WO2023206173A1 - 定位方法、装置、设备及存储介质 - Google Patents

定位方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023206173A1
WO2023206173A1 PCT/CN2022/089670 CN2022089670W WO2023206173A1 WO 2023206173 A1 WO2023206173 A1 WO 2023206173A1 CN 2022089670 W CN2022089670 W CN 2022089670W WO 2023206173 A1 WO2023206173 A1 WO 2023206173A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
phase
positioning
network device
Prior art date
Application number
PCT/CN2022/089670
Other languages
English (en)
French (fr)
Inventor
李明菊
赵群
李小龙
辜寂
屈添添
张欣
韦再雪
Original Assignee
北京小米移动软件有限公司
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司, 北京邮电大学 filed Critical 北京小米移动软件有限公司
Priority to CN202280001440.1A priority Critical patent/CN117322094A/zh
Priority to PCT/CN2022/089670 priority patent/WO2023206173A1/zh
Publication of WO2023206173A1 publication Critical patent/WO2023206173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of mobile communications, and in particular to a positioning method, device, equipment and storage medium.
  • the inertial navigation system can be used for positioning.
  • the inertial navigation system uses the inertial sensor to calculate the position information and speed information of the terminal based on the direction of movement and initial position information. Since only using the inertial navigation system will have a larger Error and poor positioning accuracy.
  • the embodiments of this application provide a positioning method, device, equipment and storage medium, provide a way to configure resources, ensure the configuration of resources, and this application provides the transmission of positioning reference signals between network equipment and terminals to perform positioning
  • the terminal positioning method expands the terminal positioning method and performs positioning by transmitting positioning reference signals between the network equipment and the terminal, thereby improving positioning accuracy.
  • a positioning method is provided.
  • the method is executed by a terminal.
  • the method includes:
  • Receive configuration information sent by a network device where the configuration information is used to configure resource information for transmitting a positioning reference signal for the terminal, and the positioning reference signal is used to position the terminal.
  • a positioning method is provided.
  • the method is executed by a network device.
  • the method includes:
  • a positioning device which device includes:
  • a receiving module configured to receive configuration information sent by a network device, where the configuration information is used to configure resource information for transmitting a positioning reference signal for the terminal, and the positioning reference signal is used to position the terminal.
  • a positioning device which device includes:
  • a sending module configured to send configuration information to the terminal, where the configuration information is used to configure resource information for transmitting positioning reference signals for the terminal, and the positioning reference signal is used to position the terminal.
  • a terminal includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processor is configured to load and execute the executable instructions. Execute instructions to implement positioning methods as described above.
  • a network device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processor is configured to load and Executable instructions are executed to implement positioning methods as described above.
  • a computer-readable storage medium stores executable program code.
  • the executable program code is loaded and executed by a processor to implement the positioning method in the above aspect.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions. When the chip is run on a terminal or network device, it is used to implement the positioning method in the above aspect.
  • a computer program product is provided.
  • the computer program product is executed by a processor of a terminal or a network device, it is used to implement the positioning method of the above aspect.
  • the network device configures resources for transmitting positioning reference signals for the terminal.
  • the positioning reference signal can be transmitted between the network device and the terminal, and then the terminal is positioned based on the carrier phase difference corresponding to the positioning reference signal.
  • Positioning provides a way to configure resources and ensures the configuration of resources.
  • This application provides a method for transmitting positioning reference signals between network devices and terminals to locate the terminal, expanding the method of locating the terminal, and through Positioning is performed by transmitting positioning reference signals between network equipment and terminals, which improves positioning accuracy.
  • Figure 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application
  • Figure 2 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application
  • Figure 3 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application
  • Figure 4 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application
  • Figure 5 shows a flow chart of a bandwidth adjustment method provided by an exemplary embodiment of the present application
  • Figure 6 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application
  • Figure 7 shows a schematic diagram of the location of a terminal and a network device during movement provided by an exemplary embodiment of the present application
  • Figure 8 shows a schematic diagram of the location of another terminal and network equipment during movement provided by an exemplary embodiment of the present application
  • Figure 9 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application.
  • Figure 10 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application
  • Figure 11 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application.
  • Figure 12 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application
  • Figure 13 shows a block diagram of a positioning device provided by an exemplary embodiment of the present application.
  • Figure 14 shows a block diagram of another positioning device provided by an exemplary embodiment of the present application.
  • Figure 15 shows a block diagram of a positioning device provided by an exemplary embodiment of the present application.
  • Figure 16 shows a block diagram of another positioning device provided by an exemplary embodiment of the present application.
  • Figure 17 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • the information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • signals involved in this application All are authorized by the user or fully authorized by all parties, and the collection, use and processing of relevant data need to comply with relevant laws, regulations and standards of relevant countries and regions.
  • Figure 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include: a terminal 10 and a network device 20.
  • the network device 20 is a device deployed in the access network to provide wireless communication functions for the terminal 10 .
  • the above-mentioned devices that provide wireless communication functions for the terminal 10 are collectively referred to as network equipment.
  • a connection can be established between the network device 20 and the terminal 10 through an air interface, so that communication, including signaling and data interaction, can be performed through the connection.
  • the number of network devices 20 may be multiple, and communication between two adjacent network devices 20 may also be carried out in a wired or wireless manner.
  • the terminal 10 can switch between different network devices 20 , that is, establish connections with different network devices 20 .
  • the inertial navigation system is a navigation and positioning system based on Newton's classical mechanics. Its working principle is to use inertial sensors (gyros and accelerometers) to calculate the carrier's position, speed and other information based on the reference direction and initial position information.
  • the inertial navigation system has autonomous navigation capabilities, does not require any external electromagnetic signals, and has strong anti-interference capabilities. Therefore, the inertial navigation system has advantages that satellite navigation, radio navigation, celestial navigation and other navigation systems cannot match. Among them, the advantages of inertial navigation systems are:
  • the inertial navigation system contains different inertial measurement elements, such as gyroscopes, accelerometers, etc.
  • the inertial navigation system can provide the navigation coefficients of the carrier from all aspects. By integrating the IMU output data, we can obtain the position, speed, acceleration, attitude, heading, etc.
  • the inertial navigation system has strong anti-interference ability and is not sensitive to the influence of waves, fields and lines formed by electricity, magnetism, light, etc. It hardly radiates electromagnetic waves and does not need to receive electromagnetic waves, so it has extremely strong anti-interference ability.
  • the running attitude angle generally includes yaw angle (Yaw), pitch angle (Pinch) and roll angle (Roll).
  • Yaw yaw angle
  • Pinch pitch angle
  • Roll roll angle
  • the yaw angle determines the forward direction of the aircraft projected on the horizontal plane, while the pitch angle and roll angle reflect whether the aircraft is flying stably.
  • the front and rear slopes and left and right slopes of the road surface are generally relatively small, so some inertial navigation systems in applications only consider the driving azimuth of the carrier.
  • Accelerometers are used to measure specific force in a certain direction.
  • Common accelerometers include pendulum integrating accelerometers, flexible pendulum accelerometers, electrostatic accelerometers, etc.
  • accelerometers using MEMS technology are small in size, light in weight, and low in price. They are now widely used in smartphones, vehicle navigation, drones, and robots, greatly expanding the scope of IMUs. usage scenarios and application scope.
  • a gyroscope refers to an object installed in a frame that rotates at high speed around the axis of symmetry of the gyroscope. Gyroscopes have stability and precession. Because the gyroscope is very sensitive to angular velocity, it can be used to measure angular velocity and angular deviation.
  • Figure 2 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application, which can be applied to the terminal and network equipment shown in Figure 1.
  • the method includes at least part of the following content:
  • Step 202 The terminal receives the configuration information sent by the network device.
  • the configuration information is used to configure resource information for the terminal for transmitting the positioning reference signal.
  • the positioning reference signal is used to position the terminal.
  • a positioning reference signal can be transmitted between the network device and the terminal, so that the network device or the terminal can locate the terminal and determine the current location information of the terminal.
  • resource information is required to transmit positioning reference signals between the network device and the terminal. Therefore, the network device configures the resource information for transmitting positioning reference signals for the terminal through configuration information, so as to facilitate positioning of the terminal through the transmitted positioning reference signals.
  • the network device configures resources for transmitting positioning reference signals for the terminal.
  • the positioning reference signal can be transmitted between the network device and the terminal, and then the terminal is positioned based on the carrier phase difference corresponding to the positioning reference signal.
  • this application provides a method for transmitting positioning reference signals between network equipment and terminals to locate the terminal, expanding the method of locating the terminal, and through the network device Positioning is performed by transmitting positioning reference signals between the device and the terminal, which improves positioning accuracy.
  • the embodiment shown in Figure 2 illustrates an example in which a network device configures resource information for a terminal.
  • the resource information is determined based on at least one of motion information, carrier parameter information and positioning information.
  • motion information refers to the information generated by the terminal during movement.
  • the terminal For example, the terminal’s movement speed and acceleration, etc. This motion information can be measured by a measuring instrument included in the terminal itself.
  • the carrier parameter information refers to the relevant parameters for the terminal to transmit the carrier signal.
  • Positioning information refers to the information required to position the terminal.
  • the motion information of the terminal is actually measured by the terminal itself, and the carrier parameter information and positioning information of the terminal actually refer to the information related to the carrier phase positioning. That is to say, the network device configures the terminal for the terminal.
  • the resource information is determined based on the information measured by the terminal itself and information related to the carrier phase.
  • the resource information configured for the terminal can ensure that the terminal transmits the positioning reference signal when it matches the status of the terminal itself, improving the accuracy of positioning.
  • this application provides a configuration resource This method ensures resource allocation, thereby ensuring positioning based on the terminal's own measurement and carrier phase, and positioning through a combination of the terminal's own measurement and carrier phase, improving positioning accuracy.
  • the terminal can send its own information to the network device, and the network device determines the resource information based on the received information.
  • the method includes:
  • Step 301 The terminal sends at least one of motion information, carrier parameter information, and positioning information to the network device.
  • Step 302 The network device receives at least one of motion information, carrier parameter information, and positioning information sent by the terminal.
  • motion information refers to the information generated by the terminal during movement.
  • the terminal For example, the terminal’s movement speed and acceleration, etc. This motion information can be measured by a measuring instrument included in the terminal itself.
  • the carrier parameter information refers to the relevant parameters for the terminal to transmit the carrier signal.
  • Positioning information refers to the information required to position the terminal.
  • the terminal after the terminal determines its own motion information, carrier parameter information and positioning information, it can send the determined information to the network device, and then the network device receives the motion information, carrier parameter information and positioning information sent by the terminal. at least one of them.
  • the terminal's own information continuously changes during the movement process. Because the terminal's information changes, matching resource information needs to be determined based on the changed information.
  • the resource information configured by the network device for the terminal is determined based on at least one of motion information, carrier parameter information and positioning information. It can also be understood that the motion information of the terminal is actually measured by the terminal itself, and the carrier parameter information and positioning information of the terminal actually refer to the information related to the carrier phase positioning, that is to say, the resources configured by the network device for the terminal The information is determined based on information measured by the terminal itself and information related to the carrier phase.
  • the network device includes a correspondence between at least one of motion information, carrier parameter information, and positioning information and resource information, and the resource information is determined based on the correspondence.
  • the embodiments of this application illustrate the correspondence between motion information, carrier parameter information, positioning information and resource information by way of example.
  • the correspondence in this application can also be in other ways, which is not limited by the embodiments of this application.
  • the corresponding relationship between at least one of motion information, carrier parameter information, and positioning information and resource information is stored in the information correspondence table, and the network device determines the corresponding resource information by querying the information correspondence table.
  • steps 301-303 takes the direct execution of steps 301-303 as an example for explanation. In another embodiment, steps 301-303 need to be performed under certain conditions.
  • the terminal includes a phase-locked loop, which generates a fixed-phase carrier through a set bandwidth.
  • the phase-locked loop cannot be modified at this time.
  • the bandwidth is adjusted, and the configured resource information can be adjusted, so the above steps 301-303 are performed to complete the configuration of the resource information.
  • the terminal reports its own information to the network device, and then the network device determines the resource information corresponding to the terminal information, and configures the resource information for the terminal.
  • the resource information configured for the terminal can ensure that the terminal is connected to the network device.
  • the positioning reference signal is transmitted to improve the accuracy of positioning.
  • this application provides a way to configure resources, ensuring the configuration of resources, and thus ensuring the measurement and carrier phase based on the terminal itself. The positioning is carried out through a combination of the terminal's own measurement and the phase of the carrier, which improves the accuracy of positioning.
  • the terminal can determine the required resource information by itself, and then request the determined resource information from the network device.
  • the method includes:
  • Step 401 The terminal determines request information based on at least one of motion information, carrier parameter information, and positioning information.
  • the network device determines the corresponding The request information is that the ratio of uplink time domain resources to downlink time domain resources is less than or equal to 7:3, which means that the proportion of downlink time domain resources is at least 30%.
  • the corresponding relationship between at least one item of motion information, carrier parameter information and positioning information and the request information is stored in the information correspondence table, and the terminal determines the corresponding request information by querying the information correspondence table.
  • Step 402 The terminal sends request information to the network device, and the request information is used to obtain resource information.
  • Step 403 The network device receives the request information sent by the terminal.
  • the request information is used to obtain resource information.
  • the request information is determined by the terminal based on at least one of motion information, carrier parameter information, and positioning information.
  • the terminal after the terminal determines the resource information it needs, it requests resource information from the network device by sending request information to the network device, and the network device configures resource information for the terminal based on the request information.
  • steps 401-403 takes steps 401-403 to be directly executed as an example for explanation. In another embodiment, steps 401-403 need to be performed under certain conditions.
  • the terminal includes a phase-locked loop, which generates a fixed-phase carrier through a set bandwidth.
  • the bandwidth of the phase-locked loop cannot be adjusted at this time.
  • the configured resource information can be adjusted, so the above steps 301-303 are executed to complete the configuration of the resource information.
  • the speed information is 30 kilometers/hour, 60 kilometers/hour or other values.
  • the terminal includes an inertial sensor, through which the terminal can measure speed information of the terminal relative to the network device.
  • the terminal includes an inertial sensor, through which the terminal can measure speed information of the terminal relative to the network device.
  • the inertial sensor includes a gyroscope and an accelerometer, through which the acceleration information of the terminal can be determined.
  • the terminal actually completes the measurement of the terminal's speed information and acceleration information through the inertial navigation system to obtain the terminal's speed information and acceleration information.
  • the carrier parameter information includes at least one of the following:
  • the ratio of uplink time domain resources to downlink time domain resources cannot be greater than 7:3, or the ratio of uplink time domain resources to downlink time domain resources cannot be less than 8:2, or other values, which are not implemented in the embodiments of this application. limited.
  • the phase of the carrier signal can be used for positioning, and the carrier frequency used for phase tracking refers to the frequency of the carrier signal used for positioning.
  • the terminal supports different frequency ranges due to its own configuration, so as to facilitate positioning based on carrier phase in the supported frequency range.
  • the terminal includes a phase-locked loop, through which the phase of the signal is adjusted under locking conditions. Whether the bandwidth of the terminal's phase-locked loop supports adjustment refers to whether the terminal can adjust the bandwidth of the phase-locked loop.
  • a preset number of bits is used to indicate whether the bandwidth of the phase-locked loop of the terminal supports adjustment.
  • the preset number of bits is the first bit, it indicates that the bandwidth of the phase-locked loop of the terminal supports adjustment. If the preset number of bits is the second bit, it indicates that the bandwidth of the phase-locked loop of the terminal does not support adjustment.
  • positioning accuracy refers to the error range when positioning the terminal.
  • the positioning accuracy is 1 decimeter, or the positioning accuracy is 1 meter, or other values.
  • resource information also includes multiple types of information.
  • the uplink time domain resources are used by the terminal to send uplink transmission to the network device.
  • Downlink time domain resources are used by network devices to send downlink transmissions to terminals.
  • the ratio of uplink time domain resources to downlink time domain resources refers to the ratio of time domain resources used for uplink transmission to time domain resources used for downlink transmission within a certain subframe.
  • the density of subframes used to transmit positioning reference signals refers to the proportion of subframes used to transmit positioning reference signals to a certain number of subframes in the resource information.
  • Step 501 In response to the undetermined resource information, the network device sends an error message to the terminal.
  • the error message indicates that the network device has not configured resource information.
  • the terminal increases the bandwidth of the phase-locked loop, the time required for locking the phase-locked loop will be reduced, thereby reducing cycle slips and ensuring the accuracy of subsequent positioning based on the positioning reference signal.
  • steps 501-503 takes steps 501-503 to be directly executed as an example for explanation. In another embodiment, steps 501-503 need to be performed under certain conditions.
  • the terminal includes a phase-locked loop, which generates a fixed-phase carrier through a set bandwidth.
  • the network device cannot configure resource information for the terminal, and the terminal supports the bandwidth of the phase-locked loop, If adjusted, the terminal can adjust the bandwidth of the phase-locked loop.
  • the above embodiments all take the network device configuring resource information for the terminal as an example for explanation.
  • the terminal needs to activate its own positioning function first, and then execute the above solution of configuring resource information and positioning.
  • the IMU-assisted carrier phase measurement function can be used to position the terminal. That is to say, the terminal can activate the IMU-assisted carrier phase measurement function, so that the terminal can perform positioning based on the IMU-assisted carrier phase measurement function.
  • the phase information of the terminal and the motion information of the terminal determine the current location information of the terminal.
  • Step 601 The network device sends a downlink positioning reference signal to the terminal based on the resource information.
  • both the network device and the terminal can determine the resources used to transmit the positioning reference signal.
  • the network device can send the downlink positioning reference signal to the terminal based on the resource information.
  • the terminal uses the resource information to transmit the positioning reference signal.
