WO2023123080A1 - 侧行通信方法和设备 - Google Patents

侧行通信方法和设备 Download PDF

Info

Publication number
WO2023123080A1
WO2023123080A1 PCT/CN2021/142588 CN2021142588W WO2023123080A1 WO 2023123080 A1 WO2023123080 A1 WO 2023123080A1 CN 2021142588 W CN2021142588 W CN 2021142588W WO 2023123080 A1 WO2023123080 A1 WO 2023123080A1
Authority
WO
WIPO (PCT)
Prior art keywords
sidelink
resource pool
prs
sideline
prs resource
Prior art date
Application number
PCT/CN2021/142588
Other languages
English (en)
French (fr)
Inventor
张世昌
赵振山
马腾
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/142588 priority Critical patent/WO2023123080A1/zh
Publication of WO2023123080A1 publication Critical patent/WO2023123080A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of communication, and more specifically, to a method and device for lateral communication.
  • Sidelink (Sidelink, SL) communication includes device-to-device (Device to Device, D2D) communication. Positioning based on side link (can be referred to as side link) includes "NR positioning enhancement” and "in-coverage, partial coverage and out-of-coverage NR positioning use cases and requirements”. More accurate positioning is required on the sidelink.
  • Embodiments of the present application provide a sidewalk communication method and device, which can improve the accuracy of sidewalk-based positioning.
  • An embodiment of the present application provides a lateral communication method, including: configuring related information for a lateral positioning reference signal PRS.
  • An embodiment of the present application provides a communication device, including: a configuration unit configured to configure related information for a sidelink positioning reference signal PRS.
  • An embodiment of the present application provides a communications device, including a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, so that the communication device executes the above-mentioned lateral communication method.
  • An embodiment of the present application provides a chip configured to implement the above-mentioned lateral communication method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned lateral communication method.
  • An embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program, and when the computer program is run by a device, the device is made to execute the above-mentioned lateral communication method.
  • An embodiment of the present application provides a computer program product, including computer program instructions, where the computer program instructions cause a computer to execute the above sidewalk communication method.
  • An embodiment of the present application provides a computer program, which, when running on a computer, causes the computer to execute the above sidewalk communication method.
  • the accuracy of positioning based on the lateral positioning can be improved.
  • Fig. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Fig. 2a is a schematic diagram of a SFN cycle in LTE-V2X.
  • Fig. 2b is a schematic diagram of determining resource pools in remaining subframes in LTE-V2X.
  • Fig. 3 is a schematic diagram of multiplexing methods of PSCCH and PSSCH in LTE-V2X and NR-V2X systems.
  • Fig. 4 is a schematic diagram of PSCCH and PSSCH resource pools in NR-V2X.
  • FIG. 5 is a schematic structural diagram of a time slot in an NR system.
  • Fig. 6 is a schematic diagram of part of symbols in a time slot being used for sidelink transmission.
  • Fig. 7 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of configuring different OFDM symbols in the same time slot as different resource pools.
  • FIG. 9 is a schematic diagram of frequency domain resources not used for synchronization signals in the sideline BWP occupied by the sideline PRS resource pool.
  • Fig. 10 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent ( Standalone, SA) network deployment scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA Standalone
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to Licensed spectrum, where the licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • FIG. 1 exemplarily shows a communication system 100 .
  • the communication system includes a network device 110 and two terminal devices 120 .
  • the communication system 100 may include multiple network devices 110, and each network device 110 may include other numbers of terminal devices 120 within the coverage area, which is not limited in this embodiment of the present application.
  • the communication system 100 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks for communicating with access network devices.
  • the access network device may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or an authorized auxiliary access long-term evolution (LAA- Evolved base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also called “small base station”), pico base station, access point (access point, AP), Transmission point (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolved base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include network equipment and terminal equipment with communication functions. It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, an indirect indication, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • the technical solutions of the embodiments of the present application may be applied to sidelink (sidelink for short) communication.
  • the way of SL communication may include V2X.
  • V2X includes LTE-V2X and NR-V2X, etc.
  • the following introduces several methods for determining the resource pool of the lateral communication.
  • a resource pool is determined within a system frame number (System Frame Number, SFN) or direct frame number (Direct Frame Number, DFN) period.
  • SFN System Frame Number
  • DFN Direct Frame Number
  • One SFN period includes 10240 subframes, corresponding to subframes 0, 1, 2...10239 respectively.
  • the number of remaining subframes can be divisible by L bitmap .
  • bitmap Repeat periodically in the remaining subframes. A bit of 1 indicates that the subframe corresponding to the bit in the remaining subframes belongs to the resource pool, otherwise it does not belong to the resource pool.
  • one SFN period (or DFN period) includes 10240 subframes (subframe), and the period of the synchronization signal is 160ms (milliseconds).
  • each bitmap period includes 3 subframes, so a total of 3033 subframes belong to the resource pool in one SFN period.
  • the first SFN period and the second SFN period respectively have 3033 subframes belonging to the resource pool.
  • the delay of NR-V2X system is lower than that of LTE-V2X system. Therefore, the physical sidelink control channel (Physical Sidelink Control Channel, PSCCH) and physical sidelink shared channel (Physical Sidelink Shared Channel, PSSCH) multiplexing method of the NR-V2X system has been redesigned relative to the LTE-V2X system.
  • PSCCH and PSSCH are frequency division multiplexing (Frequency Division Multiplexing, FDM). After the terminal receives the PSCCH and then detects the PSSCH, the time delay will be increased.
  • FDM Frequency Division Multiplexing
  • PSCCH occupies 2 or 3 Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the frequency domain resources of the NR-V2X resource pool are also continuous, and the allocation granularity of the frequency domain resources is also a sub-channel.
  • the number of PRBs included in one subchannel may be ⁇ 10, 12, 15, 20, 50, 75, 100 ⁇ . Among them, the size of the smallest subchannel is 10 PRB, which is much larger than the minimum subchannel size of 4 physical resource blocks (Physical Resource Block, PRB) in LTE-V2X.
  • PRB Physical Resource Block
  • the frequency domain resource of PSCCH in NR-V2X is located in the first subchannel of the associated PSSCH, the frequency domain resource of PSCCH is less than or equal to the size of one subchannel of PSSCH, and the time domain resource of PSCCH occupies 2 or 3 OFDM symbols. If the size configuration of the sub-channel is relatively small, the available resources of the PSCCH will be few, the code rate will be increased, and the detection performance of the PSCCH will be reduced.
  • the size of the PSSCH subchannel and the size of the frequency domain resource of the PSCCH are configured independently, but it must be ensured that the frequency domain resource of the PSCCH is smaller than or equal to the size of the subchannel of the PSSCH.
  • the following configuration parameters in the NR-V2X resource pool configuration information are used to determine the frequency domain resources of the PSCCH and PSSCH resource pools:
  • Subchannel size Indicates the number of consecutive PRBs included in a subchannel in the resource pool, and the value range is ⁇ 10, 12, 15, 20, 50, 75, 100 ⁇ PRBs;
  • Number of subchannels indicates the number of subchannels included in the resource pool
  • Subchannel start RB index indicates the starting PRB index of the first subchannel in the resource pool
  • PSCCH frequency domain resource indication indicates the frequency domain resource size of PSCCH, and the value range is ⁇ 10, 12, 15, 20, 25 ⁇ PRB;
  • the frequency-domain start position of the first subchannel of the PSCCH and its associated PSSCH is aligned. Therefore, the starting position of each PSSCH sub-channel is the frequency domain starting position of a possible PSCCH. According to the above parameters, the frequency domain range of the resource pool of PSCCH and PSSCH can be determined, as shown in Figure 4:
  • the transmission of PSCCH/PSSCH is based on slot level. For example, only one PSCCH/PSSCH can be transmitted in one time slot, and it is not supported to transmit multiple PSCCH/PSSCH in one time slot through TDM. PSCCH/PSSCH among different users can be multiplexed in a time slot through FDM.
  • the time-domain resources of PSSCH in NR-V2X are granular in time slots, but unlike LTE-V2X where PSSCH occupies all the time-domain symbols in a subframe, PSSCH in NR-V2X can occupy part of the symbols in a time slot .
  • a flexible time slot structure is adopted, that is, a time slot includes both uplink symbols and downlink symbols, so that more flexible scheduling can be realized and time delay can be reduced.
  • An exemplary subframe of the NR system is shown in FIG. 5 , and a time slot may include a downlink symbol (Downlink, DL), an uplink symbol (Uplink, UL) and a flexible symbol (Flexible).
  • the downlink symbol is located at the beginning of the time slot, and the uplink symbol is located at the end of the time slot.
  • There are flexible symbols between the downlink symbol and the uplink symbol and the number of various symbols in each time slot is configurable.
  • the sidelink transmission system can share the carrier with the cellular system, and at this time, the sidelink transmission can only use uplink transmission resources of the cellular system.
  • the sidelink transmission can still needs to occupy all the time-domain symbols in a time slot, the network needs to configure a time slot full of uplink symbols for sidelink transmission. This will have a great impact on the uplink and downlink data transmission of the NR system and reduce the performance of the system. Therefore, in NR-V2X, some time domain symbols in a slot are supported for sidelink transmission, that is, some uplink symbols in one slot are used for sidelink transmission.
  • the time-domain symbols occupied by the sidelink transmission in NR-V2X are at least 7 (including GP symbols).
  • the start and length of the time-domain symbols used for sidelink transmission in a slot are configured by the parameter start symbol position (sl-StartSymbol) and the number of symbols (sl-LengthSymbols), and the time for sidelink transmission
  • the last symbol in the domain symbol is used as the guard interval GP, and PSSCH and PSCCH can only use the rest of the time domain symbols.
  • PSFCH transmission resources are configured in a time slot, PSSCH and PSCCH cannot occupy the time domain symbols used for physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH) transmission, and the AGC and GP symbols before this symbol (see Figure 4-5).
  • symbol 3 is usually used as AGC symbol
  • symbol 13 is used as GP
  • the remaining symbols can be used for PSCCH and PSSCH transmission.
  • PSCCH occupies 2 time domain symbols. Since the data on the AGC symbol is a copy of the data on the second side row symbol, the first side row symbol also includes PSCCH data.
  • the time-domain resources of the resource pool are also indicated by a bitmap.
  • the length of the bitmap is also extended, and the supported bitmap length range is [10:160].
  • the method of using the bitmap to determine the position of the time slot belonging to the resource pool in an SFN period is the same as in LTE-V2X, but there are the following differences:
  • the total number of time slots included in one SFN cycle is 10240 ⁇ 2 ⁇ , where the parameter ⁇ is related to the subcarrier spacing size;
  • time slot cannot be used for sidelink transmission.
  • Y and X represent sl-StartSymbol and sl-LengthSymbols respectively.
  • 3GPP radio access network (Radio Access Network, RAN) conducted research on "NR positioning enhancement” and "in-coverage, partial coverage and out-of-coverage NR positioning use cases and requirements".
  • the study “Scenarios and Requirements for In-Coverage, Partial-Coverage and Out-of-Coverage NR Positioning Use Cases” focuses on V2X and public safety use cases.
  • the 3GPP First System Architecture Working Group (SA1) formulated the requirements for "ranging-based services” and formulated positioning accuracy requirements for the use of the Industrial Internet (Industrial interest of Things, IIoT) in out-of-coverage scenarios.
  • SA1 First System Architecture Working Group
  • Positioning Reference Signal PRS
  • Fig. 7 is a schematic flowchart of a lateral communication method 700 according to an embodiment of the present application. The method includes at least some of the following.
  • the configuration method of the relevant information of the lateral PRS includes at least one of the following:
  • the network device may configure relevant information for the sidelink PRS.
  • the network device may send PRS configuration information to the first device and/or the second device.
  • the second device may be a peer device through which the first device performs sidelink communication.
  • the first device and/or the second device determines its own sidelink PRS related information based on the received PRS configuration information.
  • the first device and/or the second device may configure information related to sidelink PRS for itself.
  • the first device and/or the second device may receive PRS configuration information from the network device, and determine sidelink PRS related information of the first device based on the PRS configuration information.
  • the first device may receive PRS configuration information from the second device, and determine sidelink PRS related information of the first device based on the PRS configuration information.
  • the first device may determine the sidelink PRS-related information of the first device based on the preconfiguration information.
  • the second device may receive PRS configuration information from the first device, and determine sidelink PRS related information of the second device based on the PRS configuration information.
  • the second device may determine the sidelink PRS related information of the second device based on the preconfiguration information.
  • the relevant information of the lateral PRS includes at least one of the following:
  • PRS reference signal used to indicate the sidelink channel for PRS transmission, etc.
  • the lateral PRS resource pool includes at least one of the following:
  • a sideline PRS sending resource pool used to send signals or channels related to the sideline PRS
  • the side PRS receiving resource pool is used to receive signals or channels related to the side PRS.
  • the relevant information used by the first device for the sidelink PRS determined by itself includes a sidelink PRS transmission resource pool.
  • the first device may use the resources in the sidelink PRS sending resource pool to send sidelink PRS-related signals or channels to the second device.
  • the relevant information used by the second device for the sidelink PRS determined by itself includes a sidelink PRS receiving resource pool.
  • the second device may use resources in the sideline PRS receiving resource pool to receive sideline PRS-related signals or channels from the first device.
  • the sidelink PRS resource pool and the sidelink communication resource pool occupy different time-frequency resources.
  • the sidelink PRS transmission resource pool and the sidelink communication resource pool occupy different time-frequency resources.
  • the sidelink PRS receiving resource pool and the sidelink communication resource pool occupy different time-frequency resources.
  • the sidelink PRS resource pool and the sidelink communication resource pool include different time slots.
  • the sidelink PRS transmission resource pool and the sidelink communication resource pool include different time slots.
  • the sidelink PRS receiving resource pool and the sidelink communication resource pool include different time slots.
  • the sidelink PRS resource pool and the sidelink communication resource pool include different Orthogonal Frequency Division Multiplexing (OFDM) symbols on the same time slot.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the sidelink PRS transmission resource pool and the sidelink communication resource pool include different OFDM symbols on the same time slot.
  • the sidelink PRS receiving resource pool and the sidelink communication resource pool include different OFDM symbols on the same c-slot.
  • the number of OFDM symbols available for transmission of sidelink PRS-related signals or channels in one time slot is smaller than the number of OFDM symbols available for transmission of PSSCH.
  • the number of OFDM symbols available for reception of sidelink PRS-related signals or channels in one time slot is smaller than the number of OFDM symbols available for reception of PSSCH.
  • time slot n the number of OFDM symbols used by the first device for sidelink PRS-related signal or channel transmission is 2, and the number of OFDM symbols available for PSSCH transmission is 4.
  • time slot n+1 the number of OFDM symbols used by the second device for receiving sidelink PRS-related signals or channels is 2, and the number of OFDM symbols available for receiving PSSCH is 4.
  • the start and length of OFDM symbols that can be used for sideline PRS related signals or channel transmission in a time slot are given by Dedicated signaling is configured separately.
  • the starting point and length of the OFDM symbols that can be used for sidelink PRS related signals or channel reception in one time slot are separately configured by dedicated signaling.
  • dedicated signaling may be used to specifically configure the sideline PRS sending resource pool and/or the sideline PRS receiving resource pool.
  • the OFDM symbols available for sidelink PRS-related signal or channel transmission in one time slot are different from the OFDM symbols available for sidelink communication on the sidelink BWP.
  • the OFDM symbols available for sidelink PRS-related signal or channel reception in one time slot are different from the OFDM symbols available for sidelink communication on the sidelink BWP.
