WO2024078196A1 - 定位方法与通信装置 - Google Patents

定位方法与通信装置 Download PDF

Info

Publication number
WO2024078196A1
WO2024078196A1 PCT/CN2023/116934 CN2023116934W WO2024078196A1 WO 2024078196 A1 WO2024078196 A1 WO 2024078196A1 CN 2023116934 W CN2023116934 W CN 2023116934W WO 2024078196 A1 WO2024078196 A1 WO 2024078196A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
signal
measurement value
symbol index
symbol
Prior art date
Application number
PCT/CN2023/116934
Other languages
English (en)
French (fr)
Inventor
李俊
李雪茹
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024078196A1 publication Critical patent/WO2024078196A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a positioning method and a communication device.
  • the fifth generation of mobile communication technology is currently standardizing sidelink (SL) positioning.
  • traditional positioning schemes such as time difference of arrival (TDOA) and round-trip time (RTT), need to be re-evaluated in SL scenarios.
  • TDOA time difference of arrival
  • RTT round-trip time
  • the sending device of the positioning reference signal PRS
  • the measuring device of the PRS will produce a time deviation in the recording of the receiving time of the PRS.
  • the present application provides a positioning method and a communication device, which can improve the positioning accuracy.
  • a positioning method comprising: sending a first signal to a first communication device, which is used for positioning between the first communication device and a second communication device; receiving a first measurement report of the first signal from the first communication device, the first measurement report including a first measurement value and a first symbol index, the first symbol index being used to indicate a symbol for the first communication device to obtain the first measurement value; receiving a second signal from the first communication device, which is used for positioning between the first communication device and the second communication device; measuring the second signal to obtain a second measurement report of the second signal, the second measurement report including a third measurement value; determining a flight time between the first communication device and the second communication device based on the first relationship, the first measurement value, the third measurement value and the first symbol index; the first relationship being used to indicate a relationship between a clock crystal oscillator error of the first communication device and a clock crystal oscillator error of the second communication device.
  • the first symbol index is used to indicate the symbol for the first communication device to obtain the first measurement value, which may be: the first communication device measures the first signal at the symbol indicated by the first symbol index and obtains the first measurement value.
  • the first relationship can be determined by the second communication device based on multiple positioning measurements with the first communication device, or can be determined based on other methods, which will not be described in detail here. Therefore, in the above technical solution, the second communication device can determine the flight time between the first communication device and the second communication device based on the first measurement value, the first symbol index and the third measurement value on the premise of knowing the first relationship.
  • the second communication device By adding a symbol index to the measurement report, the second communication device (the executor of the above technical solution) can obtain information about the symbol position of the first measurement value obtained by the first communication device, so that when determining the flight time between the first communication device and the second communication device, the first measurement value is converted into the measurement result corresponding to the second communication device according to the relationship between the clock crystal oscillator error of the first communication device and the clock crystal oscillator error of the second communication device, thereby reducing the influence of the clock drift error on the positioning measurement result and improving the positioning accuracy.
  • the method also includes: sending indication information to the first communication device, which is used to instruct the first communication device to obtain a first measurement value at the symbol indicated by the first symbol index, and to obtain a second measurement value at the symbol indicated by the second symbol index, and the second symbol index is used to indicate the symbol for the first communication device to obtain the second measurement value.
  • the first communication device reports the first measurement value, the first symbol index, the second measurement value, and the second symbol index to the second communication device according to the indication information of the second communication device.
  • the second communication device it is convenient for the second communication device to determine the relationship between the clock crystal error of the first communication device and the clock crystal error of the second communication device according to the multiple measurement values and multiple symbol indexes reported by the first communication device.
  • the indication information further includes a first symbol index and a second symbol index.
  • the first communication device measures the first signal at two symbols indicated by the second communication device respectively, and obtains two measurement values.
  • the first measurement report also includes a second measurement value and a second symbol index; the first measurement value, the first symbol index, the second measurement value and the second symbol index are used to determine the first relationship.
  • the first relationship may be determined by the second communication device in other ways, and the other ways may include: the first measurement report carries multiple measurement values and multiple symbol indexes. Accordingly, the second communication device calculates the relationship between the clock crystal errors between the first communication device and the second communication device, that is, the first relationship, based on the multiple measurement values and multiple symbol indexes carried in the first measurement report. Furthermore, the second communication device determines the flight time between the first communication device and the second communication device based on the first relationship calculated based on the multiple measurement values and the multiple symbol indexes, the first measurement value, the first symbol index, and the third measurement value.
  • the second communication device determines the relationship between the clock crystal oscillator error of the first communication device and the clock crystal oscillator error of the second communication device based on the multiple measurement values and multiple symbol indexes reported by the first communication device, and thus can determine the flight time between the first communication device and the second communication device.
  • the first measurement report includes a first structure and a second structure, the first structure is used to carry the first measurement value; and the first symbol index is carried in the first structure or the second structure.
  • the first measurement report also includes a second symbol index and a second measurement value
  • the first structure is also used to carry the second measurement value
  • the second symbol index is carried in the first structure or the second structure.
  • the method further includes: sending first information to a first communication device, which is used to schedule a first resource, where the first resource is used for transmission of a first signal, and the first resource includes a symbol indicated by a first symbol index.
  • the first resource also includes a symbol indicated by a second symbol index.
  • the method further includes: receiving second information from the first communication device, which is used to schedule second resources, and the second resources are used for transmission of the second signal.
  • the first measurement report further includes a time slot identifier, where the time slot identifier is used to indicate a receiving time slot of the first signal.
  • the first signal includes a first sub-signal and a second sub-signal, and the first sub-signal and the second sub-signal are located in the same time slot.
  • the present application supports the first communication device to report a measurement report to the second communication device, and the measurement report includes the measurement value corresponding to each sub-signal.
  • the measurement report may also include a symbol index and/or a sub-signal index corresponding to the measurement value.
  • a positioning method comprising: receiving a first signal from a second communication device, which is used for positioning between the first communication device and the second communication device; measuring the first signal to obtain a first measurement report of the first signal, the first measurement report comprising a first measurement value and a first symbol index, the first symbol index being used to indicate the symbol by which the first communication device obtains the first measurement value; sending the first measurement report to the second communication device; and sending a second signal to the second communication device, which is used for positioning between the first communication device and the second communication device.
  • the method also includes: receiving indication information from a second communication device, the indication information being used to instruct the first communication device to obtain a first measurement value at a symbol indicated by a first symbol index, and to obtain a second measurement value at a symbol indicated by a second symbol index, the second symbol index being used to instruct the first communication device to obtain a symbol for the second measurement value.
  • the indication information further includes a first symbol index and a second symbol index.
  • the first measurement report also includes a second measurement value and a second symbol index; the first measurement value, the first symbol index, the second measurement value and the second symbol index are used to determine the first relationship.
  • the first measurement report includes a first structure and a second structure, the first structure is used to carry the first measurement value; the first symbol index is carried in the first structure or the second structure.
  • the first measurement report also includes a second symbol index and a second measurement value
  • the first structure is also used to carry the second measurement value
  • the second symbol index is carried in the first structure or the second structure.
  • the method further includes: receiving first information from a second communication device, which is used to schedule the first A first resource is used for transmitting a first signal, and the first resource includes a symbol indicated by a first symbol index.
  • the first resource also includes a symbol indicated by a second symbol index.
  • the method further includes: sending second information to a second communication device, which is used to schedule second resources, and the second resources are used for transmission of a second signal.
  • the first measurement report further includes a time slot identifier, where the time slot identifier is used to indicate a receiving time slot of the first signal.
  • the first signal includes a first sub-signal and a second sub-signal, and the first sub-signal and the second sub-signal are located in the same time slot.
  • a communication device comprising: a transceiver unit, configured to send a first signal to a first communication device, which is used for positioning between the first communication device and the communication device; the transceiver unit, further configured to receive a first measurement report of the first signal from the first communication device, the first measurement report comprising a first measurement value and a first symbol index, the first symbol index being used to indicate a symbol for the first communication device to obtain the first measurement value; the transceiver unit, further configured to receive a second signal from the first communication device, which is used for positioning between the first communication device and the communication device; a processing unit, configured to measure the second signal and obtain a second measurement report of the second signal, which comprises a third measurement value; the processing unit, further configured to determine the flight time between the first communication device and the communication device based on the first relationship, the first measurement value, the third measurement value and the first symbol index; the first relationship is used to indicate a relationship between a clock crystal oscillator error of the first communication device and
  • the transceiver unit is also used to send indication information to the first communication device, which is used to instruct the first communication device to obtain a first measurement value at the symbol indicated by the first symbol index, and to obtain a second measurement value at the symbol indicated by the second symbol index, and the second symbol index is used to indicate the symbol for the first communication device to obtain the second measurement value.
  • the indication information further includes a first symbol index and a second symbol index.
  • the first measurement report also includes a second measurement value and a second symbol index; the first measurement value, the first symbol index, the second measurement value and the second symbol index are used to determine the first relationship.
  • the first measurement report includes a first structure and a second structure, the first structure is used to carry the first measurement value; the first symbol index is carried in the first structure or the second structure.
  • the first measurement report also includes a second symbol index and a second measurement value
  • the first structure is also used to carry the second measurement value
  • the second symbol index is carried in the first structure or the second structure.
  • the transceiver unit is further used to send first information to the first communication device, which is used to schedule a first resource, where the first resource is used for transmission of a first signal, and the first resource includes a symbol indicated by a first symbol index.
  • the first resource also includes a symbol indicated by a second symbol index.
  • the transceiver unit is further configured to receive second information from the first communication device, which is used to schedule second resources, where the second resources are used for transmission of the second signal.
  • the first measurement report further includes a time slot identifier, where the time slot identifier is used to indicate a receiving time slot of the first signal.
  • the first signal includes a first sub-signal and a second sub-signal, and the first sub-signal and the second sub-signal are located in the same time slot.
  • a communication device comprising: a transceiver unit, used to receive a first signal from a second communication device, which is used for positioning between the communication device and the second communication device; a processing unit, used to measure the first signal to obtain a first measurement report of the first signal, the first measurement report including a first measurement value and a first symbol index, the first symbol index being used to indicate the symbol of the communication device to obtain the first measurement value; the transceiver unit is also used to send the first measurement report to the second communication device; the transceiver unit is also used to send a second signal to the second communication device, which is used for positioning between the second communication device and the communication device.
  • the transceiver unit is also used to receive indication information from a second communication device, which is used to instruct the communication device to obtain a first measurement value at a symbol indicated by a first symbol index, and to obtain a second measurement value at a symbol indicated by a second symbol index, wherein the second symbol index is used to instruct the communication device to obtain a symbol for the second measurement value.
  • the indication information further includes a first symbol index and a second symbol index.
  • the first measurement report also includes a second measurement value and a second symbol index; the first measurement value, the first symbol index, the second measurement value and the second symbol index are used to determine the first relationship.
  • the first measurement report includes a first structure and a second structure, and the first structure is used to carry the first measurement value;
  • the first symbol index is carried in the first structure or the second structure.
  • the first measurement report also includes a second symbol index and a second measurement value
  • the first structure is also used to carry the second measurement value
  • the second symbol index is carried in the first structure or the second structure.
  • the transceiver unit is further used to receive first information from the second communication device, which is used to schedule a first resource, where the first resource is used for transmission of a first signal, and the first resource includes a symbol indicated by a first symbol index.
  • the first resource also includes a symbol indicated by a second symbol index.
  • the transceiver unit is further used to send second information to the second communication device, which is used to schedule second resources, and the second resources are used for transmission of the second signal.
  • the first measurement report further includes a time slot identifier, where the time slot identifier is used to indicate a receiving time slot of the first signal.
  • the first signal includes a first sub-signal and a second sub-signal, and the first sub-signal and the second sub-signal are located in the same time slot.
  • a communication device comprising a processor, wherein the processor is used to, by executing a computer program or instruction, or by a logic circuit, enable the communication device to perform any method in the first aspect and any possible implementation of the first aspect; or enable the communication device to perform any method in the second aspect and any possible implementation of the second aspect.
  • the communication device further includes a memory, and the memory is used to store the computer program or instruction.
  • the communication device further includes a communication interface, and the communication interface is used to input and/or output signals.
  • a communication device comprising a logic circuit and an input/output interface, the input/output interface being used to input and/or output signals, the logic circuit being used to execute the method described in the first aspect and any possible implementation of the first aspect; or, the logic circuit being used to execute the method described in the second aspect and any possible implementation of the second aspect.
  • a computer-readable storage medium comprising a computer program or instructions, which, when executed on a computer, causes the method described in the first aspect and any one of the possible implementations of the first aspect to be executed; or causes the method described in the second aspect and any one of the possible implementations of the second aspect to be executed.
  • a computer program product comprising instructions, which, when executed on a computer, cause the method described in the first aspect and any one of the possible implementations of the first aspect to be executed; or cause the method described in the second aspect and any one of the possible implementations of the second aspect to be executed.
  • a computer program which, when executed on a computer, enables the method described in the first aspect and any one of the possible implementations of the first aspect to be executed; or enables the method described in the second aspect and any one of the possible implementations of the second aspect to be executed.
  • a communication system which includes a first communication device and a second communication device, the second communication device is used to execute the method described in the first aspect and any one of any possible implementations of the first aspect, and the first communication device is used to execute the method described in the second aspect and any one of any possible implementations of the second aspect.
  • the description of the beneficial effects of the second to tenth aspects can refer to the description of the beneficial effects of the first aspect.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a positioning method 200 .
  • FIG. 3 is a schematic diagram of an interactive process of a positioning method 300 according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the configuration of the first sub-signal and the second sub-signal.
  • FIG5 is a schematic block diagram of the structure of a communication device 500 according to an embodiment of the present application.
  • FIG6 is a schematic block diagram of the structure of a communication device 600 according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of the structure of a communication device 700 according to an embodiment of the present application.
  • FIG8 is a schematic block diagram of the structure of a communication device 800 according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of the structure of a communication device 900 according to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • NR new radio
  • 6G sixth generation
  • the applicable scenarios of this application include, but are not limited to, ground cellular communications, non-terrestrial networks (NTN), vehicle-to-everything (V2X), integrated access and backhaul (IAB), and reconfigurable intelligent surface (RIS) communications.
  • NTN non-terrestrial networks
  • V2X vehicle-to-everything
  • IAB integrated access and backhaul
  • RIS reconfigurable intelligent surface
  • the NTN system includes non-ground equipment, which can be used as a base station, a terminal device, or a relay device.
  • Non-ground equipment can be drones, hot air balloons, low-orbit satellites, medium-orbit satellites, high-orbit satellites, or high altitude platform station (HAPS) equipment.
  • HAPS high altitude platform station
  • the technical solution of the embodiment of the present application is applicable to both homogeneous and heterogeneous network scenarios, and there is no restriction on the transmission point. It can be multi-point coordinated transmission between macro base stations, micro base stations, and macro base stations. It is applicable to FDD/TDD systems.
  • the technical solution of the embodiment of the present application is not only applicable to low-frequency scenarios (sub 6G), but also to high-frequency scenarios (above 6GHz), terahertz, optical communications, etc.
  • the technical solution of the embodiment of the present application can be applied not only to the communication between network devices and terminals, but also to the communication between network devices and network devices, the communication between terminals, the Internet of Vehicles, the Internet of Things, the Industrial Internet, etc.
  • the technical solution of the embodiment of the present application can be applied to the scenario where the terminal is connected to a single base station, wherein the base station to which the terminal is connected and the core network (core network, CN) to which the base station is connected are of the same standard or different standards.
  • the CN is 5G CN, the base station is a 5G base station, and the 5G base station is directly connected to the 5G CN; or the CN is 5G CN, the base station is a 4G base station, and the 4G base station is directly connected to the 5G Core; or the CN is 4G CN, the base station is a 4G base station, and the 4G base station is directly connected to the 4G CN; or the CN is 6G CN, the base station is a 6G base station, and the 6G base station is directly connected to the 6G CN.
  • the technical solution of the embodiment of the present application can also be applied to the dual connectivity (dual connectivity, DC) scenario where the terminal is connected to at least two base stations.
  • the terminal device in the embodiment of the present application can be a device with wireless transceiver function, which can refer to user equipment (UE), access terminal, subscriber unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit
  • subscriber unit user station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • wireless communication device user agent or user device.
  • the terminal device can also be a satellite phone, a cellular phone, a smart phone, a wireless data card, a wireless modem, a machine type communication device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a customer-premises equipment (CPE), an intelligent point of sale (POS), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a communication device carried on a high-altitude aircraft, a wearable device, a drone, a robot, a device-to-device communication
  • D2D device-to-device
  • terminals in V2X virtual reality
  • VR virtual reality
  • AR augmented reality
  • the device for realizing the function of the terminal device may be the terminal device; or it may be a device capable of supporting the terminal device to realize the function, such as a chip system.
