WO2021204293A1 - 定位信号处理方法及装置 - Google Patents

定位信号处理方法及装置 Download PDF

Info

Publication number
WO2021204293A1
WO2021204293A1 PCT/CN2021/086496 CN2021086496W WO2021204293A1 WO 2021204293 A1 WO2021204293 A1 WO 2021204293A1 CN 2021086496 W CN2021086496 W CN 2021086496W WO 2021204293 A1 WO2021204293 A1 WO 2021204293A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
time
terminal
time slot
symbol length
Prior art date
Application number
PCT/CN2021/086496
Other languages
English (en)
French (fr)
Inventor
黄甦
张力
薛剑韬
高鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21784222.8A priority Critical patent/EP4124075A4/en
Priority to KR1020227037926A priority patent/KR20230002537A/ko
Priority to JP2022561399A priority patent/JP2023521117A/ja
Publication of WO2021204293A1 publication Critical patent/WO2021204293A1/zh
Priority to US17/960,166 priority patent/US20230037478A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/009Transmission of differential positioning data to mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • This application relates to the field of positioning technology, and in particular to a positioning signal processing method and device.
  • LTE Long Term Evolution
  • NR New Radio
  • LMF core network location management function
  • DL PRS Downlink Positioning Reference Signal
  • DL-TDOA Downlink Observation Arrival Time Difference
  • PRS Positioning Reference Signal
  • DL-RSTD Downlink Reference Signal Time Difference
  • the UE measures the reference signal received power (PRS Reference Signal Received Power, PRS-RSRP) for the PRS signal of each cell, and reports the measurement result to the LMF.
  • PRS-RSRP PRS Reference Signal Received Power
  • Multi-Round-Trip-Time (Multi-RTT) positioning technology UE measures the time difference between UE sent signal and received signal (Rx-Tx time difference) on the PRS signal of each cell, and reports the measurement result to LMF; each The cell measures gNBRx-Tx time difference on the UE's Sounding Reference Signal (SRS) signal, and reports the measurement result to the LMF.
  • SRS Sounding Reference Signal
  • the terminal needs to have the ability to receive DL PRS and process DL PRS. After the terminal receives the PRS configuration information sent by the positioning device, how to accurately receive the PRS according to the PRS configuration information, and how to receive the PRS according to the PRS configuration information and its own capabilities, is an urgent problem to be solved.
  • the embodiments of the present application provide a positioning signal processing method and device, so as to enable a terminal to accurately receive PRS.
  • a positioning signal processing method includes:
  • Receive positioning reference signal PRS configuration information sent by a positioning device where the PRS is sent in the form of a PRS resource set, each PRS resource set includes one or more PRS, and an access network device corresponds to one or more PRS resource sets;
  • the PRS configuration information determines PRS time-domain information, where the time-domain information includes a period P of the PRS and a symbol length K of the PRS within one period P; and receiving the plurality of PRS time-domain information according to the PRS time-domain information PRS.
  • the PRS time domain information is calculated and obtained through the acquired PRS configuration information issued by the positioning device, and then the terminal receives the PRS sent by the access network device according to the PRS time domain information, ensuring that the terminal receives the PRS accurately Sex and reliability.
  • the method further includes: reporting processing capability information of the terminal, and the receiving the multiple PRSs according to the PRS time domain information includes: based on the processing capability information and the time domain information , Receive the PRS.
  • the processing capability information includes one or more sets of capability information, where each set of capability information indicates that the terminal can process N milliseconds of PRS within T milliseconds; the processing capability is based on the processing capability.
  • Information and the time domain information, and receiving the PRS specifically includes: comparing the time domain information with the one or more sets of capability information to determine that the first set of capability information exists, so that the terminal is Receiving the PRS within the range of the first set of capability information.
  • the first set of capability ranges satisfy the following rules: T ⁇ P, and M ⁇ K.
  • the method further includes: when there is no first group of the T and the N, and T ⁇ P, and M ⁇ K, if there is a second group of the T and the N , Satisfies M ⁇ K, and receives the PRS according to the T and the N.
  • the method further includes: when there is no at least one set of the T and the N, and T ⁇ P, and M ⁇ K, if there is a second set of the T and the N , T ⁇ P is satisfied, and the PRS is received according to the P and N of the second group.
  • the terminal receiving the PRS according to the P and the N of the second group includes:
  • the terminal receives the PRS with a length of N within the processing capacity T in each period P; For the period P, the PRS with a total length of K is received, where M ⁇ K, and ceil() is rounded up.
  • the terminal compares the acquired PRS time-domain information configured by the positioning device with the processing capability information reported by the terminal to determine how the terminal receives the PRS issued by the access network device, so that the terminal can follow the actual situation.
  • the ability to support the PRS resources configured by the positioning device improves the efficiency of the terminal receiving PRS.
  • a positioning signal processing method includes:
  • each PRS resource set includes one or more PRS, and one access network device corresponds to one or more PRS resource sets;
  • the terminal sends a measurement result request; receives the measurement results corresponding to the multiple PRSs sent by the terminal, and performs positioning of the terminal according to the measurement results corresponding to the multiple PRSs;
  • the PRS time domain information corresponding to the PRS configuration information is obtained, and the PRS time domain information includes the period P of the PRS and the symbol length K of the PRS within one period P.
  • a positioning signal processing method including:
  • a PRS measurement window configuration sent by the positioning device is received, where the PRS measurement window configuration includes a receiving period and a long time window in the receiving period, where the long time window is used to receive the PRS; and the PRS is received according to the measurement window configuration.
  • the PRS measurement window configuration further includes an offset, which is used to determine the time interval between the window and the start time of the receiving period for a long time.
  • the method further includes:
  • the terminal determines the offset according to the receiving period, and the offset is smaller than the receiving period.
  • the terminal obtains the first duration between the start PRS symbol to be received at the target frequency and the start time of the receiving period, and uses the first duration as the offset.
  • receiving PRS according to the measurement window configuration includes:
  • a positioning signal processing method includes:
  • the PRS measurement window configuration includes a receiving period and a long time window in the receiving period, and the long time window is used to receive the PRS.
  • the method before sending the PRS measurement window configuration to the terminal, the method further includes:
  • the time domain information includes the period P of the PRS and the symbol length K of the PRS in one period P; according to the time domain information Set the PRS measurement window configuration.
  • the PRS time domain information is calculated by the positioning device according to the PRS configuration information, and then the PRS time domain information is compared with the processing capability information reported by the terminal, and the measurement window configuration parameters are determined according to the comparison result.
  • the measurement window configuration is flexibly applicable to different terminals, and the measurement window configuration can be more adapted to the terminal's own capabilities, which improves the efficiency of the terminal to receive PRS according to the measurement window configuration.
  • the determining PRS time domain information according to the PRS configuration information includes one or more of the following methods: determining that the P is multiple PRS resource sets of the multiple access network devices The common transmission period of each of the multiple access network devices; determine that the P is the common transmission period of the first PRS resource set of each of the multiple access network devices; determine that the P is the multiple access network devices The transmission period of the first PRS resource set of the first access network device in the device, and the transmission period of the first PRS resource set of the first access network device is each of the multiple access network devices.
  • the common divisor of the transmission period of the first PRS resource set of the network access device determining that P is the greatest common divisor of the transmission period of the first PRS resource set of each of the multiple access network devices Determine that the P is the greatest common divisor of the transmission period of the multiple PRS resource sets of each of the multiple access network devices; determine that the P is the multiple access networks The least common multiple of the transmission period of the first PRS resource set of each of the access network devices in the device; determining that the P is the multiple PRS resources of each of the multiple access network devices The least common multiple of the transmission period of the set.
  • the PRS period P in the PRS configuration received by the terminal is determined by comprehensively referring to the periods of multiple PRS resource sets of multiple access network devices, so that the determined period can comprehensively consider the PRS of each TRP
  • the resource set situation ensures the reliability of the determined period P.
  • the first PRS resource set of the access network device is:
  • the determining the time domain information corresponding to the PRS includes:
  • the PRS symbol length in the first time slot set corresponding to the PRS is taken as the PRS symbol length K in the period P, the first time slot set includes multiple time slots, and the multiple time slots are used for transmission All PRSs detected by the terminal device within the time period corresponding to the P.
  • the multiple time slots in the first time slot set are consecutive time slots.
  • the number of time slots of the consecutive time slots is the minimum number of time slots required to transmit all the PRSs.
  • the method further includes determining the symbol length K of the PRS in the first time slot set, specifically including: determining the first symbol of the PRS of each time slot in the first time slot set Length; and determining the symbol length K of the PRS in the first time slot set according to the first symbol length.
  • the determining the first symbol length of the PRS in each time slot in the first time slot set includes: determining the start time and end of each time slot in the first time slot set Time; and determining the first symbol length of the PRS in each time slot according to the start time and the end time.
  • the determining the first symbol length of the PRS in each time slot according to the start time and the end time includes:
  • the first symbol length of the PRS satisfies the following formula:
  • K s represents the first symbol length of the PRS in the slot s
  • is the subcarrier interval corresponding to the PRS
  • Is the number of symbols in a slot Is the starting moment in time slot s, Is the end time in time slot s.
  • the determining the first symbol length of the PRS in each time slot according to the start time and the end time includes:
  • the first symbol length of the PRS satisfies the following formula:
  • K s represents the first symbol length of the PRS in the slot s
  • is the subcarrier interval corresponding to the PRS
  • Is the number of symbols in a slot Is the starting moment in time slot s, Is the end time in time slot s.
  • the first time slot set formed by the time slots in the period P is obtained, and then according to the start time and end time of the transmission of PRS on a single time slot in the first time slot set, the time slot is determined
  • the first symbol length of the PRS is transmitted, and then the symbol length of the PRS in the first time slot set is obtained according to the first symbol length, and the symbol length K of the PRS corresponding to the period P is calculated through this process, which ensures the comprehensiveness and comprehensiveness of the obtained results. Completeness.
  • the time interval between the start time and the end time includes the range in which all PRS symbols sent by all access network devices in the time slot appear.
  • the time interval between the start time and the end time is a minimum time interval that includes a range in which all PRS symbols of all access network devices in the time slot appear.
  • the range of appearance of all PRS symbols of all access network devices in the time slot is the union of the range of appearance of all PRS symbols sent by each access network device;
  • the appearance range of all PRS symbols sent by the device is determined by the expected reference signal reception time difference sent by each access network device, the expected reference signal reception time difference uncertainty range, the symbol index occupied by the PRS, and the number of symbols.
  • the first time slot set composed of time slots used to transmit PRS in the period P is obtained, and then the start time and end time of PRS transmission on a single time slot in the first time slot set are determined
  • the first symbol length of the PRS is transmitted in the time slot, and then the symbol length of the PRS in the first time slot set is obtained according to the first symbol length, and the symbol length K of the PRS corresponding to the period P is calculated and obtained through this process, ensuring the obtained result Accuracy.
  • the determining the symbol length K of the PRS in the first time slot set according to the first symbol length includes:
  • the symbol length K of the PRS in the first time slot set satisfies the following formula:
  • K s represents the first symbol length of the PRS in the slot s
  • K represents the symbol length of the PRS
  • K K m
  • , K m max s ⁇ S ( S )
  • K s represents the first symbol length of the PRS in the time slot s
  • K represents the symbol length of the PRS
  • K m represents the first symbol of the PRS in the first time slot set
  • determining the symbol length K of the PRS in the first time slot set includes:
  • the symbol length K of the PRS in the first time slot set satisfies the following formula:
  • K represents the symbol length of the PRS
  • is the number of elements in the set
  • represents the subcarrier interval corresponding to the PRS.
  • the setting of the PRS measurement window configuration according to the time domain information includes:
  • the processing capability information reported by the terminal is received, and the PRS measurement window configuration is set according to the comparison result of the processing capability information and the time domain information.
  • the processing capability information includes one or more sets of capability information, where the capability information indicates that the terminal can process a PRS of N milliseconds within a period of T milliseconds;
  • the setting of the PRS measurement window configuration according to the comparison result of the processing capability information and the time domain information includes: comparing the time domain information with the multiple sets of capability information, so that the terminal is Within the range of at least one set of capabilities, the PRS measurement window configuration is set according to the at least one set of capabilities.
  • the at least one set of capability ranges satisfies the following rules:
  • the PRS measurement window configuration is set according to the P and the N of the second group.
  • the PRS measurement window configuration is set according to the P and the N of the second group.
  • the measurement window configuration is a measurement window configuration corresponding to frequency points, frequency bands, frequency ranges, or a single terminal.
  • a communication device in a fifth aspect, includes at least one module used to implement the first aspect or any one of the possible communication methods of the first aspect, or includes any one of the third aspect or the third aspect. At least one module of possible communication methods.
  • a communication device in a sixth aspect, includes at least one module used to implement the second aspect or any one of the possible communication methods of the second aspect, or includes any one of the fourth aspect or the fourth aspect. At least one module of possible communication methods.
  • a communication device which includes at least one processor, and the at least one processor is coupled with at least one memory:
  • the at least one processor is configured to execute a computer program or instruction stored in the at least one memory, so that the apparatus executes the method according to any one of the first aspect, or causes the apparatus to execute the second aspect
  • the method according to any one of the above, or the apparatus is caused to perform the method according to any one of the third aspect, and the apparatus is caused to perform the method according to any one of the fourth aspect.
  • the device may be a terminal or a chip included in the terminal.
  • the functions of the above-mentioned communication equipment may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may be a positioning device or a chip included in the positioning device.
  • the functions of the above-mentioned communication equipment may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to execute the first aspect or the method in any one of the possible implementations of the first aspect. , Or execute the foregoing second aspect or any one of the possible implementation methods of the second aspect.
  • the structure of the device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and can be used to execute computer program instructions stored in the memory, so that the device executes the method in the first aspect or any one of the possible implementations of the first aspect, or executes the second aspect or the first aspect.
  • the method in any possible implementation of the two aspects.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the network device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled to a memory, the memory is used to store a program or an instruction, when the program or instruction is executed by the processor , So that the chip system implements the method in any possible implementation manner of the first aspect or the first aspect, or executes the method in any possible implementation manner of the second aspect or the second aspect, or executes The third aspect or the method in any possible implementation manner of the third aspect, or the method in any possible implementation manner of the fourth aspect or the fourth aspect described above.
  • the chip system further includes an interface circuit, which is used to exchange code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored.
  • the computer executes the first aspect or any one of the first aspect.
  • the method in one possible implementation manner, or the method in any one of the foregoing second aspect or the second aspect, or the method in any one of the foregoing third aspect or the third aspect , Or execute the method in the fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes the method in the first aspect or any one of the possible implementations of the first aspect.
  • the computer executes the method in the foregoing second aspect or any one of the possible implementations of the second aspect, or execute the method in the foregoing third aspect or any of the possible implementations of the third aspect, or execute the foregoing fourth aspect Aspect or any one of the possible implementation manners of the fourth aspect.
  • an embodiment of the present application provides a communication system.
  • the communication system includes one or more terminal devices or positioning devices described above.
  • the communication system may also include one or more access network devices. .
  • FIG. 1A is a schematic structural diagram of a positioning system applying the terminal positioning method according to an embodiment of the present application
  • FIG. 1B is a schematic structural diagram of a positioning system that applies the terminal positioning method of the embodiment of the present application in a 5G mobile communication system;
  • FIG. 1C is a schematic structural diagram of another positioning system that applies the positioning method of the embodiment of the present application in a 5G mobile communication system;
  • FIG. 1D shows a schematic structural diagram of a communication device provided by an embodiment of this application.
  • 2A is a flowchart of a positioning signal processing method provided by an embodiment of the application.
  • 2B is a schematic diagram of a mapping pattern supported by downlink PRS provided by an embodiment of the application.
  • 2C is a schematic diagram of a PRS distribution provided by an embodiment of the application.
  • 2D is a schematic diagram of another PRS distribution provided by an embodiment of the application.
  • 2E is a schematic diagram of determining the time range of PRS occupation according to an embodiment of the application.
  • 2F is a schematic diagram of symbols occupied by a PRS in a time slot according to an embodiment of this application;
  • 2G is a schematic diagram of the distribution of a PRS on each time slot according to an embodiment of the application.
  • 2H is a schematic diagram of a first time slot set composed of discontinuous time slots according to an embodiment of the application
  • FIG. 2I is a schematic diagram of determining a first time slot set according to the union of multiple periods according to an embodiment of the application
  • 3A is a flowchart of a method for determining to receive PRS through a measurement window according to an embodiment of the application
  • FIG. 3B is a schematic diagram of a PRS measurement window provided by an embodiment of this application.
  • 3C is a schematic diagram of a terminal receiving PRS according to a measurement window according to an embodiment of the application.
  • FIG. 4 is a structural block diagram of a communication device provided by an embodiment of this application.
  • FIG. 5 is a structural block diagram of another communication device provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G 5th generation
  • NR new radio
  • next-generation communication systems such as 6G
  • the 5G mobile communication systems involved in this application include non-standalone (NSA) 5G mobile communication systems or independent networking (standalone, SA) 5G mobile communication system.
  • NSA non-standalone
  • SA independent networking
  • future communication systems such as the sixth-generation mobile communication system.
  • the communication system can also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, and a device-to-device (D2D) communication system.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • D2D device-to-device
  • IoT Internet of Things
  • car networking communication system or other communication systems.
  • FIG. 1A is a schematic diagram of the architecture of a positioning system to which the terminal positioning method according to an embodiment of the present application is applied.
  • the positioning system includes a terminal, one or more access network devices (FIG. 1A uses an access network device as an example for illustration), and a positioning device.
  • the terminal, the access network device, or the positioning device can communicate directly between the two devices, or communicate through the forwarding of other devices, which is not specifically limited in the embodiment of the present application.
  • the positioning system may also include other network elements such as mobility management network elements, which are not specifically limited in the embodiment of the present application.
  • the positioning device in the embodiment of the present application may be a location management function (LMF) network element or a location management component (location management component, LMC) network element, or may be a local positioning device located in a network device Management function (local location management function, LLMF) network element.
  • LMF location management function
  • LMC location management component
  • LLMF local location management function
  • the positioning system provided in the embodiment of the present application may be applicable to the foregoing various communication systems.
  • the network element or entity corresponding to the access network device in Figure 1A may be the next-generation radio access network (NG-RAN) in the 5G mobile communication system equipment.
  • the network element or entity corresponding to the above-mentioned mobility management network element may be an access and mobility management function (AMF) network element in the 5G mobile communication system, which is not specifically limited in the embodiment of this application. .
  • AMF access and mobility management function
  • Fig. 1B is a schematic structural diagram of a positioning system applying the terminal positioning method of the embodiment of the present application in a 5G mobile communication system.
  • the terminal passes through the next-generation evolved NodeB (ng-eNB) through LTE-Uu, or through the next-generation NodeB (next-generation NodeB) through the NR-Uu interface.
  • node B, gNB is connected to the wireless access network; the wireless access network is connected to the core network via the AMF network element through the NG-C interface.
  • NG-RAN includes one or more ng-eNBs ( Figure 1B takes one ng-eNB as an example for illustration); NG-RAN may also include one or more gNBs ( Figure 1B takes one gNB as an example for illustration); The NG-RAN may also include one or more ng-eNBs and one or more gNBs.
  • the ng-eNB is an LTE base station that accesses the 5G core network
  • the gNB is a 5G base station that accesses the 5G core network.
  • the core network includes AMF network elements and LMF network elements. Among them, the AMF network element is used to implement functions such as access management, and the LMF network element is used to implement functions such as positioning or positioning assistance.