  • the information receives the downlink positioning reference signal sent by the network device.
  • Step 603 The terminal determines the phase information of the terminal at different locations based on the downlink positioning reference signal.
  • the terminal can receive downlink positioning reference signals at different locations, and the terminal can determine the phase information of the terminal at different locations based on the downlink positioning reference signals received at different locations.
  • the movement information of the terminal indicates the speed and acceleration of the movement of the terminal.
  • the distance moved by the terminal within a certain period of time can be determined. That is to say, when the terminal is in different positions, the distance during which the terminal moves can be determined. The distance between two adjacent positions.
  • the terminal also determines the phase information of the terminal at different positions. The terminal determines the initial phase information based on the phase information of the terminal at different positions and the distance between the terminal at two adjacent positions. Integer ambiguity, when the initial integer ambiguity is determined, the terminal can be positioned based on the integer ambiguity and the current location information of the terminal can be obtained.
  • phase information of the terminal at different positions, the distance between the terminal at two adjacent positions and the initial integer ambiguity satisfy the following relationship:
  • N is the initial integer ambiguity
  • a is the distance between the terminal at the first position and the second position
  • b is the distance between the terminal at the second position and the third position
  • is the wavelength of the downlink positioning reference signal.
  • the embodiment of the present application takes the terminal directly determining the integer ambiguity as an example for explanation.
  • the terminal performs the above steps under certain conditions.
  • the terminal in response to not acquiring the initial integer ambiguity, determines the distance between two adjacent positions of the terminal based on the motion information of the terminal.
  • the terminal if the terminal does not obtain the initial integer ambiguity, the terminal cannot be positioned at this time. Therefore, the initial integer ambiguity needs to be determined first, and then the terminal is positioned based on the determined initial integer ambiguity. Positioning, therefore, in response to the terminal not acquiring the initial integer ambiguity, the terminal determines the distance between two adjacent positions according to the terminal's motion information, and then continues to perform subsequent steps based on the determined distance.
  • the method provided by the embodiment of the present application receives the downlink positioning reference signal through the resource information configured for the terminal, and then positions the terminal based on the downlink positioning reference signal, ensuring the positioning based on the terminal's own measurement and carrier phase, and through the terminal's own The positioning is performed by combining measurement and carrier phase, which improves the accuracy of positioning.
  • the initial integer ambiguity is determined through the phase of the carrier and the motion information of the terminal. There is no need to search for a fixed integer ambiguity, which simplifies the process of determining the initial integer ambiguity, saves calculations, and improves the accuracy of positioning the terminal. efficiency.
  • Figure 9 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application, which can be applied to the terminal and network equipment shown in Figure 1.
  • the method includes at least part of the following content:
  • Step 901 The terminal determines the predicted phase information of the terminal at the next position based on the initial integer ambiguity and the phase information of the terminal at different positions.
  • the terminal when the terminal knows the initial integer ambiguity, the terminal can receive the downlink positioning reference signal sent by the network device at different locations, and because the terminal knows its own motion information, the terminal can predetermine the location of subsequent terminals. Therefore, the terminal can determine the predicted phase information of the terminal at the next position based on the initial integer ambiguity and the phase information of the terminal at different positions.
  • the initial integer ambiguity is a preconfigured initial integer ambiguity, or an initial integer ambiguity determined through the embodiment shown in Figure 6, or an initial integer ambiguity determined by other methods.
  • This application The examples are not limiting.
  • Step 902 When the predicted phase information is different from the phase of the terminal's phase-locked loop, the terminal uses the predicted phase information to update the phase of the terminal's phase-locked loop.
  • the terminal's phase-locked loop is interrupted for more than a certain period of time, it will cause cycle skipping.
  • the terminal determines the predicted phase information of the next position, the terminal compares the predicted phase Whether the phase of the information and the phase-locked loop are the same to determine whether cycle skipping occurs. If the predicted phase information is different from the phase of the terminal's phase-locked loop, the terminal uses the predicted phase information to update the phase of the terminal's phase-locked loop.
  • Step 903 The terminal determines the current location information of the terminal based on the updated phase of the phase-locked loop.
  • the terminal updates the phase of the phase-locked loop to prevent cycle skipping.
  • the terminal further determines the current location information of the terminal based on the updated phase of the phase-locked loop to ensure the determined current location. Accuracy of information.
  • the embodiment of this application takes steps 901-903 as an example for description.
  • the predicted phase information of the terminal at the next position is determined based on the initial integer ambiguity and the phase information of the terminal at different positions.
  • the phase information in response to the terminal having obtained the initial integer ambiguity, can be predicted based on the initial integer ambiguity. If the terminal has not obtained the initial integer ambiguity, the terminal needs to first perform the acquisition. For the initial integer ambiguity step, steps 901-903 are then performed.
  • the terminal predicts the predicted phase information of the terminal moving to the next position through the initial integer ambiguity and phase information at different positions, and then adjusts the phase of the phase-locked loop based on the predicted phase information to prevent the occurrence of Cycle skipping ensures the accuracy of positioning the terminal.
  • Figure 10 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application.
  • the example can be applied to the terminal and network device shown in Figure 1.
  • the method includes at least part of the following content:
  • Step 1001 The terminal sends an uplink positioning reference signal and the movement information of the terminal to the network device based on the resource information.
  • the network device is used to determine the current location information of the terminal based on the uplink positioning reference signal and the movement information.
  • Step 1002 Based on the resource information, the network device receives the uplink positioning reference signal sent by the terminal and the movement information of the terminal.
  • the network device configures resource information for the terminal.
  • the resource information includes resources for uplink transmission. Therefore, the terminal can send an uplink positioning reference signal to the network device through the resource information, and then perform positioning on the terminal based on the uplink positioning reference signal. To position.
  • Step 1003 The network device determines the current location information of the terminal based on the uplink positioning reference signal and motion information.
  • the phase information of the terminal at different locations is determined based on the uplink positioning reference signal, and the current location information of the terminal is determined based on the phase information of the terminal at different locations and the motion information of the terminal.
  • the network device determines the carrier phase difference of the terminal at different locations based on the uplink positioning reference signal.
  • the carrier phase difference is determined by the phase between the carrier signal generated by the network device itself and the received uplink positioning reference signal.
  • phase information of the terminal at different positions the distance between the terminal at two adjacent positions and the initial integer ambiguity satisfy the following relationship:
  • N is the initial integer ambiguity
  • a is the distance between the terminal at the first position and the second position
  • b is the distance between the terminal at the second position and the third position
  • is the wavelength of the uplink positioning reference signal.
  • step 1003 is similar to the above-mentioned steps 603-604, and will not be described again here.
  • the distance between two adjacent positions of the terminal is determined based on the motion information of the terminal.
  • the network device receives the uplink positioning reference signal through the resource information configured for the terminal, and then positions the terminal based on the uplink positioning reference signal, ensuring positioning based on the terminal's own measurement and carrier phase, and through the terminal
  • the positioning is performed by combining its own measurement and the phase of the carrier, which improves the accuracy of positioning.
  • the initial integer ambiguity is determined through the phase of the carrier and the motion information of the terminal. There is no need to search for a fixed integer ambiguity, which simplifies the process of determining the initial integer ambiguity, saves calculations, and improves the accuracy of positioning the terminal. efficiency.
  • Figure 11 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application, which can be applied to the terminal shown in Figure 1.
  • the method includes at least part of the following content:
  • Step 1101 The terminal receives configuration information sent by the network device.
  • the configuration information is used to configure resource information for the terminal to transmit positioning reference signals.
  • the positioning reference signals are used to position the terminal.
  • the resource information is used for transmitting positioning reference signals between the network device and the terminal.
  • the terminal or network device can determine the carrier phase difference according to the positioning reference signal, and then position the terminal according to the carrier phase difference corresponding to the positioning reference signal.
  • a positioning reference signal can be transmitted between the network device and the terminal, so that the network device or the terminal can locate the terminal and determine the current location information of the terminal.
  • resource information is required to transmit positioning reference signals between the network device and the terminal. Therefore, the network device configures the resource information for transmitting positioning reference signals for the terminal through configuration information, so as to facilitate positioning of the terminal through the transmitted positioning reference signals.
  • the network device configures resources for transmitting positioning reference signals for the terminal.
  • the positioning reference signal can be transmitted between the network device and the terminal, and then the terminal is positioned based on the carrier phase difference corresponding to the positioning reference signal.
  • this application provides a method for transmitting positioning reference signals between network equipment and terminals to locate the terminal, expanding the method of locating the terminal, and through the network device Positioning is performed by transmitting positioning reference signals between the device and the terminal, which improves positioning accuracy.
  • the embodiment shown in Figure 11 illustrates an example in which a network device configures resource information for a terminal.
  • the resource information is determined based on at least one of motion information, carrier parameter information and positioning information.
  • motion information refers to the information generated by the terminal during movement.
  • the terminal For example, the terminal’s movement speed and acceleration, etc. This motion information can be measured by a measuring instrument included in the terminal itself.
  • the carrier parameter information refers to the relevant parameters for the terminal to transmit the carrier signal.
  • Positioning information refers to the information required to position the terminal.
  • the motion information of the terminal is actually measured by the terminal itself, and the carrier parameter information and positioning information of the terminal actually refer to the information related to the carrier phase positioning. That is to say, the network device configures the terminal for the terminal.
  • the resource information is determined based on the information measured by the terminal itself and information related to the carrier phase.
  • the resource information configured for the terminal can ensure that the terminal transmits the positioning reference signal when it matches the status of the terminal itself, improving the accuracy of positioning.
  • this application provides a configuration resource This method ensures resource allocation, thereby ensuring positioning based on the terminal's own measurement and carrier phase, and positioning through a combination of the terminal's own measurement and carrier phase, improving positioning accuracy.
  • the terminal can send its own information to the network device, and the network device determines the resource information based on the received information.
  • the terminal sends at least one of motion information, carrier parameter information and positioning information to the network device.
  • the movement information of the terminal refers to the information generated by the terminal during its movement.
  • the terminal for example, the terminal’s movement speed and acceleration, etc.
  • the motion information of the terminal can be measured by the measuring instrument of the terminal itself.
  • the carrier parameter information of the terminal refers to the relevant parameters of the carrier signal transmitted by the terminal.
  • the positioning information of the terminal refers to the information required to position the terminal.
  • the terminal after the terminal determines its own motion information, carrier parameter information and positioning information, it can send the determined information to the network device, and then the network device receives the motion information, carrier parameter information and positioning information sent by the terminal. at least one of them.
  • the terminal in response to the bandwidth of the phase-locked loop of the terminal not supporting adjustment, the terminal sends at least one of motion information, carrier parameter information, and positioning information to the network device.
  • the terminal includes a phase-locked loop, which generates a fixed-phase carrier through a set bandwidth.
  • the phase-locked loop cannot be modified at this time.
  • the bandwidth can be adjusted, and the configured resource information can be adjusted to complete the configuration of the resource information.
  • the terminal reports its own information to the network device, and then the network device determines the resource information corresponding to the terminal information, and configures the resource information for the terminal.
  • the resource information configured for the terminal can ensure that the terminal is connected to the network device.
  • the positioning reference signal is transmitted to improve the accuracy of positioning.
  • this application provides a way to configure resources, ensuring the configuration of resources, and thus ensuring the measurement and carrier phase based on the terminal itself. The positioning is carried out through a combination of the terminal's own measurement and the phase of the carrier, which improves the accuracy of positioning.
  • the terminal can determine the required resource information by itself, and then request the determined resource information from the network device.
  • the terminal determines the request information based on at least one of motion information, carrier parameter information, and positioning information, and sends the request information to the network device.
  • the request information is used to obtain resource information.
  • the terminal's own information continuously changes during the movement process. Because the terminal's information changes, matching resource information needs to be determined based on the changed information.
  • the terminal determines the terminal's own motion information, carrier parameter information and positioning information, and then the terminal determines the request information based on the determined own information, and then performs subsequent processes to request the determined resource information from the network device.
  • the terminal includes a correspondence between at least one of motion information, carrier parameter information, and positioning information and the request information, and the request information is determined based on the correspondence.
  • the terminal includes multiple corresponding relationships, each of which includes at least one of motion information, carrier parameter information, and positioning information. That is to say, one of the corresponding relationships includes motion information and request information.
  • Another correspondence relationship includes a correspondence relationship between motion information, carrier parameter information and request information, or there may be other correspondence relationships, which will not be listed in the embodiment of this application.
  • the corresponding relationship can be understood as the corresponding relationship includes different motion information, different carrier parameter information and different positioning information, corresponding to different request information.
  • different values of motion information, carrier information and positioning information correspond to different request information.
  • the network device determines the corresponding request
  • the information is that the ratio of uplink time domain resources to downlink time domain resources is less than or equal to 8:2, which means that the proportion of downlink time domain resources is at least 20%.
  • the network device determines the corresponding The request information is that the ratio of uplink time domain resources to downlink time domain resources is less than or equal to 7:3, which means that the proportion of downlink time domain resources is at least 30%.
  • the embodiments of this application describe the correspondence between motion information, carrier parameter information, positioning information and request information by way of example.
  • the correspondence in this application can also be in other ways, which are not limited by the embodiments of this application.
  • the corresponding relationship between at least one item of motion information, carrier parameter information and positioning information and the request information is stored in the information correspondence table, and the terminal determines the corresponding request information by querying the information correspondence table.
  • the request information in response to the bandwidth of the phase-locked loop of the terminal not supporting adjustment, is determined based on at least one of motion information, carrier parameter information, and positioning information.
  • the terminal includes a phase-locked loop, which generates a fixed-phase carrier through a set bandwidth.
  • the phase-locked loop cannot be modified at this time.
  • the bandwidth can be adjusted, and the configured resource information can be adjusted to complete the configuration of the resource information.
  • the terminal requests resource information determined based on its own information from the network device, and then the network device configures the resource information for the terminal.
  • the resource information configured for the terminal can ensure that the terminal matches the status of the terminal itself.
  • this application provides a way to configure resources to ensure the configuration of resources, thereby ensuring the positioning based on the terminal's own measurement and carrier phase, and through the terminal The positioning is performed by combining its own measurement and the phase of the carrier, which improves the accuracy of positioning.
  • the information associated with the terminal includes various situations.
  • the following describes motion information, carrier parameter information and positioning information respectively.
  • the motion information includes at least one of the following:
  • the speed information is relative speed information of the terminal relative to the network device.
  • the location of the network device remains unchanged, that is, the speed information of the terminal.
  • the speed information is 30 kilometers/hour, 60 kilometers/hour or other values.
  • the terminal includes an inertial sensor, through which the terminal can measure speed information of the terminal relative to the network device.
  • the inertial sensor includes a gyroscope and an accelerometer, through which the speed information of the terminal can be determined.
  • the acceleration information refers to the acceleration of the terminal. If the acceleration information of the terminal is not zero and is a positive number, it means that the speed of the terminal will increase as time goes by. And if the acceleration information of the terminal is not zero, and the acceleration information is a negative number, it means that the speed of the terminal will decrease as time goes by.
  • the acceleration information of the terminal is 5m/s 2 (meter/second 2 ), -10m/s 2 , or other values.
  • the terminal includes an inertial sensor, through which the terminal can measure speed information of the terminal relative to the network device.
  • the inertial sensor includes a gyroscope and an accelerometer, through which the acceleration information of the terminal can be determined.
  • the terminal actually completes the measurement of the terminal's speed information and acceleration information through the inertial navigation system to obtain the terminal's speed information and acceleration information.
  • the carrier parameter information includes at least one of the following:
  • the uplink time domain resources are used by the terminal to send uplink transmission to the network device.
  • Downlink time domain resources are used by network devices to send downlink transmissions to terminals.
  • the ratio of uplink time domain resources to downlink time domain resources refers to the ratio of time domain resources used for uplink transmission to time domain resources used for downlink transmission within a certain subframe.
  • the time domain resources here may include at least one of subframes, time slots and symbols.
  • the ratio of uplink time domain resources and downlink time domain resources supported by the terminal cannot be greater than a threshold value, for example, the threshold value is 6:8.
  • the ratio of uplink symbols to downlink symbols cannot be greater than 6:8, that is, among the 14 symbols in a time slot, the number of downlink symbols must be greater than or equal to 8.
  • the ratio of uplink time domain resources and downlink time domain resources supported by the terminal cannot be less than a threshold value, for example, the threshold value is 6:8.
  • the ratio of uplink symbols to downlink symbols cannot be less than 6:8, that is, among the 14 symbols in a time slot, the number of uplink symbols must be greater than or equal to 6.
  • the ratio of uplink time domain resources to downlink time domain resources cannot be greater than 7:3, or the ratio of uplink time domain resources to downlink time domain resources cannot be less than 8:2, or other values, which are not implemented in the embodiments of this application. limited.
  • the resource information can be used not only for phase tracking measurement, but also for other transmissions.
  • the time-frequency resource information here is used for the terminal to perform phase tracking measurement.
  • the phase of the carrier signal can be used for positioning, and the carrier frequency used for phase tracking refers to the frequency of the carrier signal used for positioning.
  • the terminal supports different frequency ranges due to its own configuration, so as to facilitate positioning based on carrier phase in the supported frequency range.
  • the terminal includes a phase-locked loop, through which the phase of the signal is adjusted under locking conditions. Whether the bandwidth of the terminal's phase-locked loop supports adjustment refers to whether the terminal can adjust the bandwidth of the phase-locked loop.
  • a preset number of bits is used to indicate whether the bandwidth of the phase-locked loop of the terminal supports adjustment.
  • the preset number of bits is the first bit, it indicates that the bandwidth of the phase-locked loop of the terminal supports adjustment. If the preset number of bits is the second bit, it indicates that the bandwidth of the phase-locked loop of the terminal does not support adjustment.
