WO2021212261A1 - 一种通信方法以及通信装置 - Google Patents

一种通信方法以及通信装置 Download PDF

Info

Publication number
WO2021212261A1
WO2021212261A1 PCT/CN2020/085585 CN2020085585W WO2021212261A1 WO 2021212261 A1 WO2021212261 A1 WO 2021212261A1 CN 2020085585 W CN2020085585 W CN 2020085585W WO 2021212261 A1 WO2021212261 A1 WO 2021212261A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
resource
terminal device
data channel
listening
Prior art date
Application number
PCT/CN2020/085585
Other languages
English (en)
French (fr)
Inventor
陈二凯
苏宏家
郭文婷
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080099811.5A priority Critical patent/CN115399026A/zh
Priority to PCT/CN2020/085585 priority patent/WO2021212261A1/zh
Publication of WO2021212261A1 publication Critical patent/WO2021212261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and communication device.
  • V2X vehicle-to-everything
  • D2D device-to-device
  • base station relay communication The terminal device is also called user equipment (UE).
  • UE user equipment
  • the base station relay communication technology communicates through the Uu interface with high reliability.
  • 5G new radio (NR) technology 5G NR V2X will also be further developed.
  • NR V2X proposes lower support Transmission delay (as low as 2 milliseconds), more reliable communication transmission (up to 99.999%), higher throughput (up to 1 gigabit per second), and better user experience to meet a wider range of application scenarios need.
  • mode-2 the terminal device listens to the channel in the resource sensing window before sending data, and then selects the sending resource in the resource selection window according to the result of the resource sensing To communicate.
  • the basis for the terminal device to select the transmission resource is quite different from the actual channel condition. As a result, the probability that the terminal device and other terminal devices select the same transmission resource is greatly increased, the collision probability is increased, and the transmission reliability is reduced.
  • the first aspect of the embodiments of the present application provides a communication method that can reduce the probability of selecting the same transmission resource with other terminal devices, that is, reduce resource selection collisions, and improve transmission reliability and system resource utilization.
  • an embodiment of the present application provides a communication method, which may include: First, the terminal device determines that the duration of resource listening is less than the resource listening window. Assuming that the terminal device triggers resource selection in time slot n, the resource listening window is the time slot corresponding to [nT 0 ,nT proc,0 ] before the resource selection trigger, where n is a positive integer and T 0 is resource listening The start time of the window, T proc,0 is the end time of the resource listening window, which satisfies T 0 >T proc,0 >0.
  • the terminal device determines a second parameter according to the first parameter, and the second parameter includes at least one of the following: The excluded reference signal receiving power (RSRP) threshold, the length of the resource selection window, or the transmission power of the data channel; the terminal device selects the transmission resource according to the second parameter, and/or the terminal device according to the The second parameter sends the data to be sent of the terminal device.
  • RSRP excluded reference signal receiving power
  • the terminal device determines that the current resource listening duration is less than the length of the resource listening window; secondly, the terminal device determines a second parameter according to the first parameter, and the second parameter includes at least one of the following: The RSRP threshold of the excluded reference signal reception power, the length of the resource selection window, or the transmission power of the data channel; again, the terminal device selects the transmission resource according to the second parameter, and/or the terminal device transmits the terminal device's pending transmission according to the second parameter data.
  • the terminal device selects the transmission resource and/or transmits the data to be transmitted according to the first parameter, so as to reduce the probability of selecting the same transmission resource with other terminal devices, reduce the collision probability of transmission resource selection, and improve data transmission reliability and transmission resource utilization.
  • the first parameter is a parameter configured through high-layer signaling, for example, the first parameter is a parameter configured through radio resource control (radio resource control, RRC) signaling.
  • the first parameter is a pre-configured parameter, for example: the first parameter is a parameter pre-configured in the resource pool, or the first parameter is a parameter pre-configured when the terminal device leaves the factory.
  • the terminal device determines the second parameter according to the first parameter
  • the first parameter may be a variety of different parameters. For example: when the first parameter is determined by the terminal device according to the ratio between the actual listening time length in the current resource listening window and the length of the resource listening window, the second parameter determined by the terminal device according to the first parameter , Which is more compatible with the actual communication situation; when the first parameter is a parameter configured through high-level signaling, the computing resources of the terminal device can be saved.
  • the implementation flexibility of the embodiments of the present application is improved.
  • the terminal device determines the second parameter according to the first parameter, which may include :
  • the RSRP threshold for resource exclusion is determined, and the first interval includes one or more intervals.
  • the RSRP threshold for resource exclusion satisfies:
  • R1 R0+k, alpha ⁇ [x, y];
  • the R1 is the RSRP threshold for resource exclusion
  • the R0 is the preset RSRP threshold for resource exclusion
  • the alpha is the first parameter
  • the [x, y] is the first interval
  • the k is a real number
  • the x is a real number
  • the y is a real number.
  • R1 is the RSRP threshold for resource exclusion
  • R0 is the preset RSRP threshold for resource exclusion
  • alpha is the first parameter
  • [x, y] is the first interval
  • k is a real number
  • x is a real number
  • y Is a real number.
  • the preset RSRP threshold for resource exclusion is configured through higher layer signaling, or the preset RSRP threshold for resource exclusion is a preconfigured parameter.
  • the first interval includes one or more intervals. When the first parameter is located in a different interval in the first interval, the RSRP threshold for resource exclusion is determined by the preset RSRP threshold for resource exclusion and each interval. The corresponding preset value is determined.
  • the terminal device presets a first interval, and the first interval includes one or more intervals.
  • the terminal device determines the RSRP threshold of the corresponding resource exclusion according to the first interval.
  • the terminal device determining the second parameter according to the first parameter may include: the terminal The device determines the time domain length of the resource selection window according to the first parameter. For example, take the nearest resource selection window located after time slot n as an example for illustration.
  • the resource selection window includes: candidate resource 1, candidate resource 2. , Candidate resource 3 and Candidate resource 4, these 4 selectable sending resources.
  • the terminal device determines the second parameter according to the first parameter, including: the time domain length of the original resource selection window is [n+T1, n+T2].
  • the terminal device determines according to the first parameter that the time domain length of the resource selection window is [n+T3, n+T4], where n, T1, T2, T3, and T4 are real numbers. And/or, the terminal device determines the total number of candidate resources in the resource selection window according to the first parameter, for example: assuming that the frequency domain contains N subchannels, such as: 1, 2, ..., N-1, and N Sub-channels.
  • the time domain includes 1 time slot, such as time slot 1, and the size of the candidate resource is L
  • the total number of candidate resources is: N-L+1.
  • the time domain includes M time slots, and the candidate resource size is L
  • the total number of candidate resources in the resource selection window is: M*(N-L+1).
  • N, M, and L are positive integers.
  • the terminal device determines the total number of candidate resources in the resource selection window according to the first parameter, and the total number of candidate resources is: M*(N-L+1)- Q, where Q is an integer, Q is related to the first parameter, and optionally, Q is the first parameter.
  • the total number of candidate resources is: P*M*(N-L+1), where P is a real number, P is related to the first parameter, and optionally, P is any parameter related to the first parameter.
  • the terminal device determining the second parameter according to the first parameter includes determining the time domain length of the resource selection window, and/or, determining the resource selection window according to the first parameter The total number of candidate resources within. It further reduces the probability of selecting the same transmission resource with other terminal devices, reduces the probability of collision of transmission resource selection, and improves data transmission reliability and transmission resource utilization.
  • the terminal device determines the second parameter according to the first parameter, including: the terminal device
  • the transmission power of the data channel is determined according to the first parameter and the preset transmission power of the data channel.
  • the alpha is the first parameter, and the h(alpha) is a monotonically increasing function with respect to the first parameter.
  • the preset transmission power of the data channel is configured through high-level signaling, or the preset transmission power of the data channel is a pre-configured parameter.
  • the higher layer signaling may be RRC signaling.
  • the preset transmit power of the data channel may also be calculated by the terminal device through power control, which is not limited here.
  • the data channel is the physical side link shared channel PSSCH and/or the physical side link control channel PSCCH.
  • the terminal device determines the transmission power of the data channel according to the first parameter and the preset transmission power of the data channel. Further reduce interference to other terminal equipment, improve data transmission reliability and transmission resource utilization.
  • an embodiment of the present application proposes a communication method, which may include:
  • the terminal device determines a second parameter according to the first parameter, and the second parameter includes at least one of the following: reference signal received power RSRP threshold for resource exclusion, resource Select the length of the window, or the transmit power of the data channel.
  • the first threshold is the length of the resource listening window; the terminal device selects the sending resource according to the second parameter, and/or the terminal device sends the data to be sent of the terminal device according to the second parameter.
  • the terminal device after the terminal device triggers resource selection, when the duration of resource listening in the terminal device is less than the first threshold, the terminal device determines the second parameter according to the first parameter, and selects the sending resource and/or according to the second parameter. Or send the to-be-sent data of the terminal device according to the second parameter.
  • the terminal device determines the second parameter according to the first parameter, and selects the sending resource and/or according to the second parameter. Or send the to-be-sent data of the terminal device according to the second parameter.
  • the first parameter is a parameter configured through high-layer signaling, for example, the first parameter is a parameter configured through radio resource control (radio resource control, RRC) signaling.
  • the first parameter is a pre-configured parameter, for example: the first parameter is a parameter pre-configured in the resource pool, or the first parameter is a parameter pre-configured when the terminal device leaves the factory.
  • the terminal device determines the second parameter according to the first parameter, and the first parameter may be a variety of different parameters.
  • the implementation flexibility of the embodiments of the present application is improved.
  • the terminal device determines the second parameter according to the first parameter, which may include :
  • the RSRP threshold for resource exclusion is determined, and the first interval includes one or more intervals.
  • the RSRP threshold for resource exclusion satisfies:
  • R1 R0+k, alpha ⁇ [x, y];
  • the R1 is the RSRP threshold for resource exclusion
  • the R0 is the preset RSRP threshold for resource exclusion
  • the alpha is the first parameter
  • the [x, y] is the first interval
  • the k is a real number
  • the x is a real number
  • the y is a real number.
  • R1 is the RSRP threshold for resource exclusion
  • R0 is the preset RSRP threshold for resource exclusion
  • alpha is the first parameter
  • [x, y] is the first interval
  • k is a real number
  • x is a real number
  • y Is a real number.
  • the preset RSRP threshold for resource exclusion is configured through higher layer signaling, or the preset RSRP threshold for resource exclusion is a preconfigured parameter.
  • the first interval includes one or more intervals. When the first parameter is located in a different interval in the first interval, the RSRP threshold for resource exclusion is determined by the preset RSRP threshold for resource exclusion and each interval. The corresponding preset value is determined.
  • the terminal device presets a first interval, and the first interval includes one or more intervals.
  • the terminal device determines the RSRP threshold of the corresponding resource exclusion according to the first interval.
  • the terminal device determining the second parameter according to the first parameter may include: the terminal The device determines the time domain length of the resource selection window according to the first parameter. For example, take the nearest resource selection window located after time slot n as an example for illustration.
  • the resource selection window includes: candidate resource 1, candidate resource 2. , Candidate resource 3 and Candidate resource 4, these 4 selectable sending resources.
  • the terminal device determines the second parameter according to the first parameter, including: the time domain length of the original resource selection window is [n+T1, n+T2].
  • the terminal device determines according to the first parameter that the time domain length of the resource selection window is [n+T3, n+T4], where n, T1, T2, T3, and T4 are real numbers. And/or, the terminal device determines the total number of candidate resources in the resource selection window according to the first parameter, for example: assuming that the frequency domain contains N subchannels, such as: 1, 2, ..., N-1, and N Sub-channels.
  • the time domain includes 1 time slot, such as time slot 1, and the size of the candidate resource is L
  • the total number of candidate resources is: N-L+1.
  • the time domain includes M time slots, and the candidate resource size is L
  • the total number of candidate resources in the resource selection window is: M*(N-L+1).
  • N, M, and L are positive integers.
  • the terminal device determines the total number of candidate resources in the resource selection window according to the first parameter, and the total number of candidate resources is: M*(N-L+1)- Q, where Q is an integer.
  • the total number of candidate resources is: P*M*(N-L+1), where P is a real number.
  • the terminal device determining the second parameter according to the first parameter includes determining the time domain length of the resource selection window, and/or, determining the resource selection window according to the first parameter The total number of candidate resources within. It further reduces the probability of selecting the same transmission resource with other terminal devices, reduces the probability of collision of transmission resource selection, and improves data transmission reliability and transmission resource utilization.
  • the terminal device determines the second parameter according to the first parameter, including: the terminal device
  • the transmission power of the data channel is determined according to the first parameter and the preset transmission power of the data channel.
  • the alpha is the first parameter, and the h(alpha) is a monotonically increasing function with respect to the first parameter.
  • the preset transmission power of the data channel is configured through high-level signaling, or the preset transmission power of the data channel is a pre-configured parameter.
  • the higher layer signaling may be RRC signaling.
  • the preset transmit power of the data channel may also be calculated by the terminal device through power control, which is not limited here.
  • the data channel is the physical side link shared channel PSSCH and/or the physical side link control channel PSCCH.
  • the terminal device determines the transmission power of the data channel according to the first parameter and the preset transmission power of the data channel. It further reduces the probability of selecting the same transmission resource with other terminal devices, reduces the probability of collision of transmission resource selection, and improves data transmission reliability and transmission resource utilization.
  • an embodiment of the present application proposes a communication device, which may include:
  • Processing module for determining that the duration of resource listening is less than the resource listening window
  • the processing module is further configured to determine a second parameter according to the first parameter, and the second parameter includes at least one of the following: reference signal received power RSRP threshold for resource exclusion, the length of the resource selection window, or the transmission power of the data channel ;
  • the sending module is configured to select the sending resource according to the second parameter, and/or send the data to be sent of the terminal device according to the second parameter.
  • the component modules of the communication device can also perform the steps described in the foregoing first aspect and various possible implementation manners.
  • the component modules of the communication device can also perform the steps described in the foregoing first aspect and various possible implementation manners.
  • an embodiment of the present application proposes a communication device, which may include:
  • the processing module is configured to determine a second parameter according to the first parameter when the duration of resource listening in the terminal device is less than the first threshold, and the second parameter includes at least one of the following: reference signal received power RSRP threshold for resource exclusion , The length of the resource selection window, or the transmission power of the data channel;
  • the sending module is configured to select the sending resource according to the second parameter, and/or send the data to be sent of the terminal device according to the second parameter.
  • the component modules of the communication device can also perform the steps described in the foregoing second aspect and various possible implementation manners.
  • the component modules of the communication device can also perform the steps described in the foregoing second aspect and various possible implementation manners.
  • the foregoing description of the second aspect and Explanation in the various possible implementations refer to the foregoing description of the second aspect and Explanation in the various possible implementations.
  • the embodiments of the present application provide a terminal device.
  • the terminal device includes at least one processor, a memory, a communication port, a display, and a computer executable instruction stored in the memory and running on the processor.
  • the processor executes the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • embodiments of the present application provide a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes the first aspect or the first aspect described above. Any one of the possible implementation methods.
  • embodiments of the present application provide a computer program product (or computer program) that stores one or more computer-executable instructions.
  • the processor executes the first aspect described above. Or any possible implementation of the first aspect.
  • the present application provides a chip system, which includes a processor, and is used to support a computer device to implement the functions involved in the foregoing aspects.
  • the chip system further includes a memory for storing necessary program instructions and data for the computer equipment.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiments of the present application provide a terminal device.
  • the terminal device includes at least one processor, a memory, a communication port, a display, and a computer executable instruction stored in the memory and running on the processor.
  • the processor executes the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • an embodiment of the present application provides a computer device.
  • the terminal device includes at least one processor, a memory, a communication port, a display, and computer-executable instructions stored in the memory and running on the processor.
  • the processor executes the foregoing second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes the second aspect or the second aspect described above. Any one of the possible implementation methods.
  • an embodiment of the present application provides a computer program product (or computer program) that stores one or more computer-executable instructions.
  • the processor executes the second Aspect or any possible implementation of the second aspect.
