WO2023124826A1 - 信息发送的方法和装置 - Google Patents

信息发送的方法和装置 Download PDF

Info

Publication number
WO2023124826A1
WO2023124826A1 PCT/CN2022/136913 CN2022136913W WO2023124826A1 WO 2023124826 A1 WO2023124826 A1 WO 2023124826A1 CN 2022136913 W CN2022136913 W CN 2022136913W WO 2023124826 A1 WO2023124826 A1 WO 2023124826A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
wake
signal
time
period
Prior art date
Application number
PCT/CN2022/136913
Other languages
English (en)
French (fr)
Inventor
冯淑兰
张阳阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124826A1 publication Critical patent/WO2023124826A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the communication field, and, more specifically, to a method and an apparatus for sending information.
  • One terminal device includes a primary connection radio (Primary connection radio, PCR) and a companion radio (Companion connection radio, CCR),
  • the main connection radio can also be called the main transceiver, and the accompanying radio works in a low-power state to detect paging messages or wake-up messages from other devices, and is often called a wake up radio (WUR).
  • WUR wake up radio
  • the companion radio detects a paging message or a wake-up message that needs to wake up the main radio for data communication, it wakes up the main radio to communicate with other devices.
  • the access point device access point, AP
  • network device sends a wake-up frame to the accompanying radio. While the wake-up frame uses the spectrum, other devices cannot use the spectrum, resulting in a waste of spectrum resources.
  • An embodiment of the present application provides a method for sending information, which is used to simultaneously send a reference signal and/or data information, and indicate wake-up information, so as to improve spectrum utilization efficiency.
  • a method for sending information includes: determining pattern information, the pattern information is used to indicate whether to send a pulse on each time unit of N time units in the first period, and the pattern information is also used to indicate the wake-up information of the second device; Sending a first signal to the second device and the third device in time units, where the K time units belong to the N time units, and the K time units are the pattern information indicating sending pulses Time unit, the first signal is used to carry the reference signal and/or data information sent to the third device; wherein, the transmission power is 0 in N-K time units, and the N-K time units belong to the N time units, and the N-K time units are time units in which the pattern information indicates that no pulses are sent, where N and K are positive integers, and K is less than or equal to N.
  • the method may be executed by the first device, and the first device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the first device is a network device, or a chip configured in the network device to realize the functions of the network device, or is other components used to realize the functions of the network device.
  • the first device is an access network device, such as a base station.
  • the first device transmits the wake-up information to the second device while sending the reference signal and/or data information to the third device, the first device determines the sending pattern of the first signal according to the wake-up information, and the first device according to The transmission mode of the first signal sends the first signal, the first signal carries the reference signal and/or data information sent to the third device, and the second device receives the first signal or receives the pulse from the first device Determine whether to wake up, the third device determines the reference signal and/or data information according to the first signal, and can further use the reference signal to perform processes such as perception measurement, or obtain the data information carried in the first signal, so as to effectively improve the Improve the efficiency of spectrum use, realize the integration of perception and wake-up, and the integration of communication and wake-up.
  • the determining the style information includes: determining the wake-up information according to whether the second device is woken up; and determining the style information according to the wake-up information.
  • the wake-up information is a bit sequence
  • determining the style information according to the wake-up information includes: determining the style information according to the wake-up information and a pulse modulation method of the wake-up information, and the wake-up information
  • the pulse modulation mode indicates the corresponding relationship between the bit values in the bit sequence and the ON/OFF pattern of at least one time unit in the N time units, where ON indicates sending a pulse, and OFF indicates not sending a pulse.
  • the method further includes: sending the style information to the third device, where the style information is used by the third device to receive the first signal.
  • part or all of the N-K time units are used for the third device to perform at least one of the following: interference measurement, echo measurement, or interference avoidance.
  • the wake-up information is composed of wake-up data information; or the wake-up information is composed of wake-up data information and wake-up synchronization information; wherein the wake-up data information includes wake-up message content, and the wake-up data information also includes Including at least one of the following: wake-up area identifier, wake-up cell identifier, cyclic redundancy check (cyclic redundancy check, CRC).
  • the second device when the wake-up information includes wake-up synchronization information, the second device can be enabled to find the start time of the wake-up information to avoid false detection; when the synchronization information is not included, the synchronization function can be completed through data information. Improved the flexibility involved in wakeup messages.
  • the method further includes: sending wake-up information configuration information to the second device, where the wake-up information configuration information is used to indicate an opportunity to receive wake-up information, and the wake-up information configuration information includes the wake-up information
  • the time domain information of the receiver opportunity and/or the frequency domain information of the wake-up information receiver opportunity, the time domain information of the wake-up information receiver opportunity includes the start time of the wake-up information receiver opportunity, the period of the wake-up information receiver opportunity, and the duration of the wake-up information receiving opportunity
  • the first device sends first signal configuration information to the third device, the first signal configuration information is used to indicate the first signal receiving opportunity, the The first signal configuration information includes time domain information of the first signal receiving opportunity and/or frequency domain information of the first signal receiving opportunity, and the time information of the first signal receiving opportunity includes the first signal receiving opportunity The start time of the first signal receiving opportunity, the period of the first signal receiving opportunity, and the duration of the first signal receiving opportunity.
  • the period of the wake-up information receiving opportunity is an integer multiple of the period of the first signal receiving opportunity.
  • a terminal sets a wake-up information cycle that is an integer multiple of the first signal cycle of other terminal devices, that is, the interval between sending the wake-up information is longer than the interval between sending the reference signal and/or data signal, reducing the wake-up time.
  • the resource occupation corresponding to the information can introduce multiple wake-up devices at the same time, and in different periods of the first signal, it can indicate whether different wake-up devices wake up, further improving the utilization rate of the system spectrum.
  • the wake-up information period of the terminal device 1 is three times the wake-up period of the first signal of the third device, the wake-up information of the terminal device 1 is indicated in the first signal period 1, and the wake-up information of the terminal device 2 is indicated in the first signal period 2, The wake-up information of the terminal device 3 is indicated in the first signal period 3 , and the wake-up information of the terminal device 1 is indicated in the first signal period 4 .
  • the first period is an overlapping portion of time domain resources in at least one cycle of the wake-up information receiving opportunity and time domain resources in at least one cycle of the first signal receiving opportunity.
  • the frequency domain information of the wake-up information receiving opportunity indicates a first frequency domain bandwidth
  • the frequency domain information of the first signal receiving opportunity indicates a second frequency domain bandwidth
  • the first frequency domain bandwidth less than or equal to the second frequency domain bandwidth
  • the second frequency domain bandwidth is less than or equal to the system bandwidth
  • the first frequency domain bandwidth occupied by the wake-up information receiving opportunity is less than or equal to the second frequency domain bandwidth occupied by the first signal receiving opportunity, wherein the second frequency domain bandwidth is less than or equal to the system bandwidth.
  • the bandwidth corresponding to the first signal is greater than the bandwidth corresponding to the wake-up information, which can improve the accuracy of receiving the first message, for example, improve the perception accuracy, and the bandwidth corresponding to the wake-up information is narrower, which can reduce power consumption.
  • the method before the determination of the wake-up information of the second device, the method further includes: receiving the wake-up mode entry request information from the second device, and sending an entry request message to the second device Wake up mode response information.
  • the wake-up information of the second device before determining the wake-up information of the second device, it further includes: sending at least one of the following identifiers to the second device: wake-up area identifier, wake-up cell identifier, wake-up device identifier, wake-up device Group ID.
  • the first device performs echo measurement on part or all of the N-K second time units.
  • the first period fully or partially overlaps time domain resources in at least one period of the first signal receiving opportunity.
  • the first period fully or partially overlaps time domain resources in at least one period of the wake-up information receiving opportunity.
  • a method for receiving information includes: receiving pattern information from the first device, where the pattern information is used to indicate whether each time unit within the N time units in the first period receives the first signal from the first device; according to the Pattern information, receiving the first signal in K time units of the N time units, wherein the first signal carries reference signals and/or data information, and the K time units are the pattern
  • the information indicates a time unit for receiving the first signal, where N and K are positive integers, and K is less than or equal to N.
  • the method may be executed by a third device, and the third device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the third device is a terminal device, or is a chip set in the terminal device for realizing the functions of the terminal device, or is other components for realizing the functions of the terminal device.
  • the method further includes: receiving first signal configuration information from the first device, where the first signal configuration information is used to indicate the first signal receiving opportunity, and the first signal configuration information Including the time domain information of the first signal receiving opportunity, the time domain information of the first signal receiving opportunity includes the start time of the first signal receiving opportunity, the period of the first signal receiving opportunity, and the first signal receiving opportunity The duration of the receive opportunity.
  • the first signal configuration information is further used to indicate the duration of the first period and the start time of the first period; the third device determines according to the first signal configuration information In the first period, the first period completely overlaps or partially overlaps with time domain resources in at least one cycle of the first signal receiving opportunity.
  • the third device performs interference measurement on part or all of N-K time units in the N time units.
  • a method for waking up information reception includes: receiving a pulse from the first device during a first period, wherein the first period includes N time units, and whether a pulse is received in each time unit of the N time units is used to indicate Style information, N is a positive integer; determine whether to wake up according to the style information.
  • the method may be executed by the second device, and the second device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the second device is a terminal device, or is a chip provided in the terminal device for realizing the functions of the terminal device, or is other components for realizing the functions of the terminal device.
  • the determining whether to wake up according to the style information includes: determining wake-up information according to the style information; and determining whether to wake up according to the wake-up information.
  • the pattern information is composed of ON/OFF pattern information of each time unit in the N time units, where a pulse is received at the i-th time unit in the N time units,
  • the ON/OFF pattern information of the i-th time unit is ON, no pulse is received in the i-th time unit, the ON/OFF pattern information of the i-th time unit is OFF, and i is less than or a positive integer equal to N.
  • the determining the wake-up information according to the style information includes: the wake-up information is a bit sequence, and determining the wake-up information according to the style information and the pulse modulation mode of the wake-up information information, wherein the pulse modulation mode indicates the corresponding relationship between the bit values in the bit sequence and the ON/OFF pattern of at least one time unit in the N time units.
  • the method further includes: the second device receiving wake-up information configuration information from the first device, where the wake-up information configuration information is used to indicate time information and/or time information of an opportunity to receive wake-up information
  • the frequency domain information of the wake-up information receiving opportunity, the time information of the wake-up information receiving opportunity includes the start time of the wake-up information receiving opportunity, the period of the wake-up information receiving opportunity, and the duration of the wake-up information receiving opportunity .
  • the method further includes: the second device receiving a pulse from the first device at the wake-up information receiving opportunity, wherein the wake-up information receiving opportunity includes the first period,
  • the wake-up information receiving opportunity includes M time units, where M is greater than or equal to N, and whether a pulse is received in each time unit of the N time units in the wake-up information receiving opportunity is used to indicate pattern information; according to The style information determines whether to wake up.
  • a method for measuring an interference signal comprising: determining a first period, the first period including N time units; the fourth device receiving pattern information from the first device, the The pattern information is used to indicate that in the N time units of the first period, the transmission power of N-K second time units is 0; the fourth device performs interference measurement in the N-K time units, and N, K are positive Integer, and K is less than or equal to N.
  • the method further includes: the fourth device receiving interference measurement configuration information from the first device, where the interference measurement configuration information is used to indicate the interference measurement period configuration information, and the interference measurement
  • the period configuration information includes time information of the interference measurement period, and the time information of the interference measurement period includes the start time of the interference measurement period, the period of the interference measurement period, and the duration of the interference measurement period; the fourth device A first period is determined according to the interference measurement period configuration information, and the first period overlaps or partially overlaps with at least one interference measurement period.
  • a communication device may be the first device described in any one of the first to fourth aspects above.
  • the communication device has the function of the above-mentioned first device.
  • the first device for example, a base station, or a baseband device in a base station.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (also called a processing module sometimes) and a transceiver unit (also called a transceiver module sometimes).
  • the processing unit is configured to determine style information; the processing unit may also be configured to send a first signal to the second device and the third device through the transceiver unit.
  • the communication device includes a processing unit, configured to be coupled to a storage unit, and execute a program or an instruction in the storage unit, so as to enable the communication device to perform the function of the above-mentioned first device.
  • a communication device may be the terminal device described in any one of the first to fourth aspects above, such as the second device, the third device, or an electronic device configured in the terminal device, or a device including the terminal The larger device of the device.
  • the terminal device includes corresponding means or modules for performing the above method.
  • the communication device includes a processing unit (also called a processing module sometimes) and a transceiver unit (also called a transceiver module sometimes).
  • the processing unit is configured to receive the first signal from the first device through the transceiver unit, or receive the style information from the first device.
  • the communications apparatus includes: a processor, coupled to a memory, configured to execute instructions in the memory, so as to implement the method performed by the terminal device in any one of the first to fourth aspects above.
  • the communication device further includes other components, for example, an antenna, an input and output module, an interface, and the like. These components can be hardware, software, or a combination of software and hardware.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer programs or instructions, and when executed, the terminal device, or the first network device, or the second A method performed by two network devices is implemented.
  • a computer program product containing instructions which enables the methods described in the above aspects to be implemented when it is run on a computer.
  • a chip including a processor and a communication interface, the processor is used to execute instructions in the memory, so as to implement the first device or the second device or the third device in any one of the first to fourth aspects above. The method implemented by the device.
  • FIG. 1A is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 1C is a schematic diagram of another application scenario of the embodiment of the present application.
  • Fig. 2 is a schematic diagram of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a pulse modulation method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a wake-up area provided by an embodiment of the present application.
  • 6A-6D are schematic diagrams of the structure of wake-up information provided by the embodiment of the present application.
  • FIG. 7 is a flow chart of another communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an information cycle configuration provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of wake-up information and a time-domain position of a first signal provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of periodic time-domain positions during a first period provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of wake-up information and a frequency-domain position of a first signal provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • LTE system advanced long-term evolution (LTE advanced, LTE-A) system
  • LTE frequency division duplex frequency division duplex, FDD
  • LTE time division Duplex time division duplex, TDD
  • universal mobile telecommunications system universal mobile telecommunications system, UMTS
  • global interconnection microwave access worldwide interoperability for microwave access, WiMAX
  • WiMAX global interoperability for microwave access
  • 5G system or future evolution communication system vehicle To other devices
  • V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure, V2I ), vehicle to pedestrian (vehicle to pedestrian, V2P), etc.
  • long term evolution-vehicle (LTE-V) technology vehicle networking
  • machine type communications machine type communications
  • MTC machine type communications
  • Internet of Things Internet of Things
  • FIG. 1A is a schematic diagram of a communication architecture of a communication system applicable to an embodiment of the present application.
  • the first device can communicate with the second device and the third device, for example, the first device sends information to the second device and the third device, for example, sends a first signal, and the second device transmits information according to the first
  • the signal reception situation determines the wake-up information
  • the third device determines the data information sent by the first device according to the received first signal, or the reference signal, or a combination of the two, wherein the data information includes user data information and/or control information make.
  • the first device may be a network device
  • the second device and the third device may be terminal devices.
  • FIG. 1B shows another communication network architecture in the communication system 10 provided by this application.
  • the communication system includes a core network (new core, CN) and a radio access network (radio access network, RAN).
  • the network equipment (for example, base station) in the RAN includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one or more nodes, and the radio frequency device can be remote from the baseband device and implemented independently, or can be integrated into the baseband device, or partly remote and partly integrated into the baseband device.
  • Network devices in the RAN may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU centralized unit
  • DU distributed unit
  • CU and DU can be divided according to their wireless network protocol layer functions.
  • the functions of the PDCP layer and above protocol layers are set in the CU, and the protocol layers below PDCP, such as the functions of the RLC layer and MAC layer, are set in the DU.
  • the division of such protocol layers is only an example, and may also be divided in other protocol layers.
  • the radio frequency device can be remote, not placed in the DU, or integrated in the DU, or partially remote and partially integrated in the DU, which is not limited in this application.
  • FIG. 1C shows another communication network architecture in the communication system 10 provided by the present application.
  • the control plane (CP) and user plane (UP) of the CU can also be separated into different entities for implementation, namely the control plane CU entity (CU-CP entity) and the user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the UE through the DU, or the signaling generated by the UE can be sent to the CU through the DU.
  • the DU can directly transmit the signaling to the UE or CU through protocol layer encapsulation without parsing the signaling.
  • a CU is classified as a network device on the RAN side.
  • a CU may also be classified as a network device on the CN side, which is not limited in this application.
  • FIG. 2 is a schematic diagram of another network architecture applicable to the embodiment of the present application.
  • the first device can communicate with the second device, the third device, and the fourth device, wherein the second device includes a communication module and a wake-up module, wherein the communication module can be called a primary communication radio (primary connection) radio, PCR), can also be called the main receiver, or can be called the main radio.
  • the wake-up module may be called a wake-up radio (wake-up radio, WUR), or a wake-up radio device.
  • the first device sends or does not send the first signal to the second device and the third device according to a certain pattern, the second device determines the wake-up information according to whether the pulse is received in each time unit, after the third device receives the first signal, If the first signal carries a reference signal, further measurement may be performed, for example, channel state information measurement, or positioning measurement.
  • further measurement may be performed, for example, channel state information measurement, or positioning measurement.
  • the first device may also notify the fourth device to use the time when the first signal is not sent for measurement, such as channel state information interference measurement; the wake-up related module of the second device determines whether to wake up the fourth device according to the reception of the first signal
  • the second device can also perform wireless communication with the fifth device when the second device is woken up.
  • the first device may also notify the sixth device of information about whether to send the first signal in the time unit for interference avoidance. Besides, the first device may also receive the echo of the first signal, and perform echo measurement based on the echo.
  • the first device and the sixth device may be network devices, and the second device to the fifth device may be terminal devices.
  • the terminal device is a device with a wireless transceiver function or a chip that can be set in the device.
  • the device with wireless transceiver function may also be called terminal, access terminal, terminal equipment, user equipment, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, A wireless communication device, user agent, or user device.
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, 5G network A terminal or a terminal in a future evolved network, etc.
  • a virtual reality virtual reality
  • AR augmented reality
  • industrial Wireless terminals in industrial control wireless terminals in self driving
  • wireless terminals in remote medical wireless terminals in smart grid
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device in this application may also be called a radio access network (radio access network, RAN), which can manage wireless resources. It mainly provides wireless access services, schedules wireless resources to access terminal devices, provides reliable wireless transmission protocols and data encryption protocols, and can complete data forwarding between terminal devices and the core network.
  • radio access network radio access network
  • the network device in the embodiment of the present application may be any communication device with wireless transceiver function for communicating with user equipment, it may be a communication device deployed on a satellite, or it may be a communication device deployed on the ground A communication device, or a chip provided on the communication device.
  • the network equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (node B, NB), base station controller (base station controller, BSC) ), base transceiver station (base transceiver station, BTS), home base station (home evolved nodeB, HeNB, or home node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR A gNB in the system, or a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or it can also be a network node that constitutes a gNB or a transmission point
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for real-time protocols and services, and realizes the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the RRC layer information is generated by the CU, and will eventually be encapsulated into the PHY layer information through the PHY layer of the DU, or the RRC layer information from the terminal device is encapsulated into the physical layer information, transmitted to the physical layer of the DU through the air interface, and then restored into RRC layer information. Therefore, under this architecture, high-level signaling such as RRC layer signaling can also be considered to be sent/received by the DU, or sent/received by the DU+AAU.
  • the CU can be divided into network devices in the access network, and the CU can also be divided into network devices in the core network (core network, CN), which is not limited in this application.
  • the terminal device In a wireless communication system, most of the energy of the terminal device is wasted in channel monitoring, that is, when the terminal device does not send or receive messages, if the terminal device continues to monitor the channel, a large amount of energy will be consumed. In order to reduce the waste of energy, the terminal device can be placed in a dormant state, but if it is too long in the dormant state, it will increase the information processing/transmission delay. Therefore, the terminal device must be able to operate in a state of low power consumption and low delay.
  • the WUR architecture came into being, and its core idea is: In addition to the traditional main communication receiver, the terminal equipment also includes a wake-up receiver part.
  • the wake-up receiver may be called a low power receiver (Lower power receiver, LPR), or a low power wake up receiver (Low power wake up receiver, LPWUR), or a low power wireless device (low power radio, also referred to as LPR), or Low power wake up radio (LPWUR for short), because the wake up radio only has the function of receiving, so there is no essential difference in waking up the device using the concept of radio or receiver. Since the resident power consumption of the wake-up receiver is very low, the power consumption of the terminal device can be saved.
  • the modulation method corresponding to the wake-up information received by the wake-up receiver is usually relatively simple, such as On-Off Keying (On-Off Keying, OOK), OOK indicates the value of bit information by whether to send a signal, for example, ON means a bit The value of the information is "1", and OFF means the value of the bit information is "0", or vice versa.
  • OOK On-Off Keying
  • ON means a bit
  • OFF means the value of the bit information is "0”, or vice versa.
  • the bit information value of "1" is coded as 1010, corresponding to the pulse pattern after OOK modulation is ON-OFF-ON-OFF, and the bit information value of "0” is coded as 0101, corresponding to the pulse pattern after OOK modulation
  • the pulse pattern is OFF-ON-OFF-ON, and the duration of each modulated symbol is 4us, so each bit information is transmitted with 4 OOK symbols, that is, 16us;
  • the value of bit information is "1 " is coded as 10, corresponding to the pulse pattern after OOK modulation is ON-OFF, the value of the bit information is "0” and coded as 01, corresponding to the pattern after OOK modulation is OFF-ON, and the duration of each modulated symbol is 2us, then Each bit of information is transmitted with 4us.
  • this application proposes a method 300 for sending information, and the method 300 includes:
  • Step S310 the first device determines pattern information, the pattern information is used to indicate whether to send a pulse in each time unit of N time units in the first period, and the pattern information is also used to indicate wake-up information of the second device.
  • the pattern information indicates that pulses are sent on K time units in the N time units of the first period, and no pulses are sent on the remaining N-K time units of the first period.
  • the K time units may be continuous or discrete.
  • the time unit corresponding to a continuous pulse can be one or more, for example, one pulse can correspond to two time units, and in the two time units, the transmission energy is greater than 0, or one pulse can correspond to more unit of time.