  • the AMF network element and the LMF network element are connected through an NLs interface.
  • FIG. 1C is a schematic structural diagram of another positioning system that applies the positioning method of the embodiment of the present application in a 5G mobile communication system.
  • the difference between the positioning system architecture of FIG. 1C and FIG. 1B is that the device or component of the positioning management function of FIG. 1B (such as LMF network element) is deployed in the core network, and the device or component of the positioning management function of FIG. 1C (such as LMC network element) ) Can be deployed in NG-RAN equipment.
  • the gNB contains LMC network elements.
  • the LMC network element is a part of the functional components of the LMF network element and can be integrated in the gNB of the NG-RAN equipment.
  • the devices or functional nodes included in the positioning system of FIG. 1B or FIG. 1C are only exemplary descriptions, and do not constitute a limitation to the embodiment of the present application. In fact, the positioning system of FIG. 1B or FIG. 1C may also include other The network elements or devices or functional nodes that have an interactive relationship with the devices or functional nodes illustrated in the figure are not specifically limited here.
  • the terminal in the embodiment of the present application may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal, and a user equipment ( user equipment, UE), terminal (terminal), wireless communication equipment, user agent, user device, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) Stations, personal digital assistants (PDAs), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in the future 5G network or future evolution
  • the terminal in the PLMN or the terminal in the future Internet of Vehicles, etc. are not limited in the embodiment of the present application.
  • the terminal may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality terminal, an augmented reality terminal, a wireless terminal in industrial control, and a wireless terminal in unmanned driving.
  • Wireless terminal in remote surgery wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, etc.
  • wearable devices can also be referred to as wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal may also be a terminal in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Connect so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the IOT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, narrowband (NB) technology.
  • NB narrowband
  • the terminal may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal), receiving control information and downlink data of access network equipment, and sending electromagnetic waves , To transmit uplink data to the access network equipment.
  • the access network device in the embodiment of the present application may be any communication device with a wireless transceiving function that is used to communicate with a terminal.
  • the access network equipment includes but not limited to: evolved node B (evolved node B, eNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) system access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission reception point (transmission reception point, TRP), etc.
  • the access network device may also be a gNB, TRP, or TP in the 5G system, or one or a group of (including multiple antenna panels) antenna panels of the base station in the 5G system.
  • the access network device may also be a network node that constitutes a gNB or TP, such as a BBU, or a distributed unit (DU).
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical layer (PHY).
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU. It is understandable that the access network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the access network device and the terminal in the embodiment of the present application can communicate through a licensed spectrum, or communicate through an unlicensed spectrum, or communicate through a licensed spectrum and an unlicensed spectrum at the same time.
  • the access network device and the terminal can communicate through a frequency spectrum below 6 gigahertz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, and communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resource used between the access network device and the terminal 101.
  • the terminal, access network device, or positioning device in the embodiments of the present application can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water; it can also be deployed on airborne aircraft and balloons. And satellites.
  • the embodiments of the present application do not limit the application scenarios of the terminal, the access network device, or the positioning device.
  • the terminal or the access network device or the positioning device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant communication software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in this embodiment of the present application may be a terminal or an access network device or a positioning device, or a terminal or an access network device or a positioning device that can call and execute the program Functional modules.
  • the related functions of the terminal, access network device, or positioning device in the embodiments of this application can be implemented by one device, or by multiple devices, or by one or more functional modules in one device.
  • the embodiments of this application do not specifically limit this. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) Virtualization function.
  • FIG. 1D shows a schematic structural diagram of a communication device 400 provided by an embodiment of this application.
  • the communication device 400 includes one or more processors 401, a communication line 402, and at least one communication interface (in FIG. 1D, it is only an example that includes a communication interface 404 and a processor 401 for illustration), optional
  • the memory 403 may also be included.
  • the processor 401 may be a central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program of this application. Circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 402 may include a path for connecting different components.
  • the communication interface 404 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and so on.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 404 may also be a transceiver circuit located in the processor 401 to implement signal input and signal output of the processor.
  • the memory 403 may be a device having a storage function.
  • it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 402. The memory can also be integrated with the processor.
  • the memory 403 is used to store computer execution instructions for executing the solution of the present application, and the processor 401 controls the execution.
  • the processor 401 is configured to execute computer-executable instructions stored in the memory 403, so as to implement the positioning method provided in the embodiment of the present application.
  • the processor 401 may also perform processing-related functions in the positioning method provided in the following embodiments of the present application, and the communication interface 404 is responsible for communicating with other devices or communication networks.
  • the communication interface 404 is responsible for communicating with other devices or communication networks.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 1D.
  • the communication device 400 may include multiple processors, such as the processor 401 and the processor 406 in FIG. 1D.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 400 may further include an output device 405 and an input device 406.
  • the output device 405 communicates with the processor 401 and can display information in a variety of ways.
  • the aforementioned communication device 400 may be a general-purpose device or a dedicated device.
  • the communication device 400 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal, an embedded device, or a device with a similar structure in FIG. 1D.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 400.
  • FIG. 2A is a flowchart of a positioning signal processing method according to an embodiment of the application. As shown in FIG. 2A, the method includes the following steps:
  • the positioning device or the serving cell and/or neighboring cell sends PRS configuration information to the terminal, where the PRS is sent by the serving cell and/or neighboring cell of the terminal device, and the PRS is sent in the form of a PRS resource set.
  • Each PRS resource set includes Multiple PRS, one access network device corresponds to one or more PRS resource sets;
  • the terminal determines PRS time domain information according to the received PRS configuration information, where the time domain information includes a period P of the PRS and a symbol length K of the PRS within one period P.
  • the terminal receives the multiple PRSs according to the PRS time domain information.
  • PRS is transmitted in the form of system frames, subframes, and time slots: each system frame has a length of 10 milliseconds (milli-second, ms) and contains 10 subframes; each subframe has a length of 1ms, depending on the OFDM symbol
  • the corresponding parameter set includes 1, 2, 4, 8, 16 time slots; the length of each time slot depends on the parameter set corresponding to the OFDM symbol, which is 1ms, 0.5ms, 0.25ms, 0.125ms, 0.0625ms in sequence.
  • a time slot is composed of Orthogonal Frequency Division Multiplexing (OFDM). OFDM symbols correspond to different index values in the parameter set (Numerology), indicating that the OFDM symbols correspond to different subcarrier intervals in the frequency domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 2B is a schematic diagram of a mapping pattern supported by a downlink PRS provided by an embodiment of this application.
  • the horizontal axis of the mapping image is the time domain OFDM symbol, and the vertical axis is the frequency domain subcarrier.
  • One resource block (Resource block, RB) corresponds to 12 subcarriers.
  • the pilot pattern repeats in the frequency domain.
  • the PRS is mapped on one OFDM symbol at intervals of two subcarriers, and two different OFDM symbols are mapped, and other OFDM symbols in one slot can repeat the two OFDM symbols; As shown in (b) of FIG.
  • the PRS is mapped on an OFDM symbol at intervals of 4 subcarriers, and 2 different OFDM symbols are mapped, and other OFDM symbols in a slot can repeat the 4 OFDM symbols;
  • the PRS is mapped on an OFDM symbol at intervals of 6 subcarriers, and 6 different OFDM symbols are mapped, and other OFDM symbols in a slot can repeat the 6 OFDM symbols;
  • the PRS is mapped on one OFDM symbol at intervals of 12 subcarriers, and 12 different OFDM symbols are mapped.
  • the PRS sent by different TRPs can also be offset by integer sub-carriers in the frequency domain, thereby realizing frequency division multiplexing between PRSs of different TRPs and reducing interference.
  • a PRS resource can be configured with multiple consecutive or discontinuous time slot repetitions, and a TRP can also have multiple PRS resources for sending beam scanning.
  • the PRS configuration information sent by the positioning device to the terminal may be sent to a specific terminal, or it may be broadcast to multiple terminals through the serving cell system information.
  • the PRS configuration information is used to instruct the access network equipment to issue the corresponding parameters of the PRS, including the serving cell, neighboring cells, and time-frequency resources for sending the PRS.
  • the PRS is sent in the form of a PRS resource set, indicating that each TRP is The PRS is issued by the resource set, and one or more PRS resource sets can be issued, and each PRS resource set includes multiple PRSs.
  • the terminal After receiving the PRS configuration information, the terminal determines the time domain information of these PRSs, including the period P and the symbol length K of the PRS in a period P.
  • the PRS configuration information may be for multiple serving cells, and each serving cell may correspond to multiple frequency points, the configuration information may include multiple positioning frequency points and PRS configurations on multiple access network devices.
  • the access network equipment takes the TRP as an example. For each TRP, there are at most two PRS resource sets on a frequency point, and each PRS resource set may include at most 64 PRS resources. Each PRS resource set has its corresponding transmission period, but these periods may not be the same.
  • the terminal receives the PRS frequency by frequency. Therefore, when the terminal receives the configuration information corresponding to multiple positioning frequency points, it performs frequency point classification and determines the PRS resource set sent by one or more TRPs corresponding to each frequency point. , And the PRS included in the resource set.
  • the methods for determining the period P of the PRS include:
  • the resource set has the same period as the PRS resource set of other TRPs and is P, then P is used as the period corresponding to the PRS time domain information.
  • the first PRS resource set may be the first in the PRS resource set list contained in each TRP, or the resource set index value in the resource set list with the smallest value, and the resource set index value may be based on each TRP It can also be established by the LMF according to all the received PRS resource sets. For example, for TRP1, it contains 2 PRS resource sets, and the index values established corresponding to the LMF are 3 and 5 respectively, then the first PRS corresponding to TRP1 The resource set is the PRS resource set corresponding to the index value 3.
  • the transmission period of the first PRS resource set of the first TRP is the common divisor of the transmission period of the first PRS resource set of each TRP in the plurality of TRPs.
  • the first PRS resource set of the first TRP may be any PRS resource set of any TRP in the multiple TRPs, and the transmission period corresponding to the PRS resource set is the common divisor of the transmission period of at least one PRS resource set of other TRPs.
  • the period of the first PRS resource set of TPR1 is 10 ms, which is the common divisor of PRS1-1, PRS2-2, and PRS3-1, so it can be used as the period P of time domain information.
  • the first PRS resource set refers to the first one in the PRS resource set list included in the TRP, or the one with the smallest resource set index value in the PRS resource set list included in the TRP. Then in Table 1, it is necessary to obtain the period T of PRS1-1, PRS2-1 and PRS3-1 as the common divisor of the three as the period P of the time domain information.
  • the greatest common divisor of the transmission period of the first PRS resource set of each TRP can be obtained as P.
  • the first PRS resource set may be the first one in the PRS resource set list included in the TRP, or the one with the smallest resource set index value in the PRS resource set list included in the TRP.
  • P is the greatest common divisor of the transmission period of the multiple PRS resource sets of each TRP in the multiple TRPs.
  • the greatest common divisor may be found for all PRS resource sets corresponding to the PRS configuration information sent by the LMF for the UE, and then the greatest common divisor may be used as the period P in the time domain information.
  • P may be the least common multiple of the transmission period of the first PRS resource set of each TRP in the plurality of TRPs.
  • the first PRS resource set can refer to any PRS resource set corresponding to each TRP, then corresponding to Table 1, PRS1-1, PRS2-2, PRS3-1 transmission period corresponding to the least common multiple is the period T of PRS3-1, Or, the least common multiple corresponding to the transmission periods of PRS1-1, PRS2-1, and PRS3-2 is the period T of PRS3-2, and these existing periods T are regarded as P. If a different PRS resource set is selected as the first PRS resource set in each TRP, and the obtained least common multiple is different, the least common multiple with a smaller value can be selected as P.
  • the first PRS resource set refers to the first one in the list of PRS resource sets included in the TRP, or the one with the smallest index value of the resource set in the list of PRS resource sets included in the TRP, then corresponding to Table 1, you need to obtain PRS1-1 , PRS2-1, the least common multiple corresponding to the transmission period of PRS3-1, and P is the period T of PRS3-1.
  • P is the least common multiple of the transmission period of the multiple PRS resource sets of each TRP in the multiple TRPs.
  • the least common multiple may be obtained for all PRS resource sets corresponding to the PRS configuration information sent by the LMF for the UE, and then the least common multiple may be used as the period P in the time domain information.
  • the PRS period P in the PRS configuration received by the terminal is determined by comprehensively referring to the periods of multiple PRS resource sets of multiple TRPs, so that the determined period can comprehensively consider the PRS resource set situation of each TRP , To ensure the reliability of the determined period P.
  • the symbol length K of the PRS in the period P needs to be determined.
  • the first time slot set needs to be determined.
  • the first time slot set includes all the PRSs configured by the LMF and sent within the duration P. Because the LMF is configured with multiple PRS resource sets of multiple TRPs, each PRS resource set includes multiple PRSs. Then in the time domain, multiple PRSs may be configured at intervals or multiplexed. Therefore, the time slots corresponding to all PRSs in P may be continuous time slots or interval time slots.
  • FIG. 2C is a schematic diagram of a PRS distribution provided by an embodiment of the application. As shown in FIG. P appears repeatedly, the starting position of the cycle can start from PRS1, it can also start from PRS3, or from any other position. The figure shows two consecutive time slot sets S and S', both of which can contain all the PRS sent by TRP, but the length of the time slot occupied by S is smaller than that of S'. At this time, the set of consecutive time slots in period P can be determined For S.
  • the periods T corresponding to the 6 PRS resource sets shown in Table 1 are all different, and the period P determined according to multiple periods T is smaller than the period T (for example, according to The greatest common divisor of multiple Ts determines P), then some P will contain the PRS resource set sent by a certain TRP, and there will be no such resource set in other periods.
  • the selected continuous time slot set is the PRS resource set that covers all TRPs in all PRS cycles, and the set of PRS arrangement modes that occupy the least time slot length is used as the first time slot set in P.
  • Figure 2D is a schematic diagram of another PRS distribution provided by an embodiment of the application.
  • PRSs in one PRS cycle There are 3 PRSs in one PRS cycle, which are PRS1, PRS3, and PRS4. That is, the period of PRS2 is 2P. Both the time slot set S and the time slot set S" include the PRS resource sets sent by all TRPs in the period P, and the time slot set S'does not include PRS2, so the first time slot set is selected from S and S"; In addition, because S ⁇ S", the first time slot set (minimum continuous time slot set) determined at this time is S.
  • the first time slot set includes multiple time slots, and the PRS in each time slot occupies a certain length of time.
  • the length of time occupied by the PRS in each time slot can be determined, and then the corresponding symbol length K can be determined according to the length of time.
  • the length of time occupied by each time slot PRS may not be a certain value, but a possible time range.
  • FIG. 2E is a schematic diagram of determining the time range of PRS occupied by an embodiment of the application. As shown in FIG.
  • the occupied time range of PRS resources sent by each TRP can be: Reference resource or reference resource set (for example, reference resource or reference resource set can be configured through nr-DL-PRS-ReferenceInfo-r16 cell) timing expected reference signal reception time difference (Expected RSD), and expected reference signal reception time difference Determine the range (Expected RSTD Uncertainty), determine the subframe boundary search window, and then determine the time range that needs to be occupied to receive PRS resources according to the slot index in the subframe occupied by the PRS, the symbol index in the slot, and the number of symbols.
  • the symbol length occupied by the PRS in each slot in S is the union of the symbol length occupied by the PRS resources sent by all TRPs in the slot.
  • FIG. 2F is a schematic diagram of symbols occupied by a PRS in a time slot according to an embodiment of the application. As shown in FIG. The eighth symbol is cut off; the symbol occupied by PRS2 is [6,14], and the union of PRS1 and PRS2 is: [4,14], then the total length of symbols occupied by PRS1 and PRS2 is [4,14].
  • FIG. 2G is a schematic diagram of the distribution of a PRS on each time slot according to an embodiment of the application.
  • each time slot includes 14 OFDM symbols as an example.
  • Each OFDM symbol also includes a Cyclic Prefix (CP).
  • the first PRS is transmitted in the first time slot, and the second PRS is transmitted in the second time slot.
  • the start time and end time of the first PRS and the second PRS are obtained, and the first PRS and the second PRS can be determined correspondingly. Symbol length.
  • determining the first symbol length of the PRS according to the start time and the end time includes: an OFDM symbol determined according to the PRS subcarrier interval corresponding to the start time, and an OFDM symbol determined according to the PRS subcarrier interval corresponding to the end time, Determine the length of the first symbol where the PRS in each slot is located.
  • the OFDM symbol at the start time of the first PRS is the 4th OFDM symbol in the first time slot
  • the OFDM symbol at the end time is the 14th OFDM symbol in the first time slot.
  • the first symbol length may be the length corresponding to the 4th to 10th OFDM symbols.
  • the calculation method of the first symbol length of the PRS in the s-th time slot satisfies the following formula:
  • K s represents the first symbol length of the PRS in the sth slot in the first slot set
  • Indicates the number of OFDM symbols contained in a slot Represents the time slot duration of the sub-carrier interval corresponding to ⁇ , Represents the end time of the s-th time slot, Indicates the start time of the s-th time slot, ceil() is the round-up function, and floor() is the round-down function.
  • determining the first symbol length of the PRS according to the start time and the end time includes: acquiring the time interval between the start time and the end time; and determining the symbol corresponding to the OFDM symbol according to the PRS subcarrier interval corresponding to the time interval Length, which determines the length of the first symbol where the PRS in each slot is located.
  • the difference between the start time and the end time of the second PRS is calculated to obtain the time interval between the two, and then the symbol length corresponding to the OFDM symbol determined by the PRS subcarrier interval corresponding to this time interval is determined,
  • the symbol length corresponding to these 4 OFDM symbols is the first symbol length of the PRS in the slot.
  • the calculation method of the first symbol length of the PRS in the s-th time slot satisfies the following formula:
  • the first symbol length of each slot can be summed to obtain the symbol length K of the PRS in the first slot set.
  • the calculation method satisfies the following formula:
  • the number of time slots included in the first time slot set is S
  • K s represents the time slot with index value s in S, or the first symbol length corresponding to the s-th time slot, or K s can be based on the formula (1 ) Or the method corresponding to formula (2).
  • the maximum value of the first symbol length of the PRS of the multiple time slots in the first time slot set may be used as the second symbol length of the PRS of each time slot in the time slot, and then the first time The length of the S second symbols in the slot set is summed to obtain the symbol length of the PRS in the first slot set.
  • the corresponding calculation method satisfies the following formula:
  • the first symbol length of the PRS of each time slot in the first time slot set is calculated according to the method corresponding to formula (1), max() is the maximum value function, and the largest of the first symbol length The value is taken as the second symbol length of the PRS of each time slot, multiplied by the number S of time slots in the first time slot set, that is, the symbol length of the PRS in the first time slot set.
  • the first symbol length of the PRS of each time slot in the first time slot set can also be calculated according to the method corresponding to formula (2), Then, the maximum value is summed to obtain the symbol length of the PRS in the first time slot set.
  • the corresponding calculation method satisfies the following formula:
  • the length of the time slots corresponding to each time slot used for PRS transmission in the first time slot set may also be directly summed to obtain the symbol length of the PRS in the first time slot set.
  • the corresponding calculation method satisfies the following formula:
  • the first time slot set formed by the time slots in the period P is obtained, and then the time is determined according to the start time and end time of the transmission of the PRS on a single time slot in the first time slot set.
  • the first symbol length of the PRS is transmitted on the slot, and then the symbol length of the PRS in the first time slot set is obtained according to the first symbol length, and the symbol length K of the PRS corresponding to the period P is calculated through this process, which ensures the comprehensive result obtained Sex and integrity.
  • the S time slots in the first time slot set are consecutive time slots. Some of these consecutive time slots are used to transmit PRS, and other time slots may not be used to transmit PRS, but are used to transmit other time slots. Signal.
  • the S time slots in the first time slot set may also be non-contiguous time slots and consist of all time slots used to transmit PRS.
  • FIG. 2H is a schematic diagram of a first time slot set composed of discontinuous time slots according to an embodiment of the application.
  • a continuous time slot set corresponding to period P includes 3 Continuous time slots, where the first time slot and the third time slot are used to transmit PRS sent by at least one TRP, and the second time slot is not used to transmit PRS, then the first time slot set consists of the first time slot and the third time slot , Excluding the second time slot.