  • the positioning information includes at least one of the following:
  • positioning accuracy refers to the error range when positioning the terminal.
  • the positioning accuracy is 1 decimeter, or the positioning accuracy is 1 meter, or other values.
  • the sampling frequency refers to the number of times the terminal samples within the unit time.
  • the sampling frequency is 50 times per minute, or 60 times per minute, or other values.
  • the measurement error refers to the error of the speed information measured by the terminal.
  • the terminal determines multiple parameter information based on configuration or self-measurement, so as to determine the resource information configured by the network device for the terminal based on the terminal's parameter information, and determine the resource information through the terminal's diverse parameter information, which improves
  • the accuracy of the determined resource information also provides a way to configure resources, ensuring the allocation of resources, thereby ensuring the positioning based on the terminal's own measurement and carrier phase, and through the combination of the terminal's own measurement and the carrier phase. Positioning method improves the accuracy of positioning.
  • resource information also includes multiple types of information.
  • the resource information includes the ratio of uplink time domain resources to downlink time domain resources and the subframe density used to transmit positioning reference signals.
  • the uplink time domain resources are used by the terminal to send uplink transmission to the network device.
  • Downlink time domain resources are used by network devices to send downlink transmissions to terminals.
  • the ratio of uplink time domain resources to downlink time domain resources refers to the ratio of time domain resources used for uplink transmission to time domain resources used for downlink transmission within a certain subframe.
  • the ratio of uplink time domain resources to downlink time domain resources cannot be greater than 7:3, or the ratio of uplink time domain resources to downlink time domain resources cannot be less than 8:2, or other values, which are not implemented in the embodiments of this application. limited.
  • the density of subframes used to transmit positioning reference signals refers to the proportion of subframes used to transmit positioning reference signals to a certain number of subframes in the resource information.
  • the above embodiments all take the network device configuring resource information for the terminal as an example for explanation.
  • the network device may not be able to determine resource information that meets the requirements. In this case, the network device will return error information to the terminal.
  • the terminal responds to the situation that the network device has not determined the resource information, receives an error message sent by the network device, the error message indicates that the network device has not configured the resource information, and adjusts the bandwidth of the phase-locked loop in the terminal.
  • the network device is also unable to configure the resource information that meets the transmission requirements for the terminal.
  • the network device does not send the configuration information to the terminal, but sends an error message to the terminal, and the error message informs If the terminal cannot configure resource information, after the terminal receives the error message, it can determine that the network device has not configured the corresponding resource information based on the information measured by the terminal itself.
  • the terminal can adjust the bandwidth of the phase-locked loop in the terminal so that after adjusting the bandwidth The phase locked loop meets the requirements.
  • the bandwidth of the phase locked loop in the terminal is adjusted in response to the bandwidth support adjustment of the phase locked loop of the terminal.
  • the terminal includes a phase-locked loop, which generates a fixed-phase carrier through a set bandwidth.
  • the network device cannot configure resource information for the terminal, and the terminal supports the bandwidth of the phase-locked loop, If adjusted, the terminal can adjust the bandwidth of the phase-locked loop.
  • the terminal in response to the network device not being configured with resource information, the terminal adjusts the bandwidth of the phase-locked loop so as to reduce the time required for phase-locked loop operation and thereby avoid cycle slips. , improve the accuracy of subsequent positioning based on positioning reference signals.
  • the above embodiments all take the network device configuring resource information for the terminal as an example for explanation.
  • the terminal needs to activate its own positioning function first, and then execute the above solution of configuring resource information and positioning.
  • the terminal in response to the terminal's moving speed being greater than the first speed, the terminal starts the IMU-assisted carrier phase measurement function, and the IMU-assisted carrier phase measurement function instructs the terminal to determine the current location information of the terminal based on the phase information and the terminal's motion information.
  • the first speed is set by the terminal, or agreed by the communication protocol, or configured in other ways, which is not limited by the embodiments of this application.
  • the IMU-assisted carrier phase measurement function can be used to position the terminal. That is to say, the terminal can activate the IMU-assisted carrier phase measurement function, so that the terminal can perform positioning based on the IMU-assisted carrier phase measurement function.
  • the phase information of the terminal and the motion information of the terminal determine the current location information of the terminal.
  • the movement speed of the terminal is determined by the IMU function of the terminal. Therefore, the terminal needs to activate the IMU function first, and determine whether to activate the IMU-assisted carrier phase measurement function based on the measurement results of the IMU function.
  • the IMU function can be started by the terminal itself, or can be started by the network device controlling the terminal, or can be started in other ways, which is not limited by the embodiments of this application.
  • the terminal turns on the IMU auxiliary carrier phase measurement function, and then based on the IMU auxiliary carrier phase measurement function, the configuration of resource information can be completed first, and then positioning is performed based on the resource information, ensuring measurement based on the terminal itself and The positioning of the carrier phase is carried out through the combination of the terminal's own measurement and the phase of the carrier, which improves the accuracy of positioning.
  • the terminal receives the downlink positioning reference signal sent by the network device based on the resource information, and determines the phase information of the terminal at different locations based on the downlink positioning reference signal. Based on the phase information of the terminal at different locations and the movement information of the terminal, The current location information of the terminal is determined, and the motion information is determined by the terminal measurement.
  • both the network device and the terminal can determine the resources used to transmit the positioning reference signal.
  • the network device can send the downlink positioning reference signal to the terminal based on the resource information.
  • the terminal uses the resource information to transmit the positioning reference signal.
  • the information receives the downlink positioning reference signal sent by the network device.
  • the terminal can receive downlink positioning reference signals at different locations, and the terminal can determine the phase information of the terminal at different locations based on the downlink positioning reference signals received at different locations.
  • the terminal determines the carrier phase difference of the terminal at different locations based on the downlink positioning reference signal.
  • the carrier phase difference is determined by the phase between the carrier signal generated by the terminal itself and the received downlink positioning reference signal.
  • the terminal itself generates a carrier signal, and the terminal also receives the downlink positioning reference signal sent by the network device.
  • the terminal can determine whether the terminal is in different locations based on the carrier signal it generates and the received downlink positioning reference signal. Carrier phase difference at location.
  • the location of the network device is point O, and then the terminal moves from point A through point B, and finally moves to point C.
  • the carrier phase between the terminal and the network device when it is at point A is The difference is When the terminal is at point B, the carrier phase difference between the terminal and the network equipment is The carrier phase difference between the terminal and the network equipment when it is at point C is in, is the fractional part of the carrier phase difference, and The fractional part of the carrier phase difference is included, and may also include the integer part of the carrier phase difference.
  • the terminal after the terminal determines its own phase information and its own motion information at different locations, it can determine the current location information of the terminal to achieve positioning of the terminal.
  • the distance between two adjacent locations of the terminal is determined based on the motion information of the terminal, and the initial distance is determined based on the phase information of the terminal at different locations and the distance between the two adjacent locations of the terminal.
  • Integer ambiguity determines the current location information of the terminal based on the initial integer ambiguity.
  • the movement information of the terminal indicates the speed and acceleration of the movement of the terminal.
  • the distance moved by the terminal within a certain period of time can be determined. That is to say, when the terminal is in different positions, the distance during which the terminal moves can be determined. The distance between two adjacent positions.
  • the terminal also determines the phase information of the terminal at different positions. The terminal determines the initial phase information based on the phase information of the terminal at different positions and the distance between the terminal at two adjacent positions. Integer ambiguity, when the initial integer ambiguity is determined, the terminal can be positioned based on the integer ambiguity and the current location information of the terminal can be obtained.
  • phase information of the terminal at different positions, the distance between the terminal at two adjacent positions and the initial integer ambiguity satisfy the following relationship:
  • N is the initial integer ambiguity
  • a is the distance between the terminal at the first position and the second position
  • b is the distance between the terminal at the second position and the third position
  • is the wavelength of the downlink positioning reference signal.
  • Figure 7 is simplified into Figure 8.
  • the distance between the terminal at point A and point B is a
  • the distance between the terminal at point B and point C is b
  • the phase between the network equipment and the terminal at position A is r
  • the phase between the network equipment and the terminal at position B is r+d 1
  • the phase between the network equipment and the terminal at position C is r+d 2 .
  • the embodiment of the present application takes the terminal directly determining the integer ambiguity as an example for explanation.
  • the terminal performs the above steps under certain conditions.
  • the distance between two adjacent positions of the terminal is determined based on the motion information of the terminal.
  • the terminal if the terminal does not obtain the initial integer ambiguity, the terminal cannot be positioned at this time. Therefore, the initial integer ambiguity needs to be determined first, and then the terminal is positioned based on the determined initial integer ambiguity. Positioning, therefore, in response to the terminal not acquiring the initial integer ambiguity, determine the distance between the two adjacent positions of the terminal based on the motion information of the terminal, and then continue to perform subsequent steps based on the determined distance.
  • the method provided by the embodiment of the present application receives the downlink positioning reference signal through the resource information configured for the terminal, and then positions the terminal based on the downlink positioning reference signal, ensuring the positioning based on the terminal's own measurement and carrier phase, and through the terminal's own The positioning is performed by combining measurement and carrier phase, which improves the accuracy of positioning.
  • the initial integer ambiguity is determined through the phase of the carrier and the motion information of the terminal. There is no need to search for a fixed integer ambiguity, which simplifies the process of determining the initial integer ambiguity, saves calculations, and improves the accuracy of positioning the terminal. efficiency.
  • the terminal determines the predicted phase information of the terminal at the next position based on the initial integer ambiguity and the phase information of the terminal at different positions.
  • the terminal determines the predicted phase information of the terminal at the next position based on the initial integer ambiguity and the phase information of the terminal at different positions.
  • the terminal The predicted phase information is used to update the phase of the phase-locked loop of the terminal, and the current location information of the terminal is determined based on the updated phase of the phase-locked loop.
  • the terminal when the terminal knows the initial integer ambiguity, the terminal can receive the downlink positioning reference signal sent by the network device at different locations, and because the terminal knows its own motion information, the terminal can predetermine the location of subsequent terminals. Therefore, the terminal can determine the predicted phase information of the terminal at the next position based on the initial integer ambiguity and the phase information of the terminal at different positions.
  • the terminal's phase-locked loop is interrupted for more than a certain period, it will cause cycle skipping. At this time, because the terminal determines the predicted phase information of the next position, the terminal compares the predicted phase information with the phase of the phase-locked loop. are the same to determine whether cycle skipping occurs. If the predicted phase information is different from the phase of the terminal's phase-locked loop, the terminal uses the predicted phase information to update the phase of the terminal's phase-locked loop.
  • the terminal updates the phase of the phase-locked loop to prevent cycle skipping.
  • the terminal further determines the terminal's current position information based on the updated phase-locked loop phase to ensure the accuracy of the determined current position information.
  • the terminal in response to the terminal acquiring the initial integer ambiguity, determines the predicted phase information of the terminal at the next location based on the initial integer ambiguity and the phase information of the terminal at different locations.
  • the terminal predicts the predicted phase information of the terminal moving to the next position through the initial integer ambiguity and phase information at different positions, and then adjusts the phase of the phase-locked loop based on the predicted phase information to prevent the occurrence of Cycle skipping ensures the accuracy of positioning the terminal.
  • the terminal sends an uplink positioning reference signal and the movement information of the terminal to the network device based on the resource information, and the network device is used to determine the current location information of the terminal based on the uplink positioning reference signal and the movement information.
  • the network device configures resource information for the terminal.
  • the resource information includes resources for uplink transmission. Therefore, the terminal can send an uplink positioning reference signal to the network device through the resource information, and then perform positioning on the terminal based on the uplink positioning reference signal. To position.
  • Figure 12 shows a flow chart of a positioning method provided by an exemplary embodiment of the present application.
  • the example can be applied to the network device shown in Figure 1.
  • the method includes at least part of the following content:
  • Step 1201 The network device sends configuration information to the terminal.
  • the configuration information is used to configure resource information for the terminal to transmit positioning reference signals.
  • the positioning reference signals are used to position the terminal.
  • the resource information is used for transmitting positioning reference signals between the network device and the terminal.
  • the terminal or network device can determine the carrier phase difference according to the positioning reference signal, and then position the terminal according to the carrier phase difference corresponding to the positioning reference signal.
  • a positioning reference signal can be transmitted between the network device and the terminal, so that the network device or the terminal can locate the terminal and determine the current location information of the terminal.
  • resource information is required to transmit positioning reference signals between the network device and the terminal. Therefore, the network device configures the resource information for transmitting positioning reference signals for the terminal through configuration information, so as to facilitate positioning of the terminal through the transmitted positioning reference signals.
  • the network device configures resources for transmitting positioning reference signals for the terminal.
  • the positioning reference signal can be transmitted between the network device and the terminal, and then the terminal is positioned based on the carrier phase difference corresponding to the positioning reference signal.
  • this application provides a method for transmitting positioning reference signals between network equipment and terminals to locate the terminal, expanding the method of locating the terminal, and through the network device Positioning is performed by transmitting positioning reference signals between the device and the terminal, which improves positioning accuracy.
  • the embodiment shown in Figure 12 illustrates an example in which a network device configures resource information for a terminal.
  • the resource information is determined based on at least one of motion information, carrier parameter information and positioning information.
  • motion information refers to the information generated by the terminal during movement.
  • the terminal For example, the terminal’s movement speed and acceleration, etc. This motion information can be measured by a measuring instrument included in the terminal itself.
  • the carrier parameter information refers to the relevant parameters for the terminal to transmit the carrier signal.
  • Positioning information refers to the information required to position the terminal.
  • the motion information of the terminal is actually measured by the terminal itself, and the carrier parameter information and positioning information of the terminal actually refer to the information related to the carrier phase positioning. That is to say, the network device configures the terminal for the terminal.
  • the resource information is determined based on the information measured by the terminal itself and information related to the carrier phase.
  • the resource information configured for the terminal can ensure that the terminal transmits the positioning reference signal when it matches the status of the terminal itself, improving the accuracy of positioning.
  • this application provides a configuration resource This method ensures resource allocation, thereby ensuring positioning based on the terminal's own measurement and carrier phase, and positioning through a combination of the terminal's own measurement and carrier phase, improving positioning accuracy.
  • the terminal can send its own information to the network device, and the network device determines the resource information based on the received information.
  • the network device receives at least one of motion information, carrier parameter information, and positioning information sent by the terminal, and determines resource information based on at least one of the motion information, carrier parameter information, and positioning information.
  • motion information refers to the information generated by the terminal during movement.
  • the terminal For example, the terminal’s movement speed and acceleration, etc. This motion information can be measured by a measuring instrument included in the terminal itself.
  • the carrier parameter information refers to the relevant parameters for the terminal to transmit the carrier signal.
  • Positioning information refers to the information required to position the terminal.
  • the terminal after the terminal determines its own motion information, carrier parameter information and positioning information, it can send the determined information to the network device, and then the network device receives the motion information, carrier parameter information and positioning information sent by the terminal. at least one of them.
  • the terminal's own information continuously changes during the movement process. Because the terminal's information changes, matching resource information needs to be determined based on the changed information.
  • the resource information is determined based on at least one of motion information, carrier parameter information, and positioning information. That is to say, in the embodiment of the present application, if the network device receives at least one of the motion information, carrier parameter information and positioning information sent by the terminal, the network device can perform step 303 to determine the resource information.
  • the resource information configured by the network device for the terminal is determined based on at least one of motion information, carrier parameter information and positioning information. It can also be understood that the motion information of the terminal is actually measured by the terminal itself, and the carrier parameter information and positioning information of the terminal actually refer to information based on carrier phase positioning, that is to say, the resource information configured by the network device for the terminal. It is determined based on the information measured by the terminal itself and the carrier phase.
  • the network device receives at least one of the motion information, carrier parameter information and positioning information sent by the terminal, and then the network device can determine the resource information based on the received information, and then configure the determined resource information for the terminal through the configuration information.
  • the network device includes a correspondence between at least one of motion information, carrier parameter information, and positioning information and resource information, and the resource information is determined based on the correspondence.
  • the network device includes multiple corresponding relationships, and each corresponding relationship includes at least one of motion information, carrier parameter information, and positioning information. That is to say, one of the corresponding relationships includes motion information and resources. Correspondence of information. Another correspondence includes correspondence between motion information, carrier parameter information and resource information, or there may be other correspondences, which will not be listed in the embodiment of this application.
  • the network device includes a corresponding relationship between motion information, carrier parameter information, and positioning information and resource information
  • the corresponding relationship can be understood that the corresponding relationship includes different motion information, different carrier parameter information, and different positioning information, corresponding to Different resource information.
  • different values of motion information, carrier information and positioning information correspond to different resource information.
  • the network device determines the corresponding resource.
  • the information is that the ratio of uplink time domain resources to downlink time domain resources is less than or equal to 8:2, which means that the proportion of downlink time domain resources is at least 20%.
  • the network device determines the corresponding
  • the resource information is that the ratio of uplink time domain resources to downlink time domain resources is less than or equal to 7:3, which means that the proportion of downlink time domain resources is at least 30%.
  • the embodiments of this application illustrate the correspondence between motion information, carrier parameter information, positioning information and resource information by way of example.
  • the correspondence in this application can also be in other ways, which is not limited by the embodiments of this application.
  • the corresponding relationship between at least one of motion information, carrier parameter information and positioning information and resource information is stored in the information correspondence table, and the network device determines the corresponding resource information by querying the information correspondence table.
  • At least one of motion information, carrier parameter information, and positioning information is sent by the terminal in response to the bandwidth of the phase-locked loop of the terminal not supporting adjustment.
  • the terminal includes a phase-locked loop, which generates a fixed-phase carrier through a set bandwidth.
  • the phase-locked loop cannot be modified at this time.
  • the bandwidth can be adjusted, and the configured resource information can be adjusted to complete the configuration of the resource information.