  • the time units that do not send pulses can be continuous or discrete.
  • the style information is composed of the style information of each time unit in the N time units, and the style information is ON/OFF style information, wherein the ON/OFF style information of the i-th time unit in the N time units is ON, It means that the first device sends a pulse in the i-th time unit, and the ON/OFF pattern information of the i-th time unit is OFF means that the first device does not send a pulse in the i-th time unit, and i is less than or equal to N positive integer of .
  • Whether to send a pulse can also be understood as whether the sent energy is 0. When the sent energy is greater than 0, it means sending a pulse, and when the sent energy is equal to 0, it means not sending a pulse.
  • whether a pulse is sent in each time unit of the N time units in the first period may be understood as whether the first device sends the first signal in each time unit.
  • the K time units corresponding to pulses are K first time units
  • the N-K time units without pulses are the N-K second time units
  • the difference between the first time unit and the second time unit includes the following At least one of:
  • the first time unit is an OFDM symbol with energy transmission
  • the second time unit is an OFDM symbol without energy transmission
  • the receiving device can detect that the energy is higher than a certain threshold value, and in the second time unit, the receiving device does not detect that the energy is higher than a certain threshold value;
  • the power of the first device for the first unit of time is higher than the power of the second unit of time, or
  • the energy of the first device in the first time unit is higher than the first threshold, and the energy in the second time unit is lower than the second threshold, and the first threshold may be the same as or different from the second threshold.
  • the first device determines the style information according to whether to wake up the second device. For example, when the first device needs to wake up the second device, the style information is determined to be style information A, and the first device sends a pulse at the time unit in which the style information A indicates to send a pulse, and in the time unit in which the style information A indicates not to send a pulse No pulses are sent on.
  • the process of determining the style information by the first device may specifically include:
  • the first device determines the wake-up information of the second device according to whether to wake up the second device, and the wake-up information of the second device is a bit sequence;
  • the first device determines the style information according to the wake-up information and the pulse modulation mode of the wake-up information; the pulse modulation mode of the wake-up information indicates the difference between the bit value in the bit sequence and the ON/OFF style information of at least one time unit in the N time units Corresponding relationship, wherein, ON indicates to send a pulse, and OFF indicates not to send a pulse.
  • the pulse modulation mode of the wake-up information may indicate the corresponding relationship between the value of the bit sequence and the ON/OFF pattern information.
  • Different bit information can be represented by the pulse width, position, amplitude, or a combination thereof. In essence, it is an agreement between network equipment and terminal equipment on how to express information with pulses.
  • Figure 4 shows several ways of pulse modulation.
  • Mode 1 Use the presence or absence of pulses to represent different information, for example, use ON to represent a binary bit "1”, use OFF to represent a binary bit “0”, and vice versa, that is, use ON to represent a binary bit "0", and use OFF to represent a binary bit Bit "1".
  • FIG. 4 is a schematic representation of information when the time unit is 1 time unit.
  • Mode 2 Use the pulse width to represent different information. For example, if no pulse is sent for 4 time units to represent the binary bit "00”, that is, use OFF-OFF-OFF-OFF to represent the bit "00”, and the pulse width is 1 time unit to represent the binary bit "01”, that is, use ON-OFF-OFF-OFF represents the bit "01”; the binary bit “10” is represented by a pulse width of 2 time units, that is, the bit “10” is represented by ON-ON-OFF-OFF, at this time a pulse is in the time domain Corresponding to two time units, that is, the width of the pulse is 2 time units; the binary bit “11” is represented by the pulse width of 3 time units, that is, the bit “11” is represented by ON-ON-ON-OFF, as shown in Figure 4 ( As shown in b).If all OFF is regarded as pulse width is 0, mode 1 can also be regarded as a special form of mode 2.
  • Mode 3 Use the position of the pulse to represent different information, for example, the ON pulse represents the binary bit "1", and the OFF pulse represents "0", and vice versa.
  • FIG. 4 it is a schematic diagram of an information indication with a length of 2 time units and an ON pulse width of 1 time unit.
  • use the ON pulse in the second time unit of the four time units Represent the binary bit "01”
  • Mode 4 Use the combination of pulse position and width to represent different information. For example, as shown in (e) in Figure 4, ON-OFF-OFF-OFF is used to represent bit “00”, ON-ON-OFF-OFF is used to represent bit "01”, and OFF-OFF-ON-ON is used to represent bit “10”. “, using OFF-OFF-OFF-ON to represent bit "11”.
  • Mode 5 Use different pulse amplitudes to represent different information. For example, a pulse amplitude of 0.25 represents binary bit 00, a pulse amplitude of 0.5 represents 01, a pulse amplitude of 0.75 represents 10, and a pulse amplitude of 1 represents binary bit 11, as shown in Figure 4 Shown in (f). A pulse amplitude of 0 can be used to represent information, so mode 1 can also be regarded as a form of pulse amplitude modulation.
  • a time unit is a unit representing the length of time.
  • FFT fast Fourier transform
  • ⁇ f 312.5kHz
  • N_f 64.
  • the length of a time unit can also be represented by absolute time, for example, the length of one time unit is 1 microsecond.
  • the embodiment of the present application does not limit the expression method and length of the time unit.
  • step S320 the first device sends the style information to the third device, and the third device receives the style information from the first device.
  • the third device determines which time units in the first period can receive the information from the first device, receives the information in the corresponding time units, and does not receive the information in the time units where the style information indicates no pulse transmission. Receive information, thereby effectively improving the efficiency of information reception, and avoiding energy waste caused by information reception in time units without signal transmission.
  • the first period may be a period of time predefined by the protocol, for example, directly define the start time and end time of the first period, or pre-define the start time and duration of the first period; or the first period may be the time period sent by the first device Indicated by the signaling, for example, the start time and duration of the first period are indicated through RRC signaling, and optionally, the period corresponding to the first period may be further indicated.
  • S320 is an optional step.
  • the first device may not send style information to the third device.
  • the third device may receive signals in each time unit of the N time units in the first period, and then according to the energy size of the received signal and /or Signal Quality Reject symbols with low received signal energy/poor signal quality. This manner can save signaling for the first device to send style information to the third device.
  • Step S330 the first device sends the first signal to the second device and the third device in K time units, the K time units belong to the N time units, and the K time units are the time for sending pulses indicated by the pattern information
  • the unit, the first signal is used to carry a reference signal and/or data information sent to the third device, where N and K are positive integers, and K is less than or equal to N.
  • the sending power of the first device is 0 in N-K time units, wherein the N-K time units belong to N time units in the first period, and the N-K time units are time units whose pattern information indicates that no pulse is sent.
  • the first device sends a first signal at a time unit in which the pattern information indicates that a pulse is sent, and the first signal is used to carry a reference signal and/or data information sent to the third device.
  • the reference signal includes at least one of a channel state information reference signal (channel state information reference signal, CSI-RS) and a positioning reference signal (positioning reference signal, PRS), and the CSI-RS is used for measuring channel state information, positioning reference signal
  • the signal is used for positioning, and the data information includes user data information and/or control signaling.
  • first device sends the first signal to the second device and the third device, but it is not that the first device sends the first signal to the second device and the third device respectively. Instead, the first device sends out the first signal, and both the second device and the third device try to receive it. And perform follow-up processing according to the received signal.
  • Step S340 the third device receives the first signal.
  • the third device receives the first signal from the first device at K time units in the N time units according to the pattern information, and obtains the signal from the first device according to the first signal.
  • Device reference signal and/or data information are examples of the first device.
  • step S320 is an optional step, and the first device does not send pattern information to the third device, the third device determines which time unit is the first according to the energy level and/or signal quality of the received signal in each time unit of N time units A device sends the first signal, which time unit the first device does not send the first signal, and receives the first signal from the first device at those time units determined to have sent the first signal, and obtains the third signal according to the first signal Device reference signal and/or data information.
  • the reference signal may include at least one of CSI-RS and PRS.
  • the third device can perform channel state measurement on part or all of the K time units in the first period, that is, the third device can use the first signal while receiving the first signal A reference signal in a signal for measurement.
  • the reference signal is a PRS
  • the third device may perform positioning measurement on part or all of the K time units in the first period. When performing positioning measurement, it is necessary to obtain the arrival time and angle of arrival of radio waves for measuring the terminal position. Usually, location information can be obtained only after obtaining signals from multiple cells.
  • the third device may perform interference measurement or interference measurement in some or all of the N-K time units , or to avoid interference with other devices.
  • Step S350 the second device determines whether to wake up according to the pulse received from the first device.
  • the second device may also be called a wake-up device, and the wake-up device may also be called a WUR device.
  • the pulse is the first signal from the first device.
  • the second device receives the pulse from the first device at a wake-up message receiving opportunity, wherein the wake-up message receiving opportunity includes a first period.
  • the wake-up signal receiver includes M time units, the first period includes N time units, M is greater than or equal to N, and whether a pulse is received on N time units in the M time units of the wake-up signal receiver is used to indicate the pattern information .
  • the second device receives pulses from the first device at N time units in the first period, and whether a pulse is received at each time unit of the N time units in the first period is used to indicate the pattern information.
  • the wake-up information receiving opportunity may be called a wake-up information sending opportunity on the first device side
  • the first signal receiving opportunity may be called a first signal sending opportunity on the first device side.
  • the second device determines whether to wake up according to the style information.
  • the second device determines the pattern information according to the reception of pulses in N time units in the first period, so as to determine whether to wake up the device.
  • the second device detects an energy signal on one of the N time units, or the power detected at this time unit is greater than 0, or the energy received at this time unit is greater than a threshold, the second device considers A pulse is received at this time unit, so that it is determined that the ON/OFF pattern information corresponding to this time unit is ON.
  • the second device when the second device does not detect an energy signal at this time unit, or the power detected at this time unit is equal to 0, or does not receive the first signal at this time unit, or the energy received at this time unit If the value is less than a threshold, the second device considers that the pulse has not been received in the time unit, and thus determines that the corresponding ON/OFF pattern information is OFF.
  • the second device may determine the ON/OFF pattern information of each time unit in the N time units of the first period one by one, thereby determining the pattern information, and further determining whether to wake up.
  • the second device receives pulses on the first time unit and the third time unit on the 4 time units, but does not receive pulses on the second time unit and the fourth time unit pulse, the pattern information corresponds to ON-OFF-ON-OFF, and the second device further determines whether to wake up according to the pattern information of ON-OFF-ON-OFF.
  • the manner of determining whether to wake up may include the following several.
  • the second device determines whether to wake up according to the pattern information.
  • the correspondence between style information and whether to wake up may be agreed in advance between the first device and the second device, that is, between the network device and the terminal device.
  • the style information includes style information A and style information B, which respectively correspond to waking up the device and not waking up the device.
  • the second device determines that the style information is style information A according to the received pulse, it means that the device is woken up; when the second The device determines that the style information is style information B according to the received pulse, which means that the device will not be woken up.
  • the second device determines that the pattern information is ON-OFF-ON-OFF according to the received pulse from the first device, the second device determines Wake up the device.
  • style information A and style information B there may be more style information.
  • the second device Through the correspondence between pattern information and whether to wake up, the second device only needs to receive information during the first period and determine the ON/OFF pattern corresponding to each time unit in the N time units of the first period to determine whether to wake up.
  • the second device determines wake-up information according to the style information, and the second device determines whether to wake up according to the wake-up information.
  • the second terminal device determines wake-up information according to the style information, including:
  • the wake-up information is a bit sequence
  • the second device determines the wake-up information according to the pattern information and the pulse modulation mode of the wake-up information, wherein the pulse modulation mode indicates that the bit value in the bit sequence is related to the ON/OFF of at least one time unit in the N time units.
  • the pulse modulation mode indicates that the bit value in the bit sequence is related to the ON/OFF of at least one time unit in the N time units.
  • the second device determines the pattern information, that is, after determining a series of ON-OFF patterns (patterns), it can determine the binary bit sequence corresponding to the pattern information according to the pulse modulation method.
  • the determined bit sequence is the wake-up information of the second device.
  • the modulation mode shown in (a) in FIG. 4 when the modulation mode shown in (a) in FIG. 4 is adopted, when the second device determines that the pattern information is ON-OFF-ON-OFF, it determines that the wake-up information is "1010".
  • the modulation mode shown in (c) in FIG. 4 when the second device determines that the pattern information is ON-OFF-ON-OFF, it determines that the wake-up information is "01”.
  • the wake-up information is composed of wake-up data information; or the wake-up information is composed of wake-up data information and wake-up synchronization information.
  • the wake-up data information includes the content of the wake-up message, and the wake-up data information also includes at least one of the following: wake-up area identifier, wake-up cell identifier, and cyclic redundancy check.
  • the information included in the wake-up data information is described below:
  • Wake-up area identification also called WUR area identification, used to indicate the mobile area where the wake-up device can reside in the WUR state without waking up the master device.
  • WUR area identification also called WUR area identification, used to indicate the mobile area where the wake-up device can reside in the WUR state without waking up the master device.
  • Wake-up cell ID also called WUR cell ID, used to indicate the cell served by the master device of the wake-up device.
  • WUR device detects a new WUR cell, it considers that the WUR device has moved out of the WUR cell where it resided before. At this time, the main radio can be woken up and cell reselection can be performed.
  • Wake-up message content may also be called WUR wake-up information, and is used to indicate wake-up information. Specifically, a value in Table 1 may be used. Wherein, if it indicates that the first device does not wake up any device at the time of receiving the wake-up information, a certain sequence agreed in advance, such as sequence 1, may be used, or other content except a specific identifier may be used to indicate not to wake up. For example, if it is not any one of the cell ID, group ID, and device ID, it means not to wake up.
  • the content of the wake-up message may be a value in Table 2.
  • using sequence 2 means to wake up the device, and using sequence 1 or any other content other than sequence 2 means not to wake up.
  • Counter used to indicate whether the system information of the first device is updated. Every time the system information of the first device is updated, the counter is incremented by 1, and returns to 0 after counting to the maximum value.
  • the counter can be used by the WUR device to determine whether the first device has updated the system information. A change in the counter is detected, indicating that the main radio needs to be woken up to receive system messages.
  • the counter can be changed only when the system information related to the wake-up device configuration information is updated, and other system information changes do not need to update the counter, so that the second device can save energy.
  • Cyclic redundancy check CRC used to check the aforementioned information.
  • the number of check bits of the CRC can be determined according to the amount of information transmitted in the wake-up information, the reliability requirements for the transmission of the wake-up information, and the like.
  • the number of bits of the CRC can be 6, 11, 16 or 24 bits.
  • the calculation method of CRC please refer to Section 5.1 of 3GPP protocol TS 38.212 vg.7.0.
  • the wake-up information can only consist of wake-up data information, and the wake-up data information can only include the content of the wake-up message.
  • the sequence corresponding to the content of the wake-up message can be directly used to realize the synchronization and wake-up functions at the same time.
  • the wake-up device realizes the agreed data in advance by detecting The information realizes the synchronization function, which can save signaling and increase the length of the sequence corresponding to the content of the wake-up message, thereby improving the reliability of receiving the wake-up message.
  • the wake-up synchronization information includes a synchronization signal, which can enable the second device, that is, the wake-up device, to find the start time of the WUR and avoid false detection.
  • the wake-up synchronization information may be a synchronization sequence, and the synchronization sequence may be designed as a fixed sequence, so that detection complexity may be reduced.
  • the synchronization information can be a pre-agreed sequence.
  • the synchronization sequence is ⁇ 0101, 1011, 0100, 0100, 1110, 1000, 1100, 0111 ⁇ .
  • the WUR device can first detect the synchronization sequence. If the energy of the synchronization signal sequence is low At a certain threshold, it can be considered that the WUR device has moved out of the wake-up area, thereby automatically waking up the master device.
  • the wake-up data information and wake-up synchronization information can respectively adopt different pulse modulation methods.
  • the wake-up synchronization information adopts the modulation method shown in (a) in Figure 4, and the wake-up data information
  • the modulation method shown in (c) in FIG. 4 may be used, or the same pulse modulation method may be used for the wake-up data information and the wake-up synchronization information, for example, the modulation method shown in (a) in FIG. 4 is used.
  • the information in the wake-up information may be repeated, for example, the wake-up synchronization information may include a repeated synchronization sequence, and the reliability of information reception may be improved through repeated transmission.
  • the wake-up information is a bit sequence
  • the bit sequence can also be repeated, for example, when the wake-up information is a bit sequence "0110”, the 4 bits can be extended, for example, each bit is repeated to obtain "00,11 ,11,00", or reverse and repeat each bit, such as generating "01,10,10,01", or repeat the sequence, such as repeating the sequence to get "0110,0110", or reverse and repeat the sequence Get "0110,1001".
  • the wake-up device After the wake-up device receives the pulse, it can merge and restore the wake-up information according to the predefined rules. This design can effectively improve coverage performance and improve transmission reliability.
  • Figures 6A-6D show several examples of components for wake-up information.
  • the subcarrier spacing ⁇ f 2 ⁇ ⁇ 15[kHz].
  • Using a larger subcarrier interval can reduce the pulse width and reduce the time of each bit of information in order to improve transmission efficiency.
  • the use of extended CP is to reduce the complexity of receiving wake-up information on the one hand, because the general In the case of CP (Normal CP), the length of the first symbol in each slot is different from the length of other symbols. On the other hand, the length of the extended CP is larger than that of the general CP.
  • Using the extended CP can also improve the coverage compared to the normal CP, because When the long CP is used for perception, it can support greater delay extension.
  • the WUR cell identifier and the content of the wake-up message respectively occupy 16 bits
  • the counter occupies 4 bits
  • the CRC occupies 12 bits.
  • this design includes a counter, and every time the system information of the first device is updated, the counter is incremented by 1.
  • the counter can be used by the WUR device to determine whether the first device has updated the system information.
  • the main radio is woken up to receive system messages.
  • FIG. 6B a specific WUR format implementation method shown in this application is shown.
  • Only the content of the wake-up message is sent, and the content of the wake-up message is a 24-bit long sequence.
  • the sequence 1 means wake-up
  • the sequence 2 means no wake-up.
  • FIG. 6C a specific WUR format implementation method shown in this application is shown.
  • FIG. 6D a specific WUR format implementation method shown in this application is shown.
  • the first device transmits the wake-up information to the second device while sending the reference signal and/or data signal to the third device, and the second device determines whether to wake up according to the receiving situation (pattern, pattern) of the first signal , the third device obtains the reference signal and/or data information according to the first signal, and can further use the reference signal to perform processes such as perception measurement, or obtain the data information carried in the first signal, thereby effectively improving the frequency spectrum in this system Use efficiency, realize the integration of perception and wake-up, and the integration of communication and wake-up.
  • the present application also provides a method 400 for sending a signal. As shown in FIG. 7, the method 400 includes:
  • step S410.1 the first device sends wake-up information configuration information to the second device.
  • the second device receives wake-up information configuration information.
  • the wake up information configuration information is used to indicate the wake up opportunity (wake up opportunity).
  • the wake up information configuration information includes the time domain information of the wake up opportunity and/or the frequency domain information of the wake up opportunity, and the time domain information of the wake up opportunity. It includes the start time of the wake-up information receiving opportunity, the period of the wake-up information receiving opportunity, and the duration of the wake-up information receiving opportunity.
  • the configuration information of the wake-up information indicates the start time, the duration of the wake-up information in each period, and the period of the opportunity to receive the wake-up information. Then the second device, that is, the wake-up device, can calculate the start time and end time of the wake-up information receiving opportunity in each cycle according to the wake-up information configuration information.
  • the wake-up information receiving opportunity may also be referred to as a wake-up information sending opportunity for the second device, that is, an opportunity for the first device to send wake-up information to the second device.
  • step S410.2 the first device sends the first signal configuration information to the third device.
  • the third device receives the first signal configuration information.
  • the first signal configuration information is used to indicate the first signal receiving opportunity, the first signal configuration information includes the time domain information of the first signal receiving opportunity and/or the frequency domain information of the first signal sending period, and the time information of the first signal receiving opportunity It includes the start time of the first signal receiving opportunity, the period of the first signal receiving opportunity, and the duration of the first signal receiving opportunity.
  • the third device may determine the start time, the duration, and the corresponding cycle according to the first signal configuration information. Thereby the start and end times of the first signal in each cycle can be determined.
  • the start time and end time of the first period are the same as the start time and end time of the wake-up information and the first signal.
  • the start time of the first signal receiver opportunity is not exactly the same as the start time of the wake-up information receiver opportunity, such as shown in FIG. 9, the first period is included in the duration of the first signal receiver opportunity, and the first period includes N time units.
  • the duration of the first signal receiver is P time units, then N is less than P, and in the P-N time units of the P time units, the first device also sends the first signal to the third device, or the first signal
  • the third device starts to receive the first signal at the start time of the first signal receiving opportunity indicated by the first signal configuration information, and the receiving period includes N time units of the first period, that is, it can be understood that in the first period
  • the sent first signal is a part of the first signal sent by the first device to the third device.
  • the third device determines the first signal according to the received information in the P time units, and determines reference information and/or data information.
  • the duration of the wake-up information receiver is M time units, and M is greater than N, that is, in one cycle, when the wake-up information receiver completely includes N time units in the first period, in M time units
  • the first device can also determine whether to send pulses in each time unit according to whether to wake up the second device, and the second device can determine whether to wake up according to the overall pulse reception situation in M time units.
  • the first period is an overlapping portion of the time domain resource of at least one wake-up information receiving opportunity and the time domain resource of at least one first signal receiving opportunity.
  • the first period is an overlapping portion of the time domain resource in at least one cycle of the wake-up information receiving opportunity and the time domain resource in at least one cycle of the first signal receiving opportunity.
  • the first period is also periodic, and its period is consistent with the period of the first signal receiving opportunity. Therefore, when the period of the wake-up information receiving opportunity is an integer multiple of the period of the first signal receiving opportunity, for the second device, that is, the wake-up device, in different periods of the wake-up information, the position of the first period relative to the wake-up information receiving opportunity is the same, For the third device, in different periods of the first signal, the position of the first period relative to the receiving opportunity of the first signal is the same.
  • the wake-up information receiver opportunity in a wake-up cycle overlaps with the first signal receiver opportunity in a first signal receiver cycle in the time domain, and the overlapping part in the time domain is the first period, including N time units.
  • the first period completely or partially overlaps with the time domain resource of at least one wake-up information receiving opportunity, and the first period fully or partially overlaps with the time domain resource of at least one first signal receiving opportunity. Or it can be understood that the first period fully overlaps or partially overlaps with the time domain resources in at least one period of the first signal receiving opportunity, and the first period fully overlaps or partially overlaps with the time domain resources in at least one period of the wake-up information receiving opportunity .
  • the duration of the wake-up information receiving opportunity is equal to the duration of the first signal receiving opportunity, and the two durations are equal to N time units, and the wake-up information receiving opportunity starts at the same time
  • the time is equal to the start time of the first signal receiving opportunity, and the end time of the wake-up information receiving opportunity is equal to the end time of the first signal receiving opportunity.
  • the first period is periodic, and its period is the same as that of the first signal.
  • the period of the wake-up information receiving opportunity is an integer multiple of the period of the first signal receiving opportunity. If the period corresponding to the wake-up information is the first period and the period corresponding to the first signal is the second period, the first period may be an integer multiple of the second period. That is, the interval for sending the wake-up information is longer than the interval for sending the reference signal and/or the data signal, which reduces resource occupation corresponding to the wake-up information.
  • the wake-up information receiving opportunity cycle of the second device is an integer multiple of the first signal receiving opportunity cycle of the third device, and in the first first signal receiving opportunity cycle, the wake-up of the UEA
  • the information receiver may overlap with the first signal receiver in the time domain, and the overlapping part is a first period.