  • the first time slot set may be the union of all time slot sets selected in the period P.
  • FIG. 2I is a schematic diagram of determining the first time slot set according to the union of multiple periods according to an embodiment of the application. As shown in FIG.
  • the first PRS period is used to transmit PRS1 and PRS4, and the second The PRS cycle is used to transmit PRS1 and PRS2, the union of the two cycles includes PRS1, PRS2, and PRS4, and the union is transmitted on the first, second, and third time slots.
  • the first time slot set corresponding to the period P includes the first time slot, the second time slot, and the third time slot, and the corresponding PRS includes PRS1, PRS2, and PRS4.
  • time slots included in the first time slot set are all time slots used for PRS transmission (which can be non-contiguous time slots)
  • one or more of formulas (1) to (6) can also be used. Combining calculations to obtain the symbol length K corresponding to the period P.
  • the first time slot set formed by the time slots used to transmit the PRS in the period P is obtained, and then according to the start time and end time of the transmission of the PRS on a single time slot in the first time slot set , Determine the first symbol length of the PRS transmitted in the time slot, and then obtain the symbol length of the PRS in the first time slot set according to the first symbol length, and calculate and obtain the symbol length K of the PRS corresponding to the period P through this process, ensuring The accuracy of the results obtained.
  • the terminal After the terminal calculates and obtains the PRS time domain information, it needs to receive the PRS configured by the LMF, and can compare the time domain information with the terminal's processing capability information, and determine the terminal's processing method for these PRS resources based on the comparison result.
  • the processing capability information of the terminal includes the processing period T and the symbol length N that can be processed in the processing period T.
  • the corresponding connotation is: the PRS symbol length N that the terminal can process within the time T, where the unit of T and N can be milliseconds.
  • the PRS symbol length refers to the time length of the corresponding OFDM symbol when the PRS is transmitted in the time domain.
  • the same terminal can report multiple sets of processing capability information, and the obtained PRS time domain information (P, K) can be compared with the terminal processing capability information (T, N) to determine that the terminal can be within at least one set of capabilities Receive PRS.
  • the LMF When the LMF sends the PRS configuration information to the terminal, or the service cell system information broadcasts the PRS configuration information for the terminal, it may not be the configuration information sent for the terminal according to the terminal reporting capability, or the configuration information may be sent to multiple terminals at the same time and cannot take all of them into consideration.
  • the reporting capability of the terminal Therefore, when the terminal receives the PRS configuration information, it obtains the time domain information corresponding to the PRS, and compares the time domain information with the terminal's reporting capability to determine whether the terminal supports the configuration and how the terminal supports the configuration.
  • the multiple sets of processing capability information reported by the terminal may not necessarily be in a multiplying relationship.
  • the multiple sets of processing capability information (N, T) reported by the terminal can be: (1,5), (3,80), (5,160), (8,320), (10,640), (12,1280), N
  • the unit of sum T can be milliseconds (ms) or other time measurement units, such as the number of time slots and the number of symbols.
  • the terminal Since the PRS cycle is 100ms, the terminal only receives the 4ms PRS issued by the access network equipment in the first 100ms, and the second 100ms is issued The 4ms PRS only receives 1ms and discards the remaining 3ms, or does not receive the 4ms PRS issued by the second 100ms at all. At the same time, since the terminal only needs 160ms to process the 5ms PRS, the second 100ms will only occupy After processing the PRS in 60ms, the terminal in the remaining 40ms may not do any operations related to positioning.
  • the terminal can process the PRS of 3ms every 80ms, the terminal can also process the PRS of 1ms in addition to the PRS that must be processed in the second 100ms cycle, which is not limited here.
  • the LMF may deliver the configuration information of the PRS in the form of broadcast, and this configuration information is only for some terminals, and then this part of the terminals can receive the PRS according to the configuration information of the LMF. For another part of the terminals, if there is no condition that T ⁇ P and N ⁇ K, all PRSs issued by the access network equipment will not be received.
  • the above “ ⁇ ” or “ ⁇ ” preferentially select the combination with the smallest value difference between the two sides of the equation.
  • the method may further include the following steps:
  • the terminal obtains measurement results corresponding to the multiple PRSs.
  • the positioning device sends a measurement result request to the terminal.
  • the positioning device receives the measurement results corresponding to the multiple PRSs sent by the terminal according to the measurement result request, and requests positioning according to the measurement result.
  • the terminal determines the manner of receiving the PRS issued by the access network device according to the method described above, and after receiving the PRS, obtains the measurement result corresponding to the PRS.
  • the positioning device sends a measurement result request to the terminal to obtain the measurement result corresponding to the PRS and complete the positioning process.
  • the positioning device itself has obtained the PRS configuration information corresponding to the terminal and the processing capability information reported by the terminal. Therefore, the positioning device can also perform the above-mentioned PRS time domain information calculation process, and based on the PRS time domain information and terminal processing The capability information determines the terminal's ability to support the PRS. Then, when the positioning device requests to obtain the measurement result sent by the terminal, it can obtain it according to the corresponding time delay.
  • the positioning device can know the measurement results obtained by the terminal according to which PRS, and then determine the accuracy and credibility of the measurement results.
  • the terminal compares the acquired PRS time domain information configured by the positioning device with the processing capability information reported by the terminal to determine the way the terminal receives the PRS issued by the access network device, so that the terminal Support the PRS resources configured by the positioning device according to the actual capabilities, which improves the efficiency of the terminal to receive the PRS.
  • FIG. 3A is a flowchart of a method for determining receiving PRS through a measurement window provided by an embodiment of the application, as shown in FIG. 3A , The method includes the following steps:
  • the positioning device sends a PRS measurement window configuration to the terminal, where the PRS measurement window configuration includes a receiving period and a window time in the receiving period, and the window long time is used to receive the PRS;
  • the terminal receives the PRS measurement window configuration sent by the positioning device, and receives the PRS according to the PRS measurement window configuration.
  • the terminal receives the PRS configuration information sent by the LMF or the PRS configuration information obtained through the serving cell system information broadcast.
  • the configuration information can include multiple positioning frequency points, multiple PRS configurations on TRPs, and one PRS
  • the configuration corresponds to at most two PRS resource sets of a TRP on a frequency point, and each PRS resource set can contain at most 64 PRS resources.
  • the terminal receives the RequestLocationInformation message sent by the LMF to request the terminal to provide the measurement result.
  • the LMF can send the PRS measurement window configuration to the terminal.
  • the configuration of the measurement window includes:
  • One positioning can trigger multiple positioning technologies, such as DL-TDOA or DL-AoD.
  • the window is configured by positioning frequency point (each positioning frequency point is configured with a measurement window), or it can be configured by frequency band (each frequency band is configured with one measurement window). Window), it can also be configured by frequency range (each FR is configured with one measurement window), or it can be a single measurement window for the terminal.
  • the number of measurement windows that can be configured for each frequency point, each frequency band, each frequency range, and each terminal can be one, two at most, or three at most.
  • FIG. 3B is a schematic diagram of a PRS measurement window provided by an embodiment of the application.
  • the corresponding duration r in duration R is used to receive PRS.
  • the PRS in r can be continuous or discontinuous.
  • the units of R and r can be milliseconds or time slots.
  • R and r can be obtained according to the above-mentioned embodiment corresponding to FIG. 2A to FIG. 2I in combination with the method of determining the time domain information of the PRS.
  • the positioning device obtains the PRS configuration information from the serving cell and/or neighboring cells, and receives the processing capability information reported by the terminal, then the positioning device can use the PRS configuration information through the steps in the embodiments corresponding to FIGS. 2A to 2I.
  • Method calculate the PRS time domain information (K, P), where P is the period, and K is the length of the PRS symbol in the period P.
  • the PRS time domain information is compared with the terminal processing capability information.
  • the terminal processing capability information includes multiple sets (N, T), indicating that the terminal can process the PRS of N milliseconds within T milliseconds.
  • the second group (N, T) is found from the multiple groups of processing capability information, so that the terminal can receive the symbol length N ⁇ K, if Exist, it means that the terminal can complete the PRS reception of more than K milliseconds within T milliseconds.
  • the length of the window corresponding to the completion of r milliseconds is K milliseconds PRS reception.
  • T milliseconds there may be multiple periods P, and the terminal does not need to receive PRS in all periods.
  • the terminal only processes PRS with a length of K milliseconds on a certain period P within T milliseconds, and the length is K milliseconds
  • the PRS of is contained by a window of length r milliseconds.
  • the second group (N, T) is found from multiple groups of processing capability information, so that the terminal receives the PRS period T ⁇ P, if it exists, it means the terminal
  • the terminal receives the PRS according to the period P corresponding to the access network device, receives the PRS in N milliseconds in each period P, and discards the (K-N) millisecond PRS.
  • the PRS is received according to the period P corresponding to the access network equipment, and the PRS of N milliseconds is received in each P, and the PRS of K milliseconds is received in the period of (m*P).
  • the terminal is in (m* P)
  • the PRS of (m*N) milliseconds can be processed in a millisecond period, and according to (m*N) will not be less than K, so the terminal can complete the reception of K milliseconds of PRS within the period of (m*P).
  • the PRS time domain information is calculated by the positioning device according to the PRS configuration information, and then the PRS time domain information is compared with the processing capability information reported by the terminal, and the measurement window configuration parameters are determined according to the comparison result.
  • the measurement window configuration is flexibly applicable to different terminals, and the measurement window configuration can be more adapted to the terminal's own capabilities, which improves the efficiency of the terminal to receive PRS according to the measurement window configuration.
  • the PRS measurement window configuration may also include an offset, which represents the time interval between the window and the start time of the receiving cycle for a long time.
  • the unit of the offset can be ms or time slot, for example, the offset is 4 ms.
  • the offset in the receiving period may also not be configured by the positioning device, but determined by the terminal itself.
  • the offset in the receiving cycle can also be coded jointly with the receiving cycle, because the length of the offset will not exceed the receiving cycle, so the receiving cycle can be defined in 5ms ⁇ 0ms,0.5ms,1ms,1.5ms,...,4.5ms ⁇ These offsets can be defined ⁇ 0ms,0.5ms,1ms,...,9.5ms ⁇ under the receiving cycle of 10ms.
  • the ⁇ 0,1,2,...,19 ⁇ slot offset can be defined under the receiving cycle of 20 slots.
  • the terminal determines that the starting time of subframe 0 can be the subframe 0 corresponding to the timing determined by the reference resource or reference resource set (configured by the nr-DL-PRS-ReferenceInfo-r16 information element).
  • the terminal determines any serving cell on this frequency.
  • the timing corresponds to subframe 0.
  • the terminal obtains the length of the start PRS symbol to be received at the target frequency point from the beginning of the reception period as the offset.
  • the behavior when receiving the PRS corresponding to a certain positioning technology is as follows:
  • the PRS measurement window is configured per frequency point, when the terminal receives the PRS of a specific frequency point, the PRS measurement window configuration of that frequency point is used;
  • the PRS measurement window is configured per frequency band, when the terminal receives the PRS of multiple frequency points in the frequency band, the PRS measurement window configuration of this frequency band is adopted. If the terminal does not have the ability to receive PRS of multiple frequency points at the same time, it means Within a measurement window, the terminal will only select one frequency to receive PRS;
  • the PRS measurement window is configured per FR, when the terminal receives the PRS of multiple frequency points in the FR, the PRS measurement window configuration of the FR is adopted. If the terminal does not have the ability to receive PRS of multiple frequency points at the same time, it means In a measurement window, the terminal will only select one frequency to receive PRS;
  • the PRS measurement window is configured separately for the terminal, when the terminal receives multiple frequency points of all PRSs of the positioning technology (which can span FR), the measurement window of the terminal is used. If the terminal does not have the capability to receive multiple frequency points at the same time Capability means that within a measurement window, the terminal will only select one frequency to receive PRS.
  • the terminal When the number of measurement windows configured for each frequency point, each frequency band, each frequency range, and each terminal is multiple (two or more), the terminal performs measurement radio resource management for PRS (Radio resource management).
  • PRS Radio resource management
  • Management, RRM indicators (such as delay, accuracy) are based on the PRS resources in the first measurement window.
  • Figure 3C is a schematic diagram of a terminal receiving PRS according to a measurement window according to an embodiment of the application. For all PRSs within a long period of time, the terminal does not receive PRSs that are outside the boundary of the measurement window or across the boundary of the measurement window.
  • the PRS measurement window configuration is sent to the terminal through the positioning device, so that the terminal receives the PRS issued by the access network device according to the PRS measurement window.
  • the terminal's computing power consumption is reduced, and
  • the PRS measurement window configuration issued by the positioning device also ensures that the received PRS is within the terminal's capability, and improves the efficiency of the terminal to receive the PRS.
  • FIGS. 3A to 3C may be combined with the method embodiments corresponding to FIGS. 2A to 2I, or may be implemented separately, which is not limited in the embodiments of the present application.
  • Fig. 4 is a communication device 700 provided by an embodiment of the application, which can be used to execute the positioning signal processing method and specific embodiments applied to a terminal of Figs. 2A to 2I or Figs. 3A to 3C.
  • the terminal may be a terminal.
  • the terminal device includes a receiving module 701 and a processing module 702.
  • the receiving module 701 is configured to receive positioning reference signal PRS configuration information sent by a positioning device, where the PRS is sent in the form of a PRS resource set, and each PRS resource set includes one or more PRSs, and one access network device corresponds to one Or multiple PRS resource sets;
  • the processing module 702 is configured to determine PRS time domain information according to the PRS configuration information, where the time domain information includes the period P of the PRS and the symbol length K of the PRS within one period P;
  • the receiving module 701 is further configured to receive the multiple PRSs according to the PRS time domain information.
  • the receiving module 701 and the processing module 702 are also used to implement the corresponding methods in FIGS. 2A to 2I.
  • the receiving module 701 is configured to receive a PRS measurement window configuration sent by a positioning device, the PRS measurement window configuration includes a receiving period and a window time in the receiving period, and the window long time is used to receive the PRS;
  • the receiving module 701 is further configured to receive PRS according to the measurement window configuration.
  • the receiving module 701 and the processing module 702 are also used to implement the corresponding methods in FIGS. 3A to 3C.
  • the aforementioned processing module 702 may be a chip, an encoder, an encoding circuit or other integrated circuits that can implement the method of the present application.
  • the terminal 700 may further include a sending module 703, and the receiving module 701 and the sending module 703 may be interface circuits or transceivers.
  • the receiving module 701 and the sending module 703 can be independent modules, or can be integrated as a transceiver module (not shown in the figure), and the transceiver module can implement the functions of the receiving module 701 and the sending module 703 described above. It can be an interface circuit or a transceiver.
  • the device 700 is used to execute the positioning signal processing method corresponding to the terminal, so the specific description of the method is involved, especially the functions of the receiving module 701 and the processing module 702 can be referred to The relevant parts of the corresponding embodiments will not be repeated here.
  • the device 700 may further include a storage module (not shown in the figure), which may be used to store data and/or signaling.
  • the storage module may be coupled to the processing module 702, or may be coupled to the receiving module 701 or sending Module 703 is coupled.
  • the processing module 702 may be used to read data and/or signaling in the storage module, so that the key acquisition method in the foregoing method embodiment is executed.
  • FIG. 5 is a communication device 800 provided by an embodiment of the present application, which can be used to execute the positioning signal processing method and specific embodiments applied to the application positioning device of FIG. 2A to FIG. 2I or FIG. 3A to FIG. 3C.
  • the device It can be a positioning device or a chip that can be configured in the positioning device.
  • the communication device 800 includes a sending module 801, a receiving module 802, and a processing module 803.
  • the sending module 801 is configured to send positioning reference signal PRS configuration information to the terminal, where the PRS is sent in the form of a PRS resource set, and each PRS resource set includes one or more PRSs, and a transmission receiving point access network device corresponds to One or more PRS resource sets;
  • the sending module 801 is also used to send a measurement result request to the terminal;
  • the receiving module 802 is configured to receive a measurement result sent by the terminal, where the measurement result is obtained by the terminal according to PRS time domain information corresponding to the PRS configuration information, and the PRS time domain information includes PRS information Period P, and the symbol length K of the PRS in one period P;
  • the processing module 803 is configured to perform positioning of the terminal according to the measurement result
  • the sending module 801, the receiving module 802, and the processing module 803 are also used to implement the corresponding methods in FIGS. 2A to 2I.
  • the receiving module 802 is configured to receive a PRS measurement window configuration sent by a positioning device, where the PRS measurement window configuration includes a receiving period and a window time in the receiving period, and the window long time is used to receive the PRS;
  • the receiving module 802 is further configured to receive PRS according to the measurement window configuration.
  • the sending module 801, the receiving module 802, and the processing module 803 are also used to implement the corresponding methods in FIGS. 3A to 3C.
  • the aforementioned processing module 803 may be a chip, an encoder, an encoding circuit or other integrated circuits that can implement the method of the present application.
  • the receiving module 802 and the sending module 801 may be interface circuits or transceivers.
  • the receiving module 802 and the sending module 801 can be independent modules, or can be integrated as a transceiver module (not shown in the figure), and the transceiver module can implement the functions of the receiving module 802 and the sending module 801 described above. It can be an interface circuit or a transceiver.
  • the device 800 is used to execute the positioning signal processing method corresponding to the positioning device, so the specific description of the method is involved, especially the functions of the receiving module 802 and the sending module 801 can be Refer to the relevant part of the corresponding embodiment, which will not be repeated here.
  • the device 800 may further include a storage module (not shown in the figure), which may be used to store data and/or signaling.
  • the storage module may be coupled to the processing module 803, or may be coupled to the receiving module 802 or sending Module 801 is coupled.
  • the processing module 803 may be used to read data and/or signaling in the storage module, so that the key acquisition method in the foregoing method embodiment is executed.
  • FIG. 6 shows a schematic diagram of the hardware structure of a communication device in an embodiment of the present application.
  • the communication device 900 includes: a processor 111 and a communication transceiver 112, and the processor 111 and the transceiver 112 are electrically coupled;
  • the processor 111 is configured to execute part or all of the computer program instructions in the memory, and when the part or all of the computer program instructions are executed, the device executes the method described in any of the foregoing embodiments.
  • the transceiver 112 is configured to communicate with other devices; for example, obtain a fourth message from AUSF, and send a fifth message to the UE according to the fourth message, so that the UE obtains the fifth message according to the fifth message.
  • KID and/or the KAKMA are examples of devices that communicate with other devices; for example, obtain a fourth message from AUSF, and send a fifth message to the UE according to the fourth message, so that the UE obtains the fifth message according to the fifth message.
  • KID and/or the KAKMA KID and/or the KAKMA.
  • the memory 113 for storing computer program instructions.
  • the memory 113 (Memory#1) is located in the device, and the memory 113 (Memory#2) is integrated with the processor 111. Together, or the memory 113 (Memory#3) is located outside the device.
  • the communication device 900 shown in FIG. 6 may be a chip or a circuit.
  • a chip or circuit may be provided in a terminal device or a communication device.
  • the aforementioned transceiver 112 may also be a communication interface.
  • the transceiver includes a receiver and a transmitter.
  • the communication device 900 may also include a bus system.
  • the processor 111, the memory 113, and the transceiver 112 are connected by a bus system.
  • the processor 111 is used to execute instructions stored in the memory 113 to control the transceiver to receive and send signals, and complete the first implementation method involved in this application.
  • the memory 113 may be integrated in the processor 111, or may be provided separately from the processor 111.
  • the function of the transceiver 112 may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 111 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor may further include a hardware chip or other general-purpose processors.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (generic array logic, GAL) and other programmable logic devices , Discrete gates or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application provides a computer storage medium that stores a computer program, and the computer program includes a method for executing the method corresponding to the terminal in the foregoing embodiment.
  • the embodiment of the present application provides a computer storage medium storing a computer program, and the computer program includes a method for executing the corresponding positioning device in the foregoing embodiment.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method corresponding to the terminal in the above-mentioned embodiments.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method corresponding to the positioning device in the above-mentioned embodiments.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种定位信号处理方法和装置,定位设备向终端发送定位参考信号PRS配置信息,其中,PRS以PRS资源集的形式发送,每个PRS资源集包括一个或多个PRS,一个接入网设备对应一个或多个PRS资源集;终端根据所述PRS配置信息确定PRS时域信息,所述时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K;终端根据所述PRS时域信息接收所述多个PRS。本申请实施例公开了终端根据PRS配置信息获取PRS时域信息,并根据时域信息接收PRS,保证了终端接收PRS的准确性和可靠性。