  • the present application provides a chip system including a processor, which is used to support a computer device to implement the functions involved in the above aspects.
  • the chip system further includes a memory for storing necessary program instructions and data for the computer equipment.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiments of the present application provide a terminal device.
  • the terminal device includes at least one processor, a memory, a communication port, a display, and a computer executable instruction stored in the memory and running on the processor.
  • the processor executes the second aspect or any one of the possible implementation manners of the second aspect.
  • FIG. 1a is a schematic diagram of a network system for Internet of Vehicles wireless communication provided by an embodiment of this application;
  • FIG. 1b is a schematic diagram of a network system for side link communication according to an embodiment of this application.
  • FIG. 1c is a schematic diagram of another network system for side link communication according to an embodiment of the application.
  • Figure 2a is a schematic diagram of time-frequency resource mapping of channels in an embodiment of the application
  • Figure 2b is a schematic diagram of candidate resources in an embodiment of the application.
  • Figure 2c is a schematic diagram of a resource selection process in a user-selected resource mode in an embodiment of the application
  • Figure 2d is a schematic diagram of resource exclusion in an embodiment of the application.
  • FIG. 2e is a schematic diagram of discontinuous reception in an embodiment of this application.
  • FIG. 3a is a schematic diagram of an embodiment of a communication method proposed in an embodiment of this application.
  • FIG. 3b is a schematic diagram of a time relationship between the actual interception time length and the resource interception window in an embodiment of the application;
  • FIG. 3c is a schematic diagram of another time relationship between the actual listening time length and the resource listening window in an embodiment of the application.
  • Figure 3d is a schematic diagram of candidate resources in a resource selection window in an embodiment of the application.
  • Figure 3e is another schematic diagram of candidate resources in a resource selection window in an embodiment of the application.
  • FIG. 4 is a schematic diagram of an embodiment of another communication method proposed in an embodiment of this application.
  • FIG. 5 is a schematic diagram of an embodiment of a terminal device proposed in an embodiment of the application.
  • FIG. 6 is a schematic diagram of an embodiment of another terminal device proposed in an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • the embodiments of the present application provide a communication method and terminal device.
  • the terminal device determines that the resource listening duration is less than the resource listening window, or the resource listening duration of the terminal device is less than the first threshold, the terminal device selects according to the first parameter Sending resources and/or sending data to be sent to reduce the probability of selecting the same transmission resource with other terminal devices, reducing the probability of collisions in the selection of transmission resources, and improving the reliability of data transmission and the utilization of transmission resources.
  • LTE long term evolution
  • 5G new radio
  • NR new radio
  • LTE evolved LTE
  • LTE evolved LTE
  • other wireless communication systems using various wireless access technologies such as systems using code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, single carrier frequency division multiple access and other access technologies.
  • SL sidelink
  • D2D device-to-device
  • V2X vehicle to everything
  • Figure 1a is a schematic diagram of a network system for Internet of Vehicles wireless communication provided by an embodiment of this application.
  • V2X communication includes vehicle-to-vehicle (V2V) and vehicle-to-pedestrian communication ( vehicle-to-pedestrian (V2P), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N).
  • V2V vehicle-to-vehicle
  • V2P vehicle-to-pedestrian
  • V2I vehicle-to-infrastructure
  • V2N vehicle-to-network
  • FIG. 1b is a schematic diagram of a network system for sidelink communication according to an embodiment of this application.
  • the base station resource allocation mode (mode-1) is mainly applied to V2X communication in the case of network coverage.
  • the base station centrally allocates resources according to the buffer status report (BSR) of the terminal equipment.
  • FIG. 1c is a schematic diagram of another network system for sidelink communication according to an embodiment of the application.
  • the user-selected resource mode (mode-2) the transmission resource of the terminal device does not depend on the base station. This mode is not limited to network coverage. In the absence of network coverage, terminal devices can also use this mode to communicate.
  • the terminal equipment is a variety of terminal equipment or devices with line communication functions, such as mobile phones (or “cellular” phones) and computers with mobile terminals, and can also be portable, pocket-sized, or handheld.
  • Mobile devices built into computers, built-in computers, or in-vehicles, which exchange language and/or data with the wireless access network.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • PDAs personal digital assistants
  • Communication equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point, Remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment, UE).
  • Remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user agent user agent
  • user equipment user device
  • user equipment user equipment, UE
  • vehicles, vehicle-mounted equipment, vehicle-mounted modules or units drive test basic equipment, handheld devices, wearable devices, computing devices, or other processing equipment connected to wireless modems, such as vehicle user equipment (VUE) or air-conditioning user equipment and many more.
  • VUE vehicle user equipment
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, roadside units, etc.
  • the functions of the base station of the present application can also be implemented by built-in modules or units. Modules or units are built in macro base stations, micro base stations, relay stations, access points, and roadside units.
  • the names of devices with base station functions may be different.
  • evolved NodeB evolved NodeB for short: eNB or eNodeB
  • eNB evolved NodeB
  • eNodeB evolved NodeB
  • NR node B
  • node B node B
  • V2X refers to the use of a new generation of information and communication technology to connect the car with everything, so as to realize the vehicle to the vehicle (vehicle to vehicle).
  • V2V vehicles and roadside infrastructure
  • V2I vehicles and pedestrians and other vulnerable traffic participants
  • V2P vehicles and cloud service platform
  • V2N vehicle to network
  • the first vehicle of the team realizes the control of the entire fleet, such as controlling the speed of the entire fleet, the distance between vehicles, whether other vehicles are allowed to join, and the vehicles of this fleet leave the fleet, etc.
  • the head vehicle may need to communicate with other vehicles in the fleet, the head vehicle may also need to communicate with other vehicles in the fleet, and other vehicles in the fleet may also communicate with each other. Therefore, in order to ensure the quality of communication transmission, the communication method proposed in the embodiment of the present application needs to be used to reduce the probability of selecting the same transmission resource with other terminal devices. The collision probability of transmission resource selection is reduced, and the reliability of data transmission and the utilization rate of transmission resources are improved.
  • the communication method provided in the embodiments of this application can also be applied to a home appliance networking system.
  • various household appliances form an information interaction system, as examples, such as air conditioners, washing machines, electric lights, refrigerators, etc. Electric rice cookers, etc., are controlled by a specific control center, such as controlling the switching time of each electrical appliance, controlling the temperature of the air conditioner, the cleaning mode of the washing machine, etc., whether new electrical appliances are allowed to join, and old electrical appliances are eliminated.
  • the control center may need to communicate with other electrical appliances, and communication between various electrical appliances may also be required. Therefore, in order to ensure the quality of communication transmission, the communication method proposed in the embodiment of the present application needs to be used to reduce the probability of selecting the same transmission resource with other terminal devices.
  • the terminal device Before sending data, the terminal device listens to the channel in the resource sensing window, and then selects the sending resource for communication in the resource selection window according to the result of the resource sensing. When the terminal device needs to send data, the terminal device maps the data to the physical sidelink share channel (PSSCH), and maps the corresponding control information to the physical sidelink control channel (physical sidelink control channel). channel, PSCCH).
  • PSSCH physical sidelink share channel
  • PSCCH physical sidelink control channel
  • FIG. 2a is a schematic diagram of the time-frequency resource mapping of the channel in an embodiment of the application.
  • the PSSCH/PSCCH usually occupies one or more sub-channels on a slot.
  • Figure 2b is a schematic diagram of candidate resources in an embodiment of this application. Assuming that the number of subchannels occupied by the PSSCH/PSCCH corresponding to the data to be sent by the terminal device is L subCH , the transmission resource occupied by the data to be sent is a group of continuous subchannels with a length of L subCH in a time slot.
  • subchannel of the frequency domain resource pool (sub-channel) to the number N subCH 8, 2 each time the data to be transmitted corresponding PSSCH / PSCCH number of occupied subchannels is L subCH
  • the candidate resource C 0 includes sub-channel 0 and sub-channel 1
  • the candidate resource C 1 includes sub-channel 1 and sub-channel 2
  • the candidate resource C 6 includes sub-channel 6 and sub-channel 7.
  • All candidate resources corresponding to the resource selection window (selection window) are the sum of the candidate resources on all time slots in the resource selection window (sensing window).
  • FIG. 2c is a schematic diagram of a resource selection process in a user-selected resource mode in an embodiment of the application.
  • the resource selection process in the user-selected resource mode includes;
  • step S1 assuming that the terminal device triggers resource selection in time slot n, the resource listening window is the time slot corresponding to [nT 0 ,nT proc,0 ] before resource selection is triggered, where n is a positive integer and T 0 Is the start time of the resource listening window, and T proc,0 is the end time of the resource listening window, which satisfies T 0 >T proc,0 >0.
  • S A current resource selection window as the candidate resource, which is also referred to as S A set of resources available.
  • the candidate resource is also called a sending resource, and the sending resource is used to send data to be sent.
  • the S A is provided, the total number of candidate resources for M total.
  • step S2 the terminal device receives the sidelink control information (SCI) in the current resource selection window and sent by other terminal devices in the frequency domain resource pool for decoding. Specifically, the terminal device listens to and decodes the SCI in the current resource selection window.
  • the terminal equipment measures the PSSCH channel or PSCCH channel reference Reference signal receiving power (RSRP), where T 2 >T 1 >0.
  • RSRP PSCCH channel reference Reference signal receiving power
  • the magnitude of the RSRP value indicates the energy level of the transmission resource. If the value of RSRP is large, the energy of the transmission resource corresponding to the RSRP is high; if the value of RSRP is small, the energy of the transmission resource corresponding to the RSRP is low. Since high-energy transmission resources are likely to be occupied by other terminal devices, in order to avoid conflicts with other terminal devices, terminal devices should avoid using occupied transmission resources. Therefore, by detecting the RSRP value of the transmission resource, high-energy transmission resources are excluded.
  • the terminal device determines the preset RSRP threshold Th RSRP through a function of the priority corresponding to the data indicated in the received SCI and the priority corresponding to the data to be sent by the terminal device.
  • the terminal device transmits to exclude high energy resources from the available resource set S A, the amount of transmission resource detecting the remaining set S A is less than a preset threshold, optionally, the predetermined threshold is 0.2 * M total .
  • step S5 If the number of transmission resource set S A remaining less than the preset threshold, the process proceeds to step S5; S A remaining set if the number of transmission resources is greater than or equal to a preset threshold, the process proceeds to step S6.
  • Step S5 the set of S4, when the step S A remaining number of transmission resources is less than the preset threshold, is increased RSRP threshold (Th RSRP), and proceeds to step S1, optional, the Th RSRP increase 3 db (dB). To increase the amount of transmission resource set is S A.
  • Step S6 the terminal device transmits the remaining resources (set S A), select a transmission resource for data transmission.
  • the resource selection process described in S1-S6 can also be referred to as a resource exclusion process because the terminal device excludes unavailable transmission resources from the set of available resources and selects available transmission resources for sending data.
  • Fig. 2d is a schematic diagram of resource exclusion in an embodiment of the application.
  • the terminal devices (UE1, UE2, and UE3) listen to other sent SCIs in their respective frequency domain resources and time domain resources in the resource listening window. For example: UE1 listens to the SCI sent by UE2 and UE3 respectively, and through The SCI sent by UE3 and UE3 are decoded to determine the transmission resources reserved by these terminal devices (UE2 and UE3).
  • UE1 excludes the transmission resources reserved by UE2 and UE3 from its available resource set, and uses the remaining available resources. Select a sending resource in the collection. UE1 uses the reserved transmission resource to send data in the resource selection window.
  • the process of resource exclusion for other terminal devices is similar to that of UE1, and will not be repeated here.
  • the situation where the terminal device cannot listen to the channel within the complete resource listening window is introduced.
  • DRX Discontinuous Reception
  • the terminal device may not be able to listen in the complete resource listening window.
  • There are no restrictions on channel listening For example, when the terminal device is just turned on, the terminal device may be in a certain resource listening window. At this time, the terminal device cannot listen to the channel in the complete resource listening window.
  • DRX configures the DRX cycle (DRX cycle) for the terminal device to achieve power saving of the terminal device.
  • an active time (active time) is defined in each DRX cycle, and the active time refers to a collection of several configurable different time periods including the DRX on period (DRX On Duration).
  • the activation time is composed of multiple non-continuous DRX on time periods.
  • the terminal device listens to and receives the data of the downlink channel.
  • the activation time is also called the activation period; in this DRX cycle, the terminal device does not receive the data of the downlink channel during other times. These periods of not receiving data are called sleep periods.
  • the terminal device when the terminal device only partially overlaps the resource listening window and the DRX activation time, the terminal device cannot listen to the channel within the complete resource listening window. Due to the insufficient length of the resource listening window, the result obtained by the terminal device listening to the channel has a large error with the actual channel condition, resulting in a large increase in the probability of selecting the same transmission resource with other terminal devices, increasing the probability of collision and reducing Improved transmission reliability.
  • FIG. 3a is a schematic diagram of an embodiment of a communication method proposed in an embodiment of the application.
  • the communication method proposed in an embodiment of the application includes:
  • the terminal device determines that the duration of resource listening is less than the resource listening window.
  • resource selection is triggered in a certain time slot, which is pre-configured.
  • the time slot n is taken as an example for description, and n is a positive integer.
  • the terminal device determines the actual listening time length of the resource listening window. Specifically, when the terminal device starts listening, it starts a timer. When it ends listening, the actual listening length is determined according to the timer duration. . Second, the terminal device determines the length of the resource listening window according to the start time of the resource listening window and the end time of the resource listening window. Third, the terminal device determines whether the duration of resource listening is less than the resource listening window according to the actual listening length and the length of the resource listening window. If it is less than, go to step 302. If it is greater than or equal to, the original process in the user-selected resource mode is used for communication.
  • the duration of the terminal device resource listening may be less than the resource listening window, for example: the terminal device is configured with energy-saving means such as DRX, or the terminal device has just been turned on, and the terminal device starts resource listening at this time The time point does not coincide with the start time of the resource listening window.
  • the communication method proposed in the embodiment of this application can also be applied. In this embodiment of the application, only the energy-saving means Take DRX as an example for description, which is not limited here.
  • FIG. 3b is a schematic diagram of a time relationship between the actual listening time length and the resource listening window in an embodiment of this application.
  • the start time of a certain DRX On Duration (DRX On Duration) is O 1
  • the end time of the DRX On Duration is O 2 .
  • the terminal device triggers resource selection in time slot n
  • FIG. 3c is a schematic diagram of another time relationship between the actual listening time length and the resource listening window in an embodiment of this application.
  • the start time of a certain DRX On Duration (DRX On Duration) is O 1
  • the end time of the DRX On Duration is O 2 .
  • the terminal device triggers resource selection in time slot n
  • the terminal device can also determine whether the duration of the terminal device resource listening is less than the resource listening window based on the actual listening length in multiple resource listening windows and the length of multiple resource listening windows, for example: using multiple resource listening
  • the sum of the actual listening lengths in the window is compared with the sum of the lengths of multiple resource listening windows; the variance of the actual listening lengths in multiple resource listening windows is used to compare with the variance of the lengths of multiple resource listening windows Compare.
  • the terminal device determines a second parameter according to the first parameter.
  • the terminal device determines the second parameter according to the first parameter, where the first parameter is determined by the terminal device according to the ratio between the actual listening time length in the current resource listening window and the resource listening window length, or ,
  • the first parameter is a parameter configured through higher layer signaling, or, the first parameter is a pre-configured parameter.
  • the first parameter is determined by the terminal device according to the ratio between the actual listening time length in the current resource listening window and the length of the resource listening window. For example: Let the first parameter be "alpha",
  • alpha is the first parameter
  • D 0 is the actual listening time length
  • D s is the length of the resource listening window
  • T 0 is the start time of the resource listening window
  • T proc,0 is the end of the resource listening window time.
  • the first parameter is a parameter configured through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • other terminal equipment or network equipment such as base station
  • RRC radio resource control
  • the terminal equipment enters the communication method flow proposed in the embodiment of the application according to the first parameter carried in the RRC signaling, that is, The second parameter and so on are determined according to the first parameter.
  • the terminal device when the terminal device is just turned on, the terminal device needs to send data, but the terminal device cannot listen to the complete resource listening window at this time.
  • the terminal device determines the second parameter, and selects the transmission resource according to the second parameter, and/or the terminal device sends the terminal device's pending transmission according to the second parameter data.
  • the first parameter may be 0.5, 0.75 or 0.8, which is not limited here.
  • the first parameter is a parameter pre-configured in the resource pool, or the first parameter is a parameter pre-configured when the terminal device leaves the factory.
  • the terminal device determines the second parameter, and selects the sending resource according to the second parameter, and/or the terminal device according to The second parameter sends the data to be sent of the terminal device.
