WO2024045823A1 - 参考信号处理方法、装置及系统 - Google Patents

参考信号处理方法、装置及系统 Download PDF

Info

Publication number
WO2024045823A1
WO2024045823A1 PCT/CN2023/102821 CN2023102821W WO2024045823A1 WO 2024045823 A1 WO2024045823 A1 WO 2024045823A1 CN 2023102821 W CN2023102821 W CN 2023102821W WO 2024045823 A1 WO2024045823 A1 WO 2024045823A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal set
signals
reference signals
beams
Prior art date
Application number
PCT/CN2023/102821
Other languages
English (en)
French (fr)
Inventor
曹蔚
刘凤威
樊波
袁世通
李芳�
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045823A1 publication Critical patent/WO2024045823A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communication technology, and in particular, to a reference signal processing method, device and system.
  • the terminal device needs to measure all wireless signals sent by the network device for beam measurement before it can adjust the beam.
  • the width of the beams used by network equipment is getting narrower and narrower.
  • the coverage area of beam tracking remains unchanged, the number of beams used by network equipment will increase, and the number of wireless signals required to be measured by terminal equipment will also increase, resulting in higher power consumption of terminal equipment. If the number of wireless signals measured by the terminal device remains unchanged, the coverage area of the beam tracking becomes smaller, and the network equipment needs to frequently reconfigure the beam to increase the coverage area of the beam tracking, otherwise beam failure will easily occur.
  • This application provides a reference signal processing method, device and system, which can reduce the measurement volume and energy consumption of terminal equipment, eliminate the need for network equipment to reconfigure reference signals, and improve the performance of communication systems.
  • this application provides a reference signal processing method, which method includes:
  • the first message includes spatial position information of the beam corresponding to the first reference signal set, and the first reference signal set includes one or more reference signals;
  • an updated second reference signal set is obtained.
  • One or more reference signals are included in the first set of reference signals.
  • the method also includes:
  • this application provides a reference signal processing method, which method includes:
  • the first message includes spatial position information of the beam corresponding to the first reference signal set
  • the first reference signal set includes one or more reference signals
  • the spatial position information of the beam corresponding to the first reference signal set The location information is used by the terminal device to obtain an updated second reference signal set based on the measurement results of one or more reference signals in the historical second reference signal set and the spatial location information of the beam corresponding to the first reference signal set.
  • One or more reference signals in the second reference signal set are included in the first reference signal set;
  • the reference signal in the third reference signal set is sent to the terminal device.
  • the first message also includes time-frequency resource information of the third reference signal set, and the time-frequency resource information of the third reference signal set is used by the terminal device to refer to the updated second reference signal set.
  • the signals are measured, and one or more reference signals in the updated second reference signal set are included in the third reference signal set.
  • this application provides a communication device, which includes:
  • a transceiver unit configured to receive a first message sent by the network device, where the first message includes a waveform corresponding to the first reference signal set.
  • the spatial position information of the beam, the first reference signal set includes one or more reference signals;
  • a processing unit configured to obtain an updated second reference signal set based on the measurement results of one or more reference signals in the historical second reference signal set and the spatial position information of the beam corresponding to the first reference signal set.
  • One or more reference signals in the reference signal set are included in the first reference signal set.
  • the processing unit is also configured to measure the reference signals in the updated second reference signal set to obtain a measurement result.
  • this application provides a communication device, which includes:
  • a transceiver unit configured to send a first message to the terminal device.
  • the first message includes spatial position information of the beam corresponding to the first reference signal set.
  • the first reference signal set includes one or more reference signals.
  • the first reference signal set The spatial position information of the corresponding beam is used by the terminal device to obtain the updated second reference signal based on the measurement results of one or more reference signals in the historical second reference signal set and the spatial position information of the beam corresponding to the first reference signal set.
  • a reference signal set, one or more reference signals in the second reference signal set are included in the first reference signal set;
  • the transceiver unit is also configured to send the reference signal in the third reference signal set to the terminal device.
  • the first message also includes time-frequency resource information of the third reference signal set, and the time-frequency resource information of the third reference signal set is used by the terminal device to refer to the updated second reference signal set.
  • the signals are measured, and one or more reference signals in the updated second reference signal set are included in the third reference signal set.
  • the second reference signal set mentioned may include a historical second reference signal set and an updated second reference signal set. Therefore, one or more reference signals in the historical second reference signal set are included in the first reference signal set. One reference signal and multiple reference signals in the updated second reference signal set are included in the first reference signal set.
  • the spatial position information of the beam corresponding to the first reference signal set includes: the size of the coverage range of the beam corresponding to each reference signal in the first reference signal set and/or location.
  • the size and position of the coverage area of the beam corresponding to any reference signal includes one or more of the following expressions:
  • the starting coordinates and ending coordinates of the beam in the horizontal direction and the starting coordinates and ending coordinates of the beam in the vertical direction;
  • the starting coordinate of the beam in the vertical direction, and the width of the beam in the horizontal and vertical directions are arranged.
  • the spatial position information of the beam corresponding to the first reference signal set includes:
  • the arrangement type of any reference signal in the first reference signal set is used to indicate: the arrangement of the beam corresponding to any reference signal in the horizontal direction.
  • the spatial position information of the beam corresponding to the first reference signal set also includes:
  • Mapping rules between one or more other reference signals in the first reference signal set and one or more reference signals in the first reference signal set, one or more other reference signals in the first reference signal set The width ratio in the horizontal direction between the corresponding beam and the beam corresponding to one or more reference signals in the first reference signal set, or the width ratio in the horizontal direction between the beam corresponding to one or more other reference signals in the first reference signal set and the first reference signal set.
  • mapping rule between any other reference signal in the first reference signal set and any one reference signal in the first reference signal set is used to indicate : First reference signal set The corresponding relationship between the beam corresponding to any other reference signal in the combination and the beam corresponding to any reference signal in the first reference signal set.
  • the spatial position information of the beam corresponding to the first reference signal set includes: the arrangement relationship of one or more reference signal type sets in the first reference signal set , the shape and width of the beam corresponding to each reference signal in any reference signal type set in the first reference signal set are the same.
  • any reference signal type set in the first reference signal set is used to indicate:
  • the arrangement order of the beams corresponding to the reference signals in any one reference signal type set in the first reference signal set in the horizontal direction the arrangement order of the beams corresponding to the reference signals in any one reference signal type set in the first reference signal set.
  • the arrangement order in the vertical direction the number of beams corresponding to the reference signals in any reference signal type set in the first reference signal set in the horizontal direction, or any reference signal type set in the first reference signal set One or more of the number of beams corresponding to the reference signal in the vertical direction.
  • the spatial position information of the beam corresponding to the first reference signal set includes: one or more other reference signal type sets in the first reference signal set and the third reference signal type set.
  • the mapping relationship between one or more reference signal type sets in a reference signal set, the shape and width of the beam corresponding to each reference signal in any other reference signal type set in the first reference signal set are the same same.
  • mapping between any other reference signal type set in the first reference signal set and any reference signal type set in the first reference signal set Relationships are used to indicate:
  • the width ratio in the horizontal direction of the beam corresponding to the reference signal in any other reference signal type set in the first reference signal set to the beam corresponding to the reference signal in any reference signal type set in the first reference signal set , or the beam corresponding to the reference signal in any other reference signal type set in the first reference signal set is in the vertical direction with the beam corresponding to the reference signal in any reference signal type set in the first reference signal set.
  • the beam reference point includes one or more of the following expressions:
  • any boundary point of the beam corresponding to the reference signal in any reference signal type set in the first reference signal set is any boundary point of the beam corresponding to the reference signal in any reference signal type set in the first reference signal set.
  • the spatial position information of the beam corresponding to the first reference signal set includes: one or more reference signals in the first reference signal set and the first reference signal set Whether there is a correlation relationship between one or more other reference signals, and the correlation type between the corresponding beams of the multiple reference signals with correlation relationships.
  • the association type is used to indicate: the corresponding relationship between the beams corresponding to the multiple reference signals in the horizontal direction or the vertical direction, the respective relationships between the multiple reference signals.
  • the association type is used to indicate: the correspondence relationship or the beam reference point between the beams corresponding to the multiple reference signals, the width ratio of the beams corresponding to the multiple reference signals in the horizontal direction, or the corresponding beams to the multiple reference signals.
  • the beam width ratios in the vertical direction is used to indicate: the correspondence relationship or the beam reference point between the beams corresponding to the multiple reference signals, the width ratio of the beams corresponding to the multiple reference signals in the horizontal direction, or the corresponding beams to the multiple reference signals.
  • the present application provides a communication system, including: a terminal device for executing the above first aspect and the method in any possible design of the first aspect; and a terminal device for executing the above second aspect and the second aspect.
  • Network equipment in any of the possible ways of designing it.
  • the present application provides a communication device, which includes: a transceiver, a processor, and a memory.
  • Computer programs or instructions are stored in the memory.
  • the processor is used to control the transceiver to send and receive signals.
  • the processor is used to call and run the computer program or instructions stored in the memory, so that the processor implements any of the above aspects and any of the aspects.
  • the present application provides a communication device, including: a processor; the processor is configured to call a computer program or instruction in a memory, so that the communication device executes any one of the above aspects and any possible design method in this aspect.
  • the communication device further includes: a memory, and the memory is used to store program instructions.
  • the processor is coupled to the memory through an interface.
  • the present application provides a chip device, including a processor, for calling a computer program or instructions in the memory, so that the processor executes any one of the above aspects and any possible design method of this aspect.
  • the processor is coupled to the memory via an interface.
  • the application provides a chip, including: an interface circuit and a logic circuit.
  • the interface circuit is used to receive signals from other chips other than the chip and transmit them to the logic circuit, or to send signals from the logic circuit to the chip.
  • Other chips and logic circuits are used to implement any of the above aspects and any possible design method in this aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer programs or instructions.
  • the computer programs or instructions are configured to execute any one of the above aspects and any possible design method in this aspect. .
  • the present application provides a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute any one of the above aspects and any possible design method in this aspect.
  • the terminal equipment can accurately select the reference signal to be measured based on the spatial position information of the beam corresponding to the first reference signal set and based on the historical measurement results of one or more reference signals in the first reference signal set, thereby reducing the cost of the terminal equipment.
  • the measurement volume and energy consumption are reduced, and there is no need for network equipment to reconfigure reference signals. This reduces the delay and overhead of signaling interactions, reduces the probability of beam failure, and improves the performance of the communication system.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a signaling interaction diagram of a reference signal processing method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of an application scenario of a reference signal processing method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of an application scenario of a reference signal processing method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a beam corresponding to a third reference set provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the coverage range of a beam corresponding to a reference signal provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the coverage size and position of a beam corresponding to a reference signal provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of an arrangement type of a reference signal provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of an arrangement type of a reference signal provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of an arrangement type of a reference signal provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of two reference signals provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a set of two reference signal types provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
  • At least one refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a alone, b alone, or c alone can mean: a alone, b alone, c alone, a combination of a and b, a combination of a and c, a combination of b and c, or a combination of a, b and c, where a, b, c can be single or multiple.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance.
  • a beam is a communication resource.
  • the beam can be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beam forming technology or other technical means.
  • the beamforming technology may be specifically a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics can be regarded as one beam.
  • a beam may include one or more antenna ports for transmitting data channels, control channels, detection signals, etc.
  • a transmit beam may refer to the distribution of signal strength formed in different directions in space after the signal is emitted by the antenna.
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space. It can be understood that one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the signal When using the low-frequency band or the mid-frequency band, the signal can be sent omnidirectionally or through a wider angle.
  • the signal When using the high-frequency band, thanks to the smaller carrier wavelength of the high-frequency communication system, the signal can be sent in all directions.
  • An antenna array composed of many antenna elements is arranged at the end and the receiving end. The transmitting end sends signals with a certain beamforming weight so that the transmitted signal forms a beam with spatial directivity. At the same time, an antenna array is used at the receiving end with a certain beamforming weight. Receiving can improve the received power of the signal at the receiving end and combat path loss.
  • Quasi-co-location Co-location relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics. For multiple resources with co-location relationships, you can use The same or similar communication configuration. For example, if two antenna ports have a co-located relationship, then the large-scale characteristics of the channel transmitting a symbol at one port can be inferred from the large-scale characteristics of the channel transmitting a symbol at the other port.
  • Large-scale characteristics may include: delay spread, average delay, Doppler spread, Doppler frequency shift, average gain, reception parameters, terminal equipment receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna Spatial correlation, main angle of arrival (Angel-of-Arrival, AoA), average angle of arrival, expansion of AoA, etc.
  • the co-location relationship is used to indicate whether at least two groups of antenna ports have a co-location relationship, or the co-location relationship is used to indicate whether the channel state information reference signals sent by at least two groups of antenna ports come from the same transmission point, or the co-location relationship is used to indicate at least Whether the channel state information reference signals sent by the two sets of antenna ports come from the same beam group.
  • uplink communication includes the transmission of uplink physical channels and uplink signals.
  • the uplink physical channels include: random access channel (PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
  • the uplink signals include: uplink detection reference signal (sounding reference signal, SRS), uplink control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal (PUSCH de-modulation reference signal, PUSCH-DMRS), uplink Phase noise tracking reference signal (PTRS), uplink positioning signal (uplink positioning RS), etc.
  • Downlink communication includes downlink physical channels and transmission of downlink signals.
  • downlink physical channels include broadcast channel (physical broadcast channel, PBCH), downlink control channel (physical downlink control channel, PDCCH), downlink data channel (physical downlink shared channel, PDSCH), etc.
  • downlink signals include primary synchronization signal (primary synchronization signal) , PSS)/secondary synchronization signal (SSS), downlink control channel demodulation reference signal (PDCCH de-modulation reference signal, PDCCH-DMRS), downlink data channel demodulation reference signal (PDSCH de-modulation reference signal, PDSCH-DMRS), downlink phase noise tracking reference signal (PTRS), channel status information reference signal (channel status information reference signal, CSI-RS), cell signal (Cell reference signal, CRS), precision synchronization signal (time/frequency tracking reference signal, TRS), LTE/NR positioning signal (positioning RS), etc.
  • PSS, SSS and PBCH together form a synchronization signal block (SSB).
  • SSB synchronization
  • Communication systems can include but are limited to: wireless communication systems, such as narrowband-Internet of things (NB-IoT), global mobile communication systems ( global system for mobile communications (GSM), enhanced data rate for GSM evolution (EDGE), wideband code division multiple access system (wide band code division multiple access, WCDMA), code division multiple access 2000 system (code division multiple access, CDMA2000), time division synchronous code division multiple access system (time division-synchronization code division multiple access, TD-SCDMA), LTE system, fifth The 5th generation (5G) system, the 6th generation (6G) system, and future systems, etc.
  • NB-IoT narrowband-Internet of things
  • GSM global system for mobile communications
  • EDGE enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access system
  • CDMA2000 code division multiple access 2000 system
  • time division synchronous code division multiple access system time division-synchronization code division multiple access
  • LTE fifth The 5th generation (5G) system, the 6th generation (6G) system, and future systems, etc.
  • FIG. 1 shows a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system 1 of the present application may include: a network device 20 and a terminal device 10.
  • the network device 20 and the terminal device 10 can communicate, and the network device 20 may include one or more.
  • Network device 20 may be a base station, an access point, or an access network device, or may refer to a device in the access network that communicates with wireless terminals through one or more sectors on the air interface.
  • Network device 20 may be used to convert received air frames to Internet protocol (IP) packets and vice versa, and serve as a router between the wireless terminal and the rest of the access network, which may include IP network.
  • IP Internet protocol
  • Network device 20 may also coordinate attribute management of the air interface.
  • the network device 20 may be a satellite, a drone, a base transceiver station (BTS) in global system of mobile communication (GSM) or code division multiple access (CDMA), or It can be a base station (NodeB, NB) in wideband code division multiple access (WCDMA), it can be an evolutionary base station (evolutional node B, eNB or eNodeB) in LTE, or it can be a cloud wireless access Wireless controllers in cloud radio access network (CRAN) scenarios, or wearable devices or vehicle-mounted devices, vehicle-to-everything (V2X), device-to-device communication (Device-to-Device, D2D), And the terminal or relay station or access point that assumes the base station function in machine-to-machine (M2M) communication, or the base station in the 5G network, such as gNB, or the base station in the future 6G network, or the future
  • M2M machine-to-machine
  • the terminal device 10 may include one or more.
  • the terminal device 10 may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing connected to a wireless modem. equipment.
  • Wireless terminals can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminals can be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals. , for example, may be portable, pocket-sized, handheld, computer-built-in, or vehicle-mounted mobile devices that exchange voice and/or data with the radio access network.
  • Wireless terminals can also be called systems, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, remote terminals, and interfaces. Access terminal, user terminal, user agent, user device or user equipment, user equipment (UE), terminal unit, terminal station, remote station, mobile Equipment, terminals, wireless communication equipment, terminal agents or terminal devices, etc. are not limited here.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), or a device with wireless communications Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or future 6G networks or future evolved public land mobile networks (PLMN) ) terminal equipment in the network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile networks
  • the terminal device 10 can adopt mobile operating systems such as Android system, Linux system, Windows system, iOS system, Harmony operating system (harmony operating system, Hongmeng OS), etc., which is not limited in this application.
  • mobile operating systems such as Android system, Linux system, Windows system, iOS system, Harmony operating system (harmony operating system, Hongmeng OS), etc., which is not limited in this application.
  • Wireless signals can be transmitted between the network device 20 and the terminal device 10 .
  • the quality of the wireless signal may be significantly attenuated, which may easily cause path loss and even cause the communication system to fail to work properly.
  • beam forming technology is introduced. The beam is directional and can effectively combat path loss.
  • the network device 20 can be configured with a massive antenna (massive MIMO) array, for example, 64 antennas, 128 antennas, 256 antennas, 1024 antennas or other numbers of antennas. Therefore, communication through an antenna array can improve the transmission quality of wireless signals.
  • the beamforming technology mentioned above can achieve effective superposition of signals by adjusting the phase of each antenna, making the wireless signal The gain of the signal is larger, which can resist path loss and provide guarantee for the transmission quality of wireless signals.
  • the beamforming technology mentioned above can be applied to the network device 20 or the terminal device 10 (that is, the terminal device 10 can also be configured with an antenna array), or can be applied to both the network device 20 and the terminal device 10. This application There is no restriction on this.
  • the network device 20 when the network device 20 serves as the transmitter and the terminal device 10 serves as the receiver, as shown in Figure 1, the network device 20 can use multiple beams (Tx beams) with different directions to transmit wireless signals in different directions to implement services. area coverage.
  • the terminal device 10 can use multiple beams (Rx beams) with different directions to receive wireless signals in different directions transmitted from the network device 20 .
  • the network device 20 can also use a directional beam to send wireless signals. This application does not limit how many beams the network device 20 uses to send wireless signals.
  • the terminal device 10 can also use a directional beam to receive wireless signals. This application does not limit how many beams the terminal device 10 uses to receive wireless signals. It should be understood that Figure 1 is only a schematic example.
  • the above-mentioned beam forming technology can focus the energy of the wireless signal to form a directional beam, so that the energy of the wireless signal is concentrated in the direction of the receiving end.
  • the receiving end can receive high-quality wireless signals. If the direction of the beam used by the transmitting end deviates from the receiving end, the receiving end may not be able to receive high-quality wireless signals.
  • the transmitting end and/or the receiving end use beams with different directions, there is a pair of beams (that is, including a beam used by the transmitting end and a beam used by the receiving end). Compared with the combination of other beams, this pair of beams The pointing alignment or deviation is small and has good alignment. Thus, the receiving end can receive high-quality wireless signals.
  • the pair of beams can be called a beam pair, and the beam pair can include one beam used by the transmitting end (i.e., transmitting beam) and one beam used by the receiving end (i.e., receiving beam), that is, the transmitting beam and the receiving beam are pointed and aligned. Or the deviation is smaller and the alignment of the beam pairs is better.
  • the reference signal received power (RSRP) of the reference signal received by the terminal device is greater than or equal to the preset threshold, it can be regarded as the transmission beam used by the network device to send the reference signal and the terminal device receiving the reference signal.
  • the receive beamforming used has better alignment of the beam pairs.
  • the transmit beam and the receive beam meet certain communication requirements, it can be regarded as a good alignment of the beam pair.
  • the network device 20 and the terminal device 10 use a beam pair for wireless signal transmission
  • the network device 20 uses the transmit beam in the beam pair to transmit the wireless signal
  • the terminal device 10 uses the receive beam in the beam pair.
  • Receiving wireless signals enables the terminal device 10 to receive high-quality wireless signals, which is beneficial to improving communication quality.
  • the direction of the beam used by the terminal device 10 will change with changes in the position of the terminal device 10, the posture of the terminal device 10, whether the antenna of the terminal device 10 is blocked, and other circumstances. Therefore, the beam pairs used by the network device 20 and the terminal device 10 will also change accordingly. Based on this, in order to ensure that the network device 20 and the terminal device 10 can always use a beam pair with good alignment to transmit wireless signals, the network device 20 and the terminal device 10 need to continuously perform beam tracking.
  • the network device 20 and the terminal device 10 can first obtain one or more sets of beam pairs with good alignment by measuring reference signals. Therefore, a random access process can be initiated using the aforementioned one or more sets of beam pairs, so that the terminal device 10 can access the network.
  • the network device 20 and the terminal device 10 can use the beam pair obtained during the random access process. If the position of the terminal device 10, the posture of the terminal device 10, whether the antenna of the terminal device 10 is blocked, etc. change, the beam pairs obtained during the random access process will not be able to guarantee the communication quality. Therefore, the network device 20 and the terminal device 10 still need to continue to measure the reference signal to obtain one or more sets of beam pairs with good alignment. Therefore, wireless signal transmission can be achieved using this beam pair.
  • RRC radio resource control
  • the terminal device 10 needs to measure all wireless signals sent by the network device 20 for beam measurement, and then the terminal device 10 can measure the beam.
  • the measured reference signal needs to be updated to achieve the beam alignment effect.
  • the width of the beam used by the network device 20 becomes narrower and narrower.
  • the coverage area of beam tracking remains unchanged, the number of beams used by the network device 20 will increase, which requires the terminal device 10 to measure more and more reference signals, resulting in higher power consumption of the terminal device 10 .
  • the coverage area of the beam tracking will become smaller, which requires the network device 20 to frequently reconfigure the beams to increase the coverage area of the beam tracking, otherwise beam failure will easily occur.
  • this application provides a reference signal processing method that can indicate to the terminal device through the network device: the spatial position information of the beam corresponding to the reference signal predefined by the protocol or configured by the network device, so that the terminal device can accurately select The reference signal to be measured.
  • Figure 2 shows a signaling interaction diagram of a reference signal processing method provided by an embodiment of the present application.
  • the reference signal processing method provided by this application may include:
  • the network device sends a first message to the terminal device.
  • the first message includes spatial position information of the beam corresponding to the first reference signal set, and the first reference signal set includes one or more reference signals.
  • the network device may determine the spatial position information of the beam corresponding to the first reference signal set, that is, the spatial position information of the beam corresponding to the reference signal in the first reference signal set, and the spatial position information of the beam corresponding to the first reference signal set is used for updating The reference signal to be measured.
  • each reference signal corresponds to the spatial position information of a beam.
  • a reference signal can also be transmitted using a multi-peak beam, and this application can regard the multi-peak beam as multiple beams. Therefore, each reference signal corresponds to the spatial position information of a multi-peak beam, that is, each reference signal corresponds to the spatial position information of multiple beams, where the multiple beams are a multi-peak beam.
  • the spatial position information of the beam corresponding to the reference signal is used to determine the reference signal corresponding to the beam.
  • the first reference signal set may include one or more reference signals determined by the network device. Before the terminal device accesses the network, the network device may determine the first reference signal set according to the time-frequency resource information predefined by the protocol. After the terminal device accesses the network, the network device can determine the first reference signal set according to the time-frequency resource information configured by the network device, such as the time-frequency resource information configured by RRC signaling.
  • the reference signals in the first reference signal set may include: synchronization/broadcast signal block SSB, channel state information reference signal CSI-RS, uplink sounding reference signal SRS, demodulation reference signal (demodulation reference signal, DMRS), or tracking One or more types of reference signals TRS.
  • the types of the multiple reference signals may be one or more.
  • the network device may send the first message carrying the spatial position information of the beam corresponding to the first reference signal set to the terminal device.
  • the first message may be carried in signaling corresponding to the control channel and/or the data channel.
  • the first message may be carried in RRC signaling, downlink control indication (DCI) signaling, or medium access control-control element (MAC-CE) signaling, etc. in one or more signalings.
  • DCI downlink control indication
  • MAC-CE medium access control-control element
  • the terminal device obtains an updated second reference signal set based on the measurement results of one or more reference signals in the historical second reference signal set and the spatial position information of the beam corresponding to the first reference signal set.
  • One or more reference signals in the signal set are included in the first reference signal set.
  • the measurement results of one or more reference signals in the historical second reference signal set are used to represent the channel status and/or signal quality corresponding to the measured reference signals in the historical second reference signal set.
  • the measurement results of one or more reference signals in the historical second reference signal set may be obtained by the terminal device measuring the reference signals in the historical second reference signal set before obtaining the updated second reference signal set.
  • the measurement results of one or more reference signals in the historical second reference signal set may be the measurement results of one or more times on the terminal device, which is not limited in this application.
  • One or more reference signals in the historical second reference signal set may be all reference signals or part of the reference signals in the historical second reference signal set, which is not limited in this application.
  • the second reference signal set mentioned in S102 may include a historical second reference signal set and an updated second reference signal set. Therefore, one or more reference signals in the historical second reference signal set are included in the first reference signal set.
  • the historical second reference signal set and the first reference signal set may be the same set.
  • calendar The second set of reference signals may be a subset of the first set of reference signals.
  • the historical second reference signal set there may be an intersection between the historical second reference signal set and the first reference signal set, that is, there may be the same one or more reference signals.
  • the historical second reference signal set also includes one or more other reference signals.
  • the first reference signal set includes, in addition to the same one or more reference signals mentioned above, one or more other reference signals.
  • the types of reference signals in the historical second reference signal set and the reference signals in the first reference signal set may be the same or different.
  • the terminal device may determine a reference signal with good signal quality in the historical second reference signal set based on the measurement results of one or more reference signals in the historical second reference signal set. Because one or more reference signals in the second reference signal set are included in the first reference signal set. Therefore, the terminal device can determine the reference signal with good signal quality in the first reference signal set by combining the spatial position information of the beam corresponding to the first reference signal set.
  • the terminal device can determine the reference signals with good signal quality in the first reference signal set as the updated second reference signal set, so that the terminal device can determine which reference signals are to be measured later.
  • the updated second reference signal set is a reference signal set actually measured by the terminal device.
  • the updated second reference signal set is time-frequency resource information used by the terminal device to determine reference signals to be measured later.
  • the updated second reference signal set may generally include multiple reference signals.
  • the second reference signal set mentioned in S102 may include a historical second reference signal set and an updated second reference signal set. Therefore, one or more reference signals in the updated second reference signal set are included in the first reference signal set.
  • the updated second reference signal set and the first reference signal set may be the same set.
  • the updated second reference signal set may be a subset of the first reference signal set.
  • the updated second reference signal set there may be an intersection between the updated second reference signal set and the first reference signal set, that is, there may be the same one or more reference signals.
  • the updated second reference signal set also includes one or more other reference signals.
  • the first reference signal set includes, in addition to the same one or more reference signals mentioned above, one or more other reference signals.
  • the types of reference signals in the updated second reference signal set and the reference signals in the first reference signal set may be the same or different.
  • the updated second reference signal set and the historical second reference signal set may be the same or different.
  • the updated second reference signal set may become a historical second reference signal set of reference signals to be measured later by the terminal device.
  • the network device sends the reference signal in the third reference signal set to the terminal device.
  • the network device may send the reference signal in the third reference signal set to the terminal device.
  • the third reference signal set may include one or more reference signals sent before the terminal device accesses the network.
  • the third set of reference signals may include one or more reference signals sent after the terminal device accesses the network.
  • the third set of reference signals may include one or more reference signals sent before the terminal device accesses the network and the third set of reference signals may include one or more reference signals sent after the terminal device accesses the network.
  • the types of reference signals in the third reference signal set may be the same or different from the types of reference signals in the first reference signal set.
  • intersection of the first reference signal set and the third reference signal set is not empty, but does not necessarily have an inclusion relationship.
  • the first reference signal set there may be an intersection between the first reference signal set and the third reference signal set, that is, there may be the same one or more reference signals.
  • the first reference signal set also includes one or more other reference signals.
  • the third reference signal set includes, in addition to the same one or more reference signals mentioned above, one or more other reference signals.
  • the first reference signal set and the third reference signal set may be the same set.
  • the first set of reference signals may be a subset of the third set of reference signals.
  • the third set of reference signals may be a subset of the first set of reference signals.
  • the terminal equipment can accurately select the reference signal to be measured, reducing the measurement volume and energy consumption of the terminal equipment. There is no need for the network equipment to reconfigure the reference signal, reducing the delay and overhead of signaling interaction, and reducing beam failures. The probability of occurrence improves the performance of the communication system.
  • the reference signals in the third reference signal set can be used for beam measurement and can also be used for other functions.
