WO2023056965A1 - 数据传输方法、装置、基站、终端及存储介质 - Google Patents

数据传输方法、装置、基站、终端及存储介质 Download PDF

Info

Publication number
WO2023056965A1
WO2023056965A1 PCT/CN2022/124048 CN2022124048W WO2023056965A1 WO 2023056965 A1 WO2023056965 A1 WO 2023056965A1 CN 2022124048 W CN2022124048 W CN 2022124048W WO 2023056965 A1 WO2023056965 A1 WO 2023056965A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal
base station
information
tci state
Prior art date
Application number
PCT/CN2022/124048
Other languages
English (en)
French (fr)
Inventor
王飞
王大鹏
胡南
李男
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2023056965A1 publication Critical patent/WO2023056965A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of wireless technology, and in particular to a data transmission method, device, base station, terminal and storage medium.
  • the terminal will receive reference signals from two adjacent transmission and reception points (TRP, Transmission and Reception Point).
  • TRP Transmission and Reception Point
  • the Doppler frequency offset of the two reference signals is quite different, for example, The Doppler frequency offsets of the reference signals sent by the two TRPs received by the terminal are respectively +1.6kHz and -1.6kHz, which will cause the demodulation performance of the terminal to deteriorate.
  • embodiments of the present application provide a data transmission method, device, base station, terminal, and storage medium.
  • An embodiment of the present application provides a data transmission method applied to a base station, including:
  • the terminal receiving first information reported by the terminal;
  • the first information represents a frequency offset between the first reference signal and the second reference signal measured by the terminal;
  • a Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel) and/or a Physical Downlink Shared Channel (PDSCH, Physical Downlink Shared Channel) to the terminal.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the embodiment of the present application also provides a data transmission method applied to a terminal, including:
  • the first information represents a frequency offset between the first reference signal and the second reference signal measured by the terminal.
  • the embodiment of the present application also provides a data transmission device, including:
  • the first sending unit is configured to send the first reference signal and the second reference signal to the terminal;
  • the first receiving unit is configured to receive first information reported by the terminal; the first information represents a frequency offset between the first reference signal and the second reference signal measured by the terminal;
  • the second sending unit is configured to send the PDCCH and/or PDSCH to the terminal based on the first information.
  • the embodiment of the present application also provides a data transmission device, including:
  • the second receiving unit is configured to receive the first reference signal and the second reference signal sent by the base station;
  • the first reporting unit is configured to report first information to the base station; the first information represents the frequency offset between the first reference signal and the second reference signal measured by the terminal.
  • the embodiment of the present application also provides a base station, including: a first processor and a first communication interface; wherein,
  • the first communication interface is configured to send a first reference signal and a second reference signal to the terminal; receive first information reported by the terminal; the first information represents the first reference signal and the second reference signal measured by the terminal and based on the first information, sending PDCCH and/or PDSCH to the terminal.
  • the embodiment of the present application also provides a terminal, including: a second processor and a second communication interface; wherein,
  • the second communication interface is configured to receive a first reference signal and a second reference signal sent by the base station; and first information reported to the base station; the first information represents the first reference signal and the second reference signal measured by the terminal Frequency offset between reference signals.
  • An embodiment of the present application also provides a base station, including: a first processor and a first memory configured to store a computer program that can run on the processor,
  • the first processor is configured to execute the steps of any data transmission method on the base station side when running the computer program.
  • An embodiment of the present application also provides a terminal, including: a second processor and a second memory configured to store a computer program that can run on the processor,
  • the second processor is configured to execute the steps of any data transmission method on the terminal side when running the computer program.
  • the embodiment of the present application also provides a storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the steps of any one of the above data transmission methods are implemented.
  • the base station sends the first reference signal and the second reference signal to the terminal, and the terminal reports the measured frequency offset between the first reference signal and the second reference signal to the base station, and the base station obtains the frequency offset based on the measurement reported by the terminal. frequency offset, and send the PDCCH and/or PDSCH to the terminal. Based on the above solution, the downlink Doppler frequency pre-compensation of the base station to the terminal can be realized.
  • frequency pre-compensation can be used to make the Doppler frequency offset of the subsequent sent PDCCH and/or PDSCH reach the terminal the same, so that the demodulation performance of the terminal can be effectively improved.
  • FIG. 1 is a schematic flow chart of a data transmission method according to an embodiment of the present application
  • FIG. 2 is a schematic flow chart of another data transmission method according to the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scenario of an application embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a data transmission device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another data transmission device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal When the terminal is traveling at high speed, for example, in a high-speed rail scenario, the terminal will receive reference signals from two adjacent TRPs.
  • the Doppler frequency offsets of the two reference signals are quite different.
  • the Doppler frequency offsets of the reference signals sent by the two TRPs received by the terminal are respectively +1.6kHz and -1.6kHz, which will lead to poor demodulation performance of the terminal.
  • the base station sends the first reference signal and the second reference signal to the terminal, the terminal reports the measured frequency offset between the first reference signal and the second reference signal to the base station, and the base station Based on the measured frequency offset reported by the terminal, the PDCCH and/or PDSCH are sent to the terminal.
  • the downlink Doppler frequency pre-compensation of the base station to the terminal can be realized.
  • frequency pre-compensation can be used to make the Doppler frequency offset of the subsequent sent PDCCH and/or PDSCH reach the terminal the same, so that the demodulation performance of the terminal can be effectively improved.
  • the embodiment of the present application provides a data transmission method applied to a base station, as shown in FIG. 1, the method includes:
  • Step 101 Send a first reference signal and a second reference signal to a terminal.
  • the base station sends two reference signals to the terminal, and the two reference signals are sent out through transmission points set at different geographic locations.
  • the reference signal sent by the base station may be a Tracking Reference Signal (TRS, Tracking Reference Signal), and the TRS is sent based on two TRPs. Therefore, in an embodiment, the first reference signal is a first TRS, and the second reference signal is a second TRS, wherein the first TRS is sent by the first TRP, and the second TRS is sent by the second TRP.
  • Step 102 Receive first information reported by the terminal; the first information represents a frequency offset between the first reference signal and the second reference signal measured by the terminal.
  • the terminal Since the distance or positional relationship between the terminal and the transmitting positions of the two reference signals is different, the terminal performs frequency measurement on the received reference signal, and can obtain a measurement result that there is a frequency deviation between the first reference signal and the second reference signal. For example, when the terminal is in the middle of two TRPs, in the 3.5GHz frequency band, the Doppler frequency offsets of the TRSs from the two TRPs are respectively +1.6GHz and -1.6GHz.
  • the terminal reports the measured frequency offset to the base station.
  • Step 103 Based on the first information, send a PDCCH and/or PDSCH to the terminal.
  • the base station performs frequency pre-compensation when transmitting the PDCCH and/or PDSCH at the corresponding transmission point, so that the PDCCH and/or PDSCH transmitted by the two transmission points Or when the PDSCH arrives at the terminal, the frequency deviation is the same or within a negligible range.
  • the base station can choose to perform frequency pre-compensation at one of the two transmission points, or perform frequency pre-compensation when both transmission points transmit PDCCH and/or PDSCH. In this way, the Doppler frequency offsets of the PDCCH and/or PDSCH subsequently sent by the base station when they arrive at the terminal are the same or almost the same, so that the demodulation performance of the terminal can be effectively improved.
  • the method before receiving the first information reported by the terminal, the method further includes:
  • TCI Transmission Configuration Indication
  • the base station indicates the first TCI state (TCI state) and the second TCI state to the terminal, wherein the first TCI state is associated with the information of the first reference signal, and the second TCI state is associated with the information of the second reference signal.
  • TCI state is associated with the same beam or spatial filter as the second reference signal.
  • the base station indicates the third TCI state to the terminal, and the third TCI state is associated with the first reference signal and the second reference signal at the same time.
  • the base station notifies the terminal that the first reference signal and the first reference signal are used in downlink transmission.
  • the same beam or spatial filter, and the same beam or spatial filter as that of the second reference signal is used in downlink transmission.
  • the method before receiving the first information reported by the terminal, the method further includes:
  • the first configuration is configured to configure the terminal to report a frequency offset representing the first reference signal relative to the second reference signal, and/or, representing the second reference signal relative to the first reference signal frequency deviation.
  • the base station may, by sending the first configuration, instruct the terminal to report the frequency offset of the first reference signal relative to the second reference signal, and/or, the frequency offset of the second reference signal relative to the first reference signal.
  • the base station may also instruct the terminal to report the measured frequency offset of the first TCI state relative to the second TCI state by sending the first configuration, And/or, the frequency offset of the second TCI state relative to the first TCI state.
  • the method before receiving the first information reported by the terminal, the method further includes:
  • the second configuration is used to configure the terminal to report the first information in one of the following ways:
  • SPS Semi-persistent scheduling
  • the terminal reports the measurement results of the frequency offset between the first reference signal and the second reference signal to the base station every set period; in the SPS reporting mode, every set period, the terminal uses SPS resources to report the measurement results about the frequency offset between the first reference signal and the second reference signal; in the trigger condition reporting mode, by setting the corresponding trigger condition, for example, setting the corresponding reporting threshold, when the terminal measures the first In a case where the frequency offset between the reference signal and the second reference signal is greater than the corresponding reporting threshold, the terminal reports a measurement result about the frequency offset between the first reference signal and the second reference signal.
  • the first information is represented by a bit value with a set number of digits.
  • the frequency offset measured by the terminal is quantized into a 7-bit bit value, and the quantization accuracy is 30Hz, that is, "1000000” is used to indicate a frequency offset of 0Hz, and "0111111” is used to indicate a frequency offset of -30Hz , use “0111110” to indicate the frequency offset of -60Hz, ..., use “0000000” to indicate the frequency offset of -1920Hz, use "1000001” to indicate the frequency offset of 30Hz, use "1000010” to indicate the frequency offset of 60Hz, ..., use "1111111” indicates a frequency offset of 1920 Hz. Then, if the frequency offset measured by the terminal is 1200 Hz, the first information reported by the terminal to the base station may be "1100100".
  • the embodiment of the present application also provides a data transmission method applied to a terminal, as shown in FIG. 2, the method includes:
  • Step 201 Receive a first reference signal and a second reference signal sent by a base station.
  • the base station sends two reference signals to the terminal, and the two reference signals are sent out through transmission points set at different geographic locations.
  • the reference signal sent by the base station may be a TRS, and the TRSs are sent based on the two TRPs. Therefore, in an embodiment, the first reference signal is a first TRS, and the second reference signal is a second TRS, wherein the first TRS is sent by the first TRP, and the second TRS is sent by the second TRP.
  • Step 202 First information reported to the base station; the first information represents the frequency offset between the first reference signal and the second reference signal measured by the terminal.
  • the terminal Since the distance or positional relationship between the terminal and the transmitting positions of the two reference signals is different, the terminal performs frequency measurement on the received reference signal, and will obtain a measurement result that there is a frequency deviation between the first reference signal and the second reference signal. For example, when the terminal is in the middle of two TRPs, in the 3.5GHz frequency band, the Doppler frequency offsets of the TRSs from the two TRPs are respectively +1.6GHz and -1.6GHz.
  • the terminal reports the measured frequency offset to the base station.
  • the base station Based on the frequency offset between the first reference signal and the second reference signal obtained by the terminal measurement, the base station performs frequency pre-compensation when the corresponding transmission point transmits the PDCCH and/or PDSCH, so that the PDCCH and/or PDSCH transmitted by the two transmission points When the PDSCH arrives at the terminal, the frequency deviation is the same or within a negligible range.
  • the base station may choose to perform frequency pre-compensation at one of the two transmission points, or perform frequency pre-compensation when both transmission points transmit the PDCCH and/or PDSCH. In this way, the Doppler frequency offsets of the PDCCH and/or PDSCH subsequently sent by the base station when they arrive at the terminal are the same or almost the same, so that the demodulation performance of the terminal can be effectively improved.
  • the method before the first information reported to the base station, the method further includes:
  • the base station indicates the first TCI state (TCI state) and the second TCI state to the terminal, wherein the first TCI state is associated with the information of the first reference signal, and the second TCI state is associated with the information of the second reference signal.
  • TCI state is associated with the same beam or spatial filter as the second reference signal.
  • the base station indicates the third TCI state to the terminal, and the third TCI state is associated with the first reference signal and the second reference signal at the same time.
  • the base station notifies the terminal that the first reference signal and the first reference signal are used in downlink transmission.
  • the same beam or spatial filter, and the same beam or spatial filter as that of the second reference signal is used in downlink transmission.
  • the method before the first information reported to the base station, the method further includes:
  • the first configuration is used to configure the terminal to report the frequency offset representing the first reference signal relative to the second reference signal, and/or, representing the frequency offset of the signal sent by the second reference signal relative to the first reference signal A frequency offset of a reference signal.
  • the base station may, by sending the first configuration, instruct the terminal to report the frequency offset of the first reference signal relative to the second reference signal, and/or, the frequency offset of the second reference signal relative to the first reference signal.
  • the base station may also instruct the terminal to report the measured frequency offset of the first TCI state relative to the second TCI state by sending the first configuration, And/or, the frequency offset of the second TCI state relative to the first TCI state.
  • the method before the first information reported to the base station, the method further includes:
  • the second configuration is used to configure the terminal to report the first information in one of the following ways:
  • the terminal reports the measurement results of the frequency offset between the first reference signal and the second reference signal to the base station every set period; in the SPS reporting mode, every set period, the terminal uses SPS resources to report the measurement results about the frequency offset between the first reference signal and the second reference signal; in the trigger condition reporting mode, by setting the corresponding trigger condition, for example, setting the corresponding reporting threshold, when the terminal measures the first In a case where the frequency offset between the reference signal and the second reference signal is greater than the corresponding reporting threshold, the terminal reports a measurement result about the frequency offset between the first reference signal and the second reference signal.
  • the first information is represented by a bit value with a set number of digits.
  • the frequency offset measured by the terminal is quantized into a 7-bit bit value, and the quantization accuracy is 30Hz, that is, "1000000” is used to indicate a frequency offset of 0Hz, and "0111111” is used to indicate a frequency offset of -30Hz , use “0111110” to indicate the frequency offset of -60Hz, ..., use “0000000” to indicate the frequency offset of -1920Hz, use "1000001” to indicate the frequency offset of 30Hz, use "1000010” to indicate the frequency offset of 60Hz, ..., use "1111111” indicates a frequency offset of 1920 Hz. Then, if the frequency offset measured by the terminal is 1200 Hz, the first information reported by the terminal to the base station may be "1100100".
  • TRP 0 and TRP 1 are two TRPs connected to the same cell, assuming that the high-speed rail user, that is, the terminal is located at the position shown in Figure 3, TRP 0 and TRP 1 are respectively Send TRS 0 and TRS 1, that is to say, TRS 0 and TRS 1 adopt a TRP specific transmission method instead of a single frequency network (SFN, Single Frequency Network) transmission method.
  • SFN Single Frequency Network
  • the solution provided by the embodiment of the present application can realize the downlink Doppler frequency pre-compensation of the base station to the terminal.
  • frequency pre-compensation can be used to make the Doppler frequency offset of the subsequently sent PDCCH and/or PDSCH reach the terminal the same, thereby effectively improving the demodulation performance of the terminal.
  • the embodiment of the present application also provides a data transmission device, which is set on the base station, as shown in Figure 4, the device includes:
  • the first sending unit 401 is configured to send the first reference signal and the second reference signal to the terminal;
  • the first receiving unit 402 is configured to receive first information reported by the terminal; the first information represents the frequency offset between the first reference signal and the second reference signal measured by the terminal;
  • the second sending unit 403 is configured to send a PDCCH and/or a PDSCH to the terminal based on the first information.
  • the first reference signal is a first TRS
  • the second reference signal is a second TRS
  • the device also includes:
  • the first indicating unit is configured to indicate the first TCI state and the second TCI state to the terminal before receiving the first information reported by the terminal; wherein the first TCI state is associated with the first reference signal ; The second TCI state is associated with the second reference signal; or,
  • the device also includes:
  • the third sending unit is configured to send the first configuration to the terminal before receiving the first information reported by the terminal;
  • the first configuration is used to configure the terminal to report the frequency offset of the first reference signal relative to the second reference signal, and/or, the frequency offset of the second reference signal relative to the first reference signal Partial.
  • the device also includes:
  • the fourth sending unit is configured to send the second configuration to the terminal before receiving the first information reported by the terminal;
  • the second configuration is used to configure the terminal to report the first information in one of the following ways:
  • the first information is represented by a bit value with a set number of digits.
  • the first sending unit 401 , the first receiving unit 402 , the second sending unit 403 , the first indicating unit, the third sending unit and the fourth sending unit can be realized by the communication interface in the data transmission device.
  • the embodiment of the present application also provides a data transmission device, which is set on the terminal, as shown in FIG. 5 , the device includes:
  • the second receiving unit 501 is configured to receive the first reference signal and the second reference signal sent by the base station;
  • the first reporting unit 502 is configured to report first information to the base station; the first information represents a frequency offset between the first reference signal and the second reference signal measured by the terminal.
  • the first reference signal is a first TRS
  • the second reference signal is a second TRS
  • the device also includes:
  • the third receiving unit is configured to receive the first TCI state and the second TCI state indicated by the base station before the first information reported to the base station; wherein, the first TCI state and the first reference signal associated; the second TCI state is associated with the second reference signal; or,
