WO2023078038A1 - 侧行传输方法以及通信装置 - Google Patents

侧行传输方法以及通信装置 Download PDF

Info

Publication number
WO2023078038A1
WO2023078038A1 PCT/CN2022/124570 CN2022124570W WO2023078038A1 WO 2023078038 A1 WO2023078038 A1 WO 2023078038A1 CN 2022124570 W CN2022124570 W CN 2022124570W WO 2023078038 A1 WO2023078038 A1 WO 2023078038A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
time
candidate
resource
candidate time
Prior art date
Application number
PCT/CN2022/124570
Other languages
English (en)
French (fr)
Inventor
杨帆
米翔
黎超
苏宏家
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023078038A1 publication Critical patent/WO2023078038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication, and in particular to a sidelink transmission method and a communication device.
  • signaling and data can be transmitted between terminal devices through sidelinks.
  • This manner of performing transmission through the sidelink may be called sidelink transmission.
  • the resources used for sidelink transmission may be determined by selecting, for example, a terminal device from a set of candidate time-frequency resources.
  • the terminal device usually determines the sidelink transmission resource from the candidate time-frequency resource set based on full sensing.
  • determining the candidate time-frequency resource set based on perception requires the terminal device to continuously monitor all resources in the resource pool, resulting in high power consumption of the terminal device.
  • the present application provides a sidelink transmission method and a communication device, which fully sense candidate time-frequency resources when determining sidelink transmission resources for aperiodic transmission based on partial sensing, and improve reliability of sidelink transmission.
  • the present application provides a lateral transmission method, which can be executed by a terminal device (such as the first terminal device in the example below), or by components configured in the terminal device (such as the first terminal device) (eg, a chip, a chip system, etc.), which is not limited in this embodiment of the present application.
  • a terminal device such as the first terminal device in the example below
  • components configured in the terminal device such as the first terminal device
  • the method is described below with the first terminal device as the execution subject.
  • the method includes: the first terminal device determines a second candidate time unit set for aperiodic transmission according to at least one first candidate time unit set and a resource selection window; wherein, the second candidate time unit set includes At least one first candidate time unit, where the first candidate time unit is a candidate time unit within the resource selection window in the at least one first candidate time unit set, and the distance between the first candidate time unit and the first time unit
  • the interval is greater than or equal to M 1 time units, M 1 is a positive integer, the first time unit is the time unit that triggers resource selection, or there is a time domain interval between the first time unit and the time unit that triggers resource selection ;
  • the first terminal device determines sidelink transmission resources for transmitting the first data packet according to the second set of candidate time units.
  • the first terminal device may determine a second set of candidate time units for aperiodic transmission from the candidate time units in the first set of candidate time units within the resource selection window, and the second set of candidate time units in the second set of candidate time units
  • the first candidate time unit is a candidate time unit whose set of first candidate time units is located in the resource selection window, and the interval between the first candidate time unit and the first time unit is greater than or equal to M 1 , so that the first terminal device can After one time unit, the sensing is greater than or equal to M1 time units, so as to fully sense at least one first candidate time unit in the second candidate time unit set, and improve the reliability of the aperiodic transmission.
  • M 1 may be configured or pre-configured by the base station and M 1 is greater than or equal to M' min , where M' min is the minimum number of continuous listening slots configured or pre-configured by the base station for aperiodic transmission, M ' min may be the same as or different from the minimum number of continuous monitoring time slots M min used for periodic transmission; or M 1 is M' min .
  • the first candidate time unit set is used for periodic transmission of the second data packet.
  • the first terminal device can correspond to the candidate time unit in the first set of candidate time units On the sensing opportunity, the periodical reservation of other terminal devices is partially sensed based on the period, and the first terminal device can also perceive the aperiodic reservation of other terminal devices through the continuous part. Therefore, when the first set of candidate time units is used for periodic transmission, the first terminal device uses some candidate time units whose first set of candidate time units are located in the resource selection window as first candidate time units, so that the second set of candidate time units The first candidate time unit can use the resource sensing result of periodic transmission to realize sufficient perception of the second candidate time unit and improve the reliability of aperiodic transmission.
  • Mode 1 The starting time unit of the resource selection window is the first time unit, and the interval between the first candidate time unit and the starting time unit of the resource selection window is greater than or equal to the M 1 time units.
  • Mode 2 The resource selection window starts at a time unit after the first time unit, and is separated from the first time unit by the M 1 time units.
  • the first terminal device follows the definition of the resource selection window, and on this basis, determines the first candidate time unit that meets the requirement that the interval between the first time unit and the first time unit is greater than or equal to M 1 time units; In mode 2, since the time units in the resource selection window all meet the requirement that the distance between the first time unit and the first time unit is greater than or equal to M 1 time units, the first terminal device does not need to An interval between the time unit within the resource selection window and the first time unit is determined.
  • determining, by the first terminal device, a sidelink transmission resource for transmitting the first data packet according to the second set of candidate time units includes: The time-frequency resources of the candidate time-frequency resource set are sensed in the window, and the reserved time-frequency resources are excluded to obtain the time-frequency resource set; the candidate time-frequency resource set is determined based on the second candidate time unit set, and the resource The sensing window is before the second set of candidate time units, the interval between the first time unit of the resource sensing window and the first time unit in the second set of candidate time units is M 2 time units, and M 2 is greater than or Equal to M 1 , similarly, M 2 can be configured or pre-configured by the base station and M 2 is greater than or equal to M' min , or M 2 is M' min , and/or, the last time of the resource awareness window There are M 3 time units between the unit and the first time unit in the second candidate time unit set, and M 3 is equal to the processing time; the first terminal device determines
  • the first terminal device can Perform sufficient resource sensing on the first candidate time unit in the second candidate time unit set within the sensing window.
  • the number n of candidate time units included in the second set of candidate time units is less than a preset value Y, and the first terminal device randomly selects m time units from the first resource pool Unit, the sum of m and n is greater than or equal to Y.
  • the candidate time units in the second set of candidate time units determined by the first terminal device may meet the requirement of the minimum candidate time unit (such as the following Y' min ).
  • M 4 time units between the last time unit of the resource selection window and the time unit triggering resource selection where M 4 is equal to the remaining packet delay budget PDB.
  • the resource selection window has a larger time domain range, that is, more candidate time units in the first candidate time unit set are located in the resource selection window.
  • the second candidate time unit set The number of the first candidate time units is larger, which is beneficial for resource selection when the first terminal device transmits sidelink data, and improves the reliability of sidelink transmission.
  • the present application provides a lateral transmission method, which can be executed by a terminal device (such as the first terminal device exemplified below), or by components configured in the terminal device (such as the first terminal device) (eg, a chip, a chip system, etc.), which is not limited in this embodiment of the present application.
  • a terminal device such as the first terminal device exemplified below
  • components configured in the terminal device such as the first terminal device
  • the method is described below with the first terminal device as the execution subject.
  • the method includes: the first terminal device determines a second candidate time unit set for aperiodic transmission according to a resource selection window; wherein, the second candidate time unit set includes at least one first candidate time unit, the The first candidate time unit is a candidate time unit within the resource selection window, the interval between the first candidate time unit and the first time unit is greater than or equal to M 1 time units, M 1 is a positive integer, the first The time unit is a time unit that triggers resource selection, or there is a time domain interval between the first time unit and the time unit that triggers resource selection; the first terminal device determines based on the second set of candidate time units for transmitting the first The side-transfer resource for the packet.
  • M 1 may be configured or pre-configured by the base station and M 1 is greater than or equal to M' min , where M' min is the minimum number of continuous listening slots configured or pre-configured by the base station for aperiodic transmission, M' min may be the same as or different from the minimum number of continuous monitoring time slots M min used for periodic transmission; or M 1 is just M' min .
  • the first terminal device can determine a second candidate time unit set for aperiodic transmission from the resource selection window, and the first candidate time unit in the second candidate time unit set is a time unit within the resource selection window , and the interval between the first candidate time unit and the first time unit is greater than or equal to M 1 .
  • the first terminal device can perceive more than or equal to M 1 time units after the first time unit, so as to fully perceive at least one first candidate time unit in the second candidate time unit set, which improves the aperiodic transmission reliability.
  • Mode 1 The starting time unit of the resource selection window is the first time unit, and the interval between the first candidate time unit and the starting time unit of the resource selection window is greater than or equal to the M 1 time units.
  • Mode 2 The resource selection window starts at a time unit after the first time unit, and is separated from the first time unit by the M 1 time units.
  • the first terminal device follows the definition of the resource selection window, and on this basis, determines the first candidate time unit that meets the requirement that the interval between the first time unit and the first time unit is greater than or equal to M 1 time units; In mode 2, since the time units in the resource selection window all meet the requirement that the distance between the first time unit and the first time unit is greater than or equal to M 1 time units, the first terminal device does not need to An interval between the time unit within the resource selection window and the first time unit is determined.
  • the first terminal device determines a sidelink transmission resource for transmitting the first data packet according to the second set of candidate time units, including:
  • the first terminal device perceives the time-frequency resources of the candidate time-frequency resource set within the resource sensing window, excludes the reserved time-frequency resources, and obtains the time-frequency resource set; the candidate time-frequency resource set is based on the second candidate time Determined by the unit set, the resource awareness window is before the second candidate time unit set, and the first time unit of the resource awareness window is separated from the first time unit in the second candidate time unit set by M 2 Time unit, M 2 is greater than or equal to the M 1 , similarly, M 2 can be configured or pre-configured by the base station and M 2 is greater than or equal to M' min , or M 2 is M' min , and/or, the There is an interval of M 3 time units between the last time unit of the resource awareness window and the first time unit in the second candidate time unit set, and M 3 is equal to the processing time; the first terminal device is in the time-frequency resource set Determine a sidelink transmission resource for transmitting the first data packet.
  • the first terminal device can Perform sufficient resource sensing on the first candidate time unit in the second candidate time unit set within the sensing window.
  • the number n of candidate time units included in the second candidate time unit set is less than a preset value Y
  • the first terminal device randomly selects m time units from the first resource pool, and the sum of m and n is greater than or is equal to Y.
  • the embodiment of the present application provides a communication device, including: a processing unit configured to determine a second candidate time unit set for aperiodic transmission according to at least one first candidate time unit set and a resource selection window; wherein , the second candidate time unit set includes at least one first candidate time unit, and the first candidate time unit is a candidate time unit within the resource selection window in the at least one first candidate time unit set, and the first candidate time unit
  • the interval between the time unit and the first time unit is greater than or equal to M 1 time units, M 1 is a positive integer, the first time unit is the time unit that triggers resource selection, or the first time unit and the trigger resource selection
  • M 1 is a positive integer
  • the first time unit is the time unit that triggers resource selection, or the first time unit and the trigger resource selection
  • the processing unit is further configured to determine a sidelink transmission resource for transmitting the first data packet according to the second set of candidate time units.
  • the first set of candidate time units is used for periodic transmission of the second data packet.
  • the starting time unit of the resource selection window is the first time unit, and the interval between the first candidate time unit and the starting time unit of the resource selection window is greater than or equal to the M 1 time unit.
  • the starting time unit of the resource selection window is after the first time unit, and is separated from the first time unit by the M 1 time units.
  • the processing unit is specifically configured to: sense the time-frequency resources of the candidate time-frequency resource set within the resource sensing window, exclude the reserved time-frequency resources, and obtain the time-frequency resource set;
  • the set of candidate time-frequency resources is determined based on the second set of candidate time units, the resource awareness window is before the second set of candidate time units, the first time unit of the resource awareness window and the second set of candidate time units.
  • the interval between the first time units of the M 2 time units, M 2 is greater than or equal to the M 1 , and/or, the last time unit of the resource awareness window and the first of the second set of candidate time units
  • the interval between time units is M 3 time units, and M 3 is equal to the processing time; the sidelink transmission resource used for transmitting the first data packet is determined in the time-frequency resource set.
  • the number n of candidate time units included in the second set of candidate time units is less than a preset value Y
  • the processing unit is further configured to randomly select m time units from the first resource pool, m and n is greater than or equal to Y.
  • an embodiment of the present application provides a communication device, including: a processing unit configured to determine a second set of candidate time units for aperiodic transmission according to a resource selection window; wherein the second set of candidate time units includes At least one first candidate time unit, the first candidate time unit is a candidate time unit within the resource selection window, and the interval between the first candidate time unit and the first time unit is greater than or equal to M 1 time units, M 1 is a positive integer, the first time unit is the time unit that triggers resource selection, or there is a time domain interval between the first time unit and the time unit that triggers resource selection; the processing unit is also used to The set of candidate time units determines sidelink transmission resources for transmitting the first data packet.
  • the starting time unit of the resource selection window is the first time unit, and the interval between the first candidate time unit and the starting time unit of the resource selection window is greater than or equal to the M 1 time unit.
  • the starting time unit of the resource selection window is after the first time unit, and is separated from the first time unit by the M 1 time units.
  • the processing unit is specifically configured to: sense the time-frequency resources of the candidate time-frequency resource set within the resource sensing window, exclude the reserved time-frequency resources, and obtain the time-frequency resource set;
  • the time-frequency resource set is determined based on the second set of candidate time units, the resource awareness window is before the second set of candidate time units, the first time unit of the resource awareness window and the second set of candidate time units
  • the interval between the first time units is M 2 time units, M 2 is greater than or equal to the M 1 , and/or, the last time unit of the resource awareness window and the first time in the second set of candidate time units
  • the interval between units is M 3 time units, and M 3 is equal to the processing time; the sidelink transmission resource used for transmitting the first data packet is determined in the time-frequency resource set.
  • the number n of candidate time units included in the second set of candidate time units is less than a preset value Y
  • the processing unit is further configured to randomly select m time units from the first resource pool, m and n is greater than or equal to Y.
  • the embodiment of the present application provides a communication device, including: a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, to perform the tasks described in the first aspect, The method in the second aspect or each possible implementation manner.
  • the embodiment of the present application provides a chip, including: a processor, configured to call and execute computer instructions from the memory, so that the device installed with the chip executes the first aspect, the second aspect, or each possible implementation methods in methods.
  • the embodiments of the present application provide a computer-readable storage medium for storing computer program instructions, and the computer program causes a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • an embodiment of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • the embodiment of the present application provides a device, including a logic circuit and an input-output interface, wherein the input-output interface is used to receive signals from other communication devices other than the device and transmit them to the logic circuit or transfer signals from The signal of the logic circuit is sent to other communication devices other than the device, and the logic circuit is used to execute code instructions to implement the method in the first aspect, the second aspect or each possible implementation manner.
  • the embodiment of the present application provides a terminal, including the apparatus in the third aspect, the fourth aspect, or each possible implementation manner.
  • FIG. 1 is a schematic diagram of a communication system applicable to the sidelink transmission method provided by the embodiment of the present application;
  • FIG. 2 is a schematic diagram of resource selection based on perception provided by the present application
  • FIG. 3 is a schematic diagram of resource perception for periodic transmission provided by the present application.
  • FIG. 4 is a schematic diagram of resource perception for aperiodic transmission provided by the present application.
  • FIG. 5 is a schematic flowchart of a lateral transmission method 200 provided by an embodiment of the present application.
  • FIG. 6a is a schematic diagram of a candidate time domain resource provided by an embodiment of the present application.
  • FIG. 6b is a schematic diagram of another candidate time domain resource provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of another candidate time domain resource provided by the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a lateral transmission method 300 provided by an embodiment of the present application.
  • FIG. 9a is a schematic diagram of another candidate time domain resource provided by the embodiment of the present application.
  • FIG. 9b is a schematic diagram of another candidate time domain resource provided by the embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the communication method provided by this application can be applied to various communication systems, for example: Long Term Evolution (Long Term Evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), universal mobile telecommunication system (universal mobile telecommunication system, UMTS), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, future fifth generation (5th Generation, 5G) mobile communication system or new wireless Access technology (new radio access technology, NR).
  • the 5G mobile communication system may include non-standalone networking (non-standalone, NSA) and/or standalone networking (standalone, SA).
  • the communication method provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), device to device (device to device, D2D) network , machine to machine (machine to machine, M2M) network, Internet of things (internet of things, IoT) network or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • D2D device to device
  • machine to machine machine to machine
  • M2M Internet of things
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as vehicle to other devices (vehicle to X, V2X, X can represent anything), for example, the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and Infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian (vehicle to pedestrian, V2P) or vehicle to network (vehicle to network, V2N) communication, etc.
  • vehicle to vehicle vehicle to vehicle
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the communication method provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system and the like. This application is not limited to this.
  • the network device may be any device with a wireless transceiver function.
  • Network equipment includes but not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system
  • 5G such
  • a gNB may include a centralized unit (CU) and a distributed unit.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU can be responsible for processing non-real-time protocols and services, for example, it can implement the radio resource control (radio resource control, RRC) layer, service data adaptive protocol (service data) Adaptation protocol (SDAP) layer and/or packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • DU can be responsible for handling physical layer protocols and real-time services.
  • a DU can be connected to only one CU or to multiple CUs, and a CU can be connected to multiple DUs, and CUs and DUs can communicate through the F1 interface.
  • the AAU can realize some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • high-level signaling such as RRC layer signaling, also It can be considered as sent by the DU, or sent by the DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • the network device provides services for the cell, and the terminal device communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network device.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , can also belong to the base station corresponding to a small cell, where the small cell can include: a metro cell, a micro cell, a pico cell, a femto cell, etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a terminal device may also be called a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device.
  • a terminal device may be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self driving (self driving), wireless in remote medical (remote medical) Terminals, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless Telephones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices, or connected Other processing devices to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the 5G network or
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (Internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (partial terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • Fig. 1 shows a schematic diagram of a communication system applicable to the sidelink transmission method of the embodiment of the present application.
  • a communication system 100 may include at least one network device and multiple terminal devices, for example, the network device 110 and the terminal devices 121 to 124 shown in FIG. 1 .
  • the network device 110 and the terminal devices 121 to 124 can communicate through wireless air interfaces respectively, and the terminal devices can communicate with each other through the vehicle wireless communication technology.
  • the terminal device 121 and the terminal device 123 shown in FIG. 1 may communicate with each other, and the terminal device 122 and the terminal device 124 may also communicate with each other.
  • FIG. 1 is only an example, showing a scenario where the terminal device 121 sends signaling and/or data to the terminal device 123, and the terminal device 122 sends signaling and/or data to the terminal device 124, but this does not apply to this Application constitutes no qualification. There may also be signaling and/or data interaction between the terminal device 121 and the terminal device 123 , and there may also be signaling and/or data interaction between the terminal device 122 and the terminal device 124 . This embodiment of the present application does not limit it.
  • Fig. 1 is only an example, showing one network device and four terminal devices. But this should not constitute any limitation to the present application.
  • the communication system 100 may also include more network devices, and may also include more or less terminal devices. This embodiment of the present application does not limit it.
  • data and signaling can be transmitted between terminal devices through sidelinks.
  • the resources used by the terminal device to communicate via the sidelink may be allocated by the network device.
  • the network device allocates resources for sidelink transmissions.
  • terminal device 121 in FIG. 1 may send signaling and/or data to terminal device 123 through resources allocated by the network device
  • terminal device 122 may send signaling and/or data to terminal device 124 through resources allocated by the network device.
  • the network device can allocate resources for the sidelink through the following two modes:
  • Mode (mode) 1 the network device can schedule resources to the terminal device for sidelink transmission.
  • the network device 110 shown in FIG. 1 may schedule resources for the terminal device 121 and the terminal device 122 to perform sidelink transmission respectively.
  • the terminal device can select resources from the resources preconfigured by the network device for sidelink transmission.
  • the terminal device 121 and the terminal device 122 in FIG. 1 may respectively select resources from resources preconfigured by the network device to perform sidelink transmission.
  • the selection of resources by the terminal device may include the following three methods: resource selection based on full sensing, resource selection based on partial sensing, and random selection.