  • the device may be installed in the terminal device or used in combination with the terminal device.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the network device in the embodiment of the present application is a device with wireless transceiver functions, and is an access network device for communicating with a terminal device.
  • the access network device may be a node in a radio access network (RAN), which may also be referred to as a base station, or a RAN node.
  • RAN radio access network
  • the access network device may also be a device having some or all of the functions of a base station.
  • the base station adopts a centralized unit (CU) and a distributed unit (DU) architecture
  • the access network device may include a CU and/or a DU.
  • the access network device may be an evolved Node B (eNB or eNodeB) in LTE; or a base station in a 5G network such as a next-generation base station (gNodeB, gNB) or a base station in a public land mobile network (PLMN) evolved after 5G, a broadband network service gateway (BNG), an aggregation switch, or a third generation partnership project (3GPP) access device, etc.
  • eNB evolved Node B
  • gNB next-generation base station
  • PLMN public land mobile network
  • BNG broadband network service gateway
  • 3GPP third generation partnership project
  • the network device in the embodiment of the present application may also include various forms of base stations, such as: macro base stations, micro base stations (also called small stations),
  • base stations such as: macro base stations, micro base stations (also called small stations).
  • the embodiments of the present application do not specifically limit the relay station, transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, and devices that perform base station functions in device-to-device (D2D), vehicle-to-everything (V2X), and machine-to-machine (M2M) communications, as well as network devices in the NTN communication system.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • the device for realizing the function of the network device in the embodiment of the present application may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system.
  • the device may be installed in the network device or used in combination with the network device.
  • the chip system in the embodiment of the present application may be composed of a chip, or may include a chip and other discrete devices.
  • FIG1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 includes a network device 110, a terminal device 120, and a terminal device 130.
  • the embodiment of the present application does not limit the number of terminal devices and network devices included in the communication system 100. It should be understood that FIG1 is only for exemplary understanding and cannot limit the scope of protection required by the present application.
  • the terminal device 120 and the terminal device 130 can be any one of the terminal devices listed above
  • the network device 110 can be any one of the network devices listed above.
  • the terminal device 120 and the terminal device 130 can communicate through the PC5 interface, that is, the terminal device 120 and the terminal device 130 can perform SL communication.
  • the terminal device 120 or the terminal device 130 and the network device 110 can also communicate through the air interface (Uu).
  • the network device 110 may also be connected via an access and mobility management function (AMF) (not shown in FIG. 1 ) and a location management function (LMF) (also not shown in FIG. 1 ) to enable the LMF to provide location management services for the communication system 100.
  • AMF access and mobility management function
  • LMF location management function
  • FIG2 is a schematic diagram of a positioning method 200.
  • terminal device A sends PRS1 at time T1
  • terminal device B receives PRS1 at time T2
  • terminal device B sends PRS2 at time T3
  • terminal device A receives PRS2 at time T4.
  • T4 is later than T3, T3 is later than T2, and T2 is later than T1.
  • c is used to indicate the flight speed of the wireless signal (generally the speed of light)
  • TOF is used to indicate the flight time (time of flight, TOF) between terminal device A and terminal device B.
  • TOF1 is used to indicate the real TOF
  • T round,1 is used to indicate the real round-trip time
  • T reply,1 is used to indicate the real response time
  • e A is the clock crystal oscillator error of terminal device A
  • e B is the clock crystal oscillator error of terminal device B.
  • e A is in the order of 10 -6
  • TOF 1 is in the nanosecond level
  • TOF 1 *e A can be ignored.
  • T reply,1 is in the millisecond level
  • 0.5*T reply,1 *(e A -e B ) will introduce nanosecond errors (a wireless signal can be transmitted 30 cm in 1 nanosecond). Therefore, the distance D between terminal device A and terminal device B obtained based on formula (3) will deviate from the actual distance between terminal device A and terminal device B.
  • the 3GPP protocol defines the concept of measurement quantity (UE Rx-Tx Time difference) for the RTT scheme, which calculates TOF by indirectly indicating the interval of the transmission and reception time. Specifically, after receiving PRS1, terminal device B determines the first path arrival time of PRS1, and determines the start time of the receiving subframe of PRS1 (T UE-RX ) based on the first path arrival time. Then, terminal device B finds the closest transmission subframe to the receiving subframe of PRS1 and obtains the start time of the transmission subframe (T UE-TX ). Therefore, terminal device B determines that the UE Rx-Tx Time difference (denoted as ⁇ t B ) is equal to T UE-RX -T UE-TX .
  • ⁇ t B the UE Rx-Tx Time difference
  • terminal device B sends PRS2 to terminal device A, and terminal device A determines a new UE Rx-Tx Time difference based on PRS2, denoted as ⁇ t_A.
  • TOF 0.5*
  • terminal device B measures the first path arrival time #1 at the second symbol of time slot #1, and measures the first path arrival time #2 at the sixth symbol. Although there are only 4 symbols between the sixth symbol and the second symbol, due to the clock drift phenomenon, the actual interval time between the sixth symbol and the second symbol is not equal to the length of 4 symbols. There will be a deviation between the start time of the receiving subframe of PRS1 derived by terminal device B based on the second symbol of time slot #1 and the start time of the receiving subframe of PRS1 derived based on the sixth symbol of time slot #1.
  • the present application provides a positioning method and a communication device, which can improve the positioning accuracy.
  • FIG3 is a schematic diagram of the interactive flow of the positioning method 300 of an embodiment of the present application.
  • the method flow in FIG3 can be exemplarily performed by the first communication device and the second communication device, or by a module and/or device (for example, a chip or an integrated circuit, etc.) with corresponding functions installed in the first communication device and the second communication device, and the present application does not limit this.
  • the method flow in FIG3 can also be performed by the first communication device, the second communication device, and the third communication device, or by a module and/or device (for example, a chip or an integrated circuit, etc.) with corresponding functions installed in the first communication device, the second communication device, and the third communication device.
  • the embodiment of the present application uses the method flow in FIG3 to be performed by the first communication device and the second communication device, but does not limit the scenario in which the method shown in FIG3 is performed by multiple communication devices together.
  • the first communication device can be a terminal device or a network device
  • the second communication device can also be a terminal device or a network device
  • the present application does not limit this.
  • the present application is not only applicable to communication between network devices and terminal devices, but also to communication between terminal devices, and can also be applicable to communication between network devices, or communication between other devices, etc., and the present application does not limit this.
  • method 300 includes:
  • the second communication device sends a first signal to the first communication device.
  • the first communication device receives the first signal from the second communication device, which is used for positioning between the first communication device and the second communication device.
  • the first signal sent by the second communication device to the first communication device is used to achieve positioning between the first communication device and the second communication device, and the present application does not limit the type of the first signal.
  • the type of the first signal includes PRS, or a sidelink positioning reference signal (SL-PRS), etc.
  • the type of the first signal may also include a signal type used to implement positioning in future 3GPP standards or technologies, which is not limited in this application.
  • the first communication device measures the first signal to obtain a measurement report 1, which includes a measurement value A (eg, a first measurement value) and a symbol index A (eg, a first symbol index).
  • a measurement value A eg, a first measurement value
  • a symbol index A eg, a first symbol index
  • the first communication device may measure the first signal in accordance with the current method of measuring the first signal, or may measure the first signal in other methods, which is not limited in the present application.
  • the measurement report 1 includes a measurement value A and a symbol index A.
  • the measurement value A indicates a first measurement result obtained by the first communication device measuring the first signal.
  • the symbol index A is used to indicate the symbol for obtaining the measurement value A.
  • the symbol index A is used to indicate the symbol S in the time slot A.
  • the first communication device measures the first signal at the symbol S and obtains the measurement value A.
  • the symbol index A is used to indicate the symbol at which the first communication device obtains the measurement value A.
  • the symbol index A is used to indicate the acquisition symbol of the measurement value A, which may be: the first communication device measures the first signal at the symbol indicated by the symbol index A to obtain the measurement value A.
  • the measurement report 1 may further include a time slot identifier A, which is used to indicate that the first communication device receives the first signal in a specific time slot, that is, the time slot identifier A is used to indicate the receiving time slot of the first signal (hereinafter indicated by time slot A).
  • a time slot identifier A which is used to indicate that the first communication device receives the first signal in a specific time slot, that is, the time slot identifier A is used to indicate the receiving time slot of the first signal (hereinafter indicated by time slot A).
  • the first communication device can obtain multiple different first path arrival times by measuring different symbols in time slot A. Accordingly, the first communication device will also obtain multiple different measurement values. The relationship between different symbols in time slot A and different measurement values can be seen in Table 1.
  • symbol index 0 indicates the first symbol in time slot A
  • symbol index 1 indicates the second symbol in time slot A
  • symbol index N indicates the N+1th symbol in time slot A.
  • the difference between the symbol indices can indicate the number of interval symbols between the corresponding symbols. For example, if the difference between symbol index 5 and symbol index 1 is 4, it can indicate that the number of interval symbols between the sixth symbol indicated by symbol index 5 and the second symbol indicated by symbol index 1 is 4.
  • different symbol indices correspond to different measurement values. Exemplarily, symbol index 0 corresponds to measurement value 1, symbol index 1 corresponds to measurement value 2, ..., symbol index N corresponds to measurement value n. In summary, there is a corresponding relationship between symbol index and measurement value (as can be seen in Table 1).
  • the first communication device sends a measurement report 1 to the second communication device.
  • the second communication device receives the measurement report 1 sent by the first communication device.
  • the first communication device sends a second signal to the second communication device, which is used for positioning between the second communication device and the first communication device.
  • the second communication device receives the second signal from the first communication device, and measures the second signal to obtain a measurement report 2 of the second signal, wherein the measurement report 2 includes a measurement value C (eg, a third measurement value).
  • a measurement value C eg, a third measurement value
  • the second communication device measures the second signal to obtain a measurement report 2.
  • the measurement report 2 may not include a symbol index and a time slot identifier, etc., and may only include a measurement value C, which is not limited in the present application.
  • the second communication device determines the flight time between the first communication device and the second communication device according to the first relationship, the measurement value A, the measurement value C, and the symbol index A.
  • the first relationship is used to indicate the relationship between the clock crystal error of the first communication device and the clock crystal error of the second communication device.
  • the first relationship may be expressed in the form of [(1+e A )/(1+e B )] or [T a /T b ], etc., which is not limited in this application.
  • the first relationship is determined by the second communication device based on multiple positioning measurements previously performed with the first communication device. In another example, the first relationship is determined by the second communication device based on multiple measurement values and multiple symbol indexes reported by the first communication device. The latter example will be further described below.
  • the second communication device After completing the measurement of the second signal, the second communication device obtains the measurement report 2 of the second signal, and determines the distance D between the first communication device and the second communication device based on the following formula (4) in combination with the measurement report 1 of the first signal reported by the first communication device.
  • T reply is obtained by the second communication device according to measurement report 1
  • T round is obtained by the second communication device according to measurement report 2.
  • the second communication device has obtained the relationship between the clock crystal error of the first communication device and the clock crystal error of the first communication device. Then you can use The T reply in formula (4) is converted into the time corresponding to the clock crystal oscillator of the second communication device, so as to obtain a positioning result with a smaller positioning error.
  • the second communication device uses the aforementioned measurement report 1 to carry multiple measurement values to calculate
  • Another possible implementation method is that the present application also supports obtaining the measurement value through multiple measurement reports 1 (each measurement report 1 contains only one measurement value). in, May refer to the aforementioned first relationship.
  • the TOF in S350 can meet the following requirements:
  • the second communication device after the second communication device obtains the measurement symbol information of the measurement value A, it reduces the influence of the clock drift phenomenon of the first communication device on the positioning measurement result according to the first relationship, and can determine the T reply with a smaller error of the first communication device, and finally determine the flight time with a smaller error between the first communication device and the second communication device.
  • the second communication device can obtain information about the symbol position of the first measurement value obtained by the first communication device, so that when determining the flight time between the first communication device and the second communication device, the first measurement value can be converted into the measurement result corresponding to the second communication device according to the relationship between the clock crystal oscillator error of the first communication device and the clock crystal oscillator error of the second communication device, thereby reducing the influence of the clock drift error on the positioning measurement result and improving the positioning accuracy.
  • terminal device A can reduce the clock drift error caused by these interval symbols, thereby improving the positioning accuracy.
  • the measurement report 1 also includes a measurement value B (e.g., a second measurement value) and a symbol index B (e.g., a second symbol index).
  • the measurement report 1 reported by the first communication device to the second communication device may include multiple measurement values and multiple symbol indexes.
  • the present application takes the measurement report 1 including the measurement value A, the symbol index A, the measurement value B, and the symbol index B as an example for description, but does not limit the measurement report 1 to include a larger number of measurement values and symbol indexes.
  • the multiple measurement values and multiple symbol indexes reported by the first communication device can be used by the second communication device to determine the relationship between the clock crystal error of the first communication device and the clock crystal error of the second communication device.
  • the first communication device measures the first signal at the first symbol and the second symbol in time slot A, respectively, and obtains measurement value 1 and measurement value 2, respectively. Each measurement value is associated with a symbol index.
  • the form of measurement report 1 can be as shown in Table 2.
  • the first communication device measures the first signal at the first symbol indicated by symbol index 0 and obtains a measurement value 1; the first communication device measures the first signal at the second symbol indicated by symbol index 1 and obtains a measurement value 2.
  • the second communication device determines the relationship between the clock crystal oscillator error of the first communication device and the clock crystal oscillator error of the second communication device according to the measurement value 1, the measurement value 2, the symbol index 0 and the symbol index 1 reported by the first communication device.
  • the interval between symbol index 1 and symbol index 2 is time t
  • the time corresponding to measurement value 1 is time t1
  • the time corresponding to measurement value 2 is time t2.
  • the clock crystal oscillator error of the first communication device is eA
  • the clock crystal oscillator error of the second communication device is eB.
  • the relationship between the clock crystal oscillator error eA of the first communication device and the clock crystal oscillator error eB of the second communication device is:
  • the second communication device only sends PRS1 (which is the first signal) to the first communication device, and the first communication device measures PRS1 twice at different symbols, which is equivalent to the second communication device sending PRS11 to the first communication device at the symbol indicated by symbol index 1 and sending PRS12 to the first communication device at the symbol indicated by symbol index 2. Accordingly, the real time of the time interval between PRS11 and PRS12 that the second communication device needs to record is equal to the left expression in formula (6), and the real time of the time interval between PRS11 and PRS12 that the first communication device needs to record is equal to the right expression in formula (6).
  • the error interval time between PRS11 and PRS12 recorded by the second communication device can be equal to the difference between t2 and t1 and the sum of t. Therefore, when the real time intervals between PRS11 and PRS12 are the same, formula (6) can be obtained.
  • method 300 before S310, method 300 further includes:
  • the second communication device sends indication information 1 to the first communication device, which is used to indicate that a measurement value A is obtained at a symbol indicated by symbol index A, and a measurement value B is obtained at a symbol indicated by symbol index B.
  • the first communication device reports the measurement value A, the symbol index A, the measurement value B, and the symbol index B to the second communication device according to the indication information 1 of the second communication device.
  • the second communication device determines the relationship between the clock crystal error of the first communication device and the clock crystal error of the second communication device according to the multiple measurement values and multiple symbol indexes reported by the first communication device.
  • the second communication device determines the relationship between the clock crystal error of the first communication device and the clock crystal error of the second communication device according to the multiple measurement values and multiple symbol indexes reported by the first communication device.
  • the relationship between the clock crystal oscillator errors of the communication device can be specifically seen in formula (5), which will not be repeated here.
  • the indication information 1 includes any one of: radio resource control (RRC), medium access control-control element (MAC CE) or side-link control information (SCI).
  • RRC radio resource control
  • MAC CE medium access control-control element
  • SCI side-link control information
  • the indication information 1 is used to trigger the first communication device to measure the first signal at multiple symbol positions. The positions of the multiple symbols can be indicated by the second communication device through the indication information 1.
  • the indication information 1 also includes a symbol index A and a symbol index B.
  • the second communication device instructs the first communication device to measure the symbol indicated by the symbol index A and obtain the measurement value A, and to measure the symbol indicated by the symbol index B and obtain the measurement value B.
  • the first communication device measures the symbol indicated by the symbol index A and the symbol indicated by the symbol index B carried by the indication information 1, respectively, and reports the measurement value A and the measurement value B in sequence according to the order of the symbol indexes.
  • the first communication device measures the first signal at the symbol position indicated by the second communication device and obtains two measurement values.
  • method 300 before S310, method 300 further includes:
  • the second communication device sends information 1 (eg, first information) to the first communication device, which is used to schedule a first resource, where the first resource is used to transmit a first signal.
  • the first resource includes a symbol indicated by a symbol index A.
  • the second communication device determines the first resource for transmitting the first signal according to the configuration of the resource pool, and sends information 1 to the first communication device, which is used to indicate the first resource for transmitting the first signal.
  • the first resource when the second communication device instructs the first communication device to report multiple symbol indexes and multiple measurement values, the first resource also includes a symbol indicated by symbol index B. In this way, it is convenient for the first communication device to measure the first signal at the symbol positions indicated by symbol index A and symbol index B respectively, and obtain measurement value A and measurement value B.
  • the second communication device sends the first signal to the first communication device.
  • the second communication device can send the first signal to the first communication device using the first resource.
  • method 300 further includes:
  • the first communication device sends information 2 (eg, second information) to the second communication device, which is used to schedule second resources, where the second resources are used for transmission of a second signal.
  • information 2 eg, second information
  • the second communication device receives the information 2 sent from the first communication device, and determines, based on the information 2, a second resource for the first communication device to transmit a second signal to the second communication device.
  • S340a occurs before S340.
  • present application does not limit the order of performing S340a and S330.
  • the measurement report 1 includes a first structure and a second structure, wherein the first structure is used to carry the measurement value A, and the second structure is used to carry the time slot identifier.
  • the first structure in the measurement report 1 is nr-UE-RxTxTimeDiff-r16
  • the second structure is nr-TimeStamp-r16.