  • the second parameter includes at least one of the following: RSRP threshold of the reference signal received power for resource exclusion, the length of the resource selection window, or the transmit power of the data channel, which are specifically as follows:
  • determining the second parameter by the terminal device according to the first parameter includes: when the first parameter is in the first interval, determining an RSRP threshold for resource exclusion.
  • the RSRP threshold for resource exclusion satisfies:
  • R1 R0+k, alpha ⁇ [x, y];
  • R1 is the RSRP threshold for resource exclusion
  • R0 is the preset RSRP threshold for resource exclusion
  • alpha is the first parameter
  • [x, y] is the first interval
  • k is a real number
  • x is a real number
  • y Is a real number.
  • the preset RSRP threshold for resource exclusion is configured through higher layer signaling, or the preset RSRP threshold for resource exclusion is a preconfigured parameter.
  • the first interval includes one or more intervals.
  • the RSRP threshold for resource exclusion is determined by the preset RSRP threshold for resource exclusion and each interval. The corresponding preset value is determined.
  • R1 R0+k1, alpha ⁇ [x1, y1];
  • R1 R0+k2, alpha ⁇ [x2, y2];
  • R1 R0+kn, alpha ⁇ [xn, yn];
  • k1, k2...kn are unequal real numbers
  • x1, x2...xn are unequal real numbers
  • y1, y2...yn are unequal real numbers.
  • the first parameter is the ratio between the actual listening time length in the current resource listening window and the length of the resource listening window, that is, "alpha”
  • the second parameter is the RSRP threshold for resource exclusion:
  • the relationship between the first parameter and the second parameter is shown in Table 1.
  • the terminal device determining the second parameter according to the first parameter includes:
  • the terminal device determines the length of the resource selection window according to the first parameter, the length of the resource selection window includes: the time domain length of the resource selection window, and/or the terminal device determines the frequency domain of the candidate resource in the resource selection window according to the first parameter Length, and/or, the terminal device determines the total number of candidate resources in the resource selection window according to the first parameter.
  • FIG. 3d is a schematic diagram of candidate resources in the resource selection window in an embodiment of the application.
  • the resource selection window includes: candidate resource 1, candidate resource 2, candidate resource 3, and candidate resource 4, these four selectable transmission resources.
  • the terminal device determines the second parameter according to the first parameter, including: the time domain length of the original resource selection window is [n+T1, n+T2].
  • the terminal device determines according to the first parameter that the time domain length of the resource selection window is [n+T3, n+T4], where n, T1, T2, T3, and T4 are real numbers.
  • FIG. 3e is another schematic diagram of candidate resources in the resource selection window in an embodiment of the application.
  • the terminal device determines the total number of candidate resources in the resource selection window according to the first parameter. Taking Figure 3e as an example, it is assumed that there are N subchannels in the frequency domain, as shown in Figure 3e, 1, 2, ..., N-1 and N subchannels .
  • the time domain includes 1 time slot, such as time slot 1, and the size of the candidate resource is L
  • the total number of candidate resources is: N-L+1.
  • the time domain includes M time slots, and the candidate resource size is L
  • the total number of candidate resources in the resource selection window is: M*(N-L+1).
  • N, M, and L are positive integers.
  • the terminal device determines the total number of candidate resources in the resource selection window according to the first parameter, and the total number of candidate resources is: M*(N-L+1)- Q, where Q is an integer. Or the total number of candidate resources is: P*M*(N-L+1), where P is a real number.
  • determining the second parameter by the terminal device according to the first parameter includes: the terminal device determines the transmission power of the data channel according to the first parameter and a preset transmission power of the data channel.
  • the transmit power of the data channel satisfies:
  • P′ TX is the transmission power of the data channel
  • P TX is the preset transmission power of the data channel
  • alpha is the first parameter
  • h(alpha) is a monotonically increasing function with respect to the first parameter.
  • the preset transmission power of the data channel is configured through high-level signaling, or the preset transmission power of the data channel is a pre-configured parameter.
  • the higher layer signaling may be RRC signaling.
  • the preset transmit power of the data channel may also be calculated by the terminal device through power control, which is not limited here.
  • the data channel is a physical side link shared channel PSSCH and/or a physical side link control channel PSCCH.
  • the first parameter is the ratio between the actual listening time length in the current resource listening window and the length of the resource listening window, that is, "alpha”
  • the second parameter is the transmit power of the data channel as an example.
  • h(alpha) alpha.
  • the terminal device determines the second parameter according to the first parameter, where the second parameter may include a reference signal received power RSRP threshold for resource exclusion, the length of the resource selection window, or multiple of the transmit power of the data channel
  • the terminal device determines the RSRP threshold for resource exclusion and the length of the resource selection window according to the first parameter, or the terminal device determines the RSRP threshold for resource exclusion and the transmission power of the data channel according to the first parameter, or The terminal device simultaneously determines the RSRP threshold of the reference signal reception power for resource exclusion, the length of the resource selection window, or the transmission power of the data channel according to the first parameter.
  • the terminal device determines the sending resource according to the second parameter and/or the terminal device sends the data to be sent of the terminal device according to the second parameter.
  • the terminal device determines the transmission resource according to the second parameter.
  • the terminal device determines the RSRP threshold of the reference signal received power for resource exclusion, it performs a resource selection process according to the RSRP threshold for resource exclusion.
  • the specific resource selection process is similar to the resource selection process described in FIG. 2c.
  • the RSRP threshold used for resource exclusion replaces the "preset RSRP threshold Th RSRP " in step S3, and will not be repeated here.
  • the length of the resource selection window includes the time domain length of the resource selection window, and/or the terminal device determines the total number of candidate resources in the resource selection window according to the first parameter.
  • the terminal device selects and sends resources from the set of available resources according to the length of the resource selection window.
  • the remaining resource selection process is similar to the resource selection process described in FIG. 2c, and will not be repeated here.
  • the terminal device transmits the data to be sent through the data channel according to the transmission power of the data channel.
  • the terminal device selects the transmission resource according to the second parameter, where the second parameter is: a reference signal received power RSRP threshold used for resource exclusion and/or the length of the resource selection window.
  • the terminal device may select a sending resource according to the second parameter, and the sending resource is used to send the data to be sent of the terminal device.
  • the terminal device selects the transmission resource according to the second parameter, and the second parameter is: the transmission power of the data channel. Then, the terminal device sends the resource to be sent according to the transmission power of the data channel.
  • the terminal device selects the transmission resource according to the second parameter, where the second parameter is: a reference signal received power RSRP threshold for resource exclusion and/or the length of a resource selection window, and the second parameter also includes a data channel The transmit power. Then, while the terminal device selects the sending resource according to the second parameter, it can also send the data to be sent according to the second parameter (the transmission power of the data channel).
  • the second parameter is: a reference signal received power RSRP threshold for resource exclusion and/or the length of a resource selection window
  • the second parameter also includes a data channel The transmit power.
  • the terminal device selects the sending resource according to the second parameter, it can also send the data to be sent according to the second parameter (the transmission power of the data channel).
  • the terminal device after triggering resource selection, the terminal device first determines that the duration of resource listening is less than the length of the resource listening window, and then the terminal device determines the second parameter according to the first parameter, and selects and sends the resource according to the second parameter. /Or send the data to be sent of the terminal device according to the second parameter.
  • the second parameter is the transmission power of the data channel
  • the transmission power of the data channel carrying the data to be sent can be adjusted to reduce the interference to other terminal devices.
  • FIG. 4 is a schematic diagram of an embodiment of another communication method proposed in an embodiment of this application.
  • the communication method proposed in an embodiment of this application includes:
  • the terminal device determines a second parameter according to the first parameter.
  • the first threshold is the length of the resource listening window.
  • the terminal device determines the second parameter according to the first parameter.
  • the specific method for determining the second parameter according to the first parameter is similar to the foregoing step 302, and will not be repeated here.
  • the terminal device determines the sending resource according to the second parameter and/or the terminal device sends the data to be sent of the terminal device according to the second parameter.
  • the terminal device after the terminal device triggers resource selection, when the duration of resource listening in the terminal device is less than the first threshold, the terminal device determines the second parameter according to the first parameter, and selects the sending resource and/or according to the second parameter. Or send the to-be-sent data of the terminal device according to the second parameter.
  • the terminal device determines the second parameter according to the first parameter, and selects the sending resource and/or according to the second parameter. Or send the to-be-sent data of the terminal device according to the second parameter.
  • the above-mentioned terminal device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the execution body of the method provided in the above embodiments may be the entire terminal device, may be a component or component that implements communication functions in the terminal device, or may be a communication chip or chip system applied to the terminal device, etc.
  • the above-mentioned complete machines, components or communication chips can be collectively referred to as communication devices.
  • the embodiment of the present application may divide the communication device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module 501.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 5 is a schematic diagram of an embodiment of a communication device according to an embodiment of the application.
  • the communication device 500 proposed in the embodiment of the present application includes:
  • the processing module 501 is configured to determine that the duration of resource listening is less than the resource listening window
  • the processing module 501 is further configured to determine a second parameter according to the first parameter, and the second parameter includes at least one of the following: reference signal received power RSRP threshold for resource exclusion, the length of the resource selection window, or the transmission of the data channel power;
  • the sending module 502 is configured to select a sending resource according to the second parameter, and/or send the to-be-sent data of the communication device 500 according to the second parameter.
  • the first parameter is determined by the communication device 500 according to the ratio between the actual listening time length in the current resource listening window and the resource listening window length, or the first parameter It is a parameter configured through higher layer signaling, or, the first parameter is a pre-configured parameter.
  • the first parameter satisfies:
  • the alpha is the first parameter
  • the D 0 is the actual listening time length
  • the D s is the length of the resource listening window
  • the T 0 is the start time of the resource listening window
  • the T proc ,0 is the end time of the resource listening window.
  • the processing module 501 is specifically configured to determine the RSRP threshold for resource exclusion when the first parameter is in a first interval, and the first interval includes one or more intervals.
  • the RSRP threshold for resource exclusion satisfies:
  • R1 R0+k, alpha ⁇ [x, y];
  • the R1 is the RSRP threshold for resource exclusion
  • the R0 is the preset RSRP threshold for resource exclusion
  • the alpha is the first parameter
  • the [x, y] is the first interval
  • the k is a real number
  • the x is a real number
  • the y is a real number.
  • the processing module 501 is specifically configured to determine the time domain length of the resource selection window according to the first parameter, and/or determine the candidate resource in the resource selection window according to the first parameter total.
  • the processing module 501 is specifically configured to determine the transmission power of the data channel according to the first parameter and the preset transmission power of the data channel.
  • the transmit power of the data channel satisfies:
  • the P′ TX is the transmit power of the data channel
  • the P TX is the preset transmit power of the data channel
  • the alpha is the first parameter
  • the h(alpha) is the monotonicity of the first parameter Increasing function.
  • the preset RSRP threshold for resource exclusion is configured through higher layer signaling, or the preset RSRP threshold for resource exclusion is a preconfigured parameter.
  • the preset transmit power of the data channel is configured through higher layer signaling, or the preset transmit power of the data channel is a pre-configured parameter.
  • the data channel is a physical side link shared channel PSSCH and/or a physical side link control channel PSCCH.
  • FIG. 6 is a schematic diagram of an embodiment of another communication device according to an embodiment of the application.
  • the communication device 600 proposed in the embodiment of the present application includes:
  • the processing module 601 is configured to determine a second parameter according to the first parameter when the duration of resource listening in the communication device 600 is less than the first threshold, and the second parameter includes at least one of the following: reference signal received power for resource exclusion RSRP threshold, the length of the resource selection window, or the transmission power of the data channel;
  • the sending module 602 is configured to select a sending resource according to the second parameter, and/or send the data to be sent of the communication device 600 according to the second parameter.
  • the first parameter is determined by the communication device 600 according to the ratio between the actual listening time length in the current resource listening window and the length of the resource listening window, or the first parameter It is a parameter configured through higher layer signaling, or, the first parameter is a pre-configured parameter.
  • the first parameter satisfies:
  • the alpha is the first parameter
  • the D 0 is the actual listening time length
  • the D s is the length of the resource listening window
  • the T 0 is the start time of the resource listening window
  • the T proc ,0 is the end time of the resource listening window.
  • the processing module 601 is specifically configured to determine the RSRP threshold for resource exclusion when the first parameter is in a first interval, and the first interval includes one or more intervals.
  • the RSRP threshold for resource exclusion satisfies:
  • R1 R0+k, alpha ⁇ [x, y];
  • the R1 is the RSRP threshold for resource exclusion
  • the R0 is the preset RSRP threshold for resource exclusion
  • the alpha is the first parameter
  • the [x, y] is the first interval
  • the k is a real number
  • the x is a real number
  • the y is a real number.
  • the processing module 601 is specifically configured to determine the time domain length of the resource selection window according to the first parameter, and/or determine the candidate resource in the resource selection window according to the first parameter total.
  • the processing module 601 is specifically configured to determine the transmission power of the data channel according to the first parameter and the preset transmission power of the data channel.
  • the transmit power of the data channel satisfies:
  • the P′ TX is the transmit power of the data channel
  • the P TX is the preset transmit power of the data channel
  • the alpha is the first parameter
  • the h(alpha) is the monotonicity of the first parameter Increasing function.
  • the preset RSRP threshold for resource exclusion is configured through higher layer signaling, or the preset RSRP threshold for resource exclusion is a preconfigured parameter.
  • the preset transmit power of the data channel is configured through higher layer signaling, or the preset transmit power of the data channel is a pre-configured parameter.
  • the data channel is a physical side link shared channel PSSCH and/or a physical side link control channel PSCCH.
  • the communication device in the foregoing embodiment may be a terminal device, or may be a chip applied to a terminal device or other combination devices, components, etc. that can realize the functions of the foregoing terminal device.
  • the transmitting module may be a transmitter, which may include an antenna and a radio frequency circuit, etc.
  • the receiving module may be a receiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a baseband chip.
  • the sending module may be a radio frequency unit
  • the processing module may be a processor.
  • the sending module may be an output interface of the chip system
  • the processing module may be a processor of the chip system, such as a central processing unit (CPU).
  • FIG. 7 is a schematic structural diagram of a terminal device or a component having the function of the foregoing terminal device according to an embodiment of the application.
  • the terminal device can be applied to the system shown in FIG. 1a to FIG. 1c to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 7 only shows the main components of the terminal device.
  • the terminal device 70 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiments, such as It is determined that the duration of resource listening is less than the resource listening window; the second parameter is determined according to the first parameter.
  • the memory is mainly used to store software programs and data, for example, to store the pre-configured parameters described in the foregoing embodiments.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. , Execute the software program, and process the data of the software program.
  • the processor in FIG. 7 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 701 of the terminal device 70, for example, for supporting the terminal device to perform the aforementioned receiving function and sending function.
  • the processor with processing function is regarded as the processing unit 702 of the terminal device 70.
  • the terminal device 70 includes a transceiver unit 701 and a processing unit 702.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiver unit 701 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 701 can be regarded as the sending unit, that is, the transceiver unit 701 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 702 may be configured to execute instructions stored in the memory to control the transceiver unit 701 to receive signals and/or send signals, and complete the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiving unit 701 may be implemented by a transceiving circuit or a dedicated chip for transceiving.
  • the application also provides a communication system, which includes one or more terminal devices.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the communication method described in any one of the foregoing method embodiments is implemented.
  • the embodiments of the present application also provide a computer program product, which, when executed by a computer, implements the communication method described in any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the communication method described in any of the foregoing method embodiments.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is realized by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application. The implementation process constitutes any limitation.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data in the form of structure
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and disc include compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy the data. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法以及通信装置,其中:终端设备确定当前资源侦听的时长小于资源侦听窗口的长度;根据第一参数确定第二参数,第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率;终端设备根据第二参数选择发送资源,和/或,终端设备根据第二参数发送终端设备的待发送数据。可以降低和其它终端设备选择相同发送资源的概率,即减少资源选择碰撞,提升传输可靠性和系统资源利用率。本实施例提供的方法可以应用于通信系统,例如V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M,M2M,物联网等。