  • the resource selection based on perception can continuously monitor the resources in the resource pool, that is, continuously sense all the resources on each time slot in the resource pool.
  • the physical layer will Based on the sensing results within the resource selection window [n+T 1 , n+T 2 ], a set of candidate resources for transmission is determined.
  • the advantage of using perception is that it can accurately and continuously obtain the resource occupancy status in the resource pool, and can accurately determine the resources used for transmission.
  • the resource selection based on perception requires the terminal device to continuously monitor, resulting in high power consumption of the terminal.
  • n is the time slot for triggering resource selection
  • T 0 is the listening time configured or pre-configured by the base station It is the processing time for the terminal to process the sensing results.
  • the values of T 1 and T 2 depend on the implementation of the terminal device.
  • T 1 can satisfy 0 ⁇ T1 ⁇ Tproc, and the value of Tproc can be related to the sidelink bandwidth part (bandwidth part, BWP ) subcarrier space (subcarrier space, SCS) configuration ⁇ SL correlation.
  • BWP bandwidth part
  • SCS subcarrier space
  • Tproc and ⁇ SL have the corresponding relationship as shown in Table 1.
  • T2 can satisfy T2min ⁇ T2 ⁇ TPDB, where TPDB is the residual (remianing) packet delay budget (packet delay budget, PDB), and T2min is the minimum value of T2 configured or preconfigured by the base station.
  • TPDB is the residual (remianing) packet delay budget (packet delay budget, PDB)
  • PDB packet delay budget
  • the physical layer of the terminal device reports the candidate resource set to a higher layer, such as a media access control (media access control, MAC) layer.
  • a media access control media access control, MAC
  • partial sensing and random resource selection not based on any sensing results can reduce terminal power consumption.
  • PBPS periodic-based partial sensing
  • CPS continuous partial sensing
  • PBPS can periodically transmit data to other terminal devices in the resource pool.
  • the reserved resources are monitored, and the CPS can monitor the resources reserved for aperiodic transmission by other terminal devices in the resource pool.
  • the terminal device will determine a candidate time slot set Y within the resource selection window [n+T 1 , n+T 2 ] as shown in FIG. 3 .
  • the candidate time slot set Y needs to be greater than or equal to Y min , and Y min is configured or pre-configured by the base station.
  • Each candidate time slot in the set corresponds to one or two sensing occasions for all or part of the reserved periods (Preserves) configured on the resource pool.
  • the sensing occasions can be configured or pre-configured by the base station, as shown in Figure 3
  • Candidate time slot t y0 corresponds to two sensing opportunities in two reserved periods, such as sensing opportunities t y0-p1 and t y0-2p1 with reserved period P 1 and sensing opportunity t y0-2p1 with reserved period P 2 y0-p2 and t y0-2p2 .
  • the terminal device needs to monitor at least M min time slots in the CPS listening window before the first candidate time slot t y0 , and M min is configured or pre-configured by the base station to meet the requirements of the terminal device Through enough monitoring time slots, the accuracy of monitoring results is guaranteed.
  • the terminal device monitors the time-frequency resources of the candidate time-frequency resource set based on each sensing opportunity in the above-mentioned PBPS and the CPS listening window in the above-mentioned CPS, so as to exclude time-frequency resources reserved or occupied by other terminal devices in the resource pool , to obtain the final time-frequency resource set, wherein the candidate time-frequency resource set is determined based on the candidate time-slot set Y, and then, the physical layer of the terminal device reports the final time-frequency resource set to a higher layer, such as the MAC layer.
  • a higher layer such as the MAC layer
  • the terminal device can determine that there are sufficient candidate time slots for services periodically transmitted (that is, the number of candidate time slots is greater than or equal to Y min ), and based on the above PBPS and CPS, the terminal device can The candidate time-frequency resource set determined by set Y is fully sensed (that is, at least M min time slots are monitored), and the final time-frequency resource set is obtained after excluding the reserved time-frequency resources.
  • the candidate time slot set Y determined by the terminal device for periodic transmission services is used as the candidate time slot set Y' for aperiodic transmission services. It cannot be ensured that all the candidate slots in the candidate slot set Y' can be fully perceived, that is, the listening time for the candidate slots in the candidate slot set Y' meets the minimum sensing time requirement (for example, listening to at least M' min time slots), and it is impossible to ensure that the candidate time slots in the candidate time slot set Y' are sufficient, that is, the number of candidate time slots in the candidate time slot set Y' satisfies the minimum number of candidate time slots (for example, the number of candidate time slots is greater than or equal to Y' min ).
  • M' min and Y' min are constraint parameters for aperiodic transmission, both of which may be configured or pre-configured by the base station.
  • M' min and M min may be the same or different, and Y' min and Y min may be the same or different.
  • the upper layer of the terminal device triggers the resource selection of the physical layer for the transport block (TB1) in the time slot (slot) m, and TB1 is periodic transmission (that is, the transmission period Prsvp_TX ⁇ 0),
  • the terminal device selects a candidate time slot set Y in the first resource selection window, for example, the candidate time slots in Y include t y0 , t y1 ... t yL .
  • the interval between the first candidate time slot ty2 of the candidate time slot set Y after slot n and the start time slot of the second resource selection window does not meet the requirement of M'min , and, because the candidate time slot set Y is in When the remaining candidate time slots after slot n are too few, the requirement of Y' min cannot be met. Therefore, in the resource selection scenario based on partial sensing, how the terminal device determines the candidate time slot set Y' for aperiodic transmission to improve the transmission reliability of aperiodic transmission is a problem that needs to be solved.
  • At least one first candidate time unit is included in the second candidate time unit set (such as the above candidate time slot set Y') determined by the terminal device for aperiodic transmission, and the The interval between the first candidate time unit and the first time unit (for example, the above slot n or slot n+T 1 ) is greater than or equal to M 1 (for example, the above M' min ) time units, so that the terminal device can be after the first time unit, Sensing is greater than or equal to M1 time units, so as to fully sense at least one first candidate time unit in the candidate time unit set Y′, which improves the reliability of aperiodic transmission.
  • M 1 for example, the above M' min
  • the terminal device may supplement the candidate time units in the second set of candidate time units, for example, by Randomly select a candidate time unit from the first resource pool or determine a candidate time unit with a lower priority from the first candidate time unit set (such as the above-mentioned candidate time slot set Y) (described in detail below), so that the second candidate time unit The candidate time units in the time unit set meet the requirement of Y'min , which further improves the reliability of aperiodic transmission.
  • Time unit For example, it can be a slot, a sub frame, a symbol, or other time units defined in the future. It should be noted that the time unit is a unit of measurement in the time domain, not necessarily the smallest time unit.
  • a time slot is the scheduling unit.
  • the method provided by the embodiment of the present application will be described by taking a time slot as an example of a time unit. It can be understood that the descriptions related to time slots in the following embodiments may also be replaced by other time units, such as subframes and symbols. This embodiment of the present application does not limit it.
  • Resource pool is a set of resources pre-allocated by network devices to terminal devices.
  • the resource pool may be configured for multiple terminal devices, and the multiple terminal devices may select resources from the resource pool based on resource awareness, partial resource awareness, or random selection for sidelink transmission.
  • the candidate time-frequency resource set is a set of candidate resources that can be used for sidelink transmission determined by the terminal device from the resource pool.
  • the candidate time-frequency resource set can be expressed by the candidate time unit set in the time domain, that is, the candidate time unit set
  • the candidate time unit in is the time-domain constraint of the candidate time-frequency resource set, and the candidate time-frequency resource set can be equal to the frequency domain range of the above resource pool in the frequency domain.
  • Each L subCH consecutive sub-channels (sub channels) can be used as a candidate resource, and corresponding candidate resources in the time domain and frequency domain of all candidate time slots form a candidate resource set.
  • the L subCH is notified by the high layer of the terminal to the physical layer of the terminal.
  • the above-mentioned candidate time unit set includes a candidate time unit set for periodic transmission (same as the first candidate time unit set) and a candidate time unit set for aperiodic transmission (same as the second candidate time unit set). gather).
  • the set of candidate time units for periodic transmission is determined by the terminal device from the resource selection window corresponding to the time unit that triggers resource selection for the periodic transmission, assuming that the time unit for triggering resource selection for the periodic transmission is m, the resource selection window may be [m+T 1 , m+T 2 ], for example.
  • the candidate time unit set for the aperiodic transmission is determined by the terminal device from the resource selection window corresponding to the time unit that triggers resource selection for the aperiodic transmission.
  • the set of candidate time units used for aperiodic transmission may be the set of candidate time units determined according to at least one first set of candidate time units and the resource selection window in method 200 described later in conjunction with FIG. 5 , or may be is the set of candidate time units determined according to the resource selection window in the method 300 described later in conjunction with FIG. 8 .
  • the resource selection window corresponding to the time unit for triggering resource selection of the aperiodic transmission may be any resource selection window described later in the method 200 described in conjunction with FIG. 5 or the method 300 described in FIG. 8 .
  • the time-frequency resource set is the resource available for sidelink transmission determined by the terminal device from the resource pool based on the resource sensing result.
  • the time-frequency resource set may be a resource determined from a candidate time-frequency resource set.
  • the set of time-frequency resources is a subset of the set of candidate time-frequency resources.
  • the physical layer of the terminal device may determine the time-frequency resource set from the candidate time-frequency resource set (such as the candidate time-frequency resource set determined based on the second candidate time unit set in the following embodiments), and The time-frequency resource set is reported to a higher layer, such as the MAC layer.
  • the MAC layer may further select resources for sidelink transmission from the time-frequency resource set. Subsequently, the MAC layer may indicate the selected resource to the physical layer, and the physical layer then uses the resource for sidelink transmission.
  • the foregoing set of candidate time-frequency resources is also referred to as an initial set of candidate time-frequency resources, and the foregoing set of time-frequency resources is also referred to as a set of candidate time-frequency resources.
  • the first, second and various numbers are only for convenience of description, and are not used to limit the scope of the embodiments of the present application.
  • different time units, different sets of candidate time units, etc. are distinguished.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices). Do limited.
  • Pre-configuration can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices), and can also be pre-configured through signaling, such as network devices through Signaling pre-configuration, etc., the present application does not limit the specific implementation.
  • preserving may refer to storing in one or more memories.
  • the one or more memories may be provided independently, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • a part of the one or more memories may also be set independently, and a part may be integrated in a decoder, processor, or communication device.
  • the type of the storage may be any form of storage medium, which is not limited in this application.
  • the "protocol” involved in this embodiment of the application may refer to a standard protocol in the communication field, for example, it may include LTE protocol, NR protocol and related protocols applied in future communication systems, which is not limited in this application.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the first terminal device determines the sidelink transmission resource for transmitting the data packet, that is, selects the sidelink transmission resource for transmitting the data packet from the set of candidate time-frequency resources.
  • determining and “selecting” are used interchangeably, and their meanings are the same.
  • the first terminal device can transmit side data to other devices (such as the second terminal device), such as
  • the second terminal device may be the terminal device 123 in FIG. 1, or, when the first terminal device may be the terminal device 122 in FIG. 1, the second terminal device It may be the terminal device 124 in FIG. 1 .
  • the first terminal device shown in the following embodiments may also be replaced with components in the first terminal device, such as a chip, a chip system, or other functional modules capable of invoking programs and executing programs.
  • FIG. 5 is a schematic flowchart of a lateral transmission method 200 provided by an embodiment of the present application. As shown in FIG. 2, the method 200 may include S210 and S220. Each step in the method 200 will be described in detail below.
  • the first terminal device determines a second candidate time unit set for aperiodic transmission according to at least one first candidate time unit set and a resource selection window.
  • the second candidate time unit set includes at least one first candidate time unit, and the first candidate time unit is a candidate time unit located within the resource selection window in the at least one first candidate time unit set, and the first candidate time unit is the same as
  • the interval between the first time units is greater than or equal to M 1 time units, M 1 is a positive integer, the first time unit is the time unit of the trigger resource selection, or the first time unit and the time of the trigger resource selection There are time-domain intervals between units;
  • the first terminal device determines a sidelink transmission resource for transmitting the first data packet according to the second candidate time unit set.
  • the first set of candidate time units may be used for periodic transmission of the second data packet, and the first set of candidate time units may be, for example, the set of candidate time slots Y in the foregoing example.
  • the first set of candidate time units may also be a set of candidate time units used for aperiodic transmission.
  • the second data packet may include signaling and/or data transmitted sideways, for example, the second data packet may be a TB (such as the aforementioned TB1), and the embodiment of the present application does not limit the specific content of the second data packet.
  • the first terminal device can select any reserved period of the resource pool to transmit the second data packet
  • a reserved period may be selected for each periodic transmission, and the reserved period selected for each periodic transmission may be the same or different.
  • the first terminal device may determine a first set of candidate time units for each periodic transmission, so that the first terminal device may, in a partial sensing scenario, monitor other terminal devices in the resource pool based on PBPS as described above. It can also sense the aperiodic reservations of other terminal devices based on the CPS.
  • At least one first candidate time unit in the second set of candidate time units determined by the first terminal device should be different from the first time unit interval is greater than or equal to M 1 time units.
  • M 1 may be predefined, preconfigured or defined by a protocol.
  • M 1 may be pre-stored in the first terminal device, or M 1 may be pre-configured by the network device sending signaling to the first terminal device, or M 1 may be defined in a protocol, such as the NR protocol, etc. .
  • M 1 may be the above-mentioned M' min , or be greater than the above-mentioned M' min , where M' min is the minimum number of continuous listening slots for aperiodic transmission.
  • the first candidate time unit in the embodiment of the present application is at least one first candidate A time unit within the resource selection window in the time unit set.
  • the first terminal device determines from the candidate time units within the resource selection window in the first set of candidate time units, the candidate time units that meet the requirement that the interval between the first time unit and the first time unit is greater than or equal to M1 time units, and set It is determined as the first candidate time unit.
  • the first time unit is related to the time unit that triggers resource selection
  • the time unit interval for triggering resource selection is T 1 time unit.
  • T 1 may satisfy 0 ⁇ T 1 ⁇ T proc
  • the value of T proc may be related to the SCS configuration ⁇ SL of the BWP.
  • Taking n+T 1 as the first time unit compared with taking n as the first time unit may provide the terminal with additional processing time for preparation before sensing.
  • the first time unit is not related to the first set of candidate time units. It should not be understood that the first time unit is a candidate time unit in the first set of candidate time units, but the first time unit may be related to the first set of candidate time units.
  • Candidate temporal units have the same temporal location.
  • the starting time unit of the resource selection window is the above-mentioned first time unit, and the interval between the first first candidate time unit of the second set of candidate time units and the starting time unit of the resource selection window is greater than or equal to M 1 time unit.
  • the first terminal device determines the first candidate time unit from the candidate time units located in the resource selection window in at least one first candidate time unit set, and the first candidate time unit is included in the second candidate time unit set .
  • the first candidate time unit set that triggers resource selection at slot m includes candidate time units including t y0 , t y1 to t yL , when the high layer of the first terminal device triggers the physical layer at slot n to perform
  • the resource selection window is a time domain of [n+T 1 , n+T 2 ], where t y2 to t yL in the first candidate time unit set are located within the resource selection window , and the interval between t y3 t yL and the starting time unit of the resource selection window is greater than or equal to M 1 time units, then the first terminal device determines that t y3 to t yL are all the first candidate time units, and t y3 to t yL are included in the second set of candidate time units.
  • Mode 2 The starting time unit of the resource selection window is after the first time unit, and is separated from the first time unit by M 1 time units.
  • the first terminal device determines that the candidate time units located in the resource selection window in at least one first candidate time unit set are all first candidate time units, and the first candidate time unit is included in the second candidate time unit set .
  • the first candidate time unit set that triggers resource selection at slot m includes candidate time units including t y0 , t y1 to t yL , when the high layer of the first terminal device triggers the physical layer at slot n to perform
  • the resource selection window is a time domain of [n+T 1 +M 1 ,n+T 2 ], where t y3 to t yL in the first set of candidate time units are located in the resource
  • the first terminal device determines that t y3 to t yL are all first candidate time units, and t y3 to t yL are included in the second set of candidate time units.
  • the first terminal device can determine the first candidate time unit that can be fully perceived from the time units located in the resource selection window in the first candidate time unit set, that is, the first terminal device The determined first candidate time unit can meet the requirement of M 1 time units.
  • At least one first set of candidate time units includes a first set of candidate time units Y 1 and a first set of candidate time units Y 2 .
  • the first candidate time unit set Y 1 is used to provide candidate time units for resource selection triggered by slot m, and the time units in the first candidate time unit set Y 1 include t y(1,0) , t y(1,1) to t y(1,L) ; the second candidate time unit set Y 2 provides candidate time units for resource selection triggered by slot i, and the time units in the second candidate time unit set Y 2 include t y (2,0) , t y(2,1) to t y(2,P) .
  • the resource selection window in this embodiment can be the resource selection window 1 in Figure 7, that is, the starting time unit of the resource selection window is the first time unit, and the first time unit of the second candidate time unit set The interval between the first candidate time unit and the starting time unit of the resource selection window is greater than or equal to M 1 time units.
  • the resource selection window is a time domain of [n+T 1 , n+T 2 ].
  • ty(1,2) to ty(1,L) in the first candidate time unit set Y 1 are located in the resource selection window, and ty(1,L-1) and ty(1, If the interval between L) and the starting time unit of the resource selection window is greater than or equal to M 1 time units, then the first terminal device determines that t y (1, L-1) and t y (1, L) are the first Candidate time units, where t y(1,L-1) corresponds to t y2' in the second candidate resource set, and ty(1,L) corresponds to t y3' in the second candidate resource set; the first candidate time unit t y(2,0) to t y(2,P-1) in the set Y 2 are located in
  • the resource selection window in this embodiment can be the resource selection window 2 in FIG. unit of time.
  • the first terminal device determines that the candidate time units within the resource selection window in the first set of candidate time units Y1 and Y2 are all first candidate time units.
  • the resource selection window is a period of [n+T 1 +M 1 ,n+T 2 ] domain, where ty(1,L-1) and ty(1,L) of Y 1 in the first candidate time unit set are located in the resource selection window, since ty(1,L-1) and t The interval between y(1,L) and the first time unit is greater than or equal to M1 time units, then the first terminal device determines that t y(1,L-1) and t y(1,L) are both The first candidate time unit, where ty(1,L-1) corresponds to t y2' in the second candidate resource set, and ty(1,L) corresponds to ty3' in the second candidate resource set; the first candidate t y(2,1) to t y(2,P-1) in the time unit set Y 2 are located in the resource selection
  • t y(2,P-1) corresponds to t yL' in the second candidate resource set.
  • the first candidate time unit sets Y 1 and Y 2 include the same candidate time unit, such as time units t y(1,L) and ty (2,3) , the first candidate time unit set Y Both 1 and Y 2 correspond to the first candidate time unit t y3' in the second candidate time unit set.
  • candidate time units may also be included between the candidate time units t y(1,3) and t y(1,L-1) in the first set of candidate time units Y 1 , and t y( 1,3) and t y(1,L-1)
  • the first terminal device will also determine it as the first candidate Time unit, similar to this, other candidate time units may also be included between ty (2,3) and ty(2,P-1) in the first candidate time unit set Y 2 , and these time units are related to the first
  • the interval between one time unit is also greater than or equal to M 1 , which is also determined by the first terminal device as the first candidate time unit.
  • the number of candidate time units in the second set of candidate time units determined by the first terminal device needs to be greater than or equal to a preset value Y.
  • the preset value Y may be predefined, preconfigured or defined by a protocol.
  • Y may be pre-stored in the first terminal device, or Y may be pre-configured by the network device sending signaling to the first terminal device, or Y may be defined in a protocol, such as the NR protocol.
  • Y may be the above-mentioned Y' min , or be greater than the above-mentioned Y' min , where Y' min is the minimum number of candidate time slots.
  • the first terminal device may determine at least one second candidate time unit set from at least one first candidate time unit set The candidate time unit is used to supplement the candidate time units in the second set of candidate time units.
  • the second candidate time unit may belong to the resource selection window and at least one first candidate time unit set, and the interval between the second candidate time unit and the first time unit is less than M 1 time units.
  • time unit t y2 belongs to the first set of candidate time units and is also within the resource selection window, and the interval between time unit t y2 and the first time unit is less than M 1 time unit, then the time unit t y2 is the second candidate time unit; in Figure 7, the time units t y(1,2) and ty(1,3) in the first candidate time unit set Y 1 , The time units t y(2,0) in the first candidate time unit set Y 2 are all located in the resource selection window, and the time units t y(1,2) , ty (1,3) and ty(2,0 ) and the first time unit are all less than M 1 time units, then the time units t y(1,2) , ty (1,3) and ty (2,0) are all the second candidate time unit.
  • the first candidate time unit sets Y 1 and Y 2 include the same candidate time unit, such as time units t y(1,3) and ty (2,0) , the first candidate time unit set Y 1 and Y 2 correspond to the same second candidate time unit in the second candidate time unit set.
  • the number w of at least one second candidate time unit included in the second set of candidate time units may be equal to Yn or greater than Yn. For example, when w needs to be equal to Yn, if the number w' of the second candidate time units determined by the first terminal device is greater than the required number w of the second candidate time units, the first terminal device starts from w' second candidate time units Determine w second candidate time units in the time unit. For example, in FIG.
  • the time units ty(1,2) and ty(1,3) in the first candidate time unit set Y1 can both be the second candidate time unit, and in the second candidate time unit set
  • the first terminal device may determine ty(1,3) which is farther away from the first time unit as the second candidate time unit in the second candidate time unit set.
  • the first terminal device can select from the first resource pool Randomly selecting w-w' time units, randomly selecting w-w' time units from the first resource pool may be determined as the second candidate time unit, or as the third candidate time unit in the second candidate time unit set.
  • the first resource pool may be a special resource pool (exceptional resource pool).
  • the special resource pool is pre-configured by the network device and is used when the terminal device does not have enough resource perception results. .
  • the first set of candidate time units is located in a time unit within the resource selection window, and the number of candidate time units whose distance from the first time unit is greater than or equal to M1 is greater than the preset value Y, then All or part of these candidate time units are determined as the first candidate time unit in the second candidate time unit set.