  • the device also includes:
  • the fourth receiving unit is configured to receive the first configuration sent by the base station before the first information reported to the base station; wherein,
  • the first configuration is used to configure the terminal to report the frequency offset representing the first reference signal relative to the second reference signal, and/or, representing the frequency offset of the signal sent by the second reference signal relative to the first reference signal A frequency offset of a reference signal.
  • the device also includes:
  • the fifth receiving unit is configured to receive the second configuration sent by the base station before the first information reported to the base station; wherein,
  • the second configuration is used to configure the terminal to report the first information in one of the following ways:
  • the first information is represented by a bit value with a set number of digits.
  • the second receiving unit 501 , the first reporting unit 502 , the third receiving unit, the fourth receiving unit and the fifth receiving unit may be implemented by a communication interface in the data transmission device.
  • the data transmission device provided in the above-mentioned embodiment performs data transmission
  • the division of the above-mentioned program modules is used as an example for illustration.
  • the above-mentioned processing allocation can be completed by different program modules according to needs. That is, the internal structure of the device is divided into different program modules to complete all or part of the processing described above.
  • the data transmission device and the data transmission method embodiments provided in the above embodiments belong to the same concept, and the specific implementation process thereof is detailed in the method embodiments, and will not be repeated here.
  • the embodiment of the present application also provides a base station.
  • the base station 600 includes:
  • the first communication interface 601 is capable of exchanging information with other network nodes;
  • the first processor 602 is connected to the first communication interface 601 to implement information exchange with other network nodes, and is configured to execute the methods provided by one or more technical solutions on the base station side when running a computer program. Instead, the computer program is stored on the first memory 603 .
  • the first communication interface 601 is configured to send the first reference signal and the second reference signal to the terminal; receive the first information reported by the terminal; the first information represents the first reference signal and the first reference signal measured by the terminal. frequency offset between second reference signals; and based on the first information, sending PDCCH and/or PDSCH to the terminal.
  • the first reference signal is a first TRS
  • the second reference signal is a second TRS
  • the first communication interface 601 is further configured to indicate the first TCI state and the second TCI state to the terminal before receiving the first information reported by the terminal; wherein, the first TCI The state is associated with the first reference signal; the second TCI state is associated with the second reference signal; or, indicating a third TCI state to the terminal; wherein, the third TCI state is simultaneously associated with the first A reference signal is associated with the second reference signal.
  • the first communication interface 601 is further configured to send the first configuration to the terminal before receiving the first information reported by the terminal; wherein,
  • the first configuration is used to configure the terminal to report the frequency offset of the first reference signal relative to the second reference signal, and/or, the frequency offset of the second reference signal relative to the first reference signal Partial.
  • the first communication interface 601 is further configured to send a second configuration to the terminal before receiving the first information reported by the terminal; wherein,
  • the second configuration is used to configure the terminal to report the first information in one of the following ways:
  • the first information is represented by a bit value with a set number of digits.
  • bus system 604 is configured to enable connection communication between these components.
  • bus system 604 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled as bus system 604 in FIG. 6 .
  • the first memory 603 in the embodiment of the present application is configured to store various types of data to support the operation of the base station 600. Examples of such data include: any computer program configured to operate on base station 600 .
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the first processor 602 or implemented by the first processor 602 .
  • the first processor 602 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the first processor 602 or an instruction in the form of software.
  • the aforementioned first processor 602 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the first processor 602 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the first memory 603, and the first processor 602 reads the information in the first memory 603, and completes the steps of the aforementioned method in combination with its hardware.
  • the base station 600 may be implemented by one or more Application Specific Integrated Circuits (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), field programmable gate array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components Implementation for executing the aforementioned method.
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller controller
  • microcontroller MCU, Micro Controller Unit
  • microprocessor Microprocessor
  • the embodiment of the present application also provides a terminal, as shown in FIG. 7 , the terminal 700 includes:
  • the second communication interface 701 is capable of exchanging information with other network nodes
  • the second processor 702 is connected to the second communication interface 701 to implement information exchange with other network nodes, and is configured to execute the methods provided by one or more technical solutions on the terminal side when running a computer program. Instead, the computer program is stored on the second memory 703 .
  • the second communication interface 701 is configured to receive the first reference signal and the second reference signal sent by the base station; and the first information reported to the base station; the first information represents the first reference signal measured by the terminal The frequency offset between the signal and the second reference signal.
  • the first reference signal is a first TRS
  • the second reference signal is a second TRS
  • the second communication interface 701 is further configured to receive the first TCI state and the second TCI state indicated by the base station before the first information reported to the base station; wherein the first TCI state associated with the first reference signal; the second TCI state is associated with the second reference signal; or, receiving the second TCI state indicated by the base station; wherein the second TCI state is simultaneously associated with the first A reference signal is associated with the second reference signal.
  • the second communication interface 701 is further configured to receive the first configuration sent by the base station; wherein,
  • the first configuration is used to configure the terminal to report the frequency offset representing the first reference signal relative to the second reference signal, and/or, representing the frequency offset of the signal sent by the second reference signal relative to the first reference signal A frequency offset of a reference signal.
  • the second communication interface 701 is further configured to receive the second configuration sent by the base station; wherein,
  • the second configuration is used to configure the terminal to report the first information in one of the following ways:
  • the first information is represented by a bit value with a set number of digits.
  • bus system 704 is configured to enable connection communication between these components.
  • bus system 704 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled as bus system 704 in FIG. 7 .
  • the second memory 703 in the embodiment of the present application is configured to store various types of data to support the operation of the terminal 700 .
  • Examples of such data include: any computer program configured to operate on terminal 700 .
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the second processor 702 or implemented by the second processor 702 .
  • the second processor 702 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the second processor 702 or instructions in the form of software.
  • the aforementioned second processor 702 may be a general-purpose processor, DSP, or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the second processor 702 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the second memory 703, and the second processor 702 reads the information in the second memory 703, and completes the steps of the foregoing method in combination with its hardware.
  • the terminal 700 may be implemented by one or more ASICs, DSPs, PLDs, CPLDs, FPGAs, general-purpose processors, controllers, MCUs, Microprocessors, or other electronic components for performing the aforementioned methods.
  • the memory in this embodiment of the present application may be a volatile memory or a nonvolatile memory, and may also include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (ROM, Read Only Memory), programmable read-only memory (PROM, Programmable Read-Only Memory), erasable programmable read-only memory (EPROM, Erasable Programmable Read-Only Memory) Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), Magnetic Random Access Memory (FRAM, ferromagnetic random access memory), Flash Memory (Flash Memory), Magnetic Surface Memory , CD, or CD-ROM (Compact Disc Read-Only Memory); magnetic surface storage can be disk storage or tape storage.
  • the volatile memory may be random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • RAM Random Access Memory
  • many forms of RAM are available, such as Static Random Access Memory (SRAM, Static Random Access Memory), Synchronous Static Random Access Memory (SSRAM, Synchronous Static Random Access Memory), Dynamic Random Access Memory Memory (DRAM, Dynamic Random Access Memory), synchronous dynamic random access memory (SDRAM, Synchronous Dynamic Random Access Memory), double data rate synchronous dynamic random access memory (DDRSDRAM, Double Data Rate Synchronous Dynamic Random Access Memory), enhanced Synchronous Dynamic Random Access Memory (ESDRAM, Enhanced Synchronous Dynamic Random Access Memory), Synchronous Link Dynamic Random Access Memory (SLDRAM, SyncLink Dynamic Random Access Memory), Direct Memory Bus Random Access Memory (DRRAM, Direct Rambus Random Access Memory ).
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • the embodiment of the present application also provides a storage medium, that is, a computer storage medium, specifically a computer-readable storage medium, for example, including a first memory 603 storing a computer program, and the above computer program can be used by the base station 600
  • the first processor 602 executes to complete the steps described in the foregoing method at the base station side.
  • Another example includes a second memory 703 storing a computer program, and the above computer program can be executed by the second processor 702 of the terminal 700 to complete the steps described in the aforementioned terminal side method.
  • the computer-readable storage medium can be memories such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法、装置、基站、终端及存储介质,其中,方法包括:基站向终端发送第一参考信号和第二参考信号;接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏;基于所述第一信息,向所述终端发送PDCCH和/或PDSCH。