  • the specific forms of the first structure and the second structure can be referred to the existing standards, and this application will not elaborate on this.
  • the symbol index A in the measurement report 1 can be carried in the first structure, that is, the symbol index A is carried in nr-UE-RxTxTimeDiff-r16, or the symbol index A is carried in nr-TimeStamp-r16. If the measurement report 1 also includes the measurement value B and the symbol index B, the measurement value B is carried in the first structure, and the symbol index B can be carried in both the first structure and the second structure. In this way, compatibility with the existing measurement report can be achieved.
  • the first signal includes multiple sub-signals, for example, the first signal includes a first sub-signal and a second sub-signal, wherein the multiple sub-signals are located in the same time slot.
  • the first signal includes a first sub-signal and a second sub-signal, and the first sub-signal and the second sub-signal each occupy different time-frequency resources.
  • first sub-signal and the second sub-signal see FIG. 4 .
  • Figure 4 is a schematic diagram of the configuration of the first sub-signal and the second sub-signal.
  • the first signal occupies 12 sub-carriers and 8 symbols.
  • the time-frequency resources occupied by the first sub-signal are the first 4 symbols and 12 sub-carriers
  • the time-frequency resources occupied by the second sub-signal are the last four symbols and 12 sub-carriers.
  • each slash texture box represents the time-frequency resource used to transmit the positioning measurement signal
  • the blank box represents the time-frequency resource not used to transmit the positioning measurement signal.
  • the present application supports the first communication device reporting a measurement report 1 to the second communication device, and the measurement report 1 includes the measurement values corresponding to each sub-signal.
  • the measurement report 1 may also include a symbol index and/or a sub-signal index corresponding to the measurement value.
  • the first sub-signal includes the first four symbols and the second sub-signal includes the last four symbols.
  • comb 4 please refer to the prior art, and this application will not repeat it.
  • the present application supports that the measurement report 1 does not include a symbol index and/or a sub-signal index by sequentially filling in the measurement values corresponding to each sub-signal, thereby saving signaling overhead.
  • the terminal and the network device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the communication device used to perform the transceiver function and the processing function may be a different communication device.
  • the second communication device sends a first signal to the first communication device
  • the second communication device receives a measurement report of the first signal sent by the first communication device
  • the third communication device determines the flight time between the first communication device and the second communication device based on the first relationship, the measurement value A, and the symbol index A.
  • the embodiment of the present application is described as an example in which the second communication device simultaneously performs the transceiver function and the processing function, but does not limit the scenario in which the second communication device performs the transceiver function and the third communication device performs the processing function. A unified description is given here.
  • Fig. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 includes a processor 510 and a communication interface 520, and the processor 510 and the communication interface 520 are interconnected via a bus 530.
  • the communication device 500 shown in Fig. 5 may be a first communication device or a second communication device.
  • the communication device 500 further includes a memory 540 .
  • the memory 540 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or compact disc read-only memory (CD-ROM), and the memory 540 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • Processor 510 may be one or more central processing units (CPUs). When processor 510 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • CPUs central processing units
  • the processor 510 is used to read the computer program or instructions stored in the memory 540, and exemplarily, perform the following operations: receive a first signal from a second communication device, which is used for positioning between the first communication device and the second communication device; measure the first signal to obtain a measurement report 1 of the first signal, the measurement report 1 including a measurement value A and a symbol index A, the symbol index A is used to indicate the acquisition symbol of the measurement value A; send the measurement report 1 to the second communication device; send a second signal to the second communication device, which is used for positioning between the first communication device and the second communication device.
  • indication information 1 is received, where indication information 1 is used to instruct the first communication device to obtain measurement value A at the symbol indicated by symbol index A, and to obtain measurement value B at the symbol indicated by symbol index B.
  • the following operations may be performed: receiving information 1 from the second communication device, where the information 1 is used to schedule a first resource, where the first resource is used to transmit a first signal, and where the first resource includes a symbol indicated by a symbol index A.
  • the communication device 500 is the first communication device, it will be responsible for executing the methods or steps related to the first communication device in the above method embodiments.
  • the first communication device can be a terminal device or a network device.
  • the processor 510 is used to read the computer program or instructions stored in the memory 540, and exemplarily, perform the following operations: send a first signal to the first communication device, which is used for positioning between the first communication device and the second communication device; receive a measurement report 1 of the first signal from the first communication device, the measurement report 1 includes a measurement value A and a symbol index A, and the symbol index A is used to indicate the acquisition symbol of the measurement value A; receive a second signal from the first communication device, which is used for positioning between the second communication device and the first communication device; measure the second signal to obtain a measurement report 2 of the second signal, which includes a measurement value C; determine the flight time between the first communication device and the second communication device based on the first relationship, the measurement value A, the measurement value C and the symbol index A; the first relationship is used to indicate the relationship between the clock crystal oscillator error of the first communication device and the clock crystal oscillator error of the second communication device.
  • indication information 1 is sent to the first communication device, where indication information 1 is used to instruct the first communication device to obtain measurement value A at the symbol indicated by symbol index A, and to obtain measurement value B at the symbol indicated by symbol index B.
  • information 1 is sent to the first communication device, which is used to schedule a first resource, where the first resource is used for transmission of a first signal, and the first resource includes a symbol indicated by a symbol index A.
  • the communication device 500 is a second communication device, it will be responsible for executing the methods or steps related to the second communication device in the above method embodiments.
  • the second communication device can be a terminal device or a network device.
  • FIG6 is a schematic block diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 may be the first communication device or the second communication device in the above embodiment, or may be a chip or module in the first communication device or the second communication device, for implementing the method involved in the above embodiment.
  • the communication device 600 includes a transceiver unit 610 and a processing unit 620.
  • the transceiver unit 610 and the processing unit 620 are exemplarily introduced below.
  • the transceiver unit 610 may include a sending unit and a receiving unit, which are respectively used to implement the sending or receiving functions in the above method embodiments; it may further include a processing unit, which is used to implement functions other than sending or receiving.
  • the transceiver unit 610 when the communication device 600 is a first communication device, the transceiver unit 610 is used to receive a first signal from a second communication device, and the first signal is used for positioning between the first communication device and the second communication device; the processing unit 620 is used to measure the first signal to obtain a measurement report 1 of the first signal; the transceiver unit 610 is also used to send the measurement report 1 to the second communication device, and the measurement report 1 includes a measurement value A and a symbol index A, and the symbol index A is used to indicate the acquisition symbol of the measurement value A; the transceiver unit 610 is also used to send a second signal to the second communication device, which is used for positioning between the second communication device and the first communication device.
  • the communication device 600 further includes a storage unit 630, which is used to store a program or code for executing the aforementioned method.
  • the communication device 600 is the first communication device, it will be responsible for executing the methods or steps related to the first communication device in the above method embodiments.
  • the transceiver unit 610 is used to send a first signal to the first communication device, and the first signal is used for positioning between the first communication device and the second communication device; the transceiver unit 610 is also used to receive a measurement report 1 of the first signal from the first communication device, and the measurement report 1 includes a measurement value A and a symbol index A, and the symbol index A is used to indicate the acquisition symbol of the measurement value A; the transceiver unit 610 is also used to receive a second signal from the first communication device, which is used for positioning between the first communication device and the second communication device; the processing unit 620 is used to measure the second signal to obtain a measurement report 2 of the second signal, which includes a measurement value C; the processing unit 620 is used to determine the flight time between the first communication device and the second communication device based on the first relationship, the measurement value A, the measurement value C and the symbol index A; the first relationship is used to indicate the relationship between the clock crystal oscillator error of the first
  • the communication device 600 further includes a storage unit 630, which is used to store a program or code for executing the aforementioned method.
  • the communication device 600 is the second communication device, it will be responsible for executing the methods or steps related to the second communication device in the above method embodiments.
  • each operation in FIG. 6 may also refer to the corresponding description of the method shown in the above embodiment, which will not be repeated here.
  • the above-mentioned transceiver unit may include a sending unit and a receiving unit.
  • the sending unit is used to perform a sending action of the communication device
  • the receiving unit is used to perform a receiving action of the communication device.
  • the embodiment of the present application combines the sending unit and the receiving unit into one transceiver unit. A unified description is given here, and no further description is given later.
  • Fig. 7 is a schematic diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 may be used to implement the functions of the first communication device or the second communication device in the above method.
  • the communication device 700 may be a chip in the first communication device or the second communication device.
  • the communication device 700 includes: an input/output interface 720 and a processor 710.
  • the input/output interface 720 may be an input/output circuit.
  • the processor 710 may be a signal processor, a chip, or other integrated circuit that can implement the method of the present application.
  • the input/output interface 720 is used for inputting or outputting signals or data.
  • the input/output interface 720 is used to receive a first signal from a second communication device, and the first signal is used for positioning between the first communication device and the second communication device.
  • the communication device sends a measurement report 1, where the measurement report 1 includes a measurement value A and a symbol index A, where the symbol index A is used to indicate an acquisition symbol of the measurement value A.
  • the input and output interface 720 is also used to send a second signal to the second communication device, which is used for positioning between the second communication device and the first communication device.
  • the processor 710 is used to measure the first signal to obtain a measurement report 1 of the first signal.
  • the input-output interface 720 is used to send a first signal to the first communication device, and the first signal is used for positioning between the first communication device and the second communication device.
  • the input-output interface 720 is also used to receive a measurement report 1 from the first communication device, and the measurement report 1 includes a measurement value A and a symbol index A, and the symbol index A is used to indicate the acquisition symbol of the measurement value A.
  • the input-output interface 720 is also used to receive a second signal from the first communication device, which is used for positioning between the first communication device and the second communication device.
  • the processor 710 is used to measure the second signal to obtain a measurement report 2 of the second signal, which includes a measurement value C.
  • the processor 710 is also used to determine the flight time between the first communication device and the second communication device according to the first relationship, the measurement value A, the measurement value C, and the symbol index A; the first relationship is used to indicate the relationship between the clock crystal error of the first communication device and the clock crystal error of the second communication device.
  • the processor 710 implements the functions implemented by the network device or the terminal device by executing instructions stored in the memory.
  • the communication device 700 also includes a memory.
  • processor and memory are integrated together.
  • the memory is outside the communication device 700 .
  • the processor 710 may be a logic circuit, and the processor 710 inputs/outputs messages or signals through the input/output interface 720.
  • the logic circuit may be a signal processor, a chip, or other integrated circuit that can implement the method of the embodiment of the present application.
  • FIG. 7 The above description of the device in FIG. 7 is only an exemplary description.
  • the device can be used to execute the method described in the above embodiment.
  • FIG8 is a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 may be a network device or a chip.
  • the communication device 800 may be used to perform the operations performed by the first communication device in the method embodiment shown in FIG3 above.
  • the communication device 800 is a network device (the first communication device or the second communication device is a network device), it is, for example, a base station.
  • Figure 8 shows a simplified schematic diagram of the base station structure.
  • the base station includes parts 810, 820, and 830.
  • Part 810 is mainly used for baseband processing, controlling the base station, etc.;
  • Part 810 is usually the control center of the base station, which can usually be called a processor, and is used to control the base station to perform the processing operations on the network device side in the above method embodiment.
  • Part 820 is mainly used to store computer program code and data.
  • Part 830 is mainly used for receiving and transmitting radio frequency signals and converting radio frequency signals into baseband signals; Part 830 can usually be called a transceiver module, a transceiver, a transceiver circuit, or a transceiver, etc.
  • the transceiver module of part 830 which can also be called a transceiver or a transceiver, etc., includes an antenna 833 and a radio frequency circuit (not shown in the figure), wherein the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 830 may be regarded as a receiver, and the device for implementing the transmitting function may be regarded as a transmitter, that is, part 830 includes a receiver 832 and a transmitter 831.
  • the receiver may also be referred to as a receiving module, a receiver, or a receiving circuit, etc.
  • the transmitter may be referred to as a transmitting module, a transmitter, or a transmitting circuit, etc.
  • Part 810 and part 820 may include one or more single boards, each of which may include one or more processors and one or more memories.
  • the processor is used to read and execute the program in the memory to realize the baseband processing function and the control of the base station. If there are multiple single boards, each single board can be interconnected to enhance the processing capability. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processors at the same time.
  • the transceiver module of part 830 is used to execute the transceiver-related process executed by the network device in the embodiment shown in Figure 3.
  • the processor of part 810 is used to execute the processing-related process executed by the network device in the embodiment shown in Figure 3.
  • the processor of part 810 is used to execute a process related to the processing performed by the communication device in the embodiment shown in FIG. 3 .
  • the transceiver module of part 830 is used to execute the transceiver-related processes performed by the communication device in the embodiment shown in FIG. 3 .
  • FIG. 8 is merely an example and not a limitation, and the network device including the processor, memory, and transceiver described above may not rely on the structures shown in FIG. 5 to FIG. 7 .
  • the chip When the communication device 800 is a chip, the chip includes a transceiver, a memory and a processor.
  • the transceiver may be an input/output circuit or a communication interface;
  • the processor may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the sending operation of the network device in the embodiment can be understood as the output of the chip, and the receiving operation of the network device in the above method embodiment can be understood as the input of the chip.
  • Fig. 9 is a schematic block diagram of a communication device 900 of an embodiment of the present application.
  • the communication device 900 may be a terminal device, a processor of a terminal device, or a chip.
  • the communication device 900 may be used to perform the operations performed by the terminal device or the communication device in the above method embodiment.
  • FIG9 shows a simplified schematic diagram of the structure of the terminal device.
  • the terminal device includes a processor, a memory, and a transceiver.
  • the memory can store computer program codes
  • the transceiver includes a transmitter 931, a receiver 932, a radio frequency circuit (not shown in the figure), an antenna 933, and an input and output device (not shown in the figure).
  • the processor is mainly used to process communication protocols and communication data, as well as to control terminal devices, execute software programs, process software program data, etc.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices For example, touch screens, display screens, keyboards, etc. are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the RF circuit.
  • the RF circuit performs RF processing on the baseband signal and then sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • only one memory, processor, and transceiver are shown in FIG9. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device, etc.
  • the memory may be set independently of the processor or integrated with the processor, and the embodiments of the present application do not limit this.
  • the antenna and the radio frequency circuit with transceiver functions can be regarded as the transceiver module of the terminal device, and the processor with processing function can be regarded as the processing module of the terminal device.
  • the terminal device includes a processor 910, a memory 920 and a transceiver 930.
  • the processor 910 may also be referred to as a processing unit, a processing board, a processing module, a processing device, etc.
  • the transceiver 930 may also be referred to as a transceiver unit, a transceiver, a transceiver device, etc.
  • the device for implementing the receiving function in the transceiver 930 may be regarded as a receiving module, and the device for implementing the sending function in the transceiver 930 may be regarded as a sending module, that is, the transceiver 930 includes a receiver and a transmitter.
  • a transceiver may sometimes be referred to as a transceiver, a transceiver module, or a transceiver circuit, etc.
  • a receiver may sometimes be referred to as a receiver, a receiving module, or a receiving circuit, etc.
  • a transmitter may sometimes be referred to as a transmitter, a transmitting module, or a transmitting circuit, etc.
  • the processor 910 is used to execute the processing actions on the terminal device side in the embodiment shown in FIG. 3
  • the transceiver 930 is used to execute the transceiver actions on the terminal device side in FIG. 3 .
  • the processor 910 is used to execute the processing actions on the terminal device side in the embodiment shown in FIG. 3
  • the transceiver 930 is used to execute the transceiver actions on the terminal device side in FIG. 3 .
  • FIG. 9 is merely an example and not a limitation, and the above-mentioned terminal device including the transceiver module and the processing module may not rely on the structures shown in FIG. 5 to FIG. 7 .
  • the chip When the communication device 900 is a chip, the chip includes a processor, a memory and a transceiver.
  • the transceiver may be an input/output circuit or a communication interface;
  • the processor may be a processing module or a microprocessor or an integrated circuit integrated on the chip.
  • the sending operation of the terminal device in the above method embodiment may be understood as the output of the chip, and the receiving operation of the terminal device in the above method embodiment may be understood as the input of the chip.
  • the present application also provides a chip, including a processor, for calling and executing instructions stored in a memory from the memory, so that a communication device equipped with the chip executes the methods in the above examples.
  • the present application also provides another chip, including: an input interface, an output interface, and a processor, wherein the input interface, the output interface, and the processor are connected via an internal connection path, and the processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the method in each of the above examples.
  • the chip also includes a memory, and the memory is used to store computer programs or codes.
  • the present application also provides a processor, which is coupled to a memory and is used to execute the methods and functions involving a network device or a terminal device in any of the above embodiments.
  • a computer program product comprising instructions is provided.
  • the computer program product is executed on a computer During operation, the method of the above embodiment is implemented.
  • the present application also provides a computer program.
  • the computer program is executed in a computer, the method of the above embodiment is implemented.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the method described in the above embodiment is implemented.
  • a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • the words “first”, “second” and the like are used to distinguish between the same items or similar items with substantially the same functions and effects. Those skilled in the art will understand that the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like do not necessarily limit the difference. At the same time, in the embodiments of the present application, the words “exemplarily” or “for example” are used to indicate examples, illustrations or explanations.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the size of the serial number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods of each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请提供了一种定位方法与通信装置,该方法能够应用于侧行链路(sidelink,SL)定位领域,方法包括:第二通信装置向第一通信装置发送第一信号,其用于二者之间的定位;接收来自第一通信装置的第一测量报告,其包括第一测量值与第一符号索引,第一符号索引用于指示获取第一测量值的符号;接收来自第一通信装置的第二信号,其用于二者之间的定位;对第二信号进行测量,得到第二测量报告,第二测量报告包括第三测量值;根据第一关系、第一测量值、第三测量值以及第一符号索引,确定第一通信装置与第二通信装置之间的飞行时间,第一关系用于指示二者的时钟晶振误差之间的关系。通过上述技术方案,本申请能够提升定位的定位精度。