  • different sideline PRS resource pools occupy the same time slot or different frequency domain resources on the same OFDM symbol.
  • the first device configures the side-line PRS transmission resource pool A1 and the side-line PRS transmission resource pool A2 on the side-line BWP, and the side-line PRS transmission resource pool A1 and the side-line PRS transmission resource pool A2 occupy different frequency domain resources.
  • the first device configures the side-line PRS transmission resource pool A3 and the side-line PRS transmission resource pool A4 on the side-line BWP, and the side-line PRS transmission resource pool A3 and the side-line PRS transmission resource pool A4 occupy the same OFDM symbol.
  • Different frequency domain resources Different frequency domain resources.
  • the second device configures the side row PRS receiving resource pool B1 and the side row PRS receiving resource pool B2 on the side row BWP, and the side row PRS receiving resource pool B1 and the side row PRS receiving resource pool B2 occupy the same time slot Different frequency domain resources.
  • the second device configures the side row PRS receiving resource pool B3 and the side row PRS receiving resource pool B4 on the side row BWP, and the side row PRS receiving resource pool B3 and the side row PRS receiving resource pool B4 occupy the same OFDM symbol Different frequency domain resources.
  • different sideline PRS transmission resource pools occupy different time domain resources.
  • the second device configures multiple sideline PRS receiving resource pools on the sideline BWP
  • different sideline PRS receiving resource pools occupy different time domain resources.
  • different OFDM symbols of the same time slot occupied by different side PRS resource pools are configured through different OFDM symbol start and length configuration parameters.
  • different side PRSs of the first device transmit different OFDM symbols of the same time slot occupied by the resource pool.
  • different side PRSs of the second device receive different OFDM symbols of the same time slot occupied by the resource pool.
  • the frequency domain resource occupied by the sidelink PRS resource pool is the same as the frequency domain resource of the sidelink BWP where the sidelink PRS resource pool is located.
  • the frequency domain resource occupied by the sidelink PRS sending resource pool of the first device is the same as the frequency domain resource of the sidelink BWP where the sidelink PRS sending resource pool is located.
  • the frequency domain resource occupied by the sidelink PRS receiving resource pool of the second device is the same as the frequency domain resource of the sidelink BWP where the sidelink PRS receiving resource pool is located.
  • the sidelink PRS resource pool occupies a synchronization signal time slot.
  • the sidelink PRS sending resource pool of the first device occupies a synchronization signal time slot.
  • the sidelink PRS receiving resource pool of the second device occupies a time slot of the synchronization signal.
  • the sideline PRS resource pool occupies part or all of the time slots configured on the sideline BWP for sending sideline synchronization signals.
  • the sidelink PRS sending resource pool of the first device occupies part or all of the time slots configured on the sidelink BWP for sending sidelink synchronization signals.
  • the sideline PRS resource pool includes synchronization signal subframes for sending synchronization signals.
  • the sideline PRS sending resource pool of the first device includes a synchronization signal subframe for sending a synchronization signal.
  • the sidelink PRS resource pool occupies part or all of the time slots configured on the sidelink BWP for receiving sidelink synchronization signals.
  • the sidelink PRS receiving resource pool of the second device occupies part or all of the time slots configured on the sidelink BWP for receiving sidelink synchronization signals.
  • the sideline PRS resource pool includes synchronization signal subframes for receiving synchronization signals.
  • the side row PRS receiving resource pool of the second device includes a synchronization signal subframe for sending a synchronization signal.
  • the sidelink PRS resource pool includes all synchronization signal subframes.
  • the sidelink PRS sending resource pool of the first device includes all synchronization signal subframes.
  • the side row PRS receiving resource pool of the second device includes all synchronization signal subframes.
  • the sidelink PRS resource pool occupies frequency domain resources that are not used for sending sidelink synchronization signals on the sidelink BWP where the sidelink PRS resource pool is located.
  • the sidelink PRS resource pool occupies frequency domain resources that are not used for receiving sidelink synchronization signals on the sidelink BWP where the sidelink PRS resource pool is located.
  • the sidelink PRS transmission resource pool of the first device occupies frequency domain resources that are not used for sidelink synchronization signal transmission on the sidelink BWP where the sidelink PRS transmission resource pool is located.
  • the sidelink PRS receiving resource pool of the second device occupies frequency domain resources that are not used for sidelink synchronization signal reception on the sidelink BWP where the sidelink PRS receiving resource pool is located.
  • the OFDM symbols that can be used for sending sidelink PRS-related signals or channels on the time slots in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the sidelink BWP.
  • the OFDM symbols that can be used for receiving sidelink PRS-related signals or channels on the time slots in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the sidelink BWP.
  • the OFDM symbols that can be used for sending sidelink PRS-related signals or channels on the time slots in the sidelink PRS transmission resource pool of the first device are the same as the configuration for sidelink communication on the sidelink BWP.
  • the OFDM symbols available for receiving sidelink PRS-related signals or channels on the time slots in the sidelink PRS receiving resource pool of the second device are the same as the configuration for sidelink communication on the sidelink BWP.
  • the bitmap used for the configuration of the sideline PRS resource pool is mapped to part Or on all synchronous slots.
  • the bitmap used for the configuration of the side PRS resource pool is mapped to part Or on all synchronous slots.
  • the bitmap used for the configuration of the side-line PRS transmission resource pool is mapped to part Or on all synchronous slots.
  • the bitmap used for the configuration of the side line PRS receiving resource pool is mapped to on some or all of the synchronization slots.
  • the sideline PRS resource pool occupies a reserved time slot.
  • the sidelink PRS sending resource pool of the first device occupies a reserved time slot.
  • the sideline PRS receiving resource pool of the second device occupies a reserved time slot.
  • the sidelink PRS resource pool occupies part or all of the reserved time slots in the process of determining the sidelink communication resource pool.
  • the sidelink PRS sending resource pool of the first device occupies part or all of the reserved time slots in the process of determining the sidelink communication resource pool.
  • the sidelink PRS receiving resource pool of the second device occupies part or all of the reserved time slots in the process of determining the sidelink communication resource pool.
  • the bitmap used for the configuration of the sidelink PRS resource pool is used to indicate It can be configured as a reserved time slot of the sideline PRS resource pool.
  • the bitmap used for the configuration of the sideline PRS transmission resource pool is used to indicate It can be configured as a reserved time slot of the sideline PRS sending resource pool.
  • the bitmap used for the configuration of the sidelink PRS receiving resource pool is used for Indicates the reserved time slots that can be configured as sideline PRS receiving resource pools.
  • the frequency domain resources occupied by the sidelink PRS resource pool are the same as the frequency domain resources occupied by the sidelink communication resource pool.
  • the frequency domain resources occupied by the sideline PRS transmission resource pool are the same as the frequency domain resources occupied by the sideline communication resource pool, or the frequency domain resources occupied by the sideline PRS reception resource pool
  • the frequency domain resource and the frequency domain resource occupied by the sidelink communication resource pool are the same.
  • different sideline PRS resource pools are frequency division multiplexed.
  • the sideline PRS transmission resource pool A1 and the sideline PRS transmission resource pool A2 are frequency division multiplexed.
  • the side row PRS receiving resource pool B1 and the side row PRS receiving resource pool B2 are frequency division multiplexed.
  • the sideline PRS resource pool and the sideline communication resource pool are frequency division multiplexed.
  • the sideline PRS sending resource pool A1 and the sideline communication resource pool are frequency division multiplexed.
  • the sideline PRS receiving resource pool B1 and the sideline communication resource pool are frequency division multiplexed.
  • the OFDM symbols available for sending sidelink PRS-related signals or channels on each time slot in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the sidelink BWP.
  • the OFDM symbols available for reception of sidelink PRS-related signals or channels on each time slot in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the sidelink BWP.
  • the OFDM symbols available for sending sidelink PRS-related signals or channels on each time slot in the sidelink PRS transmission resource pool of the first device are the same as the configuration for sidelink communication on the sidelink BWP.
  • the OFDM symbols available for reception of sidelink PRS-related signals or channels on each time slot in the sidelink PRS receiving resource pool of the second device are the same as those configured for sidelink communication on the sidelink BWP.
  • the frequency domain resource occupied by the sidelink PRS resource pool is the same as the frequency domain resource occupied by the sidelink BWP where the sidelink PRS resource pool is located.
  • the frequency domain resource occupied by the sideline PRS transmission resource pool is the same as the frequency domain resource occupied by the sideline BWP where the sideline PRS transmission resource pool is located, or the sideline PRS transmission resource pool is located in the same frequency domain resource.
  • the frequency domain resources occupied by the row PRS receiving resource pool are the same as the frequency domain resources occupied by the side BWP where the side row PRS receiving resource pool is located.
  • OFDM symbols available for sending sidelink PRS-related signals or channels on each time slot in the sidelink PRS resource pool are separately configured.
  • the OFDM symbols available for reception of sidelink PRS-related signals or channels on each time slot in the sidelink PRS resource pool are configured separately.
  • OFDM symbols available for sending sidelink PRS-related signals or channels on each time slot in the sidelink PRS transmission resource pool of the first device are separately configured.
  • OFDM symbols that can be used for reception of sidelink PRS-related signals or channels on each time slot in the sidelink PRS receiving resource pool of the second device are individually configured.
  • the sidelink PRS resource pool occupies reserved time slots and synchronization signal time slots.
  • a part of the sidelink PRS sending resource pool of the first device occupies a reserved time slot, and another part occupies a synchronization signal time slot.
  • a part of the sideline PRS receiving resource pool of the second device occupies a reserved time slot, and another part occupies a synchronization signal time slot.
  • the sidelink PRS resource pool is located on the OFDM symbol where the physical sidelink feedback channel (PSFCH) in the sidelink communication resource pool associated with the sidelink PRS resource pool is located.
  • the sidelink PRS sending resource pool of the first device is located on the OFDM symbol where the PSFCH in the sidelink communication resource pool associated with the sidelink PRS sending resource pool is located.
  • the sidelink PRS receiving resource pool of the second device is located on the OFDM symbol where the PSFCH in the sidelink communication resource pool associated with the sidelink PRS receiving resource pool is located.
  • the frequency domain resources included in the sidelink PRS resource pool are different from the frequency domain resources used for the PSFCH transmission.
  • the frequency domain resources included in the sidelink PRS reception resource pool are different from the frequency domain resources used for the PSFCH reception.
  • the frequency domain resource included in the sidelink PRS of the first device is different from the frequency domain resource used for PSFCH transmission.
  • the sidelink PRS reception resource pool of the second device is different from the frequency domain resources used for PSFCH reception.
  • configurations of the sidelink PRS resource pool and the sidelink communication resource pool are independent.
  • the configurations of the sidelink PRS resource pool and the sidelink communication resource pool may be independent.
  • the sidelink PRS resource pool occupies the synchronization signal time slot
  • configurations of the sidelink PRS resource pool and the sidelink communication resource pool may be independent.
  • the sidelink PRS resource pool and the sidelink communication resource pool are respectively configured through different configuration signaling.
  • the sidelink PRS resource pool may be configured through the first configuration signaling, and the sidelink communication resource pool may be configured through the second configuration signaling.
  • the sidelink PRS resource pool is related to the configuration of the sidelink communication resource pool.
  • the configuration of the sidelink PRS resource pool and the sidelink communication resource pool may be related.
  • the configuration of the sidelink PRS resource pool and the sidelink communication resource pool may be related.
  • the configuration of the sidelink PRS resource pool and the sidelink communication resource pool may be related.
  • the configuration of the sideline PRS resource pool and the sideline communication resource pool can be related.
  • the sidelink PRS resource pool and the sidelink communication resource pool are configured together through the same configuration signaling.
  • the sidelink PRS resource pool and the sidelink communication resource pool may be configured together through the same configuration signaling.
  • the sidelink PRS resource pool and the sidelink communication resource pool can be configured separately through different configuration signaling, and the sidelink PRS resource pool
  • the configuration signaling of the sidelink communication resource pool is no later than the configuration signaling of the side communication resource pool.
  • the time slots included in the sideline PRS resource pool are part or all of the reserved time slots in the determination process of the sideline communication resource pool configured together with it.
  • the frequency domain resources occupied by the PRS resource pool may be the same as the frequency domain resources of the sidelink communication resource pool configured together with it.
  • the PRS resource pool and a sideline communication resource pool are configured together, and the frequency domain resources contained in the PRS resource pool are the same as those used for PSFCH The transmitted frequency domain resources are different.
  • the embodiment of the present application can avoid the mutual influence between the sidelink PRS and the sidelink signal and sidelink channel used for sidelink communication, and ensure the transmission bandwidth and frequency of the sidelink PRS, thereby improving the accuracy of positioning based on the sideline.
  • Embodiments of the present application may provide a method for configuring sidelink PRS resources, including at least one of the following features:
  • the sideline PRS resource pool and the sideline communication resource pool on the same sideline BWP occupy different time slots, or occupy different OFDM symbols;
  • the sideline PRS resource pool can occupy a reserved time slot in the configuration process of the sideline communication resource pool
  • the sideline PRS resource pool can occupy the synchronization signal time slot configured on the sideline BWP;
  • the sidelink PRS resource pool may be frequency domain resources on PSFCH symbols in a sidelink communication resource pool.
  • the method for configuring sidelink PRS resources may be executed by any device at the sidelink communication end, or may be executed by a network device.
  • the sideline PRS sending resource pool is taken as an example for illustration.
  • the configuration mode of the sideline PRS receiving resource pool is similar to that of the sideline PRS transmission resource pool, and you can refer to the example of the sideline PRS transmission resource pool.
  • Example 1 The sideline PRS resource pool (which may be referred to as the PRS resource pool) is configured separately.
  • the sidelink PRS sending resource pool and the sidelink communication resource pool are respectively configured by different configuration signaling.
  • the sidelink PRS transmission resource pool may also be referred to as a resource pool for sending sidelink PRS-related signals or channels, and the sidelink communication resource pool may also be called a resource pool for sidelink communication.
  • the sidelink PRS sending resource pool and the sidelink communication resource pool occupy different time-frequency resources.
  • the resource pool used for sending PRS-related signals or channels in the side line and the resource pool used for side line communication contain different time slots, and/or, the resource pool used for sending PRS-related signals or channels and the resource pool used for side line communication
  • the resource pool for communication contains different OFDM symbols on the same slot.
  • the side-going PRS-related signal or channel transmission includes the transmission of a PRS-related channel or signal, for example, a control channel used to indicate the sequencing PRS-related signal or channel transmission, and the same expressions below have the same meaning.
  • the transmission requirements of the sidelink PRS are different from those of the PSSCH.
  • the former needs to ensure the transmission bandwidth to provide accurate positioning, while the latter needs sufficient time-frequency resources to meet the data rate requirements.
  • the number of OFDM symbols required for transmission of sidelink PRS-related signals or channels in one time slot may be smaller than the number of OFDM symbols required for transmission of the PSSCH.