  • the terminal reports its own information to the network device, and then the network device determines the resource information corresponding to the terminal information, and configures the resource information for the terminal.
  • the resource information configured for the terminal can ensure that the terminal is connected to the network device.
  • the positioning reference signal is transmitted to improve the accuracy of positioning.
  • this application provides a way to configure resources, ensuring the configuration of resources, and thus ensuring the measurement and carrier phase based on the terminal itself. The positioning is carried out through a combination of the terminal's own measurement and the phase of the carrier, which improves the accuracy of positioning.
  • the terminal can determine the required resource information by itself, and then send request information for requesting the determined resource information to the network device.
  • the network device receives request information sent by the terminal.
  • the request information is used to obtain resource information.
  • the request information is determined by the terminal based on at least one of motion information, carrier parameter information, and positioning information.
  • the terminal after the terminal determines the resource information it needs, it requests resource information from the network device by sending request information to the network device, and the network device configures resource information for the terminal based on the request information.
  • the request information is determined by the terminal according to at least one of motion information, carrier parameter information, and positioning information in response to the terminal's phase-locked loop bandwidth not supporting adjustment.
  • the terminal includes a phase-locked loop, which generates a fixed-phase carrier through a set bandwidth.
  • the phase-locked loop cannot be modified at this time.
  • the bandwidth can be adjusted, and the configured resource information can be adjusted to complete the configuration of the resource information.
  • the terminal requests resource information determined based on its own information from the network device, and then the network device configures the resource information for the terminal.
  • the resource information configured for the terminal can ensure that the terminal matches the status of the terminal itself.
  • this application provides a way to configure resources to ensure the configuration of resources, thereby ensuring the positioning based on the terminal's own measurement and carrier phase, and through the terminal The positioning is performed by combining its own measurement and the phase of the carrier, which improves the accuracy of positioning.
  • the information associated with the terminal includes various situations.
  • the following describes motion information, carrier parameter information and positioning information respectively.
  • the motion information includes at least one of the following:
  • the speed information is relative speed information of the terminal relative to the network device.
  • the location of the network device remains unchanged, that is, the speed information of the terminal.
  • the speed information is 30 kilometers/hour, 60 kilometers/hour or other values.
  • the terminal includes an inertial sensor, through which the terminal can measure speed information of the terminal relative to the network device.
  • the inertial sensor includes a gyroscope and an accelerometer, through which the speed information of the terminal can be determined.
  • the acceleration information refers to the acceleration of the terminal. If the acceleration information of the terminal is not zero and is a positive number, it means that the speed of the terminal will increase as time goes by. And if the acceleration information of the terminal is not zero, and the acceleration information is a negative number, it means that the speed of the terminal will decrease as time goes by.
  • the acceleration information of the terminal is 5m/s 2 (meter/second 2 ), -10m/s 2 , or other values.
  • the terminal includes an inertial sensor, through which the terminal can measure speed information of the terminal relative to the network device.
  • the inertial sensor includes a gyroscope and an accelerometer, through which the acceleration information of the terminal can be determined.
  • the terminal actually completes the measurement of the terminal's speed information and acceleration information through the inertial navigation system to obtain the terminal's speed information and acceleration information.
  • the carrier parameter information includes at least one of the following:
  • the uplink time domain resources are used by the terminal to send uplink transmission to the network device.
  • Downlink time domain resources are used by network devices to send downlink transmissions to terminals.
  • the ratio of uplink time domain resources to downlink time domain resources refers to the ratio of time domain resources used for uplink transmission to time domain resources used for downlink transmission within a certain subframe.
  • the time domain resources here may include at least one of subframes, time slots and symbols.
  • the ratio of uplink time domain resources and downlink time domain resources supported by the terminal cannot be greater than a threshold value, for example, the threshold value is 6:8.
  • the ratio of uplink symbols to downlink symbols cannot be greater than 6:8, that is, among the 14 symbols in a time slot, the number of downlink symbols must be greater than or equal to 8.
  • the ratio of uplink time domain resources and downlink time domain resources supported by the terminal cannot be less than a threshold value, for example, the threshold value is 6:8.
  • the ratio of uplink symbols to downlink symbols cannot be less than 6:8, that is, among the 14 symbols in a time slot, the number of uplink symbols must be greater than or equal to 6.
  • the ratio of uplink time domain resources to downlink time domain resources cannot be greater than 7:3, or the ratio of uplink time domain resources to downlink time domain resources cannot be less than 8:2, or other values, which are not implemented in the embodiments of this application. limited.
  • the resource information can be used not only for phase tracking measurement, but also for other transmissions.
  • the time-frequency resource information here is used for the terminal to perform phase tracking measurement.
  • the phase of the carrier signal can be used for positioning, and the carrier frequency used for phase tracking refers to the frequency of the carrier signal used for positioning.
  • the terminal supports different frequency ranges due to its own configuration, so as to facilitate positioning based on carrier phase in the supported frequency range.
  • the terminal includes a phase-locked loop, through which the phase of the signal is adjusted under locking conditions. Whether the bandwidth of the terminal's phase-locked loop supports adjustment refers to whether the terminal can adjust the bandwidth of the phase-locked loop.
  • a preset number of bits is used to indicate whether the bandwidth of the phase-locked loop of the terminal supports adjustment.
  • the preset number of bits is the first bit, it indicates that the bandwidth of the phase-locked loop of the terminal supports adjustment. If the preset number of bits is the second bit, it indicates that the bandwidth of the phase-locked loop of the terminal does not support adjustment.
  • the positioning information includes at least one of the following:
  • positioning accuracy refers to the error range when positioning the terminal.
  • the positioning accuracy is 1 decimeter, or the positioning accuracy is 1 meter, or other values.
  • the sampling frequency refers to the number of times the terminal samples within the unit time.
  • the sampling frequency is 50 times per minute, or 60 times per minute, or other values.
  • the measurement error refers to the error of the speed information measured by the terminal.
  • the terminal determines multiple parameter information based on configuration or self-measurement, so as to determine the resource information configured by the network device for the terminal based on the terminal's parameter information, and determine the resource information through the terminal's diverse parameter information, which improves
  • the accuracy of the determined resource information also provides a way to configure resources, ensuring the allocation of resources, thereby ensuring the positioning based on the terminal's own measurement and carrier phase, and through the combination of the terminal's own measurement and the carrier phase. Positioning method improves the accuracy of positioning.
  • resource information also includes multiple types of information.
  • the resource information includes the ratio of uplink time domain resources to downlink time domain resources and the subframe density used to transmit positioning reference signals.
  • the uplink time domain resources are used by the terminal to send uplink transmission to the network device.
  • Downlink time domain resources are used by network devices to send downlink transmissions to terminals.
  • the ratio of uplink time domain resources to downlink time domain resources refers to the ratio of time domain resources used for uplink transmission to time domain resources used for downlink transmission within a certain subframe.
  • the ratio of uplink time domain resources to downlink time domain resources cannot be greater than 7:3, or the ratio of uplink time domain resources to downlink time domain resources cannot be less than 8:2, or other values, which are not implemented in the embodiments of this application. limited.
  • the density of subframes used to transmit positioning reference signals refers to the proportion of subframes used to transmit positioning reference signals to a certain number of subframes in the resource information.
  • the above embodiments all take the network device configuring resource information for the terminal as an example for explanation.
  • the network device may not be able to determine resource information that meets the requirements. In this case, the network device will return error information to the terminal.
  • the network device in response to the undetermined resource information, the network device sends error information to the terminal, and the error information indicates that the network device does not configure the resource information.
  • the network device is also unable to configure the resource information that meets the transmission requirements for the terminal.
  • the network device does not send the configuration information to the terminal, but sends an error message to the terminal, and the error message informs If the terminal cannot configure resource information, after the terminal receives the error message, it can determine that the network device has not configured the corresponding resource information based on the information measured by the terminal itself.
  • the network device if the terminal determines that the current motion information causes the Doppler shift to change drastically, or the ratio of the current uplink time domain resources to the downlink time domain resources is large, the network device cannot configure resource information for the terminal.
  • the terminal when the network device does not configure resource information, the terminal adjusts the bandwidth of the phase-locked loop so as to reduce the time required for the phase-locked loop to complete and thereby avoid cycle slips. situation, improving the accuracy of subsequent positioning based on positioning reference signals.
  • the network device sends a downlink positioning reference signal to the terminal based on the resource information.
  • the downlink positioning reference signal is a signal sent by the network device to the terminal for positioning.
  • the downlink positioning reference signal includes PRS or other types of signals, which is not limited in the embodiments of this application.
  • the network device configures resource information for the terminal.
  • the resource information includes resources for uplink transmission. Therefore, the terminal can send an uplink positioning reference signal to the network device through the resource information, and then perform positioning on the terminal based on the uplink positioning reference signal. To position.
  • the phase information of the terminal at different locations is determined based on the uplink positioning reference signal, and the current location information of the terminal is determined based on the phase information of the terminal at different locations and the motion information of the terminal.
  • phase information of the terminal at different positions the distance between the terminal at two adjacent positions and the initial integer ambiguity satisfy the following relationship:
  • N is the initial integer ambiguity
  • a is the distance between the terminal at the first position and the second position
  • b is the distance between the terminal at the second position and the third position
  • is the wavelength of the uplink positioning reference signal.
  • the distance between two adjacent positions of the terminal is determined based on the motion information of the terminal.
  • the network device receives the uplink positioning reference signal through the resource information configured for the terminal, and then positions the terminal based on the uplink positioning reference signal, ensuring positioning based on the terminal's own measurement and carrier phase, and through the terminal
  • the positioning is performed by combining its own measurement and the phase of the carrier, which improves the accuracy of positioning.
  • the initial integer ambiguity is determined through the phase of the carrier and the motion information of the terminal. There is no need to search for a fixed integer ambiguity, which simplifies the process of determining the initial integer ambiguity, saves calculations, and improves the accuracy of positioning the terminal. efficiency.
  • Figure 13 shows a block diagram of a positioning device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the receiving module 1301 is configured to receive configuration information sent by the network device.
  • the configuration information is used to configure resource information for transmitting positioning reference signals for the terminal.
  • the positioning reference signal is used to position the terminal.
  • the resource information is determined based on at least one of motion information, carrier parameter information, and positioning information.
  • the device further includes:
  • the sending module 1302 is configured to send at least one of motion information, carrier parameter information, and positioning information to the network device.
  • the sending module 1302 is configured to send the motion information, the carrier parameter information, and the positioning information to the network device in response to the bandwidth of the phase-locked loop of the terminal not supporting adjustment. At least one item.
  • the device further includes:
  • Determining module 1303, configured to determine request information based on at least one of motion information, carrier parameter information, and positioning information;
  • the sending module 1302 is used to send request information to the network device, and the request information is used to obtain resource information.
  • the determining module 1303 is configured to determine resource information according to at least one of motion information, carrier parameter information, and positioning information in response to the terminal's phase-locked loop bandwidth not supporting adjustment, and determine the resource information.
  • the motion information includes at least one of the following:
  • the carrier parameter information includes at least one of the following:
  • the ratio of uplink time domain resources and downlink time domain resources supported by the terminal is the ratio of uplink time domain resources and downlink time domain resources supported by the terminal
  • Time-frequency resource information used for phase tracking measurements
  • the positioning information includes at least one of the following:
  • the resource information includes the ratio of uplink time domain resources to downlink time domain resources and the subframe density used to transmit positioning reference signals.
  • the receiving module 1301 is further configured to receive error information sent by the network device in response to the network device not determining the resource information, where the error information indicates that the network device has not configured the resource. information;
  • the adjustment module 1304 is used to adjust the bandwidth of the phase-locked loop in the terminal.
  • the adjustment module 1304 is configured to adjust the bandwidth of the phase-locked loop in the terminal in response to the bandwidth support adjustment of the phase-locked loop of the terminal.
  • the device further includes:
  • Start module 1305 configured to start the IMU auxiliary carrier phase measurement function in response to the moving speed of the terminal being greater than the first speed.
  • the IMU auxiliary carrier phase measurement function instructs the terminal to determine the current location of the terminal based on the phase information and the movement information of the terminal. information.
  • the device further includes:
  • the receiving module 1301 is used to receive the downlink positioning reference signal sent by the network device based on the resource information
  • the determination module 1303 is used to determine the phase information of the terminal at different locations based on the downlink positioning reference signal
  • the determination module 1303 is also used to determine the current location information of the terminal based on the phase information of the terminal at different locations and the movement information of the terminal.
  • the movement information is determined by the terminal measurement.
  • the determination module 1303 is also used to determine the carrier phase difference of the terminal at different locations based on the downlink positioning reference signal.
  • the carrier phase difference is the phase between the carrier signal generated by the terminal itself and the received downlink positioning reference signal.
  • the determination module 1303 is also used to:
  • the movement information of the terminal determine the distance between the two adjacent positions of the terminal
  • the current location information of the terminal is determined based on the initial integer ambiguity.
  • the phase information of the terminal at different locations, the distance between the terminal at two adjacent locations and the initial integer ambiguity satisfy the following relationship:
  • N is the initial integer ambiguity
  • a is the distance between the terminal at the first position and the second position
  • b is the distance between the terminal at the second position and the third position
  • is the wavelength of the downlink positioning reference signal.
  • the determination module 1303 is also configured to determine the distance between two adjacent positions of the terminal according to the motion information of the terminal in response to the terminal not acquiring the initial integer ambiguity.
  • the determination module 1303 is also used to:
  • the predicted phase information is used to update the phase of the terminal's phase-locked loop
  • the current location information of the terminal is determined according to the updated phase of the phase-locked loop.
  • the determination module 1303 is also configured to, in response to the terminal obtaining the initial integer ambiguity, determine the predicted phase information of the terminal at the next position based on the initial integer ambiguity and the phase information of the terminal at different positions.
  • the device further includes:
  • the sending module 1302 is configured to send the uplink positioning reference signal and the movement information of the terminal to the network device based on the resource information, and the network device is used to determine the current location information of the terminal based on the uplink positioning reference signal and the movement information.
  • Figure 15 shows a block diagram of a positioning device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the sending module 1501 is used to send configuration information to the terminal.
  • the configuration information is used to configure resource information for the terminal to transmit positioning reference signals.
  • the positioning reference signal is used to position the terminal.
  • the resource information is determined based on at least one of motion information, carrier parameter information, and positioning information.
  • the device further includes:
  • the receiving module 1502 is configured to receive at least one of motion information, carrier parameter information, and positioning information sent by the terminal.
  • At least one of the motion information, the carrier parameter information and the positioning information is sent by the terminal in response to a bandwidth of a phase-locked loop of the terminal not supporting adjustment.
  • the device further includes:
  • the receiving module 1502 is configured to receive request information sent by the terminal.
  • the request information is used to obtain resource information.
  • the request information is determined by the terminal based on at least one of motion information, carrier parameter information, and positioning information.
  • the request information is determined by the terminal according to at least one of motion information, carrier parameter information, and positioning information in response to the terminal's phase-locked loop bandwidth not supporting adjustment.
  • the motion information includes at least one of the following:
  • the carrier parameter information includes at least one of the following:
  • the ratio of uplink time domain resources and downlink time domain resources supported by the terminal is the ratio of uplink time domain resources and downlink time domain resources supported by the terminal
  • Time-frequency resource information used for phase tracking measurements
  • the positioning information includes at least one of the following:
  • the device further includes:
  • the sending module 1501 is configured to send error information to the terminal in response to the undetermined resource information, where the error information indicates that the network device has not configured resource information.
  • the device further includes:
  • the sending module 1501 is used to send the downlink positioning reference signal to the terminal based on the resource information
  • the terminal is used to determine the phase information of the terminal at different positions based on the downlink positioning reference signal, and determine the current position information of the terminal based on the phase information of the terminal at different positions and the motion information of the terminal.
  • the motion information is determined by measurements of the terminal.
  • the device further includes:
  • the receiving module 1502 is configured to receive the uplink positioning reference signal sent by the terminal and the motion information of the terminal based on the resource information;
  • Determining module 1503 is used to determine the current location information of the terminal based on the uplink positioning reference signal and motion information.
  • the determination module 1503 is used to:
  • the current location information of the terminal is determined based on the phase information of the terminal at different locations and the motion information of the terminal.
  • the determination module 1503 is used to:
  • the carrier phase difference of the terminal at different locations is determined.
  • the carrier phase difference is determined by the phase between the carrier signal generated by the network device itself and the received uplink positioning reference signal.
  • the determination module 1503 is used to:
  • the movement information of the terminal determine the distance between the two adjacent positions of the terminal
  • the current location information of the terminal is determined based on the initial integer ambiguity.
  • the phase information of the terminal at different locations, the distance between the terminal at two adjacent locations and the initial integer ambiguity satisfy the following relationship:
  • N is the initial integer ambiguity
  • a is the distance between the terminal at the first position and the second position
  • b is the distance between the terminal at the second position and the third position
  • is the wavelength of the downlink positioning reference signal.
  • the determination module 1503 is configured to determine the distance between two adjacent positions of the terminal according to the motion information of the terminal in response to the terminal not acquiring the initial integer ambiguity.
  • Figure 17 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 1701, a receiver 1702, a transmitter 1703, a memory 1704 and a bus 1705.
  • the processor 1701 includes one or more processing cores.
  • the processor 1701 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1702 and the transmitter 1703 can be implemented as a communication component, and the communication component can be a communication chip.
  • Memory 1704 is connected to processor 1701 through bus 1705.
  • the memory 1704 can be used to store at least one program code, and the processor 1701 is used to execute the at least one program code to implement each step in the above method embodiment.
  • Memory 1704 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable read-only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Read Only Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM).
  • EEPROM electrically erasable programmable read-only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • a computer-readable storage medium is also provided, with executable program code stored in the readable storage medium, and the executable program code is loaded and executed by the processor to implement each of the above methods.