Description

一种通信方法以及通信装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法以及通信装置。
背景技术
在目前的车辆到所有(vehicle to everything,V2X)提供了设备到设备(device to device,D2D)直接通信和基站中转通信两种通信技术。其中的D2D直接通信技术允许终端设备间通过PC5接口直接进行通信,其传输时延相对较低且配置资源较少,终端设备也称为用户设备(user equipment,UE)。基站中转通信技术通过Uu接口进行通信,可靠性较高。随着5G新空口(new radio,NR)技术的开发,5G NR V2X也将进一步发展,比如为了支持更高级的业务场景,如编队行驶、协同感知、远程驾驶等,NR V2X提出了支持更低的传输时延(低至2毫秒),更可靠的通信传输(高达99.999%),更高的吞吐量(高达1千兆比特每秒),更好的用户体验,以满足更加广泛的应用场景需求。
在NR-V2X系统中,用于侧行链路(sidelink,SL)通信的时频资源有两种分配模式,一种为基站分配资源模式(mode-1),另一种为用户自选资源模式(mode-2)。在mode-2模式下,终端设备在发送数据之前,在资源侦听窗口(sensing window)内对信道进行侦听,然后根据资源侦听的结果在资源选择窗口(selection window)内自行选择发送资源进行通信。
在某些场景下,终端设备选择发送资源的依据,与实际信道情况误差较大。导致终端设备与其它终端设备选择相同发送资源的概率大幅提升,提升了碰撞概率,降低了传输可靠性。
发明内容
有鉴于此,本申请实施例第一方面提供了一种通信方法,可以降低和其它终端设备选择相同发送资源的概率,即减少资源选择碰撞,提升传输可靠性和系统资源利用率。
第一方面,本申请实施例提供了一种通信方法,可以包括:首先,终端设备确定资源侦听的时长小于资源侦听窗口。假设终端设备在时隙n触发资源选择,则该资源侦听窗口为资源选择触发之前的[n-T 0,n-T proc,0]对应的时隙,其中,n为正整数,T 0为资源侦听窗口的起始时间,T proc,0为资源侦听窗口的结束时间,满足T 0>T proc,0>0。当终端设备确定资源侦听的时长小于资源侦听窗口的时间长度,则进入后续流程;其次,该终端设备根据第一参数确定第二参数,该第二参数包括以下至少一项:用于资源排除的参考信号接收功率(reference signal receiving power,RSRP)门限,资源选择窗口的长度,或数据信道的发射功率;该终端设备根据该第二参数选择发送资源,和/或,该终端设备根据该第二参数发送该终端设备的待发送数据。
本申请实施例中,首先,终端设备确定当前资源侦听的时长小于资源侦听窗口的长度;其次,终端设备根据第一参数确定第二参数,第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率;再次,终端设备根据第二参数选择发送资源,和/或,终端设备根据第二参数发送终端设备的待发送数据。终端设备根据第一参数选择发送资源和/或发送待发送数据,以降低与其他终端设备 选择相同发送资源的概率,减少了发送资源选择碰撞概率,提升数据传输可靠性和发送资源利用率。
结合第一方面,在第一方面的一种可能的实现方式中,该第一参数由该终端设备根据当前资源侦听窗口内实际侦听时间长度、该资源侦听窗口的长度之间的比值确定,例如:该第一参数满足:alpha=D 0/D s=D 0/(T proc,0-T 0);其中,该alpha为该第一参数,该D 0为该实际侦听时间长度,该D s为该资源侦听窗口的长度,该T 0为该资源侦听窗口的起始时间,该T proc,0为该资源侦听窗口的结束时间。或,该第一参数为通过高层信令配置的参数,例如:第一参数为通过无线资源控制层(radio resource control,RRC)信令配置的参数。或,该第一参数为预配置的参数,例如:该第一参数为预先配置于资源池中的参数,或,该第一参数为终端设备出厂时预先配置的参数。
本申请实施例中,终端设备根据第一参数确定第二参数,该第一参数可以是多种不同的参数。例如:当第一参数由该终端设备根据当前资源侦听窗口内实际侦听时间长度、该资源侦听窗口的长度之间的比值确定时,则终端设备根据该第一参数确定的第二参数,与实际通信情况更为匹配;当第一参数为通过高层信令配置的参数时,可以节约终端设备的计算资源。提升了本申请实施例的实现灵活性。
结合第一方面,在第一方面的一种可能的实现方式中,当该第二参数包括该用于资源排除的RSRP门限时,该终端设备根据该第一参数确定该第二参数,可以包括:
当该第一参数位于第一区间,则确定该用于资源排除的RSRP门限,该第一区间包括一个或多个区间,例如,该用于资源排除的RSRP门限满足:
R1=R0+k,alpha∈[x,y];
其中,该R1为该用于资源排除的RSRP门限,该R0为预置的该用于资源排除的RSRP门限,该alpha为该第一参数,该[x,y]为该第一区间,该k为实数,该x为实数,该y为实数。用于资源排除的RSRP门限满足:R1=R0+k,alpha∈[x,y];
其中,R1为用于资源排除的RSRP门限,R0为预置的用于资源排除的RSRP门限,alpha为第一参数,[x,y]为第一区间,k为实数,x为实数,y为实数。该预置的用于资源排除的RSRP门限是通过高层信令配置的,或,该预置的用于资源排除的RSRP门限为预配置的参数。可选的,该第一区间包括一个或多个区间,当第一参数位于第一区间中的不同区间时,用于资源排除的RSRP门限由预置的用于资源排除的RSRP门限与各个区间对应的预设值确定。例如:R1=R0+k1,alpha∈[x1,y1];R1=R0+k2,alpha∈[x2,y2];···R1=R0+kn,alpha∈[xn,yn];其中,k1、k2···kn分别为不相等的实数,x1、x2···xn分别为不相等的实数,y1、y2···yn分别为不相等的实数。
本申请实施例中,终端设备预设第一区间,该第一区间包括一个或多个区间。当终端设备确定第一参数位于第一区间,则终端设备根据第一区间确定对应的资源排除的RSRP门限。通过上述方法,简化确定用于资源排除的RSRP门限,降低终端设备占用的运算资源。
结合第一方面,在第一方面的一种可能的实现方式中,当该第二参数包括该资源选择窗口的长度,该终端设备根据该第一参数确定该第二参数,可以包括:该终端设备根据该第一参数确定该资源选择窗口的时域长度,例如:以位于时隙n后,最近的一个资源选择 窗口为例进行说明,该资源选择窗口中包括:候选资源1、候选资源2、候选资源3以及候选资源4,这4个可选择的发送资源。终端设备根据第一参数确定第二参数,包括:原资源选择窗口的时域长度为[n+T1,n+T2]。终端设备根据第一参数确定资源选择窗口的时域长度为[n+T3,n+T4],其中,n、T1、T2、T3和T4为实数。和/或,该终端设备根据该第一参数确定该资源选择窗口内的候选资源的总数,例如:假设频域上包含N个子信道,如:1、2、···、N-1和N个子信道。当时域上包括1个时隙,如时隙1,且候选资源大小为L,则候选资源的总数为:N-L+1。当时域上包括M个时隙时,且候选资源大小为L,该资源选择窗口的候选资源总数为:M*(N-L+1)。其中,N、M以及L为正整数。当原候选资源总数为:M*(N-L+1)时,终端设备根据第一参数确定资源选择窗口内候选资源的总数,该候选资源总数为:M*(N-L+1)-Q,其中Q为整数,Q与第一参数有关,可选的,Q为第一参数。或者该候选资源总数为:P*M*(N-L+1),其中P为实数,P与第一参数有关,可选的,P为与第一参数关联的任意参数。
本申请实施例中,当第二参数包括资源选择窗口的长度时,终端设备根据第一参数确定第二参数包括确定资源选择窗口的时域长度,和/或,根据第一参数确定资源选择窗口内的候选资源的总数。进一步降低与其他终端设备选择相同发送资源的概率,减少了发送资源选择碰撞概率,提升数据传输可靠性和发送资源利用率。
结合第一方面,在第一方面的一种可能的实现方式中,当该第二参数包括该数据信道的发射功率,该终端设备根据该第一参数确定该第二参数,包括:该终端设备根据该第一参数和预置的该数据信道的发射功率,确定该数据信道的发射功率。例如:该数据信道的发射功率满足:P′ TX=h(alpha)×P TX;其中,该P′ TX为该数据信道的发射功率,该P TX为该预置的该数据信道的发射功率,该alpha为该第一参数,该h(alpha)为关于该第一参数的单调递增函数。预置的数据信道的发射功率是通过高层信令配置的,或,预置的数据信道的发射功率为预配置的参数。该高层信令可以是RRC信令。该预置的数据信道的发射功率还可以是终端设备通过功率控制计算得到的,此处不作限定。该数据信道为物理侧行链路共享信道PSSCH和/或物理侧行链路控制信道PSCCH。
本申请实施例中,当第二参数包括该数据信道的发射功率时,终端设备根据第一参数和预置的该数据信道的发射功率,确定该数据信道的发射功率。进一步降低对其他终端设备的干扰,提升数据传输可靠性和发送资源利用率。
第二方面,本申请实施例提出了一种通信方法,可以包括:
由于资源侦听窗口的长度,通常是预先配置给终端设备的(通过高层信令或在终端设备出厂时配置),因此,当终端设备中资源侦听的时长小于第一阈值时,既可以确定当前终端设备没有侦听到完整的资源侦听窗口。当终端设备中资源侦听的时长小于第一阈值时,该终端设备根据第一参数确定第二参数,该第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率。可选的,该第一阈值为资源侦听窗口的长度;该终端设备根据该第二参数选择发送资源,和/或,该终端设备根据该第二参数发送该终端设备的待发送数据。
本申请实施例中,终端设备在触发资源选择后,当终端设备中资源侦听的时长小于第一阈值时,终端设备根据第一参数确定第二参数,并根据第二参数选择发送资源和/或根据 第二参数发送终端设备的待发送数据。以降低和其它终端设备选择相同发送资源的概率,即减少资源选择碰撞,提升传输可靠性和系统资源利用率。通过直接比较资源侦听的时长与第一阈值,确定是否进入后续流程,可以节省系统资源开销。
结合第二方面,在第二方面的一种可能的实现方式中,该第一参数由该终端设备根据当前资源侦听窗口内实际侦听时间长度、该资源侦听窗口的长度之间的比值确定,例如:该第一参数满足:alpha=D 0/D s=D 0/(T proc,0-T 0);其中,该alpha为该第一参数,该D 0为该实际侦听时间长度,该D s为该资源侦听窗口的长度,该T 0为该资源侦听窗口的起始时间,该T proc,0为该资源侦听窗口的结束时间。或,该第一参数为通过高层信令配置的参数,例如:第一参数为通过无线资源控制层(radio resource control,RRC)信令配置的参数。或,该第一参数为预配置的参数,例如:该第一参数为预先配置于资源池中的参数,或,该第一参数为终端设备出厂时预先配置的参数。
本申请实施例中,终端设备根据第一参数确定第二参数,该第一参数可以是多种不同的参数。提升了本申请实施例的实现灵活性。
结合第二方面,在第二方面的一种可能的实现方式中,当该第二参数包括该用于资源排除的RSRP门限时,该终端设备根据该第一参数确定该第二参数,可以包括:
当该第一参数位于第一区间,则确定该用于资源排除的RSRP门限,该第一区间包括一个或多个区间,例如,该用于资源排除的RSRP门限满足:
R1=R0+k,alpha∈[x,y];
其中,该R1为该用于资源排除的RSRP门限,该R0为预置的该用于资源排除的RSRP门限,该alpha为该第一参数,该[x,y]为该第一区间,该k为实数,该x为实数,该y为实数。用于资源排除的RSRP门限满足:R1=R0+k,alpha∈[x,y];
其中,R1为用于资源排除的RSRP门限,R0为预置的用于资源排除的RSRP门限,alpha为第一参数,[x,y]为第一区间,k为实数,x为实数,y为实数。该预置的用于资源排除的RSRP门限是通过高层信令配置的,或,该预置的用于资源排除的RSRP门限为预配置的参数。可选的,该第一区间包括一个或多个区间,当第一参数位于第一区间中的不同区间时,用于资源排除的RSRP门限由预置的用于资源排除的RSRP门限与各个区间对应的预设值确定。例如:R1=R0+k1,alpha∈[x1,y1];R1=R0+k2,alpha∈[x2,y2];···R1=R0+kn,alpha∈[xn,yn];其中,k1、k2···kn分别为不相等的实数,x1、x2···xn分别为不相等的实数,y1、y2···yn分别为不相等的实数。
本申请实施例中,终端设备预设第一区间,该第一区间包括一个或多个区间。当终端设备确定第一参数位于第一区间,则终端设备根据第一区间确定对应的资源排除的RSRP门限。通过上述方法,简化确定用于资源排除的RSRP门限,降低终端设备占用的运算资源。
结合第二方面,在第二方面的一种可能的实现方式中,当该第二参数包括该资源选择窗口的长度,该终端设备根据该第一参数确定该第二参数,可以包括:该终端设备根据该第一参数确定该资源选择窗口的时域长度,例如:以位于时隙n后,最近的一个资源选择窗口为例进行说明,该资源选择窗口中包括:候选资源1、候选资源2、候选资源3以及候选资源4,这4个可选择的发送资源。终端设备根据第一参数确定第二参数,包括:原资 源选择窗口的时域长度为[n+T1,n+T2]。终端设备根据第一参数确定资源选择窗口的时域长度为[n+T3,n+T4],其中,n、T1、T2、T3和T4为实数。和/或,该终端设备根据该第一参数确定该资源选择窗口内的候选资源的总数,例如:假设频域上包含N个子信道,如:1、2、···、N-1和N个子信道。当时域上包括1个时隙,如时隙1,且候选资源大小为L,则候选资源的总数为:N-L+1。当时域上包括M个时隙时,且候选资源大小为L,该资源选择窗口的候选资源总数为:M*(N-L+1)。其中,N、M以及L为正整数。当原候选资源总数为:M*(N-L+1)时,终端设备根据第一参数确定资源选择窗口内候选资源的总数,该候选资源总数为:M*(N-L+1)-Q,其中Q为整数。或者该候选资源总数为:P*M*(N-L+1),其中P为实数。
本申请实施例中,当第二参数包括资源选择窗口的长度时,终端设备根据第一参数确定第二参数包括确定资源选择窗口的时域长度,和/或,根据第一参数确定资源选择窗口内的候选资源的总数。进一步降低与其他终端设备选择相同发送资源的概率,减少了发送资源选择碰撞概率,提升数据传输可靠性和发送资源利用率。
结合第二方面,在第二方面的一种可能的实现方式中,当该第二参数包括该数据信道的发射功率,该终端设备根据该第一参数确定该第二参数,包括:该终端设备根据该第一参数和预置的该数据信道的发射功率,确定该数据信道的发射功率。例如:该数据信道的发射功率满足:P′ TX=h(alpha)×P TX;其中,该P′ TX为该数据信道的发射功率,该P TX为该预置的该数据信道的发射功率,该alpha为该第一参数,该h(alpha)为关于该第一参数的单调递增函数。预置的数据信道的发射功率是通过高层信令配置的,或,预置的数据信道的发射功率为预配置的参数。该高层信令可以是RRC信令。该预置的数据信道的发射功率还可以是终端设备通过功率控制计算得到的,此处不作限定。该数据信道为物理侧行链路共享信道PSSCH和/或物理侧行链路控制信道PSCCH。
本申请实施例中,当第二参数包括该数据信道的发射功率时,终端设备根据第一参数和预置的该数据信道的发射功率,确定该数据信道的发射功率。进一步降低与其他终端设备选择相同发送资源的概率,减少了发送资源选择碰撞概率,提升数据传输可靠性和发送资源利用率。
第三方面,本申请实施例提出了一种通信装置,可以包括:
处理模块,用于确定资源侦听的时长小于资源侦听窗口;
该处理模块,还用于根据第一参数确定第二参数,该第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率;
发送模块,用于根据该第二参数选择发送资源,和/或,根据该第二参数发送终端设备的待发送数据。
结合第三方面,在第三方面的一种可能实现方式中,通信装置的组成模块还可以执行前述第一方面以及各种可能的实现方式中所描述的步骤,详见前述对第一方面以及各种可能的实现方式中的说明。
第四方面,本申请实施例提出了一种通信装置,可以包括:
处理模块,用于当终端设备中资源侦听的时长小于第一阈值时,根据第一参数确定第二参数,该第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资 源选择窗口的长度,或数据信道的发射功率;
发送模块,用于根据该第二参数选择发送资源,和/或,根据该第二参数发送该终端设备的待发送数据。
