparing the delay values reported by each non-reference base station among the multiple base stations with the multiple base station Perform single-difference processing between the delay values reported by the reference base station, and determine the single-difference delay values corresponding to each non-reference base station; Single-difference delay value.
  • the first information further includes at least one of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the target UE is located indoors or outdoors, according to the at least one base station
  • the two eigenvectors are matched respectively to determine a second eigenvector with a maximum matching degree with the first eigenvector; and a location coordinate corresponding to the second eigenvector with a maximum matching degree with the first eigenvector is determined as the location of the target UE.
  • the positioning method before determining the position of the target UE, further includes: receiving a single-difference delay value reported by the target UE and a single-difference delay value reported by a reference UE, where the single-difference delay value is multiple Single-difference delay values corresponding to each non-reference base station in the base station; double-difference processing is performed between the single-difference delay value reported by the target UE and the single-difference delay value reported by the reference UE to obtain a double-difference value; according to the reference UE
  • the reported known position coordinates and the known position coordinates of the base station are used to convert the double difference value into a single difference value.
  • the positioning method before determining the position of the target UE, further includes: receiving delay values reported by multiple base stations corresponding to the target UE and the reference UE respectively; Single difference processing is performed between the time delay value corresponding to the target UE and the time delay value corresponding to the target UE reported by the reference base station among the multiple base stations, and the first single difference time delay value corresponding to each non-reference base station is determined; Single difference processing is performed between the delay values corresponding to the reference UEs reported by the non-reference base stations in the base station and the delay values corresponding to the reference UEs reported by the reference base stations in the multiple base stations, and the second single difference corresponding to each non-reference base station is determined. difference time delay value; performing double difference processing between the first single difference time delay value and the second single difference time delay value to obtain a double difference value;
  • the double difference value is converted into a single difference value.
  • the first information further includes at least one of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor, according to at least one base station reported
  • the first information, or the first information respectively reported by the target UE and the reference UE, and the preset positioning database determine the position of the target UE, including: according to the first information reported by at least one base station, or the target UE and the reference UE respectively report The first information of the base station, the known location coordinates of the base station, the known location coordinates of the reference UE, and the single difference value are used to determine the first eigenvector; the first eigenvector is compared with each second eigenvector in the preset positioning database. Matching, determining a second feature vector with a maximum matching degree with the first feature vector; determining a location coordinate corresponding to the second feature vector with a maximum matching degree with the first feature vector as the location of the target UE.
  • the multipath information includes at least one of the following: the time delay of a specific path among the multiple paths corresponding to the receiving antenna or the delay difference between multiple paths; the power of the specific path; the phase of the specific path; The phase difference between different receiving antennas; the delay difference between different receiving antennas; the power difference between different receiving antennas; all or part of the data in the array corresponding to the channel impulse response CIR of the receiving antenna; All or part of the data in the array corresponding to the channel frequency response CFR of the antenna; all or part of the data in the array corresponding to the power delay profile PDP of the receiving antenna; pseudo-spectrum information of the receiving antenna.
  • the receiving antenna is the receiving antenna of the base station, the receiving antenna of the target UE or the receiving antenna of the reference UE.
  • the specific path includes at least one of the top N paths with the smallest delay, the first path, or the M paths with the strongest power, and both N and M are positive integers.
  • the time deviation information includes at least one of the following: clock synchronization error or clock synchronization error group; clock synchronization error or clock synchronization error group change; clock synchronization error change rate; sending and receiving time error or sending and receiving time error group ;Transmitting time error or change of sending and receiving time error group; rate of change of sending and receiving time error.
  • a positioning method is provided, which is performed by a target UE or a reference UE, including: receiving a positioning reference signal PRS sent by a base station; determining first information according to the pilot frequency of the PRS, and the first information includes multipath information or time At least one item of deviation information; reporting first information to the LMF, where the first information is used by the LMF to determine the location of the target UE.
  • a positioning method is provided, which is performed by a base station, including: receiving a sounding reference signal SRS sent by a target UE or a reference UE; determining first information according to the pilot frequency of the SRS, and the first information includes multipath information or time At least one item of deviation information; reporting first information to the LMF, where the first information is used by the LMF to determine the location of the target UE.
  • a positioning device which is applied to an LMF, and includes a memory, a transceiver, and a processor.
  • Memory is used to store computer programs.
  • the transceiver is used to send and receive data under the control of the processor.
  • the processor is configured to read the computer program in the memory and perform the following operations: receive first information reported by at least one base station, or first information respectively reported by the target user equipment UE and the reference UE, where the first information includes multipath information or time offset At least one item of information: determining the location of the target UE according to the first information reported by at least one base station, or the first information reported by the target UE and the reference UE respectively, and a preset positioning database.
  • the first information further includes at least one of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the target UE is located indoors or outdoors, according to the at least one base station
  • the first information reported respectively, as well as the known location coordinates of the base station and the known location coordinates of the reference UE determine a first feature vector; respectively match the first feature vector with each second feature vector in a preset positioning database, Determine a second eigenvector with a maximum matching degree with the first eigenvector; and determine a location coordinate corresponding to the second eigenvector with a maximum matching degree with the first eigenvector as the location of the target UE.
  • the processor before determining the location of the target UE, is further configured to perform the following operations: receive the delay values reported by multiple base stations, and compare the delay values reported by each non-reference base station among the multiple base stations with the multiple Single-difference processing is performed between the delay values reported by the reference base station in a base station, and the single-difference delay values corresponding to each non-reference base station are determined; or, each non-reference base station among multiple base stations reported by the target UE or the reference UE is respectively The corresponding single-difference delay value.
  • the first information further includes at least one of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the target UE is located indoors or outdoors, according to the at least one base station
  • the two eigenvectors are matched respectively to determine a second eigenvector with a maximum matching degree with the first eigenvector; and a location coordinate corresponding to the second eigenvector with a maximum matching degree with the first eigenvector is determined as the location of the target UE.
  • the processor before determining the location of the target UE, is further configured to perform the following operations: receiving the single difference delay value reported by the target UE and the single difference delay value reported by the reference UE, where the single difference delay value is The single-difference delay values corresponding to the non-reference base stations in multiple base stations; the double-difference processing is performed between the single-difference delay value reported by the target UE and the single-difference delay value reported by the reference UE to obtain the double difference value; according to Referring to the known location coordinates reported by the UE and the known location coordinates of the base station, the double difference value is converted into a single difference value.
  • the processor before determining the location of the target UE, is further configured to perform the following operations: receiving delay values reported by multiple base stations corresponding to the target UE and the reference UE; Single-difference processing is performed between the delay values corresponding to the target UE reported by the reference base station and the delay values corresponding to the target UE reported by the reference base station among multiple base stations, and the first single-difference delay values corresponding to each non-reference base station are determined Perform single difference processing between the delay values corresponding to the reference UE reported by each non-reference base station in the multiple base stations and the delay values corresponding to the reference UE reported by the reference base station in the multiple base stations, and determine that each non-reference base station corresponds to the second single-difference delay value; perform double-difference processing between the first single-difference delay value and the second single-difference delay value to obtain a double-difference value; according to the known position coordinates reported by the reference UE and the base station's The position coordinates are known,
  • the first information further includes at least one of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor, according to at least one base station reported
  • the first information, or the first information respectively reported by the target UE and the reference UE, and the preset positioning database determine the position of the target UE, including: according to the first information reported by at least one base station, or the target UE and the reference UE respectively report The first information, and the known location coordinates of the base station, the known location coordinates and the single difference value of the reference UE, determine the first feature vector;
  • the corresponding location coordinates are determined as the location of the target UE.
  • the multipath information includes at least one of the following: the time delay of a specific path among the multiple paths corresponding to the receiving antenna or the delay difference between multiple paths; the power of the specific path; the phase of the specific path; The phase difference between different receiving antennas; the delay difference between different receiving antennas; the power difference between different receiving antennas; all or part of the data in the array corresponding to the channel impulse response CIR of the receiving antenna; All or part of the data in the array corresponding to the channel frequency response CFR of the antenna; all or part of the data in the array corresponding to the power delay profile PDP of the receiving antenna; pseudo-spectrum information of the receiving antenna.
  • the receiving antenna is the receiving antenna of the base station, the receiving antenna of the target UE or the receiving antenna of the reference UE.
  • the specific path includes at least one of the top N paths with the smallest delay, the first path, or the M paths with the strongest power, and both N and M are positive integers.
  • the time deviation information includes at least one of the following: clock synchronization error or clock synchronization error group; clock synchronization error or clock synchronization error group change; clock synchronization error change rate; sending and receiving time error or sending and receiving time error group ;Transmitting time error or change of sending and receiving time error group; rate of change of sending and receiving time error.
  • a positioning device which is applied to a target UE or a reference UE, and includes a memory, a transceiver, and a processor.
  • Memory is used to store computer programs.
  • the transceiver is used to send and receive data under the control of the processor.
  • the processor is used to read the computer program in the memory and perform the following operations: receive the positioning reference signal PRS sent by the base station; determine the first information according to the pilot frequency of the PRS, and the first information includes at least one of multipath information or time offset information Item; reporting first information to the LMF, where the first information is used by the LMF to determine the location of the target UE.
  • a positioning device which is applied to a base station, and includes a memory, a transceiver, and a processor.
  • Memory is used to store computer programs.
  • the transceiver is used to send and receive data under the control of the processor.
  • the processor is configured to read the computer program in the memory and perform the following operations: receive the sounding reference signal SRS sent by the target UE or the reference UE; determine the first information according to the pilot frequency of the SRS, and the first information includes multipath information or time At least one item of deviation information; reporting first information to the LMF, where the first information is used by the LMF to determine the location of the target UE.
  • the present application provides a positioning device, which is applied to LMF, and includes: a first processing unit, configured to receive first information reported by at least one base station, or first information respectively reported by a target user equipment UE and a reference UE , the first information includes at least one of multipath information or time offset information; the second processing unit is configured to, according to the first information reported by the at least one base station, or the target UE and the reference UE respectively reported The first information, and the preset location database, determine the location of the target UE.
  • the present application provides a positioning device, which is applied to a target UE or a reference UE, including: a third processing unit, configured to receive a positioning reference signal PRS sent by a base station; a fourth processing unit, configured to The pilot frequency of determining the first information, the first information includes at least one item of multipath information or time offset information; the fifth processing unit is used to report the first information to the LMF, and the first information uses The location of the target UE is determined at the LMF.
  • a positioning device which is applied to a target UE or a reference UE, including: a third processing unit, configured to receive a positioning reference signal PRS sent by a base station; a fourth processing unit, configured to The pilot frequency of determining the first information, the first information includes at least one item of multipath information or time offset information; the fifth processing unit is used to report the first information to the LMF, and the first information uses The location of the target UE is determined at the LMF.
  • the present application provides a positioning device applied to a base station, including: a sixth processing unit configured to receive a sounding reference signal (SRS) sent by a target UE or a reference UE; a seventh processing unit configured to The pilot frequency of the first information is determined, and the first information includes at least one item of multipath information or time offset information; the eighth processing unit is used to report the first information to the LMF, and the first information uses determining the location of the target UE at the LMF.
  • SRS sounding reference signal
  • a non-transitory computer-readable storage medium stores a computer program, and the computer program is used to cause a processor to execute the first aspect, the second aspect or the third aspect. method described in the aspect.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a positioning method provided in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another positioning method provided in the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another positioning method provided in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • AI Artificial Intelligence, artificial intelligence
  • a common solution is to establish a neural network model, that is, input channel features for training to the neural network model, and continuously optimize the parameters of the neural network model through a large amount of data training. , to get the trained neural network model.
  • the actual channel features are input into the trained neural network model to obtain the final position estimate.
  • the inner product generally refers to the dot product; the dot product, also known as the quantity product, refers to a binary operation that accepts two vectors on the real number R and returns a real-valued scalar.
  • the dot product is the standard inner product of Euclidean space.
  • the time error is mainly composed of the following two parts:
  • CE Chip Error, clock deviation
  • Sending and receiving time error (Tx ⁇ Rx TE (Time Error, time error)
  • the sending and receiving time error is introduced by the nonlinearity of the sending and receiving filter.
  • FIG. 1 A schematic diagram of a network architecture provided by an embodiment of the present application is shown in FIG. 1 , and the network architecture includes: a location management function (Location Management Function, LMF), a UE, and a base station.
  • LMF Location Management Function
  • the LMF refers to hardware, software, or a combination of hardware and software capable of implementing location management functions.
  • the LMF can be a network element.
  • the LMF can be a server, a computing device.
  • LMF can be software.
  • the LMF is, for example, LMF110 in FIG. 1
  • the UEs are, for example, UE120 (target UE) and UE130 (reference UE) in FIG.
  • the base station is, for example, base station 140 in FIG. 1 .
  • the base station is deployed in the access network, for example, the base station 140 is deployed in the access network NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network) in the 5G system.
  • NG-RAN New Generation-Radio Access Network, New Generation Radio Access Network