  • the example provides a positioning method performed by a communication device.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions. When the chip is run on a terminal or network device, it is used to implement as provided by various method embodiments. Positioning method.
  • a computer program product is provided.
  • the computer program product is executed by a processor of a terminal or a network device, it is used to implement the positioning method provided by each of the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种定位方法、装置、设备及存储介质,涉及移动通信领域。该方法包括:终端接收接收网络设备发送的配置信息,配置信息用于为终端配置用于传输定位参考信号的资源信息,定位参考信号用于对终端进行定位,提供了一种配置资源的方式,保证了资源的配置,并且本申请提供了网络设备与终端之间传输定位参考信号以对终端进行定位的方法,扩展了对终端定位的方式,并且通过在网络设备与终端之间传输定位参考信号的方式进行定位,提高了定位的准确性。

Description

定位方法、装置、设备及存储介质 技术领域
本申请涉及移动通信领域,特别涉及一种定位方法、装置、设备及存储介质。
背景技术
在定位技术中,可以利用惯性导航系统来进行定位,该惯性导航系统根据运动方向和初始位置信息,利用惯性传感器来推算终端的位置信息以及速度信息,由于仅采用惯性导航系统会存在较大的误差,定位精度差。
发明内容
本申请实施例提供了一种定位方法、装置、设备及存储介质,提供了一种配置资源的方式,保证了资源的配置,并且本申请提供了网络设备与终端之间传输定位参考信号以对终端进行定位的方法,扩展了对终端定位的方式,并且通过在网络设备与终端之间传输定位参考信号的方式进行定位,提高了定位的准确性。所述技术方案如下:
根据本申请的一个方面,提供了一种定位方法,所述方法由终端执行,所述方法包括:
接收网络设备发送的配置信息,所述配置信息用于为所述终端配置用于传输定位参考信号的资源信息,所述定位参考信号用于对所述终端进行定位。
根据本申请的一个方面,提供了一种定位方法,所述方法由网络设备执行,所述方法包括:
向终端发送配置信息,配置信息用于为所述终端配置用于传输定位参考信号的资源信息,所述定位参考信号用于对所述终端进行定位。
根据本申请的一个方面,提供了一种定位装置,所述装置包括:
接收模块,用于接收网络设备发送的配置信息,所述配置信息用于为所述终端配置用于传输定位参考信号的资源信息,所述定位参考信号用于对所述终端进行定位。
根据本申请的一个方面,提供了一种定位装置,所述装置包括:
发送模块,用于向终端发送配置信息,配置信息用于为所述终端配置用于传输定位参考信号的资源信息,所述定位参考信号用于对所述终端进行定位。
根据本申请的一个方面,提供了一种终端,终端包括:处理器;与处理器相连的收发器;用于存储处理器的可执行指令的存储器;其中,处理器被配置为加载并执行可执行指令以实现如上述方面的定位方法。
根据本申请的一个方面,提供了一种网络设备,网络设备包括:处理器;与处理器相连的收发器;用于存储处理器的可执行指令的存储器;其中,处理器被配置为加载并执行可执行指令以实现如上述方面的定位方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,可读存储介质中存储有可执行程序代码,可执行程序代码由处理器加载并执行以实现如上述方面的定位方法。
根据本申请的一个方面,提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当芯片在终端或网络设备上运行时,用于实现如上述方面的定位方法。
根据本申请的一个方面,提供了一种计算机程序产品,当计算机程序产品被终端或网络设备的处理器执行时,其用于实现上述方面的定位方法。
本申请实施例提供的定位方案中,网络设备为终端配置用于传输定位参考信号的资源,网络设备与终端之间可以传输该定位参考信号,进而基于定位参考信号对应的载波相位差对终端进行定位,提供了一种配置资源的方式,保证了资源的配置,并且本申请提供了网络设备与终端之间传输定位参考信号以对终端进行定位的方法,扩展了对终端定位的方式,并且通过在网络设备与终端之间传输定位参考信号的方式进行定位,提高了定位的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个示例性实施例提供的通信系统的框图;
图2示出了本申请一个示例性实施例提供的定位方法的流程图;
图3示出了本申请一个示例性实施例提供的定位方法的流程图;
图4示出了本申请一个示例性实施例提供的定位方法的流程图;
图5示出了本申请一个示例性实施例提供的带宽调整方法的流程图;
图6示出了本申请一个示例性实施例提供的定位方法的流程图;
图7示出了本申请一个示例性实施例提供的终端移动过程中与网络设备的位置的示意图;
图8示出了本申请一个示例性实施例提供的另一种终端移动过程中与网络设备的位置的示意图;
图9示出了本申请一个示例性实施例提供的定位方法的流程图;
图10示出了本申请一个示例性实施例提供的定位方法的流程图;
图11示出了本申请一个示例性实施例提供的定位方法的流程图;
图12示出了本申请一个示例性实施例提供的定位方法的流程图;
图13示出了本申请一个示例性实施例提供的一种定位装置的框图;
图14示出了本申请一个示例性实施例提供的另一种定位装置的框图;
图15示出了本申请一个示例性实施例提供的一种定位装置的框图;
图16示出了本申请一个示例性实施例提供的另一种定位装置的框图;
图17示出了本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。 例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
需要说明的是,本申请所涉及的信息(包括但不限于用户设备信息、用户个人信息等)、数据(包括但不限于用于分析的数据、存储的数据、展示的数据等)以及信号,均为经用户授权或者经过各方充分授权的,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。
下面,对本申请的应用场景进行说明:
图1示出了本申请一个示例性实施例提供的通信系统的框图,该通信系统可以包括:终端10和网络设备20。
终端10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
网络设备20是一种部署在接入网中用以为终端10提供无线通信功能的装置。为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为网络设备。网络设备20与终端10之间可以通过空口建立连接,从而通过该连接进行通信,包括信令和数据的交互。网络设备20的数量可以有多个,两个邻近的网络设备20之间也可以通过有线或者无线的方式进行通信。终端10可以在不同的网络设备20之间进行切换,也即与不同的网络设备20建立连接。
该网络设备20可以包括各种形式的宏基站,微基站,中继站,接入点,发送接收点(Transmission Reception Point,TRP)等等。在采用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同,例如在5G NR(New Radio,新的无线技术)系统中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。
其次,对本申请所涉及的惯性导航系统进行说明。惯性导航系统是基于牛顿经典力学的导航定位系统,其工作原理是根据基准方向及最初的位置信息,利用惯性传感器(陀螺仪和加速计)来推算载体位置、速度等信息。惯性导航系统具有自主导航能力,不需要任何外界电磁信号、抗干扰能力强。因此,惯性导航系统具有卫星导航、无线电导航、天文导航等导航系统无法比拟的优势。其中, 惯性导航系统的优点在于:
(1)由于惯性导航系统工作时不依赖外部信息,也不向外辐射能量,所以惯性导航系统在工作时自主性强,保密性很好。在工作中,惯性导航系统只需要利用自身IMU(Inertial Measurement Unit,惯性测量元件)输出的数据进行积分求解,便可以推算出所需要的导航参数。
(2)由于惯性导航系统中包含不同的惯性测量原件,如陀螺仪、加速计等,使得惯性导航系统能够从各个方面提供载体的导航系数。通过对IMU输出数据的积分求解,我们可以获得的位置、速度、加速度、姿态和航向等。
(3)惯性导航系统的工作不受气象条件的限制,由于惯性导航系统可以完全自主的工作,外部的气象环境不会影响惯导的导航结果。
(4)惯性导航系统的抗干扰能力强,对电、磁、光等形成的波、场、线的影响都不敏感。几乎不向外辐射电磁波,也不需要接收电磁波,因此拥有极强的抗干扰能力。
陀螺仪和加速度计是惯性导航系统中最重要的两种惯性传感器,在IMU中,一般有三个陀螺仪和三个加速度计,他们分别安装在三个相互垂直的轴上,每个轴上各有一个陀螺仪和加速度计。三个轴中的每一个轴指向一个方向,用于测量该方向上的旋转角速度和运动加速度。IMU在获取到陀螺仪和加速度计的数据后,通过积分可以确定载体在空间的六个自由度变量,即:三个空间位置坐标分量和三个运行姿态角度。运行姿态角一般包括航偏角(Yaw)、俯仰角(Pinch)和滚动角(Roll)。对于飞行器来说,航偏角确定了飞行器在水平面投影的前进方向,俯仰角和滚动角则反映了飞行器是否在稳定的飞行。而对于汽车等其他陆地行驶载体,路面的前后坡度和左右倾斜度一般比较小,所以部分及应用中的惯导系统只考虑载体的行驶方位角。
加速度计用于测量某一方向上的比力。常见的加速度计有摆式积分加速度计、挠性摆式加速度计、静电加速度计等。近年来,随着计算技术的不断发展,使用MEMS技术的加速度计体积小、重量轻、价格低、现在已经广泛用于智能手机、车载导航、无人机和机器人中,极大的拓展了IMU的使用场景和应用范围。陀螺仪是指一种安装在框架中绕回转体的对称轴高速旋转的物体。陀螺仪具有稳定性和进动性。由于陀螺仪对于角速度很敏感的特性,它对于角速度较为敏感,可以用于测量角速度和角度偏差。
图2示出了本申请一个示例性实施例提供的定位方法的流程图,示例性的可以应用于如图1所示的终端和网络设备中,该方法包括以下内容中的至少部分内容:
步骤201:网络设备向终端发送配置信息,配置信息用于为终端配置用于传输定位参考信号的资源信息,定位参考信号用于对终端进行定位。
步骤202:终端接收网络设备发送的配置信息,配置信息用于为终端配置用于传输定位参考信号的资源信息,定位参考信号用于对终端进行定位。
其中,该资源信息用于供网络设备与终端之间传输定位参考信号。在本身亲该实施例中,终端或网络设备可以根据定位参考信号确定载波相位差,进而根据定位参考信号对应的载波相位差对终端进行定位。
在本申请实施例中,网络设备与终端之间可以传输定位参考信号,以便于网络设备或终端对终端定位,确定终端的当前位置信息。其中,网络设备与终端之间传输定位参考信号需要资源信息,因此网络设备通过配置信息为终端配置用于传输定位参考信号的资源信息,以便于通过传输的定位参考信号对终端进行定位。
需要说明的是,网络设备所执行的步骤可以单独形成一个实施例,终端所执行的步骤也可以单独形成一个实施例,本申请对此不作限定。
本申请实施例提供方案中,网络设备为终端配置用于传输定位参考信号的资源,网络设备与终端之间可以传输该定位参考信号,进而基于定位参考信号对应的载波相位差对终端进行定位,提供了一种配置资源的方式,保证了资源的配置,并且本申请提供了网络设备与终端之间传输定位参考信号以对终端进行定位的方法,扩展了对终端定位的方式,并且通过在网络设备与终端之间传输定位参考信号的方式进行定位,提高了定位的准确性。
图2所示实施例对网络设备为终端配置资源信息为例进行说明。而对于资源信息来说,资源信息是根据运动信息、载波参数信息以及定位信息中的至少一项确定的。
其中,运动信息是指终端在移动过程中所产生的信息。例如终端的移动速度和加速度等。该运动信息可以由终端自身所具有的测量仪器进行测量。载波参数信息是指终端传输载波信号的相关参数。定位信息是指对终端进行定位所需的信息。
在本申请实施例中,终端的运动信息实际上是由终端自身测量得到的,而终端的载波参数信息和定位信息实际上是指与载波相位定位相关的信息,也就是说网络设备为终端配置的资源信息是根据终端自身测量的信息以及载波相位相关的信息确定的。
本申请实施例提供的方案中,为终端配置的资源信息可以保证终端在与终端自身的状态匹配的情况下传输定位参考信号,提高定位的准确性,也就是说本申请提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
在图2所示的实施例的基础上,终端可以将自身的信息发送给网络设备,由网络设备根据接收的信息确定资源信息。参见图3,该方法包括:
步骤301:终端向网络设备发送运动信息、载波参数信息以及定位信息中的至少一项。
步骤302:网络设备接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项。
其中,运动信息是指终端在移动过程中所产生的信息。例如终端的移动速度和加速度等。该运动信息可以由终端自身所具有的测量仪器进行测量。载波参数信息是指终端传输载波信号的相关参数。定位信息是指对终端进行定位所需的信息。
在本申请实施例中,终端确定自身的运动信息、载波参数信息以及定位信息后,即可将确定的信息发送给网络设备,进而由网络设备接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项。
步骤303:网络设备根据运动信息、载波参数信息以及定位信息中的至少一项确定资源信息。
在本申请实施例中,终端自身的信息在移动过程中不断变化,由于终端的信息的变化,因此需要根据变化的信息,确定匹配的资源信息。
在一些实施例中,资源信息根据运动信息、载波参数信息以及定位信息中的至少一项确定。也就是说,本申请实施例中网络设备接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项,则网络设备可以执行步骤303确定资源信息。
其中,网络设备为终端配置的资源信息根据运动信息、载波参数信息以及定位信息中的至少一项确定。也可以理解为,终端的运动信息实际上是由终端自身测量得到的,而终端的载波参数信息和定位信息实际上是指与载波相位定位相关的信息,也就是说网络设备为终端配置的资源信息是根据终端自身测量的信息以及载波相位相关的信息确定的。
网络设备接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项,进而网络设备即可根据接收的信息确定资源信息,进而通过配置信息为终端配置已确定的资源信息。
在一些实施例中,网络设备中包括运动信息、载波参数信息以及定位信息中的至少一项与资源信息的对应关系,基于该对应关系确定资源信息。
本申请实施例中,网络设备包括的对应关系包括多种,每种对应关系包括运动信息、载波参数信息以及定位信息中的至少一项,也就是说,其中一种对应关系包括运动信息与资源信息的对应关系,另一种对应关系包括运动信息、载波参数信息与资源信息的对应关系,或者还存在其他对应关系,本申请实施例不再列举。
例如,若网络设备中包括运动信息、载波参数信息以及定位信息与资源信息的对应关系,则该对应关系可以理解为该对应关系中包括不同运动信息、不同载波参数信息和不同的定位信息,对应不同的资源信息。也就是说,不同数值的运动信息、载波信息和定位信息,对应不同的资源信息。
例如,若终端的运动信息包括速度30千米/小时,加速度为5m/s 2,载波参数信息包括载波频率3GHz(吉赫兹),定位精度为1分米的情况下,网络设备确定对应的资源信息是上行时域资源与下行时域资源的比例小于或等于8:2,也就是说下行时域资源所占比例最小为20%。
又或者,若终端的运动信息包括速度80千米/小时,加速度为5m/s 2,载波参数信息包括载波频率3GHz(吉赫兹),定位精度为1分米的情况下,网络设备确定对应的资源信息是上行时域资源与下行时域资源的比例小于或等于7:3,也就是说下行时域资源所占比例最小为30%。
本申请实施例是以举例方式对运动信息、载波参数信息以及定位信息与资源信息的对应关系进行说明,本申请的对应关系还可以为其他方式,本申请实施例不作限定。
可选地,运动信息、载波参数信息以及定位信息中的至少一项与资源信息的 对应关系存储在信息对应表中,网络设备通过查询信息对应表以确定对应的资源信息。
需要说明的是,本申请实施例是以直接执行步骤301-303为例进行说明。而在另一实施例中,需要在一定条件下执行步骤301-303。
在一些实施例中,响应于终端的锁相环的带宽不支持调整,终端向网络设备发送运动信息、载波参数信息以及定位信息中的至少一项。
其中,终端中包括锁相环,该锁相环通过设置的带宽生成固定相位的载波,对于终端自身的运动信息、终端的载波参数信息以及终端的定位信息的变化,此时无法对锁相环的带宽进行调整,而可以对配置的资源信息进行调整,因此执行上述步骤301-303,进而完成资源信息的配置。
需要说明的是,本申请实施例是以步骤301-303为例进行说明。而在另一实施例中,终端所执行的步骤可以单独形成一个实施例,网络设备所执行的步骤也可以单独形成一个实施例,本申请对此不作限定。
本申请实施例提供的方案中,终端将自身的信息上报给网络设备,进而由网络设备确定与终端的信息对应的资源信息,为终端配置资源信息,为终端配置的资源信息可以保证终端在与终端自身的状态匹配的情况下传输定位参考信号,提高定位的准确性,也就是说本申请提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