  • the resource pool used for sending PRS related signals or channels and the resource pool used for sending sidelink communication may always occupy different time domain resources. In this case, the two cannot be multiplexed by frequency division.
  • a side that can be used for PRS-related signal or channel transmission occupy different time domain resources
  • a side that can be used for PRS-related signal or channel transmission On the row BWP, the starting point and length of OFDM symbols that can be used for PRS-related signals or channel transmission in a time slot are configured separately by dedicated signaling.
  • the side BWP that can be used for sending PRS-related signals or channels may also be referred to as the side BWP where the side PRS resource pool is located.
  • the OFDM symbols available for sending PRS-related signals or channels in a time slot may be different from the OFDM symbols used for sidelink communication on the sidelink BWP.
  • different resource pools for PRS-related signal or channel transmission can occupy the same time slot or different frequency domain resources on OFDM symbols .
  • any resource pool that can be used for PRS-related signal or channel transmission in the resource pool are separately configured by dedicated signaling. If multiple resource pools that can be used for sending PRS-related signals or channels are configured on the sideline BWP, different resource pools occupy different time domain resources. By configuring different starting points and lengths, the same time slot can be allocated to different PRS resource pools.
  • the first 7 OFMD symbols of a time slot can be configured as OFMD symbols of the first PRS resource pool, the starting point of the symbol is #0, and the length is 7 symbols.
  • the last 7 OFMD symbols of a time slot can be configured as OFMD symbols of the second PRS resource pool, the starting point of the symbol is #7, and the length is 7 symbols.
  • the frequency domain resources occupied by the sidelink PRS resource pool may be the same as the sidelink BWP where the sidelink PRS resource pool is located.
  • the signaling for configuring the PRS resource pool does not include frequency domain resource indication information.
  • the sidelink PRS resource pool can always be configured together with a resource pool for sidelink communication.
  • the time slots included in the sideline PRS resource pool may be part or all of the reserved time slots in the determination process of the sideline communication resource pool configured together with it. For example, if the bitmap length of the resource pool used for sidelink communication is 160 bits, and 128 time slots for sending synchronization signals are configured in one DFN period, the number of reserved time slots is 32 Gap.
  • the 32 time slots can all be configured as a PRS-related signal or channel sending resource pool. Part of the 32 time slots can also be configured as a PRS resource pool. In this case, an additional bitmap is required to indicate the reserved time slots that can be configured as the PRS resource pool.
  • the frequency domain resources occupied by the sidelink PRS resource pool may be the same as the sidelink communication resource pool configured together with it.
  • the sideline PRS resource pool may be frequency division multiplexed with other sideline PRS resource pools or sideline communication resource pools.
  • the OFDM symbols that can be used for sending sidelink PRS-related signals or channels in each time slot in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the current sidelink BWP.
  • the frequency domain resource occupied by the sidelink PRS resource pool is the same as the sidelink BWP where it is located.
  • OFDM symbols available for transmission of sidelink PRS-related signals or channels on each time slot in the PRS resource pool can be configured separately.
  • Example 3 The sidelink PRS resource pool occupies the synchronization signal time slot
  • the sidelink PRS resource pool occupies part or all of the time slots configured on the current sidelink BWP for sending sidelink synchronization signals.
  • the side PRS resource pool consists of synchronization signal subframes used to receive synchronization signals.
  • two synchronization signal time slots are configured in each side row synchronization signal sending cycle on the current side row BWP.
  • the first synchronization signal time slot is used to send the side line synchronization signal
  • the second synchronization signal time slot is used to receive the side line synchronization signal. Since a terminal sending a PRS (especially a terminal sending a PRS for absolute positioning) should have accurate positioning and timing information, it is not necessary to receive a synchronization signal. Therefore, for this specific terminal, the PRS resource pool may consist of the second synchronization signal time slot in each synchronization cycle.
  • the side PRS resource pool consists of all synchronization signal subframes. For example, if two synchronization signal time slots are configured in each side-line synchronization signal transmission cycle on the current side-line BWP, the side-line PRS resource pool may consist of two synchronization signal time slots in each synchronization cycle.
  • the sidelink PRS resource pool occupies all frequency domain resources on the sidelink BWP where the sidelink PRS resource pool is not used for sending sidelink synchronization signals, as shown in FIG. 9 .
  • the OFDM symbols that can be used for sending sidelink PRS-related signals or channels on the time slots in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the current sidelink BWP.
  • Example 4 The sidelink PRS resource pool occupies the synchronization signal time slot and reserved time slot
  • the sidelink PRS resource pool can always be configured together with a sidelink communication resource pool, and the time slots included in the sidelink PRS resource pool are reserved during the determination process of the sidelink communication resource pool configured together with it part or all of the time slots, and part or all of the time slots configured on the side line BWP where the side line PRS resource pool is located for sending synchronization signals.
  • the bitmap length of the resource pool used for sidelink communication is 160 bits, and 128 time slots for sending synchronization signals are configured in one DFN period, the number of reserved time slots is 32 Gap.
  • the 32 time slots can all be configured as a sidelink PRS-related signal or channel sending resource pool, and two time slots for sending synchronization signals are configured in each sidelink synchronization signal sending period on the sidelink BWP.
  • the aforementioned 32 reserved time slots and the two synchronization signal time slots in each sidelink synchronization signal transmission period are the PRS resource pool.
  • Example 5 The sideline PRS resource pool is located on the PSFCH symbol in the sideline communication resource pool associated with it
  • the sidelink PRS resource pool may always be configured together with a sidelink communication resource pool, and the sidelink PRS resource pool is located on the PSFCH symbol configured in the sidelink communication resource pool associated with it.
  • the frequency domain resources contained in the sidelink PRS resource pool are different from the frequency domain resources used for PSFCH transmission.
  • Example 6 The sideline PRS resource pool is configured separately and can contain synchronization signal time slots
  • the resource pool for sending the sidelink positioning reference signal and the resource pool for sidelink communication are respectively configured by different configuration signaling. If the side BWP where the side PRS resource pool is located is configured with time slots for sending synchronization signals, the bitmap for configuration of the side PRS resource pool may be mapped to part or all of the synchronization time slots.
  • the side-line PRS resource pool and the side-line communication resource pool can coexist in the same side-line BWP in a time-division manner.
  • the sidelink PRS resource pool and the sidelink communication resource pool occupy different time slots or different OFDM symbols.
  • the sidelink PRS resource pool may occupy a reserved time slot during configuration of the sidelink communication resource pool, or a synchronization signal time slot configured on the sidelink BWP, or a frequency slot on a PSFCH symbol in a sidelink communication resource pool. Domain resources.
  • Fig. 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device 1000 may include:
  • the configuring unit 1010 is configured to configure related information for the sidelink positioning reference signal PRS.
  • the relevant information of the lateral PRS includes at least one of the following:
  • the lateral PRS resource pool includes at least one of the following:
  • a sideline PRS sending resource pool used to send signals or channels related to the sideline PRS
  • the side PRS receiving resource pool is used to receive signals or channels related to the side PRS.
  • the configuration method of the relevant information of the lateral PRS includes at least one of the following:
  • the sidelink PRS resource pool and the sidelink communication resource pool occupy different time-frequency resources.
  • the sidelink PRS resource pool and the sidelink communication resource pool include different time slots.
  • the sidelink PRS resource pool and the sidelink communication resource pool include different OFDM symbols on the same time slot.
  • the number of OFDM symbols available for transmission of sidelink PRS-related signals or channels in one time slot is smaller than the number of OFDM symbols available for transmission of PSSCH.
  • the number of OFDM symbols available for reception of sidelink PRS-related signals or channels in one time slot is smaller than the number of OFDM symbols available for reception of PSSCH.
  • the starting point and length of OFDM symbols that can be used for sending sidelink PRS-related signals or channels in a time slot are determined separately by dedicated signaling configuration.
  • the starting point and length of OFDM symbols that can be used for sidelink PRS related signals or channel reception in a time slot are determined separately by dedicated signaling configuration.
  • the OFDM symbols available for sidelink PRS-related signal or channel transmission in one time slot are different from the OFDM symbols available for sidelink communication on the sidelink BWP.
  • the OFDM symbols available for sidelink PRS-related signal or channel reception in one time slot are different from the OFDM symbols available for sidelink communication on the sidelink BWP.
  • different sideline PRS resource pools occupy the same time slot or different frequency domain resources on the same OFDM symbol.
  • different OFDM symbols of the same time slot occupied by different side PRS resource pools are configured through different OFDM symbol start and length configuration parameters.
  • the frequency domain resource occupied by the sidelink PRS resource pool is the same as the frequency domain resource of the sidelink BWP where the sidelink PRS resource pool is located.
  • the sidelink PRS resource pool occupies a synchronization signal time slot.
  • the sideline PRS resource pool occupies part or all of the time slots configured on the sideline BWP for sending sideline synchronization signals.
  • the sideline PRS resource pool includes synchronization signal subframes for sending synchronization signals.
  • the sidelink PRS resource pool occupies part or all of the time slots configured on the sidelink BWP for receiving sidelink synchronization signals.
  • the sideline PRS resource pool includes synchronization signal subframes for receiving synchronization signals.
  • the sidelink PRS resource pool includes all synchronization signal subframes.
  • the sidelink PRS resource pool occupies frequency domain resources that are not used for sending sidelink synchronization signals on the sidelink BWP where the sidelink PRS resource pool is located.
  • the sidelink PRS resource pool occupies frequency domain resources that are not used for receiving sidelink synchronization signals on the sidelink BWP where the sidelink PRS resource pool is located.
  • the OFDM symbols that can be used for sending sidelink PRS-related signals or channels on the time slots in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the sidelink BWP.
  • the OFDM symbols available for reception of sidelink PRS-related signals or channels on the time slots in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the sidelink BWP.
  • the bitmap used for the configuration of the sideline PRS resource pool is mapped to part Or on all synchronous slots.
  • the bitmap used for the configuration of the side PRS resource pool is mapped to part Or on all synchronous slots.
  • the sideline PRS resource pool occupies a reserved time slot.
  • the sidelink PRS resource pool occupies part or all of the reserved time slots in the process of determining the sidelink communication resource pool.
  • the bitmap used for the configuration of the sidelink PRS resource pool is used to indicate It can be configured as a reserved time slot of the sideline PRS resource pool.
  • the frequency domain resources occupied by the sidelink PRS resource pool are the same as the frequency domain resources occupied by the sidelink communication resource pool.
  • the OFDM symbols available for sending sidelink PRS-related signals or channels on each time slot in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the sidelink BWP.
  • the OFDM symbols available for reception of sidelink PRS-related signals or channels on each time slot in the sidelink PRS resource pool are the same as the configuration for sidelink communication on the sidelink BWP.
  • the frequency domain resource occupied by the sidelink PRS resource pool is the same as the frequency domain resource occupied by the sidelink BWP where the sidelink PRS resource pool is located.
  • OFDM symbols available for sending sidelink PRS-related signals or channels on each time slot in the sidelink PRS resource pool are separately configured.
  • the OFDM symbols available for reception of sidelink PRS-related signals or channels on each time slot in the sidelink PRS resource pool are configured separately.
  • the sidelink PRS resource pool is located on the OFDM symbol where the physical sidelink feedback channel PSFCH is located in the sidelink communication resource pool associated with the sidelink PRS resource pool.
  • the frequency domain resources included in the sidelink PRS resource pool are different from the frequency domain resources used for the PSFCH transmission.
  • configurations of the sidelink PRS resource pool and the sidelink communication resource pool are independent.
  • the sidelink PRS resource pool and the sidelink communication resource pool are respectively configured through different configuration signaling.
  • the sidelink PRS resource pool is related to the configuration of the sidelink communication resource pool.
  • the sidelink PRS resource pool and the sidelink communication resource pool are configured together through the same configuration signaling.
  • the communication device 1000 in the embodiment of the present application can implement the corresponding functions of the communication device in the foregoing method 700 embodiment.
  • each module (submodule, unit or component, etc.) in the communication device 1000 refers to the corresponding descriptions in the above method embodiments, and details are not repeated here.
  • the functions described by the various modules (submodules, units or components, etc.) in the communication device 1000 of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same Module (submodule, unit or component, etc.) implementation.
  • Fig. 11 is a schematic structural diagram of a communication device 1100 according to an embodiment of the present application.
  • the communication device 1100 includes a processor 1110, and the processor 1110 can invoke and run a computer program from a memory, so that the communication device 1100 implements the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1120 .
  • the processor 1110 may invoke and run a computer program from the memory 1120, so that the communication device 1100 implements the method in the embodiment of the present application.
  • the memory 1120 may be an independent device independent of the processor 1110 , or may be integrated in the processor 1110 .
  • the communication device 1100 may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, to send information or data to other devices, or to receive information from other devices information or data sent.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1100 may be the network device of the embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • the communication device 1100 may be a terminal device in the embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a chip 1200 according to an embodiment of the present application.
  • the chip 1200 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1200 may further include a memory 1220 .
  • the processor 1210 may invoke and run a computer program from the memory 1220, so as to implement the method performed by the terminal device or the network device in the embodiment of the present application.
  • the memory 1220 may be an independent device independent of the processor 1210 , or may be integrated in the processor 1210 .
  • the chip 1200 may further include an input interface 1230 .
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1200 may further include an output interface 1240 .
  • the processor 1210 can control the output interface 1240 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • Chips applied to network devices and terminal devices may be the same chip or different chips.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the aforementioned memories may be volatile memories or nonvolatile memories, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • Fig. 13 is a schematic block diagram of a communication system 1300 according to an embodiment of the present application.
  • the communication system 1300 includes a first device 1310 and a second device 1320 .
  • the first device 1310 is configured to configure relevant information for sidelink PRS.
  • the second device 1320 is configured to configure relevant information for sidelink PRS.
  • the first device 1310 may be used to implement the corresponding functions implemented by the first device in the above method 700
  • the second device 1320 may be used to implement the corresponding functions implemented by the second device in the above method 700.
  • details are not repeated here.
  • the communication system 1300 may further include a network device.
  • the network device is used to configure relevant information for sidelink PRS.
  • the network device may be used to implement corresponding functions implemented by the network device in the foregoing method 700 . For the sake of brevity, details are not repeated here.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请涉及一种侧行通信方法和设备。该侧行通信方法可以包括配置用于侧行定位参考信号PRS的相关信息。本申请实施例,通过配置用于侧行定位参考信号PRS的相关信息,可以提高基于侧行定位的准确性。