  • the UE and the base station communicate with each other through a certain air interface technology, for example, they may communicate with each other through a cellular technology.
  • the UE involved in this embodiment of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • UEs may include mobile phones, vehicle user terminals, tablets, laptops, personal digital assistants, mobile Internet devices, wearable devices, and the like.
  • the base station involved in this embodiment of the present application may include multiple cells that serve the UE.
  • the base station may also be called an access point, or may be a device in the access network that communicates with the UE through one or more sectors on the air interface, or other names.
  • the base station can be used to exchange received air frames with Internet Protocol (Internet Protocol, IP) packets.
  • IP Internet Protocol
  • the base station can act as a router between the UE and the rest of the access network.
  • the remainder of the access network may include an Internet Protocol (IP) communications network.
  • IP Internet Protocol
  • the base station may also coordinate attribute management for the air interface.
  • the base station involved in the embodiment of the present application may be a network device (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA) , can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or an evolved network device ( evolutional Node B, eNB or e-NodeB), the 5G base station (gNB) in the 5G network architecture (next generation system), or the home evolved Node B (HeNB), relay node (relay node), A home base station (femto), a pico base station (pico), etc., and this embodiment of the present application is not limited thereto.
  • BTS Base Transceiver Station
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • NodeB Wide-band Code Division Multiple Access
  • eNB Evolutional Node B
  • gNB 5G base station
  • HeNB home evolved Node B
  • relay node relay node
  • the embodiment of the present application provides a positioning method, which is executed by the LMF.
  • the flowchart of the method is shown in FIG. 2 , and the method may include steps S101 and S102.
  • step S101 first information reported by at least one base station, or first information respectively reported by a target user equipment UE and a reference UE is received.
  • the first information includes at least one item of multipath information or time offset information.
  • the LMF receives first information reported by the base station, where the first information includes multipath information and time offset information.
  • the first information may further include non-line-of-sight NLOS indication information, transmit and receive beam direction information, and indication information indicating whether the location of the target UE is indoor or outdoor.
  • the LMF receives the first information respectively reported by the target UE and the reference UE.
  • the first information reported by the target UE includes multipath information and time offset information.
  • the first information reported by the target UE may also include non-line-of-sight NLOS indication information, transmit and receive beam direction information, and indication information indicating whether the target UE is located indoors or outdoors.
  • the first information reported by the reference UE includes multipath information and time offset information.
  • the first information reported by the reference UE may also include non-line-of-sight NLOS indication information, transmit and receive beam direction information, and indication information indicating whether the location of the target UE is indoor or outdoor.
  • the multipath information includes at least one of the following: the time delay of a specific path among the multiple paths corresponding to the receiving antenna or the delay difference between multiple paths; the power of the specific path; the phase of the specific path; The phase difference between different receiving antennas; the delay difference between different receiving antennas; the power difference between different receiving antennas; the CIR (Channel Impulse Response, Channel Impulse Response) corresponding to the receiving antenna All or part of the data; all or part of the data in the array corresponding to the CFR (Channel Frequency Response, channel frequency response) of the receiving antenna; all or part of the data in the array corresponding to the PDP (Power Delay Profile, power delay profile) of the receiving antenna ; Pseudospectral information of the receiving antenna.
  • the time delay of a specific path among the multiple paths corresponding to the receiving antenna or the delay difference between multiple paths the power of the specific path
  • the phase of the specific path The phase difference between different receiving antennas; the delay difference between different receiving antennas; the power difference between different receiving antennas; the
  • the receiving antenna is the receiving antenna of the base station, the receiving antenna of the target UE or the receiving antenna of the reference UE.
  • the specific path includes at least one of the top N paths with the smallest delay, the first path, or the M paths with the strongest power, and both N and M are positive integers.
  • the receiving antenna involved in the multipath information included in the first information is the receiving antenna of the base station.
  • the receiving antenna involved in the multipath information included in the first information is the receiving antenna of the target UE.
  • the receiving antenna involved in the multipath information included in the first information is the receiving antenna of the reference UE.
  • the first path may be a direct path.
  • the time deviation information includes at least one of the following: clock synchronization error or clock synchronization error group; clock synchronization error or clock synchronization error group change; clock synchronization error change rate; sending and receiving time error or sending and receiving time error group ;Transmitting time error or change of sending and receiving time error group; rate of change of sending and receiving time error.
  • the NLOS indication information may be a hard indication or a soft indication.
  • Soft indications include, but are not limited to, frequency domain variance, time domain Rice factor, polarization metric information, coherent bandwidth, and the like.
  • step S102 the position of the target UE is determined according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, and a preset positioning database.
  • the preset positioning database may be a CNN (Convolutional Neural Networks, Convolutional Neural Networks) model trained by artificial intelligence technology.
  • CNN Convolutional Neural Networks, Convolutional Neural Networks
  • the first information further includes at least one item of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor.
  • determining the position of the target UE includes: according to the first information reported by at least one base station, or the target UE The first information reported by the UE and the reference UE respectively, as well as the known location coordinates of the base station and the known location coordinates of the reference UE, determine a first feature vector; combine the first feature vector with each second feature vector in a preset positioning database Matching is performed respectively to determine a second eigenvector with a maximum degree of matching with the first eigenvector; and a location coordinate corresponding to the second eigenvector with a maximum degree of matching with the first eigenvector is determined as the location of the target UE
  • an array is obtained according to the first information reported by the base station, or the first information respectively reported by the target UE and the reference UE, and the known location coordinates of the base station and the known location coordinates of the reference UE.
  • the array includes the first information reported by the base station, or the first information respectively reported by the target UE and the reference UE, and the known location coordinates of the base station and the known location coordinates of the reference UE. This array corresponds to the first eigenvector.
  • the positioning method before determining the location of the target UE, further includes: receiving delay values reported by multiple base stations, and comparing the delay values reported by non-reference base stations in the multiple base stations with the reference delay values in the multiple base stations, respectively. Single-difference processing is performed between the delay values reported by the base station to determine the single-difference delay values corresponding to each non-reference base station; delay value.
  • the delay value may be an RTOA (Relative Time Of Arrival, relative time of arrival) value
  • the single difference delay value may be a TDOA (Time Difference of Arrival, time difference of arrival) value.
  • RTOA Real Time Of Arrival, relative time of arrival
  • TDOA Time Difference of Arrival, time difference of arrival
  • Method 1 The LMF receives the RTOA values reported by multiple base stations, and performs single difference processing between the RTOA values reported by each non-reference base station among the multiple base stations and the RTOA values reported by the reference base station among the multiple base stations, and determines the value of each non-reference base station Corresponding TDOA respectively.
  • Mode 2 The LMF receives the TDOA corresponding to each non-reference base station among multiple base stations reported by the target UE or the reference UE.
  • the first information further includes at least one item of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor.
  • step S102 may include: according to the first information reported by at least one base station, or the first information reported by the target UE and the reference UE respectively, and the known position coordinates of multiple base stations corresponding to each non-reference base station The single-difference time delay value is used to determine the first eigenvector; the first eigenvector is matched with each second eigenvector in the preset positioning database, and the second eigenvector with the largest matching degree with the first eigenvector is determined; The location coordinates corresponding to the second eigenvector with the highest matching degree to the first eigenvector are determined as the location of the target UE.
  • the first information reported by multiple base stations or the first information respectively reported by the target UE and the reference UE, as well as the known position coordinates of multiple base stations and the single-difference time delay corresponding to each non-reference base station value to get an array.
  • the array includes the first information reported by multiple base stations, or the first information respectively reported by the target UE and the reference UE, known location coordinates of multiple base stations and single-difference delay values corresponding to each non-reference base station. This array corresponds to the first eigenvector.
  • the positioning method before determining the position of the target UE, further includes: receiving a single-difference delay value reported by the target UE and a single-difference delay value reported by a reference UE, where the single-difference delay value is among multiple base stations Single-difference delay values corresponding to each non-reference base station; double-difference processing is performed between the single-difference delay value reported by the target UE and the single-difference delay value reported by the reference UE to obtain a double difference value; according to the single-difference delay value reported by the reference UE
  • the known location coordinates and the known location coordinates of the base station convert the double-differenced values into single-differenced values.
  • the single-difference delay value may be a TDOA value.
  • the positioning method before determining the location of the target UE, further includes: receiving delay values reported by multiple base stations corresponding to the target UE and the reference UE respectively; Perform single-difference processing between the delay value corresponding to the UE and the delay value corresponding to the target UE reported by the reference base station among the multiple base stations, and determine the first single-difference delay value corresponding to each non-reference base station; Single-difference processing is performed between the delay values corresponding to the reference UEs reported by each non-reference base station in the multiple base stations and the delay values corresponding to the reference UEs reported by the reference base stations in multiple base stations, and the second single-difference values corresponding to each non-reference base station are determined.
  • Double difference processing is performed between the first single-difference delay value and the second single-difference delay value to obtain a double difference value; according to the known position coordinates reported by the reference UE and the known position coordinates of the base station, the Double differences are converted to single differences.
  • the delay value may be an RTOA value
  • the first single-difference delay value and the second single-difference delay value may be TDOA values.
  • the first information further includes at least one item of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor.
  • step S102 may include: according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, and the known location coordinates of the base station, the known location coordinates of the reference UE, and single difference, determine the first eigenvector; match the first eigenvector with each second eigenvector in the preset positioning database, and determine the second eigenvector with the largest matching degree with the first eigenvector; match the first eigenvector with the first eigenvector The location coordinates corresponding to the second eigenvector with the highest matching degree of the eigenvectors are determined as the location of the target UE.
  • an array is obtained .
  • the array includes the first information reported by the base station, or the first information respectively reported by the target UE and the reference UE, as well as the known location coordinates of the base station, the known location coordinates of the reference UE, and the single difference. This array corresponds to the first eigenvector.
  • the first information is determined according to the first information reported by the base station, or the first information reported by the target UE and the reference UE respectively, and the known location coordinates of the base station, the known location coordinates of the reference UE, and the double difference value.
  • Feature vector the first information reported by the base station, or the first information reported by the target UE and the reference UE respectively, and the known location coordinates of the base station, the known location coordinates of the reference UE, and the double difference value.
  • the first information reported by the base station, or the first information reported by the target user equipment UE and the reference UE is received through the LMF, and according to the first information reported by the base station, or the first information reported by the target UE and the reference UE respectively
  • This information determines the location of the target UE, thereby eliminating the influence of the time-varying time error and improving the positioning accuracy of the target UE in a complex multipath environment and a time-varying time error scenario.
  • An embodiment of the present application provides a positioning method, which is executed by a target UE or a reference UE.
  • the flowchart of the method is shown in FIG. 3 , and the method includes steps S201, S202 and S203.
  • step S201 a PRS (Positioning Reference Signal, positioning reference signal) sent by the base station is received.
  • PRS Positioning Reference Signal, positioning reference signal
  • the target UE or the reference UE may receive PRSs sent by multiple base stations respectively.
  • the first information is determined according to the pilot frequency of the PRS.
  • the first information includes at least one item of multipath information or time offset information.
  • the target UE may determine the first information according to the PRS pilots of multiple base stations; the reference UE may determine the first information according to the PRS pilots of the multiple base stations.
  • the multipath information includes at least one of the following: the time delay of a specific path among the multiple paths corresponding to the receiving antenna or the delay difference between multiple paths; the power of the specific path; the phase of the specific path; The phase difference between different receiving antennas; the delay difference between different receiving antennas; the power difference between different receiving antennas; all or part of the data in the array corresponding to the channel impulse response CIR of the receiving antenna; All or part of the data in the array corresponding to the channel frequency response CFR of the antenna; all or part of the data in the array corresponding to the power delay profile PDP of the receiving antenna; pseudo-spectrum information of the receiving antenna.
  • the receiving antenna is the receiving antenna of the target UE or the receiving antenna of the reference UE.
  • the specific path includes at least one of the top N paths with the smallest delay, the first path, or the M paths with the strongest power, and both N and M are positive integers.
  • the time deviation information includes at least one of the following: clock synchronization error or clock synchronization error group; clock synchronization error or clock synchronization error group change; clock synchronization error change rate; sending and receiving time error or sending and receiving time error group ;Transmitting time error or change of sending and receiving time error group; rate of change of sending and receiving time error.
  • step S203 the first information is reported to the LMF, and the first information is used by the LMF to determine the location of the target UE.
  • the target UE and the reference UE may respectively report the first information to the LMF.
  • the LMF may determine the location of the target UE according to the first information.
  • the target UE and the reference UE report the first information to the LMF respectively, which eliminates the time-varying influence of the time error, and improves the performance of the target UE in complex multipath environments and scenarios where the time error is time-varying. positioning accuracy.
  • An embodiment of the present application provides a positioning method, which is executed by a base station.
  • a schematic flowchart of the method is shown in FIG. 4 , and the method includes steps S301, S302, and S303.
  • step S301 an SRS (Sounding Reference Signal, Sounding Reference Signal) sent by a target UE or a reference UE is received.
  • SRS Sounding Reference Signal
  • the first information is determined according to the pilot frequency of the SRS.
  • the first information includes at least one item of multipath information or time offset information.
  • the multipath information includes at least one of the following: the time delay of a specific path among the multiple paths corresponding to the receiving antenna or the delay difference between multiple paths; the power of the specific path; the phase of the specific path; The phase difference between different receiving antennas; the delay difference between different receiving antennas; the power difference between different receiving antennas; all or part of the data in the array corresponding to the channel impulse response CIR of the receiving antenna; All or part of the data in the array corresponding to the channel frequency response CFR of the antenna; all or part of the data in the array corresponding to the power delay profile PDP of the receiving antenna; pseudo-spectrum information of the receiving antenna.