  • the terminal device may determine that the reference signal in the third reference signal set is used for beam measurement. Therefore, the terminal device can choose to perform S104.
  • one or more reference signals in the updated second reference signal set are included in the third reference signal set.
  • the updated second reference signal set and the third reference signal set may be the same set.
  • the updated second reference signal set may be a subset of the third reference signal set.
  • the updated second reference signal set there may be an intersection between the updated second reference signal set and the third reference signal set, that is, there may be the same one or more reference signals.
  • the updated second reference signal set also includes one or more other reference signals.
  • the third reference signal set includes, in addition to the same one or more reference signals mentioned above, one or more other reference signals.
  • the types of reference signals in the updated second reference signal set and the reference signals in the third reference signal set may be the same or different.
  • the terminal device measures the reference signals in the updated second reference signal set and obtains a measurement result.
  • One or more reference signals in the updated second reference signal set are included in the third reference signal set.
  • the terminal device may determine which reference signals are to be measured later based on the updated second reference signal set. After the network device sends the reference signal to the terminal device, the terminal device may measure one or more reference signals in the updated second reference signal set instead of measuring all reference signals sent by the network device for beam measurement. Therefore, the measurement volume of the terminal equipment is reduced, and there is no need for the network equipment to reconfigure the reference signal.
  • One or more reference signals in the updated second reference signal set may be all reference signals or part of the reference signals in the updated second reference signal set, which is not limited in this application.
  • the measurement results mentioned in S104 are used to represent the channel status and/or signal quality corresponding to the measured reference signals in the updated second reference signal set.
  • the measurement results mentioned in S104 can also be used as the historical second reference signal set shown in S102 to obtain an updated second reference signal set after the measurement here.
  • the terminal device can measure the reference signals in the updated second reference signal set according to the time-frequency resource information of the third reference signal set predefined by the protocol or configured by the network device.
  • the first message may further include: time-frequency resource information of the third reference signal set configured by the network device.
  • time-frequency resource information of the third reference signal set configured by the network device and the spatial position information of the beam corresponding to the first reference signal set may be carried together in the first message.
  • time-frequency resource information of the third reference signal set configured by the network device and the spatial position information of the beam corresponding to the first reference signal set may also be carried in different messages.
  • Figures 3-4 are schematic diagrams of application scenarios of a reference signal processing method provided by an embodiment of the present application.
  • Network devices can perform the following operations:
  • the network device sends the first message to the terminal device.
  • the first message includes the spatial position information of beams 101 to 108 corresponding to SSB0 to SSB7.
  • the first reference signal set includes: SSB0-SSB7.
  • the network device sends multiple rounds of SSB0-SSB7 to the terminal device.
  • the network device uses beams 101 to 108 to send SSB0-SSB7 respectively.
  • the network device can use beam 101 to send SSB0-SSB7, beam 102 to send SSB0-SSB7, beam 103 to send SSB0-SSB7, and beam 104 to send SSB0-SSB7, use beam 105 to send SSB0-SSB7, use beam 106 to send SSB0-SSB7, use beam 107 to send SSB0-SSB7.
  • this application does not limit the order in which the network equipment uses beams 101 to 108.
  • the terminal device can perform the following operations:
  • the terminal equipment uses beams 201 to 203 to measure SSB0-SSB7 respectively.
  • the terminal equipment can use beam 201 to measure SSB0-SSB7, use beam 202 to measure SSB0-SSB7, and use beam 203 to measure SSB0-SSB7. Carry out the measurement and obtain the measurement results of SSB0-SSB7.
  • the historical second reference signal set includes SSB0-SSB7.
  • this application does not limit the order in which the terminal equipment uses beams 201 to 203.
  • the terminal device can obtain an updated second reference signal set including: SSB2 -SSB4.
  • the terminal device can perform the following operations:
  • the terminal equipment uses beam 202 to measure SSB2-SSB4, and obtains the measurement results of SSB2-SSB4.
  • the updated second reference signal set that the terminal equipment can obtain includes: SSB2-SSB4.
  • the terminal device can perform the following operations:
  • the terminal equipment uses beam 201 to measure SSB2, beam 202 to measure SSB3, and beam 203 to measure SSB4, and obtains the measurement results of SSB2-SSB4.
  • the measurement amount of the terminal equipment in the second round mentioned in the above two implementations is less than the measurement amount of the terminal equipment in the first round, and there is no need for the terminal equipment to re-configure the reference signal.
  • the terminal equipment may continue to obtain the updated second reference signal set based on the measurement results of SSB2-SSB4, or may not continue to obtain the updated second reference signal set.
  • Network devices can perform the following operations:
  • the network device sends the first message to the terminal device.
  • the first message includes the spatial position information of beam 301 to beam 3016 corresponding to CSI-RS1 to CSI-RS16.
  • the first reference signal set includes: CSI-RS1-CSI-RS16.
  • the network device sends multiple rounds of CSI-RS1-CSI-RS16 to the terminal device. In each round, the network device uses beams 301-3016 to send CSI-RS1-CSI-RS16 respectively.
  • the terminal device can perform the following operations:
  • the terminal equipment uses beams 201 to 203 to measure CSI-RS1-CSI-RS16 respectively, and obtains the measurement results of CSI-RS1-CSI-RS16.
  • the historical second reference signal set includes CSI-RS1-CSI-RS16.
  • the terminal device obtains an updated second reference signal set including CSI-RS6-CSI based on the measurement results of CSI-RS1-CSI-RS16 and the spatial position information of beams 301-3016 corresponding to CSI-RS1-CSI-RS16. -RS8.
  • the terminal device may perform the following operations:
  • the terminal device uses beam 202 to measure CSI-RS6-CSI-RS8, and obtains the measurement result of CSI-RS6-CSI-RS8.
  • the terminal device can perform the following operations:
  • the terminal equipment uses beam 201 to measure CSI-RS6, beam 202 to measure CSI-RS7, and beam 203 to measure CSI-RS8, and obtains the measurement result of CSI-RS6-CSI-RS8.
  • the measurement amount of the terminal equipment in the second round mentioned in the above two implementations is less than the measurement amount of the terminal equipment in the first round, and there is no need for the terminal equipment to re-configure the reference signal.
  • the terminal device may continue to obtain the updated second reference signal set based on the measurement results of CSI-RS6-CSI-RS8, or may not continue to obtain the updated second reference signal set.
  • each SSB corresponds to two adjacent CSI-RS beams.
  • the network device Before the terminal device connects to the network, the network device can perform the following operations:
  • the network device can send the first message to the terminal device.
  • the first message includes beam 101-beam corresponding to SSB0-SSB7. 108 and the spatial position information of beam 301-beam 306 corresponding to CSI-RS1-CSI-RS16.
  • the first reference signal set includes: SSB0-SSB7, and CSI-RS1-CSI-RS16.
  • the network device sends multiple rounds of SSB0-SSB7 to the terminal device. In each round, the network device sends SSB0-SSB7 using beams 101-108 respectively.
  • 51 and 52 have no temporal sequence.
  • the terminal device Before the terminal device connects to the network, the terminal device can perform the following operations:
  • the terminal equipment uses beams 201 to 203 to measure SSB0-SSB7 respectively, and obtains the measurement results of SSB0-SSB7.
  • the historical second reference signal set includes SSB0-SSB7.
  • the terminal equipment determines the signals in SSB0-SSB7 based on the measurement results of SSB0-SSB7 and the spatial position information of beams 101-108 corresponding to SSB0-SSB7 and beams 301-3016 corresponding to CSI-RS1-CSI-RS6.
  • a good quality reference signal is SSB3.
  • the updated second reference signal set that the terminal device can obtain includes CSI-RS6-CSI-RS9.
  • the updated second reference signal set is used to determine the time-frequency domain information of the reference signal to be measured after the terminal device accesses the network. Therefore, before the terminal device accesses the network, the network device can continue to send SSB0-SSB7 to the terminal device.
  • the network device can perform the following operations:
  • the network device sends multiple rounds of CSI-RS1-CSI-RS16 to the terminal device. In each round, the network device uses beams 301-3016 to send CSI-RS1-CSI-RS16 respectively.
  • the terminal device After the terminal device is connected to the network, the terminal device can perform the following operations:
  • the terminal equipment uses beams 201 to 203 to measure CSI-RS6-CSI-RS9 respectively, and obtains the measurement results of CSI-RS6-CSI-RS9.
  • the measurement amount of the 81 terminal equipment is less than the measurement amount of the terminal equipment using beams 201 to 203 to measure CSI-RS1-CSI-RS16 respectively, and there is no need for the terminal equipment to reconfigure the reference signal.
  • the terminal device may or may not continue to obtain the updated second reference signal set based on the measurement results of CSI-RS6-CSI-RS9.
  • the terminal equipment may obtain the updated second reference signal set in various ways.
  • Figure 5 shows a schematic diagram of beams corresponding to a third reference set provided by an embodiment of the present application.
  • the protocol can predefine rules for reference signals that are subsequently measured.
  • the reference signal to be measured later can include: centered on the beam corresponding to the reference signal with the largest reference signal received power (RSRP) measured this time, and in the horizontal and/or vertical directions.
  • RSRP reference signal received power
  • the preset width and preset number can be predefined by protocol, or configured by the network device.
  • the network device configuration mentioned here can be understood as the network device using the spatial position information or other information of the beam corresponding to the first reference signal set to synchronize to the terminal device.
  • the terminal device can determine that the beam 501 corresponding to the reference signal (illustrated by a gray circle in Figure 5) is the reference signal corresponding to the maximum RSRP currently measured based on the measurement results. beam.
  • the terminal device may determine that the reference signal to be measured later may include: a beam centered on the aforementioned beam 501 and within the preset width of the beam 501 in the horizontal and vertical directions (i.e., square filling is used in box a in Figure 5 beam) corresponding reference signal. Therefore, the terminal equipment can update the aforementioned reference signal measured later (ie, the reference signal corresponding to the beam filled with squares in box a in Figure 5) to the second reference signal set.
  • this application may include but is not limited to the above-mentioned method of obtaining the updated second reference signal set.
  • the terminal device can also implement other functions such as training and using prediction models in the spatial domain and/or time domain for measurement results through the spatial position information of the beams corresponding to the first reference signal set.
  • the terminal device may also send the measurement results to the network device.
  • the terminal device may also inform the network device whether the historical second reference signal set has been updated through the spatial position information of the beam corresponding to the first reference signal set.
  • the terminal device may also send the updated second reference signal set to the network device.
  • the measurement results, whether the historical second reference signal set has been updated through the spatial position information of the beam corresponding to the first reference signal set, or one or more items in the updated second reference signal set may use the same signaling or different Signaling is transmitted, and there is no temporal sequence in transmitting the above three items.
  • the spatial position information of the beams corresponding to the first reference signal set has multiple indication methods, which can indicate the beam corresponding to each reference signal in the first reference signal set, so that the terminal device can be dynamically updated The second set of reference signals.
  • this application does not limit the indication method of the spatial position information of the beam corresponding to the first reference signal set.
  • this application may use the coverage of the beam to indicate the spatial position information of the beam corresponding to the first reference signal set.
  • the coverage range of the beam corresponding to any reference signal in the first reference signal set can be understood as: the area consisting of the direction in which the maximum gain distance of the beam corresponding to the reference signal is within a preset range (such as 3dB).
  • the coverage range of the beam corresponding to any reference signal can be a continuous area, or it can be composed of multiple continuous areas (such as a multi-peak beam). For the case where the coverage range of the beam corresponding to any reference signal is composed of multiple continuous areas, each continuous area can be indicated separately.
  • Figure 6 shows a schematic diagram of the coverage range of a beam corresponding to a reference signal provided by an embodiment of the present application.
  • the coverage range of beam #0 corresponding to a reference signal in the horizontal direction is [-13°, 13°].
  • the coverage range of beam #1 corresponding to a reference signal in the horizontal direction is [15°, 45°].
  • the spatial position information of the beam corresponding to the first reference signal set may include: the size and/or position of the coverage range of the beam corresponding to each reference signal in the first reference signal set.
  • the size of the coverage area of the beam corresponding to the reference signal mentioned in this application refers to the relative size, and the unit of size has no special meaning/significance.
  • the position of the coverage area of the beam corresponding to the reference signal mentioned in this application refers to the relative position, and the unit of position has no special meaning/significance.
  • the size of the coverage area of the beam corresponding to each reference signal when the size of the coverage area of the beam corresponding to each reference signal is the same size, the size of the coverage area of the beam corresponding to each reference signal may be omitted.
  • the coverage position of the beam corresponding to each reference signal can be predefined by the protocol or configured by the network device.
  • the position of the coverage range of the beam corresponding to each reference signal is a fixed position, the position of the coverage range of the beam corresponding to each reference signal can be predefined through a protocol.
  • the terminal device can determine the actual spatial position of each beam corresponding to each reference signal in the first reference signal set and the spatial position relationship between different beams through the coverage of the beam corresponding to each reference signal.
  • the spatial position information of the beam corresponding to the first reference signal set may also include: the shape of the coverage range of the beam corresponding to each reference signal in the first reference signal set, such as ellipse, circle, or other shapes.
  • the shape of the coverage area of any beam in the first reference signal set refers to the shape of the coverage area of the beam, or the shape of the coverage area of the main lobe of the beam, which is not limited in this application.
  • the shape of the coverage range of the beam corresponding to each reference signal can be predefined by the protocol or configured by the network device.
  • the shape of the coverage area of each beam is a fixed shape, the shape of the coverage area of each beam can be predefined through a protocol.
  • the size and/or position of the coverage range of the beam corresponding to each reference signal can be used in the form of coordinates to indicate the spatial position information of the beam corresponding to the first reference signal set.
  • the size and/or position of the coverage range of the beam corresponding to each reference signal can be expressed as various coordinates, as long as the coordinates can determine the coverage range of the beam corresponding to each reference signal.
  • the location of the coverage area of the beam corresponding to each reference signal may be indicated by the coordinates of the beam reference point.
  • the size of the coverage area of the beam corresponding to each reference signal can be indicated by the width of the beam or the half-beam width (ie, half of the width), or the coordinates of the beam reference point.
  • the above-mentioned beam reference point can be any point in the coverage range of the beam corresponding to each reference signal.
  • the beam reference point may include the starting point, center, peak and boundary points of the beam, etc.
  • the peak of the beam refers to the direction of the maximum gain of the beam.
  • the center of a beam refers to the midpoint of the beam's coverage area.
  • the coordinates of the peak of the beam and the coordinates of the center of the beam may be the same or different.
  • the value range and quantification accuracy of the coordinates in the horizontal direction and/or the vertical direction can be predefined through the protocol or configured by the network device. Therefore, the size and/or position of the coverage range of the beam corresponding to each reference signal can be indicated by the specific numerical values of the coordinates in the horizontal direction and/or the vertical direction. It should be understood that the coordinates mentioned in this application refer to relative coordinates, and the units of the coordinates have no special meaning/meaning.
  • the value range of the coordinates in the horizontal direction is [-90, 90], and the quantization accuracy is 1°. If the specific value of the coordinates in the horizontal direction is 60, it means 60 in the horizontal direction. °.
  • the value range of the coordinates in the horizontal direction is [-6, 6], and when the quantization accuracy is 15°, if the specific value of the coordinates in the horizontal direction is 2, it represents 30° in the horizontal direction.
  • the size and position of the coverage area of the beam corresponding to any reference signal in the first reference signal set may include one or more of the following expressions:
  • the starting coordinates and the ending coordinates of the beam in the horizontal direction and the starting coordinates and the ending coordinates of the beam in the vertical direction.
  • the starting coordinates of the beam in the horizontal direction, and the width of the beam in the horizontal and vertical directions are the starting coordinates of the beam in the horizontal direction, and the width of the beam in the horizontal and vertical directions.
  • the starting coordinates of the beam in the vertical direction, and the width of the beam in the horizontal and vertical directions are arranged.
  • the width of the beam corresponding to any reference signal in the horizontal and vertical directions can be replaced by the half-beam width in the horizontal and vertical directions of the beam corresponding to the reference signal.
  • the coverage shape of the beam corresponding to the reference signal is circular
  • the width of the beam corresponding to the reference signal in the horizontal direction and the vertical direction can be replaced by the width or half beam width of the beam corresponding to the reference signal.
  • this application includes but is not limited to the above-mentioned representation method of using coordinates to represent the size and position of the coverage area of the beam corresponding to any reference signal.
  • beam a and beam b are used to illustrate the size and position of the coverage area of a beam corresponding to a reference signal respectively.
  • FIG. 7 is a schematic diagram illustrating the coverage size and position of a beam corresponding to a reference signal provided by an embodiment of the present application.
  • the size and position of the coverage area of beam a corresponding to a reference signal can be expressed as:
  • the coordinates of the center of beam a are (20, 20), and the width of beam a in both the horizontal and vertical directions is 40.
  • the starting coordinates (0,0) and ending coordinates (0,40) of beam a in the horizontal direction and the starting coordinates (0,0) and ending coordinates (0,40) of beam a in the vertical direction.
  • the starting coordinate (0,0) of beam a in the horizontal direction, and the width of beam a in both the horizontal and vertical directions are 40.
  • the starting coordinate (0,0) of beam a in the vertical direction, and the width of beam a in both the horizontal and vertical directions are 40.
  • the value range of the coordinates in the horizontal and vertical directions is [-90, 90].
  • the quantization accuracy is 1°
  • the beam a corresponding to the reference signal is located at 20° in the horizontal direction, and the vertical 20° in the direction.
  • the width of the beam a corresponding to the reference signal is 40° in both the horizontal direction and the vertical direction.
  • the size and position of the coverage area of beam b corresponding to a reference signal can be expressed as:
  • the coordinates of the center of beam b are (-30, 0), and the width of beam b is 20 in the horizontal direction and 60 in the vertical direction.
  • the starting coordinate of beam b in the horizontal direction is (-20, 0), and the width of beam b in the horizontal direction is 20, and the width in the vertical direction is 60.
  • the starting coordinates of beam b in the vertical direction are (-30, -30), and the width of beam b in the horizontal direction is 20, and the width in the vertical direction is 60.
  • the value range of the coordinates in the horizontal and vertical directions is [-90, 90].
  • the beam b corresponding to the reference signal is located at 30° in the horizontal direction and vertically. 0° in the direction.
  • the width of the beam b corresponding to the reference signal is 20° in the horizontal direction, and the width in the vertical direction is 60°.
  • the coverage of the beam corresponding to any one reference signal can indicate the spatial position information of the beam corresponding to the first reference signal set in the form of coordinates.
  • this application may use the arrangement type of reference signals and/or the mapping rules between reference signals to indicate the spatial position information of the beam corresponding to the first reference signal set.
  • the arrangement type of the reference signal can be predefined by the protocol or configured by the network device.
  • the arrangement type of the reference signal can be used to indicate how the beams corresponding to the reference signal are arranged/layout.
  • the arrangement type of the reference signal can usually be a common or existing arrangement type.
  • mapping rules between reference signals can be predefined through protocols or configured by network devices. Mapping rules between reference signals can be used to indicate how beams corresponding to different reference signals correspond to each other.
  • the spatial position information of the beam corresponding to the first reference signal set may include:
  • the arrangement type of any one reference signal in the first reference signal set can be used to indicate the arrangement order of the beam corresponding to any one reference signal in the horizontal direction, and/or, the beam corresponding to any one reference signal is arranged in the vertical direction. Arrangement order in direction. The arrangement order here can be understood as how the beams corresponding to any reference signal are arranged/layout.
  • the protocol predefinition or network device configuration includes: arrangement type A and arrangement type B.
  • N v represents the number of beams corresponding to a reference signal in the horizontal direction
  • N v 1
  • N h the number of beams corresponding to the reference signal in the vertical direction
  • i is greater than or equal to 1 and less than or equal to N v is a positive integer
  • j is a positive integer that is greater than or equal to 1 and less than or equal to N h .
  • the index of the beam in the i-th row and j-th column corresponding to a reference signal can be expressed by Formula 2:
  • N v represents the number of beams corresponding to a reference signal in the horizontal direction
  • N h represents the number of beams corresponding to the reference signal in the vertical direction
  • i is a positive integer that is greater than or equal to 1 and less than or equal to N v
  • j is a positive integer that is greater than or equal to 1 and less than or equal to N h .
  • the terminal device can determine the arrangement order, the number in the horizontal direction, and the number in the vertical direction of the beams corresponding to the reference signal through the arrangement type of any reference signal in the first reference signal set.
  • the terminal equipment is caused to obtain the spatial position information of the beam corresponding to one or more parameter signals in the first reference signal set.
  • Figures 8 to 10 are schematic diagrams of an arrangement type of a reference signal provided by an embodiment of the present application.
  • the arrangement order of these 16 beams in the horizontal direction is: beam 0, beam 1, beam 2, beam 3, beam 4, beam 5, beam 6, beam 7, beam 8, beam 9, beam 10, beam 11, Beam 12, beam 13, beam 14, and beam 15 are adjacent in order.
  • edge beams can be regarded as adjacent, that is, beam 0 is also adjacent to beam 15.
  • the arrangement order of these 16 beams in the horizontal direction is: beam 8, beam 9, beam 10, beam 11, beam 12, beam 13, beam 14, beam 15, beam 0, beam 1, beam 2, beam 3, Beam 4, beam 5, beam 6, and beam 7 are adjacent in order.
  • edge beams can be regarded as adjacent, that is, beam 8 is also adjacent to beam 7.
  • beam 0 beam 1
  • beam 2 and beam 3 are adjacent in order
  • beam 4 beam 5
  • beam 6, and beam 7 are adjacent in order
  • beam 8 beam 9.
  • Beam 10, and beam 11 are adjacent in order
  • beam 12, beam 13, beam 14, and beam 15 are adjacent in order.
  • beam 0, beam 4, beam 8, and beam 12 are adjacent in order
  • beam 1, beam 5, beam 9, and beam 13 are adjacent in order
  • beam 2 Beam 6, beam 10, and beam 14 are adjacent in order
  • beam 3 beam 7, beam 11, and beam 15 are adjacent in order.
  • edge beams can be regarded as adjacent, that is, in the horizontal direction, beam 0 is also adjacent to beam 3, beam 4 is also adjacent to beam 7, beam 8 is also adjacent to beam 11, and beam 12 is also adjacent to beam 11. Beam 15 is adjacent. Vertically, beam 0 is also adjacent to beam 12, beam 1 is also adjacent to beam 13, beam 2 is also adjacent to beam 14, and beam 3 is also adjacent to beam 15.
  • beam 6, beam 7, beam 4, and beam 5 are adjacent in order
  • beam 2 beam 3
  • beam 0, and beam 1 are adjacent in order
  • Beam 12, and beam 13 are adjacent in order
  • beam 10, beam 11, beam 8, and beam 9 are adjacent in order.
  • beam 6, beam 2, beam 14, and beam 10 are adjacent in order
  • beam 7, beam 3, beam 15, and beam 11 are adjacent in order
  • beam 4 Beam 0, beam 12, and beam 8 are adjacent in order
  • beam 5 beam 1, beam 13, and beam 9 are adjacent in order.
  • edge beams can be regarded as adjacent, that is, in the horizontal direction, beam 6 is also adjacent to beam 5, beam 2 is also adjacent to beam 1, beam 14 is also adjacent to beam 13, and beam 10 is also adjacent to beam 13. Beam 9 is adjacent. Vertically, beam 6 is also adjacent to beam 10, beam 7 is also adjacent to beam 11, beam 4 is also adjacent to beam 8, and beam 5 is also adjacent to beam 9.
  • beam 1 beam 1
  • beam 2 beam 3
  • beam 4 beam 5
  • beam 6 and beam 7 are adjacent in sequence
  • beam 8 beam 9, beam 10
  • beam 11 beam 12, beam 13, beam 14, and beam 15 are adjacent in order
  • beam 16 beam 17, beam 18, beam 19, beam 20, beam 21, beam 22, and beam 23
  • Beam 24, beam 25, beam 26, beam 27, beam 28, beam 29, beam 30, and beam 31 are adjacent in order.
  • beam 0, beam 8, beam 16, and beam 24 are adjacent in order
  • beam 1, beam 9, beam 17, and beam 25 are adjacent in order
  • beam 2 Beam 10, beam 18, and beam 26 are adjacent in order
  • beam 3 beam 11, beam 19, and beam 27 are adjacent in order
  • beam 4, beam 12, beam 20, and beam 28 are adjacent in order
  • beam 5 and beam 13 are adjacent in order
  • beam 21, and beam 29 are adjacent in order
  • beam 6, beam 14, beam 22, and beam 30 are adjacent in order
  • beam 7, beam 15, beam 23, and beam 31 are adjacent in order.
  • edge beams can be regarded as adjacent, that is, in the horizontal direction, beam 12 is also adjacent to beam 11, beam 4 is also adjacent to beam 3, beam 20 is also adjacent to beam 19, and beam 28 is also adjacent to beam 19.
  • Beam 27 is adjacent.
  • beam 0 is also adjacent to beam 24
  • beam 1 is also adjacent to beam 25
  • beam 2 is also adjacent to beam 26
  • beam 5 is also adjacent to beam 29
  • beam 6 is also adjacent to beam 30, and beam 7 is also adjacent to beam 31.
  • the number of beams corresponding to a reference signal in the horizontal direction is 4, and the number of beams corresponding to the reference signal in the vertical direction is 8 . It can be seen that the total number of beams corresponding to the reference signal is 32.
  • beam 12, beam 13, beam 14, beam 15, beam 8, beam 9, beam 10, and beam 11 are adjacent in sequence
  • beam 4 beam 5, beam 6 , beam 7, beam 0, beam 1, beam 2, and beam 3 are adjacent in order
  • beam 20, beam 21, beam 22, beam 23, beam 16, beam 17, beam 18, and beam 19 are adjacent in order
  • beam 28 beam 29, beam 30, beam 31, beam 24, beam 25, beam 26, and beam 27 are adjacent in order.
  • the arrangement order of these 32 beams in the vertical direction is: beam 12, beam 4, beam 20, and beam 28 are adjacent in order, beam 13, beam 5, beam 21, and beam 29 are adjacent in order, beam 14, Beam 6, beam 22, and beam 30 are adjacent in order; beam 15, beam 7, beam 23, and beam 31 are adjacent in order; beam 8, beam 0, beam 16, and beam 24 are adjacent in order; beam 9, beam 1 , beam 17, and beam 25 are adjacent in order, beam 10, beam 2, beam 18, and beam 26 are adjacent in order, and beam 11, beam 3, beam 19, and beam 27 are adjacent in order.
  • edge beams can be regarded as adjacent, that is, in the horizontal direction, beam 12 is also adjacent to beam 11, beam 4 is also adjacent to beam 3, beam 20 is also adjacent to beam 19, and beam 28 is also adjacent to beam 19.
  • Beam 27 is adjacent.
  • beam 12 is also adjacent to beam 28, beam 13 is also adjacent to beam 29, beam 14 is also adjacent to beam 30, beam 15 is also adjacent to beam 31, and beam 8 is also adjacent to beam 24.
  • beam 9 is also adjacent to beam 25
  • beam 10 is also adjacent to beam 26, and beam 11 is also adjacent to beam 27.
  • the terminal device can determine the arrangement sequence of the beams corresponding to the reference signal in the horizontal direction and/or the vertical direction according to the arrangement type of any reference signal in the first reference signal set.
  • this application can indicate the spatial position information of the beam corresponding to the first reference signal set through the arrangement type of one or more reference signals in the first reference signal set.
  • any other reference signal in the first reference signal set and any one reference signal in the first reference signal set are any two reference signals in the first reference signal set. This application does not limit whether any other reference signal in the first reference signal set is the same as any other reference signal in the first reference signal set.
  • the spatial position information of the beam corresponding to the first reference signal set may also include: the arrangement type of one or more other reference signals in the first reference signal set.
  • the spatial position information of the beam corresponding to the first reference signal set may also include:
  • Mapping rules between one or more other reference signals in the first reference signal set and one or more reference signals in the first reference signal set, one or more other reference signals in the first reference signal set The width ratio in the horizontal direction between the corresponding beam and the beam corresponding to one or more reference signals in the first reference signal set, or the width ratio in the horizontal direction between the beam corresponding to one or more other reference signals in the first reference signal set and the first reference signal set.
  • mapping rule between any two reference signals in the first reference signal set can be used to indicate the beam corresponding to any other reference signal in the first reference signal set and any one reference signal in the first reference signal set. Correspondence between corresponding beams.
  • the types of correspondence relationships between beams corresponding to any two reference signals in the first reference signal set may include: adjacent relationships, inclusion relationships, and supplementary relationships.
  • the adjacent relationship is used to indicate that the coverage ranges of beams corresponding to any two reference signals in the first reference signal set are adjacent to each other.
  • beam 5 may be located above beam 9 , below beam 1 , to the left of beam 6 , and to the right of beam 4 . It should be understood that if there are no adjacent beams in certain or certain directions, the corresponding description may be omitted.
  • the inclusion relationship is used to indicate that there is partial overlap between the coverage areas of the beams corresponding to any two reference signals in the first reference signal set.
  • the coverage area of the beam here can be referred to the previous description, and will not be described in detail here.
  • the supplementary relationship is used to indicate that there is overlap between the deep regions of the beams corresponding to any two reference signals in the first reference signal set.
  • the deep recessed area of the beam here refers to the area outside the coverage area of the respective beams corresponding to any two reference signals.
  • the difference between the inclusion relationship and the supplementary relationship is that it is emphasized that the corresponding position between the beams corresponding to any two reference signals in the first reference signal set is the coverage area of the beam or the deep depression area of the beam. It does not mean that the The coverage areas or deep depression areas of the corresponding beams of any two reference signals in a reference signal set only overlap.
  • this application can use the arrangement type of any two reference signals to indicate.
  • the corresponding relationship between the beams corresponding to any two reference signals in the first reference signal set may be an inclusion relationship or a supplementary relationship.
  • This application may use the mapping rule between any two reference signals in the first reference signal set for indication. Therefore, the mapping rule between any two reference signals in the first reference signal set can be used to indicate the beam corresponding to any other reference signal in the first reference signal set and any one reference signal in the first reference signal set.
  • the corresponding relationship between corresponding beams is an inclusion relationship or a supplementary relationship.
  • the mapping rule one and the mapping rule two between the reference signal 2 and the reference signal 1 can be expressed as: the (i, j)th beam corresponding to the reference signal 1 corresponds to the reference signal 2 There is a corresponding relationship between the ⁇ (m, n)
  • m ⁇ [iV, iV+V), n ⁇ [jH, jH+H), m and n 0, 1,... ⁇ beams.
  • V is the width ratio of the beam corresponding to reference signal 2 to the beam corresponding to reference signal 1 in the horizontal direction
  • H is the width ratio of the beam corresponding to reference signal 2 to the beam corresponding to reference signal 1 in the vertical direction.
  • mapping rule 1 the correspondence between the beam corresponding to reference signal 1 and the beam corresponding to reference signal 2 is an inclusive relationship.
  • mapping rule 2 the correspondence between the beam corresponding to reference signal 1 and the beam corresponding to reference signal 2 is a complementary relationship.
  • mapping rule one may include but is not limited to the above-mentioned mapping rule one and mapping rule two.
  • the terminal device can determine the different reference signals in the first reference signal set through the arrangement type of any reference signal in the first reference signal set and the mapping rules between any other reference signal and any of the aforementioned reference signals.
  • the arrangement order, the number in the horizontal direction, and the number in the vertical direction of the corresponding beams of the reference signals enable the terminal device to obtain the spatial position relationship between the corresponding beams of the respective reference signals.
  • mapping rule 1 and mapping rule 2 are used to illustrate respectively the arrangement order, the number in the horizontal direction, and the number in the vertical direction of the beams corresponding to the reference signal 1 and the reference signal 2.
  • Figure 11 shows a schematic diagram of two reference signals provided by an embodiment of the present application.
  • the beam corresponding to the reference signal 1 can be exemplified by using the beam corresponding to the reference signal shown in (a) in Figure 9. .
  • the beam corresponding to the reference signal 2 includes: beam a, beam b, beam c, and beam d.
  • the beam corresponding to reference signal 2 is in the horizontal direction
  • the number on is 2, and the number of beams corresponding to reference signal 2 in the vertical direction is 2.
  • beam a is adjacent to beam b
  • beam c is adjacent to beam d.
  • beam a is adjacent to beam c
  • beam b is adjacent to beam d.
  • the corresponding relationship between the beam corresponding to the reference signal 2 and the beam corresponding to the reference signal 1 is an inclusive relationship.
  • the beam corresponding to the reference signal 2 includes: beam a, beam b, beam c, and beam d.
  • the number of beams corresponding to reference signal 2 in the horizontal direction is 4, and the number of beams corresponding to reference signal 2 in the vertical direction is 1.
  • beam a, beam b, beam c and beam d are adjacent in order.
  • the beam corresponding to reference signal 2 includes: beam a, beam b, beam c, beam d, beam e, and beam f , beam g, beam h, and beam i.
  • the number of beams corresponding to reference signal 2 in the horizontal direction is 3, and the number of beams corresponding to reference signal 2 in the vertical direction is 3.
  • beam a, beam b, and beam c are adjacent in order
  • beam d, beam e, and beam f are adjacent in order
  • beam g, beam h, and beam i are adjacent in order.
  • beam a, beam d, and beam g are adjacent in order
  • beam b, beam e, and beam h are adjacent in order
  • beam c, beam f, and beam i are adjacent in order.
  • beam a corresponds to beam 0, beam 1, beam 4, beam 5, and beam 8.
  • Beam 9, beam 12, and beam 13 corresponds to beam 1, beam 2, beam 5, beam 6, beam 9, beam 10, beam 13, and beam 14, and beam c corresponds to beam 2, beam 3, and beam 6.
  • the corresponding relationship between the beam corresponding to the reference signal 2 and the beam corresponding to the reference signal 1 is a complementary relationship.
  • the beam corresponding to the reference signal 2 includes: beam a, beam b, and beam c.
  • the number of beams corresponding to reference signal 2 in the horizontal direction is 3, and the number of beams corresponding to reference signal 2 in the vertical direction is 1.
  • beam a, beam b, and beam c are adjacent in order.
  • the terminal device can determine the reference signal of any two reference signals according to the arrangement type of one of the reference signals and the mapping rule between the any two reference signals.
  • the beams corresponding to the signals which beams have corresponding relationships in the horizontal direction and/or vertical direction and the type of the corresponding relationship.
  • this application can indicate the spatial position information of the beam corresponding to the first reference signal set through the arrangement type of the reference signals and the mapping rules between the reference signals.
  • the correspondence between the beams corresponding to any two reference signals in the first reference signal set there are also three types of relationships. Therefore, when the spatial position information of the beam corresponding to the first reference signal set may include the arrangement type of any reference signal in the first reference signal set, the arrangement type of any reference signal in the first reference signal set also Can be used to indicate the type of correspondence between beams corresponding to any reference signal.
  • the arrangement type of any one reference signal in the first reference signal set may indicate that the corresponding relationship between the corresponding beams of any one reference signal is the adjacent relationship as shown in FIGS. 8-10.