  • the priority of the second candidate time unit in the second candidate time unit set is lower than that of the first candidate time unit.
  • the first terminal device preferentially uses resources in the first candidate time unit in the second candidate time unit set for sidelink transmission, and uses resources in the second candidate time unit set when the first candidate time unit is reserved or occupied.
  • the resource on the second candidate time unit is used for sidelink transmission.
  • At least one first candidate time unit and at least one second candidate time unit may respectively serve as independent candidate time unit sets.
  • the priority of the third candidate time unit may be higher than or lower than that of the second candidate time unit, which is not limited in this embodiment of the present application.
  • the first terminal device may start from m time units are randomly selected from the first resource pool to complement the candidate time units in the second set of candidate time units.
  • the sum of m and n is greater than or equal to Y.
  • the last time unit of the resource selection window is n+ T2 as an example. It should be understood that the last time unit of the resource selection window in the embodiment of the present application may also be n+ M4 , where M 4 is equal to remaining PDB.
  • the resource selection window in the embodiment shown in Figure 6a and the resource selection window 1 in the embodiment shown in Figure 7 can both be [n+T 1 ,n+remainingPDB], and in the embodiment shown in Figure 6b Both the resource selection window and the resource selection window 2 in the embodiment shown in FIG. 7 may be [n+T 1 +M 1 , n+remainingPDB].
  • the remaining PDB is the maximum value of T2 .
  • the resource selection window has a larger time domain range, that is, the first There are more candidate time units in the set of candidate time units located in the resource selection window. In this case, the number of first candidate time units in the second set of candidate time units is larger, which is beneficial for the first terminal device to transmit side traffic Data resource selection is performed to improve the reliability of sideline transmission.
  • the second set of candidate time units may be a time-domain representation or constraint on the set of candidate time-frequency resources.
  • the first terminal device may determine the candidate time-frequency resource set according to the first candidate time unit set and the preset number of subchannels.
  • the first terminal device may perceive the time-frequency resources of the candidate time-frequency resource set within the resource sensing window, and exclude the reserved time-frequency resources to obtain the time-frequency resource set. Further, the first terminal device is A sidelink transmission resource used for transmitting the first data packet is determined in the time-frequency resource set.
  • the first data packet may include signaling and/or data transmitted sideways, and this embodiment of the present application does not limit the specific content of the first data packet.
  • the first terminal device may obtain sidelink control information (sidelink control information, SCI) sent by other terminal devices within the resource awareness window, and the first terminal device may determine whether the corresponding terminal device reserves The time-frequency resources in the candidate time-frequency resource set are selected.
  • sidelink control information sidelink control information, SCI
  • the resource awareness window in this embodiment is before the second candidate time unit set, and the first time unit of the resource awareness window is the same as
  • the interval between the first time units in the second candidate time unit set is M 2 time units, M 2 is greater than or equal to M 1 , and/or, the last time unit of the resource awareness window is the same as the second candidate time unit set
  • the interval between the first time units of M 3 time units, M 3 is equal to the processing time.
  • the processing time may be, for example, the sum of T proc,0 and T proc,1 .
  • T proc,0 and T proc,1 are defined by the protocol, and the number of time slots related to the subcarrier spacing SCS, for example, T proc,0 and ⁇ SL have a corresponding relationship as shown in Table 2 below, T proc,1 It has a corresponding relationship with ⁇ SL as shown in Table 3 below.
  • T proc,0 is the time for the terminal to process the perception result
  • T proc,1 is the time for terminal resource selection and/or data preparation.
  • ⁇ SL when ⁇ SL is 0, it corresponds to 15k subcarrier spacing; when ⁇ SL is 1, it corresponds to 30k subcarrier spacing; when ⁇ SL is 2, it corresponds to 60k subcarrier spacing; ⁇ SL is 3, corresponding to 120k subcarrier spacing.
  • the resource awareness window is [t y0' -M 2 , t y0' -M 3 ], based on the resource awareness window, the first terminal device can determine the candidate time-frequency from t y3 to t yL collection of resources for perception.
  • the resource-aware window in FIG. 6b and FIG. 7 has the same or similar implementation manners, which will not be repeated here.
  • resource pools may enable re-evaluation and/or preemption evaluation of resources to improve resource reliability.
  • the first terminal device determines a second set of candidate time units for aperiodic transmission from the candidate time units in which the first set of candidate time units is located within the resource selection window, and the second candidate time unit set
  • the interval between at least one first candidate time unit in the unit set and the first time unit is greater than or equal to M 1 time units, so that the first terminal device can perceive a time greater than or equal to M 1 time units after the first time unit unit, so as to fully perceive at least one first candidate time unit in the second candidate time unit set, and improve the reliability of aperiodic transmission.
  • FIG. 8 is a schematic flowchart of a lateral transmission method 300 provided by an embodiment of the present application. As shown in FIG. 8, the method 300 may include S310 and S320. Each step in the method 300 will be described in detail below.
  • the first terminal device determines a second candidate time unit set for aperiodic transmission according to the resource selection window;
  • the second candidate time unit set includes at least one first candidate time unit, the first candidate time unit is a time unit within the resource selection window, and the interval between the first candidate time unit and the first time unit is greater than Or equal to M 1 time units, M 1 is a positive integer, the first time unit is a time unit that triggers resource selection, or there is a time domain interval between the first time unit and the time unit that triggers resource selection;
  • the first terminal device determines a sidelink transmission resource for transmitting the first data packet according to the second candidate time unit set.
  • At least one first candidate in the second set of candidate time units determined by the first terminal device should be separated from the first time unit by more than or equal to M 1 time units.
  • M 1 may be predefined, preconfigured or defined by a protocol.
  • M 1 may be pre-stored in the first terminal device, or M 1 may be pre-configured by the network device sending signaling to the first terminal device, or M 1 may be defined in a protocol, such as the NR protocol, etc. .
  • M 1 may be the above-mentioned M' min , or be greater than the above-mentioned M' min , where M' min is the minimum number of continuous listening slots for aperiodic transmission.
  • the first time unit has been described in the embodiment shown in FIG. 5 and will not be repeated here.
  • time units within the resource selection window may be continuous time units, such as continuous time slots, or discontinuous time units, which is not limited in this application.
  • the starting time unit of the resource selection window is the above-mentioned first time unit, and the interval between the first first candidate time unit of the second set of candidate time units and the starting time unit of the resource selection window is greater than or equal to M 1 time unit.
  • the first terminal device determines the first candidate time unit from the time units in the resource selection window, and the first candidate time unit is included in the second candidate time unit set.
  • the resource selection window is a time domain of [n+T 1 , n+T 2 ].
  • a terminal device may determine time units (such as t y0' to t yL' ) after n+T 1 +M 1 in the resource selection window as the first candidate time units, and t y0' to t yL' are included in the first candidate time unit Two sets of candidate time units.
  • Mode 2 The starting time unit of the resource selection window is after the first time unit, and is separated from the first time unit by M 1 time units.
  • the first terminal device determines that all the time units in the resource selection window are the first candidate time units. In some embodiments, the first terminal device may also determine that part of the time units in the resource selection window are the first candidate time units. A time unit, the first candidate time unit is included in the second candidate time unit set.
  • the first terminal device may determine all time units (such as t y0' to t yL' ) within the resource selection window as the first candidate time unit, and t y0' to t yL' are included in the second set of candidate time units.
  • the first terminal device can determine the first candidate time unit that can be fully perceived from the time units in the resource selection window, that is, the first candidate time unit determined by the first terminal device can be Satisfy the requirement of M 1 time units.
  • the first terminal device may start from m time units are randomly selected from the first resource pool to complement the candidate time units in the second set of candidate time units.
  • the sum of m and n is greater than or equal to Y.
  • the first resource pool may be the above-mentioned special resource pool.
  • the first terminal device may use a candidate time unit randomly selected from the first resource pool as a candidate time unit with a lower priority.
  • the first terminal device preferentially uses resources in the first candidate time unit in the second candidate time unit set for sidelink transmission, and uses resources in the second candidate time unit set when the first candidate time unit is reserved or occupied.
  • the resource on the second candidate time unit is used for sidelink transmission.
  • At least one first candidate time unit and at least one second candidate time unit may respectively serve as independent candidate time unit sets.
  • the last time unit of the resource selection window in this embodiment is taken as an example of n+ T2 . It should be understood that the last time unit of the resource selection window in this embodiment is also It may be n+M 4 , where M 4 is equal to remaining PDB.
  • the resource selection window in the embodiment shown in FIG. 9a may be [n+T 1 ,n+remainingPDB]
  • the resource selection window in the embodiment shown in FIG. 9b may be [n+T 1 +M 1 ,n +remainingPDB].
  • the first terminal device perceives the time-frequency resources in the candidate time-frequency resource set within the resource sensing window, excludes the time-frequency resources reserved by other terminal devices, obtains the time-frequency resource set, and A sidelink transmission resource used for transmitting the first data packet is determined in the time-frequency resource set.
  • the resource sensing window in the embodiment of the present application is before the second candidate time unit set, and the first time unit of the resource sensing window is the same as the first time unit in the second candidate time unit set
  • the interval between units is M 2 time units, M 2 is greater than or equal to M 1
  • the interval between the last time unit of the resource awareness window and the first time unit in the second set of candidate time units is M 3 Time unit, M 3 equals processing time.
  • the processing time may be, for example, the sum of T proc,0 and T proc,1 .
  • T proc,0 and T proc,1 are the number of time slots defined by the protocol and related to the subcarrier spacing SCS.
  • T proc,0 is the time for the terminal to process the perception result
  • T proc,1 is the time for terminal resource selection and/or data preparation.
  • the resource awareness window is [t y0' -M 2 , t y0' -M 3 ], and based on the resource awareness window, the first terminal device can check the candidates on t y0' to t yL' A collection of time-frequency resources for perception.
  • the resource-aware window in Fig. 9b has the same or similar implementation manner, which will not be repeated here.
  • the second candidate time unit set for aperiodic transmission determined by the first terminal device from the resource selection window includes at least one first candidate time unit, and the first candidate time unit is the same as the first candidate time unit
  • a time unit interval is greater than or equal to M 1 time units, so that the first terminal device can sense greater than or equal to M 1 time units after the first time unit, so as to at least one first time unit in the second candidate time unit set Candidate time units are fully sensed, which improves the reliability of aperiodic transmission.
  • tyi is any time unit located in the resource selection window in at least one first candidate time unit set:
  • the first terminal device determines whether tyi is the first candidate time unit ty0 in at least one first candidate time unit set.
  • the first terminal device determines that the second candidate time unit set includes all candidate time units (for example, ty0 to tyL) in the at least one first candidate time unit set, that is, at least one first candidate time unit set is equal to the second candidate time unit set A collection of time units.
  • candidate time units for example, ty0 to tyL
  • the second candidate time unit set is equal to at least one first candidate time unit set
  • the second The candidate time unit may use the CPS sensing result of at least one first candidate time unit set to improve the accuracy of resource perception.
  • the first terminal device determines whether the time unit tyi within the resource selection window in the second candidate time unit set has a corresponding perception result of re-evaluation/preemption evaluation.
  • the first terminal device determines that the second candidate time unit set includes all time units starting from the time unit tyi in the at least one first candidate time unit set.
  • the second set of candidate time units can utilize the perception result of the re-evaluation/preemption evaluation of tyi.
  • the first terminal device determines whether the interval between tyi and the first time unit is greater than or equal to M 1 .
  • the first terminal device determines that the second candidate time unit set includes all time units starting from the time unit tyi in the at least one first candidate time unit set.
  • each candidate time unit in the second candidate time unit is separated from the first time unit by more than or equal to M 1 time units.
  • the first terminal device determines that the tyi is not included in the second candidate time unit set.
  • the first terminal device may determine each time unit in at least one first candidate time unit set according to part or all of the above-mentioned processes from S410 to S470, until the second candidate data unit set is determined. .
  • Fig. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 500 may include: a processing unit 510 .
  • the communication device 500 may correspond to the first terminal device in the above method embodiments, for example, it may be the first terminal device, or a component configured in the first terminal device (such as a chip or a chip system, etc. ).
  • the communication apparatus 500 may correspond to the first terminal device in the method 200 or the method 300 according to the embodiment of the present application, and the communication apparatus 500 may include a method for executing the method 200 in FIG. 5 or the method 300 in FIG. 8 The unit of the method executed by the first terminal device. Moreover, each unit in the communication device 500 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding flow of the method 200 in FIG. 5 or the method 300 in FIG. 8 .
  • the processing unit 510 may be configured to determine a second candidate time unit for aperiodic transmission according to at least one first candidate time unit set and a resource selection window set; wherein, the second candidate time unit set includes at least one first candidate time unit, and the first candidate time unit is a candidate time unit within the resource selection window in the at least one first candidate time unit set, the The interval between the first candidate time unit and the first time unit is greater than or equal to M 1 time units, M 1 is a positive integer, and the first time unit is the time unit that triggers resource selection, or the first time unit and the There is a time domain interval between the time units that trigger resource selection; the processing unit 510 is further configured to determine a sidelink transmission resource for transmitting the first data packet according to the second set of candidate time units.
  • the communication device 500 further includes a transceiver unit 520, and the transceiver unit 520 is configured to transmit the first data packet on the sidelink transmission resource.
  • the first set of candidate time units is used for periodic transmission of the second data packet.
  • the starting time unit of the resource selection window is the first time unit, and the interval between the first candidate time unit and the starting time unit of the resource selection window is greater than or equal to the M1 times unit.
  • the starting time unit of the resource selection window is after the first time unit, and is separated from the first time unit by the M 1 time units.
  • the processing unit 510 is specifically configured to: sense the time-frequency resources of the candidate time-frequency resource set within the resource sensing window, exclude the reserved time-frequency resources, and obtain the time-frequency resource set;
  • the set of frequency resources is determined based on the second set of candidate time units, the resource awareness window is before the second set of candidate time units, the first time unit of the resource awareness window is the same as the first time unit in the second set of candidate time units
  • An interval of M 2 time units between a time unit, M 2 is greater than or equal to the M 1 , and/or, the last time unit of the resource awareness window and the first time unit in the second set of candidate time units
  • the number n of candidate time units included in the second set of candidate time units is less than a preset value Y
  • the processing unit is further configured to randomly select m time units from the first resource pool, and the difference between m and n and greater than or equal to Y.
  • the processing unit 510 may be configured to determine a second set of candidate time units for aperiodic transmission according to the resource selection window; wherein, the second set of candidate time units Including at least one first candidate time unit, the first candidate time unit is a candidate time unit within the resource selection window, and the interval between the first candidate time unit and the first time unit is greater than or equal to M1 time units, M1 is a positive integer, the first time unit is a time unit that triggers resource selection, or there is a time domain interval between the first time unit and the time unit that triggers resource selection; the processing The unit 510 is further configured to determine a sidelink transmission resource for transmitting the first data packet according to the second set of candidate time units.
  • the starting time unit of the resource selection window is the first time unit, and the interval between the first candidate time unit and the starting time unit of the resource selection window is greater than or equal to the Describe M 1 time units.
  • a starting time unit of the resource selection window is after the first time unit, and is separated from the first time unit by the M 1 time units.
  • the processing unit 510 is specifically configured to: perceive the time-frequency resources of the candidate time-frequency resource set within the resource sensing window, exclude the reserved time-frequency resources, and obtain the time-frequency resource set; the candidate The time-frequency resource set is determined based on the second candidate time unit set, the resource awareness window is before the second candidate time unit set, and the first time unit of the resource awareness window is the same as the second candidate time unit set.
  • the interval between the first time units in the time unit set is M 2 time units, M 2 is greater than or equal to the M 1 , and/or, the last time unit of the resource awareness window and the second candidate time
  • the first time units in the unit set are separated by M 3 time units, and M 3 is equal to the processing time; determining the sidelink transmission resource used to transmit the first data packet in the time-frequency resource set.
  • the number n of candidate time units included in the second set of candidate time units is less than a preset value Y
  • the processing unit is further configured to randomly select m time units from the first resource pool, where m and The sum of n is greater than or equal to Y.
  • the transceiver unit 520 in the communication device 500 can be realized by a transceiver, for example, it can correspond to the transceiver in the communication device 600 shown in FIG. 11 620, or the transceiver 720 in the terminal device 700 shown in FIG.
  • the processor 610, or the processor 710 in the terminal device 700 shown in FIG. 12 can correspond to the transceiver in the communication device 600 shown in FIG. 11 620, or the transceiver 720 in the terminal device 700 shown in FIG.
  • the transceiver unit 520 in the communication device 500 can be realized by an input/output interface, a circuit, etc.
  • the communication device 500 The processing unit 510 in the chip may be implemented by a processor, a microprocessor, or an integrated circuit integrated on the chip or the chip system.
  • Fig. 11 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 600 may include: a processor 610 , a transceiver 620 and a memory 630 .
  • the processor 610, the transceiver 620 and the memory 630 communicate with each other through an internal connection path, the memory 630 is used to store instructions, and the processor 610 is used to execute the instructions stored in the memory 630 to control the transceiver 620 to send signals and /or to receive a signal.
  • the communication apparatus 600 may correspond to the first terminal device in the above method embodiments, and may be used to execute various steps and/or processes performed by the first terminal device in the above method embodiments.
  • the memory 630 may include read-only memory and random-access memory, and provides instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 630 may be an independent device, or may be integrated in the processor 610 .
  • the processor 610 may be used to execute the instructions stored in the memory 630, and when the processor 610 executes the instructions stored in the memory, the processor 610 is used to execute the steps of the above-mentioned method embodiment corresponding to the first terminal device and/or process.
  • the communications apparatus 600 is the first terminal device in the foregoing embodiments.
  • the transceiver 620 may include a transmitter and a receiver.
  • the transceiver 620 may further include antennas, and the number of antennas may be one or more.
  • the processor 610, the memory 630 and the transceiver 620 may be devices integrated on different chips.
  • the processor 610 and the memory 630 may be integrated in a baseband chip, and the transceiver 620 may be integrated in a radio frequency chip.
  • the processor 610, the memory 630 and the transceiver 620 may also be devices integrated on the same chip. This application is not limited to this.
  • the communication apparatus 600 is a component configured in the first terminal device, such as a chip, a chip system, and the like.
  • the transceiver 620 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 620 , the processor 610 and the memory 620 may be integrated into the same chip, such as a baseband chip.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 .
  • the terminal device 700 includes a processor 710 and a transceiver 720 .
  • the terminal device 700 further includes a memory 730 .
  • the processor 710, the transceiver 720 and the memory 730 can communicate with each other through an internal connection path, and transmit control and/or data signals. Call and run the computer program to control the transceiver 720 to send and receive signals.
  • the terminal device 700 may further include an antenna 740, configured to transmit the uplink data or uplink control signaling output by the transceiver 720 through wireless signals.
  • the processor 710 and the memory 730 may be combined into a processing device, and the processor 710 is configured to execute the program codes stored in the memory 730 to realize the above functions.
  • the memory 730 may also be integrated in the processor 710 , or be independent of the processor 710 .
  • the processor 710 may correspond to the processing unit 510 in FIG. 10 or the processor 610 in FIG. 11 .
  • the above-mentioned transceiver 720 may correspond to the transceiver unit 520 in FIG. 10 or the transceiver 620 in FIG. 11 .
  • the transceiver 720 may include a receiver (or called a receiver, a receiving circuit) and a transmitter (or called a transmitter, a transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 700 may further include a power supply 750, configured to provide power to various components or circuits in the terminal device 700.
  • a power supply 750 configured to provide power to various components or circuits in the terminal device 700.
  • the terminal device 700 may also include one or more of an input unit 760, a display unit 770, an audio circuit 780, a camera 790, and a sensor 800.
  • the audio The circuitry may also include a speaker 780a, a microphone 780b, and the like.
  • the terminal device 700 shown in FIG. 10 can implement various processes involving the first terminal device in the method embodiments shown in FIGS. 5 and 8 .
  • the operations and/or functions of the various modules in the terminal device 700 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the processor 710 can be used to execute the actions internally implemented by the first terminal device described in the above method embodiments, such as determining the resources for sideways transmission.
  • the transceiver 720 may be used to perform the action of the first terminal device performing sidelink transmission described in the foregoing method embodiments. For details, please refer to the description in the foregoing method embodiments, and details are not repeated here.
  • the present application also provides a processing device, including at least one processor, and the at least one processor is used to execute the computer program stored in the memory, so that the processing device executes the method performed by the test equipment in the above method embodiment, the first A method performed by a terminal device.
  • the embodiment of the present application also provides a processing device, including a processor and an input/output interface.
  • the input-output interface is coupled with the processor.
  • the input and output interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing device executes the method executed by the first terminal device in the above method embodiment.
  • the embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method performed by the first terminal device in the above method embodiment.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the computer shown in Figure 5 or Figure 8. The method executed by the first terminal device in the illustrated embodiment.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute the program shown in Figure 5 or Figure 5.
  • the present application further provides a communication system, where the communication system may include the aforementioned first terminal device and other terminal devices (such as the second terminal device).
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种侧行传输方法以及通信装置。该方法包括:第一终端设备根据至少一个第一候选时间单元集合和资源选择窗确定用于非周期性传输的第二候选时间单元集合,并根据该第二候选时间单元集合确定侧行传输资源;该第二候选时间单元集合中的第一候选时间单元为至少一个第一候选时间单元集合中位于资源选择窗内的一个候选时间单元,且与第一时间单元之间的间隔大于或等于M 1个时间单元,该第一时间单元为触发资源选择的时间单元或者与该触发资源选择的时间单元之间存在时域间隔。基于此方法,使得第一终端设备可以感知大于或者等于M 1个时间单元,以对第二候选时间单元集合中的至少一个第一候选时间单元进行充分感知,提高非周期性传输的可靠性。