  • the receiving antenna is a receiving antenna of the base station.
  • the specific path includes at least one of the top N paths with the smallest delay, the first path, or the M paths with the strongest power, and both N and M are positive integers.
  • the time deviation information includes at least one of the following: clock synchronization error or clock synchronization error group; clock synchronization error or clock synchronization error group change; clock synchronization error change rate; sending and receiving time error or sending and receiving time error group ;Transmitting time error or change of sending and receiving time error group; rate of change of sending and receiving time error.
  • step S303 the first information is reported to the LMF, and the first information is used by the LMF to determine the location of the target UE.
  • the base station may report the first information to the LMF.
  • the LMF may determine the location of the target UE according to the first information.
  • the base station reports the first information to the LMF, which eliminates the time-varying influence of the time error, and improves the positioning accuracy of the target UE in a scenario where the time error is time-varying in a complex multipath environment.
  • This embodiment is a downlink positioning scenario, and a double-difference positioning method is adopted.
  • This embodiment mainly includes two stages: an offline training stage of constructing a positioning database and an online positioning stage of determining the position of a target UE.
  • the related data of the position of the UE (the target UE participating in the training or the reference UE participating in the training) at a grid point is collected, including step A1-step A7.
  • the offline training phase a large amount of data collection is required, and the UE needs to be used to repeat steps A1-A7 on multiple grid points.
  • Step A1 the base station sends the PRS and the pilot of the PRS to the UE, and reports the known location coordinates of the base station to the LMF.
  • step A2 the UE receives the PRS and the pilot of the PRS sent by the base station.
  • the UE determines the first information according to the pilot frequency of the PRS.
  • the first information includes multipath information, time offset information, NLOS indication information, transmit and receive beam direction information, and indication information indicating whether the location of the target UE participating in the training is indoor or outdoor.
  • the multipath information includes the time delay, power and phase of the top five paths with the strongest energy measured by each receiving antenna of the UE.
  • the time offset information includes a receiving time error group and a sending time error group corresponding to the current measured value.
  • step A4 the UE performs single-difference processing between the RTOA values of different base stations and the RTOA value of the reference base station to obtain multiple TDOA values.
  • step A5 the UE reports the first information, the location coordinates of the UE, the location coordinates of multiple receiving antennas of the UE, the TDOA value, etc. to the LMF.
  • Step A6 the LMF performs double difference processing between the TDOA value reported by the target UE participating in the training and the TDOA value reported by the reference UE participating in the training to obtain a double difference value; according to the known position coordinates of the reference UE participating in the training and the base station's The position coordinates are known, and the double difference value is converted into a single difference value.
  • the LMF takes the first information respectively reported by the target UE participating in the training and the reference UE participating in the training, as well as the known position coordinates of the base station, the known position coordinates and the single difference value of the reference UE participating in the training, as a vector group and The location of the target UE participating in the training is bound to generate a feature fingerprint vector, that is, a second feature vector.
  • the positioning database is constructed by using multiple second feature vectors. Different positioning databases may be constructed for known position coordinates of different reference UEs participating in training.
  • the online positioning stage includes Step B1-Step B7.
  • Step B1 the base station sends the PRS and the pilot of the PRS to the UE (target UE or reference UE), and reports the known location coordinates of the base station to the LMF.
  • step B2 the UE receives the PRS and the pilot of the PRS sent by the base station.
  • the UE determines the first information according to the pilot frequency of the PRS.
  • the first information includes multipath information, time offset information, NLOS indication information, transmit and receive beam direction information, and indication information indicating whether the location of the target UE is indoor or outdoor.
  • the multipath information includes the time delay, power and phase of the top five paths with the strongest energy measured by each receiving antenna of the UE.
  • the time offset information includes a receiving time error group and a sending time error group corresponding to the current measurement value.
  • step B4 the UE performs single-difference processing between the RTOA values of different base stations and the RTOA value of the reference base station to obtain multiple TDOA values.
  • Step B5 the UE reports the first information, the known location coordinates of the reference UE, the location coordinates of multiple receiving antennas of the reference UE, the TDOA value, etc. to the LMF.
  • both the known location coordinates of the reference UE and the location coordinates of multiple receiving antennas of the reference UE are reported to the LMF by the reference UE.
  • Step B6 the LMF performs double difference processing between the TDOA value reported by the target UE and the TDOA value reported by the reference UE to obtain a double difference value; according to the known position coordinates of the reference UE and the known position coordinates of the base station, the double difference value Convert to single difference.
  • Step B7 the LMF obtains an array according to the first information respectively reported by the target UE and the reference UE, as well as the known location coordinates of the base station, the known location coordinates of the reference UE, and the single difference value.
  • the array includes the first information respectively reported by the target UE and the reference UE, as well as the known location coordinates of the base station, the known location coordinates and the single difference value of the reference UE. This array corresponds to the first eigenvector.
  • the coordinates are determined as the location of the target UE.
  • the target UE and the reference UE report the first information to the LMF respectively, which eliminates the time-varying influence of the time error, and improves the performance of the target UE in complex multipath environments and scenarios where the time error is time-varying. positioning accuracy.
  • This embodiment is an uplink positioning scenario, and a single differential positioning method is adopted.
  • This embodiment mainly includes two stages: an offline training stage of constructing a positioning database and an online positioning stage of determining the position of a target UE.
  • the related data of the position of the UE (the target UE participating in the training) on a grid point is collected, including step C1-step C6.
  • the offline training phase a large amount of data collection is required, and the UE needs to be used to repeat steps C1-C6 on multiple grid points.
  • step C1 the UE sends the SRS and the SRS pilot to the base station, and reports the known location coordinates of the UE to the LMF.
  • Step C2 the base station receives the SRS and the pilot of the SRS sent by the UE.
  • Step C3 the base station determines the first information and the RTOA value according to the pilot frequency of the SRS.
  • the first information includes multipath information, time offset information, NLOS indication information, transmit and receive beam direction information, and indication information indicating whether the location of the target UE participating in the training is indoor or outdoor.
  • the multipath information includes the delay difference, power difference and phase difference of the first five paths with the smallest delay measured between the receiving antennas of the target UE participating in the training and the reference UE participating in the training.
  • the time deviation information includes an estimated change value of the transmission and reception time error.
  • Step C4 the base station reports the first information, the RTOA value, the known position coordinates of the base station, the positions of multiple receiving antennas of the base station, etc. to the LMF.
  • step C5 the LMF performs single-difference processing between the RTOA values reported by the non-reference base stations in the multiple base stations and the RTOA values reported by the reference base stations in the multiple base stations, and determine the TDOA values corresponding to the non-reference base stations.
  • Step C6 the LMF binds the first information reported by multiple base stations, the known location coordinates of multiple base stations, and the TDOA values corresponding to each non-reference base station as a vector group with the location of the UE to generate a feature fingerprint vector, that is, the first Two eigenvectors.
  • the positioning database is constructed by using multiple second feature vectors.
  • the online positioning stage includes step D1-step D6.
  • Step D1 the target UE sends the SRS and the pilot of the SRS to the base station.
  • Step D2 the base station receives the SRS and the pilot of the SRS sent by the target UE.
  • Step D3 the base station determines the first information and the RTOA value according to the pilot frequency of the SRS.
  • the first information includes multipath information, time offset information, NLOS indication information, transmit and receive beam direction information, and indication information indicating whether the location of the target UE is indoor or outdoor.
  • the multipath information includes the delay difference, power difference and phase difference of the first five paths with the smallest delay measured between the receiving antennas of the target UE and the reference UE.
  • the time deviation information includes an estimated change value of the transmission and reception time error.
  • Step D4 the base station reports the first information, the RTOA value, the known position coordinates of the base station, the positions of multiple receiving antennas of the base station, etc. to the LMF.
  • step D5 the LMF performs single-difference processing between the RTOA values reported by the non-reference base stations among the multiple base stations and the RTOA values reported by the reference base stations among the multiple base stations, to determine the TDOA values corresponding to each non-reference base station.
  • the LMF obtains an array according to the first information reported by the multiple base stations, the known location coordinates of the multiple base stations, and the TDOA values corresponding to each non-reference base station.
  • the array includes first information reported by multiple base stations, known location coordinates of multiple base stations, and TDOA values corresponding to each non-reference base station. This array corresponds to the first eigenvector. Calculate the inner product between the first eigenvector and each second eigenvector in the positioning database to obtain the largest inner product, that is, the maximum matching degree, and calculate the position corresponding to the second eigenvector with the largest inner product of the first eigenvector The coordinates are determined as the location of the target UE.
  • the base station reports the first information to the LMF, which eliminates the time-varying influence of the time error, and improves the positioning accuracy of the target UE in a scenario where the time error is time-varying in a complex multipath environment.
  • This embodiment is an uplink positioning scenario, and a non-differential positioning method is adopted.
  • This embodiment mainly includes two stages: an offline training stage of constructing a positioning database and an online positioning stage of determining the position of a target UE.
  • the related data of the position of the UE (the target UE participating in the training) on a grid point is collected, including step E1-step E5.
  • the offline training phase a large amount of data collection is required, and the UE needs to be used to repeat steps E1 to E5 on multiple grid points.
  • Step E1 the UE sends the SRS and the pilot of the SRS to the base station, and reports the known location coordinates of the UE to the LMF.
  • Step E2 the base station receives the SRS and the pilot of the SRS sent by the UE.
  • Step E3 the base station determines the first information according to the pilot frequency of the SRS.
  • the first information includes multipath information, time offset information, NLOS indication information, transmit and receive beam direction information, and indication information indicating whether the location of the target UE participating in the training is indoor or outdoor.
  • the multipath information includes the CFR of each receiving antenna of the target UE participating in the training.
  • the time offset information includes an estimated value of the current time error.
  • the current time error is obtained by calculating the sum of the clock synchronization error and the sending and receiving time error.
  • Step E4 the base station reports the first information, the known position coordinates of the base station, the positions of multiple receiving antennas of the base station, etc. to the LMF.
  • step E5 the LMF binds the first information reported by the base station, the known location coordinates of the base station, the locations of multiple receiving antennas of the base station, and the known location coordinates of the UE as a vector group to the location of the UE to generate a feature fingerprint vector, That is, the second eigenvector.
  • the positioning database is constructed by using multiple second feature vectors.
  • the online positioning stage includes step F1-step F5.
  • Step F1 the target UE sends the SRS and the pilot of the SRS to the base station.
  • Step F2 the base station receives the SRS and the pilot of the SRS sent by the target UE.
  • Step F3 the base station determines the first information according to the pilot frequency of the SRS.
  • the first information includes multipath information, time offset information, NLOS indication information, transmit and receive beam direction information, and indication information indicating whether the location of the target UE participating in the training is indoor or outdoor.
  • the multipath information includes CFR of each receiving antenna of the target UE.
  • the time offset information includes an estimated value of the current time error.
  • the current time error is obtained by calculating the sum of the clock synchronization error and the sending and receiving time error.
  • Step F4 the base station reports the first information, the known position coordinates of the base station, the positions of multiple receiving antennas of the base station, etc. to the LMF.
  • Step F5 according to the first information reported by the base station, and the known position coordinates of the base station or the positions of multiple receiving antennas of the base station, an array is obtained.
  • the array includes first information reported by the base station, and known location coordinates of the base station or locations of multiple receiving antennas of the base station. This array corresponds to the first eigenvector.
  • the corresponding location coordinates are determined as the location of the target UE.
  • the base station reports the first information to the LMF, which eliminates the time-varying influence of the time error, and improves the positioning accuracy of the target UE in a scenario where the time error is time-varying in a complex multipath environment.
  • the embodiment of the present application also provides a positioning device, which is applied to the LMF.
  • a schematic structural diagram of the device is shown in FIG. 5 , which may include: a processor 1310 , a memory 1320 and a transceiver 1300 , where the transceiver 1300 is used to receive and send data under the control of the processor 1310 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1310 and various circuits of memory represented by memory 1320 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1300 may be a plurality of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media. These transmission media include transmission media such as wireless channels, wired channels, and optical cables.
  • Processor 1310 is responsible for managing the bus architecture and general processing.
  • the memory 1320 may store data used by the processor 1310 when performing operations.
  • the processor 1310 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device , CPLD).
  • the processor can also adopt a multi-core architecture.
  • the processor 1310 is configured to read the computer program in the memory and perform the following operations: receive first information reported by at least one base station, or first information respectively reported by the target user equipment UE and the reference UE, the first information includes multipath At least one of information or time offset information; according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, and a preset positioning database, determine the position of the target UE.
  • the first information further includes at least one item of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor.
  • the processor 1310 may be specifically configured to perform the following operations: according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, and the known location coordinates of the base station and the reference UE The known position coordinates of the first feature vector are determined; the first feature vector is matched with each second feature vector in the preset positioning database, and the second feature vector with the largest matching degree with the first feature vector is determined; The location coordinates corresponding to the second eigenvector with the highest matching degree of the first eigenvector are determined as the location of the target UE.
  • the processor 1310 may further perform the following operations: receive delay values reported by multiple base stations, and compare the delay values reported by each non-reference base station among the multiple base stations with the multiple Single-difference processing is performed between the delay values reported by the reference base station in a base station, and the single-difference delay values corresponding to each non-reference base station are determined; or, each non-reference base station among multiple base stations reported by the target UE or the reference UE is respectively The corresponding single-difference delay value.
  • the first information further includes at least one item of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor.
  • the processor 1310 may specifically perform the following operations: according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, and the known location coordinates of multiple base stations and the Referring to the single-difference delay values corresponding to the base stations, determine the first eigenvector; respectively match the first eigenvector with the second eigenvectors in the preset positioning database, and determine the second eigenvector with the largest matching degree with the first eigenvector.
  • a feature vector determining the position coordinates corresponding to the second feature vector with the highest matching degree with the first feature vector as the position of the target UE.