  • the wake-up information receiving opportunity of the fifth device overlaps with the first signal receiving opportunity in the time domain, and at this time, the overlapping part of the two can also be called is the first period
  • the UEB may receive the pulse from the first device within this first period, and determine whether to wake up according to the reception situation.
  • the wake-up information cycle of a terminal device is an integer multiple of the first signal cycle of other terminal devices, multiple wake-up devices can be introduced, and in different first signal cycles, different wake-up devices can be indicated whether to wake up, further Improve the utilization of system spectrum.
  • the first signal receiving opportunity may also be referred to as a first signal sending opportunity for the third device, that is, an opportunity for the first device to send the first signal to the third device.
  • the frequency domain information of the wake-up information receiver indicates the first frequency domain bandwidth occupied by the wake-up information
  • the frequency domain information of the first signal receiver indicates the second frequency domain bandwidth occupied by the first signal, wherein the first frequency domain bandwidth is less than Or equal to the second frequency domain bandwidth, where the second frequency domain bandwidth is less than or equal to the system bandwidth.
  • the bandwidth corresponding to the first signal is greater than the bandwidth corresponding to the wake-up information, which can improve the receiving accuracy of the first signal, for example, improve the perception accuracy, and the bandwidth corresponding to the wake-up information is narrower, which can reduce power consumption.
  • the second frequency domain bandwidth occupied by the first signal may be an integer multiple of the first frequency domain bandwidth occupied by the wake-up information. Then within the frequency band of the first signal, relevant wake-up information of multiple wake-up devices may be notified.
  • the frequency domain resources may be represented by the position of the start frequency and the perceived signal bandwidth, or may be represented by the position of the center frequency and the sense bandwidth, or may be represented by the position of the start frequency and the end frequency, or the first device may use
  • the system bandwidth is divided into several subchannels (Subchannel) or bandwidth parts (Bandwidth Part), which are represented by subchannel numbers (subchannel index) or bandwidth part numbers (Bandwidth Part Index).
  • Step S410.3 the first device sends interference measurement configuration information to the second device;
  • the fourth device receives interference measurement configuration information from the first device, where the interference measurement configuration information is used to indicate interference measurement period configuration information, where the interference measurement period configuration information includes time information of the interference measurement period and/or frequency domain information of the interference measurement period,
  • the time information of the interference measurement period includes the start time of the interference measurement period, the period of the interference measurement period, and the duration of the interference measurement period.
  • Step S420.0 The first device determines the first period.
  • the first device determines an opportunity to receive the wake-up information of the second device according to the configuration information of the wake-up information of the second device.
  • the first device determines a first signal receiving opportunity of the third device according to the first signal configuration information of the third device.
  • the first device further according to the wake-up information receiver opportunity of the second device and the first signal of the third device
  • the receiving opportunity is to determine a first period, and the first period is an overlapping part in the time domain between the wake-up information receiving opportunity of the second device and the first signal receiving opportunity of the third device.
  • the frequency domain portion of the first signal sent during the first period is a frequency domain overlap portion of the second device's wake-up information receiver opportunity and the third device's first signal receiver opportunity.
  • the wake-up information receiving opportunity is M time units
  • the first period is N time units
  • M is greater than or equal to N.
  • the first device determines an opportunity to receive the wake-up information of the second device according to the configuration information of the wake-up information of the second device.
  • the first device determines the interference measurement period of the fourth device according to the configuration information of the interference measurement period of the fourth device.
  • the interference measurement period of the fourth device overlaps or partially overlaps with the wake-up information receiving opportunity of the second device in the time domain
  • the first device further determines based on the wake-up information receiving opportunity of the second device and the interference measurement period of the fourth device A first period, where the first period is a time-domain overlapping part of the wake-up information receiving opportunity of the second device and the interference measurement period of the fourth device.
  • the first period is an overlapping portion in the frequency domain of the wake-up information receiving opportunity of the second device and the first signal receiving opportunity of the fourth device.
  • Step S420.1 The second device determines the opportunity to receive the wake-up information
  • the second device determines an opportunity to receive the wake-up information according to the wake-up information configuration information.
  • the opportunity to receive the wake-up information includes the first period, but the second device does not need to determine the first period, and the first period is transparent to the wake-up device.
  • the wake-up information receiving opportunity includes a first period, specifically, the first period completely or partially overlaps time domain resources in at least one cycle of the wake-up information receiving opportunity.
  • Step S420.2 The third device determines the first signal receiving opportunity
  • the third device determines the first signal receiving opportunity according to the first signal configuration information, and the first signal receiving opportunity includes the first period; the first signal receiving opportunity includes the first period, specifically, the first period and at least one period All or part of the time domain resources of the first signal receiving opportunities overlap.
  • the first period completely overlaps with the first signal receiving opportunity, the first period is equal to the first signal receiving opportunity, and no additional signaling is required to notify the third device.
  • the first signal configuration information is also used to indicate the duration of the first period and the start time of the first period.
  • the first signal configuration information may indicate the start time and end time of the first period, for example, notify the offset between the start time of the first period and the start time of the first signal receiving opportunity, which is recorded as offset1 , the offset between the end time of the first period and the start time of the first signal receiving opportunity can also be notified, denoted as offset2, then the third device can determine the start time and length of the first period through this information as offset2-offset1 .
  • the first signal configuration information may notify offset1 and the length (length) of the first period, that is, N time units, or the indication of the first period may be completed.
  • the indication information of the first period may also be sent to the third device through separate signaling.
  • Step S420.2 The fourth device determines the interference measurement period
  • the fourth device determines an interference measurement period according to the interference measurement configuration information, where the interference measurement period includes the first period.
  • the interference measurement period includes a first period, specifically, the first period completely or partially overlaps time domain resources of the interference measurement period in at least one cycle. Similarly, when the first period completely overlaps with the first signal receiver, the first period is equal to the interference measurement period.
  • the interference measurement configuration information may further carry indication information of the first period, and the fourth device determines the first period based on the indication. For specific description, please refer to S420.2.
  • Step S430 The first device determines style information.
  • the first device determines wake-up information pattern information of a wake-up information receiving opportunity according to the wake-up information, and the wake-up information pulse pattern includes pattern information corresponding to the first period.
  • the related description of this step can refer to step S310.
  • the first device determines the pulse sending pattern in the first period according to the wake-up information.
  • the pattern information is used to indicate the pulse transmission pattern in the first period.
  • the duration of the wake-up information receiver is 8 symbols
  • the wake-up information is 10011010
  • the modulation method shown in (a) in Figure 4 is adopted
  • the wake-up information pulse pattern is: ON-OFF-OFF-ON-ON-OFF-ON- OFF, where the first symbol to the sixth symbol is the first period, then the pattern information only includes the pulse transmission pattern of the 6 symbols.
  • a bitmap is used to represent the style information, "1" is used to indicate pulse transmission, and "0" is used to indicate no pulse transmission, then the bitmap used to represent the style information at this time is "100110".
  • Step S440.1 The first device sends style information to the third device.
  • the third device receives the style information.
  • Step S440.2 The first device sends style information to the fourth device.
  • the fourth device receives the style information.
  • Step S450 The first device sends the first signal in K time units in N time units in the first period according to the transmission mode indicated by the pattern information, and the transmission power in N-K time units is 0.
  • the first device determines the wake-up information, and according to the wake-up information, determines the wake-up information style information corresponding to the wake-up information receiving opportunity, and the wake-up information style information indicates For each time unit of the M time units in the wake-up information receiving opportunity, whether to send a pulse, the wake-up information receiving opportunity includes a first period, and the first period includes N time units.
  • the first device sends the first signal in K time units according to the sending mode indicated by the pattern information, and the transmission power is 0 in N-K time units.
  • the pulse is sent in the time unit marked as ON, and the transmission power is 0 in the time unit marked as OFF.
  • the pulses sent by some or all of the time units of the unit are not limited here, and may be data information, or other information such as reference signals.
  • Step S460 The second device determines whether to wake up according to the receiving condition of the first signal or according to the receiving condition of the pulse.
  • the second device determines whether to wake up according to the pulse reception situation at the wake-up information receiving opportunity. When the opportunity to receive the wake-up information completely overlaps with the first period, the second device determines whether to wake up according to the pulse receiving situation in the first period.
  • the second device determines whether to wake up according to the pulse receiving situation in the first period and the pulse receiving situation outside the first period included in the wake-up information receiving opportunity.
  • Step S470 The third device receives the first signal according to the pattern information.
  • Step S480 The fourth device performs interference measurement according to the pattern information. Specifically, interference measurement is performed on part or all of N-K time units.
  • the third device and the fourth device are optional in the above embodiment, that is, steps S410.2, S420.3, S440.1, S470 may not be included, or step S410 may not be included .3, S420.4, S440.2, S480.
  • the method may also include, before step S410.1:
  • the first device receives the request information for entering the wake-up mode from the second device, and the request for entering the WUR mode may also include wake-up information configuration information suggested by the second device.
  • the first device sends response information for entering the wake-up mode to the second device.
  • the wake-up information configuration information may be carried in the wake-up mode response information.
  • the second device receives the wake-up mode response information of the first device, and if it is confirmed that the first device agrees that the second device enters the WUR mode, configures the WUR device according to the response information of the first device, and enters the WUR mode.
  • the second device may send the request to enter the WUR mode through RRC signaling, for example, send the request to enter the WUR mode through UE assistance information and/or the wake-up information configuration information suggested by the second device.
  • RRC signaling for example, send the request to enter the WUR mode through UE assistance information and/or the wake-up information configuration information suggested by the second device.
  • Using the UE auxiliary information to send the WUR mode entry request and/or the configuration information of the wake-up information suggested by the second device can be better compatible with existing protocols.
  • the specific wake-up device (that is, the second device) can initiate a request to enter the WUR mode through the main radio of the wake-up device (that is, the first device) to the serving cell of the main radio (that is, the first device) when it is judged that it is satisfied to enter the low-power receiving state.
  • Mode refers to the working mode in which the device turns off the main radio and receives wake-up information through the WUR device.
  • the wake-up device considers at least one or more of the following factors to determine whether to enter the low-power receiving state:
  • the wake-up device has less traffic and is more suitable to enter WUR mode
  • the quality of service of the wake-up device requires QoS (Quality of service).
  • the wake-up device can accept a higher delay and is more suitable for entering WUR mode
  • Power consumption for waking up the device Preferably, it is more suitable to enter the WUR mode when the wake-up device is in low or medium power.
  • a device with a relatively low battery capacity such as a wearable device or an IoT application device such as a meter reading device, is more suitable for entering the WUR mode.
  • the method before determining the wake-up information of the second device, the method further includes:
  • a wake-up area identifier Sending at least one of the following identifiers to the second device: a wake-up area identifier, a wake-up cell identifier, a wake-up device identifier, and a wake-up device group identifier.
  • the process for the first device to determine the identity may include:
  • the first device allocates a WUR device identifier and or a WUR group identifier for the WUR device, specifically,
  • Step 1 Determine the WUR to identify the resource pool.
  • the resource pool identified by the WUR may be determined according to the number of bits identified by the WUR. For example, if the number of bits identified by the WUR is 16 bits, the first device may determine that all or part of the 16-bit number is the resource pool identified by the WUR.
  • the WUR group and the WUR device can share a WUR identifier resource pool, or the WUR device and the WUR group have their own resource pools. For example, the WUR device identifier is 12 bits, and the WUR group identifier is 4 bits, then the WUR sets the device resource pool as all or part of the 12-bit number, and the WUR group resource pool as all or part of the 4-bit number.
  • Part of the resource pool can be reserved for special purposes, for example, an identifier can be reserved to represent a broadcast group.
  • Step 2 Select an ID from the WUR ID resource pool that is not used by other devices to assign the WUR device. Specifically, there are at least two ways:
  • Method 1 Randomly select an unused ID from the WUR ID resource pool and assign it to the WUR device.
  • Method 2 The first device determines the identity of the WUR device served by the first device according to the WUR identifier assigned and used by the neighbor device within the same wake-up information receiving time.
  • the specific determination method is to obtain the WUR assigned by the neighbor device within the same wake-up information receiving time.
  • ID take the non-value of each bit of the binary representation of the ID as a new ID. For example, if the WUR identifiers used by the neighboring devices are 1011, 1001, 0001, the WUR identifiers used by the first device are 0100, 0110, 1110, which has the advantage of reducing the interference of perceived signals.
  • mode 2 when mode 2 is adopted, before determining the wake-up information of the second device, it also includes:
  • the wake-up information receiver configuration of the neighbor device including wake-up information receiver time configuration information and or frequency domain configuration information, and obtain the WUR identifier assigned by the neighbor device in the wake-up information receiver opportunity.
  • the method before determining the wake-up information of the second device, the method further includes:
  • the corresponding relationship between the wake-up information and the sequence is sent to the second device.
  • sequence 1 means wake-up
  • sequence 2 means no wake-up.
  • sequence 1 for no wakeup and sequence 2 for wakeup.
  • the second device receives the corresponding relationship between the wake-up information and the sequence.
  • the second device receives the sequence 1 or the sequence 2 when receiving the wake-up information, and determines whether to wake up according to the corresponding relationship between the wake-up information and the sequence.
  • the first device may configure different wake-up information and sequence correspondences for different wake-up devices, so as to perform interference randomization.
  • the first device and the neighbor device respectively configure different wake-up information and sequence correspondences for the wake-up devices they serve, so as to avoid interference, that is, try to avoid interference or collision of information sent on the same or adjacent resources.
  • the fourth device may be the first device, or the third device, or other devices.
  • the fourth device is optional in an embodiment.
  • the fourth device is the first device, that is, the network device, there is no need to execute S430.3, that is, there is no need to send interference measurement configuration information to the fourth device, and the first device performs echo measurement in N-K time units, thereby further improving The spectrum utilization efficiency of the system is improved.
  • the receiving device of the content carried by the first signal may not be limited, and/or the content carried by the first signal may not be limited.
  • the method is a wake-up message sending and receiving method, and the first period is equal to the wake-up message receiving opportunity.
  • multiple cells that support the integrated design of perception and wake-up can further avoid/avoid inter-cell interference to improve the perception performance and wake-up detection performance.
  • the cell of is used as a neighbor cell that has an interference relationship with the first device.
  • the first signal when the above-mentioned first signal is a reference signal, the first signal may also be called a sensing signal, and the sensing signal overlaps or partially overlaps with the time-frequency resource for receiving wake-up information.
  • the overlapping or partial overlap between the sensing signal and the wake-up information receiving time-frequency resource means that they overlap or partially overlap in the time domain, for example, the overlapping part is the above-mentioned first period.
  • the frequency bands occupied in the frequency domain are the same or adjacent frequency domain ranges.
  • the two neighboring cells with interference relationship are cell_i and cell_j respectively
  • the cell_i cell wake-up signal transmission content sequence is a_i
  • cell_j cell wake-up signal transmission content is a_j
  • a_i and a_j are the bit representations of the ON/OFF waveform of each symbol
  • Bit 1 is used to indicate ON
  • bit 0 is used to indicate OFF.
  • the number of bits 1 in the bit-wise XORed value is as large as possible, and a specific implementation method is that each sequence of cell_j is a sequence after each bit of each sequence of cell_i is negated.
  • cell_i is used to indicate that the bit sequence 1 of not waking up any information is ⁇ 0101, 1011, 0100, 0100, 1110 ⁇
  • cell_j is used to indicate the bit sequence of not waking up any information 1 is ⁇ 1010, 0100, 1011, 1011, 0001 ⁇
  • the cell ID of cell_i is ⁇ 1100, 0110, 1011, 0100, 1001 ⁇
  • the above WUR information format example also includes a 4-bit counter.
  • the content of the counter of cell_i is the actual value
  • the counter of cell_j The content of is the actual value after negating the bit by bit, and 0 is 1 after negating.
  • Table 4 takes the counter with 4 bits as an example, and the other counter bits also refer to the same rule, that is, when one cell is ON, other cells are OFF as much as possible to reduce inter-cell interference in sensing signal detection.
  • Table 4 Values of counters in neighbor cell wake-up information
  • execution subject shown in FIG. 3 or 7 is only an example, and the execution subject may also be a chip, a chip system, or a processor that supports the execution subject to implement the method shown in FIG. 3 or 7. No limit.
  • the methods and operations implemented by the first device may also be implemented by components (such as chips or circuits) that can be used in the first device, and the methods and operations implemented by the second device, It can also be realized by components (such as chips or circuits) that can be used in the second device.
  • each network element such as a transmitting end device or a receiving end device, includes a corresponding hardware structure and/or software module for performing each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • FIG. 12 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1200 may be the second device or the third device in FIG. 1A, or the terminal device in FIG. 1B and FIG. 1C, or the second device, the third device, the fourth device or the
  • the fifth device is configured to implement the method for the terminal device in the foregoing method embodiment.
  • the communication device may also be the first device in FIG. 1A or FIG. 2, or the network device in the RAN in FIG. 1B and FIG. 1C, such as CU, DU, CU-CP, or CU-UP, for realizing the above
  • the method embodiment corresponds to the method of the first device.
  • the communication device 1200 includes one or more processors 1201 .
  • the processor 1201 may also be referred to as a processing unit, and may implement certain control functions.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor. For example, including: baseband processor, central processing unit, application processor, modem processor, graphics processor, image signal processor, digital signal processor, video codec processor, controller, memory, and/or Neural Network Processor, etc.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processing unit can be used to control the communication device 1200, execute software programs and/or process data. Different processors may be independent devices, or may be integrated in one or more processors, for example, integrated in one or more application-specific integrated circuits.
  • the communication device 1200 includes one or more memories 1202 for storing instructions 1204, and the instructions can be executed on the processor, so that the communication device 1200 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory 1202.
  • the processor and memory can be set separately or integrated together.
  • the communication device 1200 may include instructions 1203 (sometimes also referred to as codes or programs), and the instructions 1203 may be executed on the processor, so that the communication device 1200 executes the methods described in the above embodiments .
  • Data may be stored in the processor 1201 .
  • the communication device 1200 may further include a transceiver 1205 and an antenna 1206 .
  • the transceiver 1205 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to realize the transceiver function of the communication device 1200 through the antenna 1206 .
  • the communication device 1200 may further include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc.
  • a wireless communication module an audio module
  • an external memory interface an internal memory
  • a universal serial bus universal serial bus, USB
  • a power management module an antenna
  • Speakers microphones, I/O modules, sensor modules, motors, cameras, or displays, etc.
  • the UE 1200 may include more or fewer components, or some components may be integrated, or some components may be split. These components may be realized by hardware, software, or a combination of software and hardware.
  • the processor 1201 and transceiver 1205 described in this application can be implemented in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit (radio frequency identification, RFID), mixed signal IC, application specific integrated circuit (application specific integrated circuit) , ASIC), printed circuit board (printed circuit board, PCB), or electronic equipment, etc.
  • the communication device described herein can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices).
  • a module for example, a module that can be embedded in other devices.
  • the terminal device includes corresponding means (means), units and/or for realizing the UE functions described in the embodiment shown in FIG. 1A , FIG. 1B , FIG. 1C , FIG. 2 , FIG. 3 , and/or FIG. 7 or circuit.
  • the terminal device includes a transceiver module, configured to support the terminal device to implement a transceiver function, and a processing module, configured to support the terminal device to process signals.
  • FIG. 13 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 1300 may be applicable to the systems shown in FIG. 1A , FIG. 1B , FIG. 1C , and FIG. 2 .
  • FIG. 13 only shows main components of the terminal device 1300 .
  • a terminal device 1300 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device 1300, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the control circuit, and the control circuit performs radio frequency processing on the baseband signal, and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 13 only shows a memory and a processor.
  • terminal device 1300 may include multiple processors and memories.
  • a memory may also be called a storage medium or a storage device, which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device 1300, Executing the software program, processing the data of the software program.
  • the processor in FIG. 13 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • the terminal device 1300 may include multiple baseband processors to adapt to different network standards, the terminal device 1300 may include multiple central processors to enhance its processing capability, and various components of the terminal device 1300 may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • a terminal device 1300 includes a transceiver unit 1310 and a processing unit 1320 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 1310 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 1310 for realizing the sending function can be regarded as a sending unit, that is, the transceiver unit 1310 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the embodiment of the present application also provides a network device, which can be used in the foregoing embodiments.
  • the network device includes means, units, and means for realizing the functions of the first device described in the embodiment shown in FIG. 1A, FIG. 1B, FIG. 1C, FIG. 2, FIG. 3, and/or FIG. /or circuit.
  • the network device includes a transceiver module, configured to support the terminal device to implement the transceiver function, and a processing module, configured to support the network device to process signals.
  • FIG. 14 shows a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 20 may be applicable to the systems shown in FIG. 1A , FIG. 1B , FIG. 1C , and FIG. 2 .
  • the network device 20 is, for example, the first device shown in FIG. 1 .
  • the network device includes: a baseband device 201 , a radio frequency device 202 , and an antenna 203 .
  • the radio frequency device 202 receives the information sent by the terminal device through the antenna 203, and sends the information sent by the terminal device to the baseband device 201 for processing.
  • the baseband device 201 processes the information of the terminal device and sends it to the radio frequency device 202
  • the radio frequency device 202 processes the information of the terminal device and sends it to the terminal device through the antenna 203 .
  • the baseband device 201 includes one or more processing units 2011 , a storage unit 2012 and an interface 2013 .
  • the processing unit 2011 is configured to support the network device to execute the functions of the network device in the foregoing method embodiments.
  • the storage unit 2012 is used to store software programs and/or data.
  • the interface 2013 is used for exchanging information with the radio frequency device 202, and the interface includes an interface circuit for input and output of information.
  • the processing unit is an integrated circuit, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the storage unit 2012 and the processing unit 2011 may be located in the same chip, that is, an on-chip storage element. Alternatively, the storage unit 2012 and the processing unit 2011 may also be located on different chips from the processing unit 2011, that is, an off-chip storage unit.
  • the storage unit 2012 may be one memory, or a general term for multiple memories or storage elements.
  • a network device may implement part or all of the steps in the foregoing method embodiments in the form of one or more processing unit schedulers. For example, corresponding functions of the network devices in FIG. 3 and/or FIG. 7 are realized.
  • the one or more processing units may support wireless access technologies of the same standard, or may support wireless access technologies of different standards.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the units described as separate components may or may not be physically separated.
  • the components shown may or may not be physical units, that is, they may be located in one place, or they may be distributed over multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the computer software product is stored in a storage medium and includes several instructions for Make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium may be any available medium that can be accessed by a computer.
  • the computer readable medium may include random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), Erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read only memory, EEPROM), compact disc read-only memory (compact disc read-only memory, CD- ROM), universal serial bus flash disk (universal serial bus flash disk), removable hard disk, or other optical disk storage, magnetic disk storage medium, or other magnetic storage device, or can be used to carry or store desired data in the form of instructions or data structures program code and any other medium that can be accessed by a computer.
  • RAM random access memory
  • read-only memory read-only memory
  • ROM programmable read-only memory
  • PROM programmable read-only memory
  • Erasable programmable read-only memory Erasable programmable read-only memory
  • EPROM Er
  • RAM static random access memory
  • dynamic RAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请涉及一种信息发送方法及装置。第一设备在第一期间发送第一信号,第二设备接收来自第一设备的脉冲并确定是否唤醒,第三设备根据第一信号确定参考信号和/或数据信息。在本申请实施例中,通过第一设备在向第三设备发送参考信号和/或数据信号的同时实现了向第二设备传递唤醒相关信息,从而有效提升了频谱的使用效率,实现感知与唤醒的一体化,或通信与唤醒的一体化。