Description

侧行传输方法以及通信装置
本申请要求于2021年11月05日提交中国专利局、申请号为202111307855.5、申请名称为“侧行传输方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种侧行传输方法以及通信装置。
背景技术
在有些通信系统中,如第五代移动通信系统(5th generation wireless system,5G)中,终端设备与终端设备之间可以通过侧行链路(sidelink)进行信令和数据的传输。这种通过侧行链路来进行传输的方式可以称为侧行传输。用于侧行传输的资源例如可以由终端设备从候选时频资源集合中选择而确定。终端设备针对非周期性的侧行传输,通常基于感知(full sensing)从候选时频资源集合中确定侧行传输资源。然而,基于感知确定候选时频资源集合需要终端设备对资源池内的全部资源进行持续的监听,导致终端设备的功耗较高。
因此,为了降低终端设备的功耗,基于部分感知(partial sensing)确定用于非周期性传输的侧行传输资源受到越来越多的关注。然而,往往由于非周期性传输的数据到达位置具有不确定性,导致终端设备无法对候选时频资源进行充分的感知,影响侧行传输的可靠性。
发明内容
本申请提供一种侧行传输方法以及通信装置,在基于部分感知确定用于非周期性传输的侧行传输资源时,对候选时频资源进行充分感知,提高侧行传输的可靠性。
第一方面,本申请提供了一种侧行传输方法,该方法可以由终端设备执行(如下文示例的第一终端设备),也可以由配置在终端设备(如第一终端设备)中的部件(如,芯片、芯片系统等)执行,本申请实施例对此不作限定。下文为方便理解,以第一终端设备作为执行主体来说明该方法。
示例性的,该方法包括:第一终端设备根据至少一个第一候选时间单元集合和资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,该第二候选时间单元集合包括至少一个第一候选时间单元,该第一候选时间单元为该至少一个第一候选时间单元集合中位于该资源选择窗内的一个候选时间单元,该第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,该第一时间单元为触发资源选择的时间单元,或者该第一时间单元与该触发资源选择的时间单元之间存在时域间隔;该第一终端设备根据该第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
基于上述方案,第一终端设备可以从第一候选时间单元集合位于资源选择窗内的候选时间单元中确定出用于非周期性传输的第二候选时间单元集合,第二候选时间单元集合中的第一候选时间单元为第一候选时间单元集合位于资源选择窗内的候选时间单元,且第一候选时间单元与第一时间单元之间间隔大于或等于M 1,使得第一终端设备可以在第一时间单元之后,感知大于或者等于M 1个时间单元,以对第二候选时间单元集合中的至少一个第一候选时间单元进行充分感知,提高了非周期性传输的可靠性。
应理解,M 1可以是由基站配置或者预配置的且M 1大于或者等于M' min,该M' min是由基站配置或者预配置的用于非周期传输的最小连续监听时隙数,M' min与用于周期传输的最小连续监听时隙数M min可以相同或者不同;或者M 1就为M' min
结合第一方面,在一些可能的实现方式中,该第一候选时间单元集合用于第二数据包的周期性传输。
由于第一终端设备针对周期性传输进行的资源感知较为充分,例如,当第一候选时间单元集合用于周期性传输时,第一终端设备可以在第一候选时间单元集合中的候选时间单元对应的感知机会上,对其他终端设备的周期预留进行基于周期的部分感知,并且第一终端设备还可以通过连续部分感知其他终端设备的非周期性预留。因此,当第一候选时间单元集合用于周期传输时,第一终端设备将第一候选时间单元集合位于资源选择窗的一些候选时间单元作为第一候选时间单元,使得第二候选时间单元集合中的第一候选时间单元可以利用周期性传输的资源感知结果,实现了对第二候选时间单元的充分感知,提高了非周期性传输的可靠性。
为了实现第一候选时间单元与第一时间单元之间间隔M 1个时间单元,保证第一候选时间单元能够被充分感知,下面结合第一方面,提供如下两种可能的实现方式:
方式一:该资源选择窗的起始时间单元为第一时间单元,该第一候选时间单元与该资源选择窗的起始时间单元之间的间隔大于或等于该M 1个时间单元。
方式二:该资源选择窗的起始时间单元在该第一时间单元之后,且与该第一时间单元间隔该M 1个时间单元。
其区别在于,在方式一中,第一终端设备沿用资源选择窗的定义,在此基础上确定其中满足与第一时间单元之间间隔大于或等于M 1个时间单元的第一候选时间单元;在方式二中,由于资源选择窗内的时间单元均满足与第一时间单元之间间隔大于或等于M 1个时间单元,第一终端设备在确定第一候选时间单元的过程中,不需要再确定资源选择窗内的时间单元与第一时间单元之间的间隔。
结合第一方面,在一些可能的实现方式中,该第一终端设备根据该第二候选时间单元集合确定用于传输第一数据包的侧行传输资源,包括:该第一终端设备在资源感知窗内对候选时频资源集合的时频资源进行感知,排除被预留的时频资源,得到时频资源集合;该候选时频资源集合为基于该第二候选时间单元集合确定的,该资源感知窗在该第二候选时间单元集合之前,该资源感知窗的第一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于该M 1,同理,M 2可以是由基站配置或者预配置的且M 2大于或者等于M' min,或者M 2就为M' min,和/或,该资源感知窗的最后一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;该第一终端设备在该时频资源集合中 确定用于传输该第一数据包的侧行传输资源。
通过该实现方式,由于资源感知窗的第一个时间单元与第二候选时间单元集合中的第一个第一候选时间单元之间间隔M 2个时间单元,因此第一终端设备可以在该资源感知窗内对第二候选时间单元集合中的第一候选时间单元进行充分的资源感知。
结合第一方面,在一些可能的实现方式中,该第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,该第一终端设备从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
通过该实现方式,第一终端设备确定的第二候选时间单元集合中的候选时间单元可以满足最小候选时间单元(如下述Y' min)的要求。
结合第一方面,在一些可能的实现方式中,该资源选择窗的最后一个时间单元与该触发资源选择的时间单元之间间隔M 4个时间单元,该M 4等于剩余包时延预算PDB。
通过该实现方式,资源选择窗具有更大的时域范围,也即第一候选时间单元集合中有更多的候选时间单元位于资源选择窗中,此种情况下,第二候选时间单元集合中的第一候选时间单元的数量更多,有利于第一终端设备传输侧行数据时进行资源选择,提高侧行传输的可靠性。
第二方面,本申请提供了一种侧行传输方法,该方法可以由终端设备执行(如下文示例的第一终端设备),也可以由配置在终端设备(如第一终端设备)中的部件(如,芯片、芯片系统等)执行,本申请实施例对此不作限定。下文为方便理解,以第一终端设备作为执行主体来说明该方法。
示例性的,该方法包括:第一终端设备根据资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,该第二候选时间单元集合包括至少一个第一候选时间单元,该第一候选时间单元为该资源选择窗内的一个候选时间单元,该第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,该第一时间单元为触发资源选择的时间单元,或者该第一时间单元与该触发资源选择的时间单元之间存在时域间隔;该第一终端设备根据该第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
可选的,M 1可以是由基站配置或者预配置的且M 1大于或者等于M' min,该M' min是由基站配置或者预配置的用于非周期传输的最小连续监听时隙数,M' min与用于周期传输的最小连续监听时隙数M min可以相同或者不同;或者M 1就为M' min
基于上述方案,第一终端设备可以从资源选择窗确定用于非周期传性传输的第二候选时间单元集合,第二候选时间单元集合中的第一候选时间单元为资源选择窗内的时间单元,且第一候选时间单元与第一时间单元之间间隔大于或等于M 1。使得第一终端设备可以在第一时间单元之后,感知大于或者等于M 1个时间单元,以对第二候选时间单元集合中的至少一个第一候选时间单元进行充分感知,提高了非周期性传输的可靠性。
为了实现第一候选时间单元与第一时间单元之间间隔M 1个时间单元,保证第一候选时间单元能够被充分感知,下面结合第二方面,提供如下两种可能的实现方式:
方式一:该资源选择窗的起始时间单元为该第一时间单元,该第一候选时间单元与该资源选择窗的起始时间单元之间的间隔大于或等于该M 1个时间单元。
方式二:该资源选择窗的起始时间单元在该第一时间单元之后,且与该第一时间单元间隔该M 1个时间单元。
其区别在于,在方式一中,第一终端设备沿用资源选择窗的定义,在此基础上确定其中满足与第一时间单元之间间隔大于或等于M 1个时间单元的第一候选时间单元;在方式二中,由于资源选择窗内的时间单元均满足与第一时间单元之间间隔大于或等于M 1个时间单元,第一终端设备在确定第一候选时间单元的过程中,不需要再确定资源选择窗内的时间单元与第一时间单元之间的间隔。
结合第二方面,在一些可能的实现方式中,该第一终端设备根据该第二候选时间单元集合确定用于传输第一数据包的侧行传输资源,包括:
该第一终端设备在资源感知窗内对候选时频资源集合的时频资源进行感知,排除预留的时频资源,得到时频资源集合;该候选时频资源集合为基于该第二候选时间单元集合确定的,该资源感知窗在该第二候选时间单元集合之前,该资源感知窗的第一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于该M 1,同理,M 2可以是由基站配置或者预配置的且M 2大于或者等于M' min,或者M 2就为M' min,和/或,该资源感知窗的最后一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;该第一终端设备在该时频资源集合中确定用于传输该第一数据包的侧行传输资源。
通过该实现方式,由于资源感知窗的第一个时间单元与第二候选时间单元集合中的第一个第一候选时间单元之间间隔M 2个时间单元,因此第一终端设备可以在该资源感知窗内对第二候选时间单元集合中的第一候选时间单元进行充分的资源感知。
可选的,该第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,该第一终端设备从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
可选的,该资源选择窗的最后一个时间单元与该触发资源选择的时间单元之间间隔M 4个时间单元,该M 4等于剩余包时延预算PDB。
第三方面,本申请实施例提供一种通信装置,包括:处理单元,用于根据至少一个第一候选时间单元集合和资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,该第二候选时间单元集合包括至少一个第一候选时间单元,该第一候选时间单元为该至少一个第一候选时间单元集合中位于该资源选择窗内的一个候选时间单元,该第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,该第一时间单元为触发资源选择的时间单元,或者该第一时间单元与该触发资源选择的时间单元之间存在时域间隔;该处理单元还用于根据该第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
在一种可能的实施方式中,该第一候选时间单元集合用于第二数据包的周期性传输。
在一种可能的实施方式中,该资源选择窗的起始时间单元为该第一时间单元,该第一候选时间单元与该资源选择窗的起始时间单元之间的间隔大于或等于该M 1个时间单元。
在一种可能的实施方式中,该资源选择窗的起始时间单元在该第一时间单元之后,且与该第一时间单元间隔该M 1个时间单元。
在一种可能的实施方式中,该处理单元具体用于:在资源感知窗内对候选时频资源集合的时频资源进行感知,排除被预留的时频资源,得到时频资源集合;该候选时频资源集合为基于该第二候选时间单元集合确定的,该资源感知窗在该第二候选时间单元集合之前,该资源感知窗的第一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于该M 1,和/或,该资源感知窗的最后一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;在该时频资源集合中确定用于传输该第一数据包的侧行传输资源。
在一种可能的实施方式中,该第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,该处理单元还用于从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
在一种可能的实施方式中,该资源选择窗的最后一个时间单元与该触发资源选择的时间单元之间间隔M 4个时间单元,该M 4等于剩余PDB。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:处理单元,用于根据资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,该第二候选时间单元集合包括至少一个第一候选时间单元,该第一候选时间单元为该资源选择窗内的一个候选时间单元,该第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,该第一时间单元为触发资源选择的时间单元,或者该第一时间单元与该触发资源选择的时间单元之间存在时域间隔;该处理单元还用于根据该第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
在一种可能的实施方式中,该资源选择窗的起始时间单元为该第一时间单元,该第一候选时间单元与该资源选择窗的起始时间单元之间的间隔大于或等于该M 1个时间单元。
在一种可能的实施方式中,该资源选择窗的起始时间单元在该第一时间单元之后,且与该第一时间单元间隔该M 1个时间单元。
在一种可能的实施方式中,该处理单元具体用于:在资源感知窗内对候选时频资源集合的时频资源进行感知,排除预留的时频资源,得到时频资源集合;该候选时频资源集合为基于该第二候选时间单元集合确定的,该资源感知窗在该第二候选时间单元集合之前,该资源感知窗的第一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于该M 1,和/或,该资源感知窗的最后一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;在该时频资源集合中确定用于传输该第一数据包的侧行传输资源。
在一种可能的实施方式中,该第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,该处理单元还用于从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
在一种可能的实施方式中,该资源选择窗的最后一个时间单元与该触发资源选择的时间单元之间间隔M 4个时间单元,该M 4等于剩余PDB。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第二方面以及第二方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信装置,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方面或各可能的实现方式中的方法。
第六方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面或各可能的实现方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第九方面,本申请实施例提供一种装置,包括逻辑电路和输入输出接口,其中,该输入输出接口用于接收来自该装置之外的其他通信装置的信号并传输至该逻辑电路或将来自该逻辑电路的信号发送给该装置之外的其他通信装置,该逻辑电路用于执行代码指令以实现如第一方面、第二方面或各可能的实现方式中的方法。
第十方面,本申请实施例提供一种终端,包括如第三方面、第四方面或各可能的实现方式中的装置。
附图说明
图1是适用于本申请实施例提供的侧行传输方法的通信系统的示意图;
图2为本申请提供的一种基于感知的资源选择示意图;
图3为本申请提供的一种针对周期性传输的资源感知的示意图;
图4为本申请提供的一种针对非周期性传输的资源感知的示意图;
图5为本申请实施例提供的一种侧行传输方法200的示意性流程图;
图6a为本申请实施例提供的一种候选时域资源的示意图;
图6b为本申请实施例提供的另一种候选时域资源的示意图;
图7为本申请实施例提供的另一种候选时域资源的示意图;
图8为本申请实施例提供的一种侧行传输方法300的示意性流程图;
图9a为本申请实施例提供的另一种候选时域资源的示意图;
图9b为本申请实施例提供的另一种候选时域资源的示意图;
图10是本申请实施例提供的通信装置的示意性框图;
图11是本申请实施例提供的通信装置的另一示意性框图;
图12是本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th Generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的通信方法还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的通信方法还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU可以负责处理非实时协议和服务,如,可以实现无线资源控制(radio resource control,RRC)层、业务数据自适应协议(service data adaptation protocol,SDAP)层和/或分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU可以负责可以处理物理层协议和实时服务。例如可以实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。一个DU可以仅连接到一个CU或者连接到多个CU,而一个CU可以连接到多个DU,CU与DU之间可以通过F1接口进行通信。AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于 RRC层的信息最终会被递交至PHY层从而变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。
可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低等特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
应理解,本申请对于网络设备和终端设备的具体形式均不作限定。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的侧行传输方法的通信系统的示意图。如图1所示,通信系统100可以包括至少一个网络设备和多个终端设备,例如图1中所示的网络设备110、终端设备121至124。网络设备110和各终端设备121至124可分别通过无线空口通信,终端设备之间可以通过车用无线通信技术通信。例如图1中所示的终端设备121与终端设备123之间可以相互通信,终端设备122与终端设备124之间也可以相互通信。
应理解,图1仅为示例,示出了终端设备121向终端设备123发送信令和/或数据,以及终端设备122向终端设备124发送信令和/或数据的场景,但这不应对本申请构成任何限定。终端设备121与终端设备123之间也可以有信令和/或数据的交互,终端设备122与终端设备124之间也可以有信令和/或数据的交互。本申请实施例对此不作限定。
还应理解,图1仅为示例,示出了一个网络设备和四个终端设备。但这不应对本申请构成任何限定。该通信系统100还可以包括更多的网络设备,也可以包括更多或更少的终端设备。本申请实施例对此不作限定。