结合第四方面,在第四方面的一种可能实现方式中,通信装置的组成模块还可以执行前述第二方面以及各种可能的实现方式中所描述的步骤,详见前述对第二方面以及各种可能的实现方式中的说明。
第五方面,本申请实施例提供了一种终端设备,该终端设备包括至少一个处理器、存储器、通信端口、显示器以及存储在存储器中并可在处理器上运行的计算机执行指令,当该计算机执行指令被该处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能的实现方式。
第四方面,本申请实施例提供了一种存储一个或多个计算机执行指令的计算机可读存储介质,当该计算机执行指令被处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能的实现方式。
第六方面,本申请实施例提供一种存储一个或多个计算机执行指令的计算机程序产品(或称计算机程序),当该计算机执行指令被该处理器执行时,该处理器执行上述第一方面或第一方面任意一种可能的实现方式。
第七方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机设备实现上述方面中所涉及的功能。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存计算机设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第八方面,本申请实施例提供了一种终端设备,该终端设备包括至少一个处理器、存储器、通信端口、显示器以及存储在存储器中并可在处理器上运行的计算机执行指令,当该计算机执行指令被该处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能的实现方式。
第九方面,本申请实施例提供了一种计算机设备,该终端设备包括至少一个处理器、存储器、通信端口、显示器以及存储在存储器中并可在处理器上运行的计算机执行指令,当该计算机执行指令被该处理器执行时,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式。
第十方面,本申请实施例提供了一种存储一个或多个计算机执行指令的计算机可读存储介质,当该计算机执行指令被处理器执行时,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式。
第十一方面,本申请实施例提供一种存储一个或多个计算机执行指令的计算机程序产品(或称计算机程序),当该计算机执行指令被该处理器执行时,该处理器执行上述第二方面或第二方面任意一种可能的实现方式。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机设备实现上述方面中所涉及的功能。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存计算机设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十三方面,本申请实施例提供了一种终端设备,该终端设备包括至少一个处理器、存储器、通信端口、显示器以及存储在存储器中并可在处理器上运行的计算机执行指令,当该计算机执行指令被该处理器执行时,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式。
附图说明
图1a为本申请实施例提供的车联网无线通信的一种网络系统示意图;
图1b为本申请实施例提供的侧行链路通信的一种网络系统示意图;
图1c为本申请实施例提供的侧行链路通信的另一种网络系统示意图;
图2a为本申请实施例中信道的时频资源映射示意图;
图2b为本申请实施例中候选资源示意图;
图2c为本申请实施例中用户自选资源模式下资源选择流程示意图;
图2d为本申请实施例中资源排除示意图;
图2e为本申请实施例中非连续性接收的一种示意图;
图3a为本申请实施例提出了一种通信方法的实施例示意图;
图3b为本申请实施例中实际侦听时间长度与资源侦听窗口的一种时间关系示意图;
图3c为本申请实施例中实际侦听时间长度与资源侦听窗口的另一种时间关系示意图;
图3d为本申请实施例中资源选择窗口中候选资源的一种示意图;
图3e为本申请实施例中资源选择窗口中候选资源的另一种示意图;
图4为本申请实施例提出了另一种通信方法的实施例示意图;
图5为本申请实施例提出的一种终端设备的实施例示意图;
图6为本申请实施例提出的另一种终端设备的实施例示意图;
图7为本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
本申请实施例提供了一种通信方法和终端设备,终端设备确定资源侦听的时长小于资源侦听窗口,或终端设备的资源侦听的时长小于第一阈值时,终端设备根据第一参数选择发送资源和/或发送待发送数据,以降低与其他终端设备选择相同发送资源的概率,减少了发送资源选择碰撞概率,提升数据传输可靠性和发送资源利用率。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本申请描述的技术可以适用于长期演进(long term evolution,简称LTE)系统后续的演进系统,如5G系统,包括新无线(new radio,NR)系统,或者演进的LTE(evolved LTE) 系统等,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。应当理解,本申请实施例中仅以将通信方法应用于5G系统中为例,进行说明。本申请实施例提出的通信方法,除了可以应用于NR-V2X系统,还可以应用于其它侧行链路(sidelink,SL)通信系统,例如LTE-V2X系统,或D2D系统等,此处不作限定。
在5G系统中可以实现终端直通(device-to-device,D2D)通信,D2D是一种终端设备与终端设备直接通信的技术,终端设备与终端设备之间的通信位于侧行链路(sidelink,SL),不再需要基站的中转。具体的,可以适用于车联网无线通信(vehicle to everything,V2X)中,也可以适用于家电组成的信息系统的无线通信中,还可以适用于其他类型的终端设备之间组成的无线通信系统中。如图1a所示,图1a为本申请实施例提供的车联网无线通信的一种网络系统示意图,V2X通信包括车与车的通信(vehicle-to-vehicle,V2V)、车与行人的通信(vehicle-to-pedestrian,V2P)、车与基础设施的通信(vehicle-to-infrastructure,V2I)、车与网络的通信(vehicle-to-network,V2N)。
在NR-V2X系统中,用于侧行链路(sidelink,SL)通信的时频资源有两种分配模式:一、基站分配资源模式(mode-1),另一种为用户自选资源模式(mode-2)。如图1b所示,图1b为本申请实施例提供的侧行链路通信的一种网络系统示意图。基站分配资源模式(mode-1)主要应用于有网络覆盖的情形下的V2X通信,基站统一根据终端设备的缓存状态报告(buffer status report,BSR)情况,集中进行资源分配。如图1c所示,图1c为本申请实施例提供的侧行链路通信的另一种网络系统示意图。在用户自选资源模式(mode-2)下,终端设备的传输资源不依赖于基站。该模式不受限于网络覆盖,在没有网络覆盖情况下,终端设备也可以用该模式进行通信。
本申请实施例中,终端设备为各种具有线通信功能的终端设备或装置,例如:移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。通信设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)、或用户装备(user equipment,UE)。例如车辆、车载设备、车载模块或单元、路测基础设备、手持设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如车辆用户设备(vehicle user equipment,VUE)或空调用户设备等等。
本申请实施例中,基站可以包括各种形式的宏基站,微基站,中继站,接入点,路边单元等等,当然,本申请的基站的功能也可以通过内置模块或单元实现,此内置模块或单元内置于宏基站,微基站,中继站,接入点,路边单元中。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为演进的节点B(evolved NodeB简称:eNB或者eNodeB),在NR系统中,称为gNB,在第三代3G系 统中,称为节点B(Node B)等等。
作为一种可选的应用场景,本申请实施例提供的通信方法可以适用于V2X技术中,V2X是指借助新一代信息通信技术将车与一切事物相连接,从而实现车辆与车辆(vehicle to vehicle,V2V)、车辆与路侧基础设施(vehicle to infrastructure,V2I)、车辆与行人等弱势交通参与者(vehicle to pedestrian,V2P)、车辆与云服务平台(vehicle to network,V2N)的全方位连接和信息交互。作为示例,比如车辆排队行驶,几辆车组成一个车队,队首车辆实现对整个车队的控制,如控制整个车队的速度,车辆间距,是否允许其他车辆加入,本车队的车辆离开车队等,因此,队首车辆可能需要与车队的其他车辆进行通信,队首车辆也可能需要和车队中其他车辆之间进行通信,本车队的其他车辆之间也可能进行通信。因此,为了保证通信传输的质量,需要使用本申请实施例提出的通信方法,以降低与其他终端设备选择相同发送资源的概率。减少了发送资源选择碰撞概率,提升数据传输可靠性和发送资源利用率。
作为另一种可选的应用场景,本申请实施例提供的通信方法也可以应用于家电联网系统中,比如家用的各个电器组成一个信息交互系统,作为示例,例如空调、洗衣机、电灯、冰箱、电饭煲等,由一个特定的控制中心实现对各个电器的控制,如控制各个电器的开关时间,控制空调的温度、洗衣机的清洗模式等等,是否允许新的电器加入,旧的电器被淘汰等,控制中心可能需要与其它各个电器进行通信,各个电器之间也可能需要进行通信。因此,为了保证通信传输的质量,需要使用本申请实施例提出的通信方法,以降低与其他终端设备选择相同发送资源的概率。
下面,对用户自选资源模式(mode-2)进行介绍。终端设备在发送数据前,在资源侦听窗口(sensing window)内对信道进行侦听,然后根据资源侦听的结果在资源选择窗口(selection window)内自行选择发送资源进行通信。当终端设备需要发送数据时,终端设备将数据映射到物理侧行链路共享信道(physical sidelink share channel,PSSCH)中,并将相应的控制信息映射到物理侧行链路控制信道(physical sidelink control channel,PSCCH)。PSSCH的时频资源与PSCCH的时频资源之间的关系,如图2a所示,图2a为本申请实施例中信道的时频资源映射示意图。每次使用PSSCH/PSCCH的数据传输过程中,PSSCH/PSCCH通常会占用一个时隙(slot)上的一个或多个子信道(sub-channel)。
如图2b所示,图2b为本申请实施例中候选资源示意图。假设终端设备待发送数据所对应的PSSCH/PSCCH所占用的子信道的个数为L subCH,则该待发送数据所占用的发送资源为一个时隙中一组长度为L subCH的连续子信道。每个时隙上,频域资源池的子信道(sub-channel)个数N subCH为8,待传输数据所对应的PSSCH/PSCCH占用的子信道的个数L subCH为2,则每个时隙上的候选资源总数为N subCH-L subCH+1=7,候选资源的集合记为
Figure PCTCN2020085585-appb-000001
其中候选资源C 0包含子信道0和子信道1,候选资源C 1包含子信道1和子信道2,…,候选资源C 6包含子信道6和子信道7。资源选择窗口(selection window)对应的全部候选资源是资源选择窗口(sensing window)中所有时隙上候选资源的总和。
首先,结合附图说明资源选择流程。请参阅图2c,图2c为本申请实施例中用户自选资源模式下资源选择流程示意图。用户自选资源模式下资源选择流程包括;
S1、初始化可用资源集合。
步骤S1中,假设终端设备在时隙n触发资源选择,则该资源侦听窗口为资源选择触发之前的[n-T 0,n-T proc,0]对应的时隙,其中,n为正整数,T 0为资源侦听窗口的起始时间,T proc,0为资源侦听窗口的结束时间,满足T 0>T proc,0>0。为了方便描述,在本流程中,假设S A为当前资源选择窗口中所有的候选资源,该S A也称为可用资源集合。需要说明的是,该候选资源也称为发送资源,该发送资源用于发送待发送数据。设该S A中,候选资源的总数为M total
S2、译码SCI并测量RSRP。
步骤S2中,终端设备接收当前资源选择窗口内,且在频域资源池内其它终端设备发送的侧行链路控制信息(sidelink control information,SCI)进行译码。具体的,终端设备侦听当前资源选择窗口内的SCI并进行译码。当终端设备侦听到的SCI中包括其他终端设备的资源预约信息,且该资源预约信息位于资源选择窗口[n+T 1,n+T 2]内,终端设备测量PSSCH信道或PSCCH信道的参考信号接收功率(reference signal receiving power,RSRP),其中,T 2>T 1>0。
S3、排除高能量的发送资源。
步骤S3中,RSRP值的大小指示该发送资源的能量大小。RSRP的值大,则该RSRP对应的发送资源的能量高;RSRP的值小,则该RSRP对应的发送资源的能量低。由于高能量的发送资源被其它终端设备占用的可能性大,终端设备为了避免与其它终端设备发生冲突,应当避免使用被占用的发送资源。因此通过检测该发送资源的RSRP值,以排除高能量的发送资源。
具体的,如果测量的RSRP值高于预设的RSRP门限Th RSRP,则从可用资源集合S A中排除相应的发送资源。终端设备通过接收到的SCI中指示的数据对应的优先级,和终端设备的待发送数据所对应的优先级的函数,确定该预设的RSRP门限Th RSRP
S4、检测剩余的发送资源数量是否小于预设门限。
步骤S4中,终端设备从可用资源集合S A中排除高能量的发送资源后,检测集合S A中剩余的发送资源数量是否小于预设门限,可选的,该预设门限为0.2*M total
若集合S A中剩余的发送资源数小于预设门限,则进入步骤S5;若集合S A中剩余的发送资源数大于或等于预设门限,则进入步骤S6。
S5、提高RSRP的预设门限值。
步骤S5中,若步骤S4中集合S A中剩余的发送资源数小于预设门限,则提高RSRP门限(Th RSRP),并进入步骤S1,可选的,将Th RSRP提高3分贝(dB)。以提高集合S A中的发送资源数量。
S6、在剩余的发送资源中选择一个发送资源用于数据传输。
步骤S6中、终端设备在剩余的发送资源(集合S A)中,选择一个发送资源用于数据传输。
上述S1-S6中描述的资源选择流程,也可以称为资源排除流程,原因是终端设备在可用资源集合中排除了不可用发送资源,并选择可用的发送资源用于发送数据。示例性的,如图2d,图2d为本申请实施例中资源排除示意图。终端设备(UE1、UE2和UE3)在资源 侦听窗口中,在各自的频域资源和时域资源中侦听其它发送的SCI,例如:UE1侦听UE2和UE3分别发送的SCI,通过对UE2和UE3分别发送的SCI进行译码,以确定这些终端设备(UE2和UE3)所预约的发送资源,UE1在自身的可用资源集合中排除掉UE2和UE3预约的发送资源,并在剩余的可用资源集合中选择一个发送资源。UE1使用该预约的发送资源在资源选择窗口中发送数据。对于其它终端设备(UE2和UE3)进行资源排除的流程与UE1类似,此处不再赘述。
其次,以非连续性接收(Discontinuous Reception,DRX)场景为例,介绍终端设备无法在完整的资源侦听窗口内对信道进行侦听的情况。需要说明的是,除了终端设备应用DRX时,会出现上述无法在完整的资源侦听窗口内对信道进行侦听的情况,在其它场景下,终端设备也可能无法在完整的资源侦听窗口内对信道进行侦听,此处不作限制,例如:终端设备刚刚开机时,终端设备可能处于某个资源侦听窗口中,此时终端设备无法在完整的资源侦听窗口内对信道进行侦听。