Description

信息发送的方法和装置 技术领域
本申请实施例涉及通信领域,并且,更具体地,涉及信息发送的方法和装置。
背景技术
为了满足物联网极低能耗和高速传输的需求,无线系统中引入了双无线设备的设计,一个终端设备包括主连接无线电(primary connection radio,PCR)和伴随无线电(companion connection radio,CCR),主连接无线电也可以称为主收发信机,伴随无线电工作在低功耗状态,用于检测来自其他设备的寻呼消息或唤醒信息,通常也称为唤醒无线电(wake up radio,WUR)。当伴随无线电检测到需要唤醒主连接无线电进行数据通信的寻呼消息或者唤醒信息时,唤醒主连接无线电与其他设备进行通信。在唤醒过程中,接入点设备(access point,AP)或者网络设备,发送唤醒帧给伴随无线电,在唤醒帧使用频谱的同时,其他设备不能使用频谱,造成频谱资源的浪费。
发明内容
本申请实施例提供一种信息发送的方法,用于同时发送参考信号和/或数据信息,以及指示唤醒信息,提升频谱用效率。
第一方面,提供了一种信息发送的方法。该方法包括:确定样式信息,所述样式信息用于指示在第一期间的N个时间单元的各个时间单元上是否发送脉冲,所述样式信息还用于指示第二设备的唤醒信息;在K个时间单元上,向所述第二设备和第三设备发送第一信号,所述K个时间单元属于所述N个时间单元,且所述K个时间单元为所述样式信息指示发送脉冲的时间单元,所述第一信号用于承载发送给所述第三设备的参考信号和/或数据信息;其中,在N-K个时间单元上发送功率为0,所述N-K个时间单元属于所述N个时间单元,且所述N-K个时间单元为所述样式信息指示不发送脉冲的时间单元,其中,N,K为正整数,且K小于或等于N。
该方法可由第一设备执行,第一设备可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第一设备为网络设备,或者为设置在网络设备中的用于实现网络设备的功能的芯片,或者为用于实现网络设备的功能的其他部件。示例性地,所述第一设备为接入网设备,例如基站。
基于上述方案,第一设备在向第三设备发送参考信号和/或数据信息的同时实现了向第二设备传递唤醒信息,第一设备根据唤醒信息确定第一信号的发送样式,第一设备根据第一信号的发送样式发送第一信号,第一信号承载发送给第三设备的参考信号和/或数据信息,第二设备根据第一信号的接收情况或根据接收到的来自第一设备的脉冲确定是否唤醒,第三设备根据第一信号确定参考信号和/或数据信息,并可进一步使用参考信号进行感知测量等过程,或者获得第一信号中承载的数据信息,从而在该系统中有效提升了频谱的使用效率,实现感知与唤醒的一体化,通信与唤醒的一体化。
在一种实现方式中,所述确定样式信息包括:根据是否唤醒所述第二设备确定所述唤醒信息;根据所述唤醒信息确定所述样式信息。
在一种实现方式中,所述唤醒信息为比特序列,根据所述唤醒信息确定所述样式信息包括:根据所述唤醒信息及唤醒信息的脉冲调制方式确定所述样式信息,所述唤醒信息的脉冲调制方式指示所述比特序列中的比特取值与所述N个时间单元中至少一个时间单元的ON/OFF样式的对应关系,其中,ON指示发送脉冲,OFF指示不发送脉冲。
在一种实现方式中,所述方法还包括:向所述第三设备发送所述样式信息,所述样式信息用于所述第三设备接收所述第一信号。
基于上述方案,在发送第一信号前,向第三设备发送样式信息,用于指示第三设备在对应的时域位置上接收第一信号,提升第三设备信息接收成功率,提升可靠性。
在一种实现方式中,所述N-K个时间单元的部分或者全部用于所述第三设备执行如下至少一种:干扰测量,回波测量,或干扰规避。
在一种实现方式中,所述唤醒信息由唤醒数据信息构成;或者所述唤醒信息由唤醒数据信息和唤醒同步信息构成;其中,所述唤醒数据信息包括唤醒消息内容,所述唤醒数据信息还包括以下中的至少一项:唤醒区域标识,唤醒小区标识,循环冗余码校验(cyclic redundancy check,CRC)。
基于上述方案,当唤醒信息包括唤醒同步信息时,可以使得第二设备能够找到唤醒信息的开始时间,避免误检,当不包括同步信息时,可以通过数据信息完成同步功能。提升了唤醒信息涉及的灵活性。
在一种实现方式中,所述方法还包括:向所述第二设备发送唤醒信息配置信息,所述唤醒信息配置信息用于指示唤醒信息接收机会,所述唤醒信息配置信息包括所述唤醒信息接收机会的时域信息和/或所述唤醒信息接收机会的频域信息,所述唤醒信息接收机会的时域信息包括所述唤醒信息接收机会的开始时间,所述唤醒信息接收机会的周期,以及所述唤醒信息接收机会的持续时间;和/或所述第一设备向所述第三设备发送第一信号配置信息,所述第一信号配置信息用于指示第一信号接收机会,所述第一信号配置信息包括所述第一信号接收机会的时域信息和/或所述第一信号接收机会的频域信息,所述第一信号接收机会的时间信息包括所述第一信号接收机会的开始时间,所述第一信号接收机会的周期,以及所述第一信号接收机会的持续时间。可以理解,在第一设备侧,唤醒信号接收机会也可称为唤醒信号发送机会,第一信号接收机会也可称为第一信号发送机会。
在一种实现方式中,所述唤醒信息接收机会的周期为所述第一信号接收机会的周期的整数倍。
基于上述方案,当一个终端设别的唤醒信息周期是其他终端设备第一信号周期的整数倍的时候,即唤醒信息发送的间隔比参考信号和/或数据信号发送的间隔更长,减少了唤醒信息对应的资源占用,同时可以引入多个唤醒设备,在不同的第一信号的周期内,可以指示不同唤醒设备是否唤醒,进一步提升系统频谱的利用率。例如终端设备1的唤醒信息周期是第三设备的第一信号唤醒周期的3倍,第一信号周期1中指示终端设备1的唤醒信息,第一信号周期2中指示终端设备2的唤醒信息,第一信号周期3中指示终端设备3的唤醒信息,第一信号周期4中再指示终端设备1的唤醒信息。
在一种实现方式中,所述第一期间为所述唤醒信息接收机会的至少一个周期中时域资源与所述第一信号接收机会的至少一个周期中时域资源的重叠部分。
在一种实现方式中,所述唤醒信息接收机会的频域信息指示第一频域带宽,所述第一信号接收机会的频域信息指示第二频域带宽,且所述第一频域带宽小于或等于所述第二频域带宽,其中,所述第二频域带宽小于或等于系统带宽。
基于上述方案,唤醒信息接收机会所占的第一频域带宽小于或等于第一信号接收机会所占的第二频域带宽,其中,第二频域带宽小于或等于系统带宽。第一信号对应带宽大于唤醒信息对应带宽,可以提升第一消息接收精度,例如提升感知精度,唤醒信息对应的带宽较窄,可以降低功耗。
在一种实现方式中,在所述确定第二设备的唤醒信息之前,还包括:所述方法还包括:接收来自所述第二设备的进入唤醒模式请求信息,向所述第二设备发送进入唤醒模式响应信息。
在一种实现方式中,在所述确定第二设备的唤醒信息之前,还包括:向所述第二设备发送以下标识中的至少一个:唤醒区域标识、唤醒小区标识、唤醒设备标识、唤醒设备组标识。
在一种实现方式中,第一设备在所述N-K个第二时间单元的部分或者全部进行回波测量。
在一种实现方式中,所述第一期间与第一信号接收机会的至少一个周期中的时域资源全部重叠或部分重叠。
在一种实现方式中,所述第一期间与所述唤醒信息接收机会的至少一个周期中的时域资源全部重叠或部分重叠。
第二方面,提供一种信息接收的方法。有益效果可以参照上述第一方面的描述。该方法包括:接收来自第一设备的样式信息,所述样式信息用于指示在第一期间的N个时间单元内的各个时间单元是否接收来自所述第一设备的第一信号;根据所述样式信息,在所述N个时间单元中的K个时间单元,接收所述第一信号,其中,所述第一信号承载参考信号和/或数据信息,所述K个时间单元为所述样式信息指示接收所述第一信号的时间单元,其中,N,K为正整数,且K小于或等于N。
该方法可由第三设备执行,第三设备可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第三设备为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。
在一种实现方式中,所述方法还包括:接收来自第一设备的第一信号配置信息,所述第一信号配置信息用于指示所述第一信号接收机会,所述第一信号配置信息包括第一信号接收机会的时域信息,所述第一信号接收机会的时域信息包括所述第一信号接收机会的开始时间,所述第一信号接收机会的周期,以及所述第一信号接收机会的持续时间。
在一种实现方式中,所述第一信号配置信息还用于指示所述第一期间的持续时间及所述第一期间的开始时间;所述第三设备根据所述第一信号配置信息确定所述第一期间,所述第一期间与第一信号接收机会的至少一个周期中的时域资源全部重叠或部分重叠。
在一种实现方式中,所述第三设备在所述N个时间单元中的N-K个时间单元的部分或者全部上进行干扰测量。
第三方面,提供一种唤醒信息接收的方法。该方法包括:在第一期间接收来自所述第一设备的脉冲,其中,所述第一期间包括N个时间单元,所述N个时间单元的每个时间单元上是否接收到脉冲用于指示样式信息,N为正整数;根据所述样式信息,确定是否唤醒。
该方法可由第二设备执行,第二设备可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第二设备为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。
在一种实现方式中,所述根据所述样式信息,确定是否唤醒,包括:根据所述样式信息,确定唤醒信息;根据所述唤醒信息确定是否唤醒。
在一种实现方式中,所述样式信息由所述N个时间单元中每个时间单元的ON/OFF样式信息构成,其中,在所述N个时间单元中第i个时间单元接收到脉冲,所述第i个时间单元的ON/OFF样式信息为ON,在所述第i个时间单元没有接收到脉冲,所述第i个时间单元的所述ON/OFF样式信息为OFF,i为小于或等于N的正整数。
在一种实现方式中,所述根据所述样式信息,确定唤醒信息,包括:所述唤醒信息为比特序列,所述根据所述样式信息和所述唤醒信息的脉冲调制方式,确定所述唤醒信息,其中,所述脉冲调制方式指示所述比特序列中的比特取值与所述N个时间单元中至少一个时间单元的ON/OFF样式的对应关系。
在一种实现方式中,所述方法还包括:所述第二设备接收来自所述第一设备的唤醒信息配置信息,所述唤醒信息配置信息用于指示唤醒信息接收机会的时间信息和/或所述唤醒信息接收机会的频域信息,所述唤醒信息接收机会的时间信息包括所述唤醒信息接收机会的开始时间,所述唤醒信息接收机会的周期,以及所述唤醒信息接收机会的持续时间。
在一种实现方式中,所述方法还包括:所述第二设备在所述唤醒信息接收机会接收来自所述第一设备的脉冲,其中,所述唤醒信息接收机会包括所述第一期间,所述唤醒信息接收机会包括M个时间单元,所述M大于等于N,所述唤醒信息接收机会内的所述N个时间单元的每个时间单元上是否接收到脉冲用于指示样式信息;根据所述样式信息,确定是否唤醒。
关于第三方面或第三方面的各种可选的实施方式及技术效果,可参考上述关于第一、和/或第二方面的介绍。
第四方面,提供一种干扰信号测量方法,该方法包括:确定第一期间,所述第一期间包括N个时间单元;所述第四设备接收来自所述第一设备的样式信息,所述样式信息用于指示在所述第一期间的N个时间单元中,N-K个第二时间单元发送功率为0;所述第四设备在所述N-K个时间单元进行干扰测量,N,K为正整数,且K小于或等于N。
在一种实现方式中,所述方法还包括:所述第四设备接收来自第一设备的干扰测量配置信息,所述干扰测量配置信息用于指示所述干扰测量期配置信息,所述干扰测量期配置信息包括干扰测量期的时间信息,所述干扰测量期的时间信息包括干扰测量期的开始时间,所述干扰测量期的周期,以及所述干扰测量期的持续时间;所述第四设备根据所述干扰测量期配置信息确定第一期间,所述第一期间与至少一个干扰测量期重叠或部分重叠。
第五方面,提供一种通信装置。所述通信装置可以为上述第一至第四方面中任意一方面所述的第一设备。所述通信装置具备上述第一设备的功能。所述第一设备:例如为基站,或为基站中的基带装置。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。
所述处理单元,用于确定样式信息;所述处理单元,还可以用于通过所述收发单元向第二设备和第三设备发送第一信号。
在一种可选的实现方式中,所述通信装置包括处理单元,用于与存储单元耦合,并执行存储单元中的程序或指令,使能所述通信装置执行上述第一设备的功能。
第六方面,提供一种通信装置。该通信装置可以为上述第一至第四方面中任意一方面所述的终端设备,例如第二设备,第三设备,或者为配置在所述终端设备中的电子设备,或者为包括所述终端设备的较大设备。所述终端设备包括用于执行上述方法的相应的手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。其中,所述处理单元,用于通过所述收发单元接收来自第一设备的第一信号,或接收来自第一设备的样式信息。
又例如,所述通信装置包括:处理器,与存储器耦合,用于执行存储器中的指令,以实现上述第一至第四方面任意一方面中终端设备所执行的方法。可选的,该通信装置还包括其他部件,例如,天线,输入输出模块,接口等等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中终端设备,或第一网络设备,或第二网络设备所执行的方法被实现。
第八方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第九方面,提供一种芯片,包括处理器和通信接口,所述处理器用于执行存储器中的指令,以实现上述第一至第四方面任意一方面中第一设备或第二设备或第三设备所执行的方法。
附图说明
图1A是本申请实施例提供的一种通信系统的示意图。
图1B为本申请实施例的一种应用场景的示意图;
图1C为本申请实施例的另一种应用场景的示意图。
图2是本申请实施例提供的另一种通信系统示意图。
图3为本申请实施例提供的通信方法的流程图。
图4是本申请实施例提供的一种脉冲调制方式示意图;
图5是本申请实施例提供的一种唤醒区域示意图;
图6A-图6D是本申请实施例提供的唤醒信息构成示意图;
图7是本申请实施例提供的另一种通信方法的流程图;
图8是本申请实施例提供的一种信息周期配置示意图;
图9是本申请实施例提供的一种唤醒信息与第一信号时域位置示意图。
图10是本申请实施例提供的一种第一期间周期性时域位置示意图。
图11是本申请实施例提供的一种唤醒信息与第一信号频域位置示意图。
图12为本申请实施例提供的通信装置的一种示意性框图;
图13为本申请实施例提供的终端设备的一种示意性框图;
图14为本申请实施例提供的网络设备的一种示意性框图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:LTE系统、高级的长期演进(LTE advanced,LTE-A)系统,LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunications system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G系统或未来演进的通信系统,车到其它设备(vehicle-to-X V2X)通信系统,其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进(long term evolution-vehicle,LTE-V)技术、车联网、机器类通信(machine type communications,MTC)、物联网(Internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M)等,在此不做限制。
图1A为本申请实施例适用的通信系统的一种通信架构示意图。如图1A所示,第一设备可以与第二设备及第三设备进行通信,例如,第一设备向第二设备以及第三设备发送信息,例如,发送第一信号,第二设备根据第一信号的接收情况确定唤醒信息,第三设备根据接收到的第一信号确定第一设备发送的数据信息,或者参考信号,或者二者的结合,其中,数据信息包括用户数据信息和/或控制信令。其中,第一设备可以为网络设备,第二设备及第三设备可以为终端设备。
图1B示出了本申请提供的通信系统10中的另一种通信网络架构。如图1B所示,通信系统包括核心网(new core,CN)和无线接入网(radio access network,RAN)。其中RAN中的网络设备(例如,基站)包括基带装置和射频装置。基带装置可以由一个或多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。RAN中的网络设备可以包括集中单元(CU)和分布单元(DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请不作任何限制。
图1C示出了本申请提供的通信系统10中的另一种通信网络架构。相对于图1B所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。在该网络架构中,CU产生的信令可以通过DU发送给UE,或者UE产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给UE或CU。在该网络架构中,将CU划分为作为RAN侧的网络设备,此外,也可以将CU划分作为CN侧的网络设备, 本申请对此不做限制。
在图1的基础上,图2为本申请实施例适用的另一种网络架构示意图。如图2所示,第一设备可以与第二设备,第三设备,第四设备进行通信,其中,第二设备包括通信模块以及唤醒模块,其中,通信模块可以称为主要通信无线电(primary connection radio,PCR),也可以称为主接收机,或可称为主radio。唤醒模块可以称为唤醒无线电(wake-up radio,WUR),或唤醒无线电设备。第一设备按照一定的样式向第二设备,第三设备发送或不发送第一信号,第二设备根据在各个时间单元上是否接收到脉冲确定唤醒信息,第三设备接收到第一信号后,如果第一信号承载参考信号,可以进一步进行测量,例如,信道状态信息测量,或定位测量。可选的,第一设备还可以通知第四设备在不发送第一信号的时间用于测量,例如信道状态信息干扰测量;第二设备的唤醒相关模块根据第一信号的接收情况确定是否唤醒第二设备,在第二设备被唤醒时,还可以与第五设备进行无线通信。第一设备还可以将时间单元上是否发送第一信号的信息通知第六设备用于干扰规避。除此之外,第一设备还可能接收到第一信号的回波,并基于回波进行回波测量。其中,第一设备和第六设备可以为网络设备,第二设备到第五设备可以为终端设备。
在本申请实施例中,终端设备,为具有无线收发功能的设备或可设置于该设备的芯片。其中,所述具有无线收发功能的设备也可以称为终端、接入终端、终端设备、用户设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请中的网络设备也可以称为无线接入网(radio access network,RAN),能够管理无线资源。主要是提供无线接入服务,调度无线资源给接入的终端设备,提供可靠的无线传输协议和数据加密协议等,并能够完成数据在终端设备和核心网之间的转发。
示例性地,本申请实施例中的网络设备可以是用于与用户设备通信的任意一种具有无线收发功能的通信设备,可以是部署在卫星上的通信设备,也可以是部署在地面上的通信设备,或者为设置于该通信设备的芯片。该网络设备包括但不限于:演进型节点B(evolved  Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved nodeB,HeNB,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如NR系统中的gNB,或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责实时协议和服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息由CU生成,最终会经过DU的PHY层封装变成PHY层信息,或者,来自终端设备的RRC层信息,被封装成物理层信息,经过空口传输给DU的物理层,再恢复成RRC层信息。因而,在这种架构下,高层信令如RRC层信令,也可以认为是由DU发送/接收的,或者,由DU+AAU发送/接收的。此外,可以将CU划分为接入网中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
为更好的理解本申请实施例,首先介绍一下唤醒相关技术。
在无线通信系统中,终端设备大部分能量浪费在信道监听,即当终端设备无消息收发时,若终端设备持续监听信道,则会消耗大量的能量。为了减少能量的浪费,可以让终端设备处于休眠状态,但处于休眠状态太长,会增加信息处理/传输时延,因此,终端设备必须能够在低功耗、低延迟状态下运行。WUR架构应运而生,其核心思想是:终端设备除包含传统的主要通信接收机外,还包括唤醒接收机部分。平常主要通信接收机关闭,利用唤醒接收机检测来自其他设备的寻呼消息或者唤醒信息,当唤醒接收机检测到需要唤醒主要通信接收机进行数据通信的寻呼消息或者唤醒信息,唤醒主要通信接收机与其他设备进行通信。唤醒接收机可以称为低功率接收机(Lower power receiver,LPR),或者称为低功率唤醒接收机(Low power wake up receiver,LPWUR),或者称为低功率无线设备(low power radio,也简称LPR),或者称为低功率唤醒无线设备(Low power wake up radio,也简称LPWUR),由于唤醒radio仅仅有接收功能,所以,采用radio或者reciever概念对于唤醒设备而言,没有本质差别。由于唤醒接收机驻留功耗非常低,因此可以起到节省终端设备功耗的效果。
为了降低功耗,唤醒接收机接收的唤醒信息对应的调制方式通常比较简单,例如通断键控(On-Off Keying,OOK),OOK通过是否发送信号表示比特信息的取值,例如ON表示比特信息取值为”1”,OFF表示比特信息取值为”0”,或者反之。这样接收机只需要经过简单的包络检测就可以识别信号,不需要复杂的基带处理。
对低数据速率场景,比特信息取值为“1”编码为1010,对应OOK调制后的脉冲样式为ON-OFF-ON-OFF,比特信息取值为“0”编码为0101,对应OOK调制后的脉冲样式为OFF-ON-OFF-ON,每个调制后的符号时长为4us,则每个比特信息用4个OOK符号,即16us传输;对高数据速率场景,比特信息取值为“1”编码为10,对应OOK调制后的脉冲样式为ON-OFF,比特信息取值为“0”编码为01,对应OOK调制后的样式为OFF-ON,每个调制后的符号时长2us,则每个比特信息用4us传输。在通信系统中,频谱资源非常宝贵,而用于WUR的信息为OOK信号,以上述高速率场景为例,唤醒带宽占用4MHz的情况下,唤醒的比特速率最高为1bit/16us=250kbps,频谱效率为1bit/16us/4MHz=0.0156bit/s/Hz,用宝贵的频谱传输如此低的数据信息,降低了频谱使用效率。
鉴于此,如图3所示,本申请提出一种发送信息的方法300,方法300包括:
步骤S310,第一设备确定样式信息,该样式信息用于指示在第一期间的N个时间单元的各个时间单元上是否发送脉冲,所述样式信息还用于指示第二设备的唤醒信息。
具体的,样式信息指示在第一期间的N个时间单元中的K个时间单元上发送脉冲,在第一期间的剩余N-K个时间单元上不发送脉冲。其中,该K个时间单元可以是连续的,也可以是离散的。一个连续的脉冲对应的时间单元可以是一个,也可以是多个,例如,一个脉冲可以对应2个时间单元,在该2个时间单元上,发送能量均大于0,或一个脉冲可以对应更多时间单元。同样的,不发脉冲的时间单元可以是连续的,也可以是离散的。
样式信息由所述N个时间单元中每个时间单元的样式信息构成,该样式信息为ON/OFF样式信息,其中,N个时间单元中第i个时间单元的ON/OFF样式信息为ON,则代表第一设备在第i个时间单元发送脉冲,所述第i个时间单元的所述ON/OFF样式信息为OFF代表第一设备在第i个时间单元不发送脉冲,i为小于等于N的正整数。是否发送脉冲也可以理解为发送的能量是否为0,当发送能量大于0时代表发送脉冲,当发送能量等于0时代表不发送脉冲。举例来说,例如样式信息为ON OFF ON ON,则代表该样式信息指示了N=4个时间单元上的脉冲情况,其中第一个,第三个,第四个时间单元上第一设备发送脉冲,第二个时间单元上第一设备不发送脉冲。
可选的,第一期间的N个时间单元的各个时间单元上是否发送脉冲可以理解为在各个时间单元上第一设备是否发送第一信号。
可选的,对应有脉冲的K个时间单元为K个第一时间单元,N-K个没有脉冲的时间单元为该N-K个第二时间单元,则第一时间单元与第二时间单元的区别包括以下至少一项:
第一时间单元上有数据/信令/参考信号传输,第二时间单元上没有数据/信令/参考信号传输;
第一时间单元为有能量传输的OFDM符号,第二时间单元为没有能量传输的OFDM符号;
在时间单元上,接收设备可以检测到能量高于某一门限值,在第二时间单元上,接收设备没有检测到能量高于某一门限值;
第一设备在第一时间单元的能量高于第二时间单元的能量,或者
第一设备在第一时间单元的能量高于第一门限值,在第二时间单元的能量低于第二门限值,第一门限值可以与第二门限值相同或不同。
具体的,第一设备根据是否要唤醒第二设备确定样式信息。例如,当第一设备需要唤醒第二设备时,则确定样式信息为样式信息A,第一设备在样式信息A指示发送脉冲的时间单元上发送脉冲,在样式信息A指示不发送脉冲的时间单元上不发送脉冲。
第一设备确定样式信息的过程具体可以包括:
1)第一设备根据是否要唤醒第二设备确定第二设备的唤醒信息,第二设备的唤醒信息为比特序列;
2)第一设备根据唤醒信息和唤醒信息的脉冲调制方式确定样式信息;唤醒信息的脉冲调制方式指示比特序列中的比特取值与N个时间单元中至少一个时间单元的ON/OFF样式信息的对应关系,其中,ON指示发送脉冲,OFF指示不发送脉冲。
唤醒信息脉冲调制方式可以指示比特序列取值与ON/OFF样式信息的对应关系。可以通过脉冲的宽度,位置,幅度大小或其组合来表示不同的比特信息,本质上是网络设备与终端设备之间约定的如何用脉冲表达信息。图4示出了几种脉冲调制方式的方式。
方式1:用脉冲的有无表示不同的信息,例如用ON表示二进制比特”1”,用OFF表示二进制比特”0”,反之亦可,即用ON表示二进制比特”0”,用OFF表示二进制比特“1”。图4中(a)为时间单元为1时间单元时的信息表示示意图。
方式2:用脉冲的宽度表示不同的信息。例如,用4个时间单元都不发送脉冲表示二进制比特“00”,即用OFF-OFF-OFF-OFF表示比特“00”,脉冲的宽度为1个时间单元表示二进制比特”01”,即用ON-OFF-OFF-OFF表示比特“01”;用脉冲宽度为2时间单元表示二进制比特”10”,即用ON-ON-OFF-OFF表示比特“10”,此时一个脉冲在时域上对应两个时间单元,即脉冲的宽度为2个时间单元;用脉冲宽度为3个时间单元表示二进制比特“11”,即用ON-ON-ON-OFF表示比特“11,如图4中(b)所示。如果全部发OFF看为脉冲宽度为0,则方式1也可以看作是方式2的一种特殊形式。
方式3:用脉冲的位置表示不同的信息,例如ON脉冲在前表示二进制比特”1”,OFF脉冲在前表示”0”,反之亦可。如图4中(c)所示,长度为2个时间单元,ON脉冲宽度为1时间单元的信息指示示意图。再例如,如图4中(d)所示,用ON脉冲在四个时间单元中的第一个时间单元表示二进制比特”00”,用ON脉冲在四个时间单元中的第二个时间单元表示二进制比特”01”,用ON脉冲在四个时间单元中的第三个时间单元表示二进制比特”10”,用ON脉冲在四单元的第四个时间单元表示二进制比特”11”。
方式4:用脉冲的位置和宽度的组合表示不同的信息。例如图4中(e)所示,用ON-OFF-OFF-OFF表示比特“00”,用ON-ON-OFF-OFF表示比特“01”,用OFF-OFF-ON-ON表示比特“10”,用OFF-OFF-OFF-ON表示比特“11”。
方式5:用脉冲的不同幅度表示不同的信息,例如用脉冲幅度为0.25表示二进制比特00,脉冲幅度为0.5为01,脉冲幅度为0.75为10,脉冲幅度为1表示二进制比特11,如图4中(f)所示。脉冲幅度为0可以用于表示信息,故方式1也可以看成是脉冲幅度调制的一种形式。
时间单元为表示时间长度的单位,具体的,一个时间单元可以是一个正交频分复用 (orthogonal frequency division multiplexing,OFDM)符号,或者半个OFDM符号,或者1/4个OFDM符号,一个时间单元还可以包括OFDM符号和该符号对应的循环前缀(cyclic prefix,CP),或者一个时间单元的长度记为n*Tc,其中,Tc为时间单位,其取值可以与OFDM子载波间隔Δf和快速傅里叶变换(fast Fourier transform,FFT)点数N_f有关,例如T c=1/(Δf·N f),例如,Δf为480kHz,N_f=4096。或者,Δf为312.5kHz,N_f=64。时间单元的长度还可以用绝对时间来表示,例如1个时间单元长度为1微秒。本申请实施例对时间单元的表示方法和长度不作限制。
步骤S320,第一设备向第三设备发送样式信息,第三设备接收来自第一设备的样式信息。
第三设备根据接收到的样式信息,确定在第一期间的哪些时间单元可以接收到来自第一设备的信息,在对应的时间单元进行信息的接收,在样式信息指示无脉冲发送的时间单元不进行信息的接收,从而有效提升信息接收的效率,避免在无信号发送的时间单元进行信息接收造成的能量浪费。
第一期间可以是协议预定义的一个时间段,例如直接定义第一期间的开始时刻和结束时刻,或者预定义好第一期间的开始时刻和持续时间;或者第一期间可以是第一设备发送的信令指示的,例如通过RRC信令对第一期间的开始时刻以及持续时间进行指示,可选的,还可以进一步指示第一期间对应的周期。
S320为可选步骤。比如,第一设备也可以不向第三设备发送样式信息,此时,第三设备可以在第一期间的N个时间单元的各个时间单元都进行信号的接收,再根据接收信号的能量大小和/或信号质量剔除接收信号能量低/信号质量差的符号。这种方式可以节省第一设备向第三设备发送样式信息的信令。
步骤S330,第一设备在K个时间单元上向第二设备和第三设备发送第一信号,该K个时间单元属于N个时间单元,且该K个时间单元为样式信息指示发送脉冲的时间单元,第一信号用于承载发送给第三设备的参考信号和/或数据信息,其中,N,K为正整数,且K小于或等于N。
第一设备在N-K个时间单元上发送功率为0,其中,该N-K个时间单元属于第一期间的N个时间单元,且该N-K个时间单元为样式信息指示不发送脉冲的时间单元。
第一设备,在样式信息指示发送脉冲的时间单元上发送第一信号,第一信号用于承载发送给第三设备的参考信号和/或数据信息。其中,参考信号包括信道状态信息参考信号(channel state information reference signal,CSI-RS)和定位参考信号(positioning reference signal,PRS)中的至少一种,CSI-RS用于测量信道状态信息,定位参考信号用于定位,数据信息包括用户数据信息和/或控制信令。
可以理解的,上述第一设备向第二设备和第三设备发送第一信号,并不是第一设备分别向第二设备和第三设备发送了第一信号。而是第一设备将第一信号发送出去,第二设备和第三设备都会尝试接收。并根据接收的信号进行后续处理。
步骤S340,第三设备接收第一信号。
在第一设备向第三设备发送了样式信息时,第三设备根据样式信息在N个时间单元中的K个时间单元上接收来自第一设备的第一信号,根据第一信号获取来自第一设备的参考信号和/或数据信息。
当步骤S320为可选步骤,第一设备没有向第三设备发送样式信息时,第三设备根据N个时间单元的每个时间单元接收信号的能量大小和/或信号质量,确定哪个时间单元第一设备发送了第一信号,哪个时间单元第一设备没有发送第一信号,并在确定为发送了第一信号的那些时间单元接收来自第一设备的第一信号,根据第一信号获取第三设备的参考信号和/或数据信息。
当第一信号承载的信息中包括参考信号时,参考信号可以包括CSI-RS,PRS中的至少一种。例如,如果参考信号是CSI-RS,则第三设备在第一期间的K个时间单元的部分或全部时间单元上可以进行信道状态测量,即第三设备在接收第一信号的同时可以利用第一信号中的参考信号进行测量。如果参考信号是PRS,则第三设备可以在第一期间的K个时间单元的部分或全部时间单元上进行定位测量。在进行定位测量时,需要获得无线电波的到达时间,到达角度等,用于测量终端位置。通常,需要获得来自多个小区的信号才可以获得位置信息。
进一步的,由于第一期间的N个时间单元中,有N-K个时间单元上无脉冲发送,第三设备可以在该N-K个时间单元的部分或者全部时间单元上,进行干扰测量,或者进行干扰测量,或者用于规避对其他设备的干扰。
步骤S350,第二设备根据接收到的来自第一设备的脉冲,确定是否唤醒。
第二设备也可称为唤醒设备,唤醒设备也可以称为WUR设备。
可以理解的,对于第二设备而言,脉冲即为来自第一设备的第一信号。
第二设备在唤醒信息接收机会接收来自第一设备的脉冲,其中,唤醒信息接收机会包括第一期间。唤醒信号接收机会包括M个时间单元,第一期间包括N个时间单元,M大于或等于N,唤醒信号接收机会的M个时间单元中的N个时间单元上是否接收到脉冲用于指示样式信息。或者,第二设备在第一期间的N个时间单元上接收来自第一设备的脉冲,第一期间内的所述N个时间单元的每个时间单元上是否接收到脉冲用于指示样式信息。可以理解,唤醒信息接收机会在第一设备侧可以称为唤醒信息发送机会,第一信号接收机会在第一设备侧可以称为第一信号发送机会。
第二设备根据样式信息,确定是否唤醒。
第二设备根据第一期间的N个时间单元上的脉冲的接收情况确定样式信息,从而确定是否唤醒设备。当第二设备在N个时间单元的其中一个时间单元上检测到能量信号,或者在该时间单元检测到的功率大于0,或者在该时间单元接收到的能量大于一个阈值,则第二设备认为该时间单元上接收到脉冲,从而确定该时间单元对应的ON/OFF样式信息为ON。同理,当第二设备在该时间单元未检测到能量信号,或者在该时间单元检测到的功率等于0,或者在该时间单元未接收到第一信号,或者在该时间单元接收到的能量小于一个阈值,则第二设备认为未该时间单元接收到脉冲,从而确定对应的ON/OFF样式信息为OFF。第二设备可以逐一确定第一期间的N个时间单元上的各个时间单元的ON/OFF样式信息,从而确定样式信息,并进一步确定是否唤醒。
例如,N=4时,第二设备在4个时间单元上的第一个时间单元以及第三个时间单元上接收到脉冲,而在第二个时间单元以及第四个时间单元上未接收到脉冲,则样式信息对应为ON-OFF-ON-OFF,第二设备根据ON-OFF-ON-OFF的样式信息进一步确定是否进行唤 醒。示例性的,确定是否唤醒的方式可以包括如下几种。
方式一,第二设备根据样式信息确定是否进行唤醒。第一设备与第二设备之间,即网络设备与终端设备之间可以提前约定样式信息与是否唤醒之间的对应关系。例如,样式信息包括样式信息A与样式信息B,分别对应唤醒设备与不唤醒设备,当第二设备根据接收到的脉冲情况确定样式信息为样式信息A,则代表对设备进行唤醒;当第二设备根据接收到的脉冲情况确定样式信息为样式信息B,则代表不对设备进行唤醒。例如,当预定义ON-OFF-ON-OFF样式代表唤醒设备,则第二设备根据接收到的来自第一设备的脉冲的情况确定样式信息为ON-OFF-ON-OFF时,第二设备确定对设备进行唤醒。除样式信息A及样式信息B之外,还可以有更多的样式信息。
通过样式信息与是否唤醒之前的对应关系,第二设备只需要在第一期间进行信息接收并确定第一期间的N个时间单元上各个时间单元对应的ON/OFF样式,即可确定是否唤醒。
方式二,第二设备根据样式信息,确定唤醒信息,第二设备根据唤醒信息确定是否唤醒。
在该方式下,所述第二终端设备根据所述样式信息,确定唤醒信息,包括:
唤醒信息为比特序列,第二设备根据样式信息和唤醒信息的脉冲调制方式,确定唤醒信息,其中,脉冲调制方式指示比特序列中的比特取值与N个时间单元中至少一个时间单元的ON/OFF样式的对应关系。同样可以参见图4,当第二设备确定样式信息之后,即确定了一系列ON-OFF样式(pattern)之后,可以根据脉冲调制方式,确定该样式信息对应的二进制比特序列,该确定出的比特序列即为第二设备的唤醒信息。
例如,当采用图4中(a)所示的调制方式,当第二设备确定样式信息为ON-OFF-ON-OFF时,则确定唤醒信息为“1010”。当采用图4中(c)所示的调制方式,当第二设备确定样式信息为ON-OFF-ON-OFF时,则确定唤醒信息为“01”。以上以N=4进行举例,实际的第一期间的时间单元个数N不限定,其对应的比特序列的长度也不限定,调制方式也不限定。
以下对唤醒信息的组成和结构进行介绍。
唤醒信息由唤醒数据信息构成;或者唤醒信息由唤醒数据信息和唤醒同步信息构成。
其中,唤醒数据信息包括唤醒消息内容,唤醒数据信息还包括以下中的至少一项:唤醒区域标识,唤醒小区标识,循环冗余码校验。
下面对唤醒数据信息包括的信息进行描述:
唤醒区域标识:也可称为WUR区域标识,用于指示唤醒设备可以驻留在WUR状态不唤醒主设备的移动区域。当WUR设备检测到新的WUR区域标识时,认为WUR设备移动移动出之前所驻留的WUR区域,此时唤醒主radio,可以进行小区重选。如图5所示,小区1,小区2,小区3构成一个WUR区域1,小区4,小区5,小区6构成另一个WUR区域2。当WUR设备从WUR区域1移动到WUR区域2时,需要唤醒主radio即进行小区重选。
唤醒小区标识:也可称为WUR小区标识,用于指示唤醒设备的主设备服务的小区。当WUR设备检测到新的WUR小区时,认为WUR设备移动移动出之前所驻留的WUR 小区,此时可以唤醒主radio,可以进行小区重选。
唤醒消息内容:又可称为WUR唤醒信息,用于指示唤醒的信息。具体的,可以为表1中的一个取值。其中,如果表示第一设备在该唤醒信息接收时间不唤醒任何设备,则可以采用事先约定的某个序列,例如序列1,或者可以用除特定标识外的其他内容表示不唤醒。例如不是小区标识、组标识、设备标识中的任何一个数,则表示不唤醒。
表1
Figure PCTCN2022136913-appb-000001
再例如,唤醒消息内容可以为表2中的一个取值。其中,用序列2表示唤醒设备,用序列1或者非序列2的其他任何内容,表示不唤醒。
表2
信息内容 含义
序列1/非序列2 不唤醒
序列2 唤醒
计数器:用于指示第一设备系统信息是否发生更新,每次第一设备系统消息发生更新,计数器加1,计数到最大值后重新回到0。计数器可以用于WUR设备来判断第一设备是否更新了系统消息。检测到计数器发生变化,表示要唤醒主radio接收系统消息。可以仅在与唤醒设备配置信息有关的系统信息更新的时候计数器才发生变更,其他系统消息变更不需要更新计数器,这样更利用第二设备节能。
循环冗余校验CRC:用于对前述信息进行校验。根据唤醒信息传输信息量,唤醒信息传输可靠性要求等,可以确定CRC的校验比特数。例如,CRC的比特数可以为6,11,16或24比特。CRC的计算方式详见3GPP协议TS 38.212 vg.7.0 5.1节。
唤醒信息可以仅由唤醒数据信息构成,唤醒数据信息可以仅包括唤醒消息内容,此时,可以直接用唤醒消息内容所对应的序列同时实现同步和唤醒的功能,唤醒设备通过检测事先实现约定的数据信息实现同步功能,这种方式可以节省信令,增加唤醒消息内容所对应的序列的长度,从而提升唤醒信息接收可靠性。
唤醒同步信息包括同步信号,可以使得第二设备,即唤醒设备能够找到WUR的开始时间,避免误检。唤醒同步信息具体可以为同步序列,且同步序列可以设计为固定的一个序列,则可以降低检测复杂度。
举例来说,同步信息可以为预先约定的序列,例如同步序列为{0101,1011,0100,0100,1110,1000,1100,0111},WUR设备可以首先检测同步序列,如果发现同步信号序列能量低于一定的门限,则可以认为WUR设备移动出唤醒区域,从而自动唤醒主设备。
唤醒信息由唤醒数据信息和唤醒同步信息构成时,唤醒数据信息和唤醒同步信息可以 分别采用不同的脉冲调制方式,例如唤醒同步信息采用如图4中(a)所示的调制方式,唤醒数据信息可以采用如图4中(c)所示的调制方式,或者唤醒数据信息和唤醒同步信息采用相同的脉冲调制方式,例如都采用如图4中(a)所示的调制方式。
可选的,唤醒信息中的信息可以进行重复,例如,唤醒同步信息可以包括重复的同步序列,通过重复传输,可以提升信息接收的可靠性。当唤醒信息为比特序列时,对该比特序列也可以进行重复,例如,当唤醒信息为比特序列“0110”时,可以对该4比特进行扩充,例如对每一位进行重复得到“00,11,11,00”,或者对每一位进行取反重复,例如生成“01,10,10,01”,或者进行序列重复,例如对序列重复得到“0110,0110”,或者对序列取反重复得到“0110,1001”。以上以4比特为例进行说明,实际唤醒信息中的比特可以大于4比特或者小于4比特,本申请对此并不限定。唤醒设备在接收到脉冲后,可以根据预定义的规则进行合并恢复唤醒信息。通过这种设计,可以有效提升覆盖性能,提升传输的可靠性。
图6A-图6D示出了为唤醒信息组成的几种示例。在下面的例子中,子载波间隔Δf=2 μ·15[kHz]。
情况A.如图6A所示,在一种示例中,第一期间时间为1ms,取μ=4,即子载波间隔Δf=240kHz,采用3GPP 38.211V g.7.0所定义的扩展CP,则1ms内有符号
Figure PCTCN2022136913-appb-000002
个,两个符号的ON-OFF样式对能够传递1比特信息,一个ON/OFF样式称为一个ON/OFF样式对,1ms内共能够有96个ON/OFF样式对,则1ms能够传输96比特信息,其中,唤醒同步信息为32比特,WUR区域标识、WUR小区标识、唤醒消息内容和CRC分别占用16比特。采用较大的子载波间隔可以降低脉冲宽度,减少每比特信息的时间,以便提升传输效率,采用扩展CP,一方面是为了降低唤醒信息接收复杂度,因为3GPP 38.211V g.7.0所定义的一般CP(Normal CP)时,每个时隙中,第一个符号的长度与其他符号的长度不同,另一方面,扩展CP的长度大于一般CP,采用扩展CP相对normal CP也可以提升覆盖,因为长CP用于感知时,可以支持更大的时延扩展。
情况B.在一种示例中,第一期间为1ms,取μ=3,即子载波间隔Δf=120kHz,采用扩展CP,第一期间为1ms,则1m内有
Figure PCTCN2022136913-appb-000003
个符号,两个符号传递1比特信息,上图中一个ON/OFF波形称为一个ON/OFF样式对,1ms内共能够有48个ON/OFF样式对,则在1ms可以传输48比特信息,其中,WUR小区标识、唤醒消息内容分别占用16比特,计数器占用4比特,CRC占用12比特。在这一种示例性系统中,我们在唤醒信息时间内不承载唤醒同步信息,而用WUR小区标识同时兼做同步功能。这种设计包含了计数器,每次第一设备系统信息发生更新,计数器加1。计数器可以用于WUR设备来判断第一设备是否更新了系统消息。检测到计数器发生变化,则唤醒主radio接收系统消息。如图6B所示为本申请所示的一种具体的WUR格式实施方法。
情况C.在一种示例中,第一期间为1ms,取μ=2,即子载波间隔Δf=60kHz,采用扩展CP,第一期间为1ms,则1m内有
Figure PCTCN2022136913-appb-000004
个符号,两个符号传递1比特信息,上图中一个ON/OFF波形称为一个ON/OFF样式对,1ms内共能够有24个ON/OFF样式对。只发送唤醒消息内容,唤醒消息内容为24bit长的序列,该序列取序列1表示唤醒,取序列2表示不唤醒。如图6C所示为本申请所示的一种具体的WUR格式实施方法。
情况D.在一种示例中,第一期间为1ms,取μ=2,即子载波间隔Δf=60kHz,采用扩展CP,第一期间为1ms,则1m内有
Figure PCTCN2022136913-appb-000005
个符号,两个符号传递1比特信息,上图中一个ON/OFF波形称为一个ON/OFF样式对,1ms内共能够有24个ON/OFF样式对。用20比特表示唤醒消息内容,用4比特承载计数器。唤醒消息内容和计数器的作用如上文所述。如图6D所示为本申请所示的一种具体的WUR格式实施方法。
通过上述方法,第一设备在向第三设备发送参考信号和/或数据信号的同时实现了向第二设备传递唤醒信息,第二设备根据第一信号的接收情况(样式,pattern)确定是否唤醒,第三设备根据第一信号获取参考信号和/或数据信息,并可进一步使用参考信号进行感知测量等过程,或者获得第一信号中承载的数据信息,从而在该系统中有效提升了频谱的使用效率,实现感知与唤醒的一体化,通信与唤醒的一体化。
本申请还提供一种发送信号的方法400,如图7所示,方法400包括:
步骤S410.1,第一设备向第二设备发送唤醒信息配置信息。相应的,第二设备接收唤醒信息配置信息。
唤醒信息配置信息用于指示唤醒信息接收机会(wake up oppotunity),唤醒信息配置信息包括唤醒信息接收机会的时域信息和/或唤醒信息接收机会的频域信息,唤醒信息接收机会的时域信息包括唤醒信息接收机会的开始时间,唤醒信息接收机会的周期,以及唤醒信息接收机会的持续时间。
可以参见图8描述,唤醒信息配置信息指示了开始时间以及每个周期中的唤醒信息的持续时间,以及唤醒信息接收机会的周期。则第二设备即唤醒设备可以根据唤醒信息配置信息计算每个周期中唤醒信息接收机会的开始时间及结束时间。
可以理解的,唤醒信息接收机会还可以称为针对第二设备的唤醒信息发送机会,即第一设备向第二设备发送唤醒信息的机会。
步骤S410.2,第一设备向第三设备发送第一信号配置信息。相应的,第三设备接收第一信号配置信息。
第一信号配置信息用于指示第一信号接收机会,第一信号配置信息包括第一信号接收机会的时域信息和/或第一信号发送期的频域信息,第一信号接收机会的时间信息包括第一信号接收机会的开始时间,第一信号接收机会的周期,以及第一信号接收机会的持续时间。
同样可以参见图7的描述,第三设备根据第一信号配置信息可以确定开始时间及持续时间以及对应的周期。从而可以确定各个周期中第一信号的开始和结束时间。
可选的,当第一信号配置信息指示的第一信号接收机会与唤醒信息配置信息指示的唤醒信息接收机会在某个周期内在时域上完全重叠时,即二者的开始时间相同,结束时间也相同,则第一期间的开始时间与结束时间与唤醒信息和第一信号的开始时间、结束时间均相同。当第一信号接收机会开始时间与唤醒信息接收机会开始时间不完全相同时,例如图9中所示,则第一期间包括在第一信号接收机会持续时间内,第一期间包括N个时间单元,第一信号接收机会持续时间为P个时间单元,则N小于P,在P个时间单元中的P-N个时间单元上,第一设备也向第三设备发送第一信号,或第一信号的一部分,第三设备在第一信号配置信息指示的第一信号接收机会开始时间即开始进行第一信号的接收,接收期包 括了第一期间的N个时间单元,即可以理解为在第一期间发送的第一信号为第一设备发给第三设备的第一信号的一部分。第三设备根据P个时间单元上的接收的信息确定第一信号,确定参考信息和/或数据信息。同理,如图9中所示,唤醒信息接收机会持续时间为M个时间单元,M大于N,即一个周期中,唤醒信息接收机会完全包括第一期间的N个时间单元时,在M个时间单元中的其他M-N个时间单元上,第一设备也可以根据是否唤醒第二设备确定各个时间单元上是否发送脉冲,第二设备可以根据M个时间单元上整体的脉冲接收情况确定是否唤醒。
第一期间为至少一个唤醒信息接收机会的时域资源与至少一个第一信号接收机会的时域资源的重叠部分。或者可以理解为,第一期间为唤醒信息接收机会的至少一个周期中时域资源与第一信号接收机会的至少一个周期中时域资源的重叠部分。
可选的,第一期间也是周期性的,其周期与第一信号接收机会的周期一致。因此,当唤醒信息接收机会的周期是第一信号接收机会的周期的整数倍时,对于第二设备即唤醒设备,在唤醒信息不同周期内,第一期间相对于唤醒信息接收机会的位置相同,对于第三设备而言,在第一信号的不同周期内,第一期间相对于第一信号接收机会的位置相同。
参见图9,一个唤醒周期内的唤醒信息接收机会与一个第一信号接收机会周期内的第一信号接收机会在时域上重叠,则其在时域上的重叠部分即为第一期间,包括N个时间单元。
第一期间与至少一个唤醒信息接收机会的时域资源全部重叠或部分重叠,第一期间与至少一个第一信号接收机会的时域资源全部重叠或部分重叠。或者可以理解为第一期间与第一信号接收机会的至少一个周期中的时域资源全部重叠或者部分重叠,第一期间与唤醒信息接收机会的至少一个周期中的时域资源全部重叠或者部分重叠。当三者全部重叠的时候,即代表在唤醒周期内,唤醒信息接收机会的持续时间等于第一信号接收机会的持续时间,该两个持续时间等于N个时间单元,同时唤醒信息接收机会的开始时间等于第一信号接收机会的开始时间,唤醒信息接收机会的结束时间等于第一信号接收机会的结束时间。第一期间是周期性的,其周期与第一信号的周期相同。
可选的,唤醒信息接收机会的周期为第一信号接收机会的周期的整数倍。若唤醒信息对应的周期为第一周期,第一信号对应的周期为第二周期,第一周期可以为第二周期的整数倍。即唤醒信息发送的间隔比参考信号和/或数据信号发送的间隔更长,减少了唤醒信息对应的资源占用。