Description

数据传输方法、装置、基站、终端及存储介质
相关申请的交叉引用
本申请基于申请号为202111175908.2、申请日为2021年10月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线技术领域,尤其涉及一种数据传输方法、装置、基站、终端及存储介质。
背景技术
在高铁场景下,终端会接收到来自相邻两个发送和接收点(TRP,Transmission and Reception Point)发出的参考信号,然而,这两个参考信号的多普勒频偏差异较大,例如,终端接收到的两个TRP发出的参考信号的多普勒频偏分别为+1.6kHz和-1.6kHz,这会导致终端的解调性能变差。
发明内容
为解决相关技术问题,本申请实施例提供一种数据传输方法、装置、基站、终端及存储介质。
本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种数据传输方法,应用于基站,包括:
向终端发送第一参考信号和第二参考信号;
接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏;
基于所述第一信息,向所述终端发送物理下行控制信道(PDCCH,Physical Downlink Control Channel)和/或物理下行共享信道(PDSCH,Physical Downlink Shared Channel)。
本申请实施例还提供了一种数据传输方法,应用于终端,包括:
接收基站发送的第一参考信号和第二参考信号;
向基站上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
本申请实施例还提供了一种数据传输装置,包括:
第一发送单元,配置为向终端发送第一参考信号和第二参考信号;
第一接收单元,配置为接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏;
第二发送单元,配置为基于所述第一信息,向所述终端发送PDCCH和/或PDSCH。
本申请实施例还提供了一种数据传输装置,包括:
第二接收单元,配置为接收基站发送的第一参考信号和第二参考信号;
第一上报单元,配置为向基站上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
本申请实施例还提供了一种基站,包括:第一处理器及第一通信接口;其中,
所述第一通信接口,配置为向终端发送第一参考信号和第二参考信号;接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏;以及基于所述第一信息,向所述终端发送PDCCH和/或PDSCH。
本申请实施例还提供了一种终端,包括:第二处理器及第二通信接口;其中,
所述第二通信接口,配置为接收基站发送的第一参考信号和第二参考信号;以及向基站上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
本申请实施例还提供了一种基站,包括:第一处理器和配置为存储能够在处理器上运行的计算机程序的第一存储器,
其中,所述第一处理器配置为运行所述计算机程序时,执行上述基站侧任一数据传输方法的步骤。
本申请实施例还提供了一种终端,包括:第二处理器和配置为存储能够在处理器上运行的计算机程序的第二存储器,
其中,所述第二处理器配置为运行所述计算机程序时,执行上述终端侧任一数据传输方法的步骤。
本申请实施例还提供了一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述任一数据传输方法的步骤。
本申请实施例中,由基站向终端发送第一参考信号和第二参考信号,终端向基站上报测量得到的第一参考信号和第二参考信号之间的频偏,基站基于终端上报的测量得到的频偏,向终端发送PDCCH和/或PDSCH。基于上述方案,可以实现基站对终端的下行多普勒频率预补偿,这样,在终端接收到的多个参考信号之间的多普勒频偏差异较大的场景下,例如,当终端处于高速行进的状态下,可以通过频率预补偿,使得后续发出的PDCCH和/或PDSCH到达终端时的多普勒频偏相同,从而能够有效提升终端的解调性能。
附图说明
图1为本申请实施例一种数据传输方法流程示意图;
图2为本申请实施例另一种数据传输方法流程示意图;
图3为本申请应用实施例场景示意图;
图4为本申请实施例一种数据传输装置结构示意图;
图5为本申请实施例另一种数据传输装置结构示意图;
图6为本申请实施例基站结构示意图;
图7为本申请实施例终端结构示意图。
具体实施方式
当终端处于高速行进的状态下,例如,在高铁场景下,终端会接收到来自相邻两个TRP发出的参考信号,然而,这两个参考信号的多普勒频偏差异较大。例如,终端接收到的两个TRP发出的参考信号的多普勒频偏分别为+1.6kHz和-1.6kHz,这会导致终端的解调性能变差。
基于此,在本申请的各实施例中,由基站向终端发送第一参考信号和第二参考信号,终端向基站上报测量得到的第一参考信号和第二参考信号之间的频偏,基站基于终端上报的测量得到的频偏,向终端发送PDCCH和/或PDSCH。基于上述方案,可以实现基站对终端的下行多普勒频率预补偿,这样,在终端接收到的多个参考信号之间的多普勒频偏差异较大的场景下,例如,当终端处于高速行进的状态下,可以通过频率预补偿,使得后续发出的PDCCH和/或PDSCH到达终端时的多普勒频偏相同,从而能够有效提升终端的解调性能。
下面结合附图及实施例对本申请作进一步详细的描述。
本申请实施例提供了一种数据传输方法,应用于基站,如图1所示,该方法包括:
步骤101:向终端发送第一参考信号和第二参考信号。
这里,基站向终端发送两个参考信号,并且,两个参考信号通过设置在不同地理位置上的发射点发出。实际应用时,基站发送的参考信号可以为跟踪参考信号(TRS,Tracking Reference Signal),并且基于两个TRP分别发送TRS。因此,在一实施例中,所述第一参考信号为第一TRS,所述第二参考信号为第二TRS,其中,第一TRS由第一TRP发送,第二TRS由第二TRP发送。
步骤102:接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
由于终端与两个参考信号的发射位置之间的距离或位置关系不同,终端对接收到的参考信号进行频率测量,可得到第一参考信号与第二参考信号之间存在频率偏差的测量结果。例如,当终端处于两个TRP中间时,在3.5GHz频段下,来自两个TRP的TRS的多普勒频偏分别为+1.6GHz和-1.6GHz。这里,终端在测量得到第一参考信号与第二参考信号之间的频偏之后,将测得的频偏上报给基站。
步骤103:基于所述第一信息,向所述终端发送PDCCH和/或PDSCH。
这里,基于终端测量得到第一参考信号与第二参考信号之间的频偏,基站在对应的发射点发送PDCCH和/或PDSCH时,进行频率预补偿,使得两个发射点发送的PDCCH和/或PDSCH到达终端的时候频率偏差相同或者频率偏差在可忽略不计的范围内。具体地,基站可以选择在两个发射点中的其中一个进 行频率预补偿,或者在两个发射点发送PDCCH和/或PDSCH时都进行频率预补偿。这样,基站后续发出的PDCCH和/或PDSCH在到达终端时的多普勒频偏相同或几乎相同,从而能够有效提升终端的解调性能。