Description

定位方法与通信装置
本申请要求于2022年11月21日提交中国国家知识产权局、申请号为202211457230.1、申请名称为“定位方法与通信装置”的中国专利申请的优先权以及于2022年10月9日提交中国国家知识产权局、申请号为202211231689.X、申请名称为“一种测量报告的传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体地,涉及一种定位方法与通信装置。
背景技术
第五代移动通信技术正在进行侧行链路(sidelink,SL)定位的标准化工作。其中,传统的定位方案,例如,到达时间差(time difference of arrival,TDOA)、往返时间(round-trip time,RTT)等,都需要重新评估其在SL场景下的性能。
以RTT方案为例,RTT方案虽然不要求设备间的严格同步,但由于时钟漂移现象,定位参考信号(positioning reference signal,PRS)的发送设备会对PRS的发送时间的记录产生时间偏差,PRS的测量设备会对PRS的接收时间的记录产生时间偏差,这两个时间偏差会影响RTT方案的定位精度。
发明内容
本申请提供一种定位方法与通信装置,能够提升定位的定位精度。
第一方面,提供了一种定位方法,包括:向第一通信装置发送第一信号,其用于第一通信装置与第二通信装置之间的定位;接收来自于第一通信装置的第一信号的第一测量报告,第一测量报告包括第一测量值与第一符号索引,第一符号索引用于指示第一通信装置获取第一测量值的符号;接收来自于第一通信装置的第二信号,其用于第一通信装置与第二通信装置之间的定位;对第二信号进行测量,得到第二信号的第二测量报告,第二测量报告包括第三测量值;根据第一关系、第一测量值、第三测量值以及第一符号索引,确定第一通信装置与第二通信装置之间的飞行时间;第一关系用于指示第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系。
具体而言,第一符号索引用于指示第一通信装置获取第一测量值的符号,可以为:第一通信装置在第一符号索引所指示的符号对第一信号进行测量,并得到第一测量值。
应理解,第一关系可以是第二通信装置基于与第一通信装置此前的多次定位测量确定的,也可以是基于其他方式进行确定的,在此不做过多描述。因此,在上述技术方案中,第二通信装置在已知第一关系的前提下能够根据第一测量值、第一符号索引以及第三测量值确定第一通信装置与第二通信装置之间的飞行时间。
通过在测量报告中增加符号索引,第二通信装置(为上述技术方案的执行主体)能够获取第一通信装置获取第一测量值的符号位置的信息,便于在确定第一通信装置与第二通信装置之间的飞行时间时,根据第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差的关系,将第一测量值转换为第二通信装置对应的测量结果,从而降低时钟漂移误差对定位测量结果的影响,能够提升定位的定位精度。
一个可能的实现方式中,该方法还包括:向第一通信装置发送指示信息,其用于指示第一通信装置在第一符号索引指示的符号获取第一测量值,以及,在第二符号索引指示的符号获取第二测量值,第二符号索引用于指示第一通信装置获取第二测量值的符号。
如此,第一通信装置根据第二通信装置的指示信息向第二通信装置上报第一测量值、第一符号索引、第二测量值以及第二符号索引。如此,便于第二通信装置根据第一通信装置上报的多个测量值与多个符号索引确定第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系。
一个可能的实现方式中,该指示信息还包括第一符号索引与第二符号索引。
如此,第一通信装置在第二通信装置指示的两个符号分别对第一信号进行测量,并得到两个测量值。
一个可能的实现方式中,第一测量报告还包括第二测量值与第二符号索引;第一测量值、第一符号索引、第二测量值以及第二符号索引用于第一关系的确定。
如前文所述,第一关系可以是第二通信装置通过其他方式确定的,其他方式可以包括:第一测量报告携带多个测量值与多个符号索引。相应地,第二通信装置根据第一测量报告中携带的多个测量值与多个符号索引计算得到第一通信装置与第二通信装置之间的时钟晶振误差的关系,即第一关系。进而,第二通信装置根据基于多个测量值与多个符号索引计算得到的第一关系、第一测量值、第一符号索引以及第三测量值确定第一通信装置与第二通信装置之间的飞行时间。
综上所言,通过上报多个测量值与多个符号索引,且每个测量值对应一个符号索引,第二通信装置根据第一通信装置上报的多个测量值与多个符号索引确定第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系,进而能够确定第一通信装置与第二通信装置之间的飞行时间。
一个可能的实现方式中,第一测量报告包括第一结构与第二结构,第一结构用于承载第一测量值;以及,第一符号索引承载于第一结构或者第二结构。
如此,可以实现与现有的测量报告的兼容。
一个可能的实现方式中,第一测量报告还包括第二符号索引与第二测量值,第一结构还用于承载第二测量值,第二符号索引承载于第一结构或者第二结构。
如此,可以实现与现有的测量报告的兼容。
一个可能的实现方式中,该方法还包括:向第一通信装置发送第一信息,其用于调度第一资源,该第一资源用于第一信号的传输,该第一资源包括第一符号索引指示的符号。
一个可能的实现方式中,第一资源还包括第二符号索引指示的符号。
一个可能的实现方式中,该方法还包括:接收来自于第一通信装置的第二信息,其用于调度第二资源,该第二资源用于第二信号的传输。
一个可能的实现方式中,第一测量报告还包括时隙标识,该时隙标识用于指示第一信号的接收时隙。
一个可能的实现方式中,第一信号包括第一子信号与第二子信号,第一子信号与第二子信号位于相同的时隙之中。
具体来说,第一信号采用多个子信号的配置形式时,本申请支持第一通信装置在向第二通信装置上报测量报告时,测量报告包括每个子信号分别对应的测量值。其中,测量报告还可以包括测量值对应的符号索引和/或子信号索引。
第二方面,提供了一种定位方法,包括:接收来自于第二通信装置的第一信号,其用于第一通信装置与第二通信装置之间的定位;对第一信号进行测量,得到第一信号的第一测量报告,第一测量报告包括第一测量值与第一符号索引,第一符号索引用于指示第一通信装置获取第一测量值的符号;向第二通信装置发送第一测量报告;向第二通信装置发送第二信号,其用于第一通信装置与第二通信装置之间的定位。
一个可能的实现方式中,该方法还包括:接收来自于第二通信装置的指示信息,该指示信息用于指示第一通信装置在第一符号索引指示的符号获取第一测量值,以及,在第二符号索引指示的符号获取第二测量值,第二符号索引用于指示第一通信装置获取第二测量值的符号。
一个可能的实现方式中,该指示信息还包括第一符号索引与第二符号索引。
一个可能的实现方式中,第一测量报告还包括第二测量值与第二符号索引;第一测量值、第一符号索引、第二测量值以及第二符号索引用于第一关系的确定。
一个可能的实现方式中,第一测量报告包括第一结构与第二结构,第一结构用于承载第一测量值;第一符号索引承载于第一结构或者第二结构。
一个可能的实现方式中,第一测量报告还包括第二符号索引与第二测量值,第一结构还用于承载第二测量值,第二符号索引承载于第一结构或者第二结构。
一个可能的实现方式中,该方法还包括:接收来自于第二通信装置的第一信息,其用于调度第一 资源,该第一资源用于第一信号的传输,该第一资源包括第一符号索引指示的符号。
一个可能的实现方式中,该第一资源还包括第二符号索引指示的符号。
一个可能的实现方式中,该方法还包括:向第二通信装置发送第二信息,其用于调度第二资源,该第二资源用于第二信号的传输。
一个可能的实现方式中,第一测量报告还包括时隙标识,该时隙标识用于指示第一信号的接收时隙。
一个可能的实现方式中,第一信号包括第一子信号与第二子信号,第一子信号与第二子信号位于相同的时隙之中。
第三方面,提供了一种通信装置,包括:收发单元,用于向第一通信装置发送第一信号,其用于第一通信装置与该通信装置之间的定位;收发单元,还用于接收来自于第一通信装置的第一信号的第一测量报告,第一测量报告包括第一测量值与第一符号索引,第一符号索引用于指示第一通信装置获取第一测量值的符号;收发单元,还用于接收来自第一通信装置的第二信号,其用于第一通信装置与该通信装置之间的定位;处理单元,用于对第二信号进行测量,得到第二信号的第二测量报告,其包括第三测量值;该处理单元,还用于根据第一关系、第一测量值、第三测量值以及第一符号索引,确定第一通信装置与该通信装置之间的飞行时间;第一关系用于指示第一通信装置的时钟晶振误差与该通信装置的时钟晶振误差之间的关系。
一个可能的实现方式中,收发单元,还用于向第一通信装置发送指示信息,其用于指示第一通信装置在第一符号索引指示的符号获取第一测量值,以及,在第二符号索引指示的符号获取第二测量值,第二符号索引用于指示第一通信装置获取第二测量值的符号。
一个可能的实现方式中,该指示信息还包括第一符号索引与第二符号索引。
一个可能的实现方式中,第一测量报告还包括第二测量值与第二符号索引;第一测量值、第一符号索引、第二测量值以及第二符号索引用于第一关系的确定。
一个可能的实现方式中,第一测量报告包括第一结构与第二结构,第一结构用于承载第一测量值;第一符号索引承载于第一结构或者第二结构。
一个可能的实现方式中,第一测量报告还包括第二符号索引与第二测量值,第一结构还用于承载第二测量值,第二符号索引承载于第一结构或者第二结构。
一个可能的实现方式中,收发单元,还用于向第一通信装置发送第一信息,其用于调度第一资源,该第一资源用于第一信号的传输,该第一资源包括第一符号索引指示的符号。
一个可能的实现方式中,第一资源还包括第二符号索引指示的符号。
一个可能的实现方式中,收发单元,还用于接收来自于第一通信装置的第二信息,其用于调度第二资源,该第二资源用于第二信号的传输。
一个可能的实现方式中,第一测量报告还包括时隙标识,该时隙标识用于指示第一信号的接收时隙。
一个可能的实现方式中,第一信号包括第一子信号与第二子信号,第一子信号与第二子信号位于相同的时隙之中。
第四方面,提供了一种通信装置,包括:收发单元,用于接收来自于第二通信装置的第一信号,其用于该通信装置与第二通信装置之间的定位;处理单元,用于对第一信号进行测量,得到第一信号的第一测量报告,第一测量报告包括第一测量值与第一符号索引,第一符号索引用于指示该通信装置获取第一测量值的符号;收发单元,还用于向第二通信装置发送该第一测量报告;收发单元,还用于向第二通信装置发送第二信号,其用于第二通信装置与该通信装置之间的定位。
一个可能的实现方式中,收发单元,还用于接收来自于第二通信装置的指示信息,其用于指示该通信装置在第一符号索引指示的符号获取第一测量值,以及,在第二符号索引指示的符号获取第二测量值,第二符号索引用于指示该通信装置获取第二测量值的符号。
一个可能的实现方式中,该指示信息还包括第一符号索引与第二符号索引。
一个可能的实现方式中,第一测量报告还包括第二测量值与第二符号索引;第一测量值、第一符号索引、第二测量值以及第二符号索引用于第一关系的确定。
一个可能的实现方式中,第一测量报告包括第一结构与第二结构,第一结构用于承载第一测量值; 第一符号索引承载于第一结构或者第二结构。
一个可能的实现方式中,第一测量报告还包括第二符号索引与第二测量值,第一结构还用于承载第二测量值,第二符号索引承载于第一结构或者第二结构。
一个可能的实现方式中,收发单元,还用于接收来自于第二通信装置的第一信息,其用于调度第一资源,该第一资源用于第一信号的传输,该第一资源包括第一符号索引指示的符号。
一个可能的实现方式中,第一资源还包括第二符号索引指示的符号。
一个可能的实现方式中,收发单元,还用于向第二通信装置发送第二信息,其用于调度第二资源,该第二资源用于第二信号的传输。
一个可能的实现方式中,第一测量报告还包括时隙标识,该时隙标识用于指示第一信号的接收时隙。
一个可能的实现方式中,该第一信号包括第一子信号与第二子信号,第一子信号与第二子信号位于相同的时隙之中。
第五方面,提供了一种通信装置,包括处理器,该处理器用于,通过执行计算机程序或指令,或者,通过逻辑电路,使得所述通信装置执行第一方面以及第一方面的任一种可能的实现方式中任一项所述的方法;或者,使得所述通信装置执行第二方面以及第二方面的任一种可能的实现方式中任一项所述的方法。
一种可能的实现方式中,该通信装置还包括存储器,该存储器用于存储所述的计算机程序或指令。
一种可能的实现方式中,该通信装置还包括通信接口,该通信接口用于输入和/或输出信号。
第六方面,提供了一种通信装置,包括逻辑电路和输入输出接口,该输入输出接口用于输入和/或输出信号,该逻辑电路用于执行第一方面以及第一方面的任一种可能的实现方式中任一项所述的方法;或者,该逻辑电路用于执行第二方面以及第二方面的任一种可能的实现方式中任一项所述的方法。
第七方面,提供了一种计算机可读存储介质,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得第一方面以及第一方面的任一种可能的实现方式中任意一项所述的方法被执行;或者,使得第二方面以及第二方面的任一种可能的实现方式中任一项所述的方法被执行。
第八方面,提供了一种计算机程序产品,包含指令,当该指令在计算机上运行时,使得第一方面以及第一方面的任一种可能的实现方式中任意一项所述的方法被执行;或者,使得第二方面以及第二方面的任一种可能的实现方式中任一项所述的方法被执行。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得第一方面以及第一方面的任一种可能的实现方式中任意一项所述的方法被执行;或者,使得第二方面以及第二方面的任一种可能的实现方式中任一项所述的方法被执行。