  • the arrangement type of any reference signal in the first reference signal set It may indicate that the corresponding relationship between the corresponding beams of any reference signal is the inclusion relationship as shown in (a) and (b) in Figure 11, or as shown in (c) and (d) in Figure 11 complementary relationship.
  • this application may use the arrangement relationship of reference signal type sets and/or the mapping relationship between reference signal type sets to indicate the spatial position information of the beam corresponding to the first reference signal set.
  • any reference signal type set in the first reference signal set may include one or more reference signals, and the shape and width of the beam corresponding to each reference signal in any reference signal type set are the same, that is, All reference signals in any reference signal type set are of the same type.
  • reference signals of the same type in the first reference signal set may be arranged in one reference signal type set.
  • the arrangement relationship of the reference signal type set can be predefined through the protocol or configured by the network device.
  • the arrangement relationship of the reference signal type set can be used to indicate how the beams corresponding to all reference signals in the reference signal type set are arranged/layout.
  • the mapping relationship between the reference signal type sets can be predefined through the protocol or configured by the network device.
  • the mapping relationship between the reference signal type sets can be used to indicate how the corresponding beams of different reference signal type sets correspond to each other.
  • the spatial position information of the beam corresponding to the first reference signal set may include: the arrangement relationship of one or a reference signal type set in the first reference signal set.
  • the arrangement relationship of any reference signal type set in the first reference signal set can be used to indicate the arrangement order in the horizontal direction of the beams corresponding to the reference signals in any reference signal type set, any reference signal type set
  • the arrangement order of the beams corresponding to the reference signals in the vertical direction, the number of beams corresponding to the reference signals in any reference signal type set in the horizontal direction, or the vertical arrangement of the reference signals in any reference signal type set One or more of the number of corresponding beams in the straight direction.
  • the arrangement relationship of any reference signal type set in the first reference signal set can be represented by a one-dimensional array, a multi-dimensional array, a one-dimensional list, or a multi-dimensional list.
  • the order of elements can represent the order of beams
  • the number of elements can represent the number of beams.
  • any reference signal type set in the first reference signal set can be expressed as: a one-dimensional list
  • N h represents the number of beams corresponding to the reference signals in the reference signal type set in the vertical direction
  • j is a positive integer that is greater than or equal to 1 and less than or equal to N h .
  • the beams corresponding to adjacent reference signals in the reference signal type set are adjacent, and the beam corresponding to r j is set to the right of the beam corresponding to r j-1 .
  • the arrangement order of the elements in the list can be expressed by the arrangement order of the beams corresponding to the reference signals shown in (a) or (b) of FIG. 8 .
  • the arrangement order of the beams corresponding to the reference signals in the reference signal type set in the horizontal direction is the arrangement order of the elements in the list, and the number of beams corresponding to the reference signals in the reference signal type set in the horizontal direction is 1, and the number of beams corresponding to the reference signals in the reference signal type set in the vertical direction is N h .
  • the arrangement relationship of any reference signal type set in the first reference signal set can be expressed as: a two-dimensional list
  • N v represents the number of beams corresponding to the reference signal in the reference signal type set in the horizontal direction
  • N h represents the number of beams corresponding to the reference signal in the reference signal type set in the vertical direction
  • i is It is a positive integer that is greater than or equal to 1 and less than or equal to N v
  • j is a positive integer that is greater than or equal to 1 and less than or equal to N h .
  • the beams corresponding to adjacent reference signals in the reference signal type set are adjacent, and the beam corresponding to r i,j is set to be located below the beam corresponding to r i-1,j .
  • the elements in the list can be arranged in the order of the beams corresponding to the reference signals shown in (a) or (b) in Figure 9, or as shown in (a) or (b) in Figure 10
  • the arrangement order of the beams corresponding to the reference signals is represented.
  • the beams corresponding to the reference signals in the reference signal type set are arranged in the horizontal and vertical directions in the order of the elements in the list, and the reference signals in the reference signal type set correspond to
  • the number of beams is N v
  • the number of beams corresponding to the reference signals in the reference signal type set in the vertical direction is N h .
  • the corresponding relationship between the beams corresponding to the reference signals in any reference signal type set in the first reference signal set is an adjacent relationship.
  • the correspondence relationship between the beams corresponding to the reference signals may also be an inclusion relationship or a supplementary relationship, which will not be described in detail here.
  • the terminal equipment can determine the arrangement relationship of any reference signal type set in the first reference signal set. Find out which beams among the beams corresponding to the reference signals in the reference signal type set correspond in the horizontal direction and/or the vertical direction.
  • this application can indicate the spatial position information of the beam corresponding to the first reference signal set through the arrangement relationship of one or more reference signal type sets in the first reference signal set.
  • any other reference signal type set in the first reference signal set may include one or more reference signals, and each reference signal in any other reference signal type set in the first reference signal set corresponds to The shape and width of the beams are the same, that is, all the reference signals in any other reference signal type set in the first reference signal set are the same type of reference signals.
  • any other reference signal type set in the first reference signal set and any reference signal type set in the first reference signal set are any two reference signal type sets in the first reference signal set.
  • the reference signals in any other reference signal type set in the first reference signal set and the reference signals in any reference signal type set in the first reference signal set are different types of reference signals. In other words, in the first reference signal set, reference signals of the same type can be set in one reference signal type set, and reference signals of different types can be set in different reference signal type sets.
  • the spatial position information of the beam corresponding to the first reference signal set may also include: the arrangement relationship of one or more other reference signal type sets in the first reference signal set.
  • the spatial position information of the beam corresponding to the first reference signal set may also include: one or more other reference signal type sets in the first reference signal set and one or more reference signal types in the first reference signal set. Mapping relationships between sets.
  • mapping relationship between any two reference signal type sets in the first reference signal set can be predefined by a protocol or configured by a network device.
  • mapping relationship between any two reference signal type sets in the first reference signal set is the same, the mapping relationship between any two reference signal type sets can be predefined through a protocol.
  • the mapping relationship between any two reference signal type sets in the first reference signal set can be used to indicate that the beam corresponding to the reference signal in any other reference signal type set in the first reference signal set is different from the first reference signal.
  • the beam reference point between the beams corresponding to the reference signals in any one reference signal type set in the signal set, the beams corresponding to the reference signals in any other reference signal type set in the first reference signal set and the first reference The width ratio in the horizontal direction of the beam corresponding to the reference signal in any other reference signal type set in the signal set, or the beam corresponding to the reference signal in any other reference signal type set in the first reference signal set and the third One or more items of the width ratio in the vertical direction of the beam corresponding to the reference signal in any reference signal type set in a reference signal set.
  • the beam reference point between the beams corresponding to the reference signals in any two reference signal type sets in the first reference signal set can be used to indicate the beam reference point between the corresponding beams of the reference signals in any two reference signal type sets.
  • the corresponding relationship is an inclusive relationship or a complementary relationship.
  • the beam reference point, inclusion relationship and supplementary relationship here can be found in the previous description, and will not be described again here.
  • the beam reference point may include one or more of the following representations:
  • any boundary point of the beam corresponding to the reference signal in any reference signal type set in the first reference signal set is any boundary point of the beam corresponding to the reference signal in any reference signal type set in the first reference signal set.
  • the beam reference point can be represented by identifiers such as numbers, text, letters, characters, and binary numbers.
  • the beam reference point is the center of the beam, which can be recorded as type 0; the beam reference point is the upper left boundary point of the beam, which can be recorded as type 1.
  • the width ratio in the horizontal direction or the vertical direction between the beams corresponding to the reference signals in any two reference signal type sets in the first reference signal set can be used to indicate the reference signals in any two reference signal type sets.
  • the corresponding beams have corresponding width relationships in the horizontal or vertical direction.
  • the width ratio in the horizontal direction between the beams corresponding to the reference signals in any two reference signal type sets in the first reference signal set, and any two reference signal types Reference signal correspondence within the set The width ratio between the beams in the vertical direction can be replaced by the width ratio between the beams corresponding to the reference signals in any two reference signal type sets.
  • the width ratio in the horizontal direction of the beam corresponding to the reference signal in the reference signal type set 2 and the beam corresponding to the reference signal in the reference signal type set 1 is V
  • the reference signal type set The width ratio in the vertical direction of the beam corresponding to the reference signal in 2 and the beam corresponding to the reference signal in reference signal type set 1 is H. That is, there is a corresponding relationship between the beams corresponding to the reference signals in the reference signal type set 2 and the V ⁇ H beams corresponding to the reference signals in the reference signal type set 1.
  • the terminal device can determine the first reference signal type set through the arrangement relationship of any reference signal type set in the first reference signal set and the mapping relationship between any other reference signal type set and any of the aforementioned reference signal type sets. Which beams correspond to the beams corresponding to the reference signals in different reference signal type sets in the reference signal set and the type of the correspondence, so that the terminal device obtains the reference within each reference signal type set in the first reference signal set The spatial positional relationship between the beams corresponding to the signal.
  • FIG. 12 shows a schematic diagram of a set of two reference signal types provided by an embodiment of the present application.
  • the beam corresponding to the reference signal in the reference signal type set 1 can use the reference signal shown in (b) in Figure 9
  • the corresponding beams are shown as examples.
  • the beam corresponding to the reference signal in reference signal type set 2 is beam a
  • the beam corresponding to the reference signal in reference signal type set 1 includes: beam 0-beam 15, then the reference signal
  • the mapping relationship between type set 2 and reference signal type set 1 can indicate:
  • the beam reference point between beam a and beam 0-beam 15 is the upper left boundary point of beam 4.
  • the beam corresponding to the reference signal in reference signal type set 3 is beam b
  • the beam corresponding to the reference signal in reference signal type set 1 includes: beam 0-beam 15, then the reference signal
  • the mapping relationship between type set 3 and reference signal type set 1 can indicate:
  • the beam reference point between beam b and beam 0-beam 15 is the upper left boundary point of beam 6.
  • the beam corresponding to the reference signal in reference signal type set 4 is beam a
  • the beam corresponding to the reference signal in reference signal type set 1 includes: beam 0-beam 15, then the reference signal
  • the mapping relationship between type set 4 and reference signal type set 1 can indicate:
  • the beam reference point between beam a and beam 0-beam 15 is the center of beam 3.
  • the beam corresponding to the reference signal in reference signal type set 5 is beam b
  • the beam corresponding to the reference signal in reference signal type set 1 includes: beam 0-beam 15, then the reference signal
  • the mapping relationship between type set 5 and reference signal type set 1 can indicate:
  • the beam reference point between beam b and beam 0-beam 15 is the center of beam 7.
  • the terminal device can determine the reference signal type set according to the arrangement relationship of one of the reference signal type sets and the mapping relationship between the any two reference signals.
  • the beams corresponding to the reference signals in any two reference signal type sets which beams have corresponding relationships in the horizontal direction and/or vertical direction and the width ratio between the corresponding beams.
  • this application can indicate the spatial position information of the beam corresponding to the first reference signal set through the arrangement relationship of the reference signal type sets and the mapping relationship between the reference signal type sets.
  • this application may use the association relationship of reference signals, and/or the association type between the beams corresponding to the reference signals with associated relationships, to indicate the spatial position information of the beams corresponding to the first reference signal set. .
  • the correlation relationship of the reference signals can be predefined by the protocol or configured by the network device.
  • the correlation relationship of the reference signals can be used to indicate whether the reference signals are correlated.
  • a reference signal can be associated with one or more reference signals.
  • a reference signal can be associated with one or more types of reference signals.
  • the correlation type between the beams corresponding to the reference signals with correlation relationships can be predefined by the protocol or configured by the network device.
  • the correlation type between the beams corresponding to the reference signals with correlation relationships please refer to the description of the correlation type between the beams mentioned above.
  • the spatial position information of the beam corresponding to the first reference signal set may include:
  • association relationship between one or more reference signals in the first reference signal set and other reference signals except itself, and the association type between the corresponding beams of the multiple reference signals where there is an association relationship.
  • the correlation type between the beams corresponding to the multiple reference signals having an associated relationship is the type of correspondence relationship between the beams corresponding to the multiple reference signals having an associated relationship mentioned above.
  • the association type between the beams corresponding to the reference signals with an associated relationship is an adjacent relationship
  • the association type between the beams corresponding to the reference signals with an associated relationship can be used to indicate the beams corresponding to the multiple reference signals with an associated relationship.
  • association relationship between any two reference signals there is an association relationship between any two reference signals, and the association type between the beams corresponding to any two reference signals is an adjacent relationship. Then, the beam corresponding to one of the reference signals is located in one or more directions above, below, left, or right of the beam corresponding to the other reference signal.
  • reference signal 1 corresponds to beam 0
  • reference signal 2 corresponds to beam 1 and beam 15.
  • Beam 0 is associated with: beam 1 and beam 15. Beam 0 is located to the left of beam 1, and beam 0 is located to the right of beam 15.
  • reference signal 1 corresponds to beam 0
  • reference signal 2 corresponds to beam 1, beam 3, beam 4, and beam 12.
  • Beam 0 is associated with: beam 1, beam 3, beam 4, and beam 12. Beam 0 is located to the left of beam 1, beam 0 is located to the right of beam 3, beam 0 is located below beam 4, and beam 0 is located above beam 12.
  • the correlation type between the beams corresponding to the reference signals in the correlation relationship is an inclusion relationship or a supplementary relationship
  • the correlation type between the beams corresponding to the reference signals in the correlation relationship can be used to indicate that the multiple reference signals in the correlation relationship each correspond to each other.
  • reference signal 1 corresponds to beam a
  • reference signal 2 corresponds to beam 0-beam 15.
  • Beam a corresponds to beam 4, beam 5, beam 0 and beam 1.
  • reference signal 1 corresponds to beam b
  • reference signal 2 corresponds to beam 0-beam 15.
  • Beam b corresponds to beam 6, beam 5, beam 2, and beam 1, or beam b corresponds to beam 6, beam 7, beam 4, beam 5, beam 2, beam 3, beam 0, and beam 1.
  • reference signal 1 corresponds to beam a
  • reference signal 2 corresponds to beam 0-beam 15.
  • Beam a corresponds to beam 3, beam 0, beam 15, and beam 12.
  • reference signal 1 corresponds to beam b
  • reference signal 2 corresponds to beam 0-beam 15.
  • Beam b corresponds to beam 7, beam 4, beam 11, and beam 8, or beam b corresponds to beam 7, beam 4, beam 3, beam 0, beam 15, beam 12, beam 11, and beam 8.
  • the terminal device can determine the corresponding relationship between the beams corresponding to different reference signals according to the correlation type between the beams corresponding to the reference signals that have an associated relationship in the first reference signal set.
  • this application can indicate the association relationship of the reference signals in the first reference signal set, or the association relationship of the reference signals and the association type between the beams corresponding to the reference signals in which the association relationship exists, to indicate that the first reference signal set corresponds to Beam spatial position information.
  • this application also provides a communication device.
  • FIG. 13 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 100 can exist independently or can be integrated in other devices. It can communicate with the network devices mentioned above and is used to implement the functions corresponding to the terminal devices in any of the above method embodiments. operate.
  • the communication device 100 may include: a transceiver unit 101 and a processing unit 102.
  • the transceiver unit 101 can implement corresponding communication functions, and the processing unit 102 is used for data processing.
  • the transceiver unit 101 may also be called a communication interface or a communication unit.
  • the communication device 100 may also include a storage unit, which may be used to store instructions and/or data, and the processing unit 102 may read the instructions and/or data in the storage unit, so that the communication device 100 implements the foregoing method.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 102 may read the instructions and/or data in the storage unit, so that the communication device 100 implements the foregoing method. Example.
  • the communication device 100 may be used to perform the actions performed by the terminal device in the previous method embodiments.
  • the communication device 100 may be a terminal device or a component configurable in the terminal device.
  • the transceiver unit 101 is configured to perform operations related to reception of the terminal device in the previous method embodiments
  • the processing unit 102 is configured to perform operations related to processing of the terminal device in the previous method embodiments.
  • the transceiver unit 101 may include a sending unit and a receiving unit.
  • the sending unit is used to perform the sending operation in the foregoing method embodiment.
  • the receiving unit is used to perform the receiving operation in the above method embodiment.
  • the communication device 100 may include a sending unit but not a receiving unit.
  • the communication device 100 may include a receiving unit instead of a transmitting unit. Specifically, it may depend on whether the above solution executed by the communication device 100 includes a sending action and a receiving action.
  • the communication device 100 is configured to perform the actions performed by the terminal device in the embodiment shown in FIG. 2 .
  • the communication device 100 may include: a transceiver unit 101 and a processing unit 102.
  • the transceiver unit 101 is configured to receive a first message sent by a network device, where the first message includes spatial position information of a beam corresponding to a first reference signal set, and the first reference signal set includes one or more reference signals;
  • the processing unit 102 is configured to obtain an updated second reference signal set based on the measurement results of one or more reference signals in the historical second reference signal set and the spatial position information of the beam corresponding to the first reference signal set.
  • One or more reference signals in the two reference signal sets are included in the first reference signal set.
  • the processing unit 102 is also configured to measure the reference signals in the updated second reference signal set to obtain measurement results.
  • the processing unit 102 in the previous embodiments may be implemented by at least one processor or processor-related circuit.
  • the transceiver unit 101 may be implemented by a transceiver or a transceiver-related circuit.
  • the transceiver unit 101 may also be called a communication unit or communication interface.
  • the storage unit may be implemented by at least one memory.
  • this application also provides a communication device.
  • FIG. 14 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 200 can exist independently or can be integrated in other devices. It can communicate with the terminal devices mentioned above and is used to implement the network devices corresponding to any of the above method embodiments. operate.
  • the communication device 200 may include: a transceiver unit 201.
  • the communication device 200 may further include a processing unit.
  • the transceiver unit 201 can implement corresponding communication functions, and the processing unit is used for data processing.
  • the transceiver unit 201 may also be called a communication interface or a communication unit.
  • the communication device 200 may also include a storage unit, which may be used to store instructions and/or data, and the processing unit may read the instructions and/or data in the storage unit, so that the communication device 200 implements the foregoing method. example.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit may read the instructions and/or data in the storage unit, so that the communication device 200 implements the foregoing method. example.
  • the communication device 200 may be used to perform the actions performed by the network device in the previous method embodiments.
  • the communication device 200 may be a first device or a component configurable in a network device.
  • the transceiver unit 201 is used to perform the connection of the network device in the previous method embodiment.
  • the processing unit is configured to perform operations related to processing of the network device in the foregoing method embodiments.
  • the transceiver unit 201 may include a sending unit and a receiving unit.
  • the sending unit is used to perform the sending operation in the above method embodiment.
  • the receiving unit is used to perform the receiving operation in the above method embodiment.
  • the communication device 200 may include a sending unit but not a receiving unit.
  • the communication device 200 may include a receiving unit instead of a transmitting unit. Specifically, it may depend on whether the above solution executed by the communication device 200 includes a sending action and a receiving action.
  • the communication device 200 is configured to perform the actions performed by the network device in the embodiment shown in FIG. 2 .
  • the communication device 200 may include: a transceiver unit 201.
  • Transceiver unit 201 configured to send a first message to the terminal device.
  • the first message includes spatial position information of the beam corresponding to the first reference signal set.
  • the first reference signal set includes one or more reference signals.
  • the first reference signal The spatial position information of the beams corresponding to the set is used by the terminal device to obtain the updated third reference signal based on the historical measurement results of one or more reference signals in the second reference signal set and the spatial position information of the beams corresponding to the first reference signal set.
  • Two reference signal sets, one or more reference signals in the second reference signal set are included in the first reference signal set;
  • the transceiver unit 201 is also configured to send the reference signal in the third reference signal set to the terminal device.
  • the first message also includes time-frequency resource information of the third reference signal set, and the time-frequency resource information of the third reference signal set is used by the terminal device to perform reference signal processing in the updated second reference signal set. It is measured that one or more reference signals in the updated second reference signal set are included in the third reference signal set.
  • the processing unit in the foregoing embodiments may be implemented by at least one processor or processor-related circuit.
  • the transceiver unit 201 may be implemented by a transceiver or a transceiver related circuit.
  • the transceiver unit may also be called a communication unit or communication interface.
  • the storage unit may be implemented by at least one memory.
  • the spatial position information of the beam corresponding to the first reference signal set includes: the size and/or position of the coverage range of the beam corresponding to each reference signal in the first reference signal set.
  • the size and position of the coverage area of the beam corresponding to any reference signal includes one or more of the following expressions:
  • the starting coordinates and ending coordinates of the beam in the horizontal direction and the starting coordinates and ending coordinates of the beam in the vertical direction;
  • the starting coordinate of the beam in the vertical direction, and the width of the beam in the horizontal and vertical directions are arranged.
  • the spatial position information of the beam corresponding to the first reference signal set includes:
  • the arrangement type of any reference signal in the first reference signal set is used to indicate: the arrangement order of the beams corresponding to any reference signal in the horizontal direction, and/or , the arrangement sequence of the beams corresponding to any reference signal in the vertical direction.
  • the spatial position information of the beam corresponding to the first reference signal set also includes:
  • Mapping rules between one or more other reference signals in the first reference signal set and one or more reference signals in the first reference signal set, one or more other reference signals in the first reference signal set The width ratio in the horizontal direction between the corresponding beam and the beam corresponding to one or more reference signals in the first reference signal set, or the width ratio in the horizontal direction between the beam corresponding to one or more other reference signals in the first reference signal set and the first reference signal set.
  • the mapping rule between any other reference signal in the first reference signal set and any one reference signal in the first reference signal set is used to indicate: the first reference signal any other in the set The correspondence relationship between the beam corresponding to the reference signal and the beam corresponding to any reference signal in the first reference signal set.
  • the spatial position information of the beam corresponding to the first reference signal set includes: the arrangement relationship of one or more reference signal type sets in the first reference signal set, the first reference signal The shape and width of the beam corresponding to each reference signal in any reference signal type set in the set are the same.
  • any reference signal type set in the first reference signal set is used to indicate:
  • the arrangement order of the beams corresponding to the reference signals in any one reference signal type set in the first reference signal set in the horizontal direction the arrangement order of the beams corresponding to the reference signals in any one reference signal type set in the first reference signal set.
  • the arrangement order in the vertical direction the number of beams corresponding to the reference signals in any reference signal type set in the first reference signal set in the horizontal direction, or any reference signal type set in the first reference signal set One or more of the number of beams corresponding to the reference signal in the vertical direction.
  • the spatial position information of the beam corresponding to the first reference signal set also includes: one or more other reference signal type sets in the first reference signal set and the first reference signal set
  • the mapping relationship between one or more reference signal type sets in the first reference signal set is that the shape and width of the beam corresponding to each reference signal in any other reference signal type set in the first reference signal set are the same.
  • mapping relationship between any other reference signal type set in the first reference signal set and any reference signal type set in the first reference signal set is used to indicate:
  • the width ratio in the horizontal direction of the beam corresponding to the reference signal in any other reference signal type set in the first reference signal set to the beam corresponding to the reference signal in any reference signal type set in the first reference signal set , or the beam corresponding to the reference signal in any other reference signal type set in the first reference signal set is in the vertical direction with the beam corresponding to the reference signal in any reference signal type set in the first reference signal set.
  • the beam reference point includes one or more of the following representations:
  • any boundary point of the beam corresponding to the reference signal in any reference signal type set in the first reference signal set is any boundary point of the beam corresponding to the reference signal in any reference signal type set in the first reference signal set.
  • the spatial position information of the beam corresponding to the first reference signal set includes: one or more reference signals in the first reference signal set and another one in the first reference signal set. Or whether there is an association relationship between multiple reference signals, and the association type between the beams corresponding to the multiple reference signals that have an association relationship.
  • the association type is used to indicate: the correspondence between the beams corresponding to the multiple reference signals in the horizontal direction or the vertical direction, the horizontal direction or the vertical direction of the beams corresponding to the multiple reference signals.
  • the association type is used to indicate: the correspondence relationship or the beam reference point between the beams corresponding to the multiple reference signals, the width ratio of the beams corresponding to the multiple reference signals in the horizontal direction, or the corresponding beams to the multiple reference signals.
  • the beam width ratios in the vertical direction is used to indicate: the correspondence relationship or the beam reference point between the beams corresponding to the multiple reference signals, the width ratio of the beams corresponding to the multiple reference signals in the horizontal direction, or the corresponding beams to the multiple reference signals.
  • This application can divide the communication device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in each embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • this application also provides a communication device.
  • FIG. 15 shows a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device 300 includes a processor 301.
  • the processor 301 is coupled to a memory 302.
  • the memory 302 is used to store computer programs or instructions and/or data.
  • the processor 301 is used to execute the computer programs or instructions and/or data stored in the memory 302, so that The methods in the previous method embodiments are executed.
  • the communication device 300 includes one or more processors 301 .
  • the communication device 300 may further include a memory 302 .
  • the communication device 300 may include one or more memories 302 .
  • the memory 302 may be integrated with the processor 301 or provided separately.
  • the communication device 300 may further include a transceiver 303, which is used for receiving and/or transmitting signals.
  • the processor 301 is used to control the transceiver 303 to receive and/or transmit signals.
  • the communication device 300 is used to implement the operations performed by the terminal device in the foregoing method embodiments.
  • the processor 301 is used to implement the processing-related operations performed by the terminal device in the previous method embodiment
  • the transceiver 303 is used to implement the transceiver-related operations performed by the terminal device in the previous method embodiment.
  • the communication device 300 is used to implement the operations performed by the network device in the previous method embodiments.
  • the processor 301 is used to implement the processing-related operations performed by the network device in the previous method embodiment
  • the transceiver 303 is used to implement the transceiver-related operations performed by the network device in the previous method embodiment.
  • the components in the transceiver 303 used for receiving power can be regarded as a receiving unit, and the components used in the transceiver 303 for transmitting functions can be regarded as a transmitting unit.
  • the transceiver 303 may include a receiver and a transmitter.
  • the transceiver 303 may also be called a transceiver, a transceiver unit, a transceiver circuit, or the like.
  • the receiver may also be called a receiver, receiving unit, receiver, or receiving circuit, etc.
  • the transmitter may also be called a transmitter, a transmitter, a transmitting unit or a transmitting circuit.
  • the processor 301 has a processing function, and the processor 301 may be called a processing unit.
  • the memory 302 is used to store computer program codes and data, and the memory 302 may also be called a storage unit.
  • this application also provides a communication device.
  • the communication device 400 may be a terminal device or a network device, or may be a chip of the terminal device or the network device.
  • the communication device 400 may be used to perform operations performed by network equipment or terminal equipment in the above method embodiments.
  • FIG. 16 shows a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
  • Communication device 400 includes a 410 part, a 420 part and a 430 part.
  • Part 410 is mainly used for baseband processing, controlling the base station, etc.;
  • Part 410 is usually the control center of the base station, which can usually be called a processor or processing unit, and is used to control the terminal equipment or network equipment to execute the terminal equipment or network equipment in the above method embodiments. Processing operations on the network device side.
  • Part 420 is mainly used to store computer program code and data, and can usually become a memory or storage unit.
  • Part 430 is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; part 430 can usually be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc.
  • the transceiver unit of part 430 which may also be called a transceiver or a transceiver, includes an antenna 433 and a radio frequency circuit (not shown in the figure), where the radio frequency circuit is mainly used for radio frequency processing.
  • the device used to implement the receiving function in part 430 can be regarded as a receiver, and the device used to implement the transmitting function can be regarded as a transmitter, that is, part 430 includes a receiver 432 and a transmitter 431.
  • the receiver may also be called a receiving unit, receiver, or receiving circuit, etc.
  • the transmitter may be called a transmitting unit, transmitting unit, transmitter, or transmitting circuit, etc.
  • Parts 410 and 420 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities.
  • multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processors at the same time. device.
  • the transceiver unit of part 430 is used to perform transceiver-related processes performed by the terminal device or network device in the embodiment shown in FIG. 2 .
  • the processor in part 410 is used to perform processing-related processes performed by the terminal device or the network device in the embodiment shown in FIG. 2 .
  • FIG. 16 is only an example and not a limitation.
  • the above-mentioned terminal device or network device including a processor, a memory, and a transceiver may not rely on the structure shown in FIG. 16 .
  • the chip When the communication device 400 is a chip, the chip includes a transceiver, a memory, and a processor.
  • the transceiver may be an input-output circuit or a communication interface;
  • the processor may be a processor or microprocessor or integrated circuit integrated on the chip.
  • the sending operation of the terminal device or network device in the above method embodiment can be understood as the output of the chip, and the receiving operation of the terminal device or network device in the above method embodiment can be understood as the input of the chip.
  • the present application also provides a computer-readable storage medium on which computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the above method embodiment are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in the above method embodiment, or the method executed by the network device.
  • this application also provides a computer program product containing instructions.
  • the instructions When the instructions are executed by a computer, the computer implements the method executed by the terminal device in the above method embodiment, or the method executed by the network device.
  • this application also provides a communication system, which includes a terminal device and a network device.
  • the terminal device is used to perform the process performed by the terminal device in the previous embodiment.
  • the network device is used to perform the process performed by the network device in the previous embodiment.
  • the present application also provides a chip device, including a processor, configured to call a computer program or computer instructions stored in the memory, so that the processor executes the reference signal processing method of the above embodiment.
  • the input of the chip device corresponds to the receiving operation in the embodiment shown in FIG. 2
  • the output of the chip device corresponds to the sending operation in the embodiment shown in FIG. 2 .
  • the processor is coupled to the memory through an interface.
  • the chip device further includes a memory, in which computer programs or computer instructions are stored.
  • the processor mentioned in any of the above places can be a general central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors used to control the previous embodiments. Reference signal processing methods for program execution on integrated circuits.
  • the memory mentioned in any of the above places can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • the terminal device or network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer can include hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system of the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to A computer device (which may be a personal computer, a server, or a network device, etc.) is caused to execute all or part of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种参考信号处理方法、装置及系统。该方法包括:接收网络设备发送的包括第一参考信号集合对应的波束的空间位置信息的第一消息;根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中。从而,降低了终端设备的测量量和能耗,也无需网络设备重新配置参考信号,降低了信令交互的时延和开销,降低了波束失败的发生概率,提高了通信系统的性能。