  • the processor 1310 may further perform the following operations: receiving the single difference delay value reported by the target UE and the single difference delay value reported by the reference UE, where the single difference delay value is The single-difference delay values corresponding to the non-reference base stations in multiple base stations; the double-difference processing is performed between the single-difference delay value reported by the target UE and the single-difference delay value reported by the reference UE to obtain the double difference value; according to Referring to the known location coordinates reported by the UE and the known location coordinates of the base station, the double difference value is converted into a single difference value.
  • the processor 1310 may also perform the following operations: receiving delay values reported by multiple base stations corresponding to the target UE and the reference UE; performing single-difference processing between the delay values corresponding to the reported target UEs and the delay values corresponding to the target UEs reported by the reference base stations among the multiple base stations, and determining the first single-difference delay values corresponding to each non-reference base station; Single-difference processing is performed between the delay values corresponding to the reference UEs reported by the non-reference base stations in the multiple base stations and the delay values corresponding to the reference UEs reported by the reference base stations in the multiple base stations, and the first-order delay values corresponding to the non-reference base stations are determined.
  • Two single-difference delay values perform double-difference processing between the first single-difference delay value and the second single-difference delay value to obtain double difference values; according to the known position coordinates reported by the reference UE and the known position of the base station Coordinates to convert double-differenced to single-differenced.
  • the first information further includes at least one item of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor.
  • the processor 1310 may be specifically configured to perform the following operations: according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, and the known location coordinates of the base station, the reference UE The known position coordinates and single difference value of the first feature vector are determined; the first feature vector is matched with each second feature vector in the preset positioning database, and the second feature vector with the largest matching degree with the first feature vector is determined a vector; determining the location coordinates corresponding to the second eigenvector with the largest matching degree with the first eigenvector as the location of the target UE.
  • the multipath information includes at least one of the following: the time delay of a specific path among the multiple paths corresponding to the receiving antenna or the delay difference between multiple paths; the power of the specific path; the phase of the specific path; The phase difference between different receiving antennas; the delay difference between different receiving antennas; the power difference between different receiving antennas; all or part of the data in the array corresponding to the channel impulse response CIR of the receiving antenna; All or part of the data in the array corresponding to the channel frequency response CFR of the antenna; all or part of the data in the array corresponding to the power delay profile PDP of the receiving antenna; pseudo-spectrum information of the receiving antenna.
  • the receiving antenna is the receiving antenna of the base station, the receiving antenna of the target UE or the receiving antenna of the reference UE.
  • the specific path includes at least one of the top N paths with the smallest delay, the first path, or the M paths with the strongest power, and both N and M are positive integers.
  • the time deviation information includes at least one of the following: clock synchronization error or clock synchronization error group; clock synchronization error or clock synchronization error group change; clock synchronization error change rate; sending and receiving time error or sending and receiving time error group ;Transmitting time error or change of sending and receiving time error group; rate of change of sending and receiving time error.
  • the embodiment of the present application also provides a positioning device, which is applied to a target UE or a reference UE.
  • the structural diagram of the device is shown in FIG. 6 , which may include: a processor 1410 , a memory 1420 , a user interface 1430 and a transceiver 1400 , and the transceiver 1400 is used to receive and send data under the control of the processor 1410 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1410 and various circuits of memory represented by memory 1420 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1400 may be a plurality of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media. These transmission media include transmission media such as wireless channels, wired channels, and optical cables.
  • the user interface 1430 may also be an interface capable of externally connecting required equipment.
  • the external devices include but are not limited to keypads, monitors, speakers, microphones, joysticks, etc.
  • Processor 1410 is responsible for managing the bus architecture and general processing.
  • the memory 1420 may store data used by the processor 1410 when performing operations.
  • the processor 1410 can be a CPU (central device), ASIC (Application Specific Integrated Circuit, application specific integrated circuit), FPGA (Field-Programmable Gate Array, field programmable gate array) or CPLD (Complex Programmable Logic Device , Complex Programmable Logic Devices).
  • the processor can also adopt a multi-core architecture.
  • the processor is used to execute the method described in the second aspect provided by the embodiments of the present application according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the processor 1410 is configured to read the computer program in the memory 1420 and perform the following operations: receive the positioning reference signal PRS sent by the base station; determine the first information according to the pilot frequency of the PRS, and the first information includes multipath information or time offset information At least one item of the method; reporting first information to the LMF, where the first information is used by the LMF to determine the location of the target UE.
  • the embodiment of the present application also provides a positioning device, which is applied to a base station.
  • a schematic structural diagram of the device is shown in FIG. 7 , which may include: a processor 1510 , a memory 1520 and a transceiver 1500 , where the transceiver 1500 is used to receive and send data under the control of the processor 1510 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1510 and various circuits of memory represented by memory 1520 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1500 may be a plurality of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media. These transmission media include transmission media such as wireless channels, wired channels, and optical cables.
  • Processor 1510 is responsible for managing the bus architecture and general processing.
  • the memory 1520 may store data used by the processor 1510 when performing operations.
  • the processor 1510 may be a central processing device (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device , CPLD).
  • the processor can also adopt a multi-core architecture.
  • the processor 1510 is configured to read the computer program in the memory and perform the following operations: receive the sounding reference signal SRS sent by the target UE or the reference UE; determine first information according to the pilot frequency of the SRS, and the first information includes multipath information or at least one item of time offset information; reporting the first information to the LMF, where the first information is used by the LMF to determine the location of the target UE.
  • the embodiments of the present application further provide a positioning device, which is applied to the LMF.
  • the schematic diagram of the structure of the device is shown in Fig. 8 .
  • the positioning device 40 may include a first processing unit 401 and a second processing unit 402 .
  • the first processing unit 401 is configured to receive first information reported by at least one base station, or first information respectively reported by a target user equipment UE and a reference UE.
  • the first information includes at least one item of multipath information or time offset information.
  • the second processing unit 402 is configured to determine the position of the target UE according to the first information reported by the at least one base station, or the first information respectively reported by the target UE and the reference UE, and a preset positioning database .
  • the first information further includes at least one item of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor.
  • the second processing unit 402 is specifically configured to: determine the first information according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, and the known location coordinates of the base station and the known location coordinates of the reference UE.
  • a eigenvector matching the first eigenvector with each second eigenvector in a preset positioning database to determine the second eigenvector with the largest degree of matching with the first eigenvector;
  • the location coordinates corresponding to the second feature vector are determined as the location of the target UE.
  • the second processing unit 402 before determining the location of the target UE, is further configured to: receive the delay values reported by multiple base stations, and compare the delay values reported by each non-reference base station among the multiple base stations with the multiple Single-difference processing is performed between the delay values reported by the reference base station in a base station, and the single-difference delay values corresponding to each non-reference base station are determined; or, each non-reference base station among multiple base stations reported by the target UE or the reference UE is respectively The corresponding single-difference delay value.
  • the first information further includes at least one item of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor.
  • the second processing unit 402 is specifically configured to: according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, and the known position coordinates of multiple base stations and the Referring to the single-difference delay values corresponding to the base stations, determine the first eigenvector; respectively match the first eigenvector with the second eigenvectors in the preset positioning database, and determine the second eigenvector with the largest matching degree with the first eigenvector.
  • a feature vector determining the position coordinates corresponding to the second feature vector with the highest matching degree with the first feature vector as the position of the target UE.
  • the second processing unit 402 before determining the location of the target UE, is further configured to: receive the single-difference delay value reported by the target UE and the single-difference delay value reported by the reference UE, where the single-difference delay value is The single-difference delay values corresponding to the non-reference base stations in multiple base stations; the double-difference processing is performed between the single-difference delay value reported by the target UE and the single-difference delay value reported by the reference UE to obtain the double difference value; according to Referring to the known location coordinates reported by the UE and the known location coordinates of the base station, the double difference value is converted into a single difference value.
  • the second processing unit 402 before determining the location of the target UE, is further configured to: receive delay values reported by multiple base stations corresponding to the target UE and the reference UE; performing single-difference processing between the delay values corresponding to the reported target UEs and the delay values corresponding to the target UEs reported by the reference base stations among the multiple base stations, and determining the first single-difference delay values corresponding to each non-reference base station; Single-difference processing is performed between the delay values corresponding to the reference UEs reported by the non-reference base stations in the multiple base stations and the delay values corresponding to the reference UEs reported by the reference base stations in the multiple base stations, and the first-order delay values corresponding to the non-reference base stations are determined.
  • Two single-difference delay values perform double-difference processing between the first single-difference delay value and the second single-difference delay value to obtain double difference values; according to the known position coordinates reported by the reference UE and the known position of the base station Coordinates to convert double-differenced to single-differenced.
  • the first information further includes at least one item of non-line-of-sight NLOS indication information, transmit-receive beam direction information, or indication information indicating whether the location of the target UE is indoor or outdoor.
  • the second processing unit 402 is specifically configured to: according to the first information reported by at least one base station, or the first information respectively reported by the target UE and the reference UE, as well as the known location coordinates of the base station and the known location coordinates of the reference UE Knowing the position coordinates and the single difference value, determine the first feature vector; respectively match the first feature vector with each second feature vector in the preset positioning database, and determine the second feature vector with the largest matching degree with the first feature vector; The position coordinates corresponding to the second feature vector with the highest matching degree with the first feature vector are determined as the position of the target UE.
  • the multipath information includes at least one of the following: the time delay of a specific path among the multiple paths corresponding to the receiving antenna or the delay difference between multiple paths; the power of the specific path; the phase of the specific path; The phase difference between different receiving antennas; the delay difference between different receiving antennas; the power difference between different receiving antennas; all or part of the data in the array corresponding to the channel impulse response CIR of the receiving antenna; All or part of the data in the array corresponding to the channel frequency response CFR of the antenna; all or part of the data in the array corresponding to the power delay profile PDP of the receiving antenna; pseudo-spectrum information of the receiving antenna.
  • the receiving antenna is the receiving antenna of the base station, the receiving antenna of the target UE or the receiving antenna of the reference UE.
  • the specific path includes at least one of the top N paths with the smallest delay, the first path, or the M paths with the strongest power, and both N and M are positive integers.
  • the time deviation information includes at least one of the following: clock synchronization error or clock synchronization error group; clock synchronization error or clock synchronization error group change; clock synchronization error change rate; sending and receiving time error or sending and receiving time error group ;Transmitting time error or change of sending and receiving time error group; rate of change of sending and receiving time error.
  • the embodiments of the present application further provide a positioning device, which is applied to a target UE or a reference UE.
  • a schematic diagram of the structure of the device is shown in FIG. 9 .
  • the positioning device 50 may include a third processing unit 501 , a fourth processing unit 502 and a fifth processing unit 503 .
  • the third processing unit 501 is configured to receive the positioning reference signal PRS sent by the base station.
  • the fourth processing unit 502 is configured to determine first information according to the pilot frequency of the PRS, where the first information includes at least one item of multipath information or time offset information.
  • the fifth processing unit 503 is configured to report the first information to the LMF, where the first information is used by the LMF to determine the location of the target UE.
  • the embodiments of the present application further provide a positioning device, which is applied to a base station.
  • a schematic diagram of the structure of the device is shown in FIG. 10 .
  • the positioning device 60 may include a sixth processing unit 601 , a seventh processing unit 602 and an eighth processing unit 603 .
  • the sixth processing unit 601 is configured to receive a sounding reference signal SRS sent by a target UE or a reference UE.
  • the seventh processing unit 602 is configured to determine first information according to the pilot frequency of the SRS, where the first information includes at least one item of multipath information or time offset information.
  • the eighth processing unit 603 is configured to report the first information to the LMF, where the first information is used by the LMF to determine the location of the target UE.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of software function unit and sold or used as an independent product, it can be stored in a non-transitory computer and storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the embodiment of the present application also provides a non-transitory computer storage medium, which stores a computer program, and the computer program is used to realize any embodiment or any one of the embodiments of the present application when executed by a processor. Steps of any positioning method provided in an optional implementation manner.
  • a non-transitory computer storage medium can be any available medium or data storage device that can be accessed by a computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD , BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD , BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a non-transitory computer memory capable of directing a computer or other programmable data processing device to operate in a specific manner such that the instructions stored in the non-transitory computer-readable memory produce instructions comprising instruction means Manufactures, the instruction device implements the functions specified in one or more steps of the flowchart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.
  • the LMF receives first information reported by at least one base station, or first information respectively reported by the target user equipment UE and the reference UE, where the first information includes at least one item of multipath information or time offset information; according to the first information reported by at least one base station One piece of information, or the first information respectively reported by the target UE and the reference UE, and the preset positioning database to determine the position of the target UE;
  • the combination of the more recognizable channel space characteristics provided by the information and the time deviation information that can reflect the time characteristics realizes a matching mechanism with space-time consistency, eliminates the time-varying influence of time errors, and improves the target Positioning accuracy of the UE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例提供了一种定位方法、定位装置及非暂态计算机可读存储介质。该定位方法包括:接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置。