第十方面,提供了一种通信系统,该通信系统包括第一通信装置与第二通信装置,该第二通信装置用于执行第一方面以及第一方面的任一种可能的实现方式中任意一项所述的方法,第一通信装置用于执行第二方面以及第二方面的任一种可能的实现方式中任意一项所述的方法。
其中,关于第二方面~第十方面的有益效果的描述可以参见关于第一方面的有益效果的描述。
附图说明
图1是本申请实施例的适用通信系统100的示意图。
图2是一种定位方法200的示意图。
图3是本申请实施例的定位方法300的交互流程示意图。
图4是第一子信号与第二子信号的配置示意图。
图5是本申请实施例的通信装置500的结构示意框图。
图6是本申请实施例的通信装置600的结构示意框图。
图7是本申请实施例的通信装置700的结构示意框图。
图8是本申请实施例的通信装置800的结构示意框图。
图9是本申请实施例的通信装置900的结构示意框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统例如新空口(new radio,NR)系统、5.5G系统或第六代(6th generation,6G)系统等5G之后演进的系统。
本申请的适用场景包括但不限于地面蜂窝通信、非陆地通信网络(non-terrestrial network,NTN)、车辆外联(vehicle-to-everything,V2X)、接入回传一体化(integrated access and backhaul,IAB),以及可重构智能表面(reconfigurable intelligent surface,RIS)通信等场景。其中,NTN系统包括非地面设备,非地面设备可作为基站,也可作为终端设备,也可以作为中继设备。非地面设备可以是无人机,热气球,低轨卫星,中轨卫星,高轨卫星、或高空通信平台(high altitude platform station,HAPS)设备等。
本申请实施例的技术方案对于同构网络与异构网络的场景均适用,同时对于传输点也无限制,可以是宏基站与宏基站、微基站与微基站和宏基站与微基站之间的多点协同传输,对FDD/TDD系统均适用。本申请实施例的技术方案不仅适用于低频场景(sub 6G),也适用于高频场景(6GHz以上),太赫兹,光通信等。本申请实施例的技术方案不仅可以适用于网络设备和终端的通信,也可以适用于网络设备和网络设备的通信,终端和终端的通信,车联网,物联网,工业互联网等的通信。
本申请实施例的技术方案可以应用于终端与单个基站连接的场景,其中,终端所连接的基站以及基站所连接的核心网络(core network,CN)为相同制式或不同制式。比如CN为5G CN,基站为5G基站,5G基站直接连接5G CN;或者CN为5G CN,基站为4G基站,4G基站直接连接5G Core;或者,CN为4G CN,基站为4G基站,4G基站直接连接4G CN;或者,CN为6G CN,基站为6G基站,6G基站直接连接6G CN。本申请实施例的技术方案也可以适用于终端与至少两个基站连接的双连接(dual connectivity,DC)场景。
本申请实施例中的终端设备可以是一种具有无线收发功能的设备,可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、客户终端设备(customer-premises equipment,CPE)、智能销售点(point of sale,POS)机、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、设备到设备通信(device-to-device,D2D)中的终端、V2X中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(telemedicine)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者5G之后演进的通信网络中的终端设备等,本申请实施例不作限制。
本申请实施例中用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备是具有无线收发功能的设备,用于与终端设备进行通信的接入网设备。接入网设备可以为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点。接入网设备也可以是具有部分或全部基站功能的设备,例如当基站采用集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)架构时,接入网设备可以包括CU和/或DU。接入网设备可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者下一代基站(gNodeB,gNB)等5G网络中的基站或者5G之后演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者第三代合作伙伴项目(the 3rd generation partnership project,3GPP)接入设备等。
本申请实施例中的网络设备还可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、 中继站、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等、NTN通信系统中的网络设备,本申请实施例不作具体限定。
本申请实施例中用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中的芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
图1是本申请实施例的适用通信系统100的示意图。如图1所示,通信系统100包括网络设备110、终端设备120以及终端设备130。本申请实施例对通信系统100所包括的终端设备与网络设备的数量不作限定。应理解,图1仅作为示例性理解,并不能限定本申请所要求的保护范围。其中,终端设备120与终端设备130可以是如上所列举的任意一个终端设备,网络设备110可以是如上所列举的任意一个网络设备。
在通信系统100中,终端设备120与终端设备130之间可以通过PC5接口进行通信,即:终端设备120与终端设备130之间能够进行SL通信。终端设备120或者终端设备130与网络设备110之间也可以通过空口(Uu)进行通信。
可选地,网络设备110还可以通过接入与移动管理功能(access and mobility management function,AMF)(图1未显示)与定位管理功能(location management function,LMF)(图1也未显示)进行连接,实现由LMF为通信系统100提供定位管理服务。
下文将对与本申请揭示的技术方案有关的技术作简短的描述。
图2是一种定位方法200的示意图。如图2所示,终端设备A在时间T1发送PRS1,终端设备B在时间T2接收到PRS1;终端设备B在时间T3发送PRS2,终端设备A在时间T4接收到PRS2。其中,上述的四个时间之间满足如下关系:T4晚于T3,T3晚于T2,T2晚于T1。
其中,终端设备A与终端设备B之间的距离D为:
D=TOF*c   (1)
公式(1)中,c用于指示无线信号的飞行速度(一般为光速),TOF用于指示终端设备A与终端设备B之间的飞行时间(time of flight,TOF)。其中,TOF为:
TOF=0.5*(Tround-Treply),Tround=(T4-T1),Treply=(T3-T2)   (2)
由于时钟漂移现象(设备的时钟晶振有误差e1,如果实际经过时间t,设备记录的时间则为t(1+e1))的存在,终端设备A与终端设备B均会对PRS的发送与接收的记录时间产生偏差。因此,TOF应表示为:
TOF=0.5*|Tround,1*(1+eA)-Treply,1*((1+eB)|
=TOF1+0.5*(Tround,1*eA-Treply,1*eB)
=TOF1+0.5*Treply,1*(eA-eB)+TOF1*eA,   (3)
其中,TOF1用于指示真实的TOF,Tround,1用于指示真实的往返时间,Treply,1用于指示真实的响应时间,eA为终端设备A的时钟晶振误差,eB为终端设备B的时钟晶振误差。
一般而言,eA为10-6量级,TOF1为纳秒级,TOF1*eA可以忽略不计。由于Treply,1为毫秒级,0.5*Treply,1*(eA-eB)会引入纳秒级别的误差(无线信号在1纳秒的时长内可以传输30厘米)。因此,基于公式(3)得到的终端设备A与终端设备B之间的距离D与终端设备A与终端设备B之间的实际距离会存在偏差。
目前,3GPP协议为RTT方案定义了测量量(UE Rx-Tx Time difference)的概念,该测量量通过间接指示收发时间的间隔来计算TOF。具体来说,终端设备B在接收到PRS1后测定PRS1的首径到达时间,并基于该首径到达时间确定PRS1的接收子帧的起始时间(TUE-RX)。然后,终端设备B找到与PRS1的接收子帧最近的一个发送子帧,并得到该发送子帧的起始时间(TUE-TX)。于是,终端设备B确定UE Rx-Tx Time difference(记为ΔtB)等于TUE-RX-TUE-TX。类似地,终端设备B向终端设备A发送PRS2,终端设备A基于PRS2确定一个新的UE Rx-Tx Time difference,记为Δt_A。此时,TOF=0.5*|ΔtA-ΔtB|。
由于时钟漂移现象,终端设备B在一个时隙内的不同符号测得的首径到达时间会有偏差。示例性 地,终端设备B在时隙#1的第二个符号测得首径到达时间#1,在第六个符号测得首径到达时间#2。虽然第六个符号与第二个符号之间仅间隔4个符号,但是由于时钟漂移现象,第六个符号与第二个符号之间实际间隔的时间并不等于4个符号的长度。终端设备B基于时隙#1的第二个符号推导得到的PRS1的接收子帧的起始时间与基于时隙#1的第六个符号推导得到的PRS1的接收子帧的起始时间会存在偏差。但是该偏差不会体现在终端设备B向终端设备A上报的测量报告(measurement report,MR)之中。因此,上述的时钟漂移现象会影响终端设备A与终端设备B之间的定位测量结果的准确性,从而会影响到终端设备A与终端设备B之间的定位精度。
鉴于上述技术问题,本申请提供一种定位方法与通信装置,能够提高定位的定位精度。
下文将结合附图对本申请实施例揭示的定位方法进行描述。
图3是本申请实施例的定位方法300的交互流程示意图。图3中的方法流程示例性地可以由第一通信装置与第二通信装置执行,或者由安装于第一通信装置与第二通信装置中的具有相应功能的模块和/或器件(例如,芯片或集成电路等)执行,本申请对此不限定。另外,图3中的方法流程也可以为第一通信装置、第二通信装置以及第三通信装置执行,或者由安装于第一通信装置、第二通信装置以及第三通信装置中的具有相应功能的模块和/或器件(例如,芯片或集成电路等)执行。为便于描述,本申请实施例以图3中的方法流程由第一通信装置与第二通信装置执行,但不限定由多个通信装置共同执行图3所示的方法的场景。其中,第一通信装置可以为终端设备或者网络设备,第二通信装置也可以为终端设备或者网络设备,本申请不限定。另外,本申请不仅适用于网络设备与终端设备之间的通信,也适用于终端设备之间的通信,还可以适用于网络设备之间的通信,或者,其他设备之间的通信等,本申请对此也不限定。如图3所示,方法300包括:
S310、第二通信装置向第一通信装置发送第一信号。
相应地,第一通信装置接收来自于第二通信装置的第一信号,其用于第一通信装置与第二通信装置之间的定位。
具体来说,第二通信装置向第一通信装置发送的第一信号是用于实现第一通信装置与第二通信装置之间的定位,本申请对第一信号的类型不做限定。
一个可能的实现方式,第一信号的类型包括PRS,或者,侧行链路定位信号(sidelink positioning reference signal,SL-PRS)等。另外,第一信号的类型还可以包括未来3GPP标准或者技术中用于实现定位的信号类型,本申请对此不做限定。
S320、第一通信装置对第一信号进行测量,得到测量报告1,其包括测量值A(譬如,第一测量值)与符号索引A(譬如,第一符号索引)。
第一通信装置可以按照现行的对第一信号进行测量的方式进行测量,也可以按照其他的方式对第一信号进行测量,本申请对此不做限定。
第一通信装置完成对第一信号的测量后,得到第一信号的测量报告1。其中,测量报告1包括测量值A与符号索引A。其中,测量值A指示第一通信装置对第一信号进行测量得到的第一测量结果。符号索引A用于指示测量值A的获取符号,换言之,符号索引A用于指示时隙A内的符号S,第一通信装置在符号S对第一信号进行测量,并得到测量值A。可选地,符号索引A用于指示第一通信装置获取测量值A的符号。
应理解,符号索引A用于指示测量值A的获取符号,可以为:第一通信装置在符号索引A所指示的符号对第一信号进行测量,得到测量值A。
一个可能的实现方式,测量报告1还可以包括时隙标识A,其用于指示第一通信装置在具体的某个时隙接收到第一信号,即:时隙标识A用于指示第一信号的接收时隙(下文用时隙A指示)。
正如前文所述,第一通信装置在时隙A内的不同符号进行测量,可以得到多个不同的首径到达时间,相应地,第一通信装置也会得到多个不同的测量值。其中,时隙A内的不同符号与不同的测量值之间的关系可以见表1。
表1