Description

参考信号处理方法、装置及系统
本申请要求于2022年8月29日提交国家知识产权局、申请号为202211063512.3、申请名称为“参考信号处理方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号处理方法、装置及系统。
背景技术
第五代(5th generation,5G)新空口(new radio,NR)的高频(6GHz以上,如毫米波)通信中,引入了波束赋形(beam forming)技术,有效对抗路径损耗(path loss)。基于此,网络设备和终端设备均能够使用多个不同指向/方向的波束进行通信。为了良好的通信质量,网络设备和终端设备需要进行波束跟踪,来达到波束对准的效果。
目前,在波束跟踪的过程中,终端设备需要测量网络设备发送的用于波束测量(beam measurement)的全部无线信号后才能对波束进行调整。
然而,随着网络设备大规模天线阵列技术的不断演进,网络设备使用的波束的宽度越来越窄。这样,如果波束跟踪的覆盖区域保持不变,那么,网络设备使用的波束的数量变多,需要终端设备测量无线信号的数量也变多,导致终端设备的功耗变高。如果终端设备测量无线信号的数量保持不变,那么,波束跟踪的覆盖区域变小,需要网络设备频繁的重新配置波束,来增大波束跟踪的覆盖区域,否则容易发生波束失败(beam failure)。
发明内容
本申请提供一种参考信号处理方法、装置及系统,可降低了终端设备的测量量和能耗,也无需网络设备重新配置参考信号,提高了通信系统的性能。
第一方面,本申请提供一种参考信号处理方法,该方法包括:
接收网络设备发送的第一消息,第一消息中包括第一参考信号集合对应的波束的空间位置信息,第一参考信号集合中包括一个或多个参考信号;
根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中。
在一种可能的设计中,该方法还包括:
对更新的第二参考信号集合中的参考信号进行测量,得到测量结果。
第二方面,本申请提供一种参考信号处理方法,该方法包括:
向终端设备发送第一消息,第一消息中包括第一参考信号集合对应的波束的空间位置信息,第一参考信号集合中包括一个或多个参考信号,第一参考信号集合对应的波束的空间位置信息用于终端设备根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中;
向终端设备发送第三参考信号集合中的参考信号。
在一种可能的设计中,第一消息中还包括第三参考信号集合的时频资源信息,第三参考信号集合的时频资源信息用于终端设备对更新的第二参考信号集合中的参考信号进行测量,更新的第二参考信号集合中的一个或多个参考信号包含在第三参考信号集合中。
第三方面,本申请提供一种通信装置,该装置包括:
收发单元,用于接收网络设备发送的第一消息,第一消息中包括第一参考信号集合对应的波 束的空间位置信息,第一参考信号集合中包括一个或多个参考信号;
处理单元,用于根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中。
在一种可能的设计中,处理单元,还用于对更新的第二参考信号集合中的参考信号进行测量,得到测量结果。
第四方面,本申请提供一种通信装置,该装置包括:
收发单元,用于向终端设备发送第一消息,第一消息中包括第一参考信号集合对应的波束的空间位置信息,第一参考信号集合中包括一个或多个参考信号,第一参考信号集合对应的波束的空间位置信息用于终端设备根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中;
收发单元,还用于向终端设备发送第三参考信号集合中的参考信号。
在一种可能的设计中,第一消息中还包括第三参考信号集合的时频资源信息,第三参考信号集合的时频资源信息用于终端设备对更新的第二参考信号集合中的参考信号进行测量,更新的第二参考信号集合中的一个或多个参考信号包含在第三参考信号集合中。
在上述任意一方面及该一方面任一种可能的设计中,所提及的第二参考信号集合可包括历史的第二参考信号集合,以及更新的第二参考信号集合。故,历史的第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中。更新的第二参考信号集合中的一个参考信号和多个参考信号包含在第一参考信号集合中。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合对应的波束的空间位置信息包括:第一参考信号集合中的每个参考信号对应的波束的覆盖范围的大小和/或位置。
在上述任意一方面及该一方面任一种可能的设计中,任意一个参考信号对应的波束的覆盖范围的大小和位置包括如下中的一种或多种表示方式:
波束的波峰的坐标、以及波束在水平方向和竖直方向上的宽度;
或者,波束的中心的坐标、以及波束在水平方向和竖直方向上的宽度;
或者,波束在水平方向上的起始坐标和终止坐标、以及波束在竖直方向上的起始坐标和终止坐标;
或者,波束在水平方向上的起始坐标、以及波束在水平方向和竖直方向上的宽度;
或者,波束在竖直方向上的起始坐标、以及波束在水平方向和竖直方向上的宽度。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合对应的波束的空间位置信息包括:
第一参考信号集合中的一个或多个参考信号的排布类型、第一参考信号集合中的一个或多个参考信号在水平方向上对应的波束的数量、或者第一参考信号集合中的一个或多个参考信号在竖直方向上对应的波束的数量中的一项或多项。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合中的任意一个参考信号的排布类型用于指示:任意一个参考信号对应的波束在水平方向上的排布顺序,和/或,任意一个参考信号对应的波束在竖直方向上的排布顺序。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合对应的波束的空间位置信息还包括:
第一参考信号集合中的其他的一个或多个参考信号与第一参考信号集合中的一个或多个参考信号之间的映射规则、第一参考信号集合中的其他的一个或多个参考信号对应的波束与第一参考信号集合中的一个或多个参考信号对应的波束在水平方向上的宽度比、或者第一参考信号集合中的其他的一个或多个参考信号对应的波束与第一参考信号集合中的一个或多个参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合中的其他的任意一个参考信号与第一参考信号集合中的任意一个参考信号之间的映射规则用于指示:第一参考信号集 合中的其他的任意一个参考信号对应的波束与第一参考信号集合中的任意一个参考信号对应的波束之间的对应关系。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合对应的波束的空间位置信息包括:第一参考信号集合中的一个或多个参考信号类型集合的排布关系,第一参考信号集合中的任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合中的任意一个参考信号类型集合的排布关系用于指示:
第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的排布顺序、第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的排布顺序、第一参考信号集合中的任意一个参考信号类型集合内的参考信号在水平方向上对应的波束的数量、或者第一参考信号集合中的任意一个参考信号类型集合内的参考信号在竖直方向上对应的波束的数量中的一项或多项。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合对应的波束的空间位置信息包括:第一参考信号集合中的其他的一个或多个参考信号类型集合与第一参考信号集合中的一个或多个参考信号类型集合之间的映射关系,第一参考信号集合中的其他的任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合中的其他的任意一个参考信号类型集合与第一参考信号集合中的任意一个参考信号类型集合之间的映射关系用于指示:
第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束之间的波束参考点、第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的宽度比、或者第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
在上述任意一方面及该一方面任一种可能的设计中,波束参考点包括如下中的一种或多种表示方式:
第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的起点;
或者,第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的中心;
或者,第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的任意一个边界点。
在上述任意一方面及该一方面任一种可能的设计中,第一参考信号集合对应的波束的空间位置信息包括:第一参考信号集合中的一个或多个参考信号与第一参考信号集合中的其他的一个或多个参考信号之间是否存在关联关系,以及存在关联关系的多个参考信号各自对应的波束之间的关联类型。
在上述任意一方面及该一方面任一种可能的设计中,关联类型用于指示:多个参考信号各自对应的波束在水平方向或竖直方向上之间的对应关系、多个参考信号各自对应的波束在水平方向上的排布顺序、或者多个参考信号各自对应的波束在竖直方向上的排布顺序中的一项或多项;
或者,关联类型用于指示:多个参考信号各自对应的波束之间的对应关系或波束参考点、多个参考信号各自对应的波束在水平方向上的宽度比、或者多个参考信号各自对应的波束在竖直方向上的宽度比中的一项或多项。
第五方面,本申请提供一种通信系统,包括:用于执行上述第一方面及第一方面任意一种可能的设计中的方法的终端设备、以及用于执行上述第二方面及第二方面任意一种可能的设计中的方法的网络设备。
第六方面,本申请提供一种通信装置,该通信装置包括:收发器、处理器和存储器。该存储器中存储有计算机程序或指令,该处理器用于控制该收发器收发信号,该处理器用于调用并运行该存储器中存储的计算机程序或指令,使得处理器实现上述任意一个方面及该方面任意一种可能的设计中的方法。
第七方面,本申请提供一种通信装置,包括:处理器;处理器用于调用存储器中的计算机程序或指令,使得通信装置执行上述任意一个方面及该方面任一种可能的设计中的方法。
可选地,通信装置还包括:存储器,存储器用于存储程序指令。其中,处理器通过接口与该存储器耦合。
第八方面,本申请提供一种芯片装置,包括处理器,用于调用该存储器中的计算机程序或指令,以使得处理器执行上述任意一个方面及该方面任一种可能的设计中的方法。
可选地,处理器通过接口与该存储器耦合。
第九方面,本申请提供一种芯片,包括:接口电路和逻辑电路,接口电路用于接收来自于芯片之外的其他芯片的信号并传输至逻辑电路,或者将来自逻辑电路的信号发送给芯片之外的其他芯片,逻辑电路用于实现上述任意一个方面及该方面任一种可能的设计中的方法。
第十方面,本申请提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序或指令,计算机程序或指令设置为执行上述任意一个方面及该方面任一种可能的设计中的方法。
第十一方面,本申请提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述任意一个方面及该方面任一种可能的设计中的方法。
从以上技术方案可以看出,本申请的技术方案具有以下优点:
终端设备根据第一参考信号集合对应的波束的空间位置信息,基于历史的第一参考信号集合中的一个或多个参考信号的测量结果,能够精准地选择待测量的参考信号,降低了终端设备的测量量和能耗,也无需网络设备重新配置参考信号,降低了信令交互的时延和开销,降低了波束失败的发生概率,提高了通信系统的性能。
附图说明
图1为本申请一实施例提供的一种通信系统的架构示意图;
图2为本申请一实施例提供的一种参考信号处理方法的信令交互图;
图3为本申请一实施例提供的一种参考信号处理方法的应用场景示意图;
图4为本申请一实施例提供的一种参考信号处理方法的应用场景示意图;
图5为本申请一实施例提供的一种第三参考集合对应的波束的示意图;
图6为本申请一实施例提供的一种参考信号对应的波束的覆盖范围的示意图;
图7为本申请一实施例提供的一种参考信号对应的波束的覆盖范围的大小和位置的示意图;
图8为本申请一实施例提供的一种一个参考信号的排布类型的示意图;
图9为本申请一实施例提供的一种一个参考信号的排布类型的示意图;
图10为本申请一实施例提供的一种一个参考信号的排布类型的示意图;
图11为本申请一实施例提供的一种两个参考信号的示意图;
图12为本申请一实施例提供的一种两个参考信号类型集合的示意图;
图13为本申请一实施例提供的一种通信装置的结构示意图;
图14为本申请一实施例提供的一种通信装置的结构示意图;
图15为本申请一实施例提供的一种通信装置的结构示意图;
图16为本申请一实施例提供的一种通信装置的硬件结构示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,单独a,单独b或单独c中的至少一项(个),可以表示:单独a,单独b,单独c,组合a和b,组合a和c,组合b和c,或组合a、b和c,其中a,b,c可以是单个,也可以是多个。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“中心”、“纵向”、“横向”、“上”、“下”、 “左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
首先,下面对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术、模拟波束成形技术、或者混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在使用低频频段或中频频段时,可以全向发送信号或者通过一个较宽的角度来发送信号,而在使用高频频段时,得益于高频通信系统较小的载波波长,可以在发送端和接收端布置很多天线阵子构成的天线阵列,发送端以一定波束赋形权值发送信号,使发送信号形成具有空间指向性的波束,同时在接收端用天线阵列以一定波束赋形权值进行接收,可以提高信号在接收端的接收功率,对抗路径损耗。
准同位/准共址(quasi-co-location,QCL):同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(Angel-of-Arrival,AoA),平均到达角,AoA的扩展等。具体地,同位关系用于指示至少两组天线端口是否具有同位关系,或同位关系用于指示至少两组天线端口发送的信道状态信息参考信号是否来自相同的传输点,或同位关系用于指示至少两组天线端口发送的信道状态信息参考信号是否来自相同的波束组。
参考信号(reference signal,RS):根据长期演进(long term evolution,LTE)/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中上行物理信道包括:随机接入信道(random access channel,PRACH)、上行控制信道(physical uplink control channel,PUCCH)、上行数据信道(physical uplink shared channel,PUSCH)等,上行信号包括:上行探测参考信号(sounding reference signal,SRS)、上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS)、上行数据信道解调参考信号(PUSCH de-modulation reference signal,PUSCH-DMRS)、上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS)、上行定位信号(uplink positioning RS)等。下行通信包括下行物理信道和下行信号的传输。其中下行物理信道包括广播信道(physical broadcast channel,PBCH)、下行控制信道(physical downlink control channel,PDCCH)、下行数据信道(physical downlink shared channel,PDSCH)等,下行信号包括主同步信号(primary synchronization signal,PSS)/辅同步信号(secondary synchronization signal,SSS)、下行控制信道解调参考信号(PDCCH de-modulation reference signal,PDCCH-DMRS)、下行数据信道解调参考信号(PDSCH de-modulation reference signal,PDSCH-DMRS)、下行相位噪声跟踪信号(phase noise tracking reference signal,PTRS)、信道状态信息参考信号(channel status information reference signal,CSI-RS)、小区信号(Cell reference signal,CRS)、精同步信号(time/frequency tracking reference signal,TRS)、LTE/NR定位信号(positioning RS)等。其中,PSS、SSS和PBCH共同构成同步信号块(synchronization signal block,SSB)。
本申请提供一种参考信号处理方法。其中,本申请的参考信号处理方法可以应用于通信系统,通信系统可以包括但限于:无线通信系统,例如,窄带物联网系统(narrow band-Internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wide band  code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA)、LTE系统、第五代(the 5th generation,5G)系统、第六代(the 6th generation,6G)系统、以及未来的系统等。
请参阅图1,图1示出了本申请一实施例提供的一种通信系统的架构示意图。如图1所示,本申请的通信系统1可以包括:网络设备20和终端设备10。
其中,网络设备20与终端设备10可进行通信,网络设备20可以包括一个或多个。网络设备20:可以是基站,或者接入点,或者接入网设备,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。网络设备20可用于将收到的空中帧与网际互联协议(Internet protocol,IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备20还可协调对空中接口的属性管理。例如,网络设备20可以是卫星、无人机、全球移动通讯(global system of mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(evolutional node B,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者可穿戴设备或车载设备、车接其他(vehicular to everything,V2X)、设备对设备通信(Device-to-Device,D2D)、和机器对机器通信(Machine-to-Machine,M2M)通信中承担基站功能的终端或者中继站或接入点,或者5G网络中的基站,例如gNB等,或者未来的6G网络中的基站,或者未来演进的共用陆地移动网(public land mobile network,PLMN)网络中的网络设备,在此并不限定。
其中,终端设备10可以包括一个或多个。终端设备10可以是无线终端,也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、无人机、可穿戴设备、车联网中的终端等设备。无线终端也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device or user equipment)、用户设备(user equipment,UE)、终端单元、终端站、远方站、移动设备、终端、无线通信设备、终端代理或终端装置等,在此不作限定。
接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络或未来的6G网络中的终端设备或者未来演进的公用陆地移动网(public land mobile network,PLMN)网络中的终端设备等。
此外,终端设备10可以采用如Android系统、Linux系统、Windows系统、iOS系统、鸿蒙操作系统(harmony operating system,鸿蒙OS)等移动操作系统,本申请对此不做限定。
网络设备20与终端设备10之间可传输无线信号。通信系统的高频通信中,无线信号的质量可能出现大幅度的衰减,容易引起路径损耗,甚至导致通信系统无法正常工作。为了良好的通信质量,引入了波束赋形技术,波束具有方向性,可有效对抗路径损耗。
如图1所示,网络设备20可配置大规模天线(massive MIMO)阵列,例如,64根、128根、256根、1024根天线或其他数量的天线。从而,通过天线阵列实现通信,可提高无线信号的传输质量。上述提及的波束赋形技术可以通过调节各个天线的相位实现信号的有效叠加,使得无线信 号的增益更大,可对抗路径损耗,为无线信号的传输质量提供保障。
其中,上述提及的波束成形技术可以应用于网络设备20,也可以应用于终端设备10(即终端设备10也可以配置天线阵列),也可同时应用于网络设备20和终端设备10,本申请对此不做限定。
基于上述描述,在网络设备20作为发送端,终端设备10为接收端时,如图1所示,网络设备20可以使用多个不同指向的波束(Tx beam)向不同方向发射无线信号,实现服务区域的覆盖。对应地,终端设备10可使用多个不同指向的波束(Rx beam),来接收来自于网络设备20发射的不同方向的无线信号。
此外,网络设备20也可使用一个指向的波束发送无线信号,本申请对网络设备20使用多少个波束发送无线信号不做限定。终端设备10也可使用一个指向的波束接收无线信号,本申请对终端设备10使用多少个波束接收无线信号不做限定。应理解,图1仅为示意性的举例。
并且,上述提及的波束赋形技术可对无线信号的能量产生聚焦,形成一个指向性波束(beam),使无线信号的能量集中在接收端所在的方向。也就是说,发送端使用的波束的指向偏离接收端较小或者对准接收端,接收端便能够接收到高质量的无线信号。发送端使用的波束的指向偏离接收端,接收端可能无法接收到高质量的无线信号。
在发送端和/或接收端使用不同指向的波束时,存在一对波束(即包括发送端使用的一个波束和接收端使用的一个波束)相比于其他波束的组合来说,该一对波束的指向对准或者偏差较小,具有良好的对齐度。从而,使得接收端能够接收到高质量的无线信号。
其中,该一对波束可称之为波束对,波束对可以包括发送端使用的一个波束(即发射波束)和接收端使用的一个波束(即接收波束),即发射波束和接收波束指向对准或者偏差较小,波束对的对齐度较好。例如,在终端设备接收到的参考信号的接收信号功率(reference signal received power,RSRP)大于等于预设阈值时,可看作是网络设备发送该参考信号使用的发射波束与终端设备接收该参考信号使用的接收波束形成的波束对的对齐度较好。或者,在发射波束和接收波束满足一定的通信要求时,可看作是波束对的对齐度较好。
基于上述描述,继续结合图1,在网络设备20与终端设备10使用波束对进行无线信号传输时,网络设备20使用波束对中的发射波束发射无线信号,终端设备10使用波束对中的接收波束接收无线信号,使得终端设备10能够接收到高质量的无线信号,有利于提高通信质量。
由于终端设备10具有移动性,终端设备10使用的波束的指向会随着终端设备10的位置、终端设备10的姿态、终端设备10的天线是否被遮挡等情况的变化而发生变化。因此,网络设备20与终端设备10使用的波束对也会随之发生变化。基于此,为了保证网络设备20与终端设备10能够始终使用对齐度较好的波束对进行无线信号的传输,网络设备20和终端设备10需要持续进行波束跟踪。
在终端设备10接入到网络之前,即终端设备10处于非激活态或空闲态,网络设备20和终端设备10可以先通过测量参考信号,得到一组或多组对齐度较好的波束对。从而,使用前述一组或多组波束对能够发起随机接入过程,使得终端设备10能够接入网络。
在终端设备10接入到网络之后,即终端设备10处于无线资源控制(radio resource control,RRC)连接态,网络设备20和终端设备10可使用在随机接入过程中得到的波束对。如果终端设备10的位置、终端设备10的姿态、终端设备10的天线是否被遮挡等情况发生变化,那么在随机接入过程中得到的波束对将无法保障通信质量。故,网络设备20和终端设备10还需要继续通过测量参考信号,得到一组或多组对齐度较好的波束对。从而,使用该波束对能够实现无线信号的传输。
在上述波束跟踪的过程中,无论终端设备10接入到网络之前还是终端设备10接入到网络之后,终端设备10皆需要测量网络设备20发送的用于波束测量的全部无线信号,之后才能对需要测量的参考信号进行更新,来达到波束对准的效果。
然而,随着网络设备20配置的天线阵列越来越大,网络设备20使用的波束的宽度越来越窄。在保持波束跟踪的覆盖区域不变的情况下,网络设备20使用的波束的数量会变多,从而需要终端设备10测量越来越多的参考信号,导致终端设备10的功耗变高。在保持终端设备10测量的参考 信号的数量不变的情况下,波束跟踪的覆盖区域会变小,从而需要网络设备20频繁的重新配置波束,来增大波束跟踪的覆盖区域,否则容易发生波束失败。