Description

定位信号处理方法及装置
本申请要求于2020年04月10日提交中国知识产权局、申请号为202010281208.0、申请名称为“定位信号处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及一种定位信号处理方法及装置。
背景技术
长期演进(Long Term Evolution,LTE)和新空口(New Radio,NR)的定位是基于核心网定位管理功能(Location management function,LMF)控制,接入网和终端辅助的架构。并且定义了下行定位参考信号(Downlink Positioning reference signal,DL PRS),用以支持以下定位技术:
下行到达时间差(Downlink Observation Arrival Time Difference,DL-TDOA)定位技术:UE对各小区定位参考信息(Positioning reference signal,PRS)测量下行参考信号到达时间差(Downlink Reference Signal Time Difference,DL RSTD),并将测量结果上报给LMF。
下行离开角(Downlink Angle of Departure,DL-AoD)定位技术:UE对各小区PRS信号测量参考信号接收功率(PRS Reference Signal Received Power,PRS-RSRP),并将测量结果上报给LMF。
多次往返时间(Multi Round-Trip-Time,Multi-RTT)定位技术:UE对各小区PRS信号测量UE发送信号和接收信号时间差(Rx-Tx time difference),并将测量结果上报给LMF;各小区对UE的探测参考信号(Sounding reference signal,SRS)信号测量gNBRx-Tx time difference,并将测量结果上报给LMF。
为了支持上述定位方法,终端需要具有接收DL PRS以及处理DL PRS的能力。在终端接收到定位设备发送的PRS配置信息之后,如何根据PRS配置信息对PRS进行准确接收,以及如何根据PRS配置信息和自身的能力对PRS进行接收,是一个亟待解决的问题。
发明内容
本申请实施例提供了一种定位信号处理方法及装置,以实现终端准确接收PRS。
第一方面,提供了一种定位信号处理方法,所述方法包括:
接收定位设备发送的定位参考信号PRS配置信息,其中,PRS以PRS资源集的形式发送,每个PRS资源集包括一个或多个PRS,一个接入网设备对应一个或多个PRS资源集;根据所述PRS配置信息确定PRS时域信息,所述时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K;以及根据所述PRS时域信息接收所述多个PRS。
在本申请实施例中,通过获取到的定位设备下发的PRS配置信息,计算获取PRS时域信息,然后终端根据PRS时域信息接收接入网设备发送的PRS,保证了终端接收PRS的准确性和可靠性。
在一个可能的实现中,所述方法还包括:上报终端的处理能力信息,所述根据所述PRS时域信息接收所述多个PRS,包括:基于所述处理能力信息以及所述时域信息,接收所述 PRS。
在一个可能的实现中,所述处理能力信息包括一组或多组能力信息,其中,每组能力信息表示终端能够在T毫秒的时间内,处理N毫秒的PRS;所述基于所述处理能力信息以及所述时域信息,接收所述PRS,具体包括:将所述时域信息与所述一组或多组能力信息进行比对,确定存在第一组能力信息,使得所述终端在所述第一组能力信息范围内,接收所述PRS。
在一个可能的实现中,所述第一组能力范围满足以下规则:T≤P,且M≥K。
在一个可能的实现中,所述方法还包括:当不存在第一组所述T和所述N,满足T≤P,且M≥K时,若存在第二组所述T和所述N,满足M≥K,按照所述T和所述N接收所述PRS。
在一个可能的实现中,所述方法还包括:当不存在至少一组所述T和所述N,满足T≤P,且M≥K时,若存在第二组所述T和所述N,满足T≤P,按照所述第二组的所述P和所述N接收所述PRS。
在一个可能的实现中,所述终端按照所述第二组的P和所述N接收所述PRS,包括:
所述终端在每个周期P内的所述处理能力T内,接收长度为N的所述PRS;通过
Figure PCTCN2021086496-appb-000001
个所述周期P,接收总长度为K的PRS,其中M<K,ceil()为向上取整。
在本申请实施例中,终端通过将获取到的定位设备配置的PRS时域信息与终端上报的处理能力信息进行对比,确定终端对接入网设备下发的PRS的接收方式,使得终端按照实际能力支持定位设备配置的PRS资源,提升了终端接收PRS的效率。
第二方面,提供了一种定位信号处理方法,所述方法包括:
向终端发送定位参考信号PRS配置信息,其中,PRS以PRS资源集的形式存在,每个PRS资源集包括一个或多个PRS,一个接入网设备对应一个或多个PRS资源集;向所述终端发送测量结果请求;接收所述终端发送的所述多个PRS对应的测量结果,并根据所述多个PRS对应的测量结果进行所述终端的定位;所述测量结果为所述终端根据所述PRS配置信息对应的PRS时域信息获取到的,所述PRS时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K。
第三方面,提供一种定位信号处理方法,所述方法包括:
接收定位设备发送的PRS测量窗配置,所述PRS测量窗配置包括接收周期和所述接收周期内的窗长时间,所述窗长时间用于接收PRS;根据所述测量窗配置接收PRS。
在一个可能的实现中,所述PRS测量窗配置中还包括偏移量,用于确定所述窗长时间距离所述接收周期起始时刻的时间间隔。
在一个可能的实现中,所述方法还包括:
所述终端根据所述接收周期确定所述偏移量,所述偏移量小于所述接收周期。
在一个可能的实现中,所述终端获取目标频点上待接收起始PRS符号距离所述接收周期起始时刻的第一时长,将所述第一时长作为所述偏移量。
在一个可能的实现中,根据所述测量窗配置接收PRS,包括:
根据所述终端对应的目标频点、目标频带、目标频率范围或终端标识获取目标测量窗配置,并根据所述目标测量窗配置接收所述PRS。
第四方面,提供一种定位信号处理方法,所述方法包括:
向终端发送PRS测量窗配置,所述PRS测量窗配置包括接收周期和所述接收周期内的窗长时间,所述窗长时间用于接收PRS。
在一个可能的实现中,在向终端发送PRS测量窗配置之前,所述方法还包括:
获取PRS配置信息,并根据所述PRS配置信息确定PRS时域信息,所述时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K;根据所述时域信息设置所述PRS测量窗配置。
可见,在本申请实施例中,通过定位设备根据PRS配置信息计算获得PRS时域信息,然后将PRS时域信息与终端上报的处理能力信息进行对比,并根据对比结果确定测量窗配置参数,可以测量窗配置灵活适用于不同终端,并且能够使测量窗配置与终端自身能力更适配,提升了终端根据测量窗配置接收PRS的效率。
在一个可能的实现中,所述根据所述PRS配置信息确定PRS时域信息,包括以下方法的一种或多种:确定所述P为所述多个接入网设备的多个PRS资源集的共同发送周期;确定所述P为所述多个接入网设备中每个所述接入网设备的第一PRS资源集的共同发送周期;确定所述P为所述多个接入网设备中第一接入网设备的第一PRS资源集的发送周期,所述第一接入网设备的第一PRS资源集的发送周期为所述多个接入网设备中每个所述接入网设备的第一PRS资源集的发送周期的公约数;确定所述P为所述多个接入网设备中每个所述接入网设备的第一PRS资源集的发送周期的最大公约数;确定所述P为所述多个接入网设备中每个所述接入网设备的多个PRS资源集的发送周期的最大公约数;确定所述P为所述多个接入网设备中每个所述接入网设备的第一PRS资源集的发送周期的最小公倍数;确定所述P为所述多个接入网设备中每个所述接入网设备的多个PRS资源集的发送周期的最小公倍数。
在本申请实施例中,通过综合参考多个接入网设备的多个PRS资源集的周期,确定终端接收到的PRS配置中的PRS周期P,可以使得确定的周期综合考虑每个TRP的PRS资源集情况,保证了确定的周期P的可靠性。
在一个可能的实现中,所述接入网设备的所述第一PRS资源集为:
所述接入网设备包含的PRS资源集列表中的第一个;或所述接入网设备包含的PRS资源集列表中资源集索引值最小的一个。
在一个可能的实现中,所述确定所述PRS对应的时域信息包括:
将PRS对应的第一时隙集合中的PRS符号长度作为所述周期P内的PRS的符号长度K,所述第一时隙集合中包括多个时隙,所述多个时隙用于传输在所述P对应的时长内所述终端设备检测到的全部PRS。
在一个可能的实现中,所述第一时隙集合中的所述多个时隙为连续时隙。
在一个可能的实现中,所述连续时隙的时隙个数为发送所述全部PRS所需要的最少时隙个数。
在一个可能的实现中,所述方法还包括确定所述第一时隙集合中的PRS的符号长度K,具体包括:确定所述第一时隙集合中每个时隙的PRS的第一符号长度;以及根据所述第一符号长度确定所述第一时隙集合中的PRS的符号长度K。
在一个可能的实现中,所述确定所述第一时隙集合中每个时隙中的PRS的第一符号长度,包括:确定第一时隙集合中每个时隙的起始时刻和结束时刻;以及根据所述起始时刻和所述结束时刻,确定所述每个时隙中的PRS的第一符号长度。
在一个可能的实现中,所述根据所述起始时刻和所述结束时刻,确定所述每个时隙中的PRS的第一符号长度,包括:
根据所述起始时刻对应的PRS子载波间隔确定的OFDM符号,和所述结束时刻对应的PRS子载波间隔确定的OFDM符号,确定所述每个时隙中的PRS的第一符号长度。
在一个可能的实现中,所述PRS的第一符号长度满足如下公式:
Figure PCTCN2021086496-appb-000002
其中s为第一时隙集合S中的时隙索引,K s表示时隙s中PRS的第一符号长度,μ为PRS对应子载波间隔,
Figure PCTCN2021086496-appb-000003
为一个时隙内的符号个数,
Figure PCTCN2021086496-appb-000004
为时隙s中起始时刻,
Figure PCTCN2021086496-appb-000005
为时隙s中结束时刻。
在一个可能的实现中,所述根据所述起始时刻和所述结束时刻,确定所述每个时隙中的PRS的第一符号长度,包括:
获取所述起始时刻和所述结束时刻之间的时间区间;以及根据所述时间区间对应的PRS子载波间隔确定的OFDM符号对应的符号长度,确定所述每个时隙中的PRS的第一符号长度。
在一个可能的实现中,所述PRS的第一符号长度满足如下公式:
Figure PCTCN2021086496-appb-000006
其中s为第一时隙集合S中的时隙索引,K s表示时隙s中PRS的第一符号长度,μ为PRS对应子载波间隔,
Figure PCTCN2021086496-appb-000007
为一个时隙内的符号个数,
Figure PCTCN2021086496-appb-000008
为时隙s中起始时刻,
Figure PCTCN2021086496-appb-000009
为时隙s中结束时刻。
在本申请实施例中,通过获取周期P内的时隙组成的第一时隙集合,然后根据第一时隙集合中单个时隙上传输PRS的起始时刻和结束时刻,确定该时隙上传输PRS的第一符号长度,然后根据第一符号长度获得第一时隙集合中的PRS的符号长度,通过该过程计算获取周期P对应的PRS的符号长度K,保证了获取结果的全面性和完整性。
在一个可能的实现中,所述起始时刻和所述结束时刻之间的时间区间包含了该时隙内所有接入网设备发送的所有PRS符号出现的范围。
在一个可能的实现中,所述起始时刻和所述结束时刻之间的时间区间为包含了该时隙内所有接入网设备的所有PRS符号出现的范围的最小时间区间。
在一个可能的实现中,所述该时隙内所有接入网设备的所有PRS符号出现的范围为每个接入网设备发送的所有PRS符号出现范围的并集;所述每个接入网设备发送的所有PRS符号出现范围由每个接入网设备发送的预期参考信号接收时间差、预期的参考信号接收时间差不确定范围、PRS所占用的符号索引以及符号个数确定。
在本申请实施例中,通过获取周期P内用于传输PRS的时隙组成的第一时隙集合,然 后根据第一时隙集合中单个时隙上传输PRS的起始时刻和结束时刻,确定该时隙上传输PRS的第一符号长度,然后根据第一符号长度获得第一时隙集合中的PRS的符号长度,通过该过程计算获取周期P对应的PRS的符号长度K,保证了获取结果的准确性。
在一个可能的实现中,所述根据所述第一符号长度确定所述第一时隙集合中的PRS的符号长度K,包括:
对所述每个时隙的PRS的第一符号长度求和,获得所述第一时隙集合中的PRS的符号长度K;或将所述每个时隙的PRS的第一符号长度中的最大值作为所述每个时隙的PRS的第二符号长度;以及对所述每个时隙的PRS的第二符号长度求和,获得所述第一时隙集合中的PRS的符号长度K。
在一个可能的实现中,所述第一时隙集合中的PRS的符号长度K满足如下公式:
Figure PCTCN2021086496-appb-000010
其中s为第一时隙集合S中的时隙索引,K s表示时隙s中PRS的第一符号长度,K表示PRS的符号长度;或
K=K m|S|,K m=max s∈S( S)
其中s为第一时隙集合S中的时隙索引,K s表示时隙s中PRS的第一符号长度,K表示PRS的符号长度,K m表示第一时隙集合中PRS的第一符号长度中的最大值,||为取集合中元素个数。
在一个可能的实现中,确定所述第一时隙集合中的PRS的符号长度K,包括:
确定所述第一时隙集合中的每个时隙对应的时隙长度;以及对所述每个时隙对应的时隙长度求和,获得所述第一时隙集合中的PRS的符号长度K。
在一个可能的实现中,所述第一时隙集合中的PRS的符号长度K满足如下公式:
Figure PCTCN2021086496-appb-000011
其中K表示PRS的符号长度,||为取集合中元素个数,μ表示PRS对应子载波间隔。
在一个可能的实现中,所述根据所述时域信息设置所述PRS测量窗配置包括:
接收终端上报的处理能力信息,根据所述处理能力信息与所述时域信息的对比结果,设置所述PRS测量窗配置。
在一个可能的实现中,所述处理能力信息包括一组或多组能力信息,其中,能力信息表示终端能够在T毫秒的时间内,处理N毫秒的PRS;
所述根据所述处理能力信息与所述时域信息的对比结果,设置所述PRS测量窗配置,包括:将所述时域信息与所述多组能力信息进行比对,使得所述终端在至少一组能力范围内,根据所述至少一组能力设置所述PRS测量窗配置。
在一个可能的实现中,所述至少一组能力范围满足以下规则:
T≤P,且N≥K。
在一个可能的实现中,当不存在第一组所述T和所述N,满足T≤P,且N≥K时,若存在第二组所述T和所述N,满足N≥K;按照所述第二组的P和所述N设置所述PRS测量窗 配置。
在一个可能的实现中,当不存在至少一组所述T和所述N,满足T≤P,且N≥K时,若存在第二组所述T和所述N,满足T≤P;按照所述第二组的P和所述N设置所述PRS测量窗配置。
在一个可能的实现中,所述测量窗配置是逐频点、逐频带、逐频率范围或单个终端对应的测量窗配置。
第五方面,提供一种通信装置,该装置包括用于实现第一方面或第一方面任一种可能的通信方法的至少一个模块,或者包括用于实现第三方面或第三方面任一种可能的通信方法的至少一个模块。
第六方面,提供一种通信装置,该装置包括用于实现第二方面或第二方面任一种可能的通信方法的至少一个模块,或者包括用于实现第四方面或第四方面任一种可能的通信方法的至少一个模块。
第七方面,提供一种通信装置,该包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行第一方面中任一项所述的方法,或使得所述装置执行第二方面中任一项所述的方法,或使得所述装置执行第三方面中任一项所述的方法,使得所述装置执行第四方面中任一项所述的方法。
该装置可以为终端,也可以为终端中包括的芯片。上述通信装备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
该装置可以为定位设备,也可以为定位设备中包含的芯片。上述通信装备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中的方法。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面、或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为网络设备时,该通信接口可以是收发器或输入/输出接口;当该装置为网络设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第八方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中的方法,或者执行上述第三方面或第三方面 的任一种可能的实现方式中的方法,或者执行上述第四方面或第四方面的任一种可能的实现方式中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第九方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中的方法,或者执行上述第三方面或第三方面的任一种可能的实现方式中的方法,或者执行上述第四方面或第四方面的任一种可能的实现方式中的方法。
第十方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中的方法,或者执行上述第三方面或第三方面的任一种可能的实现方式中的方法,或者执行上述第四方面或第四方面的任一种可能的实现方式中的方法。
第十一方面,本申请实施例提供一种通信系统,该通信系统包括上述的一个或多个终端设备或定位设备,可选的,该通信系统中还可包括一个或多个接入网设备。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1A为应用本申请实施例的终端定位方法的一个定位系统的架构示意图;
图1B为在5G移动通信系统中应用本申请实施例的终端定位方法的一个定位系统的架构示意图;
图1C为在5G移动通信系统中应用本申请实施例的定位方法的另一个定位系统的架构示意图;
图1D所示为本申请实施例提供的通信装置的结构示意图;
图2A为本申请实施例提供的一种定位信号处理方法流程图;
图2B为本申请实施例提供的一种下行PRS支持的映射图样示意图;
图2C为本申请实施例提供的一种PRS分布示意图;
图2D为本申请实施例提供的另一种PRS分布示意图;
图2E为本申请实施例提供的一种确定PRS占用时间范围的示意图;
图2F为本申请实施例提供的一种PRS在时隙上占用符号示意图;
图2G为本申请实施例提供的一种PRS在每个时隙上的分布示意图;
图2H为本申请实施例提供的一种非连续时隙组成的第一时隙集合示意图;
图2I为本申请实施例提供的一种根据多个周期的并集确定第一时隙集合示意图;
图3A为本申请实施例提供的一种通过测量窗确定接收PRS的方法流程图;
图3B为本申请实施例提供的一种PRS测量窗示意图;
图3C为本申请实施例提供的一种终端根据测量窗接收PRS的示意图;
图4为本申请实施例提供的一种通信装置结构框图;
图5为本申请实施例提供的另一种通信装置结构框图;
图6为本申请实施例提供的一种通信装置的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、或者下一代通信系统,比如6G等,本申请中涉及的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of Things,IoT)、车联网通信系统或者其他通信系统。
图1A为应用本申请实施例的终端定位方法的一个定位系统的架构示意图。如图1A所示,该定位系统包括终端、一个或多个接入网设备(图1A以一个接入网设备为例进行示意)以及定位设备。其中,终端、接入网设备或者定位设备两两之间可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。虽然未示出,该定位系统还可以包括移动管理网元等其他网元,本申请实施例对此不做具体限定。
可选的,本申请实施例中的定位设备可以是定位管理功能(location management function,LMF)网元或者定位管理组件(location management component,LMC)网元,或者可以是位于网络设备中的本地定位管理功能(local location management function,LLMF)网元。
可选的,本申请实施例提供的定位系统可以适用于上述各种通信系统。以5G移动通信系统为例,图1A中的接入网设备所对应的网元或者实体可以为该5G移动通信系统中的下一代无线接入网(next-generation radio access network,NG-RAN)设备。上述的移动管理网元所对应的网元或者实体可以为该5G移动通信系统中的接入和移动性管理功能(access and mobility management function,AMF)网元,本申请实施例对此不作具体限定。
示例性的,图1B为在5G移动通信系统中应用本申请实施例的终端定位方法的一个定 位系统的架构示意图。如图1B所示,该定位系统中,终端通过LTE-Uu经由下一代演进型节点B(next-generation evolved NodeB,ng-eNB),或通过NR-Uu接口经由下一代节点B(next-generation node B,gNB)连接到无线接入网;无线接入网通过NG-C接口经由AMF网元连接到核心网。其中,NG-RAN包括一个或多个ng-eNB(图1B以一个ng-eNB为例进行示意);NG-RAN也可以包括一个或多个gNB(图1B以一个gNB为例进行示意);NG-RAN还可以包括一个或多个ng-eNB以及一个或多个gNB。ng-eNB为接入5G核心网的LTE基站,gNB为接入5G核心网的5G基站。核心网包括AMF网元与LMF网元。其中,AMF网元用于实现接入管理等功能,LMF网元用于实现定位或定位辅助等功能。AMF网元与LMF网元之间通过NLs接口连接。
示例性的,图1C为在5G移动通信系统中应用本申请实施例的定位方法的另一个定位系统的架构示意图。图1C与图1B的定位系统架构的区别在于,图1B的定位管理功能的装置或组件(比如LMF网元)部署在核心网中,图1C的定位管理功能的装置或组件(比如LMC网元)可以部署在NG-RAN设备中。如图1C所示,gNB中包含LMC网元。LMC网元是LMF网元的部分功能组件,可以集成在NG-RAN设备的gNB中。
应理解,上述图1B或图1C的定位系统中包括的设备或功能节点只是示例性地描述,并不对本申请实施例构成限定,事实上,图1B或图1C的定位系统中还可以包含其他与图中示意的设备或功能节点具有交互关系的网元或设备或功能节点,这里不作具体限定。