如表1所示,不同的符号索引指示不同的符号。示例性地,符号索引0指示时隙A中的第一个符号,符号索引1指示时隙A中的第二个符号,…,符号索引N指示时隙A中的第N+1个符号。其中,符号索引之间的差值可以指示各自对应的符号之间的间隔符号的数量。譬如,符号索引5与符号索引1之间的差值为4,则可以指示符号索引5指示的第六个符号与符号索引1指示的第二个符号之间的间隔符号的数量为4。另外,不同的符号索引对应不同的测量值。示例性地,符号索引0对应测量值1,符号索引1对应测量值2,…,符号索引N对应测量值n。综上,符号索引与测量值之间存在对应关系(可以见表1)。
S330、第一通信装置向第二通信装置发送测量报告1。
相应地,第二通信装置接收来自于第一通信装置发送的测量报告1。
S340、第一通信装置向第二通信装置发送第二信号,其用于第二通信装置与第一通信装置之间的定位。
相应地,第二通信装置接收来自于第一通信装置的第二信号,并对第二信号进行测量得到第二信号的测量报告2。其中,测量报告2包括测量值C(譬如,第三测量值)。
应理解,第二通信装置对第二信号进行测量的相关描述可以参见前述的第一通信装置对第一信号进行测量的描述,在此不再赘述。
可以理解的是,第二通信装置对第二信号进行测量,得到测量报告2。举例来说,测量报告2可以不包括符号索引以及时隙标识等,其可以仅包括测量值C,本申请对此不做限定。
S350、第二通信装置根据第一关系、测量值A、测量值C以及符号索引A确定第一通信装置与第二通信装置之间的飞行时间。
应理解,第一关系用于指示第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系。其中,第一关系的表达形式可以为:[(1+eA)/(1+eB)]或者[Ta/Tb]等,本申请对此不做限定。
一个示例中,第一关系是由第二通信装置基于与第一通信装置此前的多次定位测量确定的。另一个示例中,第一关系是由第二通信装置根据第一通信装置上报的多个测量值与多个符号索引计算确定的。其中,关于后一个示例将在后文做进一步的描述。
在完成对第二信号的测量后,第二通信装置得到第二信号的测量报告2,并结合第一通信装置上报的第一信号的测量报告1,基于如下公式(4)确定第一通信装置与第二通信装置之间的距离D。
其中,Treply是第二通信装置根据测量报告1得到的,Tround是第二通信装置根据测量报告2得到的。由公式(4)可知,经由公式(4)得到的TOF只引入了eA*TOF1的误差。由于eA为10-6量级,TOF1为纳秒级,TOF1·eA可以忽略不计。因此,相比于公式(3),公式(4)得到的TOF的误差更小,所以能够提高定位的定位精度。
一种可能的实现方式,第二通信装置已经获取第一通信装置的时钟晶振误差与第一通信装置的时钟晶振误差之间的关系那么就可以利用将公式(4)中的Treply转换为第二通信装置的时钟晶振下对应的时间,从而得到定位误差更小的定位结果。
另一种可能的实现方式,第二通信装置利用前述的测量报告1中携带多个测量值的方式推算
又一个可能的实现方式,本申请也支持通过多个测量报告1(每个测量报告1中只有一个测量值)获取其中,可以指代前述的第一关系。
一个可能的实现方式中,S350中的TOF可以满足:
在公式(5)中,|ΔtA|指示测量值C,|ΔtB|指示测量值A。其中,Δt为符号索引A与测量值C所对应的符号索引分别确定的符号之间的时间间隔。其中,第二通信装置能够确定测量值C所对应的符 号,因此,第二通信装置可以根据测量值A、测量值C、符号索引A以及测量值C所对应的符号索引确定第一通信装置与第二通信装置之间的飞行时间。
具体来说,第二通信装置获取测量值A的测量符号信息后,其根据第一关系降低由第一通信装置的时钟漂移现象对定位测量结果的影响,可以确定第一通信装置的误差较小的Treply,最终确定第一通信装置与第二通信装置之间的误差较小的飞行时间。
通过在测量报告中增加符号索引,第二通信装置能够获取第一通信装置获取第一测量值的符号位置的信息,便于在确定第一通信装置与第二通信装置之间的飞行时间时,根据第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差的关系,将第一测量值转换为第二通信装置对应的测量结果,从而降低时钟漂移误差对定位测量结果的影响,能够提升定位的定位精度。
在已获取两个终端设备的时钟晶振误差之间的关系的情况下,若能够获取终端设备B实际测量的起始时间,终端设备A可以降低这几个间隔符号所引起的时钟漂移误差,从而提高定位的定位精度。
一个可能的实现方式,测量报告1还包括测量值B(譬如,第二测量值)与符号索引B(譬如,第二符号索引)。具体地,第一通信装置向第二通信装置上报的测量报告1可以包括多个测量值与多个符号索引。为便于描述,本申请以测量报告1包括测量值A、符号索引A、测量值B以及符号索引B为例进行描述,但不限定测量报告1包括更多数量的测量值与符号索引等场景。
应理解,第一通信装置上报的多个测量值与多个符号索引能够用于第二通信装置确定第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系。示例性地,第一通信装置在时隙A内的第一个符号与第二个符号分别对第一信号进行测量,分别得到测量值1与测量值2。其中,每个测量值与一个符号索引关联。此时,测量报告1的形式可以如表2所示。
表2
如表2所示,第一通信装置在符号索引0指示的第一个符号对第一信号进行测量,得到测量值1;第一通信装置在符号索引1指示的第二个符号对第一信号进行测量,得到测量值2。
第二通信装置根据第一通装置上报的测量值1、测量值2、符号索引0以及符号索引1确定第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系。
示例性地,假设符号索引1和符号索引2之间的间隔为时间t,测量值1对应的时间为时间t1,测量值2对应的时间为时间t2。第一通信装置的时钟晶振误差为eA,第二通信装置的时钟晶振误差为eB。那么,第一通信装置的时钟晶振误差eA与第二通信装置的时钟晶振误差eB之间的关系为:
其中,对于第二通信装置而言,第二通信装置仅向第一通信装置发送PRS1(为第一信号),第一通信装置在不同的符号对PRS1进行两次测量,则等同于第二通信装置分别在符号索引1所指示的符号向第一通信装置发送PRS11,在符号索引2所指示的符号向第一通信装置发送PRS12。相应地,第二通信装置需要记录的PRS11与PRS12之间的时间间隔的真实时间等于公式(6)中的左侧表达式,第一通信装置需要记录的PRS11与PRS12之间的时间间隔的真实时间等于公式(6)中的右侧表达式。
由于时钟晶振误差的影响,第二通信装置所记录的PRS11与PRS12之间的误差间隔时间可以等同于t2与t1的差值以及与t的和值。因此,在PRS11与PRS12之间的真实时间间隔相同时,则可以得出公式(6)。
一个可能的实现方式,在S310之前,方法300还包括:
S300a、第二通信装置向第一通信装置发送指示信息1,其用于指示在符号索引A指示的符号获取测量值A,在符号索引B指示的符号获取测量值B。
如此,第一通信装置根据第二通信装置的指示信息1向第二通信装置上报测量值A、符号索引A、测量值B以及符号索引B。如此,便于第二通信装置根据第一通信装置上报的多个测量值与多个符号索引确定第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系。相应地,第二通信装置根据第一通信装置上报的多个测量值与多个符号索引确定第一通信装置的时钟晶振误差与第二 通信装置的时钟晶振误差之间的关系。具体可以见公式(5),在此不再赘述。
一个可能的实现方式,指示信息1包括:无线资源控制(radio resource control,RRC)、介质访问控制层控制单元(medium access control-control element,MAC CE)或者侧行链路控制信息(side-link control information,SCI)等中的任意一项。其中,指示信息1的作用是用于触发第一通信装置在多个符号位置进行对第一信号的测量。其中,该多个符号的位置可以由第二通信装置通过指示信息1指示。
一个可能的实现方式,指示信息1还包括符号索引A与符号索引B。换言之,第二通信装置指示第一通信装置在符号索引A所指示的符号进行测量并获取测量值A,在符号索引B所指示的符号进行测量并获取测量值B。如此,第一通信装置按照指示信息1携带的符号索引A指示的符号与符号索引B指示的符号分别进行测量,并按照符号索引的顺序依次上报测量值A与测量值B。如此,第一通信装置在第二通信装置指示的符号位置对第一信号进行测量,并得到两个测量值。
可选地,指示信息1携带符号索引A与符号索引B时,测量报告1可以包括符号索引A与符号索引B,也可以不包括符号索引A与符号索引B,本申请对此不做限定。
一个可能的实现方式,在S310之前,方法300还包括:
S300b、第二通信装置向第一通信装置发送信息1(譬如,第一信息),其用于调度第一资源,第一资源用于第一信号的传输。其中,第一资源包括符号索引A指示的符号。
具体来说,第二通信装置根据资源池的配置确定用于传输第一信号的第一资源,并向第一通信装置发送信息1,其用于指示传输第一信号的第一资源。
一个可能的实现方式,第二通信装置向第一通信装置指示上报多个符号索引以及多个测量值时,第一资源还包括符号索引B指示的符号。如此,便于第一通信装置在符号索引A与符号索引B分别指示的符号位置对第一信号进行测量,得到测量值A与测量值B。
相应地,第二通信装置向第一通信装置发送第一信号。具体地,第二通信装置可以在第一资源向第一通信装置发送第一信号。
应理解,本申请对S300b与S300a之间的先后顺序不做限定。为便于描述,本申请以S300a在S300b之后为例进行描述。
一个可能的实现方式,方法300还包括:
S340a、第一通信装置向第二通信装置发送信息2(譬如,第二信息),其用于调度第二资源,该第二资源用于第二信号的传输。
相应地,第二通信装置接收来自于第一通信装置发送的信息2,并基于信息2确定第一通信装置向第二通信装置传输第二信号的第二资源。
可以理解的是,S340a发生在S340之前。另外,本申请对S340a的进行顺序与S330的进行顺序之间的先后顺序不做限定。
一个可能的实现方式,测量报告1包括第一结构与第二结构。其中,第一结构用于承载测量值A,第二结构用于承载时隙标识。
一个可能的实现方式,测量报告1中的第一结构为nr-UE-RxTxTimeDiff-r16,第二结构为nr-TimeStamp-r16。其中,第一结构与第二结构的具体形式可以参见现有标准,本申请对此不作赘述。
此外,测量报告1中的符号索引A可以承载于第一结构,即符号索引A承载于nr-UE-RxTxTimeDiff-r16,或者,符号索引A承载于nr-TimeStamp-r16。若测量报告1还包括测量值B与符号索引B,则测量值B承载于第一结构,符号索引B既可以承载于第一结构,也可以承载于第二结构。如此,可以实现与现有的测量报告的兼容。
一个可能的实现方式,第一信号包括多个子信号,譬如,第一信号包括第一子信号与第二子信号。其中,该多个子信号位于相同的时隙之中。
示例性地,第一信号包括第一子信号与第二子信号,第一子信号与第二子信号各自占用不同的时频资源。关于第一子信号与第二子信号的描述可以参见图4。
图4是第一子信号与第二子信号的配置示意图。如图4所示,第一信号占用12个子载波与8个符号。其中,第一子信号占用的时频资源为前4个符号以及12个子载波,第二子信号占用的时频资源为后四个符号以及12个子载波。其中,每个斜杠纹理的方框表示用于传输定位测量信号的时频资源,空白方框表示不用于传输定位测量信号的时频资源。
具体来说,第一信号采用多个子信号的配置形式时,本申请支持第一通信装置在向第二通信装置上报测量报告1时,测量报告1包括每个子信号分别对应的测量值。其中,测量报告1还可以包括测量值对应的符号索引和/或子信号索引。
一个可能的实现方式中,若第一信号满足疏型(comb)4的配置以及第一信号所占用的符号数量为8,则第一子信号包括前四个符号,第二子信号包括后四个符号。其中,关于comb4的描述可以参见现有技术,本申请对此不再赘述。
一个可能的实现方式,本申请支持测量报告1通过按顺序填放每个子信号分别对应的测量值的方式实现不包括符号索引和/或子信号索引。如此,可以节约信令开销。
应理解,图4所示的内容仅作为示例性理解,不作为最终限定。
以上描述了本申请实施例的方法实施例,下面对相应的装置实施例进行介绍。
为了实现上述本申请实施例提供的方法中的各功能,终端、网络设备均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
在本申请实施例中,用于执行收发功能与处理功能的通信装置可以是不同的通信装置。譬如,第二通信装置向第一通信装置发送第一信号,第二通信装置接收第一通信装置发送的第一信号的测量报告,第三通信装置根据第一关系、测量值A以及符号索引A确定第一通信装置与第二通信装置之间的飞行时间。为便于描述,本申请实施例以第二通信装置同时执行收发功能与处理功能为例进行描述,但不限定由第二通信装置执行收发功能以及第三通信装置执行处理功能的场景。在此做统一性说明。
图5是本申请实施例的通信装置500的示意性框图。通信装置500包括处理器510和通信接口520,处理器510和通信接口520通过总线530相互连接。图5所示的通信装置500可以是第一通信装置,也可以是第二通信装置。
可选地,通信装置500还包括存储器540。
存储器540包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器540用于相关指令及数据。
处理器510可以是一个或多个中央处理器(central processing unit,CPU),在处理器510是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
当通信装置500是第一通信装置时,处理器510用于读取存储器540中存储的计算机程序或指令,示例性地,执行以下操作:接收来自于第二通信装置的第一信号,其用于第一通信装置与第二通信装置之间的定位;对第一信号进行测量,得到第一信号的测量报告1,测量报告1包括测量值A与符号索引A,符号索引A用于指示测量值A的获取符号;向第二通信装置发送测量报告1;向第二通信装置发送第二信号,其用于第一通信装置与第二通信装置之间的定位。
又示例性地,可以执行以下操作:接收指示信息1,指示信息1用于指示第一通信装置在符号索引A指示的符号获取测量值A,以及,在符号索引B指示的符号获取测量值B。
又示例性地,可以执行以下操作:接收来自于第二通信装置的信息1,信息1用于调度第一资源,第一资源用于第一信号的传输,第一资源包括符号索引A指示的符号。
上述所述内容仅作为示例性描述。通信装置500是第一通信装置时,其将负责执行前述方法实施例中与第一通信装置相关的方法或者步骤。另外,第一通信装置可以是终端设备,也可以是网络设备。
当通信装置500是第二通信装置时,处理器510用于读取存储器540中存储的计算机程序或指令,示例性地,执行以下操作:向第一通信装置发送第一信号,其用于第一通信装置与第二通信装置之间的定位;接收来自于第一通信装置的第一信号的测量报告1,测量报告1包括测量值A与符号索引A,符号索引A用于指示测量值A的获取符号;接收来自于第一通信装置的第二信号,其用于第二通信装置与第一通信装置之间的定位;对第二信号进行测量,得到第二信号的测量报告2,其包括测量值C;根据第一关系、测量值A、测量值C以及符号索引A确定第一通信装置与第二通信装置之间的飞行时间;第一关系用于指示第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系。
又示例性地,可以执行以下操作:向第一通信装置发送指示信息1,指示信息1用于指示第一通信装置在符号索引A指示的符号获取测量值A,以及,在符号索引B指示的符号获取测量值B。
又示例性地,可以执行以下操作:向第一通信装置发送信息1,其用于调度第一资源,该第一资源用于第一信号的传输,第一资源包括符号索引A指示的符号。
上述所述内容仅作为示例性描述。该通信装置500是第二通信装置时,其将负责执行前述方法实施例中与第二通信装置相关的方法或者步骤。另外,第二通信装置可以是终端设备,也可以是网络设备。
上述描述仅是示例性描述。具体内容可以参见上述方法实施例所示的内容。另外,图5中的各个操作的实现还可以对应参照图3至图4所示的方法实施例的相应描述。
图6是本申请实施例的通信装置600的示意性框图。通信装置600可以为上述实施例中的第一通信装置或者第二通信装置,也可以为第一通信装置或者第二通信装置中的芯片或模块,用于实现上述实施例涉及的方法。通信装置600包括收发单元610与处理单元620。下面对该收发单元610与处理单元620进行示例性地介绍。
收发单元610可以包括发送单元和接收单元,分别用于实现上述方法实施例中发送或接收的功能;还可以进一步包括处理单元,用于实现除发送或接收之外的功能。
示例性地,通信装置600为第一通信装置时,该收发单元610用于接收来自于第二通信装置的第一信号,第一信号用于第一通信装置与第二通信装置之间的定位;处理单元620,用于对第一信号进行测量,得到第一信号的测量报告1;收发单元610,还用于向第二通信装置发送测量报告1,测量报告1包括测量值A与符号索引A,符号索引A用于指示测量值A的获取符号;收发单元610,还用于向第二通信装置发送第二信号,其用于第二通信装置与第一通信装置之间的定位。
可选地,通信装置600还包括存储单元630,其用于存储用于执行前述方法的程序或者代码。