请参阅图2e,图2e为本申请实施例中非连续性接收的一种示意图。DRX通过给终端设备配置DRX周期(DRX cycle),以实现终端设备的省电(power saving)。具体的,每个DRX周期中定义了激活时间(active time),激活时间指的是DRX开启时间段(DRX On Duration)在内的若干个可配置的不同时间段的集合。例如图2e中,激活时间由多段非连续的DRX开启时间段组成。在一个DRX周期中,在激活时间内,终端设备侦听并接收下行信道的数据,激活时间也称为激活期;在该DRX周期中,在其它时间内,终端设备不接收下行信道的数据,将这些不接收数据的时间称为休眠期。
因此,终端设备在资源侦听窗口与DRX激活时间只有部分时间上重叠时,终端设备无法在完整的资源侦听窗口内对信道进行侦听。由于资源侦听窗口的长度不足,使得终端设备对信道进行侦听得到的结果,与实际信道情况误差较大,导致与其它终端设备选择相同发送资源的概率大幅增加,提高了碰撞的概率,降低了传输可靠性。
基于上述技术缺陷,请参阅图3a,图3a为本申请实施例提出了一种通信方法的实施例示意图,本申请实施例提出的一种通信方法包括:
301、终端设备确定资源侦听的时长小于资源侦听窗口。
本实施例中,当终端设备使用用户自选资源模式与其它终端设备进行通信时,在某一时隙中触发资源选择,该时隙为预先配置。本申请实施例中,以时隙n为例进行说明,n为正整数。
首先,终端设备确定该资源侦听窗口的实际侦听时间长度,具体的,终端设备在启动侦听时,开启计时器,当结束侦听时,根据该计时器的计时时长确定实际侦听长度。其次,终端设备根据该资源侦听窗口的起始时间和该资源侦听窗口的结束时间确定该资源侦听窗口的长度。再次,终端设备根据该实际侦听长度和资源侦听窗口的长度,确定资源侦听的时长是否小于资源侦听窗口。若小于则进入步骤302。若大于或等于,则使用用户自选资源模式中原有流程进行通信。
在多种情况下,该终端设备资源侦听的时长可能小于资源侦听窗口,例如:终端设备配置了DRX等节能手段,或者,终端设备刚刚开机,此时终端设备进行资源侦听的起始时间点与该资源侦听窗口的起始时间不重合。需要说明的是,当终端设备配置了其它节能手 段,导致终端设备资源侦听的时长小于资源侦听窗口,同样可以应用本申请实施例提出的通信方法,本申请实施例中仅以该节能手段为DRX为例进行说明,此处不作限定。
为了便于理解,在一种可能的场景中,请参阅图3b,图3b为本申请实施例中实际侦听时间长度与资源侦听窗口的一种时间关系示意图。终端设备配置的DRX中,某一个DRX开启时间段(DRX On Duration)的起始时间为O 1,该DRX开启时间段的结束时间为O 2。当终端设备在时隙n触发资源选择,则终端设备在[n-T 0,n-T proc,0]对应的时隙中进行资源侦听,该时隙也称为资源侦听窗口。因此,实际侦听长度D 0为:D 0=O 2-(n-T 0)。资源侦听窗口的长度D s:D s=T proc,0-T 0。当D 0<D s时,进入步骤302。
在另一种可能的场景中,请参阅图3c,图3c为本申请实施例中实际侦听时间长度与资源侦听窗口的另一种时间关系示意图。终端设备配置的DRX中,某一个DRX开启时间段(DRX On Duration)的起始时间为O 1,该DRX开启时间段的结束时间为O 2。当终端设备在时隙n触发资源选择,则终端设备在[n-T 0,n-T proc,0]对应的时隙中进行资源侦听,该时隙也称为资源侦听窗口。因此,实际侦听长度D 0为:D 0=O 1-(n-T proc,0)。资源侦听窗口的长度D s:D s=T proc,0-T 0。当D 0<D s时,进入步骤302。
需要说明的是,上述图3b-图3c仅以一个资源侦听窗口与一个DRX开启时间段之间的时间关系进行说明。终端设备还可以根据多个资源侦听窗口中实际侦听长度,与多个资源侦听窗口的长度,确定终端设备资源侦听的时长是否小于资源侦听窗口,例如:使用多个资源侦听窗口中实际侦听长度之和,与多个资源侦听窗口的长度之和进行比较;使用多个资源侦听窗口中实际侦听长度的方差,与多个资源侦听窗口的长度的方差进行比较。此处不做限制。
302、终端设备根据第一参数确定第二参数。
本实施例中,终端设备根据第一参数确定第二参数,其中,第一参数由终端设备根据当前资源侦听窗口内实际侦听时间长度、资源侦听窗口的长度之间的比值确定,或,第一参数为通过高层信令配置的参数,或,第一参数为预配置的参数。
可选的,当终端设备配置了DRX,则该第一参数由终端设备根据当前资源侦听窗口内实际侦听时间长度,和资源侦听窗口的长度之间的比值确定。例如:令第一参数为“alpha”,
则,第一参数满足:alpha=D 0/D s=D 0/(T proc,0-T 0);
其中,alpha为第一参数,D 0为实际侦听时间长度,D s为资源侦听窗口的长度,T 0为资源侦听窗口的起始时间,T proc,0为资源侦听窗口的结束时间。
可选的,第一参数为通过无线资源控制层(radio resource control,RRC)信令配置的参数。例如:其它终端设备(或基站等网络设备)通过RRC信令向终端设备配置第一参数,终端设备根据该RRC信令中携带的第一参数进入本申请实施例提出的通信方法流程,即,根据该第一参数确定第二参数等等。示例性的,当终端设备刚刚开机时,该终端设备需要发送数据,但是此时终端设备无法侦听完整的资源侦听窗口。因此,根据高层信令(RRC信令)中配置的第一参数,终端设备确定第二参数,并根据第二参数选择发送资源,和/或,终端设备根据第二参数发送终端设备的待发送数据。该第一参数可能为0.5、0.75或0.8,此处不作限定。
可选的,该第一参数为预先配置于资源池中的参数,或,该第一参数为终端设备出厂时预先配置的参数。示例性的,当终端设备刚刚唤醒,或该终端设备与其它终端设备刚刚建立连接时,该终端设备需要发送数据,但是此时终端设备无法侦听完整的资源侦听窗口。因此,根据预先配置于资源池中的第一参数,或,终端设备出厂时预先配置的第一参数,终端设备确定第二参数,并根据第二参数选择发送资源,和/或,终端设备根据第二参数发送终端设备的待发送数据。
第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率,具体如下:
在一种可选的实现方式中,终端设备根据第一参数确定第二参数包括:当第一参数位于第一区间,则确定用于资源排除的RSRP门限。
用于资源排除的RSRP门限满足:
R1=R0+k,alpha∈[x,y];
其中,R1为用于资源排除的RSRP门限,R0为预置的用于资源排除的RSRP门限,alpha为第一参数,[x,y]为第一区间,k为实数,x为实数,y为实数。该预置的用于资源排除的RSRP门限是通过高层信令配置的,或,该预置的用于资源排除的RSRP门限为预配置的参数。
可选的,该第一区间包括一个或多个区间,当第一参数位于第一区间中的不同区间时,用于资源排除的RSRP门限由预置的用于资源排除的RSRP门限与各个区间对应的预设值确定。例如:
R1=R0+k1,alpha∈[x1,y1];
R1=R0+k2,alpha∈[x2,y2];
···
R1=R0+kn,alpha∈[xn,yn];
其中,k1、k2···kn分别为不相等的实数,x1、x2···xn分别为不相等的实数,y1、y2···yn分别为不相等的实数。
示例性的,以第一参数为当前资源侦听窗口内实际侦听时间长度,和资源侦听窗口的长度之间的比值,即“alpha”,第二参数为用于资源排除的RSRP门限为例进行说明,第一参数与第二参数之间的关系如表1所示。
Figure PCTCN2020085585-appb-000002
表1
在另一种可选的实现方式中,终端设备根据第一参数确定第二参数包括:
终端设备根据第一参数确定资源选择窗口的长度,该资源选择窗口的长度包括:资源选择窗口的时域长度,和/或,终端设备根据第一参数确定资源选择窗口内的候选资源的频域长度,和/或,终端设备根据第一参数确定资源选择窗口内的候选资源的总数。
示例性的,
(1)、请参阅图3d,图3d为本申请实施例中资源选择窗口中候选资源的一种示意图。以位于时隙n后,最近的一个资源选择窗口为例进行说明,该资源选择窗口中包括:候选资源1、候选资源2、候选资源3以及候选资源4,这4个可选择的发送资源。终端设备根据第一参数确定第二参数,包括:原资源选择窗口的时域长度为[n+T1,n+T2]。终端设备根据第一参数确定资源选择窗口的时域长度为[n+T3,n+T4],其中,n、T1、T2、T3和T4为实数。
(2)、请参阅图3e,图3e为本申请实施例中资源选择窗口中候选资源的另一种示意图。终端设备根据第一参数确定资源选择窗口内候选资源的总数,以图3e为例,假设频域上包含N个子信道,如图3e中1、2、···、N-1和N个子信道。当时域上包括1个时隙,如时隙1,且候选资源大小为L,则候选资源的总数为:N-L+1。当时域上包括M个时隙时,且候选资源大小为L,该资源选择窗口的候选资源总数为:M*(N-L+1)。其中,N、M以及L为正整数。当原候选资源总数为:M*(N-L+1)时,终端设备根据第一参数确定资源选择窗口内候选资源的总数,该候选资源总数为:M*(N-L+1)-Q,其中Q为整数。或者该候选资源总数为:P*M*(N-L+1),其中P为实数。
在另一种可选的实现方式中,终端设备根据第一参数确定第二参数包括:终端设备根据第一参数和预置的数据信道的发射功率,确定数据信道的发射功率。
数据信道的发射功率满足:
P′ TX=h(alpha)×P TX
其中,P′ TX为数据信道的发射功率,P TX为预置的数据信道的发射功率,alpha为第一参数,h(alpha)为关于第一参数的单调递增函数。
预置的数据信道的发射功率是通过高层信令配置的,或,预置的数据信道的发射功率为预配置的参数。该高层信令可以是RRC信令。该预置的数据信道的发射功率还可以是终端设备通过功率控制计算得到的,此处不作限定。
可选的,数据信道为物理侧行链路共享信道PSSCH和/或物理侧行链路控制信道PSCCH。
示例性的,以第一参数为当前资源侦听窗口内实际侦听时间长度,和资源侦听窗口的长度之间的比值,即“alpha”,第二参数为数据信道的发射功率为例进行说明,第一参数与第二参数之间的关系,例如:h(alpha)=alpha。
需要说明的是,终端设备根据第一参数确定第二参数,其中,第二参数可以包括用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率中多项的组合,例如:终端设备根据第一参数确定用于资源排除的RSRP门限和资源选择窗口的长度,或,终端设备根据第一参数确定用于资源排除的RSRP门限和数据信道的发射功率,或终端设备根据第一参数同时确定用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率。此处不作限定。
303、终端设备根据第二参数确定发送资源和/或终端设备根据第二参数发送终端设备 的待发送数据。
本实施例中,当第二参数为用于资源排除的参考信号接收功率RSRP门限和/或资源选择窗口的长度时,终端设备根据该第二参数确定发送资源。
具体的,终端设备确定用于资源排除的参考信号接收功率RSRP门限后,根据该用于资源排除的RSRP门限进行资源选择流程。具体资源选择流程与前述图2c描述的资源选择流程类似,该用于资源排除的RSRP门限替代前述步骤S3中“预设的RSRP门限Th RSRP”,此处不再赘述。
具体的,终端设备确定资源选择窗口的长度后,该资源选择窗口的长度包括资源选择窗口的时域长度,和/或,终端设备根据第一参数确定资源选择窗口内的候选资源的总数。在资源选择流程中,终端设备根据该资源选择窗口的长度从可用资源集合中筛选发送资源,其余资源选择流程与前述图2c描述的资源选择流程类似,此处不再赘述。
当第二参数为数据信道的发射功率,则终端设备根据该数据信道的发射功率,通过该数据信道发送待发送数据。
可选的,终端设备根据该第二参数选择发送资源,该第二参数为:用于资源排除的参考信号接收功率RSRP门限和/或资源选择窗口的长度。终端设备可以根据该第二参数选择发送资源,该发送资源用于发送终端设备的待发送数据。
可选的,终端设备根据该第二参数选择发送资源,该第二参数为:数据信道的发射功率。则终端设备根据该数据信道的发射功率发送待发送资源。
可选的,终端设备根据该第二参数选择发送资源,该第二参数为:用于资源排除的参考信号接收功率RSRP门限和/或资源选择窗口的长度,且该第二参数还包括数据信道的发射功率。则终端设备根据该第二参数选择发送资源的同时,还可以根据第二参数(数据信道的发射功率)发送待发送数据。
本申请实施例中,终端设备在触发资源选择后,首先确定资源侦听的时长小于资源侦听窗口的长度,然后终端设备根据第一参数确定第二参数,并根据第二参数选择发送资源和/或根据第二参数发送终端设备的待发送数据。以降低和其它终端设备选择相同发送资源的概率,即减少资源选择碰撞,提升传输可靠性和系统资源利用率。此外,当第二参数为数据信道的发射功率时,可以通过调整承载待发送数据的数据信道的发射功率,实现降低对其他终端设备的干扰。
在图3a所示实施例的基础上,终端设备无需确定资源侦听的时长小于资源侦听窗口,既可以触发本申请实施例提出的通信方法,具体的,请参阅图4。图4为本申请实施例提出了另一种通信方法的实施例示意图,本申请实施例提出的一种通信方法包括:
401、当终端设备中资源侦听的时长小于第一阈值时,终端设备根据第一参数确定第二参数。
本实施例中,由于资源侦听窗口的长度,通常是预先配置给终端设备的(通过高层信令或在终端设备出厂时配置),因此,当终端设备中资源侦听的时长小于第一阈值时,既可以确定当前终端设备没有侦听到完整的资源侦听窗口。可选的,该第一阈值为资源侦听窗口的长度。
当终端设备中资源侦听的时长小于第一阈值时,终端设备根据第一参数确定第二参数。 具体的根据第一参数确定第二参数的方法,与前述步骤302类似,此处不再赘述。
402、终端设备根据第二参数确定发送资源和/或终端设备根据第二参数发送终端设备的待发送数据。
本实施例中,与前述步骤303类似,此处不再赘述。
本申请实施例中,终端设备在触发资源选择后,当终端设备中资源侦听的时长小于第一阈值时,终端设备根据第一参数确定第二参数,并根据第二参数选择发送资源和/或根据第二参数发送终端设备的待发送数据。以降低和其它终端设备选择相同发送资源的概率,即减少资源选择碰撞,提升传输可靠性和系统资源利用率。通过直接比较资源侦听的时长与第一阈值,确定是否进入后续流程,可以节省系统资源开销。
上述主要以方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
需要理解的是,上述实施例提供的方法的执行主体可以是终端设备整机,可以是终端设备中实现通信功能的部件或组件,也可以是应用于终端设备中的通信芯片或芯片系统等,上述整机、部件或通信芯片等可以统称为通信装置。
本申请实施例可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块501中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参阅图5,图5为本申请实施例提出的一种通信装置的实施例示意图。本申请实施例提出的通信装置500包括:
处理模块501,用于确定资源侦听的时长小于资源侦听窗口;
该处理模块501,还用于根据第一参数确定第二参数,该第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率;
发送模块502,用于根据该第二参数选择发送资源,和/或,根据该第二参数发送通信装置500的待发送数据。
在本申请的一些实施例中,该第一参数由该通信装置500根据当前资源侦听窗口内实际侦听时间长度、该资源侦听窗口的长度之间的比值确定,或,该第一参数为通过高层信令配置的参数,或,该第一参数为预配置的参数。
在本申请的一些实施例中,该第一参数满足:
alpha=D 0/D s=D 0/(T proc,0-T 0);
其中,该alpha为该第一参数,该D 0为该实际侦听时间长度,该D s为该资源侦听窗口的 长度,该T 0为该资源侦听窗口的起始时间,该T proc,0为该资源侦听窗口的结束时间。
在本申请的一些实施例中,该处理模块501,具体用于当该第一参数位于第一区间,则确定该用于资源排除的RSRP门限,该第一区间包括一个或多个区间。
在本申请的一些实施例中,该用于资源排除的RSRP门限满足:
R1=R0+k,alpha∈[x,y];
其中,该R1为该用于资源排除的RSRP门限,该R0为预置的该用于资源排除的RSRP门限,该alpha为该第一参数,该[x,y]为该第一区间,该k为实数,该x为实数,该y为实数。
在本申请的一些实施例中,该处理模块501,具体用于根据该第一参数确定该资源选择窗口的时域长度,和/或,根据该第一参数确定该资源选择窗口内的候选资源的总数。
在本申请的一些实施例中,该处理模块501,具体用于根据该第一参数和预置的该数据信道的发射功率,确定该数据信道的发射功率。