Description

定位方法、定位装置及非暂态计算机可读存储介质
相关申请的交叉引用
本申请要求于2021年8月6日在中国国家知识产权局提交的申请号为CN 202110902414.3的中国专利申请的优选权,其全部内容通过引用整体并入本文。
技术领域
本申请涉及无线通信技术领域,具体而言,本申请涉及定位方法、定位装置及非暂态计算机可读存储介质。
背景技术
现有技术中,指纹定位(Finger-Printing positioning)也称为模式匹配定位(Pattern-Matching positioning),指纹定位对于克服NLOS(Non Line of Sight,非视距)的影响具有很好的效果,指纹定位的方案是利用接收到的信号指纹与预先构造的位置指纹库进行匹配,以实现对目标UE(User Equipment,用户设备)的定位。该方案主要由构建位置指纹库的离线训练阶段和进行指纹匹配的在线定位阶段两部分组成。构建位置指纹库的离线阶段,主要完成各监测站捕获信号指纹的整理以及监测区域内各位置的指纹采集;进行指纹匹配的在线定位阶段,主要完成目标UE的指纹与数据库的匹配及最终的位置估计。例如,针对蜂窝网进行指纹定位,离线训练阶段下,采集已知位置的参考UE的CSI(Channel State Information,信道状态信息)作为指纹,基于采集的指纹构建指纹库;在线定位阶段下,根据未知位置的目标UE的CSI指纹与构建好的指纹库进行匹配,选择最优匹配的位置坐标作为目标UE的位置。
发明内容
本申请提出一种定位方法、定位装置及非暂态计算机存储介质。
第一方面,提供了一种定位方法,由位置管理功能LMF执行,包括:接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项,根据所述至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设 的定位数据库,确定目标UE的位置,包括:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标和参考UE的已知位置坐标,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,所述定位方法还包括:接收多个基站上报的时延值,将多个基站中各非参考基站上报的时延值分别与多个基站中参考基站上报的时延值之间进行单差分处理,确定各非参考基站分别对应的单差时延值;或者,接收目标UE或参考UE上报的多个基站中各非参考基站分别对应的单差时延值。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项,根据所述至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置,包括:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及多个基站的已知位置坐标和各非参考基站分别对应的单差时延值,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,所述定位方法还包括:接收目标UE上报的单差时延值和参考UE上报的单差时延值,单差时延值为多个基站中各非参考基站分别对应的单差时延值;将目标UE上报的单差时延值和参考UE上报的单差时延值之间进行双差分处理,得到双差值;根据参考UE上报的的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
在一个实施例中,在确定目标UE的位置之前,所述定位方法还包括:接收多个基站上报的分别对应目标UE和参考UE的时延值;将多个基站中各非参考基站上报的目标UE对应的时延值分别与多个基站中参考基站上报的目标UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第一单差时延值;将多个基站中各非参考基站上报的参考UE对应的时延值分别与多个基站中参考基站上报的参考UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第二单差时延值;将第一单差时延值和第二单差时延值之间进行双差分处理,得到双差值;
根据参考UE上报的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项,根据至少一 个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置,包括:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标、参考UE的已知位置坐标和单差值,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,多径信息包括以下至少一项:接收天线对应的多条路径中的特定路径的时延或多条路径之间的时延差;特定路径的功率;特定路径的相位;不同的接收天线之间的相位差;不同的接收天线之间的时延差;不同的接收天线之间的功率差;接收天线的信道冲激响应CIR对应的数组中的全部或部分数据;接收天线的信道频率响应CFR对应的数组中的全部或部分数据;接收天线的功率延迟分布PDP对应的数组中的全部或部分数据;接收天线的伪谱信息。
接收天线为基站的接收天线、目标UE的接收天线或参考UE的接收天线。特定路径包括时延最小的前N条路径、第一路径或功率最强的M条路径中的至少一项,N和M都为正整数。
在一个实施例中,时间偏差信息包括以下至少一项:时钟同步误差或时钟同步误差组;时钟同步误差或时钟同步误差组的变化;时钟同步误差的变化率;收发时间误差或收发时间误差组;收发时间误差或收发时间误差组的变化;收发时间误差的变化率。
第二方面,提供了一种定位方法,由目标UE或参考UE执行,包括:接收基站发送的定位参考信号PRS;根据PRS的导频,确定第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;上报第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
第三方面,提供了一种定位方法,由基站执行,包括:接收目标UE或参考UE发送的探测参考信号SRS;根据SRS的导频,确定第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;上报第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
第四方面,提供了一种定位装置,应用于LMF,包括存储器,收发机,处理器。存储器用于存储计算机程序。收发机用于在处理器的控制下收发数据。处理器用于读取存储器中的计算机程序并执行以下操作:接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项,根据所述至 少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置,包括:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标和参考UE的已知位置坐标,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,处理器还用于执行以下操作:接收多个基站上报的时延值,将多个基站中各非参考基站上报的时延值分别与多个基站中参考基站上报的时延值之间进行单差分处理,确定各非参考基站分别对应的单差时延值;或者,接收目标UE或参考UE上报的多个基站中各非参考基站分别对应的单差时延值。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项,根据所述至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置,包括:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及多个基站的已知位置坐标和各非参考基站分别对应的单差时延值,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,处理器还用于执行以下操作:接收目标UE上报的单差时延值和参考UE上报的单差时延值,单差时延值为多个基站中各非参考基站分别对应的单差时延值;将目标UE上报的单差时延值和参考UE上报的单差时延值之间进行双差分处理,得到双差值;根据参考UE上报的的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
在一个实施例中,在确定目标UE的位置之前,处理器还用于执行以下操作还包括:接收多个基站上报的分别对应目标UE和参考UE的时延值;将多个基站中各非参考基站上报的目标UE对应的时延值分别与多个基站中参考基站上报的目标UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第一单差时延值;将多个基站中各非参考基站上报的参考UE对应的时延值分别与多个基站中参考基站上报的参考UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第二单差时延值;将第一单差时延值和第二单差时延值之间进行双差分处理,得到双差值;根据参考UE上报的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项,根据至少一 个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置,包括:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标、参考UE的已知位置坐标和单差值,确定第一特征向量;
将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,多径信息包括以下至少一项:接收天线对应的多条路径中的特定路径的时延或多条路径之间的时延差;特定路径的功率;特定路径的相位;不同的接收天线之间的相位差;不同的接收天线之间的时延差;不同的接收天线之间的功率差;接收天线的信道冲激响应CIR对应的数组中的全部或部分数据;接收天线的信道频率响应CFR对应的数组中的全部或部分数据;接收天线的功率延迟分布PDP对应的数组中的全部或部分数据;接收天线的伪谱信息。
接收天线为基站的接收天线、目标UE的接收天线或参考UE的接收天线。特定路径包括时延最小的前N条路径、第一路径或功率最强的M条路径中的至少一项,N和M都为正整数。
在一个实施例中,时间偏差信息包括以下至少一项:时钟同步误差或时钟同步误差组;时钟同步误差或时钟同步误差组的变化;时钟同步误差的变化率;收发时间误差或收发时间误差组;收发时间误差或收发时间误差组的变化;收发时间误差的变化率。
第五方面,提供了一种定位装置,应用于目标UE或参考UE,包括存储器,收发机,处理器。存储器用于存储计算机程序。收发机用于在处理器的控制下收发数据。处理器用于读取存储器中的计算机程序并执行以下操作:接收基站发送的定位参考信号PRS;根据PRS的导频,确定第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;上报第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
第六方面,提供了一种定位装置,应用于基站,包括存储器,收发机,处理器。存储器用于存储计算机程序。收发机用于在处理器的控制下收发数据。处理器,用于读取存储器中的计算机程序并执行以下操作:接收目标UE或参考UE发送的探测参考信号SRS;根据SRS的导频,确定第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;上报第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
第七方面,本申请提供了一种定位装置,应用于LMF,包括:第一处理单元,用于接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;第二处理单元,用于 根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及预设的定位数据库,确定所述目标UE的位置。
第八方面,本申请提供了一种定位装置,应用于目标UE或参考UE,包括:第三处理单元,用于接收基站发送的定位参考信号PRS;第四处理单元,用于根据所述PRS的导频,确定第一信息,所述第一信息包括多径信息或时间偏差信息中的至少一项;第五处理单元,用于上报所述第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
第九方面,本申请提供了一种定位装置,应用于基站,包括:第六处理单元,用于接收目标UE或参考UE发送的探测参考信号SRS;第七处理单元,用于根据所述SRS的导频,确定第一信息,所述第一信息包括多径信息或时间偏差信息中的至少一项;第八处理单元,用于上报所述第一信息给LMF,所述第一信息用于所述LMF确定所述目标UE的位置。
第十方面,提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机程序,计算机程序用于使处理器执行第一方面、第二方面或第三方面所述的方法。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的系统架构的示意图;
图2为本申请实施例提供的一种定位方法的流程示意图;
图3为本申请实施例提供的另一种定位方法的流程示意图;
图4为本申请实施例提供的又一种定位方法的流程示意图;
图5为本申请实施例提供的一种定位装置的结构示意图;
图6为本申请实施例提供的一种定位装置的结构示意图;
图7为本申请实施例提供的一种定位装置的结构示意图;
图8为本申请实施例提供的一种定位装置的结构示意图;
图9为本申请实施例提供的一种定位装置的结构示意图;
图10为本申请实施例提供的一种定位装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参 考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本申请实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
为了更好的理解及说明本申请实施例的方案,下面对本申请实施例中所涉及到的一些技术用语进行简单说明。
AI(Artificial Intelligence,人工智能)技术也被应用于定位中,常见的方案有建立神经网络模型,即向神经网络模型输入训练用的信道特征,通过大量的数据训练,不断优化神经网络模型的参数,得到训练后的神经网络模型。在最终定位时,将实际信道特征输入训练后的神经网络模型,得到最终的位置估计。
内积一般指点积;点积又称数量积,是指接受在实数R上的两个向量并返回一个实数值标量的二元运算,点积是欧几里得空间的标准内积。
时间误差主要由以下两部分组成:
(1)CE(Clock Error,时钟偏差),CE由于基站与基站,基站与UE间的时间基准不同而引入;
(2)收发时间误差(Tx\Rx TE(Time Error,时间误差)),收发时间误差由于收发滤波器的非线性引入。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的一种网络架构的示意图如图1所示,该网络架构包括:位置管理功能(Location Management Function,LMF)、UE和基站。本申请实施例中,LMF是指能够实现位置管理功能的硬件、软件或者硬件和软件的组合。例如,LMF可以为网元。例如,LMF可以为服务器、计算设备。例如,LMF可以为软件。LMF例如为图1中的LMF110,UE例如为图1中的UE120(目标UE)和UE130(参考UE), 基站例如为图1中的基站140。基站部署在接入网中,例如,基站140部署在5G系统中的接入网NG-RAN(New Generation-Radio Access Network,新一代无线接入网)中。UE与基站之间通过某种空口技术互相通信,例如可以通过蜂窝技术相互通信。
本申请实施例涉及的UE,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。UE可以包括手机、车辆用户终端、平板电脑、膝上型电脑、个人数字助理、移动上网装置、可穿戴设备等。
本申请实施例涉及的基站可以包括多个为UE提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与UE通信的设备,或者其它名称。基站可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换。基站可以作为UE与接入网的其余部分之间的路由器。接入网的其余部分可包括网际协议(IP)通信网络。基站还可协调对空中接口的属性管理。例如,本申请实施例涉及的基站可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例不限于此。
为使本申请的特征、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例提供了一种定位方法,由LMF执行,该方法的流程示意图如图2所示,该方法可以包括步骤S101和S102。
在步骤S101中,接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息。第一信息包括多径信息或时间偏差信息中的至少一项。
在一个实施例中,LMF接收基站上报的第一信息,该第一信息包括多径信息和时间偏差信息。第一信息还可以包括非视距NLOS指示信息、收发波束方向信息、以及指示目标UE所处的位置是室内还是室外的指示信息。
在一个实施例中,LMF接收目标UE和参考UE分别上报的第一信息。目标UE上报的第一信息包括多径信息和时间偏差信息。目标UE上报的第一信息还可以包括非视距NLOS指示信息、收发波束方向信息、以及指示目标UE所处的位置是室内还是室外的指示信息。参考UE上报的第一信息包括多径信息和时间偏差信息。参考UE上报的第一信息还可以包括非视距NLOS指示信息、收发波束方向信息、以及指示目 标UE所处的位置是室内还是室外的指示信息。
在一个实施例中,多径信息包括以下至少一项:接收天线对应的多条路径中的特定路径的时延或多条路径之间的时延差;特定路径的功率;特定路径的相位;不同的接收天线之间的相位差;不同的接收天线之间的时延差;不同的接收天线之间的功率差;接收天线的CIR(Channel Impulse Response,信道冲激响应)对应的数组中的全部或部分数据;接收天线的CFR(Channel Frequency Response,信道频率响应)对应的数组中的全部或部分数据;接收天线的PDP(Power Delay Profile,功率延迟分布)对应的数组中的全部或部分数据;接收天线的伪谱信息。
接收天线为基站的接收天线、目标UE的接收天线或参考UE的接收天线。特定路径包括时延最小的前N条路径、第一路径或功率最强的M条路径中的至少一项,N和M都为正整数。
需要说明的是,当第一信息是基站上报的,则第一信息包括的多径信息中涉及的接收天线是该基站的接收天线。当第一信息是目标UE上报的,则第一信息包括的多径信息中涉及的接收天线是该目标UE的接收天线。当第一信息是参考UE上报的,则第一信息包括的多径信息中涉及的接收天线是该参考UE的接收天线。
在一个实施例中,第一路径可以是直射径。
在一个实施例中,时间偏差信息包括以下至少一项:时钟同步误差或时钟同步误差组;时钟同步误差或时钟同步误差组的变化;时钟同步误差的变化率;收发时间误差或收发时间误差组;收发时间误差或收发时间误差组的变化;收发时间误差的变化率。
在一个实施例中,NLOS指示信息可以是硬指示或者软指示。软指示包括但不限于频域方差、时域莱斯因子、极化度量信息、相干带宽等。
在步骤S102中,根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置。
在一个实施例中,预设的定位数据库可以是通过人工智能技术训练得到的CNN(Convolutional Neural Networks,卷积神经网络)模型。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项。根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置,包括:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标和参考UE的已知位置坐标,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,根据基站上报的第一信息,或目标UE和参考UE分别上报的 第一信息,以及基站的已知位置坐标和参考UE的已知位置坐标,得到一个数组。该数组中包括了基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标和参考UE的已知位置坐标。该数组对应第一特征向量。将第一特征向量与预设的定位数据库中各第二特征向量之间分别进行内积计算,得到最大内积,即最大匹配度,并将与第一特征向量内积最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,定位方法还包括:接收多个基站上报的时延值,将多个基站中各非参考基站上报的时延值分别与多个基站中参考基站上报的时延值之间进行单差分处理,确定各非参考基站分别对应的单差时延值;或者,接收目标UE或参考UE上报的多个基站中各非参考基站分别对应的单差时延值。
在一个实施例中,时延值可以是RTOA(Relative Time Of Arrival,相对到达时间)值,单差时延值可以是TDOA(Time Difference of Arrival,到达时间差)值。LMF确定TDOA的两种方式如下:
方式1:LMF接收多个基站上报的RTOA值,将多个基站中各非参考基站上报的RTOA值分别与多个基站中参考基站上报的RTOA值之间进行单差分处理,确定各非参考基站分别对应的TDOA。