在图2所示的实施例的基础上,终端可以自行确定所需的资源信息,再向网络设备请求确定的资源信息。参见图4,该方法包括:
步骤401:终端根据运动信息、载波参数信息以及定位信息中的至少一项,确定请求信息。
在本申请实施例中,终端自身的信息在移动过程中不断变化,由于终端的信息的变化,因此需要根据变化的信息,确定匹配的资源信息。终端确定终端自身的运动信息、载波参数信息以及定位信息,进而终端即可根据确定的自身的信息确定请求信息,进而执行后续过程向网络设备请求获取请求信息对应的资源信息。
在一些实施例中,终端中包括运动信息、载波参数信息以及定位信息中的至少一项与请求信息的对应关系,基于该对应关系确定请求信息。
本申请实施例中,终端包括的对应关系包括多种,每种对应关系包括运动信息、载波参数信息以及定位信息中的至少一项,也就是说,其中一种对应关系包括运动信息与请求信息的对应关系,另一种对应关系包括运动信息、载波参数信息与请求信息的对应关系,或者还存在其他对应关系,本申请实施例不再列举。
例如,若终端中包括运动信息、载波参数信息以及定位信息与请求信息的对应关系,则该对应关系可以理解为该对应关系中包括不同运动信息、不同载波参数信息和不同的定位信息,对应不同的请求信息。也就是说,不同数值的运动信息、载波信息和定位信息,对应不同的请求信息。
例如,若终端的运动信息包括速度30千米/小时,加速度为5m/s 2,载波参数信息包括载波频率3GHz(吉赫兹),定位精度为1分米的情况下,网络设备确定对应的请求信息是上行时域资源与下行时域资源的比例小于或等于8:2,也就是说下行时域资源所占比例最小为20%。
又或者,若终端的运动信息包括速度80千米/小时,加速度为5m/s 2,载波参数信息包括载波频率3GHz(吉赫兹),定位精度为1分米的情况下,网络设备确定对应的请求信息是上行时域资源与下行时域资源的比例小于或等于7:3,也就是说下行时域资源所占比例最小为30%。
本申请实施例是以举例方式运动信息、载波参数信息以及定位信息与请求信息的对应关系进行说明,本申请的对应关系还可以为其他方式,本申请实施例不作限定。
可选地,运动信息、载波参数信息以及定位信息中的至少一项与请求信息的对应关系存储在信息对应表中,终端通过查询信息对应表以确定对应的请求信息。
步骤402:终端向网络设备发送请求信息,请求信息用于获取资源信息。
步骤403:网络设备接收终端发送的请求信息,请求信息用于获取资源信息,请求信息由终端根据运动信息、载波参数信息以及定位信息中的至少一项确定。
在本申请实施例中,终端确定自身需要的资源信息后,则通过向网络设备发送请求信息以向网络设备请求资源信息,网络设备根据该请求信息为终端配置资源信息。
需要说明的是,本申请实施例是以直接执行步骤401-403为例进行说明。而在另一实施例中,需要在一定条件下执行步骤401-403。
在一些实施例中,响应于终端的锁相环的带宽不支持调整,根据运动信息、 载波参数信息以及定位信息中的至少一项,确定请求信息。
其中,终端中包括锁相环,该锁相环通过设置的带宽生成固定相位的载波,对于终端自身的运动信息、载波参数信息以及定位信息的变化,此时无法对锁相环的带宽进行调整,而可以对配置的资源信息进行调整,因此执行上述步骤301-303,进而完成资源信息的配置。
本申请实施例提供的方案中,终端向网络设备请求根据自身的信息确定的资源信息,进而由网络设备为终端配置资源信息,为终端配置的资源信息可以保证终端在与终端自身的状态匹配的情况下传输定位参考信号,提高定位的准确性,也就是说本申请提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
在图3和图4所示的实施例的基础上,与终端关联的信息包括多种情况,下面分别对运动信息、载波参数信息以及定位信息进行说明。
在一些实施例中,运动信息包括以下至少一项:
(1)相对于网络设备的速度信息。
其中,该速度信息是终端相对于网络设备的相对速度信息。另外,该网络设备的位置不变,也就是终端的速度信息。
例如,该速度信息为30千米/小时、60千米/小时或者其他数值。
在一些实施例中,终端中包括惯性传感器,终端可以通过该惯性传感器测量终端相对于网络设备的速度信息。
可选地,该惯性传感器包括陀螺仪和加速计,通过该陀螺仪和加速计即可确定终端的速度信息。
(2)终端的加速度信息。
其中,该加速度信息是指终端的加速度。若终端的加速度信息不为零,并且该加速度信息为正数,则说明随着时间的推移,终端的速度会增加。而若终端的加速度信息不为零,并且该加速度信息为负数,则说明随着时间的推移,终端的速度会减小。
例如,终端的加速度信息为5m/s 2(米/秒 2),-10m/s 2,或者其他数值。
在一些实施例中,终端中包括惯性传感器,终端可以通过该惯性传感器测量终端相对于网络设备的速度信息。
可选地,该惯性传感器包括陀螺仪和加速计,通过该陀螺仪和加速计即可确定终端的加速度信息。
需要说明的是,本申请实施例实际上是终端通过惯性导航系统完成终端的速度信息以及加速度信息的测量,以得到终端的速度信息和加速度信息。
在另一些实施例中,载波参数信息包括以下至少一项:
(1)终端支持的上行时域资源与下行时域资源的比例。
其中,上行时域资源用于终端向网络设备发送上行传输。下行时域资源用于网络设备向终端发送下行传输。该上行时域资源与下行时域资源的比例是指在一定的子帧内,用于上行传输的时域资源与用于下行传输的时域资源的比例。这里的时域资源可以包含子帧,时隙和符号的至少一项。比如,针对下行定位信号,终端支持的上行时域资源和下行时域资源的比例不能大于一个门限值,比如该门限值为6:8。比如一个时隙内,上行符号和下行符号的比例不能大于6:8,即一个时隙的14个符号中,下行符号的数量要大于或等于8。比如,针对上行定位信号,终端支持的上行时域资源和下行时域资源的比例不能小于一个门限值,比如该门限值为6:8。比如一个时隙内,上行符号和下行符号的比例不能小于6:8,即一个时隙的14个符号中,上行符号的数量要大于或等于6。
例如,上行时域资源与下行时域资源的比例为不能大于7:3,或者,上行时域资源与下行时域资源的比例为不能小于8:2,或者其他数值,本申请实施例不做限定。
(2)用于相位跟踪测量的时频资源信息。
其中,资源信息不仅可以用于相位跟踪测量,还可以用于其他传输,此处的时频资源信息用于终端进行相位跟踪测量。
(3)用于相位跟踪的载波频率。
其中,载波信号的相位可以用于进行定位,用于相位跟踪的载波频率是指用于定位的载波信号的频率。
(4)终端支持的载波相位的频点范围。
其中,终端由于自身的配置,支持不同的频点范围,以便于在支持的频点范围中进行基于载波相位的定位。
(5)终端的锁相环的带宽是否支持调整。
其中,终端中包括锁相环,通过该锁相环在锁定情况下以调整信号的相位。终端的锁相环的带宽是否支持调整是指终端能否对锁相环的带宽进行调整。
在一些实施例中,采用预设数量的比特指示终端的锁相环的带宽是否支持调整。
例如,若预设数量的比特为第一比特,指示终端的锁相环的带宽支持调整。而若预设数量的比特位第二比特,指示终端的锁相环的带宽不支持调整。
在另一些实施例中,定位信息包括以下至少一项:
(1)终端的定位精度。
其中,定位精度是指对终端定位时的误差范围。例如,定位精度为1分米,或者定位精度为1米,或者为其他数值。
(2)终端的采样频次。
其中,采样频次是指终端在单位时长内采样的次数。例如,该采样频次为1分钟50次,或者1分钟60次,或者其他数值。
(3)终端的测量误差。
其中,测量误差是指终端测量的速度信息的误差。
本申请实施例提供的方案中,终端根据配置或自行测量确定多个参数信息,以便于根据终端的参数信息确定网络设备为终端配置的资源信息,通过终端多样的参数信息确定资源信息,提高了确定的资源信息的准确性,还提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
需要说明的是,本申请实施例是以终端的运动信息、终端的载波参数信息以及终端的定位信息为例进行说明。在另一些实施例中,资源信息也包括多种信息。
在一些实施例中,资源信息包括上行时域资源与下行时域资源的比例以及用于传输定位参考信号的子帧密度。
其中,上行时域资源用于终端向网络设备发送上行传输。下行时域资源用于网络设备向终端发送下行传输。该上行时域资源与下行时域资源的比例是指在一定的子帧内,用于上行传输的时域资源与用于下行传输的时域资源的比例。
例如,上行时域资源与下行时域资源的比例为不能大于7:3,或者,上行时域资源与下行时域资源的比例为不能小于8:2,或者其他数值,本申请实施例不做限定。
其中,用于传输定位参考信号的子帧密度是指资源信息中用于传输定位参考信号的子帧占一定数量子帧的比例。
上述实施例均是以网络设备为终端配置资源信息为例进行说明。而在另一实施例中,网络设备可能无法确定符合要求的资源信息,在此情况下,网络设备会向终端返回错误信息。参见图5,该方法包括:
步骤501:网络设备响应于未确定资源信息,向终端发送错误信息,错误信息指示网络设备未配置资源信息。
步骤502:终端响应于网络设备未确定资源信息,接收网络设备发送的错误信息,错误信息指示网络设备未配置资源信息。
在本申请实施例中,网络设备还存在无法为终端配置符合传输要求的资源信息,则在此情况下,网络设备不向终端发送配置信息,而是向终端发送错误信息,通过该错误信息告知终端无法配置资源信息的情况,终端接收到该错误信息后,也就可以确定网络设备未基于终端自身测量的信息配置对应的资源信息。
在一些实施例中,若终端确定当前运动信息导致多普勒偏移变化剧烈,或者当前的上行时域资源与下行时域资源的比例较大,导致网络设备无法为终端配置资源信息,则开始执行上述步骤501。
步骤503:终端对终端中的锁相环的带宽进行调整。
在本申请实施例中,若网络设备未为终端配置资源信息,则为了保证后续基于定位参考信号进行定位的正常运行,终端可以对终端中的锁相环的带宽进行调整,以使调整带宽后的锁相环满足要求。
在一些实施例中,终端增大锁相环的带宽,则锁相环锁定所需的时长会减少,进而减小周跳的情况,保证后续基于定位参考信号进行定位的准确性。
需要说明的是,本申请实施例是以直接执行步骤501-503为例进行说明。而在另一实施例中,需要在一定条件下执行步骤501-503。
在一些实施例中,响应于终端的锁相环的带宽支持调整,对终端中的锁相环的带宽进行调整。
在本申请实施例中,终端中包括锁相环,该锁相环通过设置的带宽生成固定相位的载波,对于网络设备无法为终端配置资源信息的情况下,而且终端支持对锁相环的带宽进行调整,则终端可以对锁相环的带宽进行调整。
本申请实施例提供的方案中,网络设备响应于未配置资源信息,终端对锁相环的带宽进行调整,以便于减小锁相环进行所相所需的时长,进而避免出现周跳的情况,提高后续基于定位参考信号进行定位的准确性。
上述实施例均是以网络设备为终端配置资源信息为例进行说明。而在另一实施例中,终端需要先启动自身的定位功能,再执行上述配置资源信息以及定位的方案。
在一些实施例中,终端响应于终端的移动速度大于第一速度,启动IMU辅助载波相位测量功能,IMU辅助载波相位测量功能指示终端根据相位信息和终端的运动信息,确定终端的当前位置信息。
其中,该第一速度由终端设置,或者由通信协议约定,或者采用其他方式配置,本申请实施例不作限定。
在本申请实施例中,若终端的移动速度大于第一速度,则对终端进行定位时可以采用IMU辅助载波相位测量功能,也就是说终端可以启动该IMU辅助载波相位测量功能,以便于终端根据终端的相位信息和终端的运动信息,确定终端的当前位置信息。
在一些实施例中,终端的移动速度由终端的IMU功能确定。因此,终端需要先启动IMU功能,基于IMU功能的测量结果判断是否启动IMU辅助载波相位测量功能。
可选地,该IMU功能可以由终端自行启动,或者,可以由网络设备控制终端启动,或者采用其他方式启动,本申请实施例不作限定。
本申请实施例提供的方案中,终端开启IMU辅助载波相位测量功能,进而基于该IMU辅助载波相位测量功能可以先完成资源信息的配置,进而基于资源信息进行定位,保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
图6示出了本申请一个示例性实施例提供的定位方法的流程图,示例性的可以应用于如图1所示的终端和网络设备中,该方法包括以下内容中的至少部分内容:
步骤601:网络设备基于资源信息,向终端发送下行定位参考信号。
其中,该下行定位参考信号为网络设备向终端发送的用于进行定位的信号。
在一些实施例中,该下行定位参考信号包括PRS(Positioning Reference Signal,定位参考信号),或者包括其他类型的信号,本申请实施例不作限定。
步骤602:终端基于资源信息,接收网络设备发送的下行定位参考信号。
在本申请实施例中,网络设备为终端配置资源信息后,则网络设备和终端均 可以确定用于传输定位参考信号的资源,网络设备可以基于资源信息向终端发送下行定位参考信号,终端基于资源信息接收网络设备发送的下行定位参考信号。
步骤603:终端基于下行定位参考信号,确定终端在不同位置的相位信息。
在本申请实施例中,终端在不同位置均可以接收下行定位参考信号,则终端可以根据在不同位置接收的下行定位参考信号确定终端在不同位置的相位信息。
在一些实施例中,终端基于下行定位参考信号,确定终端在不同位置的载波相位差,载波相位差由终端自身产生的载波信号与接收的下行定位参考信号之间的相位确定。
在本申请实施例中,终端自身会生成载波信号,并且终端还会接收网络设备发送的下行定位参考信号,则终端根据自身生成的载波信号和接收的下行定位参考信号,即可确定终端在不同位置的载波相位差。
例如,如图7所示,网络设备的位置为O点,然后终端在移动过程中,由A点经过B点,最终移动到C点,其中终端在A点时与网络设备之间的载波相位差为
Figure PCTCN2022089670-appb-000001
终端在B点时与网络设备之间的载波相位差为
Figure PCTCN2022089670-appb-000002
终端在C点时与网络设备之间的载波相位差为
Figure PCTCN2022089670-appb-000003
其中,
Figure PCTCN2022089670-appb-000004
为载波相位差的小数部分,
Figure PCTCN2022089670-appb-000005
Figure PCTCN2022089670-appb-000006
包括载波相位差的小数部分,并且还可以包括载波相位差的整数部分。
步骤604:终端根据终端在不同位置的相位信息和终端的运动信息,确定终端的当前位置信息,运动信息由终端测量确定。
在本申请实施例中,终端确定自身在不同位置的相位信息和自身的运动信息后,则可以确定终端的当前位置信息,以实现对终端的定位。
在一些实施例中,根据终端的运动信息,确定终端在相邻的两个位置之间的距离,根据终端在不同位置的相位信息和终端在相邻的两个位置之间的距离,确定初始整周模糊度,根据初始整周模糊度确定终端的当前位置信息。
在本申请实施例中,终端的运动信息指示终端运动的速度和加速度,根据该运动信息可以确定终端在一定时长内所移动的距离,也就是说终端在不同位置时,可以确定终端移动过程中相邻两个位置之间的距离,另外,终端还确定了终端在不同位置的相位信息,则终端根据终端在不同位置的相位信息和终端在相邻的两个位置之间的距离,确定初始整周模糊度,在确定了初始整周模糊度的情况下,根据该整周模糊度可以完成对终端的定位,获取终端的当前位置信息。
可选地,终端在不同位置的相位信息、终端在相邻的两个位置之间的距离和初始整周模糊度满足以下关系:
Figure PCTCN2022089670-appb-000007
其中,N为初始整周模糊度,a为终端在第一位置与第二位置之间的距离,b为终端在第二位置与第三位置之间的距离,
Figure PCTCN2022089670-appb-000008
为终端在第一位置的载波相位差,
Figure PCTCN2022089670-appb-000009
为终端在第二位置的载波相位差,
Figure PCTCN2022089670-appb-000010
为终端在第三位置的载波相位差,λ为下行定位参考信号的波长。
例如,在图7的基础上,将图7简化为图8,参见图8,终端在A点与B点之间的距离为a,终端在B点与C点之间的距离为b,并且网络设备与终端在位置A处的相位为r,网络设备与终端在位置B处的相位为r+d 1,网络设备与终端在位置C处的相位为r+d 2
下面,对如何确定初始整周模糊度进行说明。
其中,参见图8,可以分别确定r、r+d 1和r+d 2的表达方式:
Figure PCTCN2022089670-appb-000011
其次,根据图8的几何关系,可以确定下述关系:
Figure PCTCN2022089670-appb-000012
再根据上述关系,求解可以得到:
Figure PCTCN2022089670-appb-000013
其中,
Figure PCTCN2022089670-appb-000014
需要说明的是,本申请实施例是以终端直接确定整周模糊度为例进行说明。而在另一实施例中,终端在一定条件下执行上述步骤。
在一些实施例中,终端响应于未获取到初始整周模糊度,根据终端的运动信息,确定终端在相邻的两个位置之间的距离。
在本申请实施例中,若终端未获取到初始整周模糊度,则此时无法对终端进行定位,因此需要先确定初始整周模糊度,再基于已确定的初始整周模糊度对终端进行定位,因此响应于终端未获取到初始整周模糊度,根据终端的运动信息, 确定终端在相邻的两个位置之间的距离,进而根据确定的距离继续执行后续步骤。
本申请实施例提供的方法,通过为终端配置的资源信息接收下行定位参考信号,进而基于下行定位参考信号对终端进行定位,保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
并且,通过载波的相位和终端的运动信息确定初始整周模糊度,无需再通过搜索固定整周模糊度,简化了确定初始整周模糊度的过程,节省计算量,提高了对终端进行定位的效率。
图9示出了本申请一个示例性实施例提供的定位方法的流程图,示例性的可以应用于如图1所示的终端和网络设备中,该方法包括以下内容中的至少部分内容:
步骤901:终端根据初始整周模糊度和终端在不同位置的相位信息,确定终端在下一位置的预测相位信息。