Description

侧行通信方法和设备 技术领域
本申请涉及通信领域,更具体地,涉及一种侧行通信方法和设备。
背景技术
侧行链路(Sidelink,SL)通信包括设备到设备(Device to Device,D2D)的通信。基于侧行链路(可以简称侧行)的定位包括“NR定位增强”和“覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求”等。在侧行链路需要更加准确的定位。
发明内容
本申请实施例提供一种侧行通信方法和设备,可以提高基于侧行定位的准确性。
本申请实施例提供一种侧行通信方法,包括:配置用于侧行定位参考信号PRS的相关信息。
本申请实施例提供一种通信设备,包括:配置单元,用于配置用于侧行定位参考信号PRS的相关信息。
本申请实施例提供一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该通信设备执行上述的侧行通信方法。
本申请实施例提供一种芯片,用于实现上述的侧行通信方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的侧行通信方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的侧行通信方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的侧行通信方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的侧行通信方法。
本申请实施例,通过配置用于侧行定位参考信号PRS的相关信息,可以提高基于侧行定位的准确性。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2a是LTE-V2X中一个SFN周期的示意图。
图2b是LTE-V2X中在剩余子帧中确定资源池的示意图。
图3是LTE-V2X和NR-V2X系统中PSCCH和PSSCH复用方式的示意图。
图4是NR-V2X中PSCCH和PSSCH资源池的示意图。
图5是NR系统时隙的结构示意图。
图6是一个时隙中部分符号用于侧行传输的示意图。
图7是根据本申请一实施例的侧行通信方法的示意性流程图。
图8是将同一个时隙内的不同OFDM符号配置为不同的资源池的示意图。
图9是侧行PRS资源池占用侧行BWP内未用于同步信号的频域资源的示意图。
图10是根据本申请一实施例的通信设备的示意性框图。
图11是根据本申请实施例的通信设备示意性框图。
图12是根据本申请实施例的芯片的示意性框图。
图13是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一种可能的实现方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一种可能的实现方式中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更 是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。在一种可能的实现方式中,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
在一种可能的实现方式中,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还 可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
本申请实施例的技术方案可以应用于侧行链路(简称侧行)通信中。SL通信的方式可以包括V2X。V2X包括LTE-V2X和NR-V2X等。下面介绍几种侧行通信资源池的确定方法。
1、LTE-V2X的资源池确定方法
LTE-V2X中,在一个系统帧号(System Frame Number,SFN)或直接帧号(Direct Frame Number,DFN)周期内确定资源池。一个SFN周期包括10240个子帧,分别对应子帧0、1、2……10239。去掉同步子帧、下行子帧、特殊子帧(即时分双工(Time division duplex,TDD)系统中的下行子帧和特殊子帧)、以及预留子帧(reserved subframe),剩余的子帧编号为
Figure PCTCN2021142588-appb-000001
剩余的子帧的个数能够被L bitmap整除。比特位图
Figure PCTCN2021142588-appb-000002
在剩余的子帧中周期重复。比特为1表示该比特在该剩余子帧中对应的子帧属于该资源池,否则不属于该资源池。
如图2a所示,一个SFN周期(或DFN周期)包括10240个子帧(subframe),同步信号的周期是160ms(毫秒)。在一个同步周期内包括2个同步子帧。因此,在一个SFN周期内共有128个同步子帧,用于指示资源池时域资源的比特位图(Bitmap)的长度是10比特。因此需要2个预留子帧(reserved subframe),剩余子帧个数是(10240-128-2=10110),可以被比特位图的长度10整除。如图2b所示,将剩余的子帧重新编号为0,1,2,……,10109,比特位图前3位为1,其余7位为0。即在剩余子帧中,每10个子帧中的前3个子帧属于该资源池,其余的子帧不属于该资源池。由于在剩余子帧中需要比特位图重复1011次,以指示所有的子帧是否属于资源池。而在每个比特位图周期内包括3个子帧,因此在一个SFN周期共有3033个子帧属于该资源池。例如,第一SFN周期和第二SFN周期分别具有3033个子帧属于该资源池。
2、NR-V2X的资源池确定方法
NR-V2X系统相对于LTE-V2X系统的时延更低。因此,NR-V2X系统的物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)复用方式相对于LTE-V2X系统进行了重新设计。LTE-V2X系统中PSCCH和PSSCH是频分复用(Frequency Division Multiplexing,FDM)方式。终端接收完PSCCH再去检测PSSCH,会增大时延。在NR-V2X系统中,PSCCH和PSSCH采用如图3所示的复用方式。
在NR-V2X中,除了自动增益控制(Automatic Gain Control,AGC)符号外,PSCCH占据2个或3个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。并且PSCCH时域位置从该时隙中可用于侧行传输的时域符号中的第2个时域符号开始(第1个时域符号为AGC符号),频域上占据的PRB个数是可配置的。
(1)频域资源的确定
与LTE-V2X类似,NR-V2X资源池的频域资源也是连续的,并且频域资源的分配粒度也是子信道。一个子信道包括的PRB个数可以为{10,12,15,20,50,75,100}。其中,最小的子信道的尺寸为10PRB,远大于LTE-V2X中的最小子信道尺寸4物理资源块(Physical Resource Block,PRB)。这主要是因为NR-V2X中PSCCH的频域资源位于与其关联的PSSCH的第一个子信道内,PSCCH的频域资源小于或等于PSSCH的一个子信道的尺寸, 而PSCCH的时域资源占据2个或3个OFDM符号。如果子信道的大小配置比较小,会导致PSCCH可用资源很少,码率提高,降低PSCCH的检测性能。在NR-V2X中,PSSCH子信道的尺寸与PSCCH的频域资源大小是独立配置的,但是要保证PSCCH的频域资源小于或等于PSSCH的子信道尺寸。NR-V2X资源池配置信息中的如下配置参数用于确定PSCCH和PSSCH资源池的频域资源:
子信道尺寸(sl-SubchannelSize):指示资源池中一个子信道包括的连续PRB的个数,取值范围为{10,12,15,20,50,75,100}PRB;
子信道数(sl-NumSubchannel):指示资源池中包括的子信道数;
子信道起始RB索引(sl-StartRB-Subchannel):指示资源池中第一个子信道的起始PRB索引;
PSCCH频域资源指示(sl-FreqResourcePSCCH):指示PSCCH的频域资源大小,取值范围为{10,12,15,20,25}PRB;
NR-V2X中,PSCCH与其关联的PSSCH的第一个子信道的频域起始位置是对齐的。因此,每个PSSCH子信道的起始位置都是可能的PSCCH的频域起始位置。根据上面的参数可以确定PSCCH与PSSCH的资源池的频域范围,如图4所示:
(2)时域资源的确定
在NR-V2X中,PSCCH/PSSCH的传输是基于时隙级别的。例如,一个时隙只能传输一个PSCCH/PSSCH,不支持一个时隙内通过TDM的方式传输多个PSCCH/PSSCH。不同用户之间的PSCCH/PSSCH可以在一个时隙内通过FDM的方式复用。NR-V2X中PSSCH的时域资源以时隙为粒度,但是与LTE-V2X中PSSCH占满一个子帧中所有的时域符号不同,NR-V2X中的PSSCH可以占据一个时隙中的部分符号。这主要是因为在LTE系统中,上行或下行传输也都是以子帧为粒度的,因此侧行传输也是以子帧为粒度(TDD系统中的特殊子帧不用于侧行传输)。而在NR系统中采用灵活时隙结构,即一个时隙内既包括上行符号又包括下行符号,从而可以实现更加灵活的调度,并且可以降低时延。示例性的NR系统的子帧如图5所示,时隙中可以包括下行符号(Downlink,DL)、上行符号(Uplink,UL)和灵活符号(Flexible)。下行符号位于时隙的起始位置,上行符号位于时隙的结束位置,下行符号和上行符号之间是灵活符号,每个时隙中的各种符号的个数都是可配置的。
如前述,侧行传输系统可以与蜂窝系统共享载波,此时侧行传输只能使用蜂窝系统的上行传输资源。对于NR-V2X,如果仍然需要侧行传输占据一个时隙中的所有时域符号,需要网络配置全上行符号的时隙用于侧行传输。这样会对NR系统的上下行数据传输造成很大的影响,降低系统的性能。因此,在NR-V2X中,支持时隙中部分时域符号用于侧行传输,即一个时隙中部分上行符号用于侧行链路传输。另外,考虑到在侧行传输中包括AGC符号以及保护间隔(Guard Period,GP)符号,如果可用于侧行链路传输的上行符号的个数较少,去掉AGC符号和GP符号,剩余可用于传输有效数据的符号更少,资源利用率很低。因此,NR-V2X中侧行链路传输占据的时域符号最少是7个(包括GP符号)。当侧行传输系统使用专有载波时,不存在和其他系统共享传输资源的问题,可以配置时隙中所有的符号都用于侧行传输。
NR-V2X中通过参数起始符号位置(sl-StartSymbol)和符号个数(sl-LengthSymbols)配置一个时隙中用于侧行传输的时域符号的起点和长度,用于侧行传输的时域符号中的最后一个符号用作保护间隔GP,PSSCH和PSCCH只能使用其余的时域符号。但是如果一个时隙中配置了PSFCH传输资源,PSSCH和PSCCH不能占用用于物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)传输的时域符号,以及该符号之前的AGC和GP符号(参见图4-5)。
如图6所示,网络配置起始符号位置=3,符号个数=11,即一个时隙中从符号索引3开始的11个时域符号可用于侧行传输。其中,符号3通常用作AGC符号,符号13用作 GP,其余符号可用于PSCCH和PSSCH传输。PSCCH占据2个时域符号。由于AGC符号上的数据是第二个侧行符号上数据的复制,因此第一个侧行符号上也包括PSCCH数据。
在NR-V2X系统中,资源池的时域资源也是通过比特位图指示的。考虑到NR系统中灵活的时隙结构,对比特位图的长度也进行了扩展,支持的比特位图长度范围是[10:160]。利用比特位图确定一个SFN周期内属于资源池的时隙位置的方式与LTE-V2X中相同,但是有如下不同:
一个SFN周期内包括的时隙总数是10240×2 μ,其中,参数μ与子载波间隔大小有关;
如果一个时隙包括的时域符号Y,Y+1,Y+2,…,Y+X-1中至少有一个时域符号不是被网络的TDD-UL-DL-ConfigCommon(通用配置)信令配置为上行符号,则该时隙不能用于侧行传输。其中,Y和X分别表示sl-StartSymbol和sl-LengthSymbols。
3、基于侧行链路的定位
3GPP无线接入网(Radio Access Network,RAN)对“NR定位增强”和“覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求”进行了研究。“覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求”研究集中于V2X和公共安全用例。此外,3GPP第一系统架构工作组(SA1)制定了“基于测距的服务”的要求,并针对覆盖范围外场景中的工业互联网(Industrial interest of Things,IIoT)使用情况制定了定位精度要求。3GPP需要研究和开发侧行链路定位解决方案,以支持在这些活动中确定的用例、场景和需求。
如果在侧行链路支持定位参考信号(Positioning Reference Signal,PRS)的发送或接收,需要确定定位参考信号的发送资源池或接收资源池。
图7是根据本申请一实施例的侧行通信方法700的示意性流程图。该方法包括以下内容的至少部分内容。
S710、配置用于侧行定位参考信号(PRS)的相关信息。
在一种实施方式中,该侧行PRS的相关信息的配置方式包括以下至少之一:
通过网络设备配置;
通过对端设备配置;
预配置。
在一种实施方式中,网络设备可以配置用于侧行PRS的相关信息。例如,网络设备可以向第一设备和/或第二设备发送PRS配置信息。该第二设备可以是第一设备进行侧行通信的对端设备。第一设备和/或第二设备基于收到的PRS配置信息确定自身的用于侧行PRS的相关信息。
在一种实施方式中,第一设备和/或第二设备可以配置自身用于侧行PRS的相关信息。例如,第一设备和/或第二设备可以从网络设备接收PRS配置信息,基于该PRS配置信息确定该第一设备的用于侧行PRS的相关信息。再如,第一设备可以从第二设备接收PRS配置信息,基于该PRS配置信息确定该第一设备的用于侧行PRS的相关信息。再如,第一设备可以基于预配置信息确定该第一设备的用于侧行PRS的相关信息。再如,第二设备可以从第一设备接收PRS配置信息,基于该PRS配置信息确定该第二设备的用于侧行PRS的相关信息。再如,第二设备可以基于预配置信息确定该第二设备的用于侧行PRS的相关信息。
在一种实施方式中,该侧行PRS的相关信息包括以下至少之一:
与侧行PRS相关的信号或信道,例如,PRS参考信号,用于指示PRS发送的侧行信道等;
侧行PRS资源池。
在一种实施方式中,该侧行PRS资源池包括以下至少之一:
侧行PRS发送资源池,用于发送与该侧行PRS相关的信号或信道;
侧行PRS接收资源池,用于接收与该侧行PRS相关的信号或信道。
例如,第一设备确定的自身用于侧行PRS的相关信息包括侧行PRS发送资源池。第一设备可以利用侧行PRS发送资源池中的资源向第二设备发送侧行PRS相关的信号或信道。
再如,第二设备确定的自身用于侧行PRS的相关信息包括侧行PRS接收资源池。第二设备可以利用侧行PRS接收资源池中的资源从第一设备接收侧行PRS相关的信号或信道。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池占用不同的时频资源。例如,侧行PRS发送资源池和侧行通信的资源池占用不同的时频资源。再如,侧行PRS接收资源池和侧行通信的资源池占用不同的时频资源。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池包括不同的时隙。例如,侧行PRS发送资源池和侧行通信的资源池包括不同的时隙。再如,侧行PRS接收资源池和侧行通信的资源池包括不同的时隙。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池包括相同时隙上的不同正交频分复用(OFDM)符号。例如,侧行PRS发送资源池和侧行通信的资源池包括相同时隙上的不同OFDM符号。再如,侧行PRS接收资源池和侧行通信的资源池包括相同c时隙上的不同OFDM符号。
在一种实施方式中,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号数小于可用于PSSCH发送的OFDM符号数。