考虑到上述问题,本申请提供一种参考信号处理方法,可通过网络设备向终端设备指示:根据协议预定义或者网络设备配置的参考信号对应的波束的空间位置信息,使得终端设备能够精准地选择待测量的参考信号。
下面,本申请以下实施例将以具有图1所示结构的终端设备10和网络设备20为例,结合附图和应用场景,对本申请提供的参考信号处理方法进行详细阐述。
请参阅图2,图2示出了本申请一实施例提供的一种参考信号处理方法的信令交互图。如图2所示,本申请提供的参考信号处理方法可以包括:
S101、网络设备向终端设备发送第一消息,第一消息中包括第一参考信号集合对应的波束的空间位置信息,第一参考信号集合中包括一个或多个参考信号。
网络设备可确定第一参考信号集合对应的波束的空间位置信息,即第一参考信号集合中的参考信号对应的波束的空间位置信息,第一参考信号集合对应的波束的空间位置信息用于更新待测量的参考信号。
其中,一个参考信号通常使用一个波束发送。因此,每个参考信号对应一个波束的空间位置信息。另外,一个参考信号也可使用一个多峰波束发送,且本申请可将多峰波束看作为多个波束。因此,每个参考信号对应一个多峰波束的空间位置信息,即每个参考信号对应多个波束的空间位置信息,这里的多个波束为一个多峰波束。
其中,参考信号对应的波束的空间位置信息用于确定波束对应的参考信号。
其中,第一参考信号集合中可以包括网络设备确定出的一个或多个参考信号。在终端设备接入到网络之前,网络设备根据协议预定义的时频资源信息可确定第一参考信号集合。在终端设备接入到网络之后,网络设备根据网络设备配置的时频资源信息,如RRC信令配置的时频资源信息,可确定第一参考信号集合。
其中,本申请对第一参考信号集合中的参考信号的类型不做限定。例如,第一参考信号集合中的参考信号可以包括:同步/广播信号块SSB、信道状态信息参考信号CSI-RS、上行探测参考信号SRS、解调参考信号(demodulation reference signal,DMRS)、或者跟踪参考信号TRS中的一种或多种类型。在第一参考信号集合中包括多个参考信号时,多个参考信号的类型可以为一种或多种。
从而,网络设备可向终端设备发送携带有第一参考信号集合对应的波束的空间位置信息的第一消息。
其中,本申请对第一消息的发送方式不做限定。在一些实施例中,第一消息可承载在控制信道和/或数据信道对应的信令中。例如,第一消息可承载在如RRC信令、下行控制指示(downlink control indication,DCI)信令、或者媒体接入控制控制元素(medium access control-control element,MAC-CE)信令等中的一个或多个信令中。
S102、终端设备根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中。
其中,历史的第二参考信号集合中的一个或多个参考信号的测量结果用于表示历史的第二参考信号集合中被测量的参考信号对应的信道状态和/或信号质量。历史的第二参考信号集合中的一个或多个参考信号的测量结果可为终端设备在得到更新的第二参考信号集合之前,对历史的第二参考信号集合中的参考信号进行测量得到的。历史的第二参考信号集合中的一个或多个参考信号的测量结果可为终端设备上一次或上多次的测量结果,本申请对此不做限定。
其中,历史的第二参考信号集合中的一个或多个参考信号可为历史的第二参考信号集合中的全部参考信号或部分参考信号,本申请对此不做限定。
其中,S102提及的第二参考信号集合可包括历史的第二参考信号集合和更新的第二参考信号集合。故历史的第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中。
在一些实施例中,历史的第二参考信号集合与第一参考信号集合可为同一个集合。或者,历 史的第二参考信号集合可为第一参考信号集合的子集。
在另一些实施例中,历史的第二参考信号集合与第一参考信号集合之间可存在交集,即存在相同的一个或多个参考信号。换句话说,历史的第二参考信号集合中,除了前述的相同的一个或多个参考信号之外,还包括其他的一个或多个参考信号。且第一参考信号集合中,除了前述的相同的一个或多个参考信号之外,还包括其他的一个或多个参考信号。
另外,历史的第二参考信号集合中的参考信号与第一参考信号集合中的参考信号的类型可相同或不同。
基于上述描述,终端设备根据历史的第二参考信号集合中的一个或多个参考信号的测量结果,可确定历史的第二参考信号集合中的信号质量好的参考信号。由于第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中。因此,终端设备结合第一参考信号集合对应的波束的空间位置信息,可确定第一参考信号集合中的信号质量好的参考信号。
从而,终端设备可将第一参考信号集合中的信号质量好的参考信号确定为更新的第二参考信号集合,使得终端设备能够确定之后待测量哪些参考信号。
其中,更新的第二参考信号集合是终端设备实际测量的参考信号集合。更新的第二参考信号集合为终端设备用于确定之后待测量的参考信号的时频资源信息。更新的第二参考信号集合中通常可以包括多个参考信号。
其中,S102提及的第二参考信号集合可包括历史的第二参考信号集合和更新的第二参考信号集合。故更新的第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中。
在一些实施例中,更新的第二参考信号集合与第一参考信号集合可为同一个集合。或者,更新的第二参考信号集合可为第一参考信号集合的子集。
在另一些实施例中,更新的第二参考信号集合与第一参考信号集合之间可存在交集,即存在相同的一个或多个参考信号。换句话说,更新的第二参考信号集合中,除了前述的相同的一个或多个参考信号之外,还包括其他的一个或多个参考信号。且第一参考信号集合中,除了前述的相同的一个或多个参考信号之外,还包括其他的一个或多个参考信号。
另外,更新的第二参考信号集合中的参考信号与第一参考信号集合中的参考信号的类型可相同或不同。
另外,更新的第二参考信号集合与历史的第二参考信号集合可以相同或不同。在终端设备对更新的第二参考信号集合进行测量后,更新的第二参考信号集合可成为终端设备之后待测量的参考信号的历史的第二参考信号集合。
S103、网络设备向终端设备发送第三参考信号集合中的参考信号。
网络设备可终端设备发送第三参考信号集合中的参考信号。
其中,第三参考信号集合可包括在终端设备接入网络之前发送的一个或多个参考信号。或者,第三参考信号集合可包括在终端设备接入网络之后发送的一个或多个参考信号。或者,第三参考信号集合可包括在终端设备接入网络之前发送的一个或多个参考信号以及第三参考信号集合可包括在终端设备接入网络之后发送的一个或多个参考信号。
其中,第三参考信号集合中的参考信号的类型与第一参考信号集合中的参考信号的类型可以相同或不同。
另外,第一参考信号集合和第三参考信号集合的交集不为空,但不一定存在包含关系。
在一些实施例中,第一参考信号集合与第三参考信号集合之间可存在交集,即存在相同的一个或多个参考信号。换句话说,第一参考信号集合中,除了前述的相同的一个或多个参考信号之外,还包括其他的一个或多个参考信号。且第三参考信号集合中,除了前述的相同的一个或多个参考信号之外,还包括其他的一个或多个参考信号。
在另一些实施例中,第一参考信号集合与第三参考信号集合可为同一个集合。或者,第一参考信号集合可为第三参考信号集合的子集。或者,第三参考信号集合可为第一参考信号集合的子集。
应理解,上述S103和S101之间没有时序上的先后顺序,且S103和S101可以同时执行,也可以顺序执行。
综上,终端设备能够精准地选择待测量的参考信号,降低了终端设备的测量量和能耗,也无需网络设备重新配置参考信号,降低了信令交互的时延和开销,降低了波束失败的发生概率,提高了通信系统的性能。
基于上述描述,第三参考信号集合中的参考信号可用于波束测量,也可用于其他功能。在更新的第二参考信号集合中的一个或多个参考信号包含在第三参考信号集合中的情况下,终端设备可确定第三参考信号集合中的参考信号用于波束测量。从而,终端设备可选择执行S104。
其中,更新的第二参考信号集合中的一个或多个参考信号包含在第三参考信号集合中。
在一些实施例中,更新的第二参考信号集合与第三参考信号集合可为同一个集合。或者,更新的第二参考信号集合可为第三参考信号集合的子集。
在另一些实施例中,更新的第二参考信号集合与第三参考信号集合之间可存在交集,即存在相同的一个或多个参考信号。换句话说,更新的第二参考信号集合中,除了前述的相同的一个或多个参考信号之外,还包括其他的一个或多个参考信号。且第三参考信号集合中,除了前述的相同的一个或多个参考信号之外,还包括其他的一个或多个参考信号。
另外,更新的第二参考信号集合中的参考信号与第三参考信号集合中的参考信号的类型可相同或不同。
S104、终端设备对更新的第二参考信号集合中的参考信号进行测量,得到测量结果,更新的第二参考信号集合中的一个或多个参考信号包含在第三参考信号集合中。
终端设备根据更新的第二参考信号集合,可确定之后待测量哪些参考信号。在网络设备向终端设备发送参考信号后,终端设备可对更新的第二参考信号集合中的一个或多个参考信号进行测量,而不用对网络设备发送用于波束测量的全部参考信号进行测量。从而,降低了终端设备的测量量,也无需网络设备重新配置参考信号。
其中,更新的第二参考信号集合中的一个或多个参考信号可为更新的第二参考信号集合中的全部参考信号或部分参考信号,本申请对此不做限定。S104提及的测量结果用于表示更新的第二参考信号集合中被测量的参考信号对应的信道状态和/或信号质量。另外,S104提及的测量结果还可作为S102所示的历史的第二参考信号集合,来得到此处测量之后的更新的第二参考信号集合。
另外,终端设备根据协议预定义或网络设备配置的第三参考信号集合的时频资源信息,可对更新的第二参考信号集合中的参考信号进行测量。
其中,第一消息中还可以包括:网络设备配置的第三参考信号集合的时频资源信息。换句话说,网络设备配置的第三参考信号集合的时频资源信息与第一参考信号集合对应的波束的空间位置信息可共同携带在第一消息中。此外,网络设备配置的第三参考信号集合的时频资源信息与第一参考信号集合对应的波束的空间位置信息也可分别携带在不同的消息中。
下面,结合图3-图4,举例说明本申请的参考信号处理方法的具体实现方式。
请参阅图3和图4,图3-图4示出了本申请一实施例提供的一种参考信号处理方法的应用场景示意图。
如图3所示,假设网络设备配置有SSB0-SSB7。
网络设备可执行如下操作:
11:网络设备向终端设备发送第一消息,第一消息中包括SSB0-SSB7对应的波束101-波束108的空间位置信息。其中,第一参考信号集合包括:SSB0-SSB7。
12:网络设备向终端设备发送多轮SSB0-SSB7。每轮中,网络设备分别使用波束101-波束108发送SSB0-SSB7,如网络设备可使用波束101发送SSB0-SSB7,使用波束102发送SSB0-SSB7,使用波束103发送SSB0-SSB7,使用波束104发送SSB0-SSB7,使用波束105发送SSB0-SSB7,使用波束106发送SSB0-SSB7,使用波束107发送SSB0-SSB7。
其中,本申请对网络设备使用波束101-波束108的顺序不做限定。
应理解,11和12没有时序上的先后顺序。
第一轮中,终端设备可执行如下操作:
21、终端设备分别使用波束201-波束203对SSB0-SSB7进行测量,如终端设备可使用波束201对SSB0-SSB7进行测量,使用波束202对SSB0-SSB7进行测量,使用波束203对SSB0-SSB7 进行测量,得到SSB0-SSB7的测量结果。
其中,历史的第二参考信号集合包括SSB0-SSB7。
另外,本申请对终端设备使用波束201-波束203的顺序不做限定。
第二轮中,在确定波束104与波束202对齐,SSB3对应的波束104分别与SSB2对应的波束103和SSB4对应的波束105相邻时,终端设备可得到更新的第二参考信号集合包括:SSB2-SSB4。从而,终端设备可执行如下操作:
23、终端设备使用波束202对SSB2-SSB4进行测量,得到SSB2-SSB4的测量结果。
或者,第二轮中,在确定波束103与波束201对齐,波束104与波束202对齐,波束105与波束203对齐,SSB2对应的波束103、SSB3对应的波束104和SSB4对应的波束105依次相邻时,终端设备可得到更新的第二参考信号集合包括:SSB2-SSB4。从而,终端设备可执行如下操作:
24、终端设备使用波束201对SSB2进行测量,使用波束202对SSB3进行测量,使用波束203对SSB4进行测量,得到SSB2-SSB4的测量结果。
可见,上述两种实现方式提及的第二轮中的终端设备的测量量皆少于第一轮中的终端设备的测量量,且无需终端设备重配参考信号。
另外,第二轮中,终端设备基于SSB2-SSB4的测量结果,可继续得到更新的第二参考信号集合,也可不继续得到更新的第二参考信号集合。
如图4所示,假设网络设备配置有CSI-RS1-CSI-RS16。
网络设备可执行如下操作:
31:网络设备向终端设备发送第一消息,第一消息中包括CSI-RS1-CSI-RS16对应的波束301-波束3016的空间位置信息。其中,第一参考信号集合包括:CSI-RS1-CSI-RS16。
32:网络设备向终端设备发送多轮CSI-RS1-CSI-RS16。每轮中,网络设备分别使用波束301-波束3016发送CSI-RS1-CSI-RS16。
其中,32的具体实现方式与12的实现方式类似,此处不做赘述。
应理解,31和32没有时序上的先后顺序。
第一轮中,终端设备可执行如下操作:
41、终端设备分别使用波束201-波束203对CSI-RS1-CSI-RS16进行测量,得到CSI-RS1-CSI-RS16的测量结果。其中,历史的第二参考信号集合包括CSI-RS1-CSI-RS16。
其中,41的具体实现方式与21的实现方式类似,此处不做赘述。
42、终端设备根据CSI-RS1-CSI-RS16的测量结果、以及CSI-RS1-CSI-RS16对应的波束301-波束3016的空间位置信息,得到更新的第二参考信号集合包括CSI-RS6-CSI-RS8。
第二轮中,在确定波束307与波束202对齐,且CSI-RS7对应的波束307分别与CSI-RS6对应的波束306和CSI-RS8对应的波束308相邻时,终端设备可执行如下操作:
43、终端设备使用波束202对CSI-RS6-CSI-RS8进行测量,得到CSI-RS6-CSI-RS8的测量结果。
或者,第二轮中,在确定波束306与波束201对齐,波束307与波束202对齐,波束308与波束203对齐,且CSI-RS6对应的波束306、CSI-RS7对应的波束307和CSI-RS8对应的波束308依次相邻时,终端设备可执行如下操作:
44、终端设备使用波束201对CSI-RS6进行测量,使用波束202对CSI-RS7进行测量,使用波束203对CSI-RS8进行测量,得到CSI-RS6-CSI-RS8的测量结果。
可见,上述两种实现方式提及的第二轮中的终端设备的测量量皆少于第一轮中的终端设备的测量量,且无需终端设备重配参考信号。
另外,第二轮中,终端设备基于CSI-RS6-CSI-RS8的测量结果,可继续得到更新的第二参考信号集合,也可不继续得到更新的第二参考信号集合。
如图3和图4所示,假设网络设备配置有SSB0-SSB7和CSI-RS1-CSI-RS6。其中,每个SSB对应于两个波束相邻的CSI-RS。
在终端设备接入网络之前,网络设备可执行如下操作:
51:网络设备可向终端设备发送第一消息,第一消息中包括SSB0-SSB7对应的波束101-波束 108和CSI-RS1-CSI-RS16对应的波束301-波束306的空间位置信息。其中,第一参考信号集合包括:SSB0-SSB7、以及CSI-RS1-CSI-RS16。
52:网络设备向终端设备发送多轮SSB0-SSB7。每轮中,网络设备分别使用波束101-波束108发送SSB0-SSB7。
其中,52的具体实现方式与12的实现方式类似,此处不做赘述。
应理解,51和52没有时序上的先后顺序。
在终端设备接入网络之前,终端设备可执行如下操作:
61、终端设备分别使用波束201-波束203对SSB0-SSB7进行测量,得到SSB0-SSB7的测量结果。其中,历史的第二参考信号集合包括SSB0-SSB7。
其中,61的具体实现方式与21的实现方式类似,此处不做赘述。
62、终端设备根据SSB0-SSB7的测量结果、以及SSB0-SSB7对应的波束101-波束108和CSI-RS1-CSI-RS6对应的波束301-波束3016的空间位置信息,确定SSB0-SSB7中的信号质量好的参考信号为SSB3。
由于SSB3对应于CSI-RS7和CSI-RS8,且CSI-RS7对应的波束307与CSI-RS6对应的波束306相邻,CSI-RS8对应的波束308与CSI-RS9对应的波束309相邻。因此,终端设备可得到更新的第二参考信号集合包括CSI-RS6-CSI-RS9。
其中,更新的第二参考信号集合用于确定在终端设备接入网络之后待测量的参考信号的时频域信息。故,在终端设备接入网络之前,网络设备可继续向终端设备发送SSB0-SSB7。
在终端设备接入网络之后,网络设备可执行如下操作:
71:网络设备向终端设备发送多轮CSI-RS1-CSI-RS16。每轮中,网络设备分别使用波束301-波束3016发送CSI-RS1-CSI-RS16。
其中,71的具体实现方式与12的实现方式类似,此处不做赘述。
在终端设备接入网络之后,终端设备可执行如下操作:
81、终端设备分别使用波束201-波束203对CSI-RS6-CSI-RS9进行测量,得到CSI-RS6-CSI-RS9的测量结果。
其中,81的具体实现方式与21的实现方式类似,此处不做赘述。
可见,81的终端设备的测量量少于终端设备分别使用波束201-波束203对CSI-RS1-CSI-RS16进行测量的测量量,且无需终端设备重配参考信号。
另外,在终端设备接入网络之后,终端设备基于CSI-RS6-CSI-RS9的测量结果,可继续得到更新的第二参考信号集合,也可不继续得到更新的第二参考信号集合。
应理解,上述实施例仅为一种可能的实现方式,本申请可以包括但不限于上述实现方式。
S102中,终端设备可采用多种方式得到更新的第二参考信号集合。
下面,结合图5,举例说明终端设备可得到更新的第二参考信号集合的一种实现方式。
请参阅图5,图5示出了本申请一实施例提供的一种第三参考集合对应的波束的示意图。
协议可以预定义之后测量的参考信号的规则。在协议预定义的规则中,之后测量的参考信号可以包括:以此次测量的参考信号接收功率(reference signal received power,RSRP)最大的参考信号对应的波束为中心,且水平方向和/或竖直方向在该参考信号的波束的预设宽度/预设数量内的波束对应的参考信号。
其中,本申请对预设宽度和预设数量的具体大小不做限定。例如,预设宽度和预设数量可通过协议预定义,或网络设备配置。此处提及的网络设备配置可理解为网络设备采用第一参考信号集合对应的波束的空间位置信息或者其他信息同步给终端设备。
基于上述协议预定义的规则,如图5所示,终端设备根据测量结果,可确定参考信号对应的波束501(图5中采用灰色的圆圈进行示意)为当前测量的RSRP最大的参考信号对应的波束。终端设备可确定之后测量的参考信号可以包括:以前述波束501为中心,并在水平方向和竖直方向在波束501的预设宽度内的波束(即图5中在框a内采用方格填充的波束)对应的参考信号。从而,终端设备可将前述的之后测量的参考信号(即图5中在框a内采用方格填充的波束对应的参考信号)更新为第二参考信号集合。
应理解,本申请可以包括但不限于上述得到更新的第二参考信号集合的方式。
此外,终端设备通过第一参考信号集合对应的波束的空间位置信息,还可实现如用于测量结果的空间域(spatial domain)和/或时域的预测模型的训练和使用等其他功能。
在S104提及的得到测量结果后,终端设备还可向网络设备发送测量结果。另外,终端设备还可向网络设备告知是否通过第一参考信号集合对应的波束的空间位置信息更新了历史的第二参考信号集合。另外,在S102提及的更新的第二参考信号集合后,终端设备还可向网络设备发送更新的第二参考信号集合。
其中,测量结果、是否通过第一参考信号集合对应的波束的空间位置信息更新了历史第二参考信号集合、或更新的第二参考信号集合中的一项或多项可采用同一信令或不同信令进行传输,且传输前述三项没有时序上的先后顺序。
基于上述实施例的描述,第一参考信号集合对应的波束的空间位置信息具有多种指示方式,可指示出第一参考信号集合中的每个参考信号对应的波束,使得终端设备能够动态得到更新的第二参考信号集合。
其中,本申请对第一参考信号集合对应的波束的空间位置信息的指示方式不做限定。
在一些实施例中,本申请可采用波束的覆盖范围,来指示第一参考信号集合对应的波束的空间位置信息。
其中,第一参考信号集合中的任意一个参考信号对应的波束的覆盖范围可以理解为:与该参考信号对应的波束的最大增益相距在预设范围(如3dB)内的方向所组成的区域。另外,任意一个参考信号对应的波束的覆盖范围可以是一个连续的区域,也可以由多个连续的区域组成(如多峰波束)。对于由多个连续的区域组成的任意一个参考信号对应的波束的覆盖范围的情况,可以对每个连续的区域分别指示。
下面,结合图6,举例说明一个参考信号对应的波束的覆盖范围。
请参阅图6,图6示出了本申请一实施例提供的一种参考信号对应的波束的覆盖范围的示意图。
如图6所示,以水平方向为例:
一个参考信号对应的波束#0在水平方向上的覆盖范围为[-13°,13°]。
一个参考信号对应的波束#1在水平方向上的覆盖范围为[15°,45°]。
基于上述描述,第一参考信号集合对应的波束的空间位置信息可以包括:第一参考信号集合中的每个参考信号对应的波束的覆盖范围的大小和/或位置。
其中,本申请提及的参考信号对应的波束的覆盖范围的大小指的是相对大小,大小的单位没有特别的含义/意义。本申请提及的参考信号对应的波束的覆盖范围的位置指的是相对位置,位置的单位没有特别的含义/意义。
其中,在各个参考信号对应的波束的覆盖范围的大小均为相同大小时,每个参考信号对应的波束的覆盖范围的大小可省略。
其中,每个参考信号对应的波束的覆盖范围的位置可通过协议预定义,或网络设备配置。在每个参考信号对应的波束的覆盖范围的位置为固定的位置时,每个参考信号对应的波束的覆盖范围的位置可通过协议预定义。
从而,终端设备通过每个参考信号对应的波束的覆盖范围,可确定第一参考信号集合中的每个参考信号对应的每个波束的实际空间位置以及不同波束之间的空间位置关系。
另外,第一参考信号集合对应的波束的空间位置信息还可以包括:第一参考信号集合中的每个参考信号对应的波束的覆盖范围的形状,如椭圆形、圆形、或其他形状等。
其中,第一参考信号集合中的任意一个波束的覆盖范围的形状指的是波束的覆盖范围的形状,或者,波束的主瓣的覆盖范围的形状,本申请对不做限定。
其中,每个参考信号对应的波束的覆盖范围的形状可通过协议预定义,或网络设备配置。在每个波束的覆盖范围的形状为固定的形状时,每个波束的覆盖范围的形状可通过协议预定义。
基于上述描述,每个参考信号对应的波束的覆盖范围的大小和/或位置,可采用坐标的方式,来指示第一参考信号集合对应的波束的空间位置信息。
其中,每个参考信号对应的波束的覆盖范围的大小和/或位置可表示为各种各样的坐标,只需该坐标能够确定每个参考信号对应的波束的覆盖范围即可。
在一些实施例中,每个参考信号对应的波束的覆盖范围的位置可采用波束参考点的坐标进行指示。每个参考信号对应的波束的覆盖范围的大小可采用波束的宽度或半波束宽度(即宽度的一半)进行指示,还可采用波束参考点的坐标进行指示。
上述的波束参考点可为每个参考信号对应的波束的覆盖范围的任意一个点。例如,波束参考点可包括波束的起点、中心、波峰和边界点等。
其中,波束的波峰指的是波束的最大增益的方向。波束的中心指的是该波束的覆盖范围的中点。波束的波峰的坐标与该波束的中心的坐标可为相同或者不同。
其中,在水平方向和/或竖直方向上的坐标的取值范围和量化精度可通过协议预定义,或网络设备配置。从而,通过在水平方向和/或竖直方向上的坐标的具体数值,可指示每个参考信号对应的波束的覆盖范围的大小和/或位置。应理解,本申请提及的坐标指的是相对坐标,坐标的单位没有特别的含义/意义。
举例而言,在水平方向上的坐标的取值范围为[-90,90],量化精度为1°时,若在水平方向上的坐标的具体取值为60,则代表水平方向上的60°。在水平方向上的坐标的取值范围为[-6,6],量化精度为15°时,若在水平方向上的坐标的具体取值为2,则代表水平方向上的30°。
其中,第一参考信号集合中的任意一个参考信号对应的波束的覆盖范围的大小和位置可以包括如下中的一种或多种表示方式:
该波束的波峰的坐标、以及该波束在水平方向和竖直方向上的宽度。
或者,该波束的中心的坐标、以及该波束在水平方向和竖直方向上的宽度。
或者,该波束在水平方向上的起始坐标和终止坐标、以及该波束在竖直方向上的起始坐标和终止坐标。
或者,该波束在水平方向上的起始坐标、以及该波束在水平方向和竖直方向上的宽度。
或者,该波束在竖直方向上的起始坐标、以及该波束在水平方向和竖直方向上的宽度。
应理解,在上述表示方式中,任意一个参考信号对应的波束在水平方向和竖直方向上的宽度可替换为该参考信号对应的波束在水平方向和竖直方向上的半波束宽度。另外,在该参考信号对应的波束的覆盖范围的形状为圆形时,该参考信号对应的波束在水平方向和竖直方向上的宽度可替换为该参考信号对应的波束的宽度或半波束宽度。且本申请包括但不限于上述采用坐标的方式表示任意一个参考信号对应的波束的覆盖范围的大小和位置的表示方式。
下面,结合图7,采用波束a和波束b分别举例说明一个参考信号对应的波束的覆盖范围的大小和位置。
请参阅图7,图7示出了本申请一实施例提供的一种参考信号对应的波束的覆盖范围的大小和位置的示意图。
如图7所示,一个参考信号对应的波束a的覆盖范围的大小和位置可以表示为:
波束a的中心的坐标(20,20)、以及波束a在水平方向和竖直方向上的宽度皆为40。
或者,波束a在水平方向上的起始坐标(0,0)和终止坐标(0,40)、以及波束a在竖直方向上的起始坐标(0,0)和终止坐标(0,40)。
或者,波束a在水平方向上的起始坐标(0,0)、以及波束a在水平方向和竖直方向上的宽度皆为40。
或者,波束a在竖直方向上的起始坐标(0,0)、以及波束a在水平方向和竖直方向上的宽度皆为40。