如图10所示,第二设备(例如,UEA)的唤醒信息接收机会周期为第三设备的第一信号接收机会周期的整数倍,在第一个第一信号接收机会周期内,UEA的唤醒信息接收机会在时域上与第一信号接收机会有重叠,该重叠部分为第一期间。在第二个第一信号接收机会周期内,第五设备(例如,UEB)的唤醒信息接收机会与第一信号接收机会在时域上有重叠,则此时,二者的重叠部分也可以称为第一期间,UEB可以在这个第一期间内接收来自第一设备的脉冲,根据接收情况确定是否唤醒。
因此,当一个终端设备的唤醒信息周期是其他终端设备第一信号周期的整数倍的时候,可以引入多个唤醒设备,在不同的第一信号的周期内,可以指示不同唤醒设备是否唤醒, 进一步提升系统频谱的利用率。
可以理解的,第一信号接收机会还可以称为针对第三设备的第一信号发送机会,即第一设备向第三设备发送第一信号的机会。
唤醒信息接收机会的频域信息指示唤醒信息所占的第一频域带宽,第一信号接收机会的频域信息指示第一信号所占的第二频域带宽,其中,第一频域带宽小于或等于第二频域带宽,第二频域带宽小于或等于系统带宽。第一信号对应带宽大于唤醒信息对应带宽,可以提升第一信号接收精度,例如提升感知精度,唤醒信息对应的带宽较窄,可以降低功耗。
如图11所示,第一信号占用的第二频域带宽可以是唤醒信息占用的第一频域带宽的整数倍。则在第一信号的频带内,可以通知多个唤醒设备的相关唤醒信息。频域资源可以用起始频率所在位置和感知信号带宽来表示,或者可以用中心频率所在位置和感知带宽来表示,或者可以用起始频率位置和结束频率位置来表示,或者第一设备可以将系统带宽分为几个子信道(Subchannel)或带宽部分(Bandwidth Part),用子信道编号(subchannel index)或带宽部分编号(Bandwidth Part Index)来表示。
步骤S410.3,第一设备向第二设备发送干扰测量配置信息;
第四设备接收来自第一设备的干扰测量配置信息,干扰测量配置信息用于指示干扰测量期配置信息,干扰测量期配置信息包括干扰测量期的时间信息和/或干扰测量期的频域信息,干扰测量期的时间信息包括干扰测量期的开始时间,干扰测量期的周期,以及干扰测量期的持续时间。
步骤S420.0第一设备确定第一期间。
在一种实施方式中,第一设备根据第二设备的唤醒信息配置信息,确定第二设备的唤醒信息接收机会。第一设备根据第三设备的第一信号配置信息,确定第三设备的第一信号接收机会。在第三设备的第一信号接收机会与第二设备的唤醒信息接收机会在时域上重叠或者部分重叠时,第一设备进一步根据第二设备的唤醒信息接收机会和第三设备的第一信号接收机会,确定第一期间,第一期间为第二设备的唤醒信息接收机会与第三设备的第一信号接收机会在时域上的重叠部分。可选的,在第一期间发送第一信号的频域部分为第二设备唤醒信息接收机会与第三设备的第一信号接收机会频域重叠部分。在一种具体的实施方式中,唤醒信息接收机会为M个时间单元,第一期间为N个时间单元,M大于等于N。
在一种实施方式中,第一设备根据第二设备的唤醒信息配置信息,确定第二设备的唤醒信息接收机会。第一设备根据第四设备的干扰测量期配置信息,确定第四设备的干扰测量期。在第四设备的干扰测量期与第二设备的唤醒信息接收机会在时域上重叠或者部分重叠时,第一设备进一步根据第二设备的唤醒信息接收机会和第四设备的干扰测量期,确定第一期间,第一期间为第二设备的唤醒信息接收机会与第四设备干扰测量期的时域重叠部分。第一期间在频域为第二设备唤醒信息接收机会与第四设备的第一信号接收机会的频域重叠部分。
步骤S420.1第二设备确定唤醒信息接收机会;
第二设备根据唤醒信息配置信息,确定唤醒信息接收机会。该唤醒信息接收机会,包 括第一期间,但第二设备并不需要确定第一期间,第一期间对唤醒设备而言是透明的。
唤醒信息接收机会,包括第一期间,具体为,第一期间与唤醒信息接收机会的至少一个周期中的时域资源全部重叠或部分重叠。
步骤S420.2第三设备确定第一信号接收机会;
第三设备根据第一信号配置信息,确定第一信号接收机会,该第一信号接收机会,包括第一期间;第一信号接收机会包括第一期间,具体为,第一期间与至少一个周期中的第一信号接收机会的时域资源全部重叠或部分重叠。当第一期间与第一信号接收机会全部重叠时,第一期间等于第一信号接收机会,无需额外信令通知第三设备。当第一期间与第一信号接收机会部分重叠时,第一信号配置信息还用于指示第一期间的持续时间及第一期间的开始时间。
具体可以参考图9所示,第一信号配置信息可以指示第一期间的开始时间以及结束时间,例如通知第一期间开始时间与第一信号接收机会的开始时间之间的偏移,记为offset1,还可以通知第一期间结束时间与第一信号接收机会的开始时间之间的偏移,记为offset2,则第三设备通过该信息可以确定第一期间的起始时间以及长度为offset2-offset1。或者,第一信号配置信息可以通知offset1和第一期间的长度(length)即N个时间单元,也可以完成第一期间的指示。
可选的,第一期间的指示信息除了承载在第一信号配置信息中,还可以通过单独的信令发送给第三设备。
步骤S420.2第四设备确定干扰测量期;
第四设备根据干扰测量配置信息,确定干扰测量期,所述干扰测量期,包括第一期间。干扰测量期包括第一期间,具体为,第一期间与至少一个周期中的干扰测量期的时域资源全部重叠或部分重叠。类似的,当第一期间与第一信号接收机会全部重叠时,第一期间等于干扰测量期。当第一期间与干扰测量期部分重叠时,干扰测量配置信息中可以进一步携带第一期间的指示信息,第四设备通过该指示确定第一期间。具体描述可参考S420.2.
步骤S430.第一设备确定样式信息。
第一设备根据唤醒信息,确定唤醒信息接收机会的唤醒信息样式信息,该唤醒信息脉冲样式,包括对应第一期间的样式信息。该步骤相关描述可以参见步骤S310。
第一设备根据唤醒信息,确定第一期间的脉冲发送样式。
在第一期间与唤醒信息接收机会部分重叠时(参见附图9和附图10),样式信息用于指示在第一期间内的脉冲发送样式。例如唤醒信息接收机会持续时间为8符号,唤醒信息为10011010,采用附图4中(a)所示的调制方式,唤醒信息脉冲样式为:ON-OFF-OFF-ON-ON-OFF-ON-OFF,其中,第一个符号到第6个符号为第一期间,则样式信息仅包括该6个符号的脉冲发送样式。例如用比特图bitmap表示样式信息,用“1”表示发脉冲,用“0”表示不发脉冲,则此时的用于表示样式信息的比特图为“100110”。
步骤S440.1.第一设备向第三设备发送样式信息。相应的,第三设备接收样式信息。
步骤S440.2.第一设备向第四设备发送样式信息。相应的,第四设备接收样式信息。
步骤S450.第一设备在第一期间内的N个时间单元,按照样式信息所指示的发送方式,在其中K个时间单元上发送第一信号,在其中N-K个时间单元发送功率为0。
在唤醒信息接收机会与第一期间部分重叠时,其中一种实施方式为:第一设备确定唤醒信息,根据唤醒信息,确定对应唤醒信息接收机会的唤醒信息样式信息,该唤醒信息样式信息,指示唤醒信息接收机会内的M个时间单元的每个时间单元,是否发送脉冲,唤醒信息接收机会包括第一期间,第一期间包括N个时间单元。第一设备在第一期间内的N个时间单元,按照样式信息所指示的发送方式,在其中K个时间单元上发送第一信号,在其中N-K个时间单元发送功率为0。在唤醒信息接收机会除去第一期间的其他M-N个时间单元上,按照唤醒信息脉冲样式,在标识为ON的时间单元发送脉冲,在标识为OFF的时间单元发送功率为0,在该M-N个时间单元的部分或全部时间单元发送的脉冲,这些脉冲承载的信号在此不做限定,可以为数据信息,或者是参考信号等其他信息。
步骤S460.第二设备根据第一信号的接收情况或根据脉冲接收情况确定是否唤醒。
第二设备根据在唤醒信息接收机会的脉冲接收情况确定是否唤醒。在唤醒信息接收机会与第一期间全部重叠时,第二设备根据第一期间内的脉冲接收情况确定是否唤醒。
在唤醒信息接收机会与第一期间部分重叠时,第二设备根据在第一期间的脉冲接收情况和在唤醒信息接收机会所包括的第一期间之外的脉冲接收情况,确定是否唤醒。
步骤S470.第三设备根据样式信息接收第一信号。
步骤S480.第四设备根据样式信息进行干扰测量。具体的,在N-K个时间单元的部分或者全部上进行干扰测量。
在上述实施方法中,第三设备和第四设备在上述实施例中为可选的,也就是说,可以不包括步骤S410.2、S420.3、S440.1、S470,或不包括步骤S410.3、S420.4、S440.2、S480。
应理解,上述步骤仅为一种具体的实施方法,实际执行的步骤并不一定严格按照上面的顺序。
可选的,该方法还可以包括,在步骤S410.1之前:
第一设备接收来自第二设备的进入唤醒模式请求信息,进入WUR模式请求还可以包括第二设备建议的唤醒信息配置信息。
第一设备向第二设备发送进入唤醒模式响应信息。唤醒信息配置信息可以承载在该唤醒模式响应信息中。
第二设备接收第一设备的唤醒模式响应信息,如果确认第一设备同意第二设备进入WUR模式,则按照第一设备的响应信息配置WUR设备,并进入WUR模式。
第二设备可以通过RRC信令发送进入WUR模式请求,例如通过UE辅助信息发送进入WUR模式请求和/或第二设备建议的唤醒信息配置信息。采用UE辅助信息发送进入WUR模式请求和/或第二设备建议的唤醒信息配置信息,可以更好的兼容现有的协议。
具体的唤醒设备(即第二设备)可以在判断满足进入低功耗接收状态时,通过唤醒设备的主radio向主radio的服务小区(即第一设备)发起进入WUR模式的请求,所谓的WUR模式,指设备关闭主radio,通过WUR设备接收唤醒信息的工作模式,其中,唤醒设备综合考虑下面至少一个或多个因素来判断是否进入低功耗接收状态:
1)唤醒设备所处的状态。优选的,唤醒设备在IDLE状态,或者在IN-ACTIVE状态,更适合进入WUR模式
2)唤醒设备的移动速度。优选的,唤醒设备处于低速或静止状态时,更适合进入WUR 模式
3)唤醒设备在小区中的位置。优选的,唤醒设备不处于小区边缘时,更适合进入WUR模式
4)唤醒设备的业务量。优选的,唤醒设备业务量较少,更适合进入WUR模式
5)唤醒设备的业务服务质量要求QoS(Quality of service),优选的,唤醒设备可以接受较高的时延时,更适合进入WUR模式
6)唤醒设备的功耗。优选的,唤醒设备处于中低电量时,更适合进入WUR模式。
7)唤醒设备的类型。优选的,配置电池容量比较低的设备如可穿戴设备或者抄表等物联网应用类型设备,更适合进入WUR模式。
可选的,在确定第二设备的唤醒信息之前,还包括:
向第二设备发送以下标识中的至少一个:唤醒区域标识、唤醒小区标识、唤醒设备标识、唤醒设备组标识。
第一设备确定标识的过程可以包括:
第一设备为WUR设备分配WUR设备标识和或WUR组标识,具体为,
第一步:确定WUR标识资源池。WUR标识资源池可以根据WUR标识的比特数确定,例如WUR标识的比特为16比特,则第一设备可以确定16比特数中的全部或者一部分为WUR标识资源池。WUR组和WUR设备可以共用一个WUR标识资源池,或者WUR设备和WUR组分别有各自的资源池。例如WUR设备标识为12比特,WUR组标识为4比特,则WUR设设备资源池为12比特数中的全部或部分,WUR组资源池为4比特数中的全部或部分。可以实现预留资源池中的一部分用作特殊的用途,例如可以预留一个标识用于表示广播组。
第二步:从WUR标识资源池中选择一个没有被其他设备使用的标识分配WUR设备。具体的,可以至少有两种方式:
方式1:从WUR标识资源池中随机选择一个没有使用的标识分配给WUR设备。
方式2:第一设备根据邻居设备在同一唤醒信息接收时间内分配使用的WUR标识确定第一设备服务的WUR设备的标识,具体确定方法为,获得邻居设备在同一唤醒信息接收时间内分配的WUR标识,取该标识的二进制表示的每比特的非值作为新的标识。举例来说,如果邻居设备用的WUR标识为1011,1001,0001,则第一设备用的WUR标识为0100,0110,1110,这样的好处是可以将降低感知信号的干扰。
采用方式2时,在确定第二设备的唤醒信息之前,还包括:
获取邻居设备的唤醒信息接收机会配置,包括唤醒信息接收机会时间配置信息和或频域配置信息,获取邻居设备在唤醒信息接收机会所分配的WUR标识。
可选的,在确定第二设备的唤醒信息之前,还包括:
向第二设备发送唤醒信息与序列的对应关系。
所述向第二设备发送唤醒信息与序列的对应关系,其中一种具体实施方法为:
确定唤醒信息格式,唤醒信息由唤醒序列构成;
确定唤醒信息和唤醒序列之间的对应关系,例如序列1表示唤醒,序列2表示不唤醒。或者,序列1表示不唤醒,序列2表示唤醒。
将唤醒信息与序列的对应关系发送给第二设备。相应的,第二设备接收唤醒信息与序列的对应关系。
据此,第二设备在唤醒信息接收机会接收序列1或序列2,并根据唤醒信息与序列的对应关系,确定是否唤醒。
在这种实施方法中,第一设备可以为不同的唤醒设备配置不同的唤醒信息和序列的对应关系,以便进行干扰随机化。或者,第一设备和邻居设备分别为各自服务的唤醒设备配置不同的唤醒信息和序列的对应关系,以便进行干扰规避,即尽量避免相同或相邻资源上发送的信息产生干扰或冲突。
可选的,第四设备可以是第一设备,或者是第三设备,或者也可以是其他设备。第四设备在实施例中是可选的。当第四设备是第一设备,即网络设备时,不需要执行S430.3,即不需要向第四设备发送干扰测量配置信息,第一设备在N-K个时间单元进行回波测量,从而进一步提升了系统的频谱使用效率。
可选的,在本申请所述的实施例中,可以不限定第一信号所承载的内容的接收设备,和/或不限定第一信号所承载的内容,此时,本申请所述的实施方法为一种唤醒信息发送和接收方法,第一期间等于唤醒信息接收机会。
可选的,当上述方法涉及到多个小区时,为了进一步提升感知检测性能,支持感知和唤醒一体化设计的多个小区之间可以进一步进行小区间干扰避免/规避以提升感知性能和唤醒检测性能。
确定与第一设备存在干扰关系的邻居小区集合,可以选择对第一设备干扰最强的小区作为与第一设备存在干扰关系的邻居小区,或者选择第一设备作为干扰源给别的小区造成干扰的小区作为与第一设备存在干扰关系的邻居小区。存在干扰关系的邻居小区集合内的设备,当上述第一信号是参考信号的情况下,第一信号也可以称为感知信号,感知信号与唤醒信息接收的时频资源重叠或者部分重叠。这里的感知信号与唤醒信息接收时频资源重叠或者部分重叠指其在时域上重叠或部分重叠,例如,重叠部分为上述第一期间。在频域上占用的频带为相同或者相邻频域范围。
确定存在干扰关系的邻居小区集合内设备的唤醒信息传输内容,使得在频域上相同或者临近、在时域上占用的时域资源相同的两个小区唤醒信号传输内容按照比特异或后的值的比特1的个数尽可能大,即对于资源上冲突的唤醒信息,唤醒信息的比特序列尽量不同,避免信号干扰。例如存在干扰关系的两个邻居小区分别为cell_i和cell_j,cell_i小区唤醒信号传输内容序列为a_i,cell_j小区唤醒信号传输内容为a_j,a_i和a_j即每个符号的ON/OFF波形的比特表示,用比特1表示ON,用比特0表示OFF。比特异或的规则可以理解为0 1=1,0 0=0,1 1=0,1 0=1。按比特异或后的值中的比特1的个数尽可能大,其中一种具体的实施方法为,cell_j的各个序列为cell_i各个序列的每比特取”非”后的序列。如表3所示为一种具体举例。以在上述24比特的唤醒消息内容为例,若cell_i用来表示不唤醒任何信息的比特序列1为{0101,1011,0100,0100,1110},则cell_j用来表示不唤醒任何信息的比特序列1为{1010,0100,1011,1011,0001},若cell_i的小区标识为{1100,0110,1011,0100,1001},
表3邻居小区唤醒消息内容
Figure PCTCN2022136913-appb-000006
如存在干扰关系的邻居小区集合内的小区的个数大于2,则可以根据集合的数量和WUR信息比特数的多少来确定该多个小区的各个WUR信息的具体取值,例如在上述举例中,WUR标识的比特数为20比特,假设小区数为3,每个小区共需要4个序列,涉及3*4=12个序列,则可以从20比特长的任意二进制序列中,选择12个两两之间码距最大的序列,分别分配给3个小区。这种设计,可以使得在同一个时间单元中,例如符号中,在其中一个小区的符号为ON时,其他小区在该符号为OFF的可能性尽可能大,从而降低感知信号检测的小区间干扰。
进一步的,在上述WUR信息格式举例中,还包括4比特的计数器,为了最小化感知干扰,我们进一步的可以构建4比特计数器的顺序,例如小区cell_i的计数器的内容为实际取值,cell_j的计数器的内容为该实际值按比特取非后的值,0取非后为1。如表4所示。下表以计数器为4比特为例举例,其他计数器比特数也参照相同的规则,即尽可能在一个小区为ON时,其他小区为OFF以便降低感知信号检测的小区间干扰。
表4邻居小区唤醒信息中计数器取值
Figure PCTCN2022136913-appb-000007
还应理解,本申请实施例提供的方法可以单独使用,也可以结合使用,本申请对此不 做限制。
需注意的是,图3或7中示意的执行主体仅为示例,该执行主体也可以是支持该执行主体实现图3或7所示方法的芯片、芯片系统、或处理器,本申请对此不作限制。
上文结合附图描述了本申请实施例的方法实施例,下面描述本申请实施例的装置实施例。可以理解,方法实施例的描述与装置实施例的描述可以相互对应,因此,未描述的部分可以参见前面方法实施例。
可以理解的是,上述各个方法实施例中,由第一设备实现的方法和操作,也可以由可用于第一设备的部件(例如芯片或者电路)实现,由第二设备实现的方法和操作,也可以由可用于第二设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图12给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置1200可以是,是图1A中的第二设备或第三设备,或是图1B、图1C中终端设备,或是图2中的第二设备,第三设备,第四设备或第五设备,用于实现上述方法实施例中对于终端设备的方法。所述通信装置也可以是图1A或图2中的第一设备,或图1B,图1C中的RAN中的网络设备,如CU,DU,CU-CP,或CU-UP,用于实现上述方法实施例中对应于第一设备的方法。具体的功能可以参见上述方法实施例中的说明。
通信装置1200包括一个或多个处理器1201。处理器1201也可以称为处理单元,可以实现一定的控制功能。所述处理器1201可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述基带处理器可以用于对通信协议以及通信数据进行处理。所述中央处理器可以用于对通信装置1200进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选的,通信装置1200中包括一个或多个存储器1202,用以存储指令1204,所述指令可在所述处理器上被运行,使得通信装置1200执行上述方法实施例中描述的方法。可 选的,所述存储器1202中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,通信装置1200可以包括指令1203(有时也可以称为代码或程序),所述指令1203可以在所述处理器上被运行,使得所述通信装置1200执行上述实施例中描述的方法。处理器1201中可以存储数据。
可选的,通信装置1200还可以包括收发器1205以及天线1206。所述收发器1205可以称为收发单元、收发机、收发电路、收发器,输入输出接口等,用于通过天线1206实现通信装置1200的收发功能。
可选的,通信装置1200还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,UE 1200可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本申请中描述的处理器1201和收发器1205可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
本申请实施例提供了一种终端设备,该终端设备(为描述方便,称为UE)可用于前述各个实施例中。所述终端设备包括用以实现图1A,图1B,图1C,图2,图3,和/或图7所示的实施例中所述的UE功能的相应的手段(means)、单元和/或电路。例如,终端设备,包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持终端设备对信号进行处理。
图13给出了本申请实施例提供的一种终端设备的结构示意图。
该终端设备1300可适用于图1A,图1B,图1C,图2所示的系统中。为了便于说明,图13仅示出了终端设备1300的主要部件。如图13所示,终端设备1300包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备1300进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
以终端设备1300为手机为例,当终端设备1300开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备1300时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图13仅示出了一个存储器和处理器。在一些实施例中,终端设备1300可以包括多个处理器和存储器。存储器也可以称为存储介 质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备1300进行控制,执行软件程序,处理软件程序的数据。图13中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。终端设备1300可以包括多个基带处理器以适应不同的网络制式,终端设备1300可以包括多个中央处理器以增强其处理能力,终端设备1300的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1300的收发单元1310,将具有处理功能的处理器视为终端设备1300的处理单元1320。如图13所示,终端设备1300包括收发单元1310和处理单元1320。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1310中用于实现接收功能的器件视为接收单元,将收发单元1310中用于实现发送功能的器件视为发送单元,即收发单元1310包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本申请实施例还提供了一种网络设备,该网络设备可用于前述各个实施例中。所述网络设备包括用以实现图1A,图1B,图1C,图2,图3,和/或图7所示的实施例中所述的第一设备的功能的手段(means)、单元和/或电路。例如,网络设备包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持网络设备对信号进行处理。
图14给出了本申请实施例提供的一种网络设备的结构示意图。如图14所示,网络设备20可适用于图1A,图1B,图1C,图2所示的系统中。网络设备20例如为图1所示的第一设备。该网络设备包括:基带装置201,射频装置202、天线203。在上行方向上,射频装置202通过天线203接收终端设备发送的信息,将终端设备发送的信息发送给基带装置201进行处理。在下行方向上,基带装置201对终端设备的信息进行处理,并发送给射频装置202,射频装置202对终端设备的信息进行处理后经过天线203发送给终端设备。
基带装置201包括一个或多个处理单元2011,存储单元2012和接口2013。其中处理单元2011用于支持网络设备执行上述方法实施例中网络设备的功能。存储单元2012用于存储软件程序和/或数据。接口2013用于与射频装置202交互信息,该接口包括接口电路,用于信息的输入和输出。在一种实现中,所述处理单元为集成电路,例如一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。存储单元2012与处理单元2011可以位于同一个芯片中,即片内存储元件。或者存储单元2012与处理单元2011也可以为与处理元件2011处于不同芯片上,即片外存储元件。所述存储单元2012可以是一个存储器,也可以是多个存储器或存储元件的统称。
网络设备可以通过一个或多个处理单元调度程序的形式实现上述方法实施例中的部分或全部步骤。例如实现图3和/或图7中网络设备的相应的功能。所述一个或多个处理单元可以支持同一种制式的无线接入技术,也可以支持不同种制式的无线接入制式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。另外,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)或直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (26)