在一实施例中,在所述接收终端上报的第一信息之前,所述方法还包括:
向所述终端指示第一传输配置指示(TCI,Transmission Configuration Indication)状态和第二TCI状态;其中,所述第一TCI状态与所述第一参考信号关联;所述第二TCI状态与所述第二参考信号关联;或者,
向所述终端指示第三TCI状态;其中,所述第三TCI状态同时与所述第一参考信号和所述第二参考信号关联。
这里,基站向终端指示第一TCI状态(TCI state)和第二TCI状态,其中,第一TCI状态关联第一参考信号的信息,第二TCI状态关联第二参考信号的信息,这样,通过第一TCI状态,基站通知终端在下行传输上使用了与第一TCI状态关联的第一参考信号相同的波束或空间滤波器,通过第二TCI状态,基站通知终端在下行传输上使用了与第二TCI状态关联的第二参考信号相同的波束或空间滤波器。或者,基站向终端指示第三TCI状态,第三TCI状态与第一参考信号和第二参考信号同时关联,这样,通过第三TCI状态,基站通知终端在下行传输上使用了与第一参考信号相同的波束或空间滤波器,以及在下行传输上使用了与第二参考信号相同的波束或空间滤波器。
在一实施例中,在所述接收终端上报的第一信息之前,所述方法还包括:
向所述终端发送第一配置;其中,
所述第一配置用于配置所述终端上报表征所述第一参考信号相对于所述第二参考信号的频偏,和/或,表征所述第二参考信号相对于所述第一参考信号的频偏。
这里,基站可以通过发送第一配置,指示终端上报第一参考信号相对于第二参考信号的频偏,和/或,所述第二参考信号相对于所述第一参考信号的频偏。
或者,在基站向终端指示了第一TCI状态和第二TCI状态的情况下,基站也可以通过发送第一配置,指示终端上报测得的第一TCI状态相对于第二TCI状态的频偏,和/或,第二TCI状态相对于第一TCI状态的频偏。
在一实施例中,在所述接收终端上报的第一信息之前,所述方法还包括:
向所述终端发送第二配置;其中,
所述第二配置用于配置所述终端通过以下方式之一上报所述第一信息:
周期性上报;
半静态调度(SPS,Semi-Persistent Scheduling)上报;
触发条件上报。
其中,周期性上报方式下,终端每隔设定周期向基站上报关于第一参考信号和第二参考信号之间的频偏的测量结果;SPS上报方式下,每隔设定周期,终端使用SPS资源来上报关于第一参考信号和第二参考信号之间的频偏的测量结果;触发条件上报方式下,通过设置对应的触发条件,例如,设置对应的上报阈值,当终端测量得到的第一参考信号和第二参考信号之间的频偏大于对应的上报阈值的情况下,终端上报关于第一参考信号和第二参考信号之间的频偏 的测量结果。
实际应用时,为了更高效地对终端测得的频偏进行传送,在一实施例中,所述第一信息通过设定位数的比特值表示。
例如,在3.5GHz频段下,将终端测量得到的频偏量化为7位的比特值,量化精度为30Hz,即,用“1000000”表示0Hz的频偏,用“0111111”表示-30Hz的频偏,用“0111110”表示-60Hz的频偏,……,用“0000000”表示-1920Hz的频偏,用“1000001”表示30Hz的频偏,用“1000010”表示60Hz的频偏,……,用“1111111”表示1920Hz的频偏。那么,如果终端测量的频偏为1200Hz,那么终端向基站上报的第一信息可以为“1100100”。
本申请实施例还提供了一种数据传输方法,应用于终端,如图2所示,该方法包括:
步骤201:接收基站发送的第一参考信号和第二参考信号。
这里,基站向终端发送两个参考信号,并且,两个参考信号通过设置在不同地理位置上的发射点发出。实际应用时,基站发送的参考信号可以为TRS,并且基于两个TRP分别发送TRS。因此,在一实施例中,所述第一参考信号为第一TRS,所述第二参考信号为第二TRS,其中,第一TRS由第一TRP发送,第二TRS由第二TRP发送。
步骤202:向基站上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
由于终端与两个参考信号的发射位置之间的距离或位置关系不同,终端对接收到的参考信号进行频率测量,会得到第一参考信号与第二参考信号之间存在频率偏差的测量结果。例如,当终端处于两个TRP中间时,在3.5GHz频段下,来自两个TRP的TRS的多普勒频偏分别为+1.6GHz和-1.6GHz。这里,终端在测量得到第一参考信号与第二参考信号之间的频偏之后,将测得的频偏上报给基站。
基于终端测量得到第一参考信号与第二参考信号之间的频偏,基站在对应的发射点发送PDCCH和/或PDSCH的时候,进行频率预补偿,使得两个发射点发送的PDCCH和/或PDSCH到达终端的时候频率偏差相同或者频率偏差在可忽略不计的范围内。具体地,基站可以选择在两个发射点中的其中一个进行频率预补偿,或者在两个发射点发送PDCCH和/或PDSCH时都进行频率预补偿。这样,基站后续发出的PDCCH和/或PDSCH在到达终端时的多普勒频偏相同或几乎相同,从而能够有效提升终端的解调性能。
在一实施例中,在所述向基站上报的第一信息之前,所述方法还包括:
接收所述基站指示的第一TCI状态和第二TCI状态;其中,所述第一TCI状态与所述第一参考信号关联;所述第二TCI状态与所述第二参考信号关联;或者,
接收所述基站指示的第三TCI状态;其中,所述第三TCI状态同时与所述第一参考信号和所述第二参考信号关联。
这里,基站向终端指示第一TCI状态(TCI state)和第二TCI状态,其中,第一TCI状态关联第一参考信号的信息,第二TCI状态关联第二参考信号的信 息,这样,通过第一TCI状态,基站通知终端在下行传输上使用了与第一TCI状态关联的第一参考信号相同的波束或空间滤波器,通过第二TCI状态,基站通知终端在下行传输上使用了与第二TCI状态关联的第二参考信号相同的波束或空间滤波器。或者,基站向终端指示第三TCI状态,第三TCI状态与第一参考信号和第二参考信号同时关联,这样,通过第三TCI状态,基站通知终端在下行传输上使用了与第一参考信号相同的波束或空间滤波器,以及在下行传输上使用了与第二参考信号相同的波束或空间滤波器。
在一实施例中,在所述向基站上报的第一信息之前,所述方法还包括:
接收所述基站发送的第一配置;其中,
所述第一配置用于配置所述终端上报表征所述第一参考信号相对于所述第二参考信号的频偏,和/或,表征所述第二参考信号发出的信号相对于所述第一参考信号的频偏。
这里,基站可以通过发送第一配置,指示终端上报第一参考信号相对于第二参考信号的频偏,和/或,所述第二参考信号相对于所述第一参考信号的频偏。
或者,在基站向终端指示了第一TCI状态和第二TCI状态的情况下,基站也可以通过发送第一配置,指示终端上报测得的第一TCI状态相对于第二TCI状态的频偏,和/或,第二TCI状态相对于第一TCI状态的频偏。
在一实施例中,在所述向基站上报的第一信息之前,所述方法还包括:
接收所述基站发送的第二配置;其中,
所述第二配置用于配置所述终端通过以下方式之一上报所述第一信息:
周期性上报;
半静态调度上报;
触发条件上报。