在一种实施方式中,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号数小于可用于PSSCH接收的OFDM符号数。
例如,在时隙n中,第一设备用于侧行PRS相关信号或信道发送的OFDM符号数为2,可用于PSSCH发送的OFDM符号数为4。再如,在时隙n+1中,第二设备用于侧行PRS相关信号或信道接收的OFDM符号数为2,可用于PSSCH接收的OFDM符号数为4。
在一种实施方式中,在该侧行PRS资源池所在的侧行带宽部分(Bandwidth Part,BWP)上,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号的起点和长度由专用的信令单独配置。
在一种实施方式中,在该侧行PRS资源池所在的侧行BWP上,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号的起点和长度由专用的信令单独配置。
在本申请实施例中,专用的信令可以用于专门配置侧行PRS发送资源池和/或侧行PRS接收资源池。
在一种实施方式中,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号不同于该侧行BWP上可用于侧行通信的OFDM符号。
在一种实施方式中,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号不同于该侧行BWP上可用于侧行通信的OFDM符号。
在一种实施方式中,在该侧行BWP上配置了多个该侧行PRS资源池的情况下,不同的该侧行PRS资源池占用相同时隙或相同OFDM符号上的不同频域资源。
例如,第一设备在侧行BWP上配置了侧行PRS发送资源池A1和侧行PRS发送资源池A2,侧行PRS发送资源池A1和侧行PRS发送资源池A2占用相同时隙上的不同频域资源。
再如,第一设备在侧行BWP上配置了侧行PRS发送资源池A3和侧行PRS发送资源池A4,侧行PRS发送资源池A3和侧行PRS发送资源池A4占用相同OFDM符号上的不同频域资源。
再如,第二设备在侧行BWP上配置了侧行PRS接收资源池B1和侧行PRS接收资源池B2,侧行PRS接收资源池B1和侧行PRS接收资源池B2占用相同时隙上的不同频域资源。
再如,第二设备在侧行BWP上配置了侧行PRS接收资源池B3和侧行PRS接收资源池B4,侧行PRS接收资源池B3和侧行PRS接收资源池B4占用相同OFDM符号上的不同频域资源。
在一种实施方式中,在该侧行BWP上配置了多个该侧行PRS资源池的情况下,不同的该侧行PRS资源池占用不同的时域资源。
例如,第一设备在侧行BWP上配置了多个侧行PRS发送资源池的情况下,不同的侧行PRS发送资源池占用不同的时域资源。
再如,第二设备在侧行BWP上配置了多个侧行PRS接收资源池的情况下,不同的侧行PRS接收资源池占用不同的时域资源。
在一种实施方式中,不同的该侧行PRS资源池占用的同一个时隙的不同OFDM符号,该不同OFDM符号是通过不同的OFDM符号的起点和长度配置参数配置的。
例如,第一设备的不同的侧行PRS发送资源池占用的同一个时隙的不同OFDM符号。
再如,第二设备不同的侧行PRS接收资源池占用的同一个时隙的不同OFDM符号。
在一种实施方式中,该侧行PRS资源池占用的频域资源和该侧行PRS资源池所在的侧行BWP的频域资源相同。
例如,第一设备的侧行PRS发送资源池占用的频域资源和侧行PRS发送资源池所在的侧行BWP的频域资源相同。
再如,第二设备的侧行PRS接收资源池占用的频域资源和侧行PRS接收资源池所在的侧行BWP的频域资源相同。
在一种实施方式中,该侧行PRS资源池占用同步信号时隙。例如,第一设备的侧行PRS发送资源池占用同步信号时隙。再如,第二设备的侧行PRS接收资源池占用同步信号时隙。
在一种实施方式中,该侧行PRS资源池占用侧行BWP上配置的用于侧行同步信号发送的时隙的部分或全部。例如,第一设备的侧行PRS发送资源池占用侧行BWP上配置的用于侧行同步信号发送的时隙的部分或全部。
在一种实施方式中,该侧行PRS资源池包括用于发送同步信号的同步信号子帧。例如,第一设备的侧行PRS发送资源池包括用于发送同步信号的同步信号子帧。
在一种实施方式中,该侧行PRS资源池占用侧行BWP上配置的用于侧行同步信号接收的时隙的部分或全部。例如,第二设备的侧行PRS接收资源池占用侧行BWP上配置的用于侧行同步信号接收的时隙的部分或全部。
在一种实施方式中,该侧行PRS资源池包括用于接收同步信号的同步信号子帧。例如,第二设备的侧行PRS接收资源池包括用于发送同步信号的同步信号子帧。
在一种实施方式中,该侧行PRS资源池包括全部同步信号子帧。例如,第一设备的侧行PRS发送资源池包括全部同步信号子帧。再如,第二设备的侧行PRS接收资源池包括全部同步信号子帧。
在一种实施方式中,该侧行PRS资源池占用该侧行PRS资源池所在的侧行BWP上未被用于侧行同步信号发送的频域资源。
在一种实施方式中,侧行PRS资源池占用该侧行PRS资源池所在的侧行BWP上未被用于侧行同步信号接收的频域资源。
例如,第一设备的侧行PRS发送资源池占用该侧行PRS发送资源池所在的侧行BWP上未被用于侧行同步信号发送的频域资源。再如,第二设备的侧行PRS接收资源池占用该侧行PRS接收资源池所在的侧行BWP上未被用于侧行同步信号接收的频域资源。
在一种实施方式中,该侧行PRS资源池内的时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同。
在一种实施方式中,侧行PRS资源池内的时隙上可用于侧行PRS相关信号或信道接 收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
例如,第一设备的侧行PRS发送资源池内的时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同。再如,第二设备的侧行PRS接收资源池内的时隙上可用于侧行PRS相关信号或信道接收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
在一种实施方式中,在该侧行PRS资源池所在的侧行BWP上配置有用于同步信号发送的同步时隙的情况下,用于该侧行PRS资源池配置的比特位图映射到部分或全部同步时隙上。
在一种实施方式中,在该侧行PRS资源池所在的侧行BWP上配置有用于同步信号接收的同步时隙的情况下,用于该侧行PRS资源池配置的比特位图映射到部分或全部同步时隙上。
例如,在第一设备的侧行PRS发送资源池所在的侧行BWP上配置有用于同步信号发送的同步时隙的情况下,用于该侧行PRS发送资源池配置的比特位图映射到部分或全部同步时隙上。再如,在第二设备的侧行PRS接收资源池所在的侧行BWP上配置有用于同步信号接收的同步时隙的情况下,用于该侧行PRS接收资源池配置的比特位图映射到部分或全部同步时隙上。
在一种实施方式中,该侧行PRS资源池占用预留时隙。例如,第一设备的侧行PRS发送资源池占用预留时隙。再如,第二设备的侧行PRS接收资源池占用预留时隙。
在一种实施方式中,该侧行PRS资源池占用侧行通信资源池确定过程中的预留时隙的部分或全部。例如,第一设备的侧行PRS发送资源池占用侧行通信资源池确定过程中的预留时隙的部分或全部。再如,第二设备的侧行PRS接收资源池占用侧行通信资源池确定过程中的预留时隙的部分或全部。
在一种实施方式中,在该侧行PRS资源池占用侧行通信资源池确定过程中的预留时隙的部分的情况下,用于该侧行PRS资源池配置的比特位图用于指示可配置为侧行PRS资源池的预留时隙。例如,在第一设备的侧行PRS发送资源池占用侧行通信资源池确定过程中的预留时隙的部分的情况下,用于该侧行PRS发送资源池配置的比特位图用于指示可配置为侧行PRS发送资源池的预留时隙。再如,在第二设备的侧行PRS接收资源池占用侧行通信资源池确定过程中的预留时隙的部分的情况下,用于该侧行PRS接收资源池配置的比特位图用于指示可配置为侧行PRS接收资源池的预留时隙。
在一种实施方式中,该侧行PRS资源池占用的频域资源和该侧行通信资源池占用的频域资源相同。例如,在侧行PRS资源池占用预留时隙的情况下,侧行PRS发送资源池占用的频域资源和侧行通信资源池占用的频域资源相同,或者侧行PRS接收资源池占用的频域资源和侧行通信资源池占用的频域资源相同。
在一种实施方式中,以下至少之一频分复用:
不同的侧行PRS资源池;
侧行PRS资源池与侧行通信资源池。
在一种实施方式中,在侧行PRS资源池占用预留时隙的情况下,不同的侧行PRS资源池频分复用。例如,侧行PRS发送资源池A1和侧行PRS发送资源池A2频分复用。再如,侧行PRS接收资源池B1和侧行PRS接收资源池B2频分复用。
在一种实施方式中,在侧行PRS资源池占用预留时隙的情况下,侧行PRS资源池与侧行通信资源池频分复用。例如,侧行PRS发送资源池A1和侧行通信资源池频分复用。再如,侧行PRS接收资源池B1和侧行通信资源池频分复用。
在一种实施方式中,在该侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同。
在一种实施方式中,在该侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或 信道接收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
例如,在第一设备的侧行PRS发送资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同。再如,在第二设备侧行PRS接收资源池内每个时隙上可用于侧行PRS相关信号或信道接收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
在一种实施方式中,该侧行PRS资源池占用的频域资源和该侧行PRS资源池所在的侧行BWP占用的频域资源相同。例如,在侧行PRS资源池占用预留时隙的情况下,侧行PRS发送资源池占用的频域资源和该侧行PRS发送资源池所在的侧行BWP占用的频域资源相同,或者侧行PRS接收资源池占用的频域资源和该侧行PRS接收资源池所在的侧行BWP占用的频域资源相同。
在一种实施方式中,该侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号单独配置。
在一种实施方式中,该侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道接收的OFDM符号单独配置。
例如,第一设备的侧行PRS发送资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号单独配置。再如,第二设备的侧行PRS接收资源池内每个时隙上可用于侧行PRS相关信号或信道接收的OFDM符号单独配置。
在一种实施方式中,该侧行PRS资源池占用预留时隙和同步信号时隙。例如,第一设备的侧行PRS发送资源池中的一部分占用预留时隙,另一部分占用同步信号时隙。再如,第二设备的侧行PRS接收资源池的一部分占用预留时隙,另一部分占用同步信号时隙。
在一种实施方式中,该侧行PRS资源池位于与该侧行PRS资源池关联的侧行通信资源池内的物理侧行反馈信道(PSFCH)所在的OFDM符号上。例如,第一设备的侧行PRS发送资源池位于与该侧行PRS发送资源池关联的侧行通信资源池内的PSFCH所在的OFDM符号上。再如,第二设备的侧行PRS接收资源池位于与该侧行PRS接收资源池关联的侧行通信资源池内的PSFCH所在的OFDM符号上。
在一种实施方式中,该侧行PRS资源池包括的频域资源与用于该PSFCH发送的频域资源不同。
在一种实施方式中,该侧行PRS接收资源池包括的频域资源与用于该PSFCH接收的频域资源不同。
例如,第一设备的侧行PRS包括的频域资源与用于PSFCH发送的频域资源不同。再如,第二设备的侧行PRS接收资源池与用于PSFCH接收的频域资源不同。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池的配置是独立的。例如,在侧行PRS资源池与侧行通信资源池占用不同的时频资源的情况下,侧行PRS资源池与侧行通信资源池的配置可以是独立的。再如,在侧行PRS资源池占用同步信号时隙的情况下,侧行PRS资源池与侧行通信资源池的配置可以是独立的。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池通过不同的配置信令分别配置。例如,在侧行PRS资源池与侧行通信资源池的配置是独立的情况下,可以通过第一配置信令配置侧行PRS资源池,通过第二配置信令配置侧行通信资源池。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池的配置是相关的。例如,在侧行PRS资源池占用同步信号时隙的情况下,该侧行PRS资源池与侧行通信资源池的配置可以是相关的。再如,在侧行PRS资源池占用预留时隙的情况下,该侧行PRS资源池与侧行通信资源池的配置可以是相关的。再如,在侧行PRS资源池占用预留时隙和同步信号时隙的情况下,该侧行PRS资源池与侧行通信资源池的配置可以是相关的。再如,在侧行PRS资源池位于与该侧行PRS资源池关联的侧行通信资源池内的PSFCH所在的OFDM符号上的情况下,该侧行PRS资源池与该侧行通信资源池的配置可以是相关的。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池通过相同的配置信令一同配置。例如,在侧行PRS资源池与侧行通信资源池的配置是相关的情况下,侧行PRS资源池与侧行通信资源池可以通过相同的配置信令一同配置。再如,在侧行PRS资源池与侧行通信资源池的配置是相关的情况下,侧行PRS资源池与侧行通信资源池可以通过不同的配置信令分别配置,并且侧行PRS资源池的配置信令不晚于侧行通信资源池的配置信令。
例如,如果侧行PRS资源池占用预留时隙,侧行PRS资源池包含的时隙为与其一同配置的侧行通信资源池确定过程中的预留时隙的部分或全部。PRS资源池占用的频域资源可以和与其一同配置的侧行通信资源池的频域资源相同。
例如,如果侧行PRS资源池位于与其关联的侧行通信资源池内的PSFCH所在的OFDM符号上,PRS资源池和一个侧行通信资源池一同配置,PRS资源池包含的频域资源与用于PSFCH发送的频域资源不同。
本申请实施例可以避免侧行PRS和用于侧行通信的侧行信号、侧行信道等的相互影响,保证侧行PRS的发送带宽和发送频率,从而提高基于侧行定位的准确性。
本申请实施例可以提供一种侧行链路PRS资源的配置方法,包括以下特点的至少之一:
侧行PRS资源池与同一个侧行BWP上的侧行通信资源池占用不同的时隙,或占用不同的OFDM符号;
侧行PRS资源池可以占用一个侧行通信资源池配置过程中的预留时隙;
侧行PRS资源池可以占用侧行BWP上配置的同步信号时隙;
侧行PRS资源池可以一个侧行通信资源池内的PSFCH符号上的频域资源。
该侧行链路PRS资源的配置方法可以通过侧行通信的任意一端设备执行,也可以通过网络设备执行。
在下述示例中,以侧行PRS发送资源池为例进行说明。侧行PRS接收资源池配置方式与侧行PRS发送资源池是类似的,可以参考侧行PRS发送资源池的示例。
示例1:侧行PRS资源池(可以简称PRS资源池)单独配置。
本示例中,侧行PRS发送资源池和侧行通信资源池是由不同的配置信令分别配置的。侧行PRS发送资源池也可以称为用于侧行PRS相关信号或信道发送的资源池,侧行通信资源池也可以称为用于侧行通信的资源池。可选地,侧行PRS发送资源池和侧行通信资源池占用不同的时频资源。例如,用于侧行PRS相关信号或信道发送的资源池和用于侧行通信的资源池包含不同的时隙,和/或,用于PRS相关信号或信道发送的资源池和用于侧行通信的资源池包含相同时隙上的不同OFDM符号。在本公开实施例中,该侧行PRS相关信号或信道发送包括与PRS相关的信道或信号的发送,例如,用于指示测序PRS相关信号或信道发送的控制信道,下文相同的表述具有相同的含义。
侧行PRS的发送需求和PSSCH的发送需求不同,前者需要保证发送带宽以提供准确的定位,而后者需要足够的时频资源以满足数据速率的需求。在配置可以用侧行PRS的发送资源池时,一个时隙内需要用于侧行PRS相关信号或信道发送的OFDM符号数可能小于需要用于PSSCH发送的OFDM符号数。为了避免在一个时隙内引入额外的AGC时间。可选地,用于PRS相关信号或信道发送的资源池和用于侧行通信发送的资源池可以总是占用不同的时域资源。这种情况下,两者不能通过频分的方式复用。