在图1所示的通信系统中,终端设备之间可通过侧行链路来进行数据和信令的传输。终端设备通过侧行链路通信所使用的资源可以由网络设备分配。换言之,网络设备为侧行传输分配资源。例如,图1中的终端设备121可通过网络设备分配的资源向终端设备123发送信令和/或数据,终端设备122可通过网络设备分配的资源向终端设备124发送信令和/或数据。
网络设备例如可以通过如下列举的两种模式为侧行链路分配资源:
模式(mode)1:网络设备可以调度资源给终端设备进行侧行传输。比如,图1中所示的网络设备110可以分别调度资源给终端设备121和终端设备122进行侧行传输。
模式2:终端设备可以从网络设备预配置的资源中选择资源进行侧行传输。比如,图1中的终端设备121和终端设备122可分别从网络设备预配置的资源中选择资源进行侧行传输。
在模式2中,终端设备对资源的选择可以包括如下三种方式:基于感知(full sensing)的资源选择、基于部分感知(partial sensing)的资源选择和随机选择(random selection)。
其中,基于感知的资源选择可以对资源池内的资源进行持续的监听,也即对资源池内每个时隙上的所有资源进行持续感知。结合图2所示,当第一终端设备的高层在时隙n触发物理层进行资源选择时,物理层会根据感知窗
Figure PCTCN2022124570-appb-000001
内的感知结果,在资源选择窗[n+T 1,n+T 2]内确定用于发送的候选资源集合。采用感知的好处在于能够准确且持续的得到资源池内的资源占用情况,可以精确的确定出用于传输的资源,但是基于感知的资源选择需要终端设备持续监听,导致终端功耗较高。
其中,n为触发资源选择的时隙,T 0为基站配置或者预配置的监听时长
Figure PCTCN2022124570-appb-000002
为终端处理感知结果的处理时间,T 1、T 2的取值取决于终端设备的实现,T 1可以满足0≤T1≤Tproc,Tproc的值可以与侧行链路带宽部分(bandwidth part,BWP)的子载波间隔(subcarrier space,SCS)配置μ SL相关。例如,Tproc与μ SL具有如表1中所示的对应关系。
表1
μ SL T proc[单位:时隙]
0 1
1 1
2 2
3 4
表1中,μ SL为0时,对应15k子载波间隔;μ SL为1时,对应30k子载波间隔;μ SL为2时,对应60k子载波间隔;μ SL为3时,对应120k子载波间隔。
T2可以满足T2min≤T2≤TPDB,TPDB为剩余(remianing)包时延预算(packet delay budget,PDB),T2min是基站配置或者预配置的T2的最小值。
进一步的,终端设备的物理层将候选资源集合上报给高层,比如媒体接入控制(media access control,MAC)层。
相比于感知的资源选择,部分感知和不基于任何感知结果的资源随机选择可以降低终端功耗。对于部分感知,又分为基于周期的部分感知(periodic-based partial sensing,PBPS)和连续部分感知(contiguous partial sensing,CPS),一般来说,PBPS可以对资源池中其他终端设备为周期性传输预留的资源进行监听,CPS可以对资源池中其他终端设备为非周期性传输预留的资源进行监听。
具体而言,对于PBPS,终端设备会在如图3所示的资源选择窗[n+T 1,n+T 2]内确定一个候选时隙集合Y。为了保证有足够的资源用于选择,候选时隙集合Y需要大于等于Y min,Y min是由基站配置或者预配置的。集合中的每个候选时隙对于资源池上配置的全部或者部分预留周期(Preserve)都会对应1个或者2个感知机会(sensing occasion),感知机会可以是基站配置或者预配置的,例如图3中候选时隙t y0对应两个预留周期的各两个感知机会,如预留周期为P 1的感知机会t y0-p1和t y0-2p1,以及预留周期为P 2的感知机会t y0-p2和t y0-2p2
结合图3所示,对于CPS,终端设备需要在第一个候选时隙t y0之前的CPS监听窗中监听至少M min个时隙,M min是由基站配置或者预配置的,以满足终端设备通过足够多个监听时隙,保证监听结果的准确性。
终端设备分别基于上述PBPS中的各感知机会和上述CPS中的CPS监听窗,对候选时频资源集合的时频资源进行监听,以排除被资源池中其他终端设备预留或者占用的时频资源,得到最终的时频资源集合,其中,候选时频资源集合为基于候选时隙集合Y确定的,进而,终端设备的物理层将最终的时频资源集合上报给高层,比如MAC层。
由此可见,终端设备针对周期性传输的业务,可以确定具有充足的候选时隙(即 候选时隙数大于或等于Y min),且基于上述PBPS和CPS,能够使终端设备对基于候选时隙集合Y确定的候选时频资源集合,进行充分感知(即监听至少M min个时隙),并在排除已被预留的时频资源后,得到最终的时频资源集合。
然而,对于非周期性传输的业务,由于数据到达的位置无法确定,若使用终端设备针对周期性传输的业务确定的候选时隙集合Y作为非周期性传输的业务的候选时隙集合Y′,无法确保候选时隙集合Y′中的候选时隙均能被充分感知,也即针对候选时隙集合Y′中的候选时隙的监听时间满足最小感知时间的要求(例如监听至少M' min个时隙),也无法确保候选时隙集合Y′中的候选时隙充足,也即候选时隙集合Y′中的候选时隙的数量满足最小候选时隙数(例如候选时隙数大于或等于Y' min)。
需要说明的是M' min和Y' min为针对非周期性传输的约束参数,二者均可以是基站配置的或者预配置的。M' min和M min可以相同也可以不同,Y' min和Y min可以相同也可以不同。
例如,结合图4所示,终端设备的高层在时隙(slot)m触发了物理层对于传输块(transport block,TB1)的资源选择,TB1为周期性传输(即传输周期Prsvp_TX≠0),终端设备在第一资源选择窗中选择候选时隙集合Y,如Y中的候选时隙包括t y0,t y1…t yL。紧接着,终端设备的高层在slot n触发了物理层对于TB2的资源选择,TB2为非周期性传输(即传输周期Prsvp_TX=0))。候选时隙集合Y在slot n之后的第一个候选时隙t y2与第二资源选择窗的起始时隙之间的间隔不满足M' min的要求,并且,由于候选时隙集合Y在在slot n之后剩余的候选时隙过少时,无法满足Y' min的要求。因此,在基于部分感知的资源选择场景中,终端设备如何确定用于非周期性传输的候选时隙集合Y′,以提高非周期性传输的传输可靠性是需要解决的问题。
针对上述问题,本申请实施例中,在终端设备确定的用于非周期性传输的第二候选时间单元集合(如上述候选时隙集合Y′)中,包括至少一个第一候选时间单元,该第一候选时间单元与第一时间单元(例如上述slot n或slot n+T 1)间隔大于或等于M 1(例如上述M' min)个时间单元,使得终端设备可以在第一时间单元之后,感知大于或者等于M 1个时间单元,以对候选时间单元集合Y′中的至少一个第一候选时间单元进行充分感知,提高了非周期性传输的可靠性。
进一步地,在本申请实施例的一些示例中,在第一候选时间单元的数量不能满足Y' min的要求时,终端设备可以对第二候选时间单元集合中的候选时间单元进行补充,例如通过随机选择从第一资源池中确定候选时间单元或者从第一候选时间单元集合(如上述候选时隙集合Y)确定优先级较低的候选时间单元(下文中进行详细说明),使第二候选时间单元集合中的候选时间单元满足Y' min的要求,进一步提高非周期性传输的可靠性。
为便于理解本申请实施例,首先对本申请中涉及到的术语作简单说明。
1、时间单元:比如可以是时隙(slot)、子帧(sub frame)、符号(symbol)、或者其他未来定义的时间单元。需注意,时间单元是时域的一种计量单位,并不一定是最小的时间单元。
在NR中,时隙为调度单元。下文中将以时隙作为时间单元的一例来描述本申请实 施例所提供的方法。可以理解的是,下文实施例中涉及时隙的描述也可以替换为其他的时间单元,如子帧、符号等。本申请实施例对此不作限定。
2、资源池(resource pool)、候选(candidate)时频资源集合、时频资源集合:资源池是网络设备预先分配给终端设备使用的资源的集合。该资源池可以是为多个终端设备配置的,该多个终端设备可以基于资源感知、部分资源感知或随机选择的方式从该资源池中选择资源,以用于侧行传输。
候选时频资源集合是由终端设备从资源池中确定的可用于侧行传输的候选资源的集合,该候选时频资源集在时域上可以通过候选时间单元集合表述,也即候选时间单元集合中的候选时间单元为候选时频资源集合的时域约束,候选时频资源集合在频域上可以等于上述资源池的频域范围,具体地,在每个候选时隙对应频域范围中,每L subCH个连续的子信道(sub channel)可以作为一个候选资源,所有候选时隙时域和频域范围内对应的候选资源组成候选资源集合。该L subCH是由终端高层通知给该终端的物理层。
本申请实施例中,上述候选时间单元集合包括用于周期性传输的候选时间单元集合(同第一候选时间单元集合)和用于非周期性传输的候选时间单元集合(同第二候选时间单元集合)。
其中,用于周期性传输的候选时间单元集合是由终端设备从该周期性传输的触发资源选择的时间单元对应的资源选择窗中确定的,假设该周期性传输的触发资源选择的时间单元为m,资源选择窗例如可以是[m+T 1,m+T 2]。
用于非周期性传输的候选时间单元集合是由终端设备从该非周期性传输的触发资源选择的时间单元对应的资源选择窗中确定的。具体而言,用于非周期性传输的候选时间单元集合可以是后文结合图5所描述的方法200中根据至少一个第一候选时间单元集合和资源选择窗确定的候选时间单元集合,也可以是后文结合图8所描述的方法300中根据资源选择窗确定的候选时间单元集合。该非周期性传输的触发资源选择的时间单元对应的资源选择窗可以是后文结合图5所描述的方法200或图8所描述的方法300中描述的任一资源选择窗。
时频资源集合是由终端设备基于资源感知结果从资源池确定的可用于侧行传输的资源。在本申请实施例中,该时频资源集合可以是从候选时频资源集合中确定的资源。换言之,时频资源集合是候选时频资源集的子集。
在一种实现方式中,终端设备的物理层可以对候选时频资源集合(如后文实施例中的基于第二候选时间单元集合确定的候选时频资源集合)中确定时频资源集合,并将该时频资源集合上报给高层,比如MAC层。MAC层可以进一步从该时频资源集合中选择用于侧行传输的资源。随后,MAC层可以将选择的资源指示给物理层,物理层进而通过该资源进行侧行传输。
还应理解的是,上述候选时频资源集合也称作初始候选时频资源集合,上述时频资源集合也称作候选时频资源集合。
为便于理解本申请实施例,做出如下几点说明。
第一,在下文示出的实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的时间单元、不同的候 选时间单元集合等。
第二,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第三,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第四,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
第五,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
第六,本申请实施例中第一终端设备确定传输数据包的侧行传输资源,也即从候选时频资源集合中选择用于传输数据包的侧行传输资源。下文中“确定”和“选择”交替使用,其所表达的含义是相同的。
下面将结合附图对本申请实施例提供的侧行传输方法做详细说明。
应理解,下文仅为便于理解和说明,以执行主体为第一终端设备为例进行说明,本申请实施例中第一终端设备可以向其他设备(例如第二终端设备)传输侧行数据,例如当第一终端设备为图1中的终端设备121时,第二终端设备可以是图1中的终端设备123,或者,第一终端设备可以是图1中的终端设备122时,第二终端设备可以是图1中的终端设备124。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的第一终端设备也可以替换为该第一终端设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。
图5为本申请实施例提供的一种侧行传输方法200的示意性流程图。如图2所示,该方法200可以包括S210和S220。下面对方法200中的各个步骤做详细说明。
S210,第一终端设备根据至少一个第一候选时间单元集合和资源选择窗确定用于非周期性传输的第二候选时间单元集合。
该第二候选时间单元集合包括至少一个第一候选时间单元,该第一候选时间单元为至少一个第一候选时间单元集合中位于资源选择窗内的一个候选时间单元,该第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,该第一时间单元为所述触发资源选择的时间单元,或者该第一时间单元与触发资源选择的时间单元之间存在时域间隔;
S220,第一终端设备根据该第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
需要说明的是,第一候选时间单元集合可以用于第二数据包的周期性传输,该第一候选时间单元集合例如可以是前述示例中的候选时隙集合Y。但这不应理解为对本申请的限定,例如第一候选时间单元集合还可以是用于非周期性传输的候选时间单元集合。其中,第二数据包可以包括侧行传输的信令和/或数据,例如第二数据包可以是TB(例如前述TB1),本申请实施例对第二数据包的具体内容不做限定。
以第一候选时间单元集合用于第二数据包的周期性传输为例,在资源池内使能周期性传输时,第一终端设备可以选择资源池的任一预留周期进行第二数据包的周期性传输,当第一终端设备需要发送多个周期性传输的数据包时,可以为每个周期性传输分别选择预留周期,且各周期性传输选择的预留周期可以相同也可以不同。
进一步的,第一终端设备可以针对每个周期性传输,确定一个第一候选时间单元集合,使得第一终端设备可以在部分感知场景中,如前所述的基于PBPS对其他终端设备在资源池内的周期性预留进行感知,还可以基于CPS对其他终端设备的非周期性预留进行感知。
在上述S210中,为了使用于非周期性传输的候选时间单元能够被充分感知,第一终端设备确定的第二候选时间单元集合中的至少一个第一候选时间单元,应与第一时间单元之间间隔大于或等于M 1个时间单元。
其中,M 1可以是预定义的、预配置的或者协议定义的。例如,M 1可以是预先保存在第一终端设备中的,或者M 1可以是网络设备向第一终端设备发送信令进行预配置的,或者M 1可以是协议中定义的,如NR协议等。可选的,M 1可以是上述M' min,或者大于上述M' min,M' min是用于非周期传输的最小连续监听时隙数。
在第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元的基础上,还应理解的是,本申请实施例中的第一候选时间单元是至少一个第一候选时间单元集合中位于资源选择窗内的一个时间单元。换言之,第一终端设备从第一候选时间单元集合中位于资源选择窗内的候选时间单元中,确定其中满足与第一时间单元之间间隔大于或等于M 1个时间单元的候选时间单元,将其确定为第一候选时间单元。
需要说明的是,第一时间单元与触发资源选择的时间单元相关,例如第一时间单元可以是触发资源选择的时间单元(T 1=0),如上述slot n,或者第一时间单元可以与触发资源选择的时间单元间隔T 1个时间单元。前已述及,T 1可以满足0≤T 1≤T proc,且T proc的值可以与BWP的SCS配置μ SL相关。将n+T 1作为第一时间单元相比于将n作为第一时间单元的可以为终端提供额外的处理时间用于感知前的准备。第一时间单元与第一候选时间单元集合不相关,不应理解为第一时间单元是第一候选时间单元集合中的候选时间单元,但第一时间单元可以与第一候选时间单元集合中的候选时间单元 具有相同的时域位置。
上述S210中,为了使第一候选时间单元和第一时间单元之间的间隔大于或等于M 1个时间单元,至少可以包括以下两种可能的实现方式:
方式一、资源选择窗的起始时间单元为上述第一时间单元,第二候选时间单元集合的第一个第一候选时间单元与资源选择窗的起始时间单元之间的间隔大于或等于M 1个时间单元。此种情况下,第一终端设备从至少一个第一候选时间单元集合中位于资源选择窗内的候选时间单元中确定第一候选时间单元,该第一候选时间单元包含于第二候选时间单元集合。
结合图6a所示,在slot m触发资源选择的第一候选时间单元集合,其包括的候选时间单元包括t y0、t y1至t yL,当第一终端设备的高层在slot n触发物理层进行非周期性传输的资源选择时,资源选择窗为[n+T 1,n+T 2]的一段时域,其中,第一候选时间单元集合中的t y2至t yL位于该资源选择窗内,并且t y3t yL与资源选择窗的起始时间单元之间的间隔均大于或等于M 1个时间单元,则第一终端设备确定t y3至t yL均为第一候选时间单元,且t y3至t yL包含于第二候选时间单元集合。
方式二、资源选择窗的起始时间单元在第一时间单元之后,且与第一时间单元间隔M 1个时间单元。此种情况下,第一终端设备确定至少一个第一候选时间单元集合中位于资源选择窗内的候选时间单元均为第一候选时间单元,该第一候选时间单元包含于第二候选时间单元集合。
结合图6b所示,在slot m触发资源选择的第一候选时间单元集合,其包括的候选时间单元包括t y0、t y1至t yL,当第一终端设备的高层在slot n触发物理层进行非周期性传输的资源选择时,资源选择窗为[n+T 1+M 1,n+T 2]的一段时域,其中,第一候选时间单元集合中的t y3至t yL位于该资源选择窗内,由于t y3至t yL与第一时间单元之间的间隔均大于或等于M 1个时间单元,则第一终端设备确定t y3至t yL均为第一候选时间单元,且t y3至t yL包含于第二候选时间单元集合。
基于上述方式一或方式二,第一终端设备均可以从第一候选时间单元集合中位于资源选择窗内的时间单元中确定出能够被充分感知的第一候选时间单元,也即第一终端设备确定的第一候选时间单元可以满足即M 1个时间单元的要求。
上述方式一和方式二仅以一个第一候选时间单元集合为例进行了说明,下面针对存在多个第一候选时间单元集合的场景,对上述两种实现方式进行说明。
例如,至少一个第一候选时间单元集合包括第一候选时间单元集合Y 1和第一候选时间单元集合Y 2
结合图7所示,第一候选时间单元集合Y 1用于为slot m触发的资源选择提供候选时间单元,第一候选时间单元集合Y 1中的时间单元包括t y(1,0)、t y(1,1)至t y(1,L);第二候选时间单元集合Y 2为slot i触发的资源选择提供候选时间单元,第二候选时间单元集合Y 2中的时间单元包括t y(2,0)、t y(2,1)至t y(2,P)
针对于上述方式一、本实施例中的资源选择窗可以为图7中的资源选择窗1,即资源选择窗的起始时间单元为第一时间单元,第二候选时间单元集合的第一个第一候选时间单元与资源选择窗的起始时间单元之间的间隔大于或等于M 1个时间单元。
结合图7所示,当第一终端设备的高层在slot n触发物理层进行非周期性传输的资源选择时,资源选择窗为[n+T 1,n+T 2]的一段时域。其中,第一候选时间单元集合Y 1中的t y(1,2)至t y(1,L)位于该资源选择窗内,并且t y(1,L-1)和t y(1,L)与资源选择窗的起始时间单元之间的间隔大于或等于M 1个时间单元,则第一终端设备确定t y(1,L-1)和t y(1,L)为第一候选时间单元,其中t y(1,L-1)对应第二候选资源集合中的t y2',t y(1,L)对应第二候选资源集合中的t y3';第一候选时间单元集合Y 2中的t y(2,0)至t y(2,P-1)位于该资源选择窗内,并且t y(2,1)至t y(2,P-1)与资源选择窗的起始时间单元之间的间隔均大于或等于M 1个时间单元,则第一终端设备确定t y(2,1)至t y(2,P-1)为第一候选时间单元,其中,t y(2,1)对应第二候选资源集合中的t y0',t y(2,2)对应第二候选资源集合中的t y1',t y(2,3)对应第二候选资源集合中的t y3',t y(2,P-1)对应第二候选资源集合中的t yL'
针对于上述方式二、本实施例中的资源选择窗可以为图7中的资源选择窗2,即资源选择窗的起始时间单元在第一时间单元之后,且与第一时间单元间隔M 1个时间单元。此种情况下,第一终端设备确定第一候选时间单元集合Y 1和Y 2中位于资源选择窗内的候选时间单元均为第一候选时间单元。