其中,周期性上报方式下,终端每隔设定周期向基站上报关于第一参考信号和第二参考信号之间的频偏的测量结果;SPS上报方式下,每隔设定周期,终端使用SPS资源来上报关于第一参考信号和第二参考信号之间的频偏的测量结果;触发条件上报方式下,通过设置对应的触发条件,例如,设置对应的上报阈值,当终端测量得到的第一参考信号和第二参考信号之间的频偏大于对应的上报阈值的情况下,终端上报关于第一参考信号和第二参考信号之间的频偏的测量结果。
实际应用时,为了更高效地对终端测得的频偏进行传送,在一实施例中,所述第一信息通过设定位数的比特值表示。
例如,在3.5GHz频段下,将终端测量得到的频偏量化为7位的比特值,量化精度为30Hz,即,用“1000000”表示0Hz的频偏,用“0111111”表示-30Hz的频偏,用“0111110”表示-60Hz的频偏,……,用“0000000”表示-1920Hz的频偏,用“1000001”表示30Hz的频偏,用“1000010”表示60Hz的频偏,……,用“1111111”表示1920Hz的频偏。那么,如果终端测量的频偏为1200Hz,那么终端向基站上报的第一信息可以为“1100100”。
接下来通过一些实施例对本申请方案进行进一步的说明:
结合图3的高铁场景,在本应用实施例中,TRP 0和TRP 1为连接到相同 小区的2个TRP,假设高铁用户,即终端位于图3中示出的位置,TRP 0和TRP 1分别发送TRS 0和TRS 1,也就是说,TRS 0和TRS 1采用一种TRP specific的发送方式,而不是单频网络(SFN,Single Frequency Network)的发送方式。同时,PDCCH和PDSCH可以由TRP 0和TRP 1同时发送,即采用了SFN的发送方式。同时,基站配置终端上报TRS 0和TRS 1之间的频率偏差Delta_f=f_TRS 1-f_TRS 0,即频率偏差Delta_f等于终端测量得到的TRS 1的频率f_TRS 0相对于TRS 0的频率f_TRS 0的偏差。
在3.5GHz频段下,将终端测量得到的频率偏差量化为7位的比特值,量化精度为30Hz,那么,假设终端在图3中示出的位置上测得Delta_f=f_TRS 0-f_TRS 1=1200Hz,则终端向基站上报对应的比特值“1100100”。基站根据终端上报的比特值,在发送PDCCH和/或PDSCH的时候,TRP 0基于载波频率f 0=3.5GHz进行发送,而TRP 1基于载波频率f 1=f 0-Delta_f进行发送。这样,终端接收到来自TRP 0和TRP 1的PDCCH和/或PDSCH的频率偏差相同,从而能够有效地改善终端的解调性能。
本申请实施例提供的方案,可以实现基站对终端的下行多普勒频率预补偿,这样,在终端接收到的多个参考信号之间的多普勒频偏差异较大的场景下,例如,当终端处于高速行进的状态下,可以通过频率预补偿,使得后续发出的PDCCH和/或PDSCH到达终端时的多普勒频偏相同,从而能够有效提升终端的解调性能。
为了实现本申请实施例基站侧的方法,本申请实施例还提供了一种数据传输装置,设置在基站上,如图4所示,该装置包括:
第一发送单元401,配置为向终端发送第一参考信号和第二参考信号;
第一接收单元402,配置为接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏;
第二发送单元403,配置为基于所述第一信息,向所述终端发送PDCCH和/或PDSCH。
其中,在一实施例中,所述第一参考信号为第一TRS,所述第二参考信号为第二TRS。
在一实施例中,所述装置还包括:
第一指示单元,配置为在所述接收终端上报的第一信息之前,向所述终端指示第一TCI状态和第二TCI状态;其中,所述第一TCI状态与所述第一参考信号关联;所述第二TCI状态与所述第二参考信号关联;或者,
向所述终端指示第三TCI状态;其中,所述第三TCI状态同时与所述第一参考信号和所述第二参考信号关联。
在一实施例中,所述装置还包括:
第三发送单元,配置为在所述接收终端上报的第一信息之前,向所述终端发送第一配置;其中,
所述第一配置用于配置所述终端上报所述第一参考信号相对于所述第二参考信号的频偏,和/或,所述第二参考信号相对于所述第一参考信号的频偏。
在一实施例中,所述装置还包括:
第四发送单元,配置为在所述接收终端上报的第一信息之前,向所述终端发送第二配置;其中,
所述第二配置用于配置所述终端通过以下方式之一上报所述第一信息:
周期性上报;
半静态调度上报;
触发条件上报。
在一实施例中,所述第一信息通过设定位数的比特值表示。
实际应用时,所述第一发送单元401、第一接收单元402、第二发送单元403、第一指示单元、第三发送单元和第四发送单元可由数据传输装置中的通信接口实现。
为了实现本申请实施例终端侧的方法,本申请实施例还提供了一种数据传输装置,设置在终端上,如图5所示,该装置包括:
第二接收单元501,配置为接收基站发送的第一参考信号和第二参考信号;
第一上报单元502,配置为向基站上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
其中,在一实施例中,所述第一参考信号为第一TRS,所述第二参考信号为第二TRS。
在一实施例中,所述装置还包括:
第三接收单元,配置为在所述向基站上报的第一信息之前,接收所述基站指示的第一TCI状态和第二TCI状态;其中,所述第一TCI状态与所述第一参考信号关联;所述第二TCI状态与所述第二参考信号关联;或者,
接收所述基站指示的第三TCI状态;其中,所述第三TCI状态同时与所述第一参考信号和所述第二参考信号关联。
在一实施例中,所述装置还包括:
第四接收单元,配置为在所述向基站上报的第一信息之前,接收所述基站发送的第一配置;其中,
所述第一配置用于配置所述终端上报表征所述第一参考信号相对于所述第二参考信号的频偏,和/或,表征所述第二参考信号发出的信号相对于所述第一参考信号的频偏。
在一实施例中,所述装置还包括:
第五接收单元,配置为在所述向基站上报的第一信息之前,接收所述基站发送的第二配置;其中,
所述第二配置用于配置所述终端通过以下方式之一上报所述第一信息:
周期性上报;
半静态调度上报;
触发条件上报。
在一实施例中,所述第一信息通过设定位数的比特值表示。
实际应用时,所述第二接收单元501、第一上报单元502、第三接收单元、第四接收单元和第五接收单元可由数据传输装置中的通信接口实现。
需要说明的是:上述实施例提供的数据传输装置在进行数据传输时,仅以 上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的数据传输装置与数据传输方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
基于上述程序模块的硬件实现,且为了实现本申请实施例基站侧的方法,本申请实施例还提供了一种基站,如图6所示,基站600包括:
第一通信接口601,能够与其他网络节点进行信息交互;
第一处理器602,与所述第一通信接口601连接,以实现与其他网络节点进行信息交互,配置为运行计算机程序时,执行上述基站侧一个或多个技术方案提供的方法。而所述计算机程序存储在第一存储器603上。