按照本示例的一种实现方式,如果用于PRS相关信号或信道发送的资源池和任何用于侧行通信的资源池占用不同的时域资源,在一个可用于PRS相关信号或信道发送的侧行BWP上,一个时隙内可用于PRS相关信号或信道发送的OFDM符号的起点和长度由专用的信令单独配置。可用于PRS相关信号或信道发送的侧行BWP也可以称为侧行PRS资源池所在的侧行BWP。一个时隙内可用于PRS相关信号或信道发送的OFDM符号可以不同于该侧行BWP上用于侧行通信的OFDM符号。在该侧行BWP上,如果包括多个用于PRS相关信号或信道发送的资源池,不同的用于PRS相关信号或信道发送的资源池可以占用相 同时隙或OFDM符号上的不同频域资源。
按照本示例的一种实现方式,如果用于PRS相关信号或信道发送的资源池和任何用于侧行通信的资源池占用不同的时域资源,对于任何一个可用于PRS相关信号或信道发送的资源池,其包含的时隙内可用于PRS相关信号或信道发送的OFDM符号的起点和长度由专用信令单独配置。如果侧行BWP上配置了多个可用于PRS相关信号或信道发送的资源池,则不同的资源池占用不同的时域资源。通过不同的起点和长度的配置,可以将同一个时隙配置给不同的PRS资源池。如图8所示,可以将一个时隙的前7个OFMD符号配置为第一个PRS资源池的OFMD符号,符号的起点为#0,长度为7个符号。此外,可以将一个时隙的后7个OFMD符号配置为第二个PRS资源池的OFMD符号,符号的起点为#7,长度为7个符号。可选地,在这种情况下侧行PRS资源池占用的频域资源可以和该侧行PRS资源池所在的侧行BWP相同。这种情况下,用于配置PRS资源池的信令中不包含频域资源指示信息。
示例2:侧行PRS资源池占用预留时隙(reserved slots)
本示例中,侧行PRS资源池可以总是和一个用于侧行通信的资源池一同配置。侧行PRS资源池包含的时隙可以为与其一同配置的侧行通信资源池确定过程中的预留时隙的部分或全部。例如,如果用于侧行通信的资源池的比特位图长度为160比特,在一个DFN周期内配置了128个用于同步信号发送的时隙,则预留时隙的个数为32个时隙。该32个时隙可以全部配置为一个PRS相关信号或信道发送资源池。该32个时隙内的部分也可以配置为一个PRS资源池,在这种情况下,需要额外的比特位图用于指示可以配置为PRS资源池的预留时隙。
在本示例中,侧行PRS资源池占用的频域资源可以和与其一同配置的侧行通信资源池相同。在这种情况下,该侧行PRS资源池可以和其它的侧行PRS资源池或侧行通信资源池频分复用。在侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和当前侧行BWP上针对侧行通信的配置相同。或者,侧行PRS资源池占用的频域资源和其所在的侧行BWP相同。在这种情况下,类似于示例1,PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号可以单独配置。
示例3:侧行PRS资源池占用同步信号时隙
本示例中,侧行PRS资源池占用当前侧行BWP上配置的用于侧行同步信号发送的时隙的部分或全部。
按照本示例的第一种实现方式,侧行PRS资源池由用接收同步信号的同步信号子帧组成。例如,当前侧行BWP上每个侧行同步信号发送周期内配置了两个同步信号时隙。对于一个特定终端,其中的第一个同步信号时隙用于发送侧行同步信号,第二个同步信号时隙用于接收侧行同步信号。由于对于发送PRS的终端(尤其是发送用于绝对定位PRS的终端),应具备准确的定位和定时信息,所以没有必要接收同步信号。所以,对于该特定终端,PRS资源池可以由每个同步周期内的第二个同步信号时隙组成。
按照本示例的第二种实现方式,侧行PRS资源池由全部同步信号子帧组成。例如,如果当前侧行BWP上每个侧行同步信号发送周期内配置了两个同步信号时隙,则侧行PRS资源池可以由每个同步周期内的两个同步信号时隙组成。
对于以上任何一种实现方式,可选地,侧行PRS资源池占用其所在侧行BWP上未被用于侧行同步信号发送的所有频域资源,如图9所示。而且,侧行PRS资源池内的时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和当前侧行BWP上针对侧行通信的配置相同。
示例4:侧行PRS资源池占用同步信号时隙和预留时隙
本示例中,侧行PRS资源池可以总是和一个用于侧行通信的资源池一同配置,侧行PRS资源池包含的时隙为与其一同配置的侧行通信资源池确定过程中的预留时隙的部分或 全部,以及侧行PRS资源池所在侧行BWP上配置的用于同步信号发送的时隙的部分或全部。例如,如果用于侧行通信的资源池的比特位图长度为160比特,在一个DFN周期内配置了128个用于同步信号发送的时隙,则预留时隙的个数为32个时隙。该32个时隙可以全部配置为一个侧行PRS相关信号或信道发送资源池,而且该侧行BWP上每个侧行同步信号发送周期内配置了2个用于同步信号发送的时隙。上述32个预留时隙以及每个侧行同步信号发送周期内的两个同步信号时隙即为PRS资源池。
示例5:侧行PRS资源池位于与其关联的侧行通信资源池内的PSFCH符号上
本示例中,侧行PRS资源池可以总是和一个用于侧行通信的资源池一同配置,侧行PRS资源池位于与其关联的侧行通信资源池中配置的PSFCH符号上。在这种情况下,侧行PRS资源池包含的频域资源与用于PSFCH发送的频域资源不同。
示例6:侧行PRS资源池单独配置,并可以包含同步信号时隙
本示例中,侧行定位参考信号的发送资源池和侧行通信的资源池是由不同的配置信令分别配置的。如果侧行PRS资源池所在的侧行BWP上配置有用于同步信号发送的时隙,则用于侧行PRS资源池配置的比特位图可以映射到部分或全部同步时隙。
根据本申请实施例提出的一种PRS资源池的配置方法,侧行PRS资源池可以和侧行通信资源池可以通过时分的方式在同一个侧行BWP内共存。例如,侧行PRS资源池和侧行通信资源池占用不同的时隙或不同的OFDM符号。再如,侧行PRS资源池可以占用一个侧行通信资源池配置过程中的预留时隙,或侧行BWP上配置的同步信号时隙,或者一个侧行通信资源池内的PSFCH符号上的频域资源。
通过本申请实施例提出的方法,可以避免同一个侧行BWP上侧行PRS和用于侧行通信的侧行信号、侧行信道的相互影响,保证侧行PRS的发送带宽和发送频率,确保基于侧行定位的准确性。
图10是根据本申请一实施例的通信设备1000的示意性框图。该通信设备1000可以包括:
配置单元1010,用于配置用于侧行定位参考信号PRS的相关信息。
在一种实施方式中,该侧行PRS的相关信息包括以下至少之一:
与侧行PRS相关的信号或信道;
侧行PRS资源池。
在一种实施方式中,该侧行PRS资源池包括以下至少之一:
侧行PRS发送资源池,用于发送与该侧行PRS相关的信号或信道;
侧行PRS接收资源池,用于接收与该侧行PRS相关的信号或信道。
在一种实施方式中,该侧行PRS的相关信息的配置方式包括以下至少之一:
通过网络设备配置;
通过对端设备配置;
预配置。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池占用不同的时频资源。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池包括不同的时隙。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池包括相同时隙上的不同正交频分复用OFDM符号。
在一种实施方式中,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号数小于可用于PSSCH发送的OFDM符号数。
在一种实施方式中,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号数小于可用于PSSCH接收的OFDM符号数。
在一种实施方式中,在该侧行PRS资源池所在的侧行带宽部分BWP上,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号的起点和长度由专用的信令单独配置。
在一种实施方式中,在该侧行PRS资源池所在的侧行带宽部分BWP上,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号的起点和长度由专用的信令单独配置。
在一种实施方式中,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号不同于该侧行BWP上可用于侧行通信的OFDM符号。
在一种实施方式中,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号不同于该侧行BWP上可用于侧行通信的OFDM符号。
在一种实施方式中,在该侧行BWP上配置了多个该侧行PRS资源池的情况下,不同的该侧行PRS资源池占用相同时隙或相同OFDM符号上的不同频域资源。
在一种实施方式中,在该侧行BWP上配置了多个该侧行PRS资源池的情况下,不同的该侧行PRS资源池占用不同的时域资源。
在一种实施方式中,不同的该侧行PRS资源池占用的同一个时隙的不同OFDM符号,该不同OFDM符号是通过不同的OFDM符号的起点和长度配置参数配置的。
在一种实施方式中,该侧行PRS资源池占用的频域资源和该侧行PRS资源池所在的侧行BWP的频域资源相同。
在一种实施方式中,该侧行PRS资源池占用同步信号时隙。
在一种实施方式中,该侧行PRS资源池占用侧行BWP上配置的用于侧行同步信号发送的时隙的部分或全部。
在一种实施方式中,该侧行PRS资源池包括用于发送同步信号的同步信号子帧。
在一种实施方式中,该侧行PRS资源池占用侧行BWP上配置的用于侧行同步信号接收的时隙的部分或全部。
在一种实施方式中,该侧行PRS资源池包括用于接收同步信号的同步信号子帧。
在一种实施方式中,该侧行PRS资源池包括全部同步信号子帧。
在一种实施方式中,该侧行PRS资源池占用该侧行PRS资源池所在的侧行BWP上未被用于侧行同步信号发送的频域资源。
在一种实施方式中,侧行PRS资源池占用该侧行PRS资源池所在的侧行BWP上未被用于侧行同步信号接收的频域资源。
在一种实施方式中,该侧行PRS资源池内的时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同。
在一种实施方式中,侧行PRS资源池内的时隙上可用于侧行PRS相关信号或信道接收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
在一种实施方式中,在该侧行PRS资源池所在的侧行BWP上配置有用于同步信号发送的同步时隙的情况下,用于该侧行PRS资源池配置的比特位图映射到部分或全部同步时隙上。
在一种实施方式中,在该侧行PRS资源池所在的侧行BWP上配置有用于同步信号接收的同步时隙的情况下,用于该侧行PRS资源池配置的比特位图映射到部分或全部同步时隙上。
在一种实施方式中,该侧行PRS资源池占用预留时隙。
在一种实施方式中,该侧行PRS资源池占用侧行通信资源池确定过程中的预留时隙的部分或全部。
在一种实施方式中,在该侧行PRS资源池占用侧行通信资源池确定过程中的预留时隙的部分的情况下,用于该侧行PRS资源池配置的比特位图用于指示可配置为侧行PRS资源池的预留时隙。
在一种实施方式中,该侧行PRS资源池占用的频域资源和该侧行通信资源池占用的频域资源相同。
在一种实施方式中,以下至少之一频分复用:
不同的侧行PRS资源池;
侧行PRS资源池与侧行通信资源池。
在一种实施方式中,在该侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同。
在一种实施方式中,在该侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道接收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
在一种实施方式中,该侧行PRS资源池占用的频域资源和该侧行PRS资源池所在的侧行BWP占用的频域资源相同。
在一种实施方式中,该侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号单独配置。
在一种实施方式中,该侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道接收的OFDM符号单独配置。
在一种实施方式中,该侧行PRS资源池位于与该侧行PRS资源池关联的侧行通信资源池内的物理侧行反馈信道PSFCH所在的OFDM符号上。
在一种实施方式中,该侧行PRS资源池包括的频域资源与用于该PSFCH发送的频域资源不同。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池的配置是独立的。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池通过不同的配置信令分别配置。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池的配置是相关的。
在一种实施方式中,该侧行PRS资源池与侧行通信资源池通过相同的配置信令一同配置。
本申请实施例的通信设备1000能够实现前述的方法700实施例中的通信设备的对应功能。该通信设备1000中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的通信设备1000中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图11是根据本申请实施例的通信设备1100示意性结构图。该通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以使通信设备1100实现本申请实施例中的方法。
在一种可能的实现方式中,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以使通信设备1100实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
在一种可能的实现方式中,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
在一种可能的实现方式中,该通信设备1100可为本申请实施例的网络设备,并且该通信设备1100可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该通信设备1100可为本申请实施例的终端设备,并且该通 信设备1100可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是根据本申请实施例的芯片1200的示意性结构图。该芯片1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种可能的实现方式中,芯片1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
在一种可能的实现方式中,该芯片1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种可能的实现方式中,该芯片1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图13是根据本申请实施例的通信系统1300的示意性框图。该通信系统1300包括第一设备1310和第二设备1320。
第一设备1310,用于配置用于侧行PRS的相关信息。
第二设备1320,用于配置用于侧行PRS的相关信息。
其中,该第一设备1310可以用于实现上述方法700中由第一设备实现的相应的功能, 以及该第二设备1320可以用于实现上述方法700中由第二设备实现的相应的功能。为了简洁,在此不再赘述。
在一种实施方式中,该通信系统1300还可以包括网络设备。网络设备用于配置用于侧行PRS的相关信息。该网络设备可以用于实现上述方法700中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (77)