方式2:LMF接收目标UE或参考UE上报的多个基站中各非参考基站分别对应的TDOA。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项。在这种情况下,步骤S102可以包括:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及多个基站的已知位置坐标和各非参考基站分别对应的单差时延值,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,根据多个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及多个基站的已知位置坐标和各非参考基站分别对应的单差时延值,得到一个数组。该数组中包括了多个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及多个基站的已知位置坐标和各非参考基站分别对应的单差时延值。该数组对应第一特征向量。将第一特征向量与预设的定位数据库中各第二特征向量之间分别进行内积计算,得到最大内积,即最大匹配度,并将与第一特征向量内积最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,定位方法还包括:接收目标UE上报的单差时延值和参考UE上报的单差时延值,单差时延值为多个基站中各非参考基站分别对应的单差时延值;将目标UE上报的单差时延值和参考UE上报的单差时 延值之间进行双差分处理,得到双差值;根据参考UE上报的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
需要说明的是,单差时延值可以是TDOA值。
在一个实施例中,在确定目标UE的位置之前,定位方法还包括:接收多个基站上报的分别对应于目标UE和参考UE的时延值;将多个基站中各非参考基站上报的目标UE对应的时延值分别与多个基站中参考基站上报的目标UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第一单差时延值;将多个基站中各非参考基站上报的参考UE对应的时延值分别与多个基站中参考基站上报的参考UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第二单差时延值;将第一单差时延值和第二单差时延值之间进行双差分处理,得到双差值;根据参考UE上报的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
需要说明的是,时延值可以是RTOA值,第一单差时延值和第二单差时延值可以是TDOA值。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项。在这种情况下,步骤S102可以包括:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标、参考UE的已知位置坐标和单差值,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,根据基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标、参考UE的已知位置坐标和单差值,得到一个数组。该数组中包括了基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标、参考UE的已知位置坐标和单差值。该数组对应第一特征向量。将第一特征向量与预设的定位数据库中各第二特征向量之间分别进行内积计算,得到最大内积,即最大匹配度,并将与第一特征向量内积最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,根据基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标、参考UE的已知位置坐标和双差值,确定第一特征向量。
本申请实施例中,通过LMF接收基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,并根据基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,确定目标UE的位置,从而实现了在复杂的多径环境且时间误差具有时变性的场景下,消除了时间误差的时变性的影响,提升了目标UE的定位精度。
本申请实施例中提供了一种定位方法,由目标UE或参考UE执行,该方法的流程示意图如图3所示,该方法包括步骤S201、S202和S203。
在步骤S201中,接收基站发送的PRS(Positioning Reference Signal,定位参考信号)。
在一个实施例中,目标UE或参考UE可以接收到多个基站分别发送的PRS。
在步骤S202中,根据PRS的导频,确定第一信息。第一信息包括多径信息或时间偏差信息中的至少一项。
在一个实施例中,目标UE可以根据多个基站的PRS的导频,确定第一信息;参考UE可以根据多个基站的PRS的导频,确定第一信息。
在一个实施例中,多径信息包括以下至少一项:接收天线对应的多条路径中的特定路径的时延或多条路径之间的时延差;特定路径的功率;特定路径的相位;不同的接收天线之间的相位差;不同的接收天线之间的时延差;不同的接收天线之间的功率差;接收天线的信道冲激响应CIR对应的数组中的全部或部分数据;接收天线的信道频率响应CFR对应的数组中的全部或部分数据;接收天线的功率延迟分布PDP对应的数组中的全部或部分数据;接收天线的伪谱信息。
接收天线为目标UE的接收天线或参考UE的接收天线。特定路径包括时延最小的前N条路径、第一路径或功率最强的M条路径中的至少一项,N和M都为正整数。
在一个实施例中,时间偏差信息包括以下至少一项:时钟同步误差或时钟同步误差组;时钟同步误差或时钟同步误差组的变化;时钟同步误差的变化率;收发时间误差或收发时间误差组;收发时间误差或收发时间误差组的变化;收发时间误差的变化率。
在步骤S203中,上报第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
在一个实施例中,目标UE和参考UE可以分别向LMF上报第一信息。LMF可以根据第一信息确定目标UE的位置。
本申请实施例中,通过目标UE和参考UE分别向LMF上报第一信息,消除了时间误差的时变性的影响,在复杂的多径环境且时间误差具有时变性的场景下,提升了目标UE的定位精度。
本申请实施例中提供了一种定位方法,由基站执行,该方法的流程示意图如图4所示,该方法包括步骤S301、S302和S303。
在步骤S301中,接收目标UE或参考UE发送的SRS(Sounding Reference Signal,探测参考信号)。
在步骤S302中,根据SRS的导频,确定第一信息。第一信息包括多径信息或时间偏差信息中的至少一项。
在一个实施例中,多径信息包括以下至少一项:接收天线对应的多条路径中的特 定路径的时延或多条路径之间的时延差;特定路径的功率;特定路径的相位;不同的接收天线之间的相位差;不同的接收天线之间的时延差;不同的接收天线之间的功率差;接收天线的信道冲激响应CIR对应的数组中的全部或部分数据;接收天线的信道频率响应CFR对应的数组中的全部或部分数据;接收天线的功率延迟分布PDP对应的数组中的全部或部分数据;接收天线的伪谱信息。
接收天线为基站的接收天线。特定路径包括时延最小的前N条路径、第一路径或功率最强的M条路径中的至少一项,N和M都为正整数。
在一个实施例中,时间偏差信息包括以下至少一项:时钟同步误差或时钟同步误差组;时钟同步误差或时钟同步误差组的变化;时钟同步误差的变化率;收发时间误差或收发时间误差组;收发时间误差或收发时间误差组的变化;收发时间误差的变化率。
在步骤S303中,上报第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
在一个实施例中,基站可以向LMF上报第一信息。LMF可以根据第一信息确定目标UE的位置。
本申请实施例中,通过基站向LMF上报第一信息,消除了时间误差的时变性的影响,在复杂的多径环境且时间误差具有时变性的场景下,提升了目标UE的定位精度。
通过如下实施例来对本申请上述实施例的定位方法进行全面详尽的介绍:
在本申请的一个实施例中:
本实施例为下行定位场景,采用双差分定位方式。本实施例主要包括构建定位数据库的离线训练阶段和确定目标UE位置的在线定位阶段的两个阶段。
(1)离线训练阶段
在离线训练阶段中对UE(参与训练的目标UE或参与训练的参考UE)在一个网格点上位置的相关数据进行采集,包括步骤A1-步骤A7。离线训练阶段需要进行大量数据采集工作,需要使用UE在多个网格点上重复步骤A1-步骤A7。
步骤A1,基站发送PRS和PRS的导频给UE,并将基站的已知位置坐标上报给LMF。
步骤A2,UE接收基站发送的PRS和PRS的导频。
步骤A3,UE根据PRS的导频,确定第一信息。第一信息包括多径信息、时间偏差信息、NLOS指示信息、收发波束方向信息、以及指示参与训练的目标UE所处的位置是室内还是室外的指示信息。
在本实施例中,多径信息包括UE的每根接收天线测量的前5条能量最强路径的时延、功率和相位。
在本实施例中,时间偏差信息包括当前测量值对应的接收时间误差组和发送时间 误差组。
步骤A4,UE将不同基站的RTOA值与参考基站的RTOA值之间进行单差分处理,得到多个TDOA值。
步骤A5,UE将第一信息、UE的位置坐标、UE的多根接收天线的位置坐标、TDOA值等上报给LMF。
步骤A6,LMF将参与训练的目标UE上报的TDOA值和参与训练的参考UE上报的TDOA值之间进行双差分处理,得到双差值;根据参与训练的参考UE的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
步骤A7,LMF将参与训练的目标UE和参与训练的参考UE分别上报的第一信息,以及基站的已知位置坐标、参与训练的参考UE的已知位置坐标和单差值,作为向量组与参与训练的目标UE的位置绑定,生成特征指纹向量,即第二特征向量。
需要说明的是,通过多个第二特征向量构建定位数据库。可以针对不同参与训练的参考UE的已知位置坐标,构建不同的定位数据库。
(2)在线定位阶段
在线定位阶段包括步骤B1-步骤B7。
步骤B1,基站发送PRS和PRS的导频给UE(目标UE或参考UE),并将基站的已知位置坐标上报给LMF。
步骤B2,UE接收基站发送的PRS和PRS的导频。
步骤B3,UE根据PRS的导频,确定第一信息。第一信息包括多径信息、时间偏差信息、NLOS指示信息、收发波束方向信息、以及指示目标UE所处的位置是室内还是室外的指示信息。
在本实施例中,多径信息包括UE的每根接收天线测量的前5条能量最强路径的时延、功率和相位。
在本实施例中,时间偏差信息包括当前测量值对应的接收时间误差组和发送时间误差组。
步骤B4,UE将不同基站的RTOA值与参考基站的RTOA值之间进行单差分处理,得到多个TDOA值。
步骤B5,UE将第一信息、参考UE的已知位置坐标、参考UE的多根接收天线的位置坐标、TDOA值等上报给LMF。
需要说明的是,参考UE的已知位置坐标和参考UE的多根接收天线的位置坐标都由参考UE上报给LMF。
步骤B6,LMF将目标UE上报的TDOA值和参考UE上报的TDOA值之间进行双差分处理,得到双差值;根据参考UE的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
步骤B7,LMF根据目标UE和参考UE分别上报的第一信息,以及基站的已知 位置坐标、参考UE的已知位置坐标和单差值,得到一个数组。该数组中包括了目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标、参考UE的已知位置坐标和单差值。该数组对应第一特征向量。将第一特征向量与定位数据库中各第二特征向量之间分别进行内积计算,得到最大内积,即最大匹配度,并将与第一特征向量内积最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
本申请实施例提供的技术方案,至少具有如下有益效果:
本申请实施例中,通过目标UE和参考UE分别向LMF上报第一信息,消除了时间误差的时变性的影响,在复杂的多径环境且时间误差具有时变性的场景下,提升了目标UE的定位精度。
在本申请的一个实施例中:
本实施例为上行定位场景,采用单差分定位方式。本实施例主要包括构建定位数据库的离线训练阶段和确定目标UE位置的在线定位阶段的两个阶段。
(1)离线训练阶段
在离线训练阶段中对UE(参与训练的目标UE)在一个网格点上位置的相关数据进行采集,包括步骤C1-步骤C6。离线训练阶段需要进行大量数据采集工作,需要使用UE在多个网格点上重复步骤C1-步骤C6。
步骤C1,UE发送SRS和SRS的导频给基站,并将UE的已知位置坐标上报给LMF。
步骤C2,基站接收UE发送的SRS和SRS的导频。
步骤C3,基站根据SRS的导频,确定第一信息和RTOA值。第一信息包括多径信息、时间偏差信息、NLOS指示信息、收发波束方向信息、以及指示参与训练的目标UE所处的位置是室内还是室外的指示信息。
在本实施例中,多径信息包括参与训练的目标UE和参与训练的参考UE的接收天线间测量的前5条时延最小路径的时延差、功率差和相位差。
在本实施例中,时间偏差信息包括收发时间误差的变化估计值。
步骤C4,基站将第一信息、RTOA值、基站的已知位置坐标、基站的多个接收天线的位置等上报给LMF。
步骤C5,LMF将多个基站中各非参考基站上报的RTOA值分别与多个基站中参考基站上报的RTOA值之间进行单差分处理,确定各非参考基站分别对应的TDOA值。
步骤C6,LMF将多个基站上报的第一信息、多个基站的已知位置坐标和各非参考基站分别对应的TDOA值,作为向量组与UE的位置绑定,生成特征指纹向量,即第二特征向量。
需要说明的是,通过多个第二特征向量构建定位数据库。
(2)在线定位阶段
在线定位阶段包括步骤D1-步骤D6。
步骤D1,目标UE发送SRS和SRS的导频给基站。
步骤D2,基站接收目标UE发送的SRS和SRS的导频。
步骤D3,基站根据SRS的导频,确定第一信息和RTOA值。第一信息包括多径信息、时间偏差信息、NLOS指示信息、收发波束方向信息、以及指示目标UE所处的位置是室内还是室外的指示信息。
在本实施例中,多径信息包括目标UE和参考UE的接收天线间测量的前5条时延最小路径的时延差、功率差和相位差。
在本实施例中,时间偏差信息包括收发时间误差的变化估计值。
步骤D4,基站将第一信息、RTOA值、基站的已知位置坐标、基站的多个接收天线的位置等上报给LMF。
步骤D5,LMF将多个基站中各非参考基站上报的RTOA值分别与多个基站中参考基站上报的RTOA值之间进行单差分处理,确定各非参考基站分别对应的TDOA值。
步骤D6,LMF根据多个基站上报的第一信息、多个基站的已知位置坐标和各非参考基站分别对应的TDOA值,得到一个数组。该数组中包括了多个基站上报的第一信息、多个基站的已知位置坐标和各非参考基站分别对应的TDOA值。该数组对应第一特征向量。将第一特征向量与定位数据库中各第二特征向量之间分别进行内积计算,得到最大内积,即最大匹配度,并将与第一特征向量内积最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
本申请实施例提供的技术方案,至少具有如下有益效果:
本申请实施例中,通过基站向LMF上报第一信息,消除了时间误差的时变性的影响,在复杂的多径环境且时间误差具有时变性的场景下,提升了目标UE的定位精度。
在本申请的一个实施例中:
本实施例为上行定位场景,采用无差分定位方式。本实施例主要包括构建定位数据库的离线训练阶段和确定目标UE位置的在线定位阶段的两个阶段。
(1)离线训练阶段
在离线训练阶段中对UE(参与训练的目标UE)在一个网格点上位置的相关数据进行采集,包括步骤E1-步骤E5。离线训练阶段需要进行大量数据采集工作,需要使用UE在多个网格点上重复步骤E1-步骤E5。
步骤E1,UE发送SRS和SRS的导频给基站,并将UE的已知位置坐标上报给LMF。
步骤E2,基站接收UE发送的SRS和SRS的导频。
步骤E3,基站根据SRS的导频,确定第一信息。第一信息包括多径信息、时间 偏差信息、NLOS指示信息、收发波束方向信息、以及指示参与训练的目标UE所处的位置是室内还是室外的指示信息。
在本实施例中,多径信息包括参与训练的目标UE的各个接收天线的CFR。
在本实施例中,时间偏差信息包括当前时间误差的估计值。
需要说明的是,通过计算时钟同步误差和收发时间误差之间的和,得到当前时间误差。
步骤E4,基站将第一信息、基站的已知位置坐标、基站的多个接收天线的位置等上报给LMF。
步骤E5,LMF将基站上报的第一信息、基站的已知位置坐标、基站的多个接收天线的位置和UE的已知位置坐标,作为向量组与UE的位置绑定,生成特征指纹向量,即第二特征向量。
需要说明的是,通过多个第二特征向量构建定位数据库。
(2)在线定位阶段
在线定位阶段包括步骤F1-步骤F5。
步骤F1,目标UE发送SRS和SRS的导频给基站。
步骤F2,基站接收目标UE发送的SRS和SRS的导频。
步骤F3,基站根据SRS的导频,确定第一信息。第一信息包括多径信息、时间偏差信息、NLOS指示信息、收发波束方向信息、以及指示参与训练的目标UE所处的位置是室内还是室外的指示信息。
在本实施例中,多径信息包括目标UE的各个接收天线的CFR。
在本实施例中,时间偏差信息包括当前时间误差的估计值。
需要说明的是,通过计算时钟同步误差和收发时间误差之间的和,得到当前时间误差。
步骤F4,基站将第一信息、基站的已知位置坐标、基站的多个接收天线的位置等上报给LMF。
步骤F5,根据基站上报的第一信息,以及基站的已知位置坐标或基站的多个接收天线的位置,得到一个数组。该数组中包括了基站上报的第一信息,以及基站的已知位置坐标或基站的多个接收天线的位置。该数组对应第一特征向量。将第一特征向量与预设的定位数据库中各第二特征向量之间分别进行内积计算,得到最大内积,即最大匹配度,并将与第一特征向量内积最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
本申请实施例提供的技术方案,至少具有如下有益效果:
本申请实施例中,通过基站向LMF上报第一信息,消除了时间误差的时变性的影响,在复杂的多径环境且时间误差具有时变性的场景下,提升了目标UE的定位精度。
基于相同的发明构思,本申请实施例还提供了一种定位装置,应用于LMF。该装置的结构示意图如图5所示,可以包括:处理器1310、存储器1320和收发机1300,该收发器1300用于在处理器1310的控制下接收和发送数据。
在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1310代表的一个或多个处理器和存储器1320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1300可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1310负责管理总线架构和通常的处理。存储器1320可以存储处理器1310在执行操作时所使用的数据。
处理器1310可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。处理器也可以采用多核架构。
处理器1310用于读取所述存储器中的计算机程序并执行以下操作:接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项。在这种情况下,处理器1310可以具体用于执行以下操作:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标和参考UE的已知位置坐标,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,处理器1310还可以执行以下操作:接收多个基站上报的时延值,将多个基站中各非参考基站上报的时延值分别与多个基站中参考基站上报的时延值之间进行单差分处理,确定各非参考基站分别对应的单差时延值;或者,接收目标UE或参考UE上报的多个基站中各非参考基站分别对应的单差时延值。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项。在这种情况下,处理器1310可以具体执行以下操作:根据至少一个基站上报的第一信息,或目 标UE和参考UE分别上报的第一信息,以及多个基站的已知位置坐标和各非参考基站分别对应的单差时延值,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,处理器1310还可以执行以下操作:接收目标UE上报的单差时延值和参考UE上报的单差时延值,单差时延值为多个基站中各非参考基站分别对应的单差时延值;将目标UE上报的单差时延值和参考UE上报的单差时延值之间进行双差分处理,得到双差值;根据参考UE上报的的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
在一个实施例中,在确定目标UE的位置之前,处理器1310还可以执行以下操作:接收多个基站上报的分别对应目标UE和参考UE的时延值;将多个基站中各非参考基站上报的目标UE对应的时延值分别与多个基站中参考基站上报的目标UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第一单差时延值;将多个基站中各非参考基站上报的参考UE对应的时延值分别与多个基站中参考基站上报的参考UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第二单差时延值;将第一单差时延值和第二单差时延值之间进行双差分处理,得到双差值;根据参考UE上报的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项。在这种情况下,处理器1310可以具体用于执行以下操作:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标、参考UE的已知位置坐标和单差值,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,多径信息包括以下至少一项:接收天线对应的多条路径中的特定路径的时延或多条路径之间的时延差;特定路径的功率;特定路径的相位;不同的接收天线之间的相位差;不同的接收天线之间的时延差;不同的接收天线之间的功率差;接收天线的信道冲激响应CIR对应的数组中的全部或部分数据;接收天线的信道频率响应CFR对应的数组中的全部或部分数据;接收天线的功率延迟分布PDP对应的数组中的全部或部分数据;接收天线的伪谱信息。
接收天线为基站的接收天线、目标UE的接收天线或参考UE的接收天线。特定路径包括时延最小的前N条路径、第一路径或功率最强的M条路径中的至少一项,N和M都为正整数。