  1. 一种信息发送方法,其特征在于,
    确定样式信息,所述样式信息用于指示在第一期间的N个时间单元的各个时间单元上是否发送脉冲,所述样式信息还用于指示第二设备的唤醒信息;
    在K个时间单元上,向所述第二设备和第三设备发送第一信号,所述K个时间单元属于所述N个时间单元,且所述K个时间单元为所述样式信息指示发送脉冲的时间单元,所述第一信号用于承载发送给所述第三设备的参考信号和/或数据信息;
    其中,在N-K个时间单元上发送功率为0,所述N-K个时间单元属于所述N个时间单元,且所述N-K个时间单元为所述样式信息指示不发送脉冲的时间单元,其中,N,K为正整数,且K小于或等于N。
  2. 根据权利要求1所述的方法,其特征在于,所述确定样式信息包括:
    根据是否唤醒所述第二设备确定所述唤醒信息;
    根据所述唤醒信息确定所述样式信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述唤醒信息为比特序列,
    根据所述唤醒信息确定所述样式信息包括:
    根据所述唤醒信息及唤醒信息的脉冲调制方式确定所述样式信息,
    所述唤醒信息的脉冲调制方式指示所述比特序列中的比特取值与所述N个时间单元中至少一个时间单元的ON/OFF样式的对应关系,其中,ON指示发送脉冲,OFF指示不发送脉冲。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第三设备发送所述样式信息,所述样式信息用于所述第三设备接收所述第一信号。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,
    所述N-K个时间单元的部分或者全部用于所述第三设备执行如下至少一种:干扰测量,回波测量,或干扰规避。
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,
    所述唤醒信息由唤醒数据信息构成;或者
    所述唤醒信息由唤醒数据信息和唤醒同步信息构成;
    其中,所述唤醒数据信息包括唤醒消息内容,所述唤醒数据信息还包括以下中的至少一项:唤醒区域标识,唤醒小区标识,循环冗余码校验CRC。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二设备发送唤醒信息配置信息,所述唤醒信息配置信息用于指示唤醒信息接 收机会,所述唤醒信息配置信息包括所述唤醒信息接收机会的时域信息和/或所述唤醒信息接收机会的频域信息,所述唤醒信息接收机会的时域信息包括所述唤醒信息接收机会的开始时间,所述唤醒信息接收机会的周期,以及所述唤醒信息接收机会的持续时间;和/或
    所述第一设备向所述第三设备发送第一信号配置信息,所述第一信号配置信息用于指示第一信号接收机会,所述第一信号配置信息包括所述第一信号接收机会的时域信息和/或所述第一信号接收机会的频域信息,所述第一信号接收机会的时间信息包括所述第一信号接收机会的开始时间,所述第一信号接收机会的周期,以及所述第一信号接收机会的持续时间。
  8. 根据权利要求7所述的方法,其特征在于,
    所述唤醒信息接收机会的周期为所述第一信号接收机会的周期的整数倍。
  9. 权利要求7或8所述的方法,其特征在于,
    所述第一期间为所述唤醒信息接收机会的至少一个周期中时域资源与所述第一信号接收机会的至少一个周期中时域资源的重叠部分。
  10. 根据权利要求7-9中任意一项所述的方法,其特征在于,
    所述唤醒信息接收机会的频域信息指示第一频域带宽,所述第一信号接收机会的频域信息指示第二频域带宽,且所述第一频域带宽小于或等于所述第二频域带宽,其中,所述第二频域带宽小于或等于系统带宽。
  11. 一种信息接收方法,其特征在于,
    接收来自第一设备的样式信息,所述样式信息用于指示在第一期间的N个时间单元内的各个时间单元是否接收来自所述第一设备的第一信号;
    根据所述样式信息,在所述N个时间单元中的K个时间单元,接收所述第一信号,其中,所述第一信号承载参考信号和/或数据信息,所述K个时间单元为所述样式信息指示接收所述第一信号的时间单元,其中,N,K为正整数,且K小于或等于N。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收来自第一设备的第一信号配置信息,所述第一信号配置信息用于指示所述第一信号接收机会,所述第一信号配置信息包括第一信号接收机会的时域信息,所述第一信号接收机会的时域信息包括所述第一信号接收机会的开始时间,所述第一信号接收机会的周期,以及所述第一信号接收机会的持续时间。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述第一信号配置信息还用于指示所述第一期间的持续时间及所述第一期间的开始时间;
    根据所述第一信号配置信息确定所述第一期间,所述第一期间与第一信号接收机会的 至少一个周期中的时域资源全部重叠或部分重叠。
  14. 根据权利要求11至13中任意一项所述的方法,其特征在于,所述方法还包括:
    在所述N个时间单元中的N-K个时间单元的部分或者全部上进行干扰测量。
  15. 一种唤醒信息接收方法,其特征在于,
    在第一期间接收来自所述第一设备的脉冲,其中,所述第一期间包括N个时间单元,所述N个时间单元的每个时间单元上是否接收到脉冲用于指示样式信息,N为正整数;
    根据所述样式信息,确定是否唤醒。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述样式信息,确定是否唤醒,包括:
    根据所述样式信息,确定唤醒信息;
    根据所述唤醒信息确定是否唤醒。
  17. 根据权利要求15或16所述的方法,其特征在于,所述样式信息由所述N个时间单元中每个时间单元的ON/OFF样式信息构成,其中,在所述N个时间单元中第i个时间单元接收到脉冲,所述第i个时间单元的ON/OFF样式信息为ON,在所述第i个时间单元没有接收到脉冲,所述第i个时间单元的所述ON/OFF样式信息为OFF,i为小于等于N的正整数。
  18. 根据权利要求16或17所述的方法,其特征在于,
    所述根据所述样式信息,确定唤醒信息,包括:
    所述唤醒信息为比特序列,所述根据所述样式信息和所述唤醒信息的脉冲调制方式,确定所述唤醒信息,其中,所述脉冲调制方式指示所述比特序列中的比特取值与所述N个时间单元中至少一个时间单元的ON/OFF样式的对应关系。
  19. 根据权利要求15-18中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收来自所述第一设备的唤醒信息配置信息,所述唤醒信息配置信息用于指示唤醒信息接收机会的时间信息和/或所述唤醒信息接收机会的频域信息,所述唤醒信息接收机会的时间信息包括所述唤醒信息接收机会的开始时间,所述唤醒信息接收机会的周期,以及所述唤醒信息接收机会的持续时间。
  20. 根据权利要求16-19中任一所述的方法,其特征在于,所述方法还包括:
    所述第二设备在所述唤醒信息接收机会接收来自所述第一设备的脉冲,其中,所述唤醒信息接收机会包括所述第一期间,所述唤醒信息接收机会包括M个时间单元,所述M大于等于N,所述唤醒信息接收机会内的所述N个时间单元的每个时间单元上是否接收到脉冲用于指示样式信息;
    根据所述样式信息,确定是否唤醒。
  21. 一种通信装置,其特征在于,包括:用于实现权利要求1至10中任意一项所述的方法的单元;或者用于实现权利要求11至15中任意一项所述的方法的单元;或者用于实现权利要求16至21中任意一项所述的方法的单元。
  22. 一种通信装置,其特征在于,所述装置包括处理器,所述处理器与存储器耦合,所述存储器存储有指令,所述指令被所述处理器运行时,使得所述处理器执行如权利要求1至10中任意一项所述的方法,或者使得所述处理器执行如权利要求11至15中任意一项所述的方法,或者使得所述处理器执行如权利要求16至21中任意一项所述的方法。
  23. 一种通信装置,其特征在于,所述装置包括逻辑电路,所述逻辑电路用于与输入/输出接口耦合,通过所述输入/输出接口传输数据,以执行如权利要求1至10中任一项所述的方法,或者,以执行如权利要求11至15中任一项所述的方法,或者,以执行如权利要求16至21中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法,或使得所述计算机执行如权利要求11至15中任一项所述的方法,或使得所述计算机执行如权利要求16至21中任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至10中任一项所述的方法,或实现如权利要求11至15中任一项所述的方法,或实现如权利要16至21中任一项所述的方法。
  26. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行如权利要求1至10中任一项所述的方法,或执行如权利要求11至15中任一项所述的方法,或执行如权利要求16至21中任一项所述的方法。
PCT/CN2022/136913 2021-12-31 2022-12-06 信息发送的方法和装置 WO2023124826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111660278.8 2021-12-31
CN202111660278.8A CN116456432A (zh) 2021-12-31 2021-12-31 信息发送的方法和装置