上述所述内容仅作为示例性描述。通信装置600是第一通信装置时,其将负责执行前述方法实施例中与第一通信装置相关的方法或者步骤。
示例性地,通信装置600为第二通信装置时,该收发单元610用于向第一通信装置发送第一信号,第一信号用于第一通信装置与第二通信装置之间的定位;收发单元610,还用于向接收来自于第一通信装置的第一信号的测量报告1,测量报告1包括测量值A与符号索引A,符号索引A用于指示测量值A的获取符号;收发单元610,还用于接收来自于第一通信装置的第二信号,其用于第一通信装置与第二通信装置之间的定位;处理单元620,用于对第二信号进行测量,得到第二信号的测量报告2,其包括测量值C;处理单元620用于根据第一关系、测量值A、测量值C以及符号索引A确定第一通信装置与第二通信装置之间的飞行时间;第一关系用于指示第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系。
可选地,通信装置600还包括存储单元630,其用于存储用于执行前述方法的程序或者代码。
上述所述内容仅作为示例性描述。通信装置600是第二通信装置时,其将负责执行前述方法实施例中与第二通信装置相关的方法或者步骤。
另外,图6的各个操作的实现还可以对应参照上述实施例所示的方法相应描述,在此不再赘述。
图5和图6所示的装置实施例是用于实现前述方法实施例图3和图4所述的内容的。因此,图5和图6所示装置的具体执行步骤与方法可以参见前述方法实施例所述的内容。
应理解,上述的收发单元可以包括发送单元与接收单元。发送单元用于执行通信装置的发送动作,接收单元用于执行通信装置的接收动作。为便于描述,本申请实施例将发送单元与接收单元合为一个收发单元。在此做统一说明,后文不再赘述。
图7是本申请实施例的通信装置700的示意图。通信装置700可用于实现上述方法中第一通信装置或者第二通信装置的功能。通信装置700可以是第一通信装置或者第二通信装置中的芯片。
通信装置700包括:输入输出接口720和处理器710。输入输出接口720可以是输入输出电路。处理器710可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。其中,输入输出接口720用于信号或数据的输入或输出。
举例来说,通信装置700为第一通信装置时,输入输出接口720用于接收来自于第二通信装置的第一信号,第一信号用于第一通信装置与第二通信装置之间的定位。输入输出接口720还用于向第二 通信装置发送测量报告1,测量报告1包括测量值A与符号索引A,符号索引A用于指示测量值A的获取符号。输入输出接口720还用于向第二通信装置发送第二信号,其用于第二通信装置与第一通信装置之间的定位。其中,处理器710用于对第一信号进行测量,得到第一信号的测量报告1。
举例来说,通信装置700为第二通信装置时,输入输出接口720用于向第一通信装置发送第一信号,第一信号用于第一通信装置与第二通信装置之间的定位。输入输出接口720还用于接收来自于第一通信装置的测量报告1,测量报告1包括测量值A与符号索引A,符号索引A用于指示测量值A的获取符号。输入输出接口720还用于接收来自于第一通信装置的第二信号,其用于第一通信装置与第二通信装置之间的定位。处理器710用于对第二信号进行测量,得到第二信号的测量报告2,其包括测量值C。处理器710还用于根据第一关系、测量值A、测量值C以及符号索引A确定第一通信装置与第二通信装置之间的飞行时间;第一关系用于指示第一通信装置的时钟晶振误差与第二通信装置的时钟晶振误差之间的关系。
一种可能的实现中,处理器710通过执行存储器中存储的指令,以实现网络设备或终端设备实现的功能。
可选的,通信装置700还包括存储器。
可选的,处理器和存储器集成在一起。
可选的,存储器在通信装置700之外。
一种可能的实现中,处理器710可以为逻辑电路,处理器710通过输入输出接口720输入/输出消息或信令。其中,逻辑电路可以是信号处理器、芯片,或其他可以实现本申请实施例方法的集成电路。
上述对于图7的装置的描述仅是作为示例性描述,该装置能够用于执行前述实施例所述的方法,具体内容可以参见前述方法实施例的描述,在此不再赘述。
图8是本申请实施例的通信装置800的示意框图。通信装置800可以是网络设备也可以是芯片。该通信装置800可以用于执行上述图3所示的方法实施例中由第一通信装置所执行的操作。
当通信装置800为网络设备(第一通信装置或者第二通信装置为网络设备)时,例如为基站。图8示出了一种简化的基站结构示意图。基站包括810部分、820部分以及830部分。810部分主要用于基带处理,对基站进行控制等;810部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。820部分主要用于存储计算机程序代码和数据。830部分主要用于射频信号的收发以及射频信号与基带信号的转换;830部分通常可以称为收发模块、收发机、收发电路、或者收发器等。830部分的收发模块,也可以称为收发机或收发器等,其包括天线833和射频电路(图中未示出),其中射频电路主要用于进行射频处理。可选地,可以将830部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即830部分包括接收机832和发射机831。接收机也可以称为接收模块、接收器、或接收电路等,发送机可以称为发射模块、发射器或者发射电路等。
810部分与820部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,830部分的收发模块用于执行图3所示实施例中由网络设备执行的收发相关的过程。810部分的处理器用于执行图3所示实施例中由网络设备执行的处理相关的过程。
另一种实现方式中,810部分的处理器用于执行图3所示实施例中由通信设备执行的处理相关的过程。
另一种实现方式中,830部分的收发模块用于执行图3所示实施例中由通信设备执行的收发相关的过程。
应理解,图8仅为示例而非限定,上述所包括的处理器、存储器以及收发器的网络设备可以不依赖于图5至图7所示的结构。
当通信装置800为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器、或者微处理器、或者集成电路。上述方法实施例 中网络设备的发送操作可以理解为芯片的输出,上述方法实施例中网络设备的接收操作可以理解为芯片的输入。
图9是本申请实施例的通信装置900的示意框图。通信装置900可以为终端设备、终端设备的处理器、或芯片。通信装置900可以用于执行上述方法实施例中由终端设备或通信设备所执行的操作。
当通信装置900为终端设备(第一通信装置或者第二通信装置为终端设备)时,图9示出了一种简化的终端设备的结构示意图。如图9所示,终端设备包括处理器、存储器、以及收发器。存储器可以存储计算机程序代码,收发器包括发射机931、接收机932、射频电路(图中未示出)、天线933以及输入输出装置(图中未示出)。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置。例如,触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器、处理器和收发器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发模块,将具有处理功能的处理器视为终端设备的处理模块。
如图9所示,终端设备包括处理器910、存储器920和收发器930。处理器910也可以称为处理单元,处理单板,处理模块、处理装置等,收发器930也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器930中用于实现接收功能的器件视为接收模块,将收发器930中用于实现发送功能的器件视为发送模块,即收发器930包括接收器和发送器。收发器有时也可以称为收发机、收发模块、或收发电路等。接收器有时也可以称为接收机、接收模块、或接收电路等。发送器有时也可以称为发射机、发射模块或者发射电路等。
例如,在一种实现方式中,处理器910用于执行图3所示的实施例中终端设备侧的处理动作,收发器930用于执行图3中终端设备侧的收发动作。
例如,在一种实现方式中,处理器910用于执行图3所示的实施例中终端设备侧的处理动作,收发器930用于执行图3中终端设备侧的收发动作。
应理解,图9仅为示例而非限定,上述的包括收发模块和处理模块的终端设备可以不依赖于图5至图7所示的结构。
当该通信装置900为芯片时,该芯片包括处理器、存储器和收发器。其中,收发器可以是输入输出电路或通信接口;处理器可以为该芯片上集成的处理模块或者微处理器或者集成电路。上述方法实施例中终端设备的发送操作可以理解为芯片的输出,上述方法实施例中终端设备的接收操作可以理解为芯片的输入。
本申请还提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各示例中的方法。
本申请还提供另一种芯片,包括:输入接口、输出接口、处理器,所述输入接口、输出接口以及所述处理器之间通过内部连接通路相连,所述处理器用于执行存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各示例中的方法。可选地,该芯片还包括存储器,该存储器用于存储计算机程序或者代码。
本申请还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及网络设备或者终端设备的方法和功能。
在本申请的另一实施例中提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上 运行时,前述实施例的方法得以实现。
本申请还提供一种计算机程序,当该计算机程序在计算机中被运行时,前述实施例的方法得以实现。
在本申请的另一实施例中提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时实现前述实施例所述的方法。
在本申请实施例的描述中,除非另有说明,“多个”是指二个或多于二个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。
本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以二个或二个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种定位方法,其特征在于,包括:
    向第一通信装置发送第一信号,所述第一信号用于所述第一通信装置与第二通信装置之间的定位;
    接收来自于所述第一通信装置的所述第一信号的第一测量报告,所述第一测量报告包括第一测量值与第一符号索引,所述第一符号索引用于指示所述第一通信装置获取所述第一测量值的符号;
    接收来自于所述第一通信装置的第二信号,所述第二信号用于所述第一通信装置与所述第二通信装置之间的定位;
    对所述第二信号进行测量,得到所述第二信号的第二测量报告,所述第二测量报告包括第三测量值;
    根据第一关系、所述第一测量值、所述第三测量值以及所述第一符号索引,确定所述第一通信装置与所述第二通信装置之间的飞行时间,所述第一关系用于指示所述第一通信装置的时钟晶振误差与所述第二通信装置的时钟晶振误差之间的关系。
  2. 一种定位方法,其特征在于,包括:
    接收来自于第二通信装置的第一信号,所述第一信号用于第一通信装置与所述第二通信装置之间的定位;
    对所述第一信号进行测量,得到所述第一信号的第一测量报告,所述第一测量报告包括第一测量值与第一符号索引,所述第一符号索引用于指示所述第一通信装置获取所述第一测量值的符号;
    向所述第二通信装置发送所述第一测量报告;
    向所述第二通信装置发送第二信号,所述第二信号用于所述第一通信装置与所述第二通信装置之间的定位。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述第一通信装置发送指示信息,
    所述指示信息用于指示所述第一通信装置在所述第一符号索引指示的符号获取所述第一测量值,以及,在第二符号索引指示的符号获取第二测量值,所述第二符号索引用于指示所述第一通信装置获取所述第二测量值的符号。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收来自于所述第二通信装置的指示信息,
    所述指示信息用于指示所述第一通信装置在所述第一符号索引指示的符号获取所述第一测量值,以及,在第二符号索引指示的符号获取第二测量值,所述第二符号索引用于指示所述第一通信装置获取所述第二测量值的符号。
  5. 根据权利要求3或4所述的方法,其特征在于,所述指示信息包括所述第一符号索引与所述第二符号索引。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,
    所述第一测量报告还包括所述第二测量值与所述第二符号索引;
    所述第一测量值、所述第一符号索引、所述第二测量值以及所述第二符号索引用于所述第一关系的确定。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,
    所述第一测量报告包括第一结构与第二结构,
    所述第一结构用于承载所述第一测量值;以及
    所述第一符号索引承载于所述第一结构或者所述第二结构。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一测量报告还包括所述第二符号索引与所述第二测量值,
    所述第一结构还用于承载所述第二测量值,以及
    所述第二符号索引承载于所述第一结构或者所述第二结构。
  9. 根据权利要求1、3、5至8中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一通信装置发送第一信息,
    所述第一信息用于调度第一资源,所述第一资源用于所述第一信号的传输,所述第一资源包括所述第一符号索引指示的符号。
  10. 根据权利要求2、4至8中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自于所述第二通信装置的第一信息,
    所述第一信息用于调度第一资源,所述第一资源用于所述第一信号的传输,所述第一资源包括所述第一符号索引指示的符号。
  11. 根据权利要求1、3、5至9中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自于所述第一通信装置的第二信息,
    所述第二信息用于调度第二资源,所述第二资源用于所述第二信号的传输。
  12. 根据权利要求2、4至8、10中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二通信装置发送第二信息,所述第二信息用于调度第二资源,所述第二资源用于所述第二信号的传输。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,
    所述第一测量报告还包括时隙标识,所述时隙标识用于指示所述第一信号的接收时隙。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,
    所述第一信号包括第一子信号与第二子信号,所述第一子信号与所述第二子信号位于相同的时隙之中。
  15. 一种通信装置,其特征在于,包括处理器,所述处理器用于,通过执行计算机程序或指令,或者,通过逻辑电路,使得所述通信装置执行权利要求1-14中任一项所述的方法。
  16. 根据权利要求15所述的通信装置,其特征在于,所述通信装置还包括存储器,所述存储器用于存储所述计算机程序或指令。
  17. 根据权利要求15或16所述的通信装置,其特征在于,所述通信装置还包括通信接口,所述通信接口用于输入和/或输出信号。
  18. 一种通信装置,其特征在于,包括逻辑电路和输入输出接口,所述输入输出接口用于输入和/或输出信号,所述逻辑电路用于执行权利要求1-14中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得权利要求1-14中任意一项所述的方法被执行。
  20. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得权利要求1-14中任意一项所述的方法被执行。
  21. 一种计算机程序,其特征在于,当其在计算机上运行时,使得权利要求1-14中任意一项所述的方法被执行。
  22. 一种通信系统,其特征在于,所述通信系统包括第一通信装置与第二通信装置,
    所述第一通信装置用于执行2、4-8、10、12-14中任一项所述的方法,以及,
    所述二通信装置用于执行1、3、5-9、11、13-14中任一项所述的方法。
PCT/CN2023/116934 2022-10-09 2023-09-05 定位方法与通信装置 WO2024078196A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211231689 2022-10-09
CN202211231689.X 2022-10-09
CN202211457230.1 2022-11-21
CN202211457230.1A CN117858001A (zh) 2022-10-09 2022-11-21 定位方法与通信装置