在本申请实施例中,终端已知初始整周模糊度时,终端可以在不同位置接收网络设备发送的下行定位参考信号,并且由于终端已知自身的运动信息,因此终端可以预先确定后续终端所到达的位置,因此终端可以根据初始整周模糊度和终端在不同位置的相位信息,确定终端在下一位置的预测相位信息。
其中,该初始整周模糊度为预先配置的初始整周模糊度,或者为通过图6所示实施例确定的初始整周模糊度,或者为采用其他方式确定的初始整周模糊度,本申请实施例不作限定。
步骤902:在预测相位信息与终端的锁相环的相位不同的情况下,终端采用预测相位信息对终端的锁相环的相位进行更新。
在本申请实施例中,终端的锁相环在中断时长超过一定时长的情况下,会导致出现跳周的情况,此时由于终端确定了下一位置的预测相位信息,因此终端通过对比预测相位信息和锁相环的相位是否相同,以确定是否发生跳周现象。若在预测相位信息与终端的锁相环的相位不同的情况下,终端采用预测相位信息对终端的锁相环的相位进行更新。
步骤903:终端根据更新后的锁相环的相位确定终端的当前位置信息。
在本申请实施例中,终端对锁相环的相位进行更新,即可防止出现跳周的情 况,进一步的终端根据更新后的锁相环的相位确定终端的当前位置信息,保证确定的当前位置信息的准确性。
需要说明的是,本申请实施例是以步骤901-903为例进行说明。在另一实施例中,响应于终端获取到初始整周模糊度,根据初始整周模糊度和终端在不同位置的相位信息,确定终端在下一位置的预测相位信息。
本申请实施例中,响应于终端已获取到初始整周模糊度,才可以根据该初始整周模糊度预测相位信息,而若终端未获取到初始整周模糊度,则需要先由终端执行获取初始整周模糊度的步骤,再执行步骤901-903。
在本申请实施例中,终端通过初始整周模糊度以及在不同位置的相位信息,预测终端移动至下一位置的预测相位信息,进而基于预测相位信息对锁相环的相位进行调整,防止出现跳周情况,保证了对终端进行定位的准确性。
图10示出了本申请一个示例性实施例提供的定位方法的流程图,示例性的可以应用于如图1所示的终端和网络设备中,该方法包括以下内容中的至少部分内容:
步骤1001:终端基于资源信息,向网络设备发送上行定位参考信号和终端的运动信息,网络设备用于根据上行定位参考信号和运动信息确定终端的当前位置信息。
步骤1002:网络设备基于资源信息,接收终端发送的上行定位参考信号和终端的运动信息。
在本申请实施例中,网络设备为终端配置资源信息,该资源信息包括用于上行传输的资源,因此终端可以通过该资源信息向网络设备发送上行定位参考信号,进而基于上行定位参考信号对终端进行定位。
步骤1003:网络设备根据上行定位参考信号和运动信息确定终端的当前位置信息。
在一些实施例中,基于上行定位参考信号,确定终端在不同位置的相位信息,根据终端在不同位置的相位信息和终端的运动信息,确定终端的当前位置信息。
可选地,网络设备基于上行定位参考信号,确定终端在不同位置的载波相位差,载波相位差由网络设备自身产生的载波信号与接收的上行定位参考信号之间的相位确定。
可选地,根据终端的运动信息,确定终端在相邻的两个位置之间的距离,根 据终端在不同位置的相位信息和终端在相邻的两个位置之间的距离,确定初始整周模糊度,根据初始整周模糊度确定终端的当前位置信息。
其中,终端在不同位置的相位信息、终端在相邻的两个位置之间的距离和初始整周模糊度满足以下关系:
Figure PCTCN2022089670-appb-000015
其中,N为初始整周模糊度,a为终端在第一位置与第二位置之间的距离,b为终端在第二位置与第三位置之间的距离,
Figure PCTCN2022089670-appb-000016
为终端在第一位置的载波相位差,
Figure PCTCN2022089670-appb-000017
为终端在第二位置的载波相位差,
Figure PCTCN2022089670-appb-000018
为终端在第三位置的载波相位差,λ为上行定位参考信号的波长。
其中,步骤1003与上述步骤603-604类似,在此不再赘述。
需要说明的是,响应于终端未获取到初始整周模糊度,根据终端的运动信息,确定终端在相邻的两个位置之间的距离。
本申请实施例提供的方法,网络设备通过为终端配置的资源信息接收上行定位参考信号,进而基于上行定位参考信号对终端进行定位,保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
并且,通过载波的相位和终端的运动信息确定初始整周模糊度,无需再通过搜索固定整周模糊度,简化了确定初始整周模糊度的过程,节省计算量,提高了对终端进行定位的效率。
需要说明的是,上述实施例可以拆分为新实施例,或与其他实施例互相组合为新实施例,本申请对实施例之间的组合不做限定。
图11示出了本申请一个示例性实施例提供的定位方法的流程图,示例性的可以应用于如图1所示的终端中,该方法包括以下内容中的至少部分内容:
步骤1101:终端接收网络设备发送的配置信息,配置信息用于为终端配置用于传输定位参考信号的资源信息,定位参考信号用于对终端进行定位。
其中,该资源信息用于供网络设备与终端之间传输定位参考信号。在本身亲该实施例中,终端或网络设备可以根据定位参考信号确定载波相位差,进而根据定位参考信号对应的载波相位差对终端进行定位。
在本申请实施例中,网络设备与终端之间可以传输定位参考信号,以便于网络设备或终端对终端定位,确定终端的当前位置信息。其中,网络设备与终端之间传输定位参考信号需要资源信息,因此网络设备通过配置信息为终端配置用于传输定位参考信号的资源信息,以便于通过传输的定位参考信号对终端进行定位。
本申请实施例提供方案中,网络设备为终端配置用于传输定位参考信号的资源,网络设备与终端之间可以传输该定位参考信号,进而基于定位参考信号对应的载波相位差对终端进行定位,提供了一种配置资源的方式,保证了资源的配置,并且本申请提供了网络设备与终端之间传输定位参考信号以对终端进行定位的方法,扩展了对终端定位的方式,并且通过在网络设备与终端之间传输定位参考信号的方式进行定位,提高了定位的准确性。
图11所示实施例对网络设备为终端配置资源信息为例进行说明。而对于资源信息来说,资源信息是根据运动信息、载波参数信息以及定位信息中的至少一项确定的。
其中,运动信息是指终端在移动过程中所产生的信息。例如终端的移动速度和加速度等。该运动信息可以由终端自身所具有的测量仪器进行测量。载波参数信息是指终端传输载波信号的相关参数。定位信息是指对终端进行定位所需的信息。
在本申请实施例中,终端的运动信息实际上是由终端自身测量得到的,而终端的载波参数信息和定位信息实际上是指与载波相位定位相关的信息,也就是说网络设备为终端配置的资源信息是根据终端自身测量的信息以及载波相位相关的信息确定的。
本申请实施例提供的方案中,为终端配置的资源信息可以保证终端在与终端自身的状态匹配的情况下传输定位参考信号,提高定位的准确性,也就是说本申请提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
在图11所示的实施例的基础上,终端可以将自身的信息发送给网络设备,由网络设备根据接收的信息确定资源信息。
其中,终端向网络设备发送运动信息、载波参数信息以及定位信息中的至少一项。
其中,终端的运动信息是指终端在移动过程中所产生的信息。例如终端的移动速度和加速度等。该终端的运动信息可以由终端自身所具有的测量仪器进行测量。终端的载波参数信息是指终端传输载波信号的相关参数。终端的定位信息是指对终端进行定位所需的信息。
在本申请实施例中,终端确定自身的运动信息、载波参数信息以及定位信息后,即可将确定的信息发送给网络设备,进而由网络设备接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项。
在一些实施例中,响应于终端的锁相环的带宽不支持调整,终端向网络设备发送运动信息、载波参数信息以及定位信息中的至少一项。
其中,终端中包括锁相环,该锁相环通过设置的带宽生成固定相位的载波,对于终端自身的运动信息、终端的载波参数信息以及终端的定位信息的变化,此时无法对锁相环的带宽进行调整,而可以对配置的资源信息进行调整,进而完成资源信息的配置。
本申请实施例提供的方案中,终端将自身的信息上报给网络设备,进而由网络设备确定与终端的信息对应的资源信息,为终端配置资源信息,为终端配置的资源信息可以保证终端在与终端自身的状态匹配的情况下传输定位参考信号,提高定位的准确性,也就是说本申请提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
在图11所示的实施例的基础上,终端可以自行确定所需的资源信息,再向网络设备请求确定的资源信息。
终端根据运动信息、载波参数信息以及定位信息中的至少一项,确定请求信息,向网络设备发送请求信息,请求信息用于获取资源信息。
在本申请实施例中,终端自身的信息在移动过程中不断变化,由于终端的信息的变化,因此需要根据变化的信息,确定匹配的资源信息。终端确定终端自身的运动信息、载波参数信息以及定位信息,进而终端即可根据确定的自身的信息确定请求信息,进而执行后续过程向网络设备请求确定的资源信息。
在一些实施例中,终端中包括运动信息、载波参数信息以及定位信息中的至少一项与请求信息的对应关系,基于该对应关系确定请求信息。
本申请实施例中,终端包括的对应关系包括多种,每种对应关系包括运动信息、载波参数信息以及定位信息中的至少一项,也就是说,其中一种对应关系包 括运动信息与请求信息的对应关系,另一种对应关系包括运动信息、载波参数信息与请求信息的对应关系,或者还存在其他对应关系,本申请实施例不再列举。
例如,若终端中包括运动信息、载波参数信息以及定位信息与请求信息的对应关系,则该对应关系可以理解为该对应关系中包括不同运动信息、不同载波参数信息和不同的定位信息,对应不同的请求信息。也就是说,不同数值的运动信息、载波信息和定位信息,对应不同的请求信息。
例如,若终端的运动信息包括速度30千米/小时,加速度为5m/s 2,载波参数信息包括载波频率3GHz(吉赫兹),定位精度为1分米的情况下,网络设备确定对应的请求信息是上行时域资源与下行时域资源的比例小于或等于8:2,也就是说下行时域资源所占比例最小为20%。
又或者,若终端的运动信息包括速度80千米/小时,加速度为5m/s 2,载波参数信息包括载波频率3GHz(吉赫兹),定位精度为1分米的情况下,网络设备确定对应的请求信息是上行时域资源与下行时域资源的比例小于或等于7:3,也就是说下行时域资源所占比例最小为30%。
本申请实施例是以举例方式运动信息、载波参数信息以及定位信息与请求信息的对应关系进行说明,本申请的对应关系还可以为其他方式,本申请实施例不作限定。
可选地,运动信息、载波参数信息以及定位信息中的至少一项与请求信息的对应关系存储在信息对应表中,终端通过查询信息对应表以确定对应的请求信息。
在一些实施例中,响应于终端的锁相环的带宽不支持调整,根据运动信息、载波参数信息以及定位信息中的至少一项,确定请求信息。
其中,终端中包括锁相环,该锁相环通过设置的带宽生成固定相位的载波,对于终端自身的运动信息、终端的载波参数信息以及终端的定位信息的变化,此时无法对锁相环的带宽进行调整,而可以对配置的资源信息进行调整,进而完成资源信息的配置。
本申请实施例提供的方案中,终端向网络设备请求根据自身的信息确定的资源信息,进而由网络设备为终端配置资源信息,为终端配置的资源信息可以保证终端在与终端自身的状态匹配的情况下传输定位参考信号,提高定位的准确性,也就是说本申请提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载 波的相位的结合方式进行定位,提高了定位的准确性。
在上述实施例的基础上,与终端关联的信息包括多种情况,下面分别对运动信息、载波参数信息以及定位信息进行说明。
在一些实施例中,运动信息包括以下至少一项:
(1)相对于网络设备的速度信息。
其中,该速度信息是终端相对于网络设备的相对速度信息。另外,该网络设备的位置不变,也就是终端的速度信息。
例如,该速度信息为30千米/小时、60千米/小时或者其他数值。
在一些实施例中,终端中包括惯性传感器,终端可以通过该惯性传感器测量终端相对于网络设备的速度信息。
可选地,该惯性传感器包括陀螺仪和加速计,通过该陀螺仪和加速计即可确定终端的速度信息。
(2)终端的加速度信息。
其中,该加速度信息是指终端的加速度。若终端的加速度信息不为零,并且该加速度信息为正数,则说明随着时间的推移,终端的速度会增加。而若终端的加速度信息不为零,并且该加速度信息为负数,则说明随着时间的推移,终端的速度会减小。
例如,终端的加速度信息为5m/s 2(米/秒 2),-10m/s 2,或者其他数值。
在一些实施例中,终端中包括惯性传感器,终端可以通过该惯性传感器测量终端相对于网络设备的速度信息。
可选地,该惯性传感器包括陀螺仪和加速计,通过该陀螺仪和加速计即可确定终端的加速度信息。
需要说明的是,本申请实施例实际上是终端通过惯性导航系统完成终端的速度信息以及加速度信息的测量,以得到终端的速度信息和加速度信息。
在另一些实施例中,载波参数信息包括以下至少一项:
(1)终端支持的上行时域资源与下行时域资源的比例。
其中,上行时域资源用于终端向网络设备发送上行传输。下行时域资源用于网络设备向终端发送下行传输。该上行时域资源与下行时域资源的比例是指在一定的子帧内,用于上行传输的时域资源与用于下行传输的时域资源的比例。这里的时域资源可以包含子帧,时隙和符号的至少一项。比如,针对下行定位信号,终端支持的上行时域资源和下行时域资源的比例不能大于一个门限值,比如该 门限值为6:8。比如一个时隙内,上行符号和下行符号的比例不能大于6:8,即一个时隙的14个符号中,下行符号的数量要大于或等于8。比如,针对上行定位信号,终端支持的上行时域资源和下行时域资源的比例不能小于一个门限值,比如该门限值为6:8。比如一个时隙内,上行符号和下行符号的比例不能小于6:8,即一个时隙的14个符号中,上行符号的数量要大于或等于6。
例如,上行时域资源与下行时域资源的比例为不能大于7:3,或者,上行时域资源与下行时域资源的比例为不能小于8:2,或者其他数值,本申请实施例不做限定。
(2)用于相位跟踪测量的时频资源信息。
其中,资源信息不仅可以用于相位跟踪测量,还可以用于其他传输,此处的时频资源信息用于终端进行相位跟踪测量。
(3)用于相位跟踪的载波频率。
其中,载波信号的相位可以用于进行定位,用于相位跟踪的载波频率是指用于定位的载波信号的频率。
(4)终端支持的载波相位的频点范围。
其中,终端由于自身的配置,支持不同的频点范围,以便于在支持的频点范围中进行基于载波相位的定位。
(5)终端的锁相环的带宽是否支持调整。
其中,终端中包括锁相环,通过该锁相环在锁定情况下以调整信号的相位。终端的锁相环的带宽是否支持调整是指终端能否对锁相环的带宽进行调整。
在一些实施例中,采用预设数量的比特指示终端的锁相环的带宽是否支持调整。
例如,若预设数量的比特为第一比特,指示终端的锁相环的带宽支持调整。而若预设数量的比特位第二比特,指示终端的锁相环的带宽不支持调整。
在另一些实施例中,定位信息包括以下至少一项:
(1)终端的定位精度。
其中,定位精度是指对终端定位时的误差范围。例如,定位精度为1分米,或者定位精度为1米,或者为其他数值。
(2)终端的采样频次。
其中,采样频次是指终端在单位时长内采样的次数。例如,该采样频次为1分钟50次,或者1分钟60次,或者其他数值。
(3)终端的测量误差。
其中,测量误差是指终端测量的速度信息的误差。
本申请实施例提供的方案中,终端根据配置或自行测量确定多个参数信息,以便于根据终端的参数信息确定网络设备为终端配置的资源信息,通过终端多样的参数信息确定资源信息,提高了确定的资源信息的准确性,还提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
需要说明的是,本申请实施例是以终端的运动信息、终端的载波参数信息以及终端的定位信息为例进行说明。在另一些实施例中,资源信息也包括多种信息。
在一些实施例中,资源信息包括上行时域资源与下行时域资源的比例以及用于传输定位参考信号的子帧密度。
其中,上行时域资源用于终端向网络设备发送上行传输。下行时域资源用于网络设备向终端发送下行传输。该上行时域资源与下行时域资源的比例是指在一定的子帧内,用于上行传输的时域资源与用于下行传输的时域资源的比例。
例如,上行时域资源与下行时域资源的比例为不能大于7:3,或者,上行时域资源与下行时域资源的比例为不能小于8:2,或者其他数值,本申请实施例不做限定。
其中,用于传输定位参考信号的子帧密度是指资源信息中用于传输定位参考信号的子帧占一定数量子帧的比例。
上述实施例均是以网络设备为终端配置资源信息为例进行说明。而在另一实施例中,网络设备可能无法确定符合要求的资源信息,在此情况下,网络设备会向终端返回错误信息。
在一些实施例中,终端响应于网络设备未确定资源信息的情况下,接收网络设备发送的错误信息,错误信息指示网络设备未配置资源信息,对终端中的锁相环的带宽进行调整。
在本申请实施例中,网络设备还存在无法为终端配置符合传输要求的资源信息,则在此情况下,网络设备不向终端发送配置信息,而是向终端发送错误信息,通过该错误信息告知终端无法配置资源信息的情况,终端接收到该错误信息后,也就可以确定网络设备未基于终端自身测量的信息配置对应的资源信息。
在本申请实施例中,若网络设备未为终端配置资源信息,则为了保证后续基 于定位参考信号进行定位的正常运行,终端可以对终端中的锁相环的带宽进行调整,以使调整带宽后的锁相环满足要求。
在一些实施例中,终端增大锁相环的带宽,则锁相环锁定所需的时长会减少,进而减小周跳的情况,保证后续基于定位参考信号进行定位的准确性。
在一些实施例中,响应于终端的锁相环的带宽支持调整,对终端中的锁相环的带宽进行调整。
在本申请实施例中,终端中包括锁相环,该锁相环通过设置的带宽生成固定相位的载波,对于网络设备无法为终端配置资源信息的情况下,而且终端支持对锁相环的带宽进行调整,则终端可以对锁相环的带宽进行调整。
本申请实施例提供的方案中,响应于网络设备未配置资源信息,终端对锁相环的带宽进行调整,以便于减小锁相环进行所相所需的时长,进而避免出现周跳的情况,提高后续基于定位参考信号进行定位的准确性。
上述实施例均是以网络设备为终端配置资源信息为例进行说明。而在另一实施例中,终端需要先启动自身的定位功能,再执行上述配置资源信息以及定位的方案。