具体地,所述第一通信接口601,配置为向终端发送第一参考信号和第二参考信号;接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏;以及基于所述第一信息,向所述终端发送PDCCH和/或PDSCH。
其中,在一实施例中,所述第一参考信号为第一TRS,所述第二参考信号为第二TRS。
在一实施例中,所述第一通信接口601,还配置为在所述接收终端上报的第一信息之前向所述终端指示第一TCI状态和第二TCI状态;其中,所述第一TCI状态与所述第一参考信号关联;所述第二TCI状态与所述第二参考信号关联;或者,向所述终端指示第三TCI状态;其中,所述第三TCI状态同时与所述第一参考信号和所述第二参考信号关联。
在一实施例中,所述第一通信接口601,还配置为在所述接收终端上报的第一信息之前向所述终端发送第一配置;其中,
所述第一配置用于配置所述终端上报所述第一参考信号相对于所述第二参考信号的频偏,和/或,所述第二参考信号相对于所述第一参考信号的频偏。
在一实施例中,所述第一通信接口601,还配置为在所述接收终端上报的第一信息之前向所述终端发送第二配置;其中,
所述第二配置用于配置所述终端通过以下方式之一上报所述第一信息:
周期性上报;
半静态调度上报;
触发条件上报。
在一实施例中,所述第一信息通过设定位数的比特值表示。
需要说明的是:第一处理器602和第一通信接口601的具体处理过程可参照上述方法理解。
当然,实际应用时,基站600中的各个组件通过总线系统604耦合在一起。可理解,总线系统604配置为实现这些组件之间的连接通信。总线系统604除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线系统604。
本申请实施例中的第一存储器603配置为存储各种类型的数据以支持基站 600的操作。这些数据的示例包括:配置为在基站600上操作的任何计算机程序。
上述本申请实施例揭示的方法可以应用于所述第一处理器602中,或者由所述第一处理器602实现。所述第一处理器602可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过所述第一处理器602中的硬件的集成逻辑电路或者软件形式的指令完成。上述的所述第一处理器602可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。所述第一处理器602可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第一存储器603,所述第一处理器602读取第一存储器603中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,基站600可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或者其他电子元件实现,用于执行前述方法。
基于上述程序模块的硬件实现,且为了实现本申请实施例终端侧的方法,本申请实施例还提供了一种终端,如图7所示,该终端700包括:
第二通信接口701,能够与其他网络节点进行信息交互;
第二处理器702,与所述第二通信接口701连接,以实现与其他网络节点进行信息交互,配置为运行计算机程序时,执行上述终端侧一个或多个技术方案提供的方法。而所述计算机程序存储在第二存储器703上。
具体地,所述第二通信接口701,配置为接收基站发送的第一参考信号和第二参考信号;以及向基站上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
其中,在一实施例中,所述第一参考信号为第一TRS,所述第二参考信号为第二TRS。
在一实施例中,第二通信接口701,还配置为在所述向基站上报的第一信息之前接收所述基站指示的第一TCI状态和第二TCI状态;其中,所述第一TCI状态与所述第一参考信号关联;所述第二TCI状态与所述第二参考信号关联;或者,接收所述基站指示的第二TCI状态;其中,所述第二TCI状态同时与所述第一参考信号和所述第二参考信号关联。
在一实施例中,第二通信接口701,还配置为接收所述基站发送的第一配置;其中,
所述第一配置用于配置所述终端上报表征所述第一参考信号相对于所述第二参考信号的频偏,和/或,表征所述第二参考信号发出的信号相对于所述第一 参考信号的频偏。
在一实施例中,第二通信接口701,还配置为接收所述基站发送的第二配置;其中,
所述第二配置用于配置所述终端通过以下方式之一上报所述第一信息:
周期性上报;
半静态调度上报;
触发条件上报。
在一实施例中,所述第一信息通过设定位数的比特值表示。
当然,实际应用时,终端700中的各个组件通过总线系统704耦合在一起。可理解,总线系统704配置为实现这些组件之间的连接通信。总线系统704除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统704。
本申请实施例中的第二存储器703配置为存储各种类型的数据以支持终端700操作。这些数据的示例包括:配置为在终端700上操作的任何计算机程序。
上述本申请实施例揭示的方法可以应用于所述第二处理器702中,或者由所述第二处理器702实现。所述第二处理器702可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过所述第二处理器702中的硬件的集成逻辑电路或者软件形式的指令完成。上述的所述第二处理器702可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。所述第二处理器702可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第二存储器703,所述第二处理器702读取第二存储器703中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,终端700可以被一个或多个ASIC、DSP、PLD、CPLD、FPGA、通用处理器、控制器、MCU、Microprocessor、或其他电子元件实现,用于执行前述方法。
可以理解,本申请实施例的存储器(第一存储器603、第二存储器703)可以是易失性存储器或者非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用, 例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在示例性实施例中,本申请实施例还提供了一种存储介质,即计算机存储介质,具体为计算机可读存储介质,例如包括存储计算机程序的第一存储器603,上述计算机程序可由基站600的第一处理器602执行,以完成前述基站侧方法所述步骤。再比如包括存储计算机程序的第二存储器703,上述计算机程序可由终端700的第二处理器702执行,以完成前述终端侧方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
需要说明的是:“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多个中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。