结合图7所示,当第一终端设备的高层在slot n触发物理层进行非周期性传输的资源选择时,资源选择窗为[n+T 1+M 1,n+T 2]的一段时域,其中,第一候选时间单元集合中Y 1的t y(1,L-1)和t y(1,L)位于该资源选择窗内,由于t y(1,L-1)和t y(1,L)与第一时间单元之间的间隔均大于或等于M 1个时间单元,则第一终端设备确定t y(1,L-1)和t y(1,L)均为第一候选时间单元,其中t y(1,L-1)对应第二候选资源集合中的t y2',t y(1,L)对应第二候选资源集合中的t y3';第一候选时间单元集合Y 2中的t y(2,1)至t y(2,P-1)位于该资源选择窗内,并且t y(2,1)至t y(2,P-1)与资源选择窗的起始时间单元之间的间隔均大于或等于M 1个时间单元,则第一终端设备确定t y(2,1)至t y(2,P-1)为第一候选时间单元,其中,t y(2,1)对应第二候选资源集合中的t y0',t y(2,2)对应第二候选资源集合中的t y1',t y(2,3)对应第二候选资源集合中的t y3'
t y(2,P-1)对应第二候选资源集合中的t yL'
需要说明的是,若第一候选时间单元集合Y 1和Y 2包括相同的候选时间单元,如时间单元t y(1,L)和t y(2,3),第一候选时间单元集合Y 1和Y 2均对应第二候选时间单元集合中的第一候选时间单元t y3'
还应理解的是,第一候选时间单元集合Y 1中的候选时间单元t y(1,3)和t y(1,L-1)之间还可以包括其他候选时间单元,且t y(1,3)和t y(1,L-1)之间的候选时间单元在满足与第一时间单元之间的间隔大于或等于M 1时,第一终端设备也将其确定为第一候选时间单元,与此类似的,第一候选时间单元集合Y 2中的t y(2,3)和t y(2,P-1)之间还可以包括其他候选时间单元,这些时间单元与第一时间单元之间的间隔也大于或等于M 1,第一终端设备也将其确定为第一候选时间单元。
在一些实施例中,为了确保第二候选时间单元集合中具有充足的候选时间单元,第一终端设备确定的第二候选时间单元集合中的候选时间单元的数量需要大于或等于预设值Y。
应理解,预设值Y可以是预定义的、预配置的或者协议定义的。例如,Y可以是预先保存在第一终端设备中的,或者Y可以是网络设备向第一终端设备发送信令进行预配置的,或者Y可以是协议中定义的,如NR协议等。可选的,Y可以是上述Y' min,或者大于上述Y' min,Y' min是最小的候选时隙个数。
作为一种示例,当第二候选时间单元集合中的至少一个第一候选时间单元的数量小于预设值Y时,第一终端设备可以从至少一个第一候选时间单元集合中确定至少一个第二候选时间单元,用于补充第二候选时间单元集合中的候选时间单元。
第二候选时间单元例如可以属于资源选择窗和至少一个第一候选时间单元集合的,并且第二候选时间单元与第一时间单元之间的间隔小于M 1个时间单元。
以图6a和图7为例,在图6a中,时间单元t y2属于第一候选时间单元集合,也在资源选择窗内,并且,时间单元t y2与第一时间单元之间的间隔小于M 1个时间单元,则时间单元t y2为第二候选时间单元;在图7中,第一候选时间单元集合Y 1中的时间单元t y(1,2)和t y(1,3)、第一候选时间单元集合Y 2中时间单元t y(2,0)均位于资源选择窗内,并且时间单元t y(1,2)、t y(1,3)和t y(2,0)与第一时间单元之间的间隔均小于M 1个时间单元,则时间单元t y(1,2)、t y(1,3)和t y(2,0)均为第二候选时间单元。
需要说明的是,若第一候选时间单元集合Y 1和Y 2包括相同的候选时间单元,如时间单元t y(1,3)和t y(2,0),第一候选时间单元集合Y 1和Y 2在第二候选时间单元集合中对应同一个第二候选时间单元。
假设第二候选时间单元集合中的至少一个第一候选时间单元的数量为n个,第二候选时间单元集合中包括的至少一个第二候选时间单元的数量w可以等于Y-n,或者大于Y-n。例如,在w需要等于Y-n时,若第一终端设备确定的第二候选时间单元的数量w'大于所需的第二候选时间单元的数量w,则第一终端设备从w'个第二候选时间单元中确定w个第二候选时间单元。例如,在图7中,第一候选时间单元集合Y 1中的时间单元t y(1,2)和t y(1,3)均可以是第二候选时间单元,在第二候选时间单元集合中仅包括一个第二候选时间单元时,第一终端设备可以将与第一时间单元距离更远的t y(1,3)确定为第二候选时间单元集合中的第二候选时间单元。再例如,在w需要等于Y-n时,若第一终端设备确定的第二候选时间单元的数量w'小于所需的第二候选时间单元的数量w,则第一终端设备可以从第一资源池随机选择w-w'个时间单元,从第一资源池随机选择w-w'个时间单元可以确定为第二候选时间单元,或者确定为第二候选时间单元集合中的第三候选时间单元。
可选的,第一资源池可以是特殊资源池(exceptional resource pool),一般来说,该特殊资源池是网络设备预配置的,用于在终端设备没有足够的资源感知结果时使用的资源池。
在一些实施例中,若第一候选时间单元集合位于资源选择窗内的时间单元中,满足与第一时间单元间隔大于或等于M 1的候选时间单元的数量大于预设值Y,则可以将这些候选时间单元中的全部或者部分确定为第二候选时间单元集合中的第一候选时间单元。
需要说明的是,第二候选时间单元集合中的第二候选时间单元的优先级低于第一候选时间单元。例如,第一终端设备优先使用第二候选时间单元集合中的第一候选时间单元上的资源进行侧行传输,在第一候选时间单元被预留或者被占用时使用第二候选时间单元集合中的第二候选时间单元上的资源进行侧行传输。
可选的,至少一个第一候选时间单元和至少一个第二候选时间单元可以分别作为独立的候选时间单元集合。
可选的,第三候选时间单元的优先级可以高于第二候选时间单元的优先级或者低于第二候选时间单元的优先级,本申请实施例对此不作限定。
作为另一种示例,当第二候选时间单元集合中的至少一个第一候选时间单元的数量小于预设值Y时,假设至少一个第一候选时间单元的数量为n,第一终端设备可以从第一资源池中随机选择m个时间单元,实现对第二候选时间单元集合中候选时间单元的补充。其中,m与n之和大于或等于Y。
在上述任一实施例中,资源选择窗的最后一个时间单元均以n+T 2为例,应理解的是,本申请实施例中资源选择窗的最后一个时间单元还可以是n+M 4,其中,M 4等于remaining PDB。例如,图6a所示实施例中的资源选择窗和图7所示实施例中的资源选择窗1,均可以是[n+T 1,n+remainingPDB],在图6b所示实施例中的资源选择窗和图7所示实施例中的资源选择窗2,均可以是[n+T 1+M 1,n+remainingPDB]。
需要说明的是,如前所述,remaining PDB为T 2的最大值,当资源选择窗的最后一个时间单元为n+M 4时,资源选择窗具有更大的时域范围,也即第一候选时间单元集合中有更多的候选时间单元位于资源选择窗中,此种情况下,第二候选时间单元集合中的第一候选时间单元的数量更多,有利于第一终端设备传输侧行数据时进行资源选择,提高侧行传输的可靠性。
针对上述S220需要说明的是:
前已述及,第二候选时间单元集合可以是对候选时频资源集合的时域表征或约束。例如,第一终端设备可以根据第一候选时间单元集合和预设的子信道数,确定候选时频资源集合。
示例性的,第一终端设备可以在资源感知窗内对候选时频资源集合的时频资源进行感知,排除被预留的时频资源,得到时频资源集合,进一步地,第一终端设备在时频资源集合中确定用于传输第一数据包的侧行传输资源。其中,第一数据包可以包括侧行传输的信令和/或数据,本申请实施例对第一数据包的具体内容不做限定。
示例性的,第一终端设备可以在资源感知窗内获取其他终端设备发送的侧行控制信息(sidelink control information,SCI),第一终端设备可以根据获取到的SCI确定对应的终端设备是否预留了候选时频资源集合中的时频资源。
需要说明的是,为了使候选时频资源集合中的时频资源进行充分的感知,本实施例中的资源感知窗在第二候选时间单元集合之前,且资源感知窗的第一个时间单元与第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于M 1,和/或,资源感知窗的最后一个时间单元与第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间。
可选的,处理时间例如可以是T proc,0和T proc,1之和。T proc,0和T proc,1是协议定义的,且 与子载波间隔SCS有关的时隙个数,例如T proc,0与μ SL具有如下表2中所示的对应关系,T proc,1与μ SL具有如下表3所示的对应关系。T proc,0是终端处理感知结果时间,T proc,1是终端资源选择和/或数据准备的时间。
表2
Figure PCTCN2022124570-appb-000003
表3
Figure PCTCN2022124570-appb-000004
示例性的,表2和表3中,μ SL为0时,对应15k子载波间隔;μ SL为1时,对应30k子载波间隔;μ SL为2时,对应60k子载波间隔;μ SL为3时,对应120k子载波间隔。
例如,结合图6a所示,资源感知窗为[t y0'-M 2,t y0'-M 3],第一终端设备基于该资源感知窗,可以对t y3至t yL上的候选时频资源集合进行感知。图6b和图7中的资源感知窗与之具有相同或相似的实现方式,此处不再赘述。
在一些实施例中,资源池可以使能资源的重评估和/或抢占评估以提高资源的可靠性。
因此,本申请实施例中,第一终端设备从第一候选时间单元集合位于资源选择窗内的候选时间单元中确定出用于非周期性传输的第二候选时间单元集合,该第二候选时间单元集合中的至少一个第一候选时间单元与第一时间单元之间均间隔大于或等于M 1个时间单元,使得第一终端设备可以在第一时间单元之后,感知大于或者等于M 1个时间单元,以对第二候选时间单元集合中的至少一个第一候选时间单元进行充分感知,提高了非周期性传输的可靠性。
在图5所示实施例以及其相关实现方式中,均假设资源池内使能有周期性传输。当资源池内未使能周期性传输时,资源池内不存在周期预留,那么在部分感知场景下,第一终端设备仅需要进行CPS,不需要进行PBPS。并且,第一终端设备自身也不进行周期性传输,即不存在第一候选时间单元集合。此种情况下,本申请实施例提供如下图8所示实施例以及相关实现方式,对如何确定用于非周期性传输的第二候选时间单 元集合进行说明。
图8为本申请实施例提供的一种侧行传输方法300的示意性流程图。如图8所示,该方法300可以包括S310和S320。下面对方法300中的各个步骤做详细说明。
S310,第一终端设备根据资源选择窗确定用于非周期性传输的第二候选时间单元集合;
其中,该第二候选时间单元集合包括至少一个第一候选时间单元,该第一候选时间单元为该资源选择窗内的时间单元,该第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,该第一时间单元为触发资源选择的时间单元,或者该第一时间单元与触发资源选择的时间单元之间存在时域间隔;
S320,第一终端设备根据所第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
与图5所示实施例类似的,在上述S210中,为了使用于非周期性传输的候选时间单元能够被充分感知,第一终端设备确定的第二候选时间单元集合中的至少一个第一候选时间单元,应与第一时间单元之间间隔均大于或等于M 1个时间单元。
其中,M 1可以是预定义的、预配置的或者协议定义的。例如,M 1可以是预先保存在第一终端设备中的,或者M 1可以是网络设备向第一终端设备发送信令进行预配置的,或者M 1可以是协议中定义的,如NR协议等。可选的,M 1可以是上述M' min,或者大于上述M' min,M' min是用于非周期传输的最小连续监听时隙数。
第一时间单元在与图5所示实施例已经说明,此处不再赘述。
需要说明的是,资源选择窗内的时间单元可以是连续的时间单元,例如连续的时隙,也可以是不连续的时间单元,本申请对此不做限定。
上述S310中,为了使第一候选时间单元和第一时间单元之间的间隔大于或等于M 1个时间单元,至少可以包括以下两种可能的实现方式:
方式一、资源选择窗的起始时间单元为上述第一时间单元,第二候选时间单元集合的第一个第一候选时间单元与资源选择窗的起始时间单元之间的间隔大于或等于M 1个时间单元。此种情况下,第一终端设备从资源选择窗内的时间单元中确定第一候选时间单元,该第一候选时间单元包含于第二候选时间单元集合。
结合图9a所示,当第一终端设备的高层在slot n触发物理层进行非周期性传输的资源选择时,资源选择窗为[n+T 1,n+T 2]的一段时域,第一终端设备可以将资源选择窗内位于n+T 1+M 1之后的时间单元(如t y0'至t yL')确定为第一候选时间单元,且t y0'至t yL'包含于第二候选时间单元集合。
方式二、资源选择窗的起始时间单元在第一时间单元之后,且与第一时间单元间隔M 1个时间单元。此种情况下,第一终端设备确定资源选择窗内的时间单元均为第一候选时间单元,在一些实施例中,第一终端设备也可以确定资源选择窗内的部分时间单元为第一候选时间单元,该第一候选时间单元包含于第二候选时间单元集合。
结合图9b所示,当第一终端设备的高层在slot n触发物理层非周期性传输的资源选择时,资源选择窗为[n+T 1+M 1,n+T 2]的一段时域,第一终端设备可以将资源选择窗内的全部时间单元(如t y0'至t yL')确定为第一候选时间单元,且t y0'至t yL'包含于第二候 选时间单元集合。
基于上述方式一或方式二,第一终端设备均可以从资源选择窗内的时间单元中确定出能够被充分感知的第一候选时间单元,也即第一终端设备确定的第一候选时间单元可以满足M 1个时间单元的要求。
在一些实施例中,当第二候选时间单元集合中的至少一个第一候选时间单元的数量小于预设值Y时,假设至少一个第一候选时间单元的数量为n,第一终端设备可以从第一资源池中随机选择m个时间单元,实现对第二候选时间单元集合中候选时间单元的补充。其中,m与n之和大于或等于Y。
可选的,该第一资源池可以是上述特殊资源池。
可选的,第一终端设备可以将从第一资源池中随机选择的候选时间单元作为优先级较低的候选时间单元。例如,第一终端设备优先使用第二候选时间单元集合中的第一候选时间单元上的资源进行侧行传输,在第一候选时间单元被预留或者被占用时使用第二候选时间单元集合中的第二候选时间单元上的资源进行侧行传输。
可选的,至少一个第一候选时间单元和至少一个第二候选时间单元可以分别作为独立的候选时间单元集合。
与图5所示实施例类似的,本实施例中的资源选择窗的最后一个时间单元均以n+T 2为例,应理解的是,本实施例中资源选择窗的最后一个时间单元还可以是n+M 4,其中,M 4等于remaining PDB。例如,图9a所示实施例中的资源选择窗可以是[n+T 1,n+remainingPDB],在图9b所示实施例中的资源选择窗可以是[n+T 1+M 1,n+remainingPDB]。
其要实现的技术效果与图5所示实施例相同或者相似,此处不再赘述。
在上述S320中,通常通过第一终端设备在资源感知窗内对候选时频资源集合中的时频资源进行感知,排除其他终端设备预留的时频资源,得到时频资源集合,并在该时频资源集合中确定用于传输第一数据包的侧行传输资源。然而为了提高感知结果的可靠性,本申请实施例中的资源感知窗在第二候选时间单元集合之前,且资源感知窗的第一个时间单元与第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于M 1,和/或,资源感知窗的最后一个时间单元与第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间。
可选的,处理时间例如可以是T proc,0和T proc,1之和。T proc,0和T proc,1是与协议定义的,且与子载波间隔SCS有关的时隙个数。T proc,0是终端处理感知结果时间,T proc,1是终端资源选择和/或数据准备的时间。
例如,结合图9a所示,资源感知窗为[t y0'-M 2,t y0'-M 3],第一终端设备基于该资源感知窗,可以对t y0'至t yL'上的候选时频资源集合进行感知。图9b中的资源感知窗与之具有相同或相似的实现方式,此处不再赘述。
上述S320中的相关实现方式均可以参见图5所示实施例中的S220,二者具有相同或者相似的实现方式,此处不再赘述。
因此,本申请实施例中,第一终端设备从资源选择窗确定的用于非周期性传输的第二候选时间单元集合,包括至少一个第一候选时间单元,且该第一候选时间单元与 第一时间单元间隔大于或等于M 1个时间单元,使得第一终端设备可以在第一时间单元之后,感知大于或者等于M 1个时间单元,以对第二候选时间单元集合中的至少一个第一候选时间单元进行充分感知,提高了非周期性传输的可靠性。
本申请实施例还提供一种可能的实现方式,以实现确定用于非周期性传输的第二候选时间单元集合。在如下S410至S470中,tyi为至少一个第一候选时间单元集合中位于资源选择窗的任意一个时间单元:
S410,第一终端设备确定tyi是否为至少一个第一候选时间单元集合中的第一个候选时间单元ty0。
若tyi为ty0,则执行S420,若tyi不为ty0,则执行S430。
S420,第一终端设备确定第二候选时间单元集合包括该至少一个第一候选时间单元集合中的全部候选时间单元(例如ty0至tyL),也即至少一个第一候选时间单元集合等于第二候选时间单元集合。
需要说明的是,至少一个第一候选时间单元集合中的第一个候选时间单元ty0位于资源选择窗中的情况下,第二候选时间单元集合与至少一个第一候选时间单元集合相等,第二候选时间单元可以利用至少一个第一候选时间单元集合的CPS感知结果,提高资源感知的准确性。
S430,第一终端设备确定第二候选时间单元集合中的位于资源选择窗内的时间单元tyi是否有对应的重评估/抢占评估的感知结果。
若tyi有对应的重评估/抢占评估的感知结果,则执行S440,否则执行S450。
S440,第一终端设备确定第二候选时间单元集合包括该至少一个第一候选时间单元集合中从时间单元tyi开始的全部时间单元。
此种情况下,第二候选时间单元集合可以利用tyi的重评估/抢占评估的感知结果。
S450,第一终端设备确定tyi与第一时间单元之间的间隔是否大于或者等于M 1
若tyi与第一时间单元之间的间隔是否大于或者等于M 1,则执行S460,否则执行S470。
S460,第一终端设备确定第二候选时间单元集合包括该至少一个第一候选时间单元集合中从时间单元tyi开始的全部时间单元。
此种情况下,第二候选时间单元中的每个候选时间单元均与第一时间单元间隔大于或者等于M 1个时间单元。
S470,第一终端设备确定该tyi不包含于第二候选时间单元集合。
本实施例中,第一终端设备可以按照上述S410至S470中的部分或者全部过程对至少一个第一候选时间单元集合中的每个时间单元进行确定,直至确定出第二候选数据单元集合时结束。
以上,结合图5至图9b详细说明了本申请实施例提供的方法。以下,结合图10至图11详细说明本申请实施例提供的装置。
图10是本申请实施例提供的通信装置的示意性框图。如图10所示,该装置500可以包括:处理单元510。
可选地,该通信装置500可对应于上文方法实施例中的第一终端设备,例如,可以为第一终端设备,或者配置于第一终端设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置500可对应于根据本申请实施例的方法200或方法300中的第一终端设备,该通信装置500可以包括用于执行图5中的方法200或图8中的方法300中第一终端设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图5中的方法200或图8中的方法300的相应流程。
其中,当该通信装置500用于执行图5中的方法200时,处理单元510可以用于根据至少一个第一候选时间单元集合和资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,该第二候选时间单元集合包括至少一个第一候选时间单元,该第一候选时间单元为该至少一个第一候选时间单元集合中位于该资源选择窗内的一个候选时间单元,该第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,该第一时间单元为触发资源选择的时间单元,或者该第一时间单元与该触发资源选择的时间单元之间存在时域间隔;该处理单元510还用于根据该第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
在一些实施例中,通信装置500还包括收发单元520,该收发单元520用于在该侧行传输资源上传输第一数据包。
在一些实施例中,该第一候选时间单元集合用于第二数据包的周期性传输。
在一些实施例中,该资源选择窗的起始时间单元为该第一时间单元,该第一候选时间单元与该资源选择窗的起始时间单元之间的间隔大于或等于该M 1个时间单元。
在一些实施例中,该资源选择窗的起始时间单元在该第一时间单元之后,且与该第一时间单元间隔该M 1个时间单元。