  1. 一种侧行通信方法,包括:
    配置用于侧行定位参考信号PRS的相关信息;
    其中,所述侧行PRS的相关信息包括以下至少之一:
    与侧行PRS相关的信号或信道;
    侧行PRS资源池。
  2. 根据权利要求1所述的方法,其中,所述侧行PRS资源池包括以下至少之一:
    侧行PRS发送资源池,用于发送与所述侧行PRS相关的信号或信道;
    侧行PRS接收资源池,用于接收与所述侧行PRS相关的信号或信道。
  3. 根据权利要求1或2所述的方法,其中,所述侧行PRS的相关信息的配置方式包括以下至少之一:
    通过网络设备配置;
    通过对端设备配置;
    预配置。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述侧行PRS资源池与侧行通信资源池占用不同的时频资源。
  5. 根据权利要求4所述的方法,其中,所述侧行PRS资源池与侧行通信资源池包括不同的时隙。
  6. 根据权利要求4所述的方法,其中,所述侧行PRS资源池与侧行通信资源池包括相同时隙上的不同正交频分复用OFDM符号。
  7. 根据权利要求4至6中任一项所述的方法,其中,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号数小于可用于PSSCH发送的OFDM符号数;或者,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号数小于可用于PSSCH接收的OFDM符号数。
  8. 根据权利要求4至6中任一项所述的方法,其中,在所述侧行PRS资源池所在的侧行带宽部分BWP上,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号的起点和长度由专用的信令单独配置;或者,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号的起点和长度由专用的信令单独配置。
  9. 根据权利要求8所述的方法,其中,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号不同于所述侧行BWP上可用于侧行通信的OFDM符号;或者,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号不同于所述侧行BWP上可用于侧行通信的OFDM符号。
  10. 根据权利要求8或9所述的方法,其中,在所述侧行BWP上配置了多个所述侧行PRS资源池的情况下,不同的所述侧行PRS资源池占用相同时隙或相同OFDM符号上的不同频域资源。
  11. 根据权利要求8或9所述的方法,其中,在所述侧行BWP上配置了多个所述侧行PRS资源池的情况下,不同的所述侧行PRS资源池占用不同的时域资源。
  12. 根据权利要求11所述的方法,其中,不同的所述侧行PRS资源池占用的同一个时隙的不同OFDM符号,所述不同OFDM符号是通过不同的OFDM符号的起点和长度配置参数配置的。
  13. 根据权利要求11或12所述的方法,其中,所述侧行PRS资源池占用的频域资源和所述侧行PRS资源池所在的侧行BWP的频域资源相同。
  14. 根据权利要求1至3中任一项所述的方法,其中,所述侧行PRS资源池占用同步信号时隙。
  15. 根据权利要求14所述的方法,其中,所述侧行PRS资源池占用侧行BWP上配置 的用于侧行同步信号发送的时隙的部分或全部。
  16. 根据权利要求15所述的方法,其中,所述侧行PRS资源池包括用于发送同步信号的同步信号子帧。
  17. 根据权利要求14所述的方法,其中,所述侧行PRS资源池占用侧行BWP上配置的用于侧行同步信号接收的时隙的部分或全部。
  18. 根据权利要求17所述的方法,其中,所述侧行PRS资源池包括用于接收同步信号的同步信号子帧。
  19. 根据权利要求14至18中任一项所述的方法,其中,所述侧行PRS资源池包括全部同步信号子帧。
  20. 根据权利要求14至19中任一项所述的方法,其中,所述侧行PRS资源池占用所述侧行PRS资源池所在的侧行BWP上未被用于侧行同步信号发送的频域资源;或者,侧行PRS资源池占用所述侧行PRS资源池所在的侧行BWP上未被用于侧行同步信号接收的频域资源。
  21. 根据权利要求14至20中任一项所述的方法,其中,所述侧行PRS资源池内的时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同;或者,侧行PRS资源池内的时隙上可用于侧行PRS相关信号或信道接收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
  22. 根据权利要求14至21中任一项所述的方法,其中,在所述侧行PRS资源池所在的侧行BWP上配置有用于同步信号发送的同步时隙的情况下,用于所述侧行PRS资源池配置的比特位图映射到部分或全部同步时隙上;或者,在所述侧行PRS资源池所在的侧行BWP上配置有用于同步信号接收的同步时隙的情况下,用于所述侧行PRS资源池配置的比特位图映射到部分或全部同步时隙上。
  23. 根据权利要求1至3、14至22中任一项所述的方法,其中,所述侧行PRS资源池占用预留时隙。
  24. 根据权利要求23所述的方法,其中,所述侧行PRS资源池占用侧行通信资源池确定过程中的预留时隙的部分或全部。
  25. 根据权利要求24所述的方法,其中,在所述侧行PRS资源池占用侧行通信资源池确定过程中的预留时隙的部分的情况下,用于所述侧行PRS资源池配置的比特位图用于指示可配置为侧行PRS资源池的预留时隙。
  26. 根据权利要求23至25中任一项所述的方法,其中,所述侧行PRS资源池占用的频域资源和所述侧行通信资源池占用的频域资源相同。
  27. 根据权利要求26所述的方法,其中,以下至少之一频分复用:
    不同的侧行PRS资源池;
    侧行PRS资源池与侧行通信资源池。
  28. 根据权利要求27所述的方法,其中,在所述侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同;或者,在所述侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道接收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
  29. 根据权利要求26所述的方法,其中,所述侧行PRS资源池占用的频域资源和所述侧行PRS资源池所在的侧行BWP占用的频域资源相同。
  30. 根据权利要求29所述的方法,其中,所述侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号单独配置;或者,所述侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道接收的OFDM符号单独配置。
  31. 根据权利要求1至3中任一项所述的方法,其中,所述侧行PRS资源池位于与所述侧行PRS资源池关联的侧行通信资源池内的物理侧行反馈信道PSFCH所在的OFDM符 号上。
  32. 根据权利要求31所述的方法,其中,所述侧行PRS资源池包括的频域资源与用于所述PSFCH发送的频域资源不同;或者,所述侧行PRS接收资源池包括的频域资源与用于所述PSFCH接收的频域资源不同。
  33. 根据权利要求1至22中任一项所述的方法,其中,所述侧行PRS资源池与侧行通信资源池的配置是独立的。
  34. 根据权利要求33所述的方法,其中,所述侧行PRS资源池与侧行通信资源池通过不同的配置信令分别配置。
  35. 根据权利要求1至3、23至32中任一项所述的方法,其中,所述侧行PRS资源池与侧行通信资源池的配置是相关的。
  36. 根据权利要求35所述的方法,其中,所述侧行PRS资源池与侧行通信资源池通过相同的配置信令一同配置。
  37. 一种通信设备,包括:
    配置单元,用于配置用于侧行定位参考信号PRS相关信息;
    其中,所述侧行PRS的相关信息包括以下至少之一:
    与侧行PRS相关的信号或信道;
    侧行PRS资源池。
  38. 根据权利要求37所述的设备,其中,所述侧行PRS资源池包括以下至少之一:
    侧行PRS发送资源池,用于发送与所述侧行PRS相关的信号或信道;
    侧行PRS接收资源池,用于接收与所述侧行PRS相关的信号或信道。
  39. 根据权利要求37或38所述的设备,其中,所述侧行PRS的相关信息的配置方式包括以下至少之一:
    通过网络设备配置;
    通过对端设备配置;
    预配置。
  40. 根据权利要求37至39中任一项所述的设备,其中,所述侧行PRS资源池与侧行通信资源池占用不同的时频资源。
  41. 根据权利要求40所述的设备,其中,所述侧行PRS资源池与侧行通信资源池包括不同的时隙。
  42. 根据权利要求40所述的设备,其中,所述侧行PRS资源池与侧行通信资源池包括相同时隙上的不同正交频分复用OFDM符号。
  43. 根据权利要求40至42中任一项所述的设备,其中,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号数小于可用于PSSCH发送的OFDM符号数;或者,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号数小于可用于PSSCH接收的OFDM符号数。
  44. 根据权利要求40至42中任一项所述的设备,其中,在所述侧行PRS资源池所在的侧行带宽部分BWP上,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号的起点和长度由专用的信令单独配置;或者,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号的起点和长度由专用的信令单独配置。
  45. 根据权利要求44所述的设备,其中,一个时隙内可用于侧行PRS相关信号或信道发送的OFDM符号不同于所述侧行BWP上可用于侧行通信的OFDM符号;或者,一个时隙内可用于侧行PRS相关信号或信道接收的OFDM符号不同于所述侧行BWP上可用于侧行通信的OFDM符号。
  46. 根据权利要求44或45所述的设备,其中,在所述侧行BWP上配置了多个所述侧行PRS资源池的情况下,不同的所述侧行PRS资源池占用相同时隙或相同OFDM符号上 的不同频域资源。
  47. 根据权利要求44或45所述的设备,其中,在所述侧行BWP上配置了多个所述侧行PRS资源池的情况下,不同的所述侧行PRS资源池占用不同的时域资源。
  48. 根据权利要求47所述的设备,其中,不同的所述侧行PRS资源池占用的同一个时隙的不同OFDM符号,所述不同OFDM符号是通过不同的OFDM符号的起点和长度配置参数配置的。
  49. 根据权利要求47或48所述的设备,其中,所述侧行PRS资源池占用的频域资源和所述侧行PRS资源池所在的侧行BWP的频域资源相同。
  50. 根据权利要求37至39中任一项所述的设备,其中,所述侧行PRS资源池占用同步信号时隙。
  51. 根据权利要求50所述的设备,其中,所述侧行PRS资源池占用侧行BWP上配置的用于侧行同步信号发送的时隙的部分或全部。
  52. 根据权利要求51所述的设备,其中,所述侧行PRS资源池包括用于发送同步信号的同步信号子帧。
  53. 根据权利要求50所述的设备,其中,所述侧行PRS资源池占用侧行BWP上配置的用于侧行同步信号接收的时隙的部分或全部。
  54. 根据权利要求53所述的设备,其中,所述侧行PRS资源池包括用于接收同步信号的同步信号子帧。
  55. 根据权利要求50至54中任一项所述的设备,其中,所述侧行PRS资源池包括全部同步信号子帧。
  56. 根据权利要求50至55中任一项所述的设备,其中,所述侧行PRS资源池占用所述侧行PRS资源池所在的侧行BWP上未被用于侧行同步信号发送的频域资源;或者,侧行PRS资源池占用所述侧行PRS资源池所在的侧行BWP上未被用于侧行同步信号接收的频域资源。
  57. 根据权利要求50至56中任一项所述的设备,其中,所述侧行PRS资源池内的时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同;或者,侧行PRS资源池内的时隙上可用于侧行PRS相关信号或信道接收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
  58. 根据权利要求50至57中任一项所述的设备,其中,在所述侧行PRS资源池所在的侧行BWP上配置有用于同步信号发送的同步时隙的情况下,用于所述侧行PRS资源池配置的比特位图映射到部分或全部同步时隙上;或者,在所述侧行PRS资源池所在的侧行BWP上配置有用于同步信号接收的同步时隙的情况下,用于所述侧行PRS资源池配置的比特位图映射到部分或全部同步时隙上。
  59. 根据权利要求37至39、50至58中任一项所述的设备,其中,所述侧行PRS资源池占用预留时隙。
  60. 根据权利要求59所述的设备,其中,所述侧行PRS资源池占用侧行通信资源池确定过程中的预留时隙的部分或全部。
  61. 根据权利要求60所述的设备,其中,在所述侧行PRS资源池占用侧行通信资源池确定过程中的预留时隙的部分的情况下,用于所述侧行PRS资源池配置的比特位图用于指示可配置为侧行PRS资源池的预留时隙。
  62. 根据权利要求59至61中任一项所述的设备,其中,所述侧行PRS资源池占用的频域资源和侧行通信资源池占用的频域资源相同。
  63. 根据权利要求62所述的设备,其中,以下至少之一频分复用:
    不同的侧行PRS资源池;
    侧行PRS资源池与侧行通信资源池。
  64. 根据权利要求63所述的设备,其中,在所述侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号和侧行BWP上针对侧行通信的配置相同;或者,在所述侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道接收的OFDM符号和侧行BWP上针对侧行通信的配置相同。
  65. 根据权利要求62所述的设备,其中,所述侧行PRS资源池占用的频域资源和所述侧行PRS资源池所在的侧行BWP占用的频域资源相同。
  66. 根据权利要求65所述的设备,其中,所述侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道发送的OFDM符号单独配置;或者,所述侧行PRS资源池内每个时隙上可用于侧行PRS相关信号或信道接收的OFDM符号单独配置。
  67. 根据权利要求37至39中任一项所述的设备,其中,所述侧行PRS资源池位于与所述侧行PRS资源池关联的侧行通信资源池内的物理侧行反馈信道PSFCH所在的OFDM符号上。
  68. 根据权利要求67所述的设备,其中,所述侧行PRS资源池包括的频域资源与用于所述PSFCH发送的频域资源不同;或者,所述侧行PRS接收资源池包括的频域资源与用于所述PSFCH接收的频域资源不同。
  69. 根据权利要求37至58中任一项所述的设备,其中,所述侧行PRS资源池与侧行通信资源池的配置是独立的。
  70. 根据权利要求69所述的设备,其中,所述侧行PRS资源池与侧行通信资源池通过不同的配置信令分别配置。
  71. 根据权利要求37至39、61至68中任一项所述的设备,其中,所述侧行PRS资源池与侧行通信资源池的配置是相关的。
  72. 根据权利要求71所述的设备,其中,所述侧行PRS资源池与侧行通信资源池通过相同的配置信令一同配置。
  73. 一种通信设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述通信设备执行如权利要求1至36中任一项所述的方法。
  74. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至36中任一项所述的方法。
  75. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至36中任一项所述的方法。
  76. 一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至36中任一项所述的方法。
  77. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至36中任一项所述的方法。
PCT/CN2021/142588 2021-12-29 2021-12-29 侧行通信方法和设备 WO2023123080A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142588 WO2023123080A1 (zh) 2021-12-29 2021-12-29 侧行通信方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142588 WO2023123080A1 (zh) 2021-12-29 2021-12-29 侧行通信方法和设备