在一个实施例中,时间偏差信息包括以下至少一项:时钟同步误差或时钟同步误 差组;时钟同步误差或时钟同步误差组的变化;时钟同步误差的变化率;收发时间误差或收发时间误差组;收发时间误差或收发时间误差组的变化;收发时间误差的变化率。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的发明构思,本申请实施例还提供了一种定位装置,应用于目标UE或参考UE。该装置的结构示意图如图6所示,可以包括:处理器1410、存储器1420、用户接口1430和收发机1400,该收发机1400用于在处理器1410的控制下接收和发送数据。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1410代表的一个或多个处理器和存储器1420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1400可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1430还可以是能够外接所需要的设备的接口。所外接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1410负责管理总线架构和通常的处理。存储器1420可以存储处理器1410在执行操作时所使用的数据。
可选的,处理器1410可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本申请实施例提供的第二方面所述的方法。处理器与存储器也可以物理上分开布置。
处理器1410用于读取存储器1420中的计算机程序并执行以下操作:接收基站发送的定位参考信号PRS;根据PRS的导频,确定第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;上报第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的发明构思,本申请实施例还提供了一种定位装置,应用于基站。该装置的结构示意图如图7所示,可以包括:处理器1510、存储器1520和收发机1500, 该收发器1500用于在处理器1510的控制下接收和发送数据。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1510代表的一个或多个处理器和存储器1520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1500可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1510负责管理总线架构和通常的处理。存储器1520可以存储处理器1510在执行操作时所使用的数据。
处理器1510可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。处理器也可以采用多核架构。
处理器1510用于读取所述存储器中的计算机程序并执行以下操作:接收目标UE或参考UE发送的探测参考信号SRS;根据SRS的导频,确定第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;上报第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于前述实施例相同的发明构思,本申请实施例还提供了一种定位装置,应用于LMF。该装置的结构示意图如图8所示。定位装置40可以包括第一处理单元401和第二处理单元402。
第一处理单元401用于接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息。第一信息包括多径信息或时间偏差信息中的至少一项。
第二处理单元402用于根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及预设的定位数据库,确定所述目标UE的位置。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项。第二处理单元402具体用于:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标和参考UE的已知位置坐标,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征 向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,第二处理单元402还用于:接收多个基站上报的时延值,将多个基站中各非参考基站上报的时延值分别与多个基站中参考基站上报的时延值之间进行单差分处理,确定各非参考基站分别对应的单差时延值;或者,接收目标UE或参考UE上报的多个基站中各非参考基站分别对应的单差时延值。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项。在这种情况下,第二处理单元402具体用于:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及多个基站的已知位置坐标和各非参考基站分别对应的单差时延值,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,在确定目标UE的位置之前,第二处理单元402还用于:接收目标UE上报的单差时延值和参考UE上报的单差时延值,单差时延值为多个基站中各非参考基站分别对应的单差时延值;将目标UE上报的单差时延值和参考UE上报的单差时延值之间进行双差分处理,得到双差值;根据参考UE上报的的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
在一个实施例中,在确定目标UE的位置之前,第二处理单元402还用于:接收多个基站上报的分别对应目标UE和参考UE的时延值;将多个基站中各非参考基站上报的目标UE对应的时延值分别与多个基站中参考基站上报的目标UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第一单差时延值;将多个基站中各非参考基站上报的参考UE对应的时延值分别与多个基站中参考基站上报的参考UE对应的时延值之间进行单差分处理,确定各非参考基站分别对应的第二单差时延值;将第一单差时延值和第二单差时延值之间进行双差分处理,得到双差值;根据参考UE上报的已知位置坐标和基站的已知位置坐标,将双差值转换为单差值。
在一个实施例中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示目标UE所处的位置是室内还是室外的指示信息中的至少一项。在这种情况下,第二处理单元402具体用于:根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及基站的已知位置坐标、参考UE的已知位置坐标和单差值,确定第一特征向量;将第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与第一特征向量匹配度最大的第二特征向量;将与第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为目标UE的位置。
在一个实施例中,多径信息包括以下至少一项:接收天线对应的多条路径中的特定路径的时延或多条路径之间的时延差;特定路径的功率;特定路径的相位;不同的 接收天线之间的相位差;不同的接收天线之间的时延差;不同的接收天线之间的功率差;接收天线的信道冲激响应CIR对应的数组中的全部或部分数据;接收天线的信道频率响应CFR对应的数组中的全部或部分数据;接收天线的功率延迟分布PDP对应的数组中的全部或部分数据;接收天线的伪谱信息。
接收天线为基站的接收天线、目标UE的接收天线或参考UE的接收天线。特定路径包括时延最小的前N条路径、第一路径或功率最强的M条路径中的至少一项,N和M都为正整数。
在一个实施例中,时间偏差信息包括以下至少一项:时钟同步误差或时钟同步误差组;时钟同步误差或时钟同步误差组的变化;时钟同步误差的变化率;收发时间误差或收发时间误差组;收发时间误差或收发时间误差组的变化;收发时间误差的变化率。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于前述实施例相同的发明构思,本申请实施例还提供了一种定位装置,应用于目标UE或参考UE。该装置的结构示意图如图9所示。定位装置50可以包括第三处理单元501、第四处理单元502和第五处理单元503。
第三处理单元501用于接收基站发送的定位参考信号PRS。
第四处理单元502用于根据所述PRS的导频,确定第一信息,所述第一信息包括多径信息或时间偏差信息中的至少一项。
第五处理单元503用于上报所述第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于前述实施例相同的发明构思,本申请实施例还提供了一种定位装置,应用于基站。该装置的结构示意图如图10所示。定位装置60可以包括第六处理单元601、第七处理单元602和第八处理单元603。
第六处理单元601用于接收目标UE或参考UE发送的探测参考信号SRS。
第七处理单元602用于根据所述SRS的导频,确定第一信息,所述第一信息包括多径信息或时间偏差信息中的至少一项。
第八处理单元603用于上报所述第一信息给LMF,所述第一信息用于所述LMF确定所述目标UE的位置。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实 施例相同的部分及有益效果进行具体赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个非暂态计算机取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于相同的发明构思,本申请实施例还提供了一种非暂态计算机存储介质,存储有计算机程序,该计算机程序用于被处理器执行时实现本申请实施例中任意一个实施例或任意一种可选实施方式提供的任意一种定位方法的步骤。
非暂态计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的非暂态计算机存储器中,使得存储在该非暂态计算机可读存储器中的 指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本申请实施例提供的技术方案,至少具有如下有益效果:
LMF接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;根据至少一个基站上报的第一信息,或目标UE和参考UE分别上报的第一信息,以及预设的定位数据库,确定目标UE的位置;如此,在复杂的多径环境且时间误差具有时变性的场景下,通过多径信息提供的更加具备识别度的信道空间特征,与能够反映时间特征的时间偏差信息之间的结合,实现了具备空时一致性的匹配机制,消除了时间误差的时变性的影响,提升了目标UE的定位精度。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种定位方法,由位置管理功能LMF执行,包括:
    接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;
    根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及预设的定位数据库,确定所述目标UE的位置。
  2. 根据权利要求1所述的方法,其中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示所述目标UE所处的位置是室内还是室外的指示信息中的至少一项,所述根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及预设的定位数据库,确定所述目标UE的位置,包括:
    根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及基站的已知位置坐标和所述参考UE的已知位置坐标,确定第一特征向量;
    将所述第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与所述第一特征向量匹配度最大的第二特征向量;
    将所述与所述第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为所述目标UE的位置。
  3. 根据权利要求1所述的方法,其中,在所述确定所述目标UE的位置之前,还包括:
    接收多个基站上报的时延值,将所述多个基站中各非参考基站上报的时延值分别与所述多个基站中参考基站上报的时延值之间进行单差分处理,确定所述各非参考基站分别对应的单差时延值;或者
    接收所述目标UE或所述参考UE上报的所述多个基站中各非参考基站分别对应的单差时延值。
  4. 根据权利要求3所述的方法,其中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示所述目标UE所处的位置是室内还是室外的指示信息中的至少一项,所述根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及预设的定位数据库,确定所述目标UE的位置,包括:
    根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及所述多个基站的已知位置坐标和所述各非参考基站分别对应的单差时延值,确定第一特征向量;
    将所述第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定 与所述第一特征向量匹配度最大的第二特征向量;
    将所述与所述第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为所述目标UE的位置。
  5. 根据权利要求1所述的方法,其中,在所述确定所述目标UE的位置之前,还包括:
    接收所述目标UE上报的单差时延值和所述参考UE上报的单差时延值,所述单差时延值为所述多个基站中各非参考基站分别对应的单差时延值;
    将所述目标UE上报的单差时延值和所述参考UE上报的单差时延值之间进行双差分处理,得到双差值;
    根据所述参考UE上报的的已知位置坐标和基站的已知位置坐标,将所述双差值转换为单差值。
  6. 根据权利要求1所述的方法,其中,在所述确定所述目标UE的位置之前,还包括:
    接收多个基站上报的分别对应所述目标UE和所述参考UE的时延值;
    将所述多个基站中各非参考基站上报的所述目标UE对应的时延值分别与所述多个基站中参考基站上报的所述目标UE对应的时延值之间进行单差分处理,确定所述各非参考基站分别对应的第一单差时延值;
    将所述多个基站中各非参考基站上报的所述参考UE对应的时延值分别与所述多个基站中参考基站上报的所述参考UE对应的时延值之间进行单差分处理,确定所述各非参考基站分别对应的第二单差时延值;
    将所述第一单差时延值和所述第二单差时延值之间进行双差分处理,得到双差值;
    根据所述参考UE上报的已知位置坐标和基站的已知位置坐标,将所述双差值转换为单差值。
  7. 根据权利要求5或6所述的方法,其中,第一信息还包括非视距NLOS指示信息、收发波束方向信息、或者指示所述目标UE所处的位置是室内还是室外的指示信息中的至少一项,所述根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及预设的定位数据库,确定所述目标UE的位置,包括:
    根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及基站的已知位置坐标、所述参考UE的已知位置坐标和所述单差值,确定第一特征向量;
    将所述第一特征向量与预设的定位数据库中各第二特征向量分别进行匹配,确定与所述第一特征向量匹配度最大的第二特征向量;
    将所述与所述第一特征向量匹配度最大的第二特征向量对应的位置坐标,确定为所述目标UE的位置。
  8. 根据权利要求1所述的方法,其中,所述多径信息包括以下至少一项:
    接收天线对应的多条路径中的特定路径的时延或所述多条路径之间的时延差;
    所述特定路径的功率;
    所述特定路径的相位;
    不同的接收天线之间的相位差;
    不同的接收天线之间的时延差;
    不同的接收天线之间的功率差;
    所述接收天线的信道冲激响应CIR对应的数组中的全部或部分数据;
    所述接收天线的信道频率响应CFR对应的数组中的全部或部分数据;
    所述接收天线的功率延迟分布PDP对应的数组中的全部或部分数据;
    所述接收天线的伪谱信息;
    其中,所述接收天线为基站的接收天线、所述目标UE的接收天线或所述参考UE的接收天线,所述特定路径包括时延最小的前N条路径、第一路径或功率最强的M条路径中的至少一项,所述N和M都为正整数。
  9. 根据权利要求1所述的方法,其中,所述时间偏差信息包括以下至少一项:
    时钟同步误差或时钟同步误差组;
    时钟同步误差或时钟同步误差组的变化;
    时钟同步误差的变化率;
    收发时间误差或收发时间误差组;
    收发时间误差或收发时间误差组的变化;
    收发时间误差的变化率。
  10. 一种定位方法,由目标UE或参考UE执行,包括:
    接收基站发送的定位参考信号PRS;
    根据所述PRS的导频,确定第一信息,所述第一信息包括多径信息或时间偏差信息中的至少一项;
    上报所述第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
  11. 一种定位方法,由基站执行,包括:
    接收目标UE或参考UE发送的探测参考信号SRS;
    根据所述SRS的导频,确定第一信息,所述第一信息包括多径信息或时间偏差信息中的至少一项;
    上报所述第一信息给LMF,所述第一信息用于所述LMF确定所述目标UE的位置。
  12. 一种定位装置,应用于LMF,包括存储器,收发机,处理器:
    所述存储器被配置为存储计算机程序;所述收发机被配置为在所述处理器的控制下收发数据;所述处理器被配置为读取所述存储器中的计算机程序并执行以下操作:
    接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;
    根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及预设的定位数据库,确定所述目标UE的位置。
  13. 一种定位装置,应用于目标UE或参考UE,包括存储器,收发机,处理器:
    所述存储器被配置为存储计算机程序;所述收发机被配置为在所述处理器的控制下收发数据;所述处理器被配置为读取所述存储器中的计算机程序并执行以下操作:
    接收基站发送的定位参考信号PRS;
    根据所述PRS的导频,确定第一信息,所述第一信息包括多径信息或时间偏差信息中的至少一项;
    上报所述第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
  14. 一种定位装置,应用于基站,包括存储器,收发机,处理器:
    所述存储器被配置为存储计算机程序;所述收发机被配置为在所述处理器的控制下收发数据;所述处理器被配置为读取所述存储器中的计算机程序并执行以下操作:
    接收目标UE或参考UE发送的探测参考信号SRS;
    根据所述SRS的导频,确定第一信息,所述第一信息包括多径信息或时间偏差信息中的至少一项;
    上报所述第一信息给LMF,所述第一信息用于所述LMF确定所述目标UE的位置。
  15. 一种定位装置,应用于LMF,包括:
    第一处理单元,被配置为接收至少一个基站上报的第一信息,或目标用户设备UE和参考UE分别上报的第一信息,第一信息包括多径信息或时间偏差信息中的至少一项;
    第二处理单元,被配置为根据所述至少一个基站上报的第一信息,或所述目标UE和所述参考UE分别上报的第一信息,以及预设的定位数据库,确定所述目标UE的位置。
  16. 一种定位装置,应用于目标UE或参考UE,包括:
    第三处理单元,被配置为接收基站发送的定位参考信号PRS;
    第四处理单元,被配置为根据所述PRS的导频,确定第一信息,所述第一信息包括多径信息或时间偏差信息中的至少一项;
    第五处理单元,被配置为上报所述第一信息给LMF,所述第一信息用于所述LMF确定目标UE的位置。
  17. 一种定位装置,应用于基站,包括:
    第六处理单元,被配置为接收目标UE或参考UE发送的探测参考信号SRS;
    第七处理单元,被配置为根据所述SRS的导频,确定第一信息,所述第一信息包 括多径信息或时间偏差信息中的至少一项;
    第八处理单元,被配置为上报所述第一信息给LMF,所述第一信息用于所述LMF确定所述目标UE的位置。
  18. 一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机程序,所述计算机程序用于使所述计算机执行权利要求1至11中任一项所述的方法。
PCT/CN2022/105520 2021-08-06 2022-07-13 定位方法、定位装置及非暂态计算机可读存储介质 WO2023011129A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/681,454 US20240340844A1 (en) 2021-08-06 2022-07-13 Positioning method, positioning device, and non-transitory computer readable storage medium
KR1020247006852A KR20240034861A (ko) 2021-08-06 2022-07-13 포지셔닝 방법, 포지셔닝 장치 및 비가시적 컴퓨터 판독 가능 저장 매체
EP22851843.7A EP4383861A1 (en) 2021-08-06 2022-07-13 Positioning method, positioning device, and non-transitory computer readable storage medium
JP2024507099A JP2024529056A (ja) 2021-08-06 2022-07-13 測位方法、測位装置及び非一時的なコンピュータ可読記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110902414.3 2021-08-06
CN202110902414.3A CN115914980A (zh) 2021-08-06 2021-08-06 定位方法、装置及处理器可读存储介质