在一些实施例中,该处理单元510具体用于:在资源感知窗内对候选时频资源集合的时频资源进行感知,排除被预留的时频资源,得到时频资源集合;该候选时频资源集合为基于该第二候选时间单元集合确定的,该资源感知窗在该第二候选时间单元集合之前,该资源感知窗的第一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于该M 1,和/或,该资源感知窗的最后一个时间单元与该第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;在该时频资源集合中确定用于传输该第一数据包的侧行传输资源。
在一些实施例中,该第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,该处理单元还用于从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
在一些实施例中,该资源选择窗的最后一个时间单元与该触发资源选择的时间单元之间间隔M 4个时间单元,该M 4等于剩余PDB。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500用于执行图8中的方法300时,处理单元510可用于根据资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,所述第二候选时间单元集合包括至少一个第一候选时间单元,所述第一候选时间单元为所述资源选择窗内的一个候选时间单元,所述第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,所述第一时间单元为触发资源选择的时间单元,或者 所述第一时间单元与所述触发资源选择的时间单元之间存在时域间隔;所述处理单元510还用于根据所述第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
在一些实施例中,所述资源选择窗的起始时间单元为所述第一时间单元,所述第一候选时间单元与所述资源选择窗的起始时间单元之间的间隔大于或等于所述M 1个时间单元。
在一些实施例中,所述资源选择窗的起始时间单元在所述第一时间单元之后,且与所述第一时间单元间隔所述M 1个时间单元。
在一些实施例中,所述处理单元510具体用于:在资源感知窗内对候选时频资源集合的时频资源进行感知,排除预留的时频资源,得到时频资源集合;所述候选时频资源集合为基于所述第二候选时间单元集合确定的,所述资源感知窗在所述第二候选时间单元集合之前,所述资源感知窗的第一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于所述M 1,和/或,所述资源感知窗的最后一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;在所述时频资源集合中确定用于传输所述第一数据包的侧行传输资源。
在一些实施例中,所述第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,所述处理单元还用于从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
在一些实施例中,所述资源选择窗的最后一个时间单元与所述触发资源选择的时间单元之间间隔M 4个时间单元,所述M 4等于剩余PDB。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500为终端设备(如第一终端设备)时,该通信装置500中的收发单元520可以通过收发器实现,例如可对应于图11中所示的通信装置设备600中的收发器620、或图12中示出的终端设备700中的收发器720,该通信装置600中的处理单元610可通过至少一个处理器实现,例如可对应于图11中示出的通信装置600中的处理器610、或图12中示出的终端设备700中的处理器710。
当该通信装置500为配置于中的设备(如第一终端设备)中的芯片或芯片系统时,该通信装置500中的收发单元520可以通过输入/输出接口、电路等实现,该通信装置500中的处理单元510可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图11是本申请实施例提供的通信装置的另一示意性框图。如图11所示,该装置600可以包括:处理器610、收发器620和存储器630。其中,处理器610、收发器620和存储器630通过内部连接通路互相通信,该存储器630用于存储指令,该处理器610用于执行该存储器630存储的指令,以控制该收发器620发送信号和/或接收信号。
应理解,该通信装置600可以对应于上述方法实施例中的第一终端设备,并且可以用于执行上述方法实施例中第一终端设备执行的各个步骤和/或流程。可选地,该存储器630可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器630可以是一个单独的器件, 也可以集成在处理器610中。该处理器610可以用于执行存储器630中存储的指令,并且当该处理器610执行存储器中存储的指令时,该处理器610用于执行上述与第一终端设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置600是前文实施例中的第一终端设备。
其中,收发器620可以包括发射机和接收机。收发器620还可以进一步包括天线,天线的数量可以为一个或多个。该处理器610和存储器630与收发器620可以是集成在不同芯片上的器件。如,处理器610和存储器630可以集成在基带芯片中,收发器620可以集成在射频芯片中。该处理器610和存储器630与收发器620也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置600是配置在第一终端设备中的部件,如芯片、芯片系统等。
其中,收发器620也可以是通信接口,如输入/输出接口、电路等。该收发器620与处理器610和存储器620都可以集成在同一个芯片中,如集成在基带芯片中。
图12是本申请实施例提供的终端设备的结构示意图。该终端设备可应用于如图1所示的系统中。如图12所示,该终端设备700包括处理器710和收发器720。可选地,该终端设备700还包括存储器730。其中,处理器710、收发器720和存储器730之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器730用于存储计算机程序,该处理器710用于从该存储器730中调用并运行该计算机程序,以控制该收发器720收发信号。可选地,终端设备700还可以包括天线740,用于将收发器720输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器710可以和存储器730可以合成一个处理装置,处理器710用于执行存储器730中存储的程序代码来实现上述功能。具体实现时,该存储器730也可以集成在处理器710中,或者独立于处理器710。该处理器710可以与图10中的处理单元510或图11中的处理器610对应。
上述收发器720可以与图10中的收发单元520或图11中的收发器620对应。收发器720可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
可选地,上述终端设备700还可以包括电源750,用于给终端设备700中的各种器件或电路提供电源。
除此之外,为了使得该终端设备的功能更加完善,该终端设备700还可以包括输入单元760、显示单元770、音频电路780、摄像头790和传感器800等中的一个或多个,所述音频电路还可以包括扬声器780a、麦克风780b等。
应理解,图10所示的终端设备700能够实现图5和图8所示方法实施例中涉及第一终端设备的各个过程。终端设备700中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
当终端设备700用于执行上文方法实施例中涉及第一终端设备的操作流程时,处理器710可以用于执行前面方法实施例中描述的由第一终端设备内部实现的动作,比如确定用于侧行传输的资源。收发器720可以用于执行前面方法实施例中描述的第一终端设备进行侧行传输的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中测试设备执行的方法、第一终端设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中第一终端设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中第一终端设备执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器 (random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图5或图8所示实施例中的第一终端设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图5或图8所示实施例中的第一终端设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的第一终端设备和其他终端设备(例如第二终端设备)。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显 示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种侧行传输方法,其特征在于,包括:
    第一终端设备根据至少一个第一候选时间单元集合和资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,所述第二候选时间单元集合包括至少一个第一候选时间单元,所述第一候选时间单元为所述至少一个第一候选时间单元集合中位于所述资源选择窗内的一个候选时间单元,所述第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,所述第一时间单元为触发资源选择的时间单元,或者所述第一时间单元与所述触发资源选择的时间单元之间存在时域间隔;
    所述第一终端设备根据所述第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一候选时间单元集合用于第二数据包的周期性传输。
  3. 根据权利要求1或2所述的方法,其特征在于,所述资源选择窗的起始时间单元为所述第一时间单元,所述第一候选时间单元与所述资源选择窗的起始时间单元之间的间隔大于或等于所述M 1个时间单元。
  4. 根据权利要求1或2所述的方法,其特征在于,所述资源选择窗的起始时间单元在所述第一时间单元之后,且与所述第一时间单元间隔所述M 1个时间单元。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一终端设备根据所述第二候选时间单元集合确定用于传输第一数据包的侧行传输资源,包括:
    所述第一终端设备在资源感知窗内对候选时频资源集合的时频资源进行感知,排除被预留的时频资源,得到时频资源集合;所述候选时频资源集合为基于所述第二候选时间单元集合确定的,所述资源感知窗在所述第二候选时间单元集合之前,所述资源感知窗的第一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于所述M 1,和/或,所述资源感知窗的最后一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;
    所述第一终端设备在所述时频资源集合中确定用于传输所述第一数据包的侧行传输资源。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,所述第一终端设备从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述资源选择窗的最后一个时间单元与所述触发资源选择的时间单元之间间隔M 4个时间单元,所述M 4等于剩余包时延预算PDB。
  8. 一种侧行传输方法,其特征在于,包括:
    第一终端设备根据资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,所述第二候选时间单元集合包括至少一个第一候选时间单元,所述第一候选时 间单元为所述资源选择窗内的一个候选时间单元,所述第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,所述第一时间单元为触发资源选择的时间单元,或者所述第一时间单元与所述触发资源选择的时间单元之间存在时域间隔;
    所述第一终端设备根据所述第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
  9. 根据权利要求8所述的方法,其特征在于,所述资源选择窗的起始时间单元为所述第一时间单元,所述第一候选时间单元与所述资源选择窗的起始时间单元之间的间隔大于或等于所述M 1个时间单元。
  10. 根据权利要求8所述的方法,其特征在于,所述资源选择窗的起始时间单元在所述第一时间单元之后,且与所述第一时间单元间隔所述M 1个时间单元。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述第一终端设备根据所述第二候选时间单元集合确定用于传输第一数据包的侧行传输资源,包括:
    所述第一终端设备在资源感知窗内对候选时频资源集合的时频资源进行感知,排除预留的时频资源,得到时频资源集合;所述候选时频资源集合为基于所述第二候选时间单元集合确定的,所述资源感知窗在所述第二候选时间单元集合之前,所述资源感知窗的第一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于所述M 1,和/或,所述资源感知窗的最后一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;
    所述第一终端设备在所述时频资源集合中确定用于传输所述第一数据包的侧行传输资源。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,所述方法还包括:
    所述第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,所述终端设备从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述资源选择窗的最后一个时间单元与所述触发资源选择的时间单元之间间隔M 4个时间单元,所述M 4等于剩余PDB。
  14. 一种通信装置,其特征在于,包括:
    处理单元,用于根据至少一个第一候选时间单元集合和资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,所述第二候选时间单元集合包括至少一个第一候选时间单元,所述第一候选时间单元为所述至少一个第一候选时间单元集合中位于所述资源选择窗内的一个候选时间单元,所述第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,所述第一时间单元为触发资源选择的时间单元,或者所述第一时间单元与所述触发资源选择的时间单元之间存在时域间隔;
    所述处理单元还用于根据所述第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
  15. 根据权利要求14所述的装置,其特征在于,所述第一候选时间单元集合用于 第二数据包的周期性传输。
  16. 根据权利要求14或15所述的装置,其特征在于,所述资源选择窗的起始时间单元为所述第一时间单元,所述第一候选时间单元与所述资源选择窗的起始时间单元之间的间隔大于或等于所述M 1个时间单元。
  17. 根据权利要求14或15所述的装置,其特征在于,所述资源选择窗的起始时间单元在所述第一时间单元之后,且与所述第一时间单元间隔所述M 1个时间单元。
  18. 根据权利要求14至17任一项所述的装置,其特征在于,所述处理单元具体用于:
    在资源感知窗内对候选时频资源集合的时频资源进行感知,排除被预留的时频资源,得到时频资源集合;所述候选时频资源集合为基于所述第二候选时间单元集合确定的,所述资源感知窗在所述第二候选时间单元集合之前,所述资源感知窗的第一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于所述M 1,和/或,所述资源感知窗的最后一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;
    在所述时频资源集合中确定用于传输所述第一数据包的侧行传输资源。
  19. 根据权利要求14至18任一项所述的装置,其特征在于,所述第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,所述处理单元还用于从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
  20. 根据权利要求14至19任一项所述的装置,其特征在于,所述资源选择窗的最后一个时间单元与所述触发资源选择的时间单元之间间隔M 4个时间单元,所述M 4等于剩余PDB。
  21. 一种通信装置,其特征在于,包括:
    处理单元,用于根据资源选择窗确定用于非周期性传输的第二候选时间单元集合;其中,所述第二候选时间单元集合包括至少一个第一候选时间单元,所述第一候选时间单元为所述资源选择窗内的一个候选时间单元,所述第一候选时间单元与第一时间单元之间的间隔大于或等于M 1个时间单元,M 1为正整数,所述第一时间单元为触发资源选择的时间单元,或者所述第一时间单元与所述触发资源选择的时间单元之间存在时域间隔;
    所述处理单元还用于根据所述第二候选时间单元集合确定用于传输第一数据包的侧行传输资源。
  22. 根据权利要求21所述的装置,其特征在于,所述资源选择窗的起始时间单元为所述第一时间单元,所述第一候选时间单元与所述资源选择窗的起始时间单元之间的间隔大于或等于所述M 1个时间单元。
  23. 根据权利要求21所述的装置,其特征在于,所述资源选择窗的起始时间单元在所述第一时间单元之后,且与所述第一时间单元间隔所述M 1个时间单元。
  24. 根据权利要求21至23任一项所述的装置,其特征在于,所述处理单元具体用于:
    在资源感知窗内对候选时频资源集合的时频资源进行感知,排除预留的时频资源,得到时频资源集合;所述候选时频资源集合为基于所述第二候选时间单元集合确定的, 所述资源感知窗在所述第二候选时间单元集合之前,所述资源感知窗的第一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 2个时间单元,M 2大于或等于所述M 1,和/或,所述资源感知窗的最后一个时间单元与所述第二候选时间单元集合中的第一个时间单元之间间隔M 3个时间单元,M 3等于处理时间;
    在所述时频资源集合中确定用于传输所述第一数据包的侧行传输资源。
  25. 根据权利要求21至24任一项所述的装置,其特征在于,所述第二候选时间单元集合包括的候选时间单元的数量n小于预设值Y,所述处理单元还用于从第一资源池中随机选择m个时间单元,m与n之和大于或等于Y。
  26. 根据权利要求21至25任一项所述的装置,其特征在于,所述资源选择窗的最后一个时间单元与所述触发资源选择的时间单元之间间隔M 4个时间单元,所述M 4等于剩余PDB。
  27. 一种通信装置,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法。
  28. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  31. 一种装置,其特征在于,包括逻辑电路和输入输出接口,其中,所述输入输出接口用于接收来自所述装置之外的其他通信装置的信号并传输至所述逻辑电路或将来自所述逻辑电路的信号发送给所述装置之外的其他通信装置,所述逻辑电路用于执行代码指令以实现权利要求1至13中任一项所述的方法。
PCT/CN2022/124570 2021-11-05 2022-10-11 侧行传输方法以及通信装置 WO2023078038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111307855.5 2021-11-05
CN202111307855.5A CN116095646A (zh) 2021-11-05 2021-11-05 侧行传输方法以及通信装置