可见,在水平方向和竖直方向上的坐标的取值范围均为[-90,90],量化精度为1°时,该参考信号对应的波束a位于水平方向上的20°,且竖直方向上的20°。并且,该参考信号对应的波束a在水平方向和竖直方向上的宽度皆为40°。
如图7所示,一个参考信号对应的波束b的覆盖范围的大小和位置可以表示为:
波束b的中心的坐标(-30,0)、以及波束b在水平方向上的宽度为20,在竖直方向上的宽度为60。
或者,波束b在水平方向上的起始坐标(-20,0)和终止坐标(-40,0)、以及波束b在竖直方向上的起始坐标(-30,-30)和终止坐标(-30,30)。
或者,波束b在水平方向上的起始坐标(-20,0)、以及波束b在水平方向上的宽度为20,在竖直方向上的宽度为60。
或者,波束b在竖直方向上的起始坐标(-30,-30)、以及波束b在水平方向上的宽度为20,在竖直方向上的宽度为60。
可见,在水平方向和竖直方向上的坐标的取值范围均为[-90,90],量化精度为1°时,该参考信号对应的波束b位于水平方向上的30°,且竖直方向上的0°。并且,该参考信号对应的波束b在水平方向上的宽度为20°,且在竖直方向上的宽度为60°。
综上,任意一个该参考信号对应的波束的覆盖范围可通过坐标的方式,来指示第一参考信号集合对应的波束的空间位置信息。
在另一些实施例中,本申请可采用参考信号的排布类型,和/或,参考信号之间的映射规则,来指示第一参考信号集合对应的波束的空间位置信息。
其中,参考信号的排布类型可通过协议预定义的,或网络设备配置。参考信号的排布类型可用于指示参考信号对应的波束是如何排列/布局的。参考信号的排布类型通常可为常见或已存在的排布类型。
其中,参考信号之间的映射规则可通过协议预定义,或网络设备配置。参考信号之间的映射规则可用于指示不同参考信号各自对应的波束之间是如何相对应的。
基于上述描述,第一参考信号集合对应的波束的空间位置信息可以包括:
第一参考信号集合中的一个或多个参考信号的排布类型、第一参考信号集合中的一个或多个参考信号在水平方向上对应的波束的数量、或者第一参考信号集合中的一个或多个参考信号在竖直方向上对应的波束的数量中的一项或多项。
应理解,上述各项参数即通过协议预定义,或网络设备配置。在上述任意一项参数为固定的情况下,该项参数可通过协议预定义。
其中,第一参考信号集合中的任意一个参考信号的排布类型可用于指示任意一个参考信号对应的波束在水平方向上的排布顺序,和/或,任意一个参考信号对应的波束在竖直方向上的排布顺序。此处的排布顺序可理解为任意一个参考信号对应的波束是如何排列/布局的。
举例而言,协议预定义或网络设备配置有:排布类型A和排布类型B。
排布类型A中,一个参考信号对应的第i行第j列的波束的索引可采用公式一进行表示:
r=i-1+(j-1)Nh      公式一;
其中,Nv代表一个参考信号在水平方向上对应的波束的数量,Nv=1,Nh代表该参考信号在竖直方向上对应的波束的数量,i为取遍大于等于1且小于等于Nv的正整数,j为取遍大于等于1且小于等于Nh的正整数。
排布类型B中,一个参考信号对应的第i行第j列的波束的索引可采用公式二进行表示:
其中,Nv代表一个参考信号在水平方向上对应的波束的数量,Nh代表该参考信号在竖直方向上对应的波束的数量,i为取遍大于等于1且小于等于Nv的正整数,j为取遍大于等于1且小于等于Nh的正整数。
应理解,本申请可以包括但不限于上述排布类型A和排布类型B。
从而,终端设备通过第一参考信号集合中的任意一个参考信号的排布类型,可确定该参考信号对应的波束的排布顺序、在水平方向上的数量、以及在竖直方向上的数量,使得终端设备得到第一参考信号集合中的一个或多个参数信号对应的波束的空间位置信息。
下面,结合图8-图10,采用公式一和公式二分别举例说明一个参考信号的排布类型。
请参阅图8-图10,图8-图10示出了本申请一实施例提供的一种一个参考信号的排布类型的示意图。
如图8中的(a)所示,在Nv=1且Nh=16时,采用公式一的排布类型A,一个参考信号对应的波束在竖直方向上的数量为1,该参考信号对应的波束在竖直方向上的数量为16。可见,该参考信号对应的波束的总数量为16。
这16个波束在水平方向上的排布顺序为:波束0、波束1、波束2、波束3、波束4、波束5、波束6、波束7、波束8、波束9、波束10、波束11、波束12、波束13、波束14、和波束15依次相邻。
另外,边缘的波束可以看作是相邻的,即波束0还与波束15相邻。
如图8中的(b)所示,采用公式二的排布类型B,一个参考信号对应的波束在竖直方向上的数量为1,该参考信号对应的波束在竖直方向上的数量为16。可见,该参考信号对应的波束的总数量为16。
这16个波束在水平方向上的排布顺序为:波束8、波束9、波束10、波束11、波束12、波束13、波束14、波束15、波束0、波束1、波束2、波束3、波束4、波束5、波束6、和波束7依次相邻。
另外,边缘的波束可以看作是相邻的,即波束8还与波束7相邻。
如图9中的(a)所示,在Nv=4且Nh=4时,采用公式一的排布类型A,一个参考信号对应的波束在水平方向上的数量为4,该参考信号对应的波束在竖直方向上的数量为4。可见,该参考信号对应的波束的总数量为16。
这16个波束在水平方向上的排布顺序为:波束0、波束1、波束2、和波束3依次相邻,波束4、波束5、波束6、和波束7依次相邻,波束8、波束9、波束10、和波束11依次相邻,波束12、波束13、波束14、和波束15依次相邻。
这16个波束在竖直方向上的排布顺序为:波束0、波束4、波束8、和波束12依次相邻,波束1、波束5、波束9、和波束13依次相邻,波束2、波束6、波束10、和波束14依次相邻,波束3、波束7、波束11、和波束15依次相邻。
另外,边缘的波束可以看作是相邻的,即在水平方向上,波束0还与波束3相邻,波束4还与波束7相邻,波束8还与波束11相邻,波束12还与波束15相邻。在竖直方向上,波束0还与波束12相邻,波束1还与波束13相邻,波束2还与波束14相邻,波束3还与波束15相邻。
如图9中的(b)所示,采用公式二的排布类型B,一个参考信号对应的波束在水平方向上的数量为4,该参考信号对应的波束在竖直方向上的数量为4。可见,该参考信号对应的波束的总数量为16。
这16个波束在水平方向上的排布顺序为:波束6、波束7、波束4、和波束5依次相邻,波束2、波束3、波束0、和波束1依次相邻,波束14、波束15、波束12、和波束13依次相邻,波束10、波束11、波束8、和波束9依次相邻。
这16个波束在竖直方向上的排布顺序为:波束6、波束2、波束14、和波束10依次相邻,波束7、波束3、波束15、和波束11依次相邻,波束4、波束0、波束12、和波束8依次相邻,波束5、波束1、波束13、和波束9依次相邻。
另外,边缘的波束可以看作是相邻的,即在水平方向上,波束6还与波束5相邻,波束2还与波束1相邻,波束14还与波束13相邻,波束10还与波束9相邻。在竖直方向上,波束6还与波束10相邻,波束7还与波束11相邻,波束4还与波束8相邻,波束5还与波束9相邻。
如图10中的(a)所示,在Nv=4且Nh=8时,采用公式一的排布类型A,一个参考信号对应的波束在水平方向上的数量为4,该参考信号对应的波束在竖直方向上的数量为8。可见,该参考信号对应的波束的总数量为32。
这32个波束在水平方向上的排布顺序为:波束0、波束1、波束2、波束3、波束4、波束5、波束6、和波束7依次相邻,波束8、波束9、波束10、波束11、波束12、波束13、波束14、和波束15依次相邻,波束16、波束17、波束18、波束19、波束20、波束21、波束22、和波束23 依次相邻,波束24、波束25、波束26、波束27、波束28、波束29、波束30、和波束31依次相邻。
这32个波束在竖直方向上的排布顺序为:波束0、波束8、波束16、和波束24依次相邻,波束1、波束9、波束17、和波束25依次相邻,波束2、波束10、波束18、和波束26依次相邻,波束3、波束11、波束19、和波束27依次相邻,波束4、波束12、波束20、和波束28依次相邻,波束5、波束13、波束21、和波束29依次相邻,波束6、波束14、波束22、和波束30依次相邻,波束7、波束15、波束23、和波束31依次相邻。
另外,边缘的波束可以看作是相邻的,即在水平方向上,波束12还与波束11相邻,波束4还与波束3相邻,波束20还与波束19相邻,波束28还与波束27相邻。在竖直方向上,波束0还与波束24相邻,波束1还与波束25相邻,波束2还与波束26相邻,波束3还与波束27相邻,波束4还与波束28相邻,波束5还与波束29相邻,波束6还与波束30相邻,波束7还与波束31相邻。
如图10中的(b)所示,采用公式二的排布类型B,一个参考信号对应的波束在水平方向上的数量为4,该参考信号对应的波束在竖直方向上的数量为8。可见,该参考信号对应的波束的总数量为32。
这32个波束在水平方向上的排布顺序为:波束12、波束13、波束14、波束15、波束8、波束9、波束10、和波束11依次相邻,波束4、波束5、波束6、波束7、波束0、波束1、波束2、和波束3依次相邻,波束20、波束21、波束22、波束23、波束16、波束17、波束18、和波束19依次相邻,波束28、波束29、波束30、波束31、波束24、波束25、波束26、和波束27依次相邻。
这32个波束在竖直方向上的排布顺序为:波束12、波束4、波束20、和波束28依次相邻,波束13、波束5、波束21、和波束29依次相邻,波束14、波束6、波束22、和波束30依次相邻,波束15、波束7、波束23、和波束31依次相邻,波束8、波束0、波束16、和波束24依次相邻,波束9、波束1、波束17、和波束25依次相邻,波束10、波束2、波束18、和波束26依次相邻,波束11、波束3、波束19、和波束27依次相邻。
另外,边缘的波束可以看作是相邻的,即在水平方向上,波束12还与波束11相邻,波束4还与波束3相邻,波束20还与波束19相邻,波束28还与波束27相邻。在竖直方向上,波束12还与波束28相邻,波束13还与波束29相邻,波束14还与波束30相邻,波束15还与波束31相邻,波束8还与波束24相邻,波束9还与波束25相邻,波束10还与波束26相邻,波束11还与波束27相邻。
综上,终端设备根据第一参考信号集合中的任意一个参考信号的排布类型,可确定出该参考信号对应的波束在水平方向和/或竖直方向上的排布顺序。
从而,本申请可通过第一参考信号集合中的一个或多个参考信号的排布类型,来指示第一参考信号集合对应的波束的空间位置信息。
另外,第一参考信号集合中的其他的任意一个参考信号与第一参考信号集合中的任意一个参考信号是第一参考信号集合中的任意两个参考信号。本申请对第一参考信号集合中的其他的任意一个参考信号与第一参考信号集合中的任意一个参考信号是否相同不做限定。
其中,第一参考信号集合对应的波束的空间位置信息还可以包括:第一参考信号集合中的其他的一个或多个参考信号的排布类型。
或者,第一参考信号集合对应的波束的空间位置信息还可以包括:
第一参考信号集合中的其他的一个或多个参考信号与第一参考信号集合中的一个或多个参考信号之间的映射规则、第一参考信号集合中的其他的一个或多个参考信号对应的波束与第一参考信号集合中的一个或多个参考信号对应的波束在水平方向上的宽度比、或者第一参考信号集合中的其他的一个或多个参考信号对应的波束与第一参考信号集合中的一个或多个参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
应理解,上述各项参数即通过协议预定义,或网络设备配置。在上述任意一项参数为相同/固定的情况下,该项参数可通过协议预定义。
其中,第一参考信号集合中的任意两个参考信号之间的映射规则可用于指示第一参考信号集合中的其他的任意一个参考信号对应的波束与第一参考信号集合中的任意一个参考信号对应的波束之间的对应关系。
其中,第一参考信号集合中的任意两个参考信号各自对应的波束之间的对应关系的类型可以包括:相邻关系、包含关系以及补充关系。
其中,相邻关系,用于指示第一参考信号集合中的任意两个参考信号各自对应的波束的覆盖范围之间相邻。举例而言,图9中的(a),波束5可位于波束9的上方,位于波束1的下方,位于波束6的左方,且位于波束4的右方。应理解,若不存在某个或某些方向相邻的波束,则可省略相应的描述。
其中,包含关系,用于指示第一参考信号集合中的任意两个参考信号各自对应的波束的覆盖区域之间存在部分重叠。此处的波束的覆盖区域可参见前文的描述,此处不做赘述。
其中,补充关系,用于指示第一参考信号集合中的任意两个参考信号各自对应的波束的深陷区域之间存在重叠。此处的波束的深陷区域指的是任意两个参考信号各自对应的波束的覆盖区域之外的区域。
另外,包含关系和补充关系的区别在于:强调第一参考信号集合中的任意两个参考信号各自对应的波束之间所对应的位置在于波束的覆盖区域还是波束的深陷区域,并不是说第一参考信号集合中的任意两个参考信号各自对应的波束的覆盖区域或深陷区域之间仅重叠。
基于上述描述,在第一参考信号集合中的任意两个参考信号各自对应的波束之间的对应关系可以为相邻关系时,本申请可采用前述任意两个参考信号的排布类型进行指示。
在第一参考信号集合中的任意两个参考信号各自对应的波束之间的对应关系可为包含关系或补充关系时。本申请可采用第一参考信号集合中的任意两个参考信号之间的映射规则进行指示。故,第一参考信号集合中的任意两个参考信号之间的映射规则可用于指示第一参考信号集合中的其他的任意一个参考信号对应的波束与第一参考信号集合中的任意一个参考信号对应的波束之间的对应关系为包含关系或补充关系。
举例而言,第一参考信号集合中,参考信号2与参考信号1之间的映射规则一和映射规则二可以表示为:参考信号1对应的第(i,j)个波束与参考信号2对应的第{(m,n)|m∈[iV,iV+V),n∈[jH,jH+H),m和n=0,1,…}个波束存在对应关系。
其中,V为参考信号2对应的波束与参考信号1对应的波束在水平方向上的宽度比,H为参考信号2对应的波束与参考信号1对应的波束在竖直方向上的宽度比。
映射规则一中,参考信号1对应的波束与参考信号2对应的波束之间的对应关系为包含关系。
映射规则二中,参考信号1对应的波束与参考信号2对应的波束之间的对应关系为补充关系。
应理解,本申请可以包括但不限于上述映射规则一和映射规则二。
从而,终端设备通过第一参考信号集合中的任意一个参考信号的排布类型,以及其他的任意一个参考信号与前述任意一个参考信号之间的映射规则,可确定第一参考信号集合中的不同参考信号各自对应的波束的排布顺序、在水平方向上的数量、以及在竖直方向上的数量,使得终端设备得到各个参考信号各自对应的波束之间的空间位置关系。
下面,结合图11,采用映射规则一和映射规则二分别举例说明参考信号1与参考信号2各自对应的波束的排布顺序、在水平方向上的数量、以及在竖直方向上的数量。
请参阅图11,图11示出了本申请一实施例提供的一种两个参考信号的示意图。为了便于说明,图11中的(a)、(b)、(c)和(d),参考信号1对应的波束可采用图9中的(a)所示的参考信号对应的波束进行举例示意。
如图11中的(a)所示,在V=2且H=2时,基于映射规则一,参考信号2对应的波束中,波束a对应波束0、波束1、波束4、和波束5,波束b对应波束2、波束3、波束6、和波束7,波束c对应波束8、波束9、波束12、和波束13,波束d对应波束10、波束11、波束14、和波束15。
可见,参考信号2对应的波束与参考信号1对应的波束之间的对应关系为包含关系,参考信号2对应的波束中包括:波束a、波束b、波束c、和波束d。参考信号2对应的波束在水平方向 上的数量为2,参考信号2对应的波束在竖直方向上的数量为2。在水平方向上,波束a与波束b相邻,波束c与波束d相邻。在竖直方向上,波束a与波束c相邻,波束b与波束d相邻。
如图11中的(b)所示,在V=4且H=1时,基于映射规则二,参考信号2对应的波束中,波束a对应波束0、波束4、波束8、和波束12,波束b对应波束1、波束5、波束9、和波束13,波束c对应波束2、波束6、波束10、和波束14,波束d对应波束3、波束7、波束11、和波束15。
可见,参考信号2对应的波束与参考信号1对应的波束之间的对应关系为包含关系,参考信号2对应的波束中包括:波束a、波束b、波束c、和波束d。参考信号2对应的波束在水平方向上的数量为4,参考信号2对应的波束在竖直方向上的数量为1。在水平方向上,波束a、波束b、波束c与波束d依次相邻。
如图11中的(c)所示,在V=2和H=2时,基于映射规则一,参考信号2对应的波束中,波束a对应波束0、波束1、波束4、和波束5,波束b对应波束1、波束2、波束5、和波束6,波束c对应波束2、波束3、波束6、和波束7,波束d对应波束4、波束5、波束8、和波束9,波束e对应波束5、波束6、波束9、和波束10,波束f对应波束6、波束7、波束10、和波束11,波束g对应波束8、波束9、波束12、和波束13,波束h对应波束9、波束10、波束13、和波束14,波束i对应波束10、波束11、波束14、和波束15。
可见,参考信号2对应的波束与参考信号1对应的波束之间的对应关系为补充关系,参考信号2对应的波束中包括:波束a、波束b、波束c、波束d、波束e、波束f、波束g、波束h、和波束i。参考信号2对应的波束在水平方向上的数量为3,参考信号2对应的波束在竖直方向上的数量为3。在水平方向上,波束a、波束b、和波束c依次相邻,波束d、波束e、和波束f依次相邻,波束g、波束h、和波束i依次相邻。在竖直方向上,波束a、波束d、和波束g依次相邻,波束b、波束e、和波束h依次相邻,波束c、波束f、和波束i依次相邻。
如图11中的(d)所示,在V=4和H=1时,基于映射规则二,参考信号2对应的波束中,波束a对应波束0、波束1、波束4、波束5、波束8、波束9、波束12、和波束13,波束b对应波束1、波束2、波束5、波束6、波束9、波束10、波束13、和波束14,波束c对应波束2、波束3、波束6、波束7、波束10、波束11、波束14、和波束15。
可见,参考信号2对应的波束与参考信号1对应的波束之间的对应关系为补充关系,参考信号2对应的波束中包括:波束a、波束b、和波束c。参考信号2对应的波束在水平方向上的数量为3,参考信号2对应的波束在竖直方向上的数量为1。在水平方向上,波束a、波束b、和波束c依次相邻。
综上,针对第一参考信号集合中的任意两个参考信号来说,终端设备根据其中一个参考信号的排布类型以及该任意两个参考信号之间的映射规则,可确定该任意两个参考信号各自对应的波束中哪些波束在水平方向和/或竖直方向上之间存在对应关系以及该对应关系的类型。
从而,本申请可通过参考信号的排布类型以及参考信号之间的映射规则,来指示第一参考信号集合对应的波束的空间位置信息。
另外,基于第一参考信号集合中的任意两个参考信号各自对应的波束之间的对应关系的三种类型的描述,第一参考信号集合中的任意一个参考信号各自对应的波束之间的对应关系的类型也存在这三种类型。故,在第一参考信号集合对应的波束的空间位置信息可以包括第一参考信号集合中的任意一个参考信号的排布类型时,第一参考信号集合中的任意一个参考信号的排布类型还可用于指示任意一个参考信号对应的波束之间的对应关系的类型。
例如,第一参考信号集合中的任意一个参考信号的排布类型可指示任意一个参考信号的对应的波束之间的对应关系为如图8-图10所示的相邻关系。或者,假设图11中的参考信号1和参考信号2各自对应的波束为第一参考信号集合中的任意一个参考信号对应的波束,则第一参考信号集合中的任意一个参考信号的排布类型可指示任意一个参考信号的对应的波束之间的对应关系为如图11中的(a)和(b)所示的包含关系,或为如图11中的(c)和(d)所示的补充关系。
在另一些实施例中,本申请可采用参考信号类型集合的排布关系,和/或,参考信号类型集合之间的映射关系,来指示第一参考信号集合对应的波束的空间位置信息。
其中,第一参考信号集合中的任意一个参考信号类型集合内可以包括一个或多个参考信号,且任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同,即任意一个参考信号类型集合内的全部参考信号为同一种类型。换句话说,第一参考信号集合中的同一种类型的参考信号可设置在一个参考信号类型集合内。
其中,参考信号类型集合的排布关系可通过协议预定义,或网络设备配置。参考信号类型集合的排布关系可用于指示参考信号类型集合内的全部参考信号对应的波束是如何排列/布局的。
其中,参考信号类型集合之间的映射关系可通过协议预定义,或网络设备配置。参考信号类型集合之间的映射关系可用于指示不同参考信号类型集合各自对应的波束之间是如何相对应的。
基于上述描述第一参考信号集合对应的波束的空间位置信息可以包括:第一参考信号集合中的一个或一个参考信号类型集合的排布关系。
其中,第一参考信号集合中的任意一个参考信号类型集合的排布关系可用于指示任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的排布顺序、任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的排布顺序、任意一个参考信号类型集合内的参考信号在水平方向上对应的波束的数量、或者任意一个参考信号类型集合内的参考信号在竖直方向上对应的波束的数量中的一项或多项。
应理解,上述各项参数即通过协议预定义,或网络设备配置。在上述任意一项参数为相同/固定的情况下,该项参数可通过协议预定义。
其中,第一参考信号集合中的任意一个参考信号类型集合的排布关系可采用一维数组、多维数组、一维列表、或者多维列表等方式进行表示。数组或列表中,元素的排列顺序可代表波束的排列顺序,元素的数量可代表波束的数量。
举例而言,第一参考信号集合中的任意一个参考信号类型集合的排布关系可表示为:一维的列表
其中,Nh代表该参考信号类型集合内的参考信号在竖直方向上对应的波束的数量,j为取遍大于等于1且小于等于Nh的正整数。
该列表中,该参考信号类型集合中的相邻的参考信号对应的波束相邻,且设置rj对应的波束位于rj-1对应的波束的右方。
例如,该列表中的元素的排列顺序可采用图8中的(a)或(b)所示的参考信号对应的波束的排列顺序进行表示。
可见,该参考信号类型集合内的参考信号对应的波束在水平方向上的排布顺序为该列表中的元素的排列顺序,该参考信号类型集合内的参考信号在水平方向上对应的波束的数量为1,该参考信号类型集合内的参考信号在竖直方向上对应的波束的数量为Nh
又如,第一参考信号集合中的任意一个参考信号类型集合的排布关系可表示为:二维的列表
其中,Nv代表该参考信号类型集合内的参考信号在水平方向上对应的波束的数量,Nh代表该参考信号类型集合内的参考信号在竖直方向上对应的波束的数量,i为取遍大于等于1且小于等于Nv的正整数,j为取遍大于等于1且小于等于Nh的正整数。
该列表中,该参考信号类型集合中的相邻的参考信号对应的波束相邻,且设置ri,j对应的波束位于ri-1,j对应的波束的下方。
例如,该列表中的元素的排列顺序可采用图9中的(a)或(b)所示的参考信号对应的波束的排列顺序,或者,图10中的(a)或(b)所示的参考信号对应的波束的排列顺序进行表示。
可见,该参考信号类型集合内的参考信号对应的波束在水平方向和竖直方向上的排布顺序为该列表中的元素的排列顺序,该参考信号类型集合内的参考信号在水平方向上对应的波束的数量为Nv,该参考信号类型集合内的参考信号在竖直方向上对应的波束的数量为Nh
应理解,除了第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束之间的对应关系为相邻关系之外,第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束之间的对应关系还可为包含关系或补充关系,此处不做赘述。
综上,终端设备根据第一参考信号集合中的任意一个参考信号类型集合的排布关系,可确定 出该参考信号类型集合中的参考信号对应的波束中哪些波束在水平方向和/或竖直方向上相对应。
从而,本申请可通过第一参考信号集合中的一个或多个参考信号类型集合的排布关系,来指示第一参考信号集合对应的波束的空间位置信息。
另外,第一参考信号集合中的其他的任意一个参考信号类型集合内可以包括一个或多个参考信号,且第一参考信号集合中的其他的任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同,即第一参考信号集合中的其他的任意一个参考信号类型集合内的全部参考信号为同一种类型的参考信号。
此外,第一参考信号集合中的其他的任意一个参考信号类型集合与第一参考信号集合中的任意一个参考信号类型集合是第一参考信号集合中的任意两个参考信号类型集合。并且,第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号与第一参考信号集合中的任意一个参考信号类型集合内的参考信号为不同类型的参考信号。换句话说,第一参考信号集合中,同一种类型的参考信号可设置在一个参考信号类型集合内,不同种类型的参考信号可设置在不同参考信号类型集合内。
其中,第一参考信号集合对应的波束的空间位置信息还可以包括:第一参考信号集合中的其他的一个或多个参考信号类型集合的排布关系。
或者,第一参考信号集合对应的波束的空间位置信息还可以包括:第一参考信号集合中的其他的一个或多个参考信号类型集合与第一参考信号集合中的一个或多个参考信号类型集合之间的映射关系。
应理解,第一参考信号集合中的任意两个参考信号类型集合之间的映射关系可通过协议预定义,或网络设备配置。在第一参考信号集合中的任意两个参考信号类型集合之间的映射关系均相同时,任意两个参考信号类型集合之间的映射关系可通过协议预定义。
其中,第一参考信号集合中的任意两个参考信号类型集合之间的映射关系可用于指示第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束之间的波束参考点、第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的宽度比、或者第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
应理解,上述各项参数即通过协议预定义,或网络设备配置。在上述任意一项参数为固定的情况下,该项参数可通过协议预定义。