可选的,本申请实施例中的终端可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理、用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN中的终端或者未来车联网中的终端等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端、增强现实终端、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端还可以是物联网(internet of things,IoT)系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技 术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端)、接收接入网设备的控制信息与下行数据,并发送电磁波,向接入网设备传输上行数据。
可选的,本申请实施例中的接入网设备可以是用于与终端通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限于:演进型节点B(evolved node B,eNB),基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输接收点(transmission reception point,TRP)等。该接入网设备还可以为5G系统中的gNB或TRP或TP,或者5G系统中的基站的一个或一组(包括多个天线面板)天线面板。此外,该接入网设备还可以为构成gNB或TP的网络节点,如BBU,或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。此外,gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physical layer,PHY)的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。
可选的,本申请实施例中的接入网设备和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。接入网设备和终端之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对接入网设备和终端101之间所使用的频谱资源不做限定。
可选的,本申请实施例中的终端、接入网设备或者定位设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对终端、接入网设备或者定位设备的应用场景不做限定。
可选的,在本申请实施例中,终端或接入网设备或定位设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即 时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或接入网设备或定位设备,或者,是终端或接入网设备或定位设备中能够调用程序并执行程序的功能模块。
换言之,本申请实施例中的终端、接入网设备或者定位设备的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的终端、接入网设备或者定位设备的相关功能可以通过图1D中的通信装置400来实现。图1D所示为本申请实施例提供的通信装置400的结构示意图。该通信装置400包括一个或多个处理器401,通信线路402,以及至少一个通信接口(图1D中仅是示例性的以包括通信接口404,以及一个处理器401为例进行说明),可选的还可以包括存储器403。
处理器401可以是一个中央处理单元(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路402可包括一通路,用于连接不同组件之间。
通信接口404,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口404也可以是位于处理器401内的收发电路,用以实现处理器的信号输入和信号输出。
存储器403可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。处理器401用于执行存储器403中存储的计算机执行指令,从而实现本申请实施例中提供的定位方法。
或者,本申请实施例中,也可以是处理器401执行本申请下述实施例提供的定位方法中的处理相关的功能,通信接口404负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图1D中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置400可以包括多个处理器,例如图1D中的处理器401和处理器406。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。
上述的通信装置400可以是一个通用装置或者是一个专用装置。例如通信装置400可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端、嵌入式设备或具有图1D中类似结构的设备。本申请实施例不限定通信装置400的类型。
下面将结合图1A至图1D对本申请实施例提供的终端定位方法进行具体阐述。
请参阅图2A,图2A为本申请实施例提供的一种定位信号处理方法流程图,如图2A所示,该方法包括如下步骤:
501、定位设备或者服务小区和/或邻小区向终端发送PRS配置信息,其中,PRS由终端设备的服务小区和/或邻小区发送,PRS以PRS资源集的形式发送,每个PRS资源集包括多个PRS,一个接入网设备对应一个或多个PRS资源集;
502、终端根据接收到的PRS配置信息确定PRS时域信息,所述时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K。
503、终端根据所述PRS时域信息接收所述多个PRS。
具体地,PRS通过系统帧、子帧、时隙的形式进行传输:每个系统帧长度为10毫秒(milli-second,ms),包含10个子帧;每个子帧长度为1ms,取决于OFDM符号对应的参数集,包含1、2、4、8、16个时隙;每个时隙长度取决于OFDM符号对应的参数集,依次为1ms、0.5ms、0.25ms、0.125ms、0.0625ms。一个时隙由正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)组成。OFDM符号对应参数集(Numerology)中不同的索引值,表示OFDM符号在频域上对应不同的子载波间隔,由于OFDM符号长度为子载波间隔的倒数,而时隙长度对应的OFDM符号个数不随子载波间隔变化,所以不同的子载波间隔在时域上对应不同的时隙长度。一个时隙中,对应循环前缀(Cyclic Prefix,CP)为常规循环前缀(Normal Cyclic Prefix,NCP)时,可以包括14个OFDM符号,对应CP为扩展循环前缀(Extended Cyclic Prefix,ECP)时,可以包括12个OFDM符号。请参阅图2B,图2B为本申请实施例提供的一种下行PRS支持的映射图样示意图,如图2B所示,映射图像中横轴为时域OFDM符号,纵轴为频域子载波。一个资源块(Resource block,RB)对应的12个子载波,多个RB时,导频图样频域重复。如图2B中的(a)所示,PRS在一个OFDM符号上以2个子载波为间隔映射,并映射2个不同的OFDM符号,一个时隙中的其他OFDM符号可以重复该2个OFDM符号;如图2B中的(b)所示,PRS在一个OFDM符号上以 4个子载波为间隔映射,并映射2个不同的OFDM符号,一个时隙中的其他OFDM符号可以重复该4个OFDM符号;如图2B中的(c)所示,PRS在一个OFDM符号上以6个子载波为间隔映射,并映射6个不同的OFDM符号,一个时隙中的其他OFDM符号可以重复该6个OFDM符号;如图2B中的(d)所示,PRS在一个OFDM符号上以12个子载波为间隔映射,并映射12个不同的OFDM符号。不同的TRP发送的PRS还可以在频域偏移整数子载波,从而实现不同TRP的PRS之间频分复用,降低干扰。此外,一个PRS资源可以配置连续或不连续的多个时隙重复,一个TRP也可以有多个PRS资源用以发送波束扫描。
定位设备向终端发送的PRS配置信息,可能是向特定终端发送的,也可能通过服务小区系统信息向多个终端广播的。PRS配置信息用于指示接入网设备下发PRS的相应参数,包括下发PRS的服务小区、邻小区、发送PRS的时频资源等,PRS以PRS资源集的形式发送,表示每个TRP以资源集下发PRS,可以下发一个或多个PRS资源集,每个PRS资源集包括多个PRS。
终端接收到PRS配置信息后,确定这些PRS的时域信息,包括周期P,和一个周期P内PRS的符号长度K。在这里,因为该PRS配置信息可能针对多个服务小区,每个服务小区可能对应多个频点,因此该配置信息可以包含多个定位频点,多个接入网设备上的PRS配置。接入网设备以TRP为例,对于每个TRP来说,在一个频点上的至多两个PRS资源集,每个PRS资源集可以包含至多64个PRS资源。每个PRS资源集有其对应的发送周期,但是这些周期可能并不相同,因此在获取PRS配置信息对应的PRS时域信息时,需要获取一个共同的周期P,以及周期P内PRS的符号长度K。表示终端在每个时长P内需要接收的PRS符号长度为K。
通常情况下,终端逐频点接收PRS,因此,终端接收到对应多个定位频点的配置信息时,进行逐频点分类,确定每个频点对应的一个或者多个TRP发送的PRS资源集,以及资源集中包括的PRS。
确定PRS的周期P的方法包括:
(1)、将多个TRP的多个PRS资源集的共同发送周期作为P。在一些情况下,多个TRP的多个PRS资源集配置的发送周期都相同,那么直接将这个共同的周期作为PRS时域信息对应的周期P即可。
(2)、将多个TRP中每个TRP的第一PRS资源集的共同发送周期作为P。多个TRP中,每个TRP至少发送一个PRS资源集,如果这些资源集满足如下条件:T(x1,y1)=T(x2,y2)=T(x3,y3)=P,其中T(x,y)表示第x个TRP对应的第y个PRS资源集的周期,第一PRS资源集表示每个TRP中任一个资源集,等式表示每个TRP发送的PRS资源集中,有至少一个PRS资源集与其他TRP的PRS资源集周期相等,且为P,那么将P作为PRS时域信息对应的周期。
可选的,第一PRS资源集可以是每个TRP包含的PRS资源集列表中的第一个,或者是资源集列表中资源集索引值最小的一个,资源集索引值可以是按照每个TRP建立的,也可以是LMF按照接收到的所有PRS资源集建立的,例如对于TRP1来说,包含2个PRS资源集,对应LMF建立的索引值分别为3和5,那么TRP1对应的第一PRS资源集为索引值3对应的PRS资源集。
(3)、将多个TRP中第一TRP的第一PRS资源集的发送周期作为P。第一TRP的第一PRS资源集的发送周期为多个TRP中每个TRP的第一PRS资源集的发送周期的公约数。
第一TRP的第一PRS资源集可以是多个TRP中任一个TRP的任一个PRS资源集,该PRS资源集对应的发送周期为其他TRP的至少一个PRS资源集的发送周期的公约数。
具体地,如表1所示:
表1
Figure PCTCN2021086496-appb-000012
根据表1可知,TPR1的第一个PRS资源集的周期为10ms,该数值为PRS1-1,PRS2-2和PRS3-1的公约数,因此可以将其作为时域信息的周期P。
或者,第一PRS资源集是指TRP包含的PRS资源集列表中的第一个,或TRP包含的PRS资源集列表中资源集索引值最小的一个。那么表1中需要获取PRS1-1,PRS2-1和PRS3-1中,作为三者公约数的周期T作为时域信息的周期P。
(4)、将多个TRP中每个TRP的第一PRS资源集的发送周期的最大公约数作为P。
在一些情况下,TRP的PRS资源集对应的周期T中可能没有现成的公约数,那么可以获取每个TRP的第一PRS资源集的发送周期的最大公约数作为P。
第一PRS资源集可以是每个TRP对应的任一个PRS资源集。在可能的情况下,选择每个TRP的不同资源集作为第一资源集,其对应的最大公约数不同。例如对于表1中:PRS1-1,PRS2-1,PRS3-1,对应的最大公约数为5ms;而对于PRS1-1,PRS2-2和PRS3-1,对应的最大公约数为10ms,可以选择值更大的最大公约数作为P,即P=10ms。
或者,第一PRS资源集可以是TRP包含的PRS资源集列表中的第一个,或TRP包含的PRS资源集列表中资源集索引值最小的一个。那么对应到表1中,3个TRP对应的第一PRS资源集分别为:PRS1-1,PRS2-1和PRS3-1,它们对应的最大公约数为5ms,因此P=5ms。
(5)、将多个TRP中每个TRP的多个PRS资源集的发送周期的最大公约数作为P。
在一些情况下,可以针对LMF为UE发送的PRS配置信息对应的所有PRS资源集求最大公约数,然后将最大公约数作为时域信息中的周期P。
以表1中的数据为例,3个TRP对应的多个PRS资源集的发送周期的最大公约数为5ms,因此时域信息中的周期P=5ms。
(6)、将多个TRP中每个TRP的第一PRS资源集的发送周期的最小公倍数作为P。
在一些情况下,可以将多个TRP中每个TRP的第一PRS资源集的发送周期的最小公倍数作为P。第一PRS资源集可以指每个TRP对应的任一个PRS资源集,那么对应到表1中,PRS1-1,PRS2-2,PRS3-1发送周期对应的最小公倍数为PRS3-1的周期T,或者PRS1-1,PRS2-1,PRS3-2发送周期对应的最小公倍数为PRS3-2的周期T,将这些现成的周期T作为P。如果每个TRP中选择不同的PRS资源集作为第一PRS资源集,获得的最小公倍数不同,可以选择值更小的最小公倍数作为P。
如果第一PRS资源集是指TRP包含的PRS资源集列表中的第一个,或TRP包含的PRS资源集列表中资源集索引值最小的一个,那么对应到表1中,需要获取PRS1-1,PRS2-1, PRS3-1的发送周期对应的最小公倍数,P为PRS3-1的周期T。
(7)、将多个TRP中每个TRP的多个PRS资源集的发送周期的最小公倍数作为P。
在一些情况下,可以针对LMF为UE发送的PRS配置信息对应的所有PRS资源集求最小公倍数,然后将最小公倍数作为时域信息中的周期P。
以表1中的数据为例,3个TRP对应的多个PRS资源集的发送周期的最小公倍数为60ms,因此时域信息中的周期P=60ms。
在本申请实施例中,通过综合参考多个TRP的多个PRS资源集的周期,确定终端接收到的PRS配置中的PRS周期P,可以使得确定的周期综合考虑每个TRP的PRS资源集情况,保证了确定的周期P的可靠性。
在确定周期P后,需要确定周期P内PRS的符号长度K。在确定K之前,需要确定第一时隙集合,第一时隙集合中包括LMF配置的在时长P内发送的全部PRS。因为LMF配置了多个TRP的多个PRS资源集,每个PRS资源集包括多个PRS。那么在时域上,多个PRS可能间隔配置,也可能复用配置。因此,P内的全部PRS对应的时隙可能是连续时隙,也可能是间隔时隙。
在可选情况下,如果P内的PRS对应的时隙为连续时隙,那么可以获取最小连续时隙集合,即占用最少时隙长度的PRS排列方式组成的集合,作为P内的第一时隙集合。请参阅图2C,图2C为本申请实施例提供的一种PRS分布示意图,如图2C所示,包括4个不同PRS,可以由同一个TRP发送,或多个不同的TRP发送,并且以周期P重复出现,周期的起始位置可以从PRS1开始,也可以从PRS3开始,或者从其他任意位置开始。图中给出了两个连续时隙集合S和S’,都可以包含所有TRP发送的PRS,但是S比S’占用的时隙长度更小,此时可以确定周期P内的连续时隙集合为S。
如果一个频点上不同PRS资源集有不同的周期,例如上述表1中示出的6个PRS资源集对应的周期T都不同,并且根据多个周期T确定的周期P小于周期T(例如根据多个T的最大公约数确定P),那么将会导致有些P内包含某个TRP发送的PRS资源集,另外的周期内则又没有该资源集。此时选取的连续时隙集合为涵盖所有PRS周期上所有TRP发的PRS资源集,且占用最少时隙长度的PRS排列方式组成的集合作为P内的第一时隙集合。请参阅图2D,图2D为本申请实施例提供的另一种PRS分布示意图,如图2D所示,第1个和第3个PRS周期内包括4个PRS,分别为PRS1~PRS4,第2个PRS周期内包括3个PRS,为PRS1、PRS3和PRS4。即PRS2的周期为2P。时隙集合S中和时隙集合S”中都包括了周期P内所有TRP发送的PRS资源集,时隙集合S’中不包括PRS2,因此第一时隙集合从S和S”中选择;另外,又因为S<S”,故此时确定的第一时隙集合(最小连续时隙集合)为S。
第一时隙集合中包括多个时隙,每个时隙内PRS占用一定的时间长度,可以确定每个时隙内PRS占用的时间长度,然后根据时间长度确定对应的符号长度K。每个时隙PRS占用的时间长度可能不是一个确定的值,而是一个可能的时间范围。请参阅图2E,图2E为本申请实施例提供的一种确定PRS占用时间范围的示意图,如图2E所示,每个TRP发送的PRS资源占用时间范围可以为:基于利用该TRP定时相对于参考资源或参考资源集(例如,参考资源或参考资源集可以通过nr-DL-PRS-ReferenceInfo-r16信元配置)定时的预期参 考信号接收时间差(Expected RSTD),以及预期的参考信号接收时间差不确定范围(Expected RSTD uncertainty),确定子帧边界搜索窗,然后根据PRS所占用的子帧内的时隙索引、时隙内的符号索引以及符号个数确定接收PRS资源需要占用的时间范围。
可选的,S中每个时隙上PRS占用符号长度为该时隙上所有TRP发送的PRS资源占用符号长度的并集。请参阅图2F,图2F为本申请实施例提供的一种PRS在时隙上占用符号示意图,如图2F所示,PRS1占用符号为[4,8],表示从第4个符号开始,到第8个符号截止;PRS2占用符号为[6,14],PRS1和PRS2的并集为:[4,14],那么PRS1和PRS2占用符号总长度即为[4,14]。
在确定了第一时隙集合,以及第一时隙集合中PRS符号可能出现的时间范围之后,可以先获取每个时隙上PRS的第一符号长度,然后根据第一符号长度确定该时隙集合中PRS的符号长度K。
具体地,请参阅图2G,图2G为本申请实施例提供的一种PRS在每个时隙上的分布示意图,如图2G所示,以每个时隙包括14个OFDM符号为例,每个OFDM符号还包括循环前缀(Cyclic Prefix,CP)。在第一时隙上传输第一PRS,第二时隙上传输第二PRS,获取第一PRS和第二PRS的起始时刻和结束时刻,可以对应确定第一PRS和第二PRS的第一符号长度。
可选的,根据起始时刻和结束时刻确定PRS的第一符号长度,包括:根据起始时刻对应的PRS子载波间隔确定的OFDM符号,和结束时刻对应的PRS子载波间隔确定的OFDM符号,确定每个时隙中的PRS所在的第一符号长度。例如图2E中所示,第一PRS的起始时刻所在的OFDM符号为第一时隙中的第4个OFDM符号,结束时刻所在的OFDM符号为第一时隙中的第14个OFDM符号,那么第一符号长度可以为第4个至第10个OFDM符号对应的长度。第s个时隙中PRS的第一符号长度计算方法满足如下公式:
Figure PCTCN2021086496-appb-000013
其中K s表示第一时隙集合中第s个时隙中的PRS的第一符号长度,
Figure PCTCN2021086496-appb-000014
中的μ表示传输PRS的时隙对应的参数集(Numerology)索引值,不同的μ值对应不同的子载波间隔,例如μ=0,1,2,3分别对应子载波间隔15kHz,30kHz,60kHz,120kHz。
Figure PCTCN2021086496-appb-000015
表示一个时隙包含的OFDM符号个数,
Figure PCTCN2021086496-appb-000016
表示μ对应的子载波间隔的时隙时长,
Figure PCTCN2021086496-appb-000017
表示第s个时隙的结束时刻,
Figure PCTCN2021086496-appb-000018
表示第s个时隙的起始时刻,ceil()为向上取整函数,floor()为向下取整函数。
可选的,根据起始时刻和结束时刻确定PRS的第一符号长度,包括:获取起始时刻和结束时刻之间的时间区间;根据时间区间对应的PRS子载波间隔确定的OFDM符号对应的符号长度,确定每个时隙中的PRS所在的第一符号长度。例如图2E中所示,计算第二PRS的起始时刻和结束时刻的差值获得两者之间的时间区间,然后确定这个时间区间对应的PRS子载波间隔确定的OFDM符号对应的符号长度,起始时刻和结束时刻分别跨越0.5个OFDM符号,那么它们对应的时间区间总共包括0.5+3+0.5=4个OFDM符号。这4个OFDM符号对 应的符号长度即为该时隙上PRS的第一符号长度。第s个时隙中的PRS的第一符号长度计算方法满足如下公式:
Figure PCTCN2021086496-appb-000019
公式(2)中的元素含义与公式(1)中相同。
计算获得第一时隙集合中的每个时隙的PRS的第一符号长度后,可以对每个时隙的第一符号长度求和,获得第一时隙集合中的PRS的符号长度K。该计算方法满足如下公式:
K=∑ s∈SK s  (3)
第一时隙集合中包括的时隙个数为S,K s表示S中索引值为s的时隙,或者第s个时隙对应的第一符号长度,或者其中K s可以根据公式(1)或公式(2)对应的方法计算获得。
可选的,也可以将第一时隙集合中多个时隙的PRS的第一符号长度中的最大值作为该时隙中每个时隙的PRS的第二符号长度,然后对第一时隙集合中的S个第二符号长度求和,获得第一时隙集合中的PRS的符号长度。对应的计算方法满足如下公式:
K=K m|S|,其中
Figure PCTCN2021086496-appb-000020
上述公式中,表示根据公式(1)对应的方法计算获得第一时隙集合中每个时隙的PRS的第一符号长度,max()为取最大值函数,将第一符号长度中的最大值作为每个时隙的PRS的第二符号长度,乘以第一时隙集合中的时隙个数S,即为第一时隙集合中的PRS的符号长度。
或者,根据该种计算方法获取第一时隙集合中PRS的符号长度时,也可以根据公式(2)对应的方法计算获得第一时隙集合中每个时隙的PRS的第一符号长度,然后对其中的最大值求和,获得第一时隙集合中的PRS的符号长度。对应的计算方法满足如下公式:
K=K m|S|,其中
Figure PCTCN2021086496-appb-000021
可选的,也可以直接将第一时隙集合中每个用于传输PRS的时隙对应的时隙长度进行求和,获得第一时隙集合中的PRS的符号长度。对应的计算方法满足如下公式:
Figure PCTCN2021086496-appb-000022
其中|S|表示取第一时隙集合中的时隙个数,μ表示传输PRS的时隙对应的参数集索引值。