Claims (19)

  1. 一种数据传输方法,应用于基站,包括:
    向终端发送第一参考信号和第二参考信号;
    接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏;
    基于所述第一信息,向所述终端发送物理下行控制信道PDCCH和/或物理下行共享信道PDSCH。
  2. 根据权利要求1所述的方法,其中,所述第一参考信号为第一跟踪参考信号TRS,所述第二参考信号为第二TRS。
  3. 根据权利要求1或2所述的方法,其中,在所述接收终端上报的第一信息之前,所述方法还包括:
    向所述终端指示第一传输配置指示TCI状态和第二TCI状态;其中,所述第一TCI状态与所述第一参考信号关联;所述第二TCI状态与所述第二参考信号关联;或者,
    向所述终端指示第三TCI状态;其中,所述第三TCI状态同时与所述第一参考信号和所述第二参考信号关联。
  4. 根据权利要求1所述的方法,其中,在所述接收终端上报的第一信息之前,所述方法还包括:
    向所述终端发送第一配置;其中,
    所述第一配置用于配置所述终端上报所述第一参考信号相对于所述第二参考信号的频偏,和/或,所述第二参考信号相对于所述第一参考信号的频偏。
  5. 根据权利要求1至3任一项所述的方法,其中,在所述接收终端上报的第一信息之前,所述方法还包括:
    向所述终端发送第二配置;其中,
    所述第二配置用于配置所述终端通过以下方式之一上报所述第一信息:
    周期性上报;
    半静态调度上报;
    触发条件上报。
  6. 根据权利要求1所述的方法,其中,所述第一信息通过设定位数的比特值表示。
  7. 一种数据传输方法,应用于终端,包括:
    接收基站发送的第一参考信号和第二参考信号;
    向基站上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
  8. 根据权利要求7所述的方法,其中,所述第一参考信号为第一TRS,所述第二参考信号为第二TRS。
  9. 根据权利要求7或8所述的方法,其中,在所述向基站上报的第一信息之前,所述方法还包括:
    接收所述基站指示的第一TCI状态和第二TCI状态;其中,所述第一TCI状态与所述第一参考信号关联;所述第二TCI状态与所述第二参考信号关联;或者,
    接收所述基站指示的第三TCI状态;其中,所述第三TCI状态同时与所述第一参考信号和所述第二参考信号关联。
  10. 根据权利要求7所述的方法,其中,在所述向基站上报的第一信息之前,所述方法还包括:
    接收所述基站发送的第一配置;其中,
    所述第一配置用于配置所述终端上报表征所述第一参考信号相对于所述第二参考信号的频偏,和/或,表征所述第二参考信号发出的信号相对于所述第一参考信号的频偏。
  11. 根据权利要求7所述的方法,其中,在所述向基站上报的第一信息之前,所述方法还包括:
    接收所述基站发送的第二配置;其中,
    所述第二配置用于配置所述终端通过以下方式之一上报所述第一信息:
    周期性上报;
    半静态调度上报;
    触发条件上报。
  12. 根据权利要求7所述的方法,其中,所述第一信息通过设定位数的比特值表示。
  13. 一种数据传输装置,包括:
    第一发送单元,配置为向终端发送第一参考信号和第二参考信号;
    第一接收单元,配置为接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏;
    第二发送单元,配置为基于所述第一信息,向所述终端发送PDCCH和/或PDSCH。
  14. 一种数据传输装置,包括:
    第二接收单元,配置为接收基站发送的第一参考信号和第二参考信号;
    第一上报单元,配置为向基站上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
  15. 一种基站,包括:第一处理器及第一通信接口;其中,
    所述第一通信接口,配置为向终端发送第一参考信号和第二参考信号;接收终端上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏;以及基于所述第一信息,向所述终端发送PDCCH和/或PDSCH。
  16. 一种终端,包括:第二处理器及第二通信接口;其中,
    所述第二通信接口,配置为接收基站发送的第一参考信号和第二参考信号;以及向基站上报的第一信息;所述第一信息表征所述终端测量的第一参考信号与第二参考信号之间的频偏。
  17. 一种基站,包括:第一处理器和配置为存储能够在处理器上运行的计 算机程序的第一存储器,
    其中,所述第一处理器配置为运行所述计算机程序时,执行权利要求1至6任一项所述方法的步骤。
  18. 一种终端,包括:第二处理器和配置为存储能够在处理器上运行的计算机程序的第二存储器,
    其中,所述第二处理器配置为运行所述计算机程序时,执行权利要求7至12任一项所述方法的步骤。
  19. 一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至6任一项所述方法的步骤,或者实现权利要求7至12任一项所述方法的步骤。
PCT/CN2022/124048 2021-10-09 2022-10-09 数据传输方法、装置、基站、终端及存储介质 WO2023056965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111175908.2A CN115967598A (zh) 2021-10-09 2021-10-09 数据传输方法、装置、基站、终端及存储介质
CN202111175908.2 2021-10-09

Publications (1)

Publication Number Publication Date
WO2023056965A1 true WO2023056965A1 (zh) 2023-04-13

Family

ID=85803935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124048 WO2023056965A1 (zh) 2021-10-09 2022-10-09 数据传输方法、装置、基站、终端及存储介质

Country Status (2)

Country Link
CN (1) CN115967598A (zh)
WO (1) WO2023056965A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160142189A1 (en) * 2014-11-07 2016-05-19 Electronics And Telecommunications Research Institute Method and apparatus for transmitting reference signal, method and apparatus for measuring and reporting channel state information, and method for configuring the same
CN108234371A (zh) * 2018-01-03 2018-06-29 重庆邮电大学 一种高速场景下的频偏估计方法
CN113364714A (zh) * 2020-03-05 2021-09-07 大唐移动通信设备有限公司 频率补偿方法、装置、网络侧设备、终端及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160142189A1 (en) * 2014-11-07 2016-05-19 Electronics And Telecommunications Research Institute Method and apparatus for transmitting reference signal, method and apparatus for measuring and reporting channel state information, and method for configuring the same
CN108234371A (zh) * 2018-01-03 2018-06-29 重庆邮电大学 一种高速场景下的频偏估计方法
CN113364714A (zh) * 2020-03-05 2021-09-07 大唐移动通信设备有限公司 频率补偿方法、装置、网络侧设备、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Further discussion and evaluation on HST-SFN transmission schemes", 3GPP TSG RAN WG1 #104B-E, R1-2102510, 6 April 2021 (2021-04-06), XP051993114 *

Also Published As

Publication number Publication date
CN115967598A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
JP7179156B2 (ja) 信号伝送方法及び通信機器
WO2020156484A1 (zh) 传输信号的方法和装置
WO2019128873A1 (zh) 一种波束训练方法及相关设备
US20230194648A1 (en) Method for positioning, terminal, and network-side device
CN111586831B (zh) 信号传输方法与装置
WO2023213194A1 (zh) 传输配置指示的指示方法、装置、终端、基站及存储介质
WO2021008581A1 (zh) 用于定位的方法和通信装置
WO2021008432A1 (zh) 处理方法及设备
US11357027B2 (en) Uplink grant-free transmission method in URLLC, terminal side device and network side device
CN107105498B (zh) 定位方法和装置
US11222545B2 (en) Technologies for providing signal quality based route management for unmanned aerial vehicles
US20200003891A1 (en) Method and apparatus for determining a position of a terminal
TW201935946A (zh) 資源上報的方法、終端設備和網路設備
WO2019157801A1 (zh) 资源上报的方法、终端设备和网络设备
WO2021046820A1 (zh) 一种测量上报方法及装置
WO2022017250A1 (zh) 用于波束训练的方法和装置
WO2021160094A1 (zh) 传输方法及设备
WO2023056965A1 (zh) 数据传输方法、装置、基站、终端及存储介质
CN114467266B (zh) 发送角度测量结果的方法和装置
WO2018098746A1 (zh) 一种同步时间误差修正方法及设备
WO2022228050A1 (zh) 测量方法、装置、终端及存储介质
WO2023222079A1 (zh) 配置方法、装置、相关设备及存储介质
WO2022133931A1 (en) Systems and methods for reporting information of reference signals
WO2024000586A1 (zh) 无线通信方法、装置、设备、存储介质、芯片及程序产品
WO2023216791A1 (zh) 一种定位方法、装置、存储介质及芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877979

Country of ref document: EP

Kind code of ref document: A1