在本申请的一些实施例中,该数据信道的发射功率满足:
P′ TX=h(alpha)×P TX
其中,该P′ TX为该数据信道的发射功率,该P TX为该预置的该数据信道的发射功率,该alpha为该第一参数,该h(alpha)为关于该第一参数的单调递增函数。
在本申请的一些实施例中,该预置的该用于资源排除的RSRP门限是通过高层信令配置的,或,该预置的该用于资源排除的RSRP门限为预配置的参数。
在本申请的一些实施例中,该预置的该数据信道的发射功率是通过高层信令配置的,或,该预置的该数据信道的发射功率为预配置的参数。
在本申请的一些实施例中,该数据信道为物理侧行链路共享信道PSSCH和/或物理侧行链路控制信道PSCCH。请参阅图6,图6为本申请实施例提出的另一种通信装置的实施例示意图。本申请实施例提出的通信装置600包括:
处理模块601,用于当通信装置600中资源侦听的时长小于第一阈值时,根据第一参数确定第二参数,该第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率;
发送模块602,用于根据该第二参数选择发送资源,和/或,根据该第二参数发送该通信装置600的待发送数据。
在本申请的一些实施例中,该第一参数由该通信装置600根据当前资源侦听窗口内实际侦听时间长度、该资源侦听窗口的长度之间的比值确定,或,该第一参数为通过高层信令配置的参数,或,该第一参数为预配置的参数。
在本申请的一些实施例中,该第一参数满足:
alpha=D 0/D s=D 0/(T proc,0-T 0);
其中,该alpha为该第一参数,该D 0为该实际侦听时间长度,该D s为该资源侦听窗口的长度,该T 0为该资源侦听窗口的起始时间,该T proc,0为该资源侦听窗口的结束时间。
在本申请的一些实施例中,该处理模块601,具体用于当该第一参数位于第一区间,则确定该用于资源排除的RSRP门限,该第一区间包括一个或多个区间。
在本申请的一些实施例中,该用于资源排除的RSRP门限满足:
R1=R0+k,alpha∈[x,y];
其中,该R1为该用于资源排除的RSRP门限,该R0为预置的该用于资源排除的RSRP门限,该alpha为该第一参数,该[x,y]为该第一区间,该k为实数,该x为实数,该y为实数。
在本申请的一些实施例中,该处理模块601,具体用于根据该第一参数确定该资源选择窗口的时域长度,和/或,根据该第一参数确定该资源选择窗口内的候选资源的总数。
在本申请的一些实施例中,该处理模块601,具体用于根据该第一参数和预置的该数据信道的发射功率,确定该数据信道的发射功率。
在本申请的一些实施例中,该数据信道的发射功率满足:
P′ TX=h(alpha)×P TX
其中,该P′ TX为该数据信道的发射功率,该P TX为该预置的该数据信道的发射功率,该alpha为该第一参数,该h(alpha)为关于该第一参数的单调递增函数。
在本申请的一些实施例中,该预置的该用于资源排除的RSRP门限是通过高层信令配置的,或,该预置的该用于资源排除的RSRP门限为预配置的参数。
在本申请的一些实施例中,该预置的该数据信道的发射功率是通过高层信令配置的,或,该预置的该数据信道的发射功率为预配置的参数。
在本申请的一些实施例中,该数据信道为物理侧行链路共享信道PSSCH和/或物理侧行链路控制信道PSCCH。
上述实施例中的通信装置可以是终端设备,也可以是应用于终端设备中的芯片或者其他可实现上述终端设备功能的组合器件、部件等。当通信装置是终端设备时发送模块可以是发送器,可以包括天线和射频电路等,接收模块可以是接收器,可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等。当通信装置是具有上述终端设备功能的部件时,发送模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,发送模块可以是芯片系统的输出接口、处理模块可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
图7为本申请实施例提供的一种终端设备或具有上述终端设备功能的部件的结构示意图。该终端设备可适用于图1a至图1c所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图7仅示出了终端设备的主要部件。如图7所示,终端设备70包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如确定资源侦听的时长小于资源侦听窗口;根据第一参数确定第二参数。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的预配置的参数等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的 指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图7中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备70的收发单元701,例如,用于支持终端设备执行前述的接收功能和发送功能。将具有处理功能的处理器视为终端设备70的处理单元702。如图7所示,终端设备70包括收发单元701和处理单元702。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元701中用于实现接收功能的器件视为接收单元,将收发单元701中用于实现发送功能的器件视为发送单元,即收发单元701包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器702可用于执行该存储器存储的指令,以控制收发单元701接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元701的功能可以考虑通过收发电路或者收发的专用芯片实现。
本申请还提供一种通信系统,其包括一个或多个终端设备。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器, 闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例所述的通信方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例所述的通信方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例所述的通信方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此 为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定资源侦听的时长小于资源侦听窗口;
    所述终端设备根据第一参数确定第二参数,所述第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率;
    所述终端设备根据所述第二参数选择发送资源,和/或,所述终端设备根据所述第二参数发送所述终端设备的待发送数据。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一参数由所述终端设备根据当前资源侦听窗口内实际侦听时间长度、所述资源侦听窗口的长度之间的比值确定,
    或,所述第一参数为通过高层信令配置的参数,
    或,所述第一参数为预配置的参数。
  3. 根据权利要求2所述的方法,其特征在于,所述第一参数由所述终端设备根据当前所述资源侦听窗口内所述实际侦听时间长度、所述资源侦听窗口的起始时间和所述资源侦听窗口的结束时间的比值确定,包括:
    所述第一参数满足:
    alpha=D 0/D s=D 0/(T proc,0-T 0);
    其中,所述alpha为所述第一参数,所述D 0为所述实际侦听时间长度,所述D s为所述资源侦听窗口的长度,所述T 0为所述资源侦听窗口的起始时间,所述T proc,0为所述资源侦听窗口的结束时间。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第二参数包括所述用于资源排除的RSRP门限,
    所述终端设备根据所述第一参数确定所述第二参数,包括:
    当所述第一参数位于第一区间,则确定所述用于资源排除的RSRP门限,所述第一区间包括一个或多个区间。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述用于资源排除的RSRP门限,包括:
    所述用于资源排除的RSRP门限满足:
    R1=R0+k,alpha∈[x,y];
    其中,所述R1为所述用于资源排除的RSRP门限,所述R0为预置的所述用于资源排除的RSRP门限,所述alpha为所述第一参数,所述[x,y]为所述第一区间,所述k为实数,所述x为实数,所述y为实数。
  6. 根据权利要求1至2中任一项所述的方法,其特征在于,所述第二参数包括所述资源选择窗口的长度,所述终端设备根据所述第一参数确定所述第二参数,包括:
    所述终端设备根据所述第一参数确定所述资源选择窗口的时域长度,和/或,
    所述终端设备根据所述第一参数确定所述资源选择窗口内的候选资源的总数。
  7. 根据权利要求1至2中任一项所述的方法,其特征在于,所述第二参数包括所述数 据信道的发射功率,所述终端设备根据所述第一参数确定所述第二参数,包括:
    所述终端设备根据所述第一参数和预置的所述数据信道的发射功率,确定所述数据信道的发射功率。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备根据所述第一参数和所述预置的数据信道的发射功率,确定所述数据信道的发射功率,包括:
    所述数据信道的发射功率满足:
    P′ TX=h(alpha)×P TX
    其中,所述P′ TX为所述数据信道的发射功率,所述P TX为所述预置的所述数据信道的发射功率,所述alpha为所述第一参数,所述h(alpha)为关于所述第一参数的单调递增函数。
  9. 根据权利要求4至8中任一项所述的方法,其特征在于,
    所述预置的所述用于资源排除的RSRP门限是通过高层信令配置的,
    或,所述预置的所述用于资源排除的RSRP门限为预配置的参数。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,
    所述预置的所述数据信道的发射功率是通过高层信令配置的,
    或,所述预置的所述数据信道的发射功率为预配置的参数。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述数据信道为物理侧行链路共享信道PSSCH和/或物理侧行链路控制信道PSCCH。
  12. 一种通信方法,其特征在于,包括:
    当终端设备的资源侦听的时长小于第一阈值时,所述终端设备根据第一参数确定第二参数,所述第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率;
    所述终端设备根据所述第二参数选择发送资源,和/或,所述终端设备根据所述第二参数发送所述终端设备的待发送数据。
  13. 根据权利要求12所述的方法,其特征在于,所述方法包括如权利要求2至11中任一项所述的方法。
  14. 一种通信装置,其特征在于,包括:
    处理模块,用于确定资源侦听的时长小于资源侦听窗口;
    所述处理模块,还用于根据第一参数确定第二参数,所述第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率;
    发送模块,用于根据所述第二参数选择发送资源,和/或,根据所述第二参数发送终端设备的待发送数据。
  15. 根据权利要求14所述的通信装置,其特征在于,
    所述第一参数由所述终端设备根据当前资源侦听窗口内实际侦听时间长度、所述资源侦听窗口的长度之间的比值确定,或,所述第一参数为通过高层信令配置的参数,或,所述第一参数为预配置的参数。
  16. 根据权利要求15所述的通信装置,其特征在于,
    所述第一参数满足:
    alpha=D 0/D s=D 0/(T proc,0-T 0);
    其中,所述alpha为所述第一参数,所述D 0为所述实际侦听时间长度,所述D s为所述资源侦听窗口的长度,所述T 0为所述资源侦听窗口的起始时间,所述T proc,0为所述资源侦听窗口的结束时间。
  17. 根据权利要求14至16中任一项所述的通信装置,其特征在于,所述处理模块,具体用于当所述第一参数位于第一区间,则确定所述用于资源排除的RSRP门限,所述第一区间包括一个或多个区间。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述用于资源排除的RSRP门限满足:
    R1=R0+k,alpha∈[x,y];
    其中,所述R1为所述用于资源排除的RSRP门限,所述R0为预置的所述用于资源排除的RSRP门限,所述alpha为所述第一参数,所述[x,y]为所述第一区间,所述k为实数,所述x为实数,所述y为实数。
  19. 根据权利要求14至15中任一项所述的通信装置,其特征在于,
    所述处理模块,具体用于根据所述第一参数确定所述资源选择窗口的时域长度,和/或,根据所述第一参数确定所述资源选择窗口内的候选资源的总数。
  20. 根据权利要求14至15中任一项所述的通信装置,其特征在于,
    所述处理模块,具体用于根据所述第一参数和预置的所述数据信道的发射功率,确定所述数据信道的发射功率。
  21. 根据权利要求20所述的通信装置,其特征在于,
    所述数据信道的发射功率满足:
    P′ TX=h(alpha)×P TX
    其中,所述P′ TX为所述数据信道的发射功率,所述P TX为所述预置的所述数据信道的发射功率,所述alpha为所述第一参数,所述h(alpha)为关于所述第一参数的单调递增函数。
  22. 根据权利要求17至21中任一项所述的通信装置,其特征在于,所述预置的所述用于资源排除的RSRP门限是通过高层信令配置的,或,所述预置的所述用于资源排除的RSRP门限为预配置的参数。
  23. 根据权利要求20至22中任一项所述的通信装置,其特征在于,
    所述预置的所述数据信道的发射功率是通过高层信令配置的,或,所述预置的所述数据信道的发射功率为预配置的参数。
  24. 根据权利要求14至23中任一项所述的通信装置,其特征在于,所述数据信道为物理侧行链路共享信道PSSCH和/或物理侧行链路控制信道PSCCH。
  25. 一种通信装置,其特征在于,包括:
    处理模块,用于当终端设备中资源侦听的时长小于第一阈值时,根据第一参数确定第二参数,所述第二参数包括以下至少一项:用于资源排除的参考信号接收功率RSRP门限,资源选择窗口的长度,或数据信道的发射功率;
    发送模块,用于根据所述第二参数选择发送资源,和/或,根据所述第二参数发送所述终端设备的待发送数据。
  26. 根据权利要求25所述的通信装置,其特征在于,所述通信装置包括如权利要求15至24中任一项所述的通信装置。
  27. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至11,或者12至13中任一项所述的方法。
  28. 一种可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1至11,或者12至13中任一项所述的方法被执行。
PCT/CN2020/085585 2020-04-20 2020-04-20 一种通信方法以及通信装置 WO2021212261A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080099811.5A CN115399026A (zh) 2020-04-20 2020-04-20 一种通信方法以及通信装置
PCT/CN2020/085585 WO2021212261A1 (zh) 2020-04-20 2020-04-20 一种通信方法以及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085585 WO2021212261A1 (zh) 2020-04-20 2020-04-20 一种通信方法以及通信装置