可见,在本申请实施例中,通过获取周期P内的时隙组成的第一时隙集合,然后根据第一时隙集合中单个时隙上传输PRS的起始时刻和结束时刻,确定该时隙上传输PRS的第一符号长度,然后根据第一符号长度获得第一时隙集合中的PRS的符号长度,通过该过程计算获取周期P对应的PRS的符号长度K,保证了获取结果的全面性和完整性。
在上述描述中,第一时隙集合中的S个时隙是连续时隙,这些连续时隙中的部分时隙用于传输PRS,另一些时隙可能不用于传输PRS,而用于传输其他信号。
在一些情况下,第一时隙集合中的S个时隙也可以是非连续时隙,并且由全部用于传输PRS的时隙组成。请参阅图2H,图2H为本申请实施例提供的一种非连续时隙组成的第一时隙集合示意图,如图2H所示,在周期P对应的一个连续时隙集合中,包括3个连续时隙,其中第一时隙和第三时隙用于传输至少一个TRP发送的PRS,第二时隙不用于传输PRS,那么第一时隙集合由第一时隙和第三时隙组成,而不包括第二时隙。
在一些情况下,一个频点上不同PRS资源集有不同的发送周期,导致在确定的PRS周期P上,有的周期内有某个TRP发送的PRS资源集,另外的周期内则又没有该资源集,在这种情况下,第一时隙集合可以为所有周期P内选择的时隙集合的并集。请参阅图2I,图2I为本申请实施例提供的一种根据多个周期的并集确定第一时隙集合示意图,如图2I所示,第一PRS周期用于传输PRS1和PRS4,第二PRS周期用于传输PRS1和PRS2,两个周期的并集包括PRS1,PRS2和PRS4,并且该并集在第一时隙、第二时隙和第三时隙上进行传输。那么周期P对应的第一时隙集合包括第一时隙、第二时隙和第三时隙,对应的PRS包括PRS1、PRS2和PRS4。通过计算这些PRS的符号长度,即可获得周期P对应的符号长度K。
同样的,当第一时隙集合中包括的时隙为所有用于传输PRS的时隙(可以为非连续的时隙),也可以采用公式(1)~公式(6)中的一个或几个结合计算获得周期P对应的符号长度K。
可见,在本申请实施例中,通过获取周期P内用于传输PRS的时隙组成的第一时隙集合,然后根据第一时隙集合中单个时隙上传输PRS的起始时刻和结束时刻,确定该时隙上传输PRS的第一符号长度,然后根据第一符号长度获得第一时隙集合中的PRS的符号长度,通过该过程计算获取周期P对应的PRS的符号长度K,保证了获取结果的准确性。
终端计算获得PRS时域信息后,需要对LMF配置的PRS进行接收,可以将时域信息与终端的处理能力信息进行比对,并根据比对结果确定终端对这些PRS资源的处理方法。
终端的处理能力信息包括包括处理周期T和在处理周期T内能够处理的符号长度N。对应的内涵为:终端在时间T内能够处理的PRS符号长度N,其中T和N的单位可以为毫秒。PRS符号长度即是指PRS在时域上传输时,对应OFDM符号的时长。同一个终端可以上报多组处理能力信息,可以将获得的PRS时域信息中(P,K)与终端处理能力信息中的(T,N)进行对比,确定终端能够在至少一组能力范围内接收PRS。在LMF向终端发送PRS配置信息,或服务小区系统信息广播为终端发送PRS配置信息时,可能不是按照终端上报能力为终端发送的配置信息,或者同时向多个终端发送配置信息而不能兼顾所有的终端的上报能力。因此,终端接收到PRS配置信息时,获取PRS对应的时域信息,并将该时域信息与终端的上报能力进行对比,进而判断终端是否支持该配置,以及终端如何支持该配置等。
由于终端处理时长和处理数据量并不一定始终呈线性变化,终端上报的多组处理能力信息也不一定为成倍缩放关系。例如,终端上报的多组处理能力信息(N,T)可以分别为:(1,5),(3,80),(5,160),(8,320),(10,640),(12,1280),N和T的单位可以毫秒(ms),也可以是其他时间计量单元,比如时隙数目、符号数目。
假设(K,P)=(5,200),表示LMF为终端配置的PRS,需要终端在200ms内完成对时长 为5ms的PRS信号的处理;在上述多组处理能力信息中,存在一组处理能力信息为(N,T)=(5,160)时,表示终端处理5ms的PRS信号需要160ms,满足T≤P,且N≥K,即LMF配置的PRS在终端的处理能力范围内,终端可以按照时域信息(K,P)从对应接入网设备接收PRS。
假设(K,P)=(4,100),表示LMF为终端配置的PRS,需要终端在100ms内完成对时长为4ms的PRS信号的处理;假设在上述多组处理能力信息中,不存在满足T≤P,且N≥K的情况,那么确定一组(N,T),满足N≥K,比如,(N,T)=(5,160),终端可以按照时域信息(N,T)对LMF配置的PRS进行接收,表示终端在160ms内完成5ms的PRS的接收,由于PRS周期为100ms,终端只接收接入网设备在第一个100ms下发的4ms的PRS,而对第二个100ms下发的4ms的PRS,只接收1ms,对剩余3ms进行丢弃,或完全不接收第二个100ms下发的4ms的PRS,同时由于终端只需要160ms处理完5ms的PRS,第二个100ms内,只占用了60ms处理PRS,剩余的40ms终端可以不做跟定位有关的任何操作。
假设(K,P)=(5,100),表示LMF为终端配置的PRS,需要终端在100ms内完成对5ms的PRS信号的处理;在上述多组处理能力信息中,不存在满足T≤P,且N≥K的情况,那么另一种可能的实现方式是,确定一组(N,T)满足T≤P,比如(N,T)=(3,80),终端可以按照时域信息(N,P)对LMF配置的PRS进行接收,表示终端对按照P=100ms,K=5ms发送的PRS,按照该周期P完成其中N=3ms的PRS的接收,而对剩余K-N=5-3=2ms的PRS,则进行丢弃。
另一中实现方式为,当(N,T)满足T≤P时,终端可以采用
Figure PCTCN2021086496-appb-000023
个周期来处理时长为K的PRS信号。例如,如果终端需要接收K=5ms的PRS,需要
Figure PCTCN2021086496-appb-000024
个周期P,并且在每个周期P内采用周期T接收PRS。即在第一个100ms周期中,终端利用80ms处理3ms的PRS,在第二个100ms周期中,终端利用80ms处理剩余2ms的PRS。
另外,由于终端每80ms可以处理3ms的PRS,终端也可以在第二个100ms周期中,除了处理必须处理的2ms的PRS,还可以处理额外1ms的PRS,这里不做限定。
或者,可选情况下,LMF可能是通过广播的形式下发PRS的配置信息,这些配置信息只针对部分终端,那么可以由这部分终端根据LMF的配置信息接收PRS。而对于另一部分终端,如果不存在满足T≤P,且N≥K的情况,则不接收接入网设备下发的所有PRS。
可选情况下,上述“≥”或“≤”优先选择等式关系两边数值差值最小的组合,例如上述示例中处理能力信息(N,T)可以分别为:(1,5),(3,80),(5,160),(8,320),(10,640),(12,1280),但是当(K,P)=(5,100)时,如果要确定一组(N,T)满足T≤P,优先选择(N,T)=(3,80),其次选择(N,T)=(1,5)。
可选的,该方法还可以包括如下步骤:
504、终端获取所述多个PRS对应的测量结果;
505、定位设备向所述终端发送测量结果请求;
506、定位设备接收终端根据测量结果请求发送的所述多个PRS对应的测量结果,并根据所述测量结果请求进行定位。
终端根据上述描述的方法确定接收接入网设备下发的PRS的方式,并且接收PRS之后, 获得PRS对应的测量结果。定位设备向终端发送测量结果请求,以便获取PRS对应的测量结果,完成定位过程。在这个过程中,定位设备自身已经获取到了终端对应的PRS配置信息,以及终端上报的处理能力信息,因此定位设备也可以进行上述PRS时域信息计算过程,并根据PRS时域信息和终端的处理能力信息判断终端对PRS的支持能力。那么在定位设备在请求获取终端发送的测量结果时,可以根据对应的时延进行获取。另外,定位设备可以知道终端是根据哪些PRS获取的测量结果,进而判定测量结果的准确度与可信度。
可见,在本申请实施例中,终端通过将获取到的定位设备配置的PRS时域信息与终端上报的处理能力信息进行对比,确定终端对接入网设备下发的PRS的接收方式,使得终端按照实际能力支持定位设备配置的PRS资源,提升了终端接收PRS的效率。
在一些情况下,也可以通过其他方式确定终端接收PRS资源的方式,请参阅图3A,图3A为本申请实施例提供的一种通过测量窗确定接收PRS的方法流程图,如图3A所示,该方法包括如下步骤:
601、定位设备向终端发送PRS测量窗配置,所述PRS测量窗配置包括接收周期和所述接收周期内的窗长时间,所述窗长时间用于接收PRS;
602、终端接收定位设备发送的PRS测量窗配置,并根据所述PRS测量窗配置接收PRS。
在定位过程中,首先,终端收到LMF发送的PRS配置信息或通过服务小区系统信息广播获取的PRS配置信息,该配置信息可以包含多个定位频点,多个TRP上的PRS配置,一个PRS配置对应了一个TRP在一个频点上的至多两个PRS资源集,每个PRS资源集可以包含至多64个PRS资源。然后,终端收到LMF发送的RequestLocationInformation消息向终端请求终端提供测量结果。在该消息中,LMF可以向终端发送PRS测量窗配置。该测量窗的配置包括:
(1)可以是逐定位技术配置的,或者是多个定位技术的公共配置的。一次定位可以触发多个定位技术,例如DL-TDOA或DL-AoD等。
(2)每个定位技术里或者多个定位技术的公共配置中,窗还是逐定位频点配置(每个定位频点配置一个测量窗),也可以是逐频带配置(每个频带配置一个测量窗),也可以是逐频率范围配置(每个FR配置一个测量窗),也可以是终端单独一个测量窗。
(3)每个频点、每个频带、每个频率范围、每个终端可以配置的测量窗的个数可以为一个、最多两个、或者最多三个。
请参阅图3B,图3B为本申请实施例提供的一种PRS测量窗示意图,如图3B所示,在一个PRS测量窗中,包括接收周期R和周期R内的窗长时间r,表示终端在时长R内对应的时长r用来接收PRS。r中的PRS可以连续,也可以不连续。R和r的单位都可以为毫秒或时隙。且R和r可以根据上述图2A~图2I对应的实施例中,结合确定PRS的时域信息的方法来获取。
具体地,定位设备从服务小区和/或邻小区获取到PRS配置信息,并接收到终端上报的处理能力信息,那么定位设备可以根据PRS配置信息,经过图2A~图2I对应的实施例中的方法,计算获得PRS时域信息(K,P),其中P为周期,K为周期P内的PRS符号长度。然后将PRS时域信息与终端处理能力信息比对,终端的处理能力信息包括多组(N,T),表示 终端能够在T毫秒的时间内,处理N毫秒的PRS。如果时域信息满足至少一组终端上报的能力范围,即T≤P,且N≥K,则可以向终端发送的PRS测量窗的配置参数为R=P,r的设置保证该时间内PRS长度为K。由于r中接收的PRS可能连续也可能不连续,因此r≥K。
如果时域信息(K,P)不满足至少一组终端上报的能力范围,则从多组处理能力信息中发现第二组(N,T),使得终端能够接收的符号长度N≥K,如果存在,表示终端在T毫秒内能完成多于K毫秒的PRS接收,生成的测量窗配置参数可以为:R=T,r的设置保证该时间内PRS长度为K,表示终端在时长T毫秒内完成r毫秒对应的窗内的长度为K毫秒PRS接收。T毫秒时长内,可能包含多个周期P,终端不需要对所有周期内的PRS进行接收,特别的,终端只处理T毫秒内某一个周期P上长度为K毫秒的PRS,该长度为K毫秒的PRS被长度为r毫秒的窗包含。
或者,如果时域信息不满足至少一组终端上报的能力范围,则从多组处理能力信息中发现第二组(N,T),使得终端接收PRS的周期T≤P,如果存在,表示终端在周期T毫秒满足条件时,能够接收的PRS长度N小于K,那么,生成的测量窗配置参数可以为:R=P,r的设置保证该时间内PRS的长度不超过N。终端按照接入网设备对应的周期P接收PRS,每个周期P内接收N毫秒PRS,丢弃(K-N)毫秒PRS。
在另一种可能的实现方式中,终端对于每个周期P中剩余的(K-N)毫秒PRS不进行丢弃,而是通过
Figure PCTCN2021086496-appb-000025
个周期P全部进行接收,那么生成的测量窗配置参数依然为:R=P,r的设置保证该时间内PRS的长度不超过N。,此时按照接入网设备对应的周期P接收PRS,每个P内接收N毫秒PRS,在(m*P)的周期内完成对K毫秒的PRS的接收,应理解,终端在(m*P)毫秒的周期内可以处理(m*N)毫秒的PRS,而根据
Figure PCTCN2021086496-appb-000026
(m*N)不会小于K,所以终端可以在(m*P)的周期内完成对K毫秒的PRS的接收。
可见,在本申请实施例中,通过定位设备根据PRS配置信息计算获得PRS时域信息,然后将PRS时域信息与终端上报的处理能力信息进行对比,并根据对比结果确定测量窗配置参数,可以测量窗配置灵活适用于不同终端,并且能够使测量窗配置与终端自身能力更适配,提升了终端根据测量窗配置接收PRS的效率。
另外,PRS测量窗配置中还可以包括偏移量,表示窗长时间距离所述接收接收周期起始时刻的时间间隔。偏移量的单位可以为ms或时隙,例如偏移4ms。接收周期内的偏移量也可以不由定位设备配置,而由终端自行确定。接收周期内的偏移量也可以与接收周期联合编码,因为偏移量的长度不会超过接收周期,因此接收周期5ms下可以定义{0ms,0.5ms,1ms,1.5ms,…,4.5ms}这些偏移量,接收周期10ms下,可以定义{0ms,0.5ms,1ms,…,9.5ms}这些偏移量,接收周期10slots下可以只定义{0,1,2…,9}slot的偏移量,但是接收周期20slots下可以定义{0,1,2,…,19}slot的偏移量。如图3B中,PRS测量窗配置对应的接收接收周期R=10ms,偏移量L=8ms,窗长时间r=4ms,按照系统帧0开始时刻为基准,可以确定一系列4ms长度以10ms重复出现的窗。终端确定子帧0起始时刻可以为,参考资源或者参考资源集(通过nr-DL-PRS-ReferenceInfo-r16信元配置)确定的定时对应的子帧0,该频点上终端任意服务小区确定的定时对应的子帧0。
或者,当测量窗配置中不包括偏移量时,终端获取目标频点上待接收起始PRS符号距离接收周期起始时刻的时长作为偏移量。
终端收到PRS测量窗配置之后,接收某个定位技术对应的PRS时的行为如下:
如果PRS测量窗是逐频点配置的,那么终端接收特定频点的PRS时,使用该频点的PRS测量窗配置;
如果PRS测量窗是逐频带配置的,那么终端接收该频带内多个频点的PRS时,采用该频带的PRS测量窗配置,如果终端不具有同时接收多个频点的PRS的能力,意味着在一个测量窗内,终端只会选择一个频点接收PRS;
如果PRS测量窗是逐FR配置的,那么终端接收该FR内的多个频点的PRS时,采用该FR的PRS测量窗配置,如果终端不具有同时接收多个频点的PRS的能力,意味着在一个测量窗内,终端只会选择一个频点接收PRS;
如果是为终端单独配置的PRS测量窗,那么终端接收该定位技术的所有PRS的多个频点时(可以跨FR),采用该终端的测量窗,如果终端不具有同时接收多个频点的能力,意味着在一个测量窗内,终端只会选择一个频点接收PRS。
当在每个频点、每个频带、每个频率范围、每个终端配置的测量窗的个数为多个时(两个或两个以上),终端针对PRS的测量无线资源管理(Radio resource management,RRM)指标(例如时延、精度)以第一个测量窗内的PRS资源为准。
另外,请参阅图3C,图3C为本申请实施例提供的一种终端根据测量窗接收PRS的示意图,终端根据PRS测量窗配置在目标频点、目标频带或目标频率范围接收PRS时,只接收窗长时间内的所有PRS,对于在测量窗边界外,或者跨越测量窗边界的PRS,终端不进行接收。
可见,在本申请实施例中,通过定位设备向终端发送PRS测量窗配置,使得终端根据PRS测量窗接收接入网设备下发的PRS,在个过程中,较少了终端运算能力消耗,而通过定位设备下发PRS测量窗配置,也保证了接收PRS在终端能力范围内,提升了终端对接收PRS的效率。
应该理解的是,图3A~图3C对应的方法实施例可以和图2A~图2I对应的方法实施例相结合,也可以单独实施,在本申请实施例中不做限定。
图4为本申请实施例提供的一种通信装置700,其可用于执行上述图2A~图2I或图3A~图3C的应用于终端的定位信号处理方法和具体实施例,该终端可以是终端设备或者可以配置于终端设备的芯片。该终端设备包括接收模块701和处理模块702。
所述接收模块701,用于接收定位设备发送的定位参考信号PRS配置信息,其中,PRS以PRS资源集的形式发送,每个PRS资源集包括一个或多个PRS,一个接入网设备对应一个或多个PRS资源集;
所述处理模块702,用于根据所述PRS配置信息确定PRS时域信息,所述时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K;
所述接收模块701,还用于根据所述PRS时域信息接收所述多个PRS。
可选的,所述接收模块701和处理模块702还用于实现图2A~图2I中对应的方法。
或者,
所述接收模块701,用于接收定位设备发送的PRS测量窗配置,所述PRS测量窗配置包括接收周期和所述接收周期内的窗长时间,所述窗长时间用于接收PRS;
所述接收模块701,还用于根据所述测量窗配置接收PRS。
可选的,所述接收模块701和处理模块702还用于实现图3A~图3C中对应的方法。
可选的,上述的处理模块702可以是芯片,编码器,编码电路或其他可以实现本申请方法的集成电路。
可选的,终端700还可以包括发送模块703,接收模块701和发送模块703可以为接口电路或者收发器。接收模块701和发送模块703可以为独立的模块,也可以集成为收发模块(图未示),收发模块可以实现上述接收模块701和发送模块703的功能。可以为接口电路或者收发器。
由于具体的方法和实施例在前面已经介绍过,该装置700是用于执行对应于终端的定位信号处理方法,因此涉及该方法的具体描述,特别是接收模块701和处理模块702的功能可以参考对应实施例的相关部分,此处不再赘述。
可选的,装置700还可以包括存储模块(图中未示出),该存储模块可以用于存储数据和/或信令,存储模块可以和处理模块702耦合,也可以和接收模块701或发送模块703耦合。例如,处理模块702可以用于读取存储模块中的数据和/或信令,使得前述方法实施例中的密钥获取方法被执行。
图5是本申请实施例提供的一种通信装置800,其可以用于执行上述图2A~图2I或图3A~图3C的应用于应用定位设备的定位信号处理方法和具体实施例,该装置可以是定位设备或者可以配置于定位设备的芯片。在一种可能的实现方式中,如图5所示,该通信装置800包括发送模块801,接收模块802,处理模块803。
所述发送模块801,用于向终端发送定位参考信号PRS配置信息,其中,PRS以PRS资源集的形式发送,每个PRS资源集包括一个或多个PRS,一个传输接收点接入网设备对应一个或多个PRS资源集;
所述发送模块801,还用于向所述终端发送测量结果请求;
所述接收模块802,用于接收所述终端发送的测量结果,所述测量结果为所述终端根据所述PRS配置信息对应的PRS时域信息获取到的,所述PRS时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K;
所述处理模块803,用于根据所述测量结果进行所述终端的定位;。
可选的,所述发送模块801,接收模块802,处理模块803还用于实现图2A~图2I中对应的方法。
或者,
所述接收模块802,用于接收定位设备发送的PRS测量窗配置,所述PRS测量窗配置包括接收周期和所述接收周期内的窗长时间,所述窗长时间用于接收PRS;
所述接收模块802,还用于根据所述测量窗配置接收PRS。
可选的,所述发送模块801,接收模块802,处理模块803还用于实现图3A~图3C中 对应的方法。
可选的,上述的处理模块803可以是芯片,编码器,编码电路或其他可以实现本申请方法的集成电路。
可选的,接收模块802和发送模块801可以为接口电路或者收发器。接收模块802和发送模块801可以为独立的模块,也可以集成为收发模块(图未示),收发模块可以实现上述接收模块802和发送模块801的功能。可以为接口电路或者收发器。
由于具体的方法和实施例在前面已经介绍过,该装置800是用于执行对应于定位设备的定位信号处理方法,因此涉及该方法的具体描述,特别是接收模块802和发送模块801的功能可以参考对应实施例的相关部分,此处不再赘述。
可选的,装置800还可以包括存储模块(图中未示出),该存储模块可以用于存储数据和/或信令,存储模块可以和处理模块803耦合,也可以和接收模块802或发送模块801耦合。例如,处理模块803可以用于读取存储模块中的数据和/或信令,使得前述方法实施例中的密钥获取方法被执行。
如图6所示,图6示出了本申请实施例中的一种通信装置的硬件结构示意图。终端或定位设备的结构可以参考图6所示的结构。通信装置900包括:处理器111和通收发器112,所述处理器111和所述收发器112之间电偶合;
所述处理器111,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,使得所述装置执行上述任一实施例所述的方法。
所述收发器112,用于和其他设备进行通信;例如从AUSF获取第四消息,并根据所述第四消息向UE发送第五消息,以使得所述UE根据所述第五消息获取所述KID和/或所述KAKMA。
可选的,还包括存储器113,用于存储计算机程序指令,可选的,所述存储器113(Memory#1)位于所述装置内,所述存储器113(Memory#2)与处理器111集成在一起,或者所述存储器113(Memory#3)位于所述装置之外。
应理解,图6所示的通信装置900可以是芯片或电路。例如可设置在终端装置或者通信装置内的芯片或电路。上述收发器112也可以是通信接口。收发器包括接收器和发送器。进一步地,该通信装置900还可以包括总线系统。
其中,处理器111、存储器113、收发器112通过总线系统相连,处理器111用于执行该存储器113存储的指令,以控制收发器接收信号和发送信号,完成本申请涉及的实现方法中第一设备或者第二设备的步骤。所述存储器113可以集成在所述处理器111中,也可以与所述处理器111分开设置。
作为一种实现方式,收发器112的功能可以考虑通过收发电路或者收发专用芯片实现。处理器111可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程 逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例中对应用于终端的方法。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例中对应用于定位设备的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中对应用于终端的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中对应用于定位设备的方法。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (45)