其中,第一参考信号集合中的任意两个参考信号类型集合内的参考信号各自对应的波束之间的波束参考点可用于指示任意两个参考信号类型集合内的参考信号各自对应的波束之间的对应关系是包含关系还是补充关系。此处的波束参考点、包含关系和补充关系可参见前文描述,此处不做赘述。
例如,波束参考点可以包括如下中的一种或多种表示方式:
第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的起点;
或者,第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的中心;
或者,第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的任意一个边界点。
应理解,本申请可以包括但不限于上述波束参考点的表示方式。
此外,波束参考点可采用如数字、文字、字母、字符、二进制等标识进行表示。例如,波束参考点为波束的中心,可记为类型0;波束参考点为波束的左上边界点,可记为类型1。
其中,第一参考信号集合中的任意两个参考信号类型集合内的参考信号对应的波束之间在水平方向或竖直方向上的宽度比可用于指示任意两个参考信号类型集合内的参考信号对应的波束在水平方向或竖直方向上存在对应关系的宽度关系。
应理解,在波束的形状为圆形时,第一参考信号集合中的任意两个参考信号类型集合内的参考信号对应的波束之间在水平方向上的宽度比,和任意两个参考信号类型集合内的参考信号对应 的波束之间在竖直方向上的宽度比可替换为任意两个参考信号类型集合内的参考信号对应的波束之间的宽度比。
举例而言,第一参考信号集合中,参考信号类型集合2内的参考信号对应的波束与参考信号类型集合1内的参考信号对应的波束在水平方向上的宽度比为V,参考信号类型集合2内的参考信号对应的波束与参考信号类型集合1内的参考信号对应的波束在竖直方向上的宽度比为H。即,参考信号类型集合2内的参考信号对应的波束与参考信号类型集合1内的参考信号对应的V×H个波束存在对应关系。
从而,终端设备通过第一参考信号集合中的任意一个参考信号类型集合的排布关系,以及其他的任意一个参考信号类型集合与前述任意一个参考信号类型集合之间的映射关系,可确定第一参考信号集合中的不同参考信号类型集合内的参考信号对应的波束之间中哪些波束存在对应关系以及对应关系的类型,使得终端设备得到第一参考信号集合中的各个参考信号类型集合内的参考信号对应的波束之间的空间位置关系。
下面,结合图12,举例说明任意两个参考信号类型集合之间的映射关系。
请参阅图12,图12示出了本申请一实施例提供的一种两个参考信号类型集合的示意图。为了便于说明,图12中的(a)、(b)、(c)和(d),参考信号类型集合1内的参考信号对应的波束可采用图9中的(b)所示的参考信号对应的波束进行举例示意。
如图12中的(a)所示,参考信号类型集合2内的参考信号对应的波束为波束a,参考信号类型集合1内的参考信号对应的波束包括:波束0-波束15,则参考信号类型集合2与参考信号类型集合1之间的映射关系可以指示:
波束a与波束0-波束15之间的波束参考点为波束4的左上边界点,波束a与波束0-波束15在水平方向上的宽度比为V=2,波束a与波束0-波束15在竖直方向上的宽度比为H=2。
如图12中的(b)所示,参考信号类型集合3内的参考信号对应的波束为波束b,参考信号类型集合1内的参考信号对应的波束包括:波束0-波束15,则参考信号类型集合3与参考信号类型集合1之间的映射关系可以指示:
波束b与波束0-波束15之间的波束参考点为波束6的左上边界点,波束b与波束0-波束15在水平方向上的宽度比为V=4,波束b与波束0-波束15在竖直方向上的宽度比为H=2。
如图12中的(c)所示,参考信号类型集合4内的参考信号对应的波束为波束a,参考信号类型集合1内的参考信号对应的波束包括:波束0-波束15,则参考信号类型集合4与参考信号类型集合1之间的映射关系可以指示:
波束a与波束0-波束15之间的波束参考点为波束3的中心,波束a与波束0-波束15在水平方向上的宽度比为V=1,波束a与波束0-波束15在竖直方向上的宽度比为H=1。
如图12中的(d)所示,参考信号类型集合5内的参考信号对应的波束为波束b,参考信号类型集合1内的参考信号对应的波束包括:波束0-波束15,则参考信号类型集合5与参考信号类型集合1之间的映射关系可以指示:
波束b与波束0-波束15之间的波束参考点为波束7的中心,波束b与波束0-波束15在水平方向上的宽度比为V=1,波束b与波束0-波束15在竖直方向上的宽度比为H=3。
综上,针对第一参考信号集合中的任意两个参考信号类型集合来说,终端设备根据其中一个参考信号类型集合的排布关系以及该任意两个参考信号之间的映射关系,可确定该任意两个参考信号类型集合内的参考信号对应的波束中哪些波束在水平方向和/或竖直方向上存在对应关系以及存在对应关系的波束之间的宽度比。
从而,本申请可通过参考信号类型集合的排布关系以及参考信号类型集合之间的映射关系,来指示第一参考信号集合对应的波束的空间位置信息。
在另一些实施例中,本申请可采用参考信号的关联关系,和/或,存在关联关系的参考信号对应的波束之间的关联类型,来指示第一参考信号集合对应的波束的空间位置信息。
其中,参考信号的关联关系可通过协议预定义的,或网络设备配置。参考信号的关联关系可用于指示参考信号之间是否关联。一个参考信号可关联一个或多个参考信号。一个参考信号可关联一种或多种类型的参考信号。
其中,存在关联关系的参考信号对应的波束之间的关联类型可通过协议预定义的,或网络设备配置。存在关联关系的参考信号对应的波束之间的关联类型的具体实现方式可参见前文提及波束之间的关联类型的描述。
应理解,在存在关联关系的参考信号对应的波束之间的关联类型均相同时,存在关联关系的参考信号对应的波束之间的关联类型可省略。
基于上述描述,第一参考信号集合对应的波束的空间位置信息可以包括:
第一参考信号集合中的一个或多个参考信号与除了自身之外的其他参考信号之间是否存在关联关系,以及存在关联关系的多个参考信号各自对应的波束之间的关联类型。
其中,存在关联关系的多个参考信号各自对应的波束之间的关联类型为前文提及的存在关联关系的多个参考信号各自对应的波束之间的对应关系的类型。
在存在关联关系的参考信号对应的波束之间的关联类型为相邻关系时,存在关联关系的参考信号对应的波束之间的关联类型可用于指示存在关联关系的多个参考信号各自对应的波束在水平方向或竖直方向上之间的对应关系、存在关联关系的多个参考信号各自对应的波束在水平方向上的排布顺序、或者存在关联关系的多个参考信号各自对应的波束在竖直方向上的排布顺序中的一项或多项。
应理解,上述各项参数即通过协议预定义,或网络设备配置。在上述任意一项参数为相同/固定的情况下,该项参数可通过协议预定义。
综上,针对任意两个参考信号存在关联关系,且任意两个参考信号各自对应的波束之间的关联类型为相邻关系。那么,其中一个参考信号对应的波束位于其中另一个参考信号对应的波束的上方、下方、左方、或者右方中的一个或多个方向。
如图8中的(a)或(b)所示,参考信号1对应波束0,参考信号2对应波束1和波束15。波束0关联:波束1和波束15,波束0位于波束1的左方,波束0位于波束15右方。
如图9中的(a)或(b)所示,参考信号1对应波束0,参考信号2对应波束1、波束3、波束4、和波束12。波束0关联:波束1、波束3、波束4、和波束12,波束0位于波束1的左方,波束0位于波束3右方,波束0位于波束4下方,波束0位于波束12上方。
可见,图8中的(a)或(b)和图9中的(a)或(b),参考信号1与参考信号2存在关联关系,且存在关联关系的参考信号1与参考信号2各自对应的波束之间的关联类型为相邻关系。
在存在关联关系的参考信号对应的波束之间的关联类型为包含关系或补充关系时,存在关联关系的参考信号对应的波束之间的关联类型可用于指示存在关联关系的多个参考信号各自对应的波束之间的对应关系或波束参考点、存在关联关系的多个参考信号各自对应的波束在水平方向上的宽度比、或者存在关联关系的多个参考信号各自对应的波束在竖直方向上的宽度比中的一项或多项。
应理解,上述各项参数即通过协议预定义,或网络设备配置。在上述任意一项参数为相同/固定的情况下,该项参数可通过协议预定义。
举例而言,如图12中的(a)所示,参考信号1对应波束a,参考信号2对应波束0-波束15。波束a与波束4、波束5、波束0和波束1对应。
如图12中的(b)所示,参考信号1对应波束b,参考信号2对应波束0-波束15。波束b与波束6、波束5、波束2和波束1对应,或者,波束b与波束6、波束7、波束4、波束5、波束2、波束3、波束0、和波束1对应。
可见,图12中的(a)和(b),参考信号1和参考信号2存在关联关系,且参考信号1和参考信号2各自对应的波束之间的关联类型为包含关系。
如图12中的(c)所示,参考信号1对应波束a,参考信号2对应波束0-波束15。波束a与波束3、波束0、波束15和波束12对应。
如图12中的(d)所示,参考信号1对应波束b,参考信号2对应波束0-波束15。波束b与波束7、波束4、波束11和波束8对应,或者,波束b与波束7、波束4、波束3、波束0、波束15、波束12、波束11、和波束8对应。
可见,图12中的(c)和(d),参考信号1和参考信号2存在关联关系,且参考信号1和参 考信号2各自对应的波束之间的关联类型为补充关系。
综上,终端设备根据第一参考信号集合中存在关联关系的参考信号对应的波束之间的关联类型,可确定出不同参考信号对应的波束之间的对应关系。
从而,本申请可通过第一参考信号集合中的参考信号的关联关系,或者参考信号的关联关系以及存在关联关系的参考信号对应的波束之间的关联类型,来指示第一参考信号集合对应的波束的空间位置信息。
示例性地,本申请还提供一种通信装置。
请参阅图13,图13示出了本申请一实施例提供的一种通信装置的结构示意图。
如图13所示,通信装置100可以独立存在,也可以集成在其他设备中,可以与前文提及的网络设备之间实现相互通信,用于实现上述任一方法实施例中对应于终端设备的操作。
通信装置100可以包括:收发单元101和处理单元102。收发单元101可以实现相应的通信功能,处理单元102用于进行数据处理。收发单元101还可以称为通信接口或通信单元。
可选地,通信装置100还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元102可以读取存储单元中的指令和/或数据,以使得通信装置100实现前述方法实施例。
通信装置100可以用于执行前文方法实施例中终端设备所执行的动作。通信装置100可以为终端设备或者可配置于终端设备的部件。收发单元101用于执行前文方法实施例中终端设备的接收相关的操作,处理单元102用于执行前文方法实施例中终端设备的处理相关的操作。
可选的,收发单元101可以包括发送单元和接收单元。发送单元用于执行前述方法实施例中的发送操作。接收单元用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置100可以包括发送单元,而不包括接收单元。或者,通信装置100可以包括接收单元,而不包括发送单元。具体可以视通信装置100执行的上述方案中是否包括发送动作和接收动作。
作为一种示例,通信装置100用于执行前文图2所示实施例中终端设备所执行的动作。
通信装置100可以包括:收发单元101和处理单元102。
收发单元101,用于接收网络设备发送的第一消息,第一消息中包括第一参考信号集合对应的波束的空间位置信息,第一参考信号集合中包括一个或多个参考信号;
处理单元102,用于根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中。
在一些实施例中,处理单元102,还用于对更新的第二参考信号集合中的参考信号进行测量,得到测量结果。
应理解,各单元执行上述相应的过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
前文实施例中的处理单元102可以由至少一个处理器或处理器相关电路实现。收发单元101可以由收发器或收发器相关电路实现。收发单元101还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
示例性地,本申请还提供一种通信装置。
请参阅图14,图14示出了本申请一实施例提供的一种通信装置的结构示意图。
如图14所示,通信装置200可以独立存在,也可以集成在其他设备中,可以与前文提及的终端设备之间实现相互通信,用于实现上述任一方法实施例中对应于网络设备的操作。
通信装置200可以包括:收发单元201。通信装置200还可以包括:处理单元。收发单元201可以实现相应的通信功能,处理单元用于进行数据处理。收发单元201还可以称为通信接口或通信单元。
可选地,通信装置200还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元可以读取存储单元中的指令和/或数据,以使得通信装置200实现前述方法实施例。
通信装置200可以用于执行前文方法实施例中网络设备所执行的动作。通信装置200可以为第一设备或者可配置于网络设备的部件。收发单元201用于执行前文方法实施例中网络设备的接 收相关的操作,处理单元用于执行前文方法实施例中网络设备的处理相关的操作。
可选的,收发单元201可以包括发送单元和接收单元。发送单元用于执行上述方法实施例中的发送操作。接收单元用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置200可以包括发送单元,而不包括接收单元。或者,通信装置200可以包括接收单元,而不包括发送单元。具体可以视通信装置200执行的上述方案中是否包括发送动作和接收动作。
作为一种示例,通信装置200用于执行前文图2所示的实施例中网络设备所执行的动作。
通信装置200可以包括:收发单元201。
收发单元201,用于向终端设备发送第一消息,第一消息中包括第一参考信号集合对应的波束的空间位置信息,第一参考信号集合中包括一个或多个参考信号,第一参考信号集合对应的波束的空间位置信息用于终端设备根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,第二参考信号集合中的一个或多个参考信号包含在第一参考信号集合中;
收发单元201,还用于向终端设备发送第三参考信号集合中的参考信号。
在一些实施例中,第一消息中还包括第三参考信号集合的时频资源信息,第三参考信号集合的时频资源信息用于终端设备对更新的第二参考信号集合中的参考信号进行测量,更新的第二参考信号集合中的一个或多个参考信号包含在第三参考信号集合中。
应理解,各单元执行上述相应的过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
前文实施例中的处理单元可以由至少一个处理器或处理器相关电路实现。收发单元201可以由收发器或收发器相关电路实现。收发单元还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
在图13-图14的一些实施例中,第一参考信号集合对应的波束的空间位置信息包括:第一参考信号集合中的每个参考信号对应的波束的覆盖范围的大小和/或位置。
在图13-图14的一些实施例中,任意一个参考信号对应的波束的覆盖范围的大小和位置包括如下中的一种或多种表示方式:
波束的波峰的坐标、以及波束在水平方向和竖直方向上的宽度;
或者,波束的中心的坐标、以及波束在水平方向和竖直方向上的宽度;
或者,波束在水平方向上的起始坐标和终止坐标、以及波束在竖直方向上的起始坐标和终止坐标;
或者,波束在水平方向上的起始坐标、以及波束在水平方向和竖直方向上的宽度;
或者,波束在竖直方向上的起始坐标、以及波束在水平方向和竖直方向上的宽度。
在图13-图14的一些实施例中,第一参考信号集合对应的波束的空间位置信息包括:
第一参考信号集合中的一个或多个参考信号的排布类型、第一参考信号集合中的一个或多个参考信号在水平方向上对应的波束的数量、或者第一参考信号集合中的一个或多个参考信号在竖直方向上对应的波束的数量中的一项或多项。
在图13-图14的一些实施例中,第一参考信号集合中的任意一个参考信号的排布类型用于指示:任意一个参考信号对应的波束在水平方向上的排布顺序,和/或,任意一个参考信号对应的波束在竖直方向上的排布顺序。
在图13-图14的一些实施例中,第一参考信号集合对应的波束的空间位置信息还包括:
第一参考信号集合中的其他的一个或多个参考信号与第一参考信号集合中的一个或多个参考信号之间的映射规则、第一参考信号集合中的其他的一个或多个参考信号对应的波束与第一参考信号集合中的一个或多个参考信号对应的波束在水平方向上的宽度比、或者第一参考信号集合中的其他的一个或多个参考信号对应的波束与第一参考信号集合中的一个或多个参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
在图13-图14的一些实施例中,第一参考信号集合中的其他的任意一个参考信号与第一参考信号集合中的任意一个参考信号之间的映射规则用于指示:第一参考信号集合中的其他的任意一 个参考信号对应的波束与第一参考信号集合中的任意一个参考信号对应的波束之间的对应关系。
在图13-图14的一些实施例中,第一参考信号集合对应的波束的空间位置信息包括:第一参考信号集合中的一个或多个参考信号类型集合的排布关系,第一参考信号集合中的任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同。
在图13-图14的一些实施例中,第一参考信号集合中的任意一个参考信号类型集合的排布关系用于指示:
第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的排布顺序、第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的排布顺序、第一参考信号集合中的任意一个参考信号类型集合内的参考信号在水平方向上对应的波束的数量、或者第一参考信号集合中的任意一个参考信号类型集合内的参考信号在竖直方向上对应的波束的数量中的一项或多项。
在图13-图14的一些实施例中,第一参考信号集合对应的波束的空间位置信息还包括:第一参考信号集合中的其他的一个或多个参考信号类型集合与第一参考信号集合中的一个或多个参考信号类型集合之间的映射关系,第一参考信号集合中的其他的任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同。
在图13-图14的一些实施例中,第一参考信号集合中的其他的任意一个参考信号类型集合与第一参考信号集合中的任意一个参考信号类型集合之间的映射关系用于指示:
第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束之间的波束参考点、第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的宽度比、或者第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
在图13-图14的一些实施例中,波束参考点包括如下中的一种或多种表示方式:
第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的起点;
或者,第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的中心;
或者,第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的任意一个边界点。
在图13-图14的一些实施例中,第一参考信号集合对应的波束的空间位置信息包括:第一参考信号集合中的一个或多个参考信号与第一参考信号集合中的其他的一个或多个参考信号之间是否存在关联关系,以及存在关联关系的多个参考信号各自对应的波束之间的关联类型。
在图13-图14的一些实施例中,关联类型用于指示:多个参考信号各自对应的波束在水平方向或竖直方向上之间的对应关系、多个参考信号各自对应的波束在水平方向上的排布顺序、或者多个参考信号各自对应的波束在竖直方向上的排布顺序中的一项或多项;
或者,关联类型用于指示:多个参考信号各自对应的波束之间的对应关系或波束参考点、多个参考信号各自对应的波束在水平方向上的宽度比、或者多个参考信号各自对应的波束在竖直方向上的宽度比中的一项或多项。
本申请可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请各实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
示例性地,本申请还提供一种通信装置。
请参阅图15,图15示出了本申请一实施例提供的一种通信装置的硬件结构示意图。
通信装置300包括处理器301,处理器301与存储器302耦合,存储器302用于存储计算机程序或指令和/或数据,处理器301用于执行存储器302存储的计算机程序或指令和/或数据,使得前文方法实施例中的方法被执行。
可选地,通信装置300包括的处理器301为一个或多个。
可选地,如图15所示,通信装置300还可以包括存储器302。
可选地,通信装置300包括的存储器302可以为一个或多个。
可选地,存储器302可以与处理器301集成在一起,或者分离设置。
如图15所示,通信装置300还可以包括收发器303,收发器303用于信号的接收和/或发送。例如,处理器301用于控制收发器303进行信号的接收和/或发送。
作为一种方案,通信装置300用于实现前文方法实施例中由终端设备执行的操作。
例如,处理器301用于实现前文方法实施例中由终端设备执行的处理相关的操作,收发器303用于实现前文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,通信装置300用于实现前文方法实施例中由网络设备执行的操作。
例如,处理器301用于实现前文方法实施例中由网络设备执行的处理相关的操作,收发器303用于实现前文方法实施例中由网络设备执行的收发相关的操作。
上述图15所示的通信装置中,收发器303中用于接收功率的器件可以视为接收单元,收发器303在用于发送功能的器件可以视为发送单元。即收发器303可以包括接收器和发送器。收发器303也可以称为收发机、收发单元、或收发电路等。接收器也可以称为接收机、接收单元、接收器、或接收电路等。发送器也可以称为发射机、发射器、发射单元或者发射电路等。处理器301具有处理功能,处理器301可以称为处理单元。存储器302用于存储计算机程序代码和数据,存储器302也可以称为存储单元。
示例性地,本申请还提供一种通信装置。
通信装置400可以是终端设备或网络设备、也可以是终端设备或网络设备的芯片。通信装置400可以用于执行上述方法实施例中由网络设备或终端设备所执行的操作。
请参阅图16,图16示出了本申请一实施例提供的一种通信装置的硬件结构示意图。
通信装置400包括410部分、420部分以及430部分。410部分主要用于基带处理,对基站进行控制等;410部分通常是基站的控制中心,通常可以称为处理器或处理单元,用于控制终端设备或网络设备执行上述方法实施例中终端设备或网络设备侧的处理操作。420部分主要用于存储计算机程序代码和数据,通常可以成为存储器或存储单元。430部分主要用于射频信号的收发以及射频信号与基带信号的转换;430部分通常可以称为收发单元、收发机、收发电路、或者收发器等。430部分的收发单元,也可以称为收发机或收发器等,其包括天线433和射频电路(图中未示出),其中射频电路主要用于进行射频处理。可选地,可以将430部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即430部分包括接收机432和发射机431。接收机也可以称为接收单元、接收器、或接收电路等,发送机可以称为发射单元、发送单元、发射器或者发射电路等。
410部分与420部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
在一种实现方式中,430部分的收发单元用于执行图2所示实施例中由终端设备或网络设备执行的收发相关的过程。410部分的处理器用于执行图2所示实施例中由终端设备或网络设备执行的处理相关的过程。
应理解,图16仅为示例而非限定,上述包括处理器、存储器以及收发器的终端设备或网络设备可以不依赖于图16所示的结构。
当通信装置400为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器或者微处理器或者集成电路。上述方法实施例中终端设备或网络设备的发送操作可以理解为芯片的输出,上述方法实施例中终端设备或网络设备的接收操作可以理解为芯片的输入。
示例性地,本申请还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
示例性地,本申请还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
示例性地,本申请还提供一种通信系统,该通信系统包括终端设备和网络设备。终端设备用于执行前文实施例中终端设备执行的过程。网络设备用于执行前文实施例中网络设备执行的过程。
示例性地,本申请还提供一种芯片装置,包括处理器,用于调用该存储器中存储的计算机程度或计算机指令,以使得该处理器执行上述实施例的参考信号处理方法。
一种可能的实现方式中,该芯片装置的输入对应上述图2所示的实施例中的接收操作,该芯片装置的输出对应上述图2所示的实施例中的发送操作。
可选的,该处理器通过接口与存储器耦合。
可选的,该芯片装置还包括存储器,该存储器中存储有计算机程度或计算机指令。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制前文实施例的参考信号处理方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考前文提供的对应的方法实施例,此处不再赘述。
本申请中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分过程。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记 载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案范围。