Publications (1)

Publication Number Publication Date
WO2023124826A1 true WO2023124826A1 (zh) 2023-07-06

Family

ID=86997606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136913 WO2023124826A1 (zh) 2021-12-31 2022-12-06 信息发送的方法和装置

Country Status (2)

Country Link
CN (1) CN116456432A (zh)
WO (1) WO2023124826A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754393A (zh) * 2009-09-16 2012-10-24 罗伯特·博世有限公司 用于对总线系统的用户进行唤醒的方法和装置以及相应的用户
CN107925895A (zh) * 2015-08-17 2018-04-17 瑞典爱立信有限公司 移动性参考信号分配
CN108024321A (zh) * 2016-11-03 2018-05-11 联发科技股份有限公司 唤醒信号发送与接收的方法、接入点以及Wi-Fi装置
CN111406378A (zh) * 2020-02-25 2020-07-10 北京小米移动软件有限公司 通信方法、装置及计算机存储介质
CN111418161A (zh) * 2017-12-15 2020-07-14 松下半导体解决方案株式会社 通信系统、发送装置、接收装置及通信方法
US20200359320A1 (en) * 2017-09-05 2020-11-12 Lg Electronics Inc. Method for transmitting or receiving signal in wireless lan system, and device therefor
CN112019311A (zh) * 2019-05-31 2020-12-01 华为技术有限公司 通信方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754393A (zh) * 2009-09-16 2012-10-24 罗伯特·博世有限公司 用于对总线系统的用户进行唤醒的方法和装置以及相应的用户
CN107925895A (zh) * 2015-08-17 2018-04-17 瑞典爱立信有限公司 移动性参考信号分配
CN108024321A (zh) * 2016-11-03 2018-05-11 联发科技股份有限公司 唤醒信号发送与接收的方法、接入点以及Wi-Fi装置
US20200359320A1 (en) * 2017-09-05 2020-11-12 Lg Electronics Inc. Method for transmitting or receiving signal in wireless lan system, and device therefor
CN111418161A (zh) * 2017-12-15 2020-07-14 松下半导体解决方案株式会社 通信系统、发送装置、接收装置及通信方法
CN112019311A (zh) * 2019-05-31 2020-12-01 华为技术有限公司 通信方法和装置
CN111406378A (zh) * 2020-02-25 2020-07-10 北京小米移动软件有限公司 通信方法、装置及计算机存储介质

Also Published As

Publication number Publication date
CN116456432A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
US20220225470A1 (en) Wake-up signal detection method and apparatus
WO2020156378A1 (zh) 接收参考信号的方法、发送参考信号的方法和装置
JP2017516356A (ja) 無線システムにおける通信
EP3905799A1 (en) Communication method and device
KR20220038425A (ko) 전력 절감 신호 전송 방법, 기지국 및 단말 기기
WO2023185587A1 (zh) 一种唤醒设备的方法和通信装置
WO2021134437A1 (zh) 传输初始接入配置信息的方法和装置
US20220346012A1 (en) Signal sending and receiving method, apparatus, and device
TW201944823A (zh) 發送上行通道、接收上行通道的方法和設備
WO2023124826A1 (zh) 信息发送的方法和装置
WO2021228192A1 (zh) 一种通信方法及装置
WO2021031632A1 (zh) 一种下行控制信息dci的发送方法及装置
WO2021031026A1 (zh) 一种下行控制信息dci的传输方法及装置
CN113747574A (zh) 数据传输方法及装置
WO2022188078A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023078038A1 (zh) 侧行传输方法以及通信装置
WO2023011156A1 (zh) 用于寻呼的方法和装置
WO2024093634A1 (zh) 信息传输的方法与装置
WO2023116441A1 (zh) 通信方法、装置、设备以及存储介质
WO2024012114A1 (zh) 通信方法及通信装置
WO2022016418A1 (zh) 寻呼方法、终端设备和网络设备
WO2022213868A1 (zh) 用于寻呼的方法和装置
WO2023241288A1 (zh) 一种唤醒信号传输方法及通信系统
WO2023097502A1 (zh) 信息获取方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914081

Country of ref document: EP

Kind code of ref document: A1