Publications (1)

Publication Number Publication Date
WO2021212261A1 true WO2021212261A1 (zh) 2021-10-28

Family

ID=78270998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085585 WO2021212261A1 (zh) 2020-04-20 2020-04-20 一种通信方法以及通信装置

Country Status (2)

Country Link
CN (1) CN115399026A (zh)
WO (1) WO2021212261A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058408A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 一种随机接入配置的方法及其设备
WO2019091098A1 (zh) * 2017-11-08 2019-05-16 Oppo广东移动通信有限公司 D2d通信中资源配置的方法、终端设备和网络设备
CN109792590A (zh) * 2016-08-10 2019-05-21 株式会社Ntt都科摩 用户装置以及信号发送方法
CN110720252A (zh) * 2019-08-16 2020-01-21 小米通讯技术有限公司 确定参考时域单元的方法及装置
CN110830145A (zh) * 2018-08-09 2020-02-21 中国移动通信有限公司研究院 信号接收方法及发送方法、参数配置方法、网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792590A (zh) * 2016-08-10 2019-05-21 株式会社Ntt都科摩 用户装置以及信号发送方法
WO2018058408A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 一种随机接入配置的方法及其设备
WO2019091098A1 (zh) * 2017-11-08 2019-05-16 Oppo广东移动通信有限公司 D2d通信中资源配置的方法、终端设备和网络设备
CN110830145A (zh) * 2018-08-09 2020-02-21 中国移动通信有限公司研究院 信号接收方法及发送方法、参数配置方法、网络侧设备
CN110720252A (zh) * 2019-08-16 2020-01-21 小米通讯技术有限公司 确定参考时域单元的方法及装置

Also Published As

Publication number Publication date
CN115399026A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
TW201919431A (zh) D2d通訊中資源配置的方法、終端設備和網路設備
JP2019510387A (ja) サービス伝送方法及び装置
TW201916706A (zh) 用於資源選擇的方法和設備
WO2021212483A1 (zh) 用于确定侧行资源的方法和通信装置
WO2021204173A1 (zh) 一种资源确定的方法、装置及终端设备
WO2019174011A1 (zh) 一种数据传输方法及装置、计算机存储介质
JP2019527998A (ja) デバイスツーデバイス通信方法および端末デバイス
WO2021031043A1 (zh) 一种通信方法及装置
CN114125939A (zh) 资源指示、资源选择方法及装置
WO2023051086A1 (zh) 数据传输的方法、终端装置及系统
WO2021155517A1 (zh) 资源指示方法、装置和终端
WO2022077519A1 (zh) 一种信息传输方法及装置
WO2021212464A1 (zh) 用于资源选择的方法和终端装置
CN111294940A (zh) 发射功率的分配方法及装置、存储介质、终端
WO2020147814A1 (zh) 资源分配的方法和设备
WO2020192319A1 (zh) 一种资源配置方法及通信装置
WO2021134437A1 (zh) 传输初始接入配置信息的方法和装置
WO2021114043A1 (zh) 设备到设备的通信方法和通信装置
WO2022227993A1 (zh) 用于检测pscch的方法和通信装置
WO2022151401A1 (zh) 一种通信方法、终端装置及系统
WO2021212261A1 (zh) 一种通信方法以及通信装置
EP4138475A1 (en) Method, apparatus and system for determining resource
WO2022141582A1 (zh) 无线通信的方法和装置
WO2021180098A1 (zh) 无线通信方法和通信装置
WO2022077472A1 (zh) 侧行传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932199

Country of ref document: EP

Kind code of ref document: A1