  1. 一种定位信号处理方法,其特征在于,所述方法包括:
    接收定位设备发送的定位参考信号PRS配置信息,其中,PRS以PRS资源集的形式发送,每个PRS资源集包括一个或多个PRS,一个接入网设备对应一个或多个PRS资源集;
    根据所述PRS配置信息确定PRS时域信息,所述时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K;
    根据所述PRS时域信息接收所述多个PRS。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    上报终端的处理能力信息;
    所述根据所述PRS时域信息接收所述多个PRS,具体包括:
    基于所述处理能力信息以及所述时域信息,接收所述PRS。
  3. 根据权利要求2所述的方法,其特征在于,所述处理能力信息包括一组或多组能力信息,其中,能力信息表示终端在T毫秒的时间内,能够处理N毫秒的PRS;
    所述基于所述处理能力信息以及所述时域信息,接收所述PRS,具体包括:
    将所述时域信息与所述一组或多组能力信息进行比对,确定存在第一组能力信息,使得所述终端在所述第一组能力信息范围内,接收所述PRS。
  4. 根据权利要求3所述的方法,其特征在于,所述第一组能力范围满足以下规则:
    T≤P,且N≥K。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    当不存在第一组所述T和所述N满足T≤P,且N≥K时,
    若存在第二组所述T和所述N,满足N≥K;
    所述终端按照所述第二组的所述T和所述N接收所述PRS。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    当不存在第一组所述T和所述N满足T≤P,且N≥K时,
    若存在第二组所述T和所述N,满足T≤P;
    所述终端按照所述第二组的所述P和所述N接收所述PRS。
  7. 根据权利要求6所述的方法,其特征在于,所述终端按照所述第二组的P和所述N接收所述PRS,包括:
    所述终端在每个周期P内的所述处理能力T内,接收长度为N的所述PRS;
    通过
    Figure PCTCN2021086496-appb-100001
    个所述周期P,接收总长度为K的PRS;
    其中N<K,ceil()为向上取整。
  8. 一种定位信号处理方法,其特征在于,所述方法包括:
    向终端发送定位参考信号PRS配置信息,其中,PRS以PRS资源集的形式发送,每个PRS资源集包括一个或多个PRS,一个接入网设备对应一个或多个PRS资源集;
    向所述终端发送测量结果请求;
    接收所述终端发送的所述多个PRS对应的测量结果,并根据所述多个PRS对应的测量 结果进行所述终端的定位,所述测量结果为所述终端根据所述PRS配置信息对应的PRS时域信息获取到的,所述PRS时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K。
  9. 一种定位信号处理方法,其特征在于,所述方法包括:
    接收定位设备发送的PRS测量窗配置,所述PRS测量窗配置包括接收周期和所述接收周期内的窗长时间,所述窗长时间用于接收PRS;
    根据所述测量窗配置接收PRS。
  10. 根据权利要求9所述的方法,其特征在于,所述PRS测量窗配置中还包括偏移量,用于确定所述窗长时间距离所述接收周期起始时刻的时间间隔。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    根据所述接收周期确定所述偏移量,所述偏移量小于所述接收周期。
  12. 根据权利要求10或11所述的方法,其特征在于,所述终端获取目标频点上待接收起始PRS符号距离所述接收周期起始时刻的第一时长,将所述第一时长作为所述偏移量。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,根据所述测量窗配置接收PRS,包括:
    根据所述终端对应的目标频点、目标频带、目标频率范围或终端标识获取目标测量窗配置,并根据所述目标测量窗配置接收所述PRS。
  14. 一种定位信号处理方法,其特征在于,所述方法包括:
    向终端发送PRS测量窗配置,所述PRS测量窗配置包括接收周期和所述接收周期内的窗长时间,所述窗长时间用于接收PRS。
  15. 根据权利要求14所述的方法,其特征在于,在向终端发送PRS测量窗配置之前,所述方法还包括:
    获取PRS配置信息,并根据所述PRS配置信息确定PRS时域信息,所述时域信息包括PRS的周期P,和一个所述周期P内所述PRS的符号长度K;
    根据所述时域信息设置所述PRS测量窗配置。
  16. 根据权利要求1或8或15所述的方法,特征在于,所述根据所述PRS配置信息确定PRS时域信息,包括以下方法的一种或多种:
    所述P为所述多个接入网设备的多个PRS资源集的共同发送周期;
    所述P为所述多个接入网设备中每个所述接入网设备的第一PRS资源集的共同发送周期;
    所述P为所述多个接入网设备中第一接入网设备的第一PRS资源集的发送周期,所述第一接入网设备的第一PRS资源集的发送周期为所述多个接入网设备中每个所述接入网设备的第一PRS资源集的发送周期的公约数;
    所述P为所述多个接入网设备中每个所述接入网设备的第一PRS资源集的发送周期的最大公约数;
    所述P为所述多个接入网设备中每个所述接入网设备的多个PRS资源集的发送周期的最大公约数;
    所述P为所述多个接入网设备中每个所述接入网设备的第一PRS资源集的发送周期的 最小公倍数;
    所述P为所述多个接入网设备中每个所述接入网设备的多个PRS资源集的发送周期的最小公倍数。
  17. 根据权利要求16中所述的方法,其特征在于,所述接入网设备的所述第一PRS资源集为:
    所述接入网设备包含的PRS资源集列表中的第一个;或
    所述接入网设备包含的PRS资源集列表中资源集索引值最小的一个。
  18. 根据权利要求1或16-17任一项所述的方法,其特征在于,所述确定所述PRS对应的时域信息包括:
    将PRS对应的第一时隙集合中的PRS符号长度作为所述周期P内的PRS的符号长度K,所述第一时隙集合中包括多个时隙,所述多个时隙用于传输在所述P对应的时长内所述终端设备检测到的全部PRS。
  19. 根据权利要求18所述的方法,其特征在于,所述第一时隙集合中的所述多个时隙为连续时隙。
  20. 根据权利要求19所述的方法,其特征在于,所述连续时隙的时隙个数为发送所述全部PRS所需要的最少时隙个数。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述方法还包括确定所述第一时隙集合中的PRS的符号长度,具体包括:
    确定所述第一时隙集合中每个时隙的PRS的第一符号长度;
    根据所述第一符号长度确定所述第一时隙集合中的PRS的符号长度。
  22. 根据权利要求21所述的方法,其特征在于,所述确定所述第一时隙集合中每个时隙中的PRS的第一符号长度,包括:
    确定第一时隙集合中每个时隙的起始时刻和结束时刻;
    根据所述起始时刻和所述结束时刻,确定所述每个时隙中的PRS的第一符号长度。
  23. 根据权利要求22所述的方法,其特征在于,所述根据所述起始时刻和所述结束时刻,确定所述每个时隙中的PRS的第一符号长度,包括:
    根据所述起始时刻对应的PRS子载波间隔确定的OFDM符号,和所述结束时刻对应的PRS子载波间隔确定的OFDM符号,确定所述每个时隙中的PRS的第一符号长度。
  24. 根据权利要求23所述的方法,其特征在于,所述PRS的第一符号长度满足如下公式:
    Figure PCTCN2021086496-appb-100002
    其中s为第一时隙集合S中的时隙索引,K s表示时隙s中PRS的第一符号长度,μ为PRS对应子载波间隔,
    Figure PCTCN2021086496-appb-100003
    为一个时隙内的符号个数,
    Figure PCTCN2021086496-appb-100004
    为时隙s中起始时刻,
    Figure PCTCN2021086496-appb-100005
    为时隙s中结束时刻。
  25. 根据权利要求22所述的方法,其特征在于,所述根据所述起始时刻和所述结束时刻,确定所述每个时隙中的PRS的第一符号长度,包括:
    获取所述起始时刻和所述结束时刻之间的时间区间;
    根据所述时间区间对应的PRS子载波间隔确定的OFDM符号对应的符号长度,确定所述每个时隙中的PRS的第一符号长度。
  26. 根据权利要求25所述的方法,其特征在于,所述PRS的第一符号长度满足如下公式:
    Figure PCTCN2021086496-appb-100006
    其中s为第一时隙集合S中的时隙索引,K s表示时隙s中PRS的第一符号长度,μ为PRS对应子载波间隔,
    Figure PCTCN2021086496-appb-100007
    为一个时隙内的符号个数,
    Figure PCTCN2021086496-appb-100008
    为时隙s中起始时刻,
    Figure PCTCN2021086496-appb-100009
    为时隙s中结束时刻。
  27. 根据权利要求22-26任一项所述的方法,其特征在于,所述起始时刻和所述结束时刻之间的时间区间包含了该时隙内所有接入网络设备发送的所有PRS符号出现的范围。
  28. 根据权利要求27所述的方法,其特征在于,所述起始时刻和所述结束时刻之间的时间区间为包含了该时隙内所有接入网设备发送的所有PRS符号出现的范围的最小时间区间。
  29. 根据权利要求27或28所述的方法,其特征在于,所述该时隙内所有接入网设备发送的所有PRS符号出现的范围为每个TRP的所有PRS符号出现范围的并集;所述每个接入网设备发送的所有PRS符号出现范围由每个接入网设备发送的预期参考信号接收时间差、预期的参考信号接收时间差不确定范围、PRS所占用的符号索引以及符号个数确定。
  30. 根据权利要求21-29任一项所述的方法,其特征在于,所述根据所述第一符号长度确定所述第一时隙集合中的PRS的符号长度K,包括:
    对所述每个时隙的PRS的第一符号长度求和,获得所述第一时隙集合中的PRS的符号长度K;或
    将所述每个时隙的PRS的第一符号长度中的最大值作为所述每个时隙的PRS的第二符号长度;
    对所述每个时隙的PRS的第二符号长度求和,获得所述第一时隙集合中的PRS的符号长度K。
  31. 根据权利要求30所述的方法,其特征在于,所述第一时隙集合中的PRS的符号长度K满足如下公式:
    Figure PCTCN2021086496-appb-100010
    其中s为第一时隙集合S中的时隙索引,K s表示时隙s中PRS的第一符号长度,K表示PRS的符号长度;或
    K=K m|S|,K m=max s∈S(K S)
    其中s为第一时隙集合S中的时隙索引,K s表示时隙s中PRS的第一符号长度,K表示PRS的符号长度,K m表示第一时隙集合中PRS的第一符号长度中的最大值,||为取集合中 元素个数。
  32. 根据权利要求18-20任一项所述的方法,其特征在于,确定所述第一时隙集合中的PRS的符号长度K,包括:
    确定所述第一时隙集合中的每个时隙对应的时隙长度;
    对所述每个时隙对应的时隙长度求和,获得所述第一时隙集合中的PRS的符号长度K。
  33. 根据权利要求32所述的方法,其特征在于,所述第一时隙集合中的PRS的符号长度K满足如下公式:
    Figure PCTCN2021086496-appb-100011
    其中K表示PRS的符号长度,||为取集合中元素个数,μ表示子载波间隔。
  34. 根据权利要求14-33任一项所述的方法,其特征在于,所述根据所述时域信息设置所述PRS测量窗配置包括:
    接收终端上报的处理能力信息,根据所述处理能力信息与所述时域信息,设置所述PRS测量窗配置。
  35. 根据权利要求34所述的方法,其特征在于,所述处理能力信息包括一组或多组能力信息,其中,能力信息表示终端在T毫秒的时间内,能够处理N毫秒的PRS;
    所述根据所述处理能力信息与所述时域信息,设置所述PRS测量窗配置,包括:
    将所述时域信息与所述多组能力信息进行比对,使得所述终端在所述多组能力信息中的第一组能力范围内,根据所述第一组能力设置所述PRS测量窗配置。
  36. 根据权利要求35所述的方法,其特征在于,所述第一组能力范围满足以下规则:
    T≤P,且N≥K。
  37. 根据权利要求36所述的方法,其特征在于,当不存在第一组所述T和所述N,满足T≤P,且N≥K时,若存在第二组所述T和所述N,满足N≥K;
    按照所述第二组的P和所述N设置所述PRS测量窗配置。
  38. 根据权利要求36所述的方法,其特征在于,当不存在第一组所述T和所述N,满足T≤P,且N≥K时,若存在第二组所述T和所述N,满足T≤P;
    按照所述第二组的P和所述N设置所述PRS测量窗配置。
  39. 根据权利要求14-38任一项所述的方法,其特征在于,所述测量窗配置是逐频点、逐频带、逐频率范围或单个终端对应的测量窗配置。
  40. 一种通信装置,其特征在于,包括用于实现如权利要求1-7任一项所述的方法的至少一个模块,或者包括用于实现如权利要求9-13任一项所述的方法的至少一个模块。
  41. 一种通信装置,其特征在于,包括用于实现如权利要求8所述的方法的至少一个模块,或者包括用于实现如权利要求14-39任一项所述的通信方法的至少一个模块。
  42. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1-7中任一项所述的方法,或使得所述装置执行如权利要求9-13中任一项所述的方法。
  43. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求8中任一项所述的方法;或使得所述装置执行如权利要求14-39中任一项所述的方法。
  44. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1-7中任一项所述的方法被实现,或者使如权利要求9-13中任一项所述的方法被实现,或者使如权利要求8中任一项所述的方法被实现,或者使如权利要求14-39中任一项所述的方法被实现。
  45. 一种通信系统,其特征在于,所述系统包括终端、定位设备和接入网设备,所述终端包括如权利要求40所述的通信装置,所述定位设备包括如权利要求41所述的通信装置。
PCT/CN2021/086496 2020-04-10 2021-04-12 定位信号处理方法及装置 WO2021204293A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21784222.8A EP4124075A4 (en) 2020-04-10 2021-04-12 POSITIONING SIGNAL PROCESSING METHOD AND APPARATUS
KR1020227037926A KR20230002537A (ko) 2020-04-10 2021-04-12 포지셔닝 신호 처리 방법 및 장치
JP2022561399A JP2023521117A (ja) 2020-04-10 2021-04-12 位置決定信号処理方法及び装置
US17/960,166 US20230037478A1 (en) 2020-04-10 2022-10-05 Positioning signal processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281208.0 2020-04-10
CN202010281208.0A CN113556667A (zh) 2020-04-10 2020-04-10 定位信号处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/960,166 Continuation US20230037478A1 (en) 2020-04-10 2022-10-05 Positioning signal processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2021204293A1 true WO2021204293A1 (zh) 2021-10-14