Publications (1)

Publication Number Publication Date
WO2023123080A1 true WO2023123080A1 (zh) 2023-07-06

Family

ID=86996838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142588 WO2023123080A1 (zh) 2021-12-29 2021-12-29 侧行通信方法和设备

Country Status (1)

Country Link
WO (1) WO2023123080A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327901A (zh) * 2017-08-01 2019-02-12 北京三星通信技术研究有限公司 分配定位资源的方法及设备
WO2021057232A1 (zh) * 2019-09-29 2021-04-01 大唐移动通信设备有限公司 信号传输方法及装置
WO2021075851A1 (ko) * 2019-10-15 2021-04-22 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 측위를 수행하는 방법 및 이를 위한 장치
WO2021097598A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 侧行定位方法和装置
WO2021240478A1 (en) * 2020-05-29 2021-12-02 Lenovo (Singapore) Pte. Ltd. Sidelink resource pool configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327901A (zh) * 2017-08-01 2019-02-12 北京三星通信技术研究有限公司 分配定位资源的方法及设备
WO2021057232A1 (zh) * 2019-09-29 2021-04-01 大唐移动通信设备有限公司 信号传输方法及装置
WO2021075851A1 (ko) * 2019-10-15 2021-04-22 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 측위를 수행하는 방법 및 이를 위한 장치
WO2021097598A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 侧行定位方法和装置
WO2021240478A1 (en) * 2020-05-29 2021-12-02 Lenovo (Singapore) Pte. Ltd. Sidelink resource pool configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, SANECHIPS: "Evolution of NR positioning in Rel-18", 3GPP DRAFT; RP-212381, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210913 - 20210917, 6 September 2021 (2021-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052050357 *

Similar Documents

Publication Publication Date Title
US20230105567A1 (en) Sidelink communication method and terminal device
US20230179374A1 (en) Channel transmission method, terminal device, and network device
US20230090640A1 (en) Wireless communication method and terminal device
CN116711439A (zh) 无线通信的方法、终端设备和网络设备
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
US20220394503A1 (en) Wireless communication method and device
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2023123080A1 (zh) 侧行通信方法和设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2020056774A1 (zh) 信号传输的方法、终端设备和网络设备
WO2023279403A1 (zh) 无线通信方法、终端设备和网络设备
WO2024059986A1 (zh) 通信方法和设备
CN118120306A (zh) 侧行通信方法和设备
WO2023122905A1 (zh) 无线通信的方法及终端设备
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2023050355A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022021448A1 (zh) 检测控制信息的方法、传输控制信息的方法、终端设备和网络设备
WO2023097629A1 (zh) 信息配置方法、终端设备和网络设备
US20230099072A1 (en) Information processing method, terminal device and network device
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
US20230130803A1 (en) Wireless communication method, terminal device and network device
US20230217433A1 (en) Resource scheduling method, terminal device, and network device
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969449

Country of ref document: EP

Kind code of ref document: A1