Claims (38)

  1. 一种参考信号处理方法,其特征在于,所述方法包括:
    接收网络设备发送的第一消息,所述第一消息中包括第一参考信号集合对应的波束的空间位置信息,所述第一参考信号集合中包括一个或多个参考信号;
    根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及所述第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,所述第二参考信号集合中的一个或多个参考信号包含在所述第一参考信号集合中。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    对更新的所述第二参考信号集合中的参考信号进行测量,得到所述测量结果。
  3. 一种参考信号处理方法,其特征在于,所述方法包括:
    向终端设备发送第一消息,所述第一消息中包括第一参考信号集合对应的波束的空间位置信息,所述第一参考信号集合中包括一个或多个参考信号,所述第一参考信号集合对应的波束的空间位置信息用于所述终端设备根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及所述第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,所述第二参考信号集合中的一个或多个参考信号包含在所述第一参考信号集合中;
    向所述终端设备发送第三参考信号集合中的参考信号。
  4. 根据权利要求3所述的方法,其特征在于,所述第一消息中还包括所述第三参考信号集合的时频资源信息,所述第三参考信号集合的时频资源信息用于所述终端设备对更新的所述第二参考信号集合中的参考信号进行测量,更新的所述第二参考信号集合中的一个或多个参考信号包含在所述第三参考信号集合中。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一参考信号集合对应的波束的空间位置信息包括:所述第一参考信号集合中的每个参考信号对应的波束的覆盖范围的大小和/或位置。
  6. 根据权利要求5所述的方法,其特征在于,任意一个参考信号对应的波束的覆盖范围的大小和位置包括如下中的一种或多种表示方式:
    所述波束的波峰的坐标、以及所述波束在水平方向和竖直方向上的宽度;
    或者,所述波束的中心的坐标、以及所述波束在水平方向和竖直方向上的宽度;
    或者,所述波束在水平方向上的起始坐标和终止坐标、以及所述波束在竖直方向上的起始坐标和终止坐标;
    或者,所述波束在水平方向上的起始坐标、以及所述波束在水平方向和竖直方向上的宽度;
    或者,所述波束在竖直方向上的起始坐标、以及所述波束在水平方向和竖直方向上的宽度。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一参考信号集合对应的波束的空间位置信息包括:
    所述第一参考信号集合中的一个或多个参考信号的排布类型、所述第一参考信号集合中的一个或多个参考信号在水平方向上对应的波束的数量、或者所述第一参考信号集合中的一个或多个参考信号在竖直方向上对应的波束的数量中的一项或多项。
  8. 根据权利要求7所述的方法,其特征在于,所述第一参考信号集合中的任意一个参考信号的排布类型用于指示:所述任意一个参考信号对应的波束在水平方向上的排布顺序,和/或,所述任意一个参考信号对应的波束在竖直方向上的排布顺序。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一参考信号集合对应的波束的空间位置信息还包括:
    所述第一参考信号集合中的其他的一个或多个参考信号与所述第一参考信号集合中的一个或多个参考信号之间的映射规则、所述第一参考信号集合中的其他的一个或多个参考信号对应的波束与所述第一参考信号集合中的一个或多个参考信号对应的波束在水平方向上的宽度比、或者所述第一参考信号集合中的其他的一个或多个参考信号对应的波束与所述第一参考信号集合中的一个或多个参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
  10. 根据权利要求9所述的方法,其特征在于,所述第一参考信号集合中的其他的任意一个参考信号与所述第一参考信号集合中的任意一个参考信号之间的映射规则用于指示:所述第一参考信号集合中的其他的任意一个参考信号对应的波束与所述第一参考信号集合中的任意一个参考信号对应的波束之间的对应关系。
  11. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一参考信号集合对应的波束的空间位置信息包括:所述第一参考信号集合中的一个或多个参考信号类型集合的排布关系,第一参考信号集合中的任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同。
  12. 根据权利要求11所述的方法,其特征在于,所述第一参考信号集合中的任意一个参考信号类型集合的排布关系用于指示:
    所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的排布顺序、所述第一参考信号集合中任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的排布顺序、所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号在水平方向上对应的波束的数量、或者所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号在竖直方向上对应的波束的数量中的一项或多项。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一参考信号集合对应的波束的空间位置信息还包括:所述第一参考信号集合中的其他的一个或多个参考信号类型集合与所述第一参考信号集合中的一个或多个参考信号类型集合之间的映射关系,所述第一参考信号集合中的其他的任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同。
  14. 根据权利要求13所述的方法,其特征在于,所述第一参考信号集合中的其他的任意一个参考信号类型集合与所述第一参考信号集合中的任意一个参考信号类型集合之间的映射关系用于指示:
    所述第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束之间的波束参考点、所述第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的宽度比、或者所述第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
  15. 根据权利要求14所述的方法,其特征在于,所述波束参考点包括如下中的一种或多种表示方式:
    所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的起点;
    或者,所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的中心;
    或者,所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的任意一个边界点。
  16. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一参考信号集合对应的波束的空间位置信息包括:所述第一参考信号集合中的一个或多个参考信号与所述第一参考信号集合中的其他的一个或多个参考信号之间是否存在关联关系,以及存在关联关系的多个参考信号各自对应的波束之间的关联类型。
  17. 根据权利要求16所述的方法,其特征在于,
    所述关联类型用于指示:所述多个参考信号各自对应的波束在水平方向或竖直方向上之间的对应关系、所述多个参考信号各自对应的波束在水平方向上的排布顺序、或者所述多个参考信号各自对应的波束在竖直方向上的排布顺序中的一项或多项;
    或者,所述关联类型用于指示:所述多个参考信号各自对应的波束之间的对应关系或波束参考点、所述多个参考信号各自对应的波束在水平方向上的宽度比、或者所述多个参考信号各自对应的波束在竖直方向上的宽度比中的一项或多项。
  18. 一种通信装置,其特征在于,所述装置包括:收发单元和处理单元,
    所述收发单元:用于接收网络设备发送的第一消息,所述第一消息中包括第一参考信号集合对应的波束的空间位置信息,所述第一参考信号集合中包括一个或多个参考信号;
    所述处理单元:用于根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及所述第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,所述第二参考信号集合中的一个或多个参考信号包含在所述第一参考信号集合中。
  19. 根据权利要求18所述的通信装置,其特征在于,所述处理单元:还用于对更新的所述第二参考信号集合中的参考信号进行测量,得到所述测量结果。
  20. 一种通信装置,其特征在于,所述装置包括收发单元,
    所述收发单元:用于向终端设备发送第一消息,所述第一消息中包括第一参考信号集合对应的波束的空间位置信息,所述第一参考信号集合中包括一个或多个参考信号,所述第一参考信号集合对应的波束的空间位置信息用于所述终端设备根据历史的第二参考信号集合中的一个或多个参考信号的测量结果、以及所述第一参考信号集合对应的波束的空间位置信息,得到更新的第二参考信号集合,所述第二参考信号集合中的一个或多个参考信号包含在所述第一参考信号集合中;
    所述收发单元:还用于向所述终端设备发送第三参考信号集合中的参考信号。
  21. 根据权利要求20所述的通信装置,其特征在于,所述第一消息中还包括所述第三参考信号集合的时频资源信息,所述第三参考信号集合的时频资源信息用于所述终端设备对更新的所述第二参考信号集合中的参考信号进行测量,更新的所述第二参考信号集合中的一个或多个参考信号包含在所述第三参考信号集合中。
  22. 根据权利要求18至21中任一项所述的通信装置,其特征在于,所述第一参考信号集合对应的波束的空间位置信息包括:所述第一参考信号集合中的每个参考信号对应的波束的覆盖范围的大小和/或位置。
  23. 根据权利要求22所述的通信装置,其特征在于,任意一个参考信号对应的波束的覆盖范围的大小和位置包括如下中的一种或多种表示方式:
    所述波束的波峰的坐标、以及所述波束在水平方向和竖直方向上的宽度;
    或者,所述波束的中心的坐标、以及所述波束在水平方向和竖直方向上的宽度;
    或者,所述波束在水平方向上的起始坐标和终止坐标、以及所述波束在竖直方向上的起始坐标和终止坐标;
    或者,所述波束在水平方向上的起始坐标、以及所述波束在水平方向和竖直方向上的宽度;
    或者,所述波束在竖直方向上的起始坐标、以及所述波束在水平方向和竖直方向上的宽度。
  24. 根据权利要求18至21中任一项所述的通信装置,其特征在于,所述第一参考信号集合对应的波束的空间位置信息包括:
    所述第一参考信号集合中的一个或多个参考信号的排布类型、所述第一参考信号集合中的一个或多个参考信号在水平方向上对应的波束的数量、或者所述第一参考信号集合中的一个或多个参考信号在竖直方向上对应的波束的数量中的一项或多项。
  25. 根据权利要求24所述的通信装置,其特征在于,所述第一参考信号集合中的任意一个参考信号的排布类型用于指示:所述任意一个参考信号对应的波束在水平方向上的排布顺序,和/或,所述任意一个参考信号对应的波束在竖直方向上的排布顺序。
  26. 根据权利要求24或25所述的通信装置,其特征在于,所述第一参考信号集合对应的波束的空间位置信息还包括:
    所述第一参考信号集合中的其他的一个或多个参考信号与所述第一参考信号集合中的一个或多个参考信号之间的映射规则、所述第一参考信号集合中的其他的一个或多个参考信号对应的波束与所述第一参考信号集合中的一个或多个参考信号对应的波束在水平方向上的宽度比、或者所述第一参考信号集合中的其他的一个或多个参考信号对应的波束与所述第一参考信号集合中的一个或多个参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
  27. 根据权利要求26所述的通信装置,其特征在于,所述第一参考信号集合中的其他的任意一个参考信号与所述第一参考信号集合中的任意一个参考信号之间的映射规则用于指示:所述第 一参考信号集合中的其他的任意一个参考信号对应的波束与所述第一参考信号集合中的任意一个参考信号对应的波束之间的对应关系。
  28. 根据权利要求18至21中任一项所述的通信装置,其特征在于,所述第一参考信号集合对应的波束的空间位置信息包括:所述第一参考信号集合中的一个或多个参考信号类型集合的排布关系,第一参考信号集合中的任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同。
  29. 根据权利要求28所述的通信装置,其特征在于,所述第一参考信号集合中的任意一个参考信号类型集合的排布关系用于指示:
    所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的排布顺序、所述第一参考信号集合中任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的排布顺序、所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号在水平方向上对应的波束的数量、或者所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号在竖直方向上对应的波束的数量中的一项或多项。
  30. 根据权利要求28或29所述的通信装置,其特征在于,所述第一参考信号集合对应的波束的空间位置信息还包括:所述第一参考信号集合中的其他的一个或多个参考信号类型集合与所述第一参考信号集合中的一个或多个参考信号类型集合之间的映射关系,所述第一参考信号集合中的其他的任意一个参考信号类型集合内的每个参考信号对应的波束的形状、和宽度均相同。
  31. 根据权利要求30所述的通信装置,其特征在于,所述第一参考信号集合中的其他的任意一个参考信号类型集合与所述第一参考信号集合中的任意一个参考信号类型集合之间的映射关系用于指示:
    所述第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束之间的波束参考点、所述第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在水平方向上的宽度比、或者所述第一参考信号集合中的其他的任意一个参考信号类型集合内的参考信号对应的波束与所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束在竖直方向上的宽度比中的一项或多项。
  32. 根据权利要求31所述的通信装置,其特征在于,所述波束参考点包括如下中的一种或多种表示方式:
    所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的起点;
    或者,所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的中心;
    或者,所述第一参考信号集合中的任意一个参考信号类型集合内的参考信号对应的波束的任意一个边界点。
  33. 根据权利要求18至21中任一项所述的通信装置,其特征在于,所述第一参考信号集合对应的波束的空间位置信息包括:所述第一参考信号集合中的一个或多个参考信号与所述第一参考信号集合中的其他的一个或多个参考信号之间是否存在关联关系,以及存在关联关系的多个参考信号各自对应的波束之间的关联类型。
  34. 根据权利要求33所述的通信装置,其特征在于,所述关联类型用于指示:所述多个参考信号各自对应的波束在水平方向或竖直方向上之间的对应关系、所述多个参考信号各自对应的波束在水平方向上的排布顺序、或者所述多个参考信号各自对应的波束在竖直方向上的排布顺序中的一项或多项;
    或者,所述关联类型用于指示:所述多个参考信号各自对应的波束之间的对应关系或波束参考点、所述多个参考信号各自对应的波束在水平方向上的宽度比、或者所述多个参考信号各自对应的波束在竖直方向上的宽度比中的一项或多项。
  35. 一种通信系统,其特征在于,所述通信系统包括:用于执行如权利要求1-2、5-17任一项所述的方法的终端设备、以及用于执行如权利要求3-17任一项所述的方法的网络设备。
  36. 一种通信装置,其特征在于,包括:处理器;
    所述处理器用于执行存储器中的计算机程序或指令,使得所述通信装置执行权利要求1-2、5-17任一项所述的方法;或者,使得所述通信装置执行权利要求3-17任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-2、5-17任一项所述的方法;或者,所述计算机可执行指令设置为执行权利要求3-17任一项所述的方法。
  38. 一种芯片,其特征在于,包括:接口电路和逻辑电路,所述接口电路用于接收来自于芯片之外的其他芯片的信号并传输至所述逻辑电路,或者将来自所述逻辑电路的信号发送给所述芯片之外的其他芯片,所述逻辑电路用于实现如权利要求1-2、5-17任一项所述的方法;或者,所述逻辑电路用于实现如权利要求3-17任一项所述的方法。
PCT/CN2023/102821 2022-08-29 2023-06-27 参考信号处理方法、装置及系统 WO2024045823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211063512.3 2022-08-29
CN202211063512.3A CN117674930A (zh) 2022-08-29 2022-08-29 参考信号处理方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2024045823A1 true WO2024045823A1 (zh) 2024-03-07

Family

ID=90077664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102821 WO2024045823A1 (zh) 2022-08-29 2023-06-27 参考信号处理方法、装置及系统

Country Status (2)

Country Link
CN (1) CN117674930A (zh)
WO (1) WO2024045823A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018059487A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 无线资源测量方法、选择方法及装置
CN107889130A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 无线资源选择方法及装置
CN111356075A (zh) * 2018-12-22 2020-06-30 华为技术有限公司 一种多站点的定位方法及装置
CN113747484A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 波束测量方法和装置
WO2022174461A1 (zh) * 2021-02-22 2022-08-25 北京小米移动软件有限公司 波束测量方法、波束测量装置及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018059487A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 无线资源测量方法、选择方法及装置
CN107889130A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 无线资源选择方法及装置
CN111356075A (zh) * 2018-12-22 2020-06-30 华为技术有限公司 一种多站点的定位方法及装置
CN113747484A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 波束测量方法和装置
WO2022174461A1 (zh) * 2021-02-22 2022-08-25 北京小米移动软件有限公司 波束测量方法、波束测量装置及存储介质
CN115244965A (zh) * 2021-02-22 2022-10-25 北京小米移动软件有限公司 波束测量方法、波束测量装置及存储介质

Also Published As

Publication number Publication date
CN117674930A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2020119727A1 (zh) 一种测量上报的方法及装置
CN109005548B (zh) 一种信道质量信息的上报方法及装置
WO2020156059A1 (zh) 一种参考信号管理方法、装置及系统
CN110971359B (zh) 一种无线通信网络中的指示波束信息的方法和设备
WO2021022952A1 (zh) 信号传输的方法与装置
US20220394504A1 (en) Beam pair training method and communication apparatus
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
EP3829243B1 (en) Resource management method and communication apparatus
WO2020107411A1 (en) Method and network device for terminal device positioning with integrated access backhaul
CN108282807B (zh) 信道质量信息的测量、选择和上报方法及装置
WO2023125223A1 (zh) 下行传输的方法及装置
CA3066297A1 (en) Signal processing method and apparatus
WO2021062689A1 (zh) 一种上行传输的方法及装置
US20240155371A1 (en) Communication method and communication apparatus
WO2022077387A1 (zh) 一种通信方法及通信装置
US20230140502A1 (en) Beam indication method and communications apparatus
JP2023513291A (ja) データ伝送方法及び装置
WO2024045823A1 (zh) 参考信号处理方法、装置及系统
WO2022151494A1 (zh) 一种传输参数确定方法及装置
CN113543322A (zh) 一种波束对准方法及装置
WO2021203869A1 (zh) 准共址关系管理方法及装置
EP4311341A1 (en) Communication method and communication device
TWI833195B (zh) 定位方法、裝置及存儲介質
WO2023208166A1 (zh) 一种定时指示的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858861

Country of ref document: EP

Kind code of ref document: A1