Family

ID=78022751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086496 WO2021204293A1 (zh) 2020-04-10 2021-04-12 定位信号处理方法及装置

Country Status (6)

Country Link
US (1) US20230037478A1 (zh)
EP (1) EP4124075A4 (zh)
JP (1) JP2023521117A (zh)
KR (1) KR20230002537A (zh)
CN (1) CN113556667A (zh)
WO (1) WO2021204293A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220069962A1 (en) * 2020-08-27 2022-03-03 Qualcomm Incorporated Dynamic bandwidth configuration for positioning reference signal (prs) operation
CN116074950A (zh) * 2021-11-03 2023-05-05 维沃移动通信有限公司 定位方法、装置及相关设备
WO2023184456A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 测量时间的确定方法和装置
WO2024026693A1 (en) * 2022-08-02 2024-02-08 Nec Corporation Method, device and computer readable medium for communications
CN117580151A (zh) * 2022-08-08 2024-02-20 维沃移动通信有限公司 定位方法、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016032219A1 (ko) * 2014-08-27 2016-03-03 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
CN107360617A (zh) * 2016-05-10 2017-11-17 中国移动通信有限公司研究院 一种定位参考信号的发送方法、基站和终端
CN110635876A (zh) * 2018-06-22 2019-12-31 维沃移动通信有限公司 Nr系统的定位参考信号配置、接收方法和设备
US20200028648A1 (en) * 2018-07-19 2020-01-23 Qualcomm Incorporated On-demand positioning reference signal (prs)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016032219A1 (ko) * 2014-08-27 2016-03-03 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
CN107360617A (zh) * 2016-05-10 2017-11-17 中国移动通信有限公司研究院 一种定位参考信号的发送方法、基站和终端
CN110635876A (zh) * 2018-06-22 2019-12-31 维沃移动通信有限公司 Nr系统的定位参考信号配置、接收方法和设备
US20200028648A1 (en) * 2018-07-19 2020-01-23 Qualcomm Incorporated On-demand positioning reference signal (prs)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining issues on DL PRS for NR positioning", 3GPP DRAFT; R1-1911896, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823078 *
INTEL CORPORATION: "Feature Lead Summary #1 on AI 7.2.10.1 - DL Reference Signals for NR Positioning", 3GPP DRAFT; R1-1913285, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, US; 20191118 - 20191122, 19 November 2019 (2019-11-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051826625 *

Also Published As

Publication number Publication date
KR20230002537A (ko) 2023-01-05
CN113556667A (zh) 2021-10-26
EP4124075A1 (en) 2023-01-25
JP2023521117A (ja) 2023-05-23
US20230037478A1 (en) 2023-02-09
EP4124075A4 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
WO2021204293A1 (zh) 定位信号处理方法及装置
WO2020164334A1 (zh) 信号传输的方法与装置
EP3849230A1 (en) Interference measurement method and apparatus
WO2021254147A1 (zh) 一种确定定时提前量ta的方法、网络设备以及终端
EP3700286B1 (en) Data sending method, base station, and terminal device
CN110166194A (zh) 一种导频信号生成方法及装置
WO2021196099A1 (zh) 终端定位方法及装置
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2020020376A1 (zh) 一种参考信号发送、接收方法、装置及设备
WO2019127495A1 (zh) 信号传输的方法、终端设备和网络设备
CN116671196A (zh) 定位测量的方法、终端设备及网络设备
WO2022151281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023131235A1 (zh) 一种传输信息的方法、装置及系统
CN114503696A (zh) 一种通信方法及装置
US20220346012A1 (en) Signal sending and receiving method, apparatus, and device
EP3764726A1 (en) Method and device for sending uplink channel, and method and device for receiving uplink channel
CN111886808A (zh) 用于信号传输的方法和设备
WO2021134702A1 (zh) 一种通信方法及装置
WO2020088080A1 (zh) 传输参考信号的方法与设备
WO2022198591A1 (zh) 一种非周期定位参考信号的测量上报方法和装置
WO2017173775A1 (zh) 一种控制信道的资源配置方法
WO2018053752A1 (zh) 传输系统信息的方法、网络设备和终端设备
WO2023078038A1 (zh) 侧行传输方法以及通信装置
CN113383509B (zh) 通信方法、装置及系统
WO2022151266A1 (zh) 一种媒体接入访问mac信令适用时间的确定方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561399

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021784222

Country of ref document: EP

Effective date: 20221020

NENP Non-entry into the national phase

Ref country code: DE