Publications (1)

Publication Number Publication Date
WO2023011129A1 true WO2023011129A1 (zh) 2023-02-09

Family

ID=85155095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105520 WO2023011129A1 (zh) 2021-08-06 2022-07-13 定位方法、定位装置及非暂态计算机可读存储介质

Country Status (6)

Country Link
US (1) US20240340844A1 (zh)
EP (1) EP4383861A1 (zh)
JP (1) JP2024529056A (zh)
KR (1) KR20240034861A (zh)
CN (1) CN115914980A (zh)
WO (1) WO2023011129A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200229126A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Round-trip-time (rtt)-based positioning with listening nodes
CN111447543A (zh) * 2018-12-27 2020-07-24 华为技术有限公司 定位方法及装置
CN112449302A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 一种定位、离线指纹库的生成方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447543A (zh) * 2018-12-27 2020-07-24 华为技术有限公司 定位方法及装置
US20200229126A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Round-trip-time (rtt)-based positioning with listening nodes
CN112449302A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 一种定位、离线指纹库的生成方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "LCS exposure to NG-RAN", 3GPP DRAFT; R2-1818183 LCS EXPOSURE TO NG-RAN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20181112 - 20181116, 12 November 2018 (2018-11-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051557687 *
VIVO: "Discussion on potential positioning enhancements", 3GPP DRAFT; R1-2003429, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885215 *

Also Published As

Publication number Publication date
EP4383861A1 (en) 2024-06-12
CN115914980A (zh) 2023-04-04
JP2024529056A (ja) 2024-08-01
KR20240034861A (ko) 2024-03-14
US20240340844A1 (en) 2024-10-10

Similar Documents

Publication Publication Date Title
US20220322195A1 (en) Machine learning for handover
WO2018223972A1 (zh) 一种信道质量信息的上报方法及装置
WO2020164517A1 (zh) 用于测量信号的方法和通信装置
WO2021063397A1 (zh) 一种参考信号配置的确定方法及装置
JP7507962B2 (ja) 測位用の測定方法、装置及び記憶媒体
CN111431638B (zh) 一种信道模型参数方法及装置
WO2020134984A1 (zh) 一种波束失败恢复方法及装置
WO2022237354A1 (zh) 终端定位方法、装置、接收端设备及核心网设备
WO2021057397A1 (zh) 一种信号测量方法、终端及网络侧设备
US20230362039A1 (en) Neural network-based channel estimation method and communication apparatus
US20240031973A1 (en) Positioning method and apparatus, and terminal and device
WO2023011129A1 (zh) 定位方法、定位装置及非暂态计算机可读存储介质
US20220329506A1 (en) System and method to reinforce fogging for latency critical iot applications in 5g
EP4319339A1 (en) Positioning method and apparatus, and readable storage medium
WO2018076216A1 (zh) 一种生成测量结果的方法及设备
WO2021030819A2 (en) System and method for map-assisted location estimation
CN112929907A (zh) 天线参数的确定方法及装置
WO2021260410A1 (en) Radio design using machine learning
WO2019095794A1 (zh) 一种传输信道质量信息的方法和装置
WO2019052441A1 (zh) 一种用于生成扩展符号的方法及装置
WO2024032764A1 (zh) 信息处理方法、装置、节点设备及介质
WO2024027642A1 (zh) 一种信息传输方法、装置及设备
WO2024152826A1 (zh) 波束失败检测方法、装置、终端、第一节点及网络设备
WO2023051213A1 (zh) 信息传输方法、测量端、位置解算端、装置和存储介质
WO2024027643A1 (zh) 一种信息传输方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507099

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247006852

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022851843

Country of ref document: EP

Effective date: 20240306