Publications (1)

Publication Number Publication Date
WO2023078038A1 true WO2023078038A1 (zh) 2023-05-11

Family

ID=86201161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124570 WO2023078038A1 (zh) 2021-11-05 2022-10-11 侧行传输方法以及通信装置

Country Status (2)

Country Link
CN (1) CN116095646A (zh)
WO (1) WO2023078038A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015345A1 (zh) * 2018-07-17 2020-01-23 Oppo广东移动通信有限公司 侧行链路中数据传输的方法和终端设备
CN111182639A (zh) * 2020-01-03 2020-05-19 展讯半导体(南京)有限公司 一种传输资源确定方法及相关设备
WO2021204173A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 一种资源确定的方法、装置及终端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015345A1 (zh) * 2018-07-17 2020-01-23 Oppo广东移动通信有限公司 侧行链路中数据传输的方法和终端设备
CN111182639A (zh) * 2020-01-03 2020-05-19 展讯半导体(南京)有限公司 一种传输资源确定方法及相关设备
WO2021204173A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 一种资源确定的方法、装置及终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Considerations on partial sensing and DRX in NR sidelink", 3GPP DRAFT; R1-2102719, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 6 April 2021 (2021-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051993189 *
FUJITSU: "Considerations on partial sensing and DRX in NR Sidelink", 3GPP DRAFT; R1-2107037, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052033368 *

Also Published As

Publication number Publication date
CN116095646A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US11510159B2 (en) Signal transmission method, network device, and terminal device
WO2020238428A1 (zh) 一种通信方法及装置
WO2022061774A1 (zh) 无线通信方法和终端
WO2021204293A1 (zh) 定位信号处理方法及装置
WO2016101270A1 (zh) 非授权频谱的调度方法、用户设备及基站
WO2021031043A1 (zh) 一种通信方法及装置
WO2021057564A1 (zh) 信道状态信息的优先级发送、确定方法及装置、存储介质、用户设备
WO2021226858A1 (zh) 传输资源的确定方法和终端设备
WO2021081696A1 (zh) 传输数据的方法和通信装置
WO2021042362A1 (zh) 一种无线通信资源分配的方法和装置以及通信设备
WO2021134437A1 (zh) 传输初始接入配置信息的方法和装置
WO2021134659A1 (zh) 一种中继传输的方法和设备
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2023273743A1 (zh) 一种侧行通信方法及装置
WO2023078038A1 (zh) 侧行传输方法以及通信装置
TW201944823A (zh) 發送上行通道、接收上行通道的方法和設備
EP4138475A1 (en) Method, apparatus and system for determining resource
WO2022141582A1 (zh) 无线通信的方法和装置
WO2022027672A1 (zh) 通信方法和通信装置
WO2021000954A1 (zh) 一种数据传输方法及通信装置
WO2021088063A1 (zh) 一种通信方法及装置
WO2021031026A1 (zh) 一种下行控制信息dci的传输方法及装置
WO2021072602A1 (zh) 链路失败检测的方法和装置
WO2023124826A1 (zh) 信息发送的方法和装置
WO2021212261A1 (zh) 一种通信方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889064

Country of ref document: EP

Kind code of ref document: A1