Publications (1)

Publication Number Publication Date
WO2024078196A1 true WO2024078196A1 (zh) 2024-04-18

Family

ID=90540616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116934 WO2024078196A1 (zh) 2022-10-09 2023-09-05 定位方法与通信装置

Country Status (2)

Country Link
CN (1) CN117858001A (zh)
WO (1) WO2024078196A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150350936A1 (en) * 2014-06-02 2015-12-03 Intel IP Corporation APPARATUS, SYSTEM AND METHOD OF PERFORMING A TIME OF FLIGHT (ToF) MEASUREMENT
WO2018106467A1 (en) * 2016-12-05 2018-06-14 Intel IP Corporation Vehicle-to-everything positioning technique
WO2021097598A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 侧行定位方法和装置
CN112970275A (zh) * 2018-11-02 2021-06-15 鸿颖创新有限公司 下一代无线网络侧链路测量报告的方法和用户设备
WO2021167393A1 (ko) * 2020-02-20 2021-08-26 엘지전자 주식회사 사이드링크 측위 방법 및 이를 위한 장치
US20220150863A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Sidelink positioning in presence of clock error

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150350936A1 (en) * 2014-06-02 2015-12-03 Intel IP Corporation APPARATUS, SYSTEM AND METHOD OF PERFORMING A TIME OF FLIGHT (ToF) MEASUREMENT
WO2018106467A1 (en) * 2016-12-05 2018-06-14 Intel IP Corporation Vehicle-to-everything positioning technique
CN112970275A (zh) * 2018-11-02 2021-06-15 鸿颖创新有限公司 下一代无线网络侧链路测量报告的方法和用户设备
WO2021097598A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 侧行定位方法和装置
WO2021167393A1 (ko) * 2020-02-20 2021-08-26 엘지전자 주식회사 사이드링크 측위 방법 및 이를 위한 장치
US20220150863A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Sidelink positioning in presence of clock error

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on solutions to support SL positioning", 3GPP DRAFT; R1-2203164, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052143982 *

Also Published As

Publication number Publication date
CN117858001A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN109151922A (zh) 测量方法、测量配置方法和相关设备
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
TW202239230A (zh) 通訊方法以及通訊裝置
WO2019214333A1 (zh) 通信方法及装置
WO2021056703A1 (zh) 信息更新方法、设备及系统
WO2022141219A1 (zh) 一种定位方法及相关装置
KR102298616B1 (ko) 비-트리거-기반 레인징을 위한 절전
CN111372308A (zh) 一种通信方法及装置
WO2024078196A1 (zh) 定位方法与通信装置
CN112399411B (zh) 一种认证接入网设备的方法以及相关设备
WO2023125033A1 (zh) 获取(或提供)时钟同步信息的方法以及通信装置
WO2022237659A1 (zh) 通信方法以及通信装置
WO2022160298A1 (zh) 时间同步方法、装置和系统
WO2024131674A1 (zh) 通信方法与通信装置
WO2020199046A1 (zh) 一种Wi-Fi通信方法及装置
WO2024140462A1 (zh) 通信方法和通信装置
WO2024032280A1 (zh) 定位配置方法、装置及存储介质
WO2024067020A1 (zh) 信息传输的方法与通信装置
WO2024114189A1 (zh) 一种定位方法及通信装置
WO2024187422A1 (zh) 感知方法和装置
WO2023065924A1 (zh) 测量方法、测量配置方法以及相关通信装置
WO2024145864A1 (zh) 数据处理的方法与通信装置
WO2023143114A1 (zh) 通信方法和通信装置
WO2023174131A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876401

Country of ref document: EP

Kind code of ref document: A1