在一些实施例中,终端响应于终端的移动速度大于第一速度,启动IMU辅助载波相位测量功能,IMU辅助载波相位测量功能指示终端根据相位信息和终端的运动信息,确定终端的当前位置信息。
其中,该第一速度由终端设置,或者由通信协议约定,或者采用其他方式配置,本申请实施例不作限定。
在本申请实施例中,若终端的移动速度大于第一速度,则对终端进行定位时可以采用IMU辅助载波相位测量功能,也就是说终端可以启动该IMU辅助载波相位测量功能,以便于终端根据终端的相位信息和终端的运动信息,确定终端的当前位置信息。
在一些实施例中,终端的移动速度由终端的IMU功能确定。因此,终端需要先启动IMU功能,基于IMU功能的测量结果判断是否启动IMU辅助载波相位测量功能。
可选地,该IMU功能可以由终端自行启动,或者,可以由网络设备控制终端启动,或者采用其他方式启动,本申请实施例不作限定。
本申请实施例提供的方案中,终端开启IMU辅助载波相位测量功能,进而基于该IMU辅助载波相位测量功能可以先完成资源信息的配置,进而基于资源 信息进行定位,保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
在一些实施例中,终端基于资源信息,接收网络设备发送的下行定位参考信号,基于下行定位参考信号,确定终端在不同位置的相位信息,根据终端在不同位置的相位信息和终端的运动信息,确定终端的当前位置信息,运动信息由终端测量确定。
在本申请实施例中,网络设备为终端配置资源信息后,则网络设备和终端均可以确定用于传输定位参考信号的资源,网络设备可以基于资源信息向终端发送下行定位参考信号,终端基于资源信息接收网络设备发送的下行定位参考信号。
终端在不同位置均可以接收下行定位参考信号,则终端可以根据在不同位置接收的下行定位参考信号确定终端在不同位置的相位信息。
在一些实施例中,终端基于下行定位参考信号,确定终端在不同位置的载波相位差,载波相位差由终端自身产生的载波信号与接收的下行定位参考信号之间的相位确定。
在本申请实施例中,终端自身会生成载波信号,并且终端还会接收网络设备发送的下行定位参考信号,则终端根据自身生成的载波信号和接收的下行定位参考信号,即可确定终端在不同位置的载波相位差。
例如,如图7所示,网络设备的位置为O点,然后终端在移动过程中,由A点经过B点,最终移动到C点,其中终端在A点时与网络设备之间的载波相位差为
Figure PCTCN2022089670-appb-000019
终端在B点时与网络设备之间的载波相位差为
Figure PCTCN2022089670-appb-000020
终端在C点时与网络设备之间的载波相位差为
Figure PCTCN2022089670-appb-000021
其中,
Figure PCTCN2022089670-appb-000022
为载波相位差的小数部分,
Figure PCTCN2022089670-appb-000023
Figure PCTCN2022089670-appb-000024
包括载波相位差的小数部分,并且还可以包括载波相位差的整数部分。
在本申请实施例中,终端确定自身在不同位置的相位信息和自身的运动信息后,则可以确定终端的当前位置信息,以实现对终端的定位。
在一些实施例中,根据终端的运动信息,确定终端在相邻的两个位置之间的距离,根据终端在不同位置的相位信息和终端在相邻的两个位置之间的距离,确定初始整周模糊度,根据初始整周模糊度确定终端的当前位置信息。
在本申请实施例中,终端的运动信息指示终端运动的速度和加速度,根据该运动信息可以确定终端在一定时长内所移动的距离,也就是说终端在不同位置 时,可以确定终端移动过程中相邻两个位置之间的距离,另外,终端还确定了终端在不同位置的相位信息,则终端根据终端在不同位置的相位信息和终端在相邻的两个位置之间的距离,确定初始整周模糊度,在确定了初始整周模糊度的情况下,根据该整周模糊度可以完成对终端的定位,获取终端的当前位置信息。
可选地,终端在不同位置的相位信息、终端在相邻的两个位置之间的距离和初始整周模糊度满足以下关系:
Figure PCTCN2022089670-appb-000025
其中,N为初始整周模糊度,a为终端在第一位置与第二位置之间的距离,b为终端在第二位置与第三位置之间的距离,
Figure PCTCN2022089670-appb-000026
为终端在第一位置的载波相位差,
Figure PCTCN2022089670-appb-000027
为终端在第二位置的载波相位差,
Figure PCTCN2022089670-appb-000028
为终端在第三位置的载波相位差,λ为下行定位参考信号的波长。
例如,在图7的基础上,将图7简化为图8,参见图8,终端在A点与B点之间的距离为a,终端在B点与C点之间的距离为b,并且网络设备与终端在位置A处的相位为r,网络设备与终端在位置B处的相位为r+d 1,网络设备与终端在位置C处的相位为r+d 2
下面,对如何确定初始整周模糊度进行说明。
其中,参见图8,可以分别确定r、r+d 1和r+d 2的表达方式:
Figure PCTCN2022089670-appb-000029
其次,根据图8的几何关系,可以确定下述关系:
Figure PCTCN2022089670-appb-000030
再根据上述关系,求解可以得到:
Figure PCTCN2022089670-appb-000031
其中,
Figure PCTCN2022089670-appb-000032
需要说明的是,本申请实施例是以终端直接确定整周模糊度为例进行说明。而在另一实施例中,终端在一定条件下执行上述步骤。
在一些实施例中,响应于终端未获取到初始整周模糊度,根据终端的运动信息,确定终端在相邻的两个位置之间的距离。
在本申请实施例中,若终端未获取到初始整周模糊度,则此时无法对终端进行定位,因此需要先确定初始整周模糊度,再基于已确定的初始整周模糊度对终端进行定位,因此响应于终端未获取到初始整周模糊度,根据终端的运动信息,确定终端在相邻的两个位置之间的距离,进而根据确定的距离继续执行后续步骤。
本申请实施例提供的方法,通过为终端配置的资源信息接收下行定位参考信号,进而基于下行定位参考信号对终端进行定位,保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
并且,通过载波的相位和终端的运动信息确定初始整周模糊度,无需再通过搜索固定整周模糊度,简化了确定初始整周模糊度的过程,节省计算量,提高了对终端进行定位的效率。
在一些实施例中,终端根据初始整周模糊度和终端在不同位置的相位信息,确定终端在下一位置的预测相位信息,在预测相位信息与终端的锁相环的相位不同的情况下,终端采用预测相位信息对终端的锁相环的相位进行更新,根据更新后的锁相环的相位确定终端的当前位置信息。
在本申请实施例中,终端已知初始整周模糊度时,终端可以在不同位置接收网络设备发送的下行定位参考信号,并且由于终端已知自身的运动信息,因此终端可以预先确定后续终端所到达的位置,因此终端可以根据初始整周模糊度和终端在不同位置的相位信息,确定终端在下一位置的预测相位信息。
终端的锁相环在中断时长超过一定时长的情况下,会导致出现跳周的情况,此时由于终端确定了下一位置的预测相位信息,因此终端通过对比预测相位信息和锁相环的相位是否相同,以确定是否发生跳周现象。若在预测相位信息与终端的锁相环的相位不同的情况下,终端采用预测相位信息对终端的锁相环的相位进行更新。
终端对锁相环的相位进行更新,即可防止出现跳周的情况,进一步的终端根据更新后的锁相环的相位确定终端的当前位置信息,保证确定的当前位置信息的准确性。
在一些实施例中,响应于终端获取到初始整周模糊度,终端根据初始整周模 糊度和终端在不同位置的相位信息,确定终端在下一位置的预测相位信息。
在本申请实施例中,终端通过初始整周模糊度以及在不同位置的相位信息,预测终端移动至下一位置的预测相位信息,进而基于预测相位信息对锁相环的相位进行调整,防止出现跳周情况,保证了对终端进行定位的准确性。
在一些实施例中,终端基于资源信息,向网络设备发送上行定位参考信号和终端的运动信息,网络设备用于根据上行定位参考信号和运动信息确定终端的当前位置信息。
在本申请实施例中,网络设备为终端配置资源信息,该资源信息包括用于上行传输的资源,因此终端可以通过该资源信息向网络设备发送上行定位参考信号,进而基于上行定位参考信号对终端进行定位。
图12示出了本申请一个示例性实施例提供的定位方法的流程图,示例性的可以应用于如图1所示的网络设备中,该方法包括以下内容中的至少部分内容:
步骤1201:网络设备向终端发送配置信息,配置信息用于为终端配置用于传输定位参考信号的资源信息,定位参考信号用于对终端进行定位。
其中,该资源信息用于供网络设备与终端之间传输定位参考信号。在本身亲该实施例中,终端或网络设备可以根据定位参考信号确定载波相位差,进而根据定位参考信号对应的载波相位差对终端进行定位。
在本申请实施例中,网络设备与终端之间可以传输定位参考信号,以便于网络设备或终端对终端定位,确定终端的当前位置信息。其中,网络设备与终端之间传输定位参考信号需要资源信息,因此网络设备通过配置信息为终端配置用于传输定位参考信号的资源信息,以便于通过传输的定位参考信号对终端进行定位。
本申请实施例提供方案中,网络设备为终端配置用于传输定位参考信号的资源,网络设备与终端之间可以传输该定位参考信号,进而基于定位参考信号对应的载波相位差对终端进行定位,提供了一种配置资源的方式,保证了资源的配置,并且本申请提供了网络设备与终端之间传输定位参考信号以对终端进行定位的方法,扩展了对终端定位的方式,并且通过在网络设备与终端之间传输定位参考信号的方式进行定位,提高了定位的准确性。
图12所示实施例对网络设备为终端配置资源信息为例进行说明。而对于资源信息来说,资源信息是根据运动信息、载波参数信息以及定位信息中的至少一 项确定的。
其中,运动信息是指终端在移动过程中所产生的信息。例如终端的移动速度和加速度等。该运动信息可以由终端自身所具有的测量仪器进行测量。载波参数信息是指终端传输载波信号的相关参数。定位信息是指对终端进行定位所需的信息。
在本申请实施例中,终端的运动信息实际上是由终端自身测量得到的,而终端的载波参数信息和定位信息实际上是指与载波相位定位相关的信息,也就是说网络设备为终端配置的资源信息是根据终端自身测量的信息以及载波相位相关的信息确定的。
本申请实施例提供的方案中,为终端配置的资源信息可以保证终端在与终端自身的状态匹配的情况下传输定位参考信号,提高定位的准确性,也就是说本申请提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
在图12所示的实施例的基础上,终端可以将自身的信息发送给网络设备,由网络设备根据接收的信息确定资源信息。
在一些实施例中,网络设备接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项,根据运动信息、载波参数信息以及定位信息中的至少一项确定资源信息。
其中,运动信息是指终端在移动过程中所产生的信息。例如终端的移动速度和加速度等。该运动信息可以由终端自身所具有的测量仪器进行测量。载波参数信息是指终端传输载波信号的相关参数。定位信息是指对终端进行定位所需的信息。
在本申请实施例中,终端确定自身的运动信息、载波参数信息以及定位信息后,即可将确定的信息发送给网络设备,进而由网络设备接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项。
在本申请实施例中,终端自身的信息在移动过程中不断变化,由于终端的信息的变化,因此需要根据变化的信息,确定匹配的资源信息。
在一些实施例中,资源信息根据运动信息、载波参数信息以及定位信息中的至少一项确定。也就是说,本申请实施例中网络设备接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项,则网络设备可以执行步骤303确定 资源信息。
其中,网络设备为终端配置的资源信息根据运动信息、载波参数信息以及定位信息中的至少一项确定。也可以理解为,终端的运动信息实际上是由终端自身测量得到的,而终端的载波参数信息和定位信息实际上是指根据载波相位定位的信息,也就是说网络设备为终端配置的资源信息是根据终端自身测量的信息以及载波相位确定的。
网络设备接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项,进而网络设备即可根据接收的信息确定资源信息,进而通过配置信息为终端配置已确定的资源信息。
在一些实施例中,网络设备中包括运动信息、载波参数信息以及定位信息中的至少一项与资源信息的对应关系,基于该对应关系确定资源信息。
本申请实施例中,网络设备包括的对应关系包括多种,每种对应关系包括运动信息、载波参数信息以及定位信息中的至少一项,也就是说,其中一种对应关系包括运动信息与资源信息的对应关系,另一种对应关系包括运动信息、载波参数信息与资源信息的对应关系,或者还存在其他对应关系,本申请实施例不再列举。
例如,若网络设备中包括运动信息、载波参数信息以及定位信息与资源信息的对应关系,则该对应关系可以理解为该对应关系中包括不同运动信息、不同载波参数信息和不同的定位信息,对应不同的资源信息。也就是说,不同数值的运动信息、载波信息和定位信息,对应不同的资源信息。
例如,若终端的运动信息包括速度30千米/小时,加速度为5m/s 2,载波参数信息包括载波频率3GHz(吉赫兹),定位精度为1分米的情况下,网络设备确定对应的资源信息是上行时域资源与下行时域资源的比例小于或等于8:2,也就是说下行时域资源所占比例最小为20%。
又或者,若终端的运动信息包括速度80千米/小时,加速度为5m/s 2,载波参数信息包括载波频率3GHz(吉赫兹),定位精度为1分米的情况下,网络设备确定对应的资源信息是上行时域资源与下行时域资源的比例小于或等于7:3,也就是说下行时域资源所占比例最小为30%。
本申请实施例是以举例方式对运动信息、载波参数信息以及定位信息与资源信息的对应关系进行说明,本申请的对应关系还可以为其他方式,本申请实施例不作限定。
可选地,运动信息、载波参数信息以及定位信息中的至少一项与资源信息的对应关系存储在信息对应表中,网络设备通过查询信息对应表以确定对应的资源信息。
在一些实施例中,运动信息、载波参数信息以及定位信息中的至少一项由终端响应于终端的锁相环的带宽不支持调整发送。
其中,终端中包括锁相环,该锁相环通过设置的带宽生成固定相位的载波,对于终端自身的运动信息、终端的载波参数信息以及终端的定位信息的变化,此时无法对锁相环的带宽进行调整,而可以对配置的资源信息进行调整,进而完成资源信息的配置。
本申请实施例提供的方案中,终端将自身的信息上报给网络设备,进而由网络设备确定与终端的信息对应的资源信息,为终端配置资源信息,为终端配置的资源信息可以保证终端在与终端自身的状态匹配的情况下传输定位参考信号,提高定位的准确性,也就是说本申请提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
在图12所示的实施例的基础上,终端可以自行确定所需的资源信息,再向网络设备发送用于请求确定的资源信息的请求信息。
在一些实施例中,网络设备接收终端发送的请求信息,请求信息用于获取资源信息,请求信息由终端根据运动信息、载波参数信息以及定位信息中的至少一项确定。
在本申请实施例中,终端确定自身需要的资源信息后,则通过向网络设备发送请求信息以向网络设备请求资源信息,网络设备根据该请求信息为终端配置资源信息。
在一些实施例中,请求信息由终端响应于终端的锁相环的带宽不支持调整,根据运动信息、载波参数信息以及定位信息中的至少一项确定。
其中,终端中包括锁相环,该锁相环通过设置的带宽生成固定相位的载波,对于终端自身的运动信息、终端的载波参数信息以及终端的定位信息的变化,此时无法对锁相环的带宽进行调整,而可以对配置的资源信息进行调整,进而完成资源信息的配置。
本申请实施例提供的方案中,终端向网络设备请求根据自身的信息确定的资源信息,进而由网络设备为终端配置资源信息,为终端配置的资源信息可以保 证终端在与终端自身的状态匹配的情况下传输定位参考信号,提高定位的准确性,也就是说本申请提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
在上述实施例的基础上,与终端关联的信息包括多种情况,下面分别对运动信息、载波参数信息以及定位信息进行说明。
在一些实施例中,运动信息包括以下至少一项:
(1)相对于网络设备的速度信息。
其中,该速度信息是终端相对于网络设备的相对速度信息。另外,该网络设备的位置不变,也就是终端的速度信息。
例如,该速度信息为30千米/小时、60千米/小时或者其他数值。
在一些实施例中,终端中包括惯性传感器,终端可以通过该惯性传感器测量终端相对于网络设备的速度信息。
可选地,该惯性传感器包括陀螺仪和加速计,通过该陀螺仪和加速计即可确定终端的速度信息。
(2)终端的加速度信息。
其中,该加速度信息是指终端的加速度。若终端的加速度信息不为零,并且该加速度信息为正数,则说明随着时间的推移,终端的速度会增加。而若终端的加速度信息不为零,并且该加速度信息为负数,则说明随着时间的推移,终端的速度会减小。
例如,终端的加速度信息为5m/s 2(米/秒 2),-10m/s 2,或者其他数值。
在一些实施例中,终端中包括惯性传感器,终端可以通过该惯性传感器测量终端相对于网络设备的速度信息。
可选地,该惯性传感器包括陀螺仪和加速计,通过该陀螺仪和加速计即可确定终端的加速度信息。
需要说明的是,本申请实施例实际上是终端通过惯性导航系统完成终端的速度信息以及加速度信息的测量,以得到终端的速度信息和加速度信息。
在另一些实施例中,载波参数信息包括以下至少一项:
(1)终端支持的上行时域资源与下行时域资源的比例。
其中,上行时域资源用于终端向网络设备发送上行传输。下行时域资源用于网络设备向终端发送下行传输。该上行时域资源与下行时域资源的比例是指在 一定的子帧内,用于上行传输的时域资源与用于下行传输的时域资源的比例。这里的时域资源可以包含子帧,时隙和符号的至少一项。比如,针对下行定位信号,终端支持的上行时域资源和下行时域资源的比例不能大于一个门限值,比如该门限值为6:8。比如一个时隙内,上行符号和下行符号的比例不能大于6:8,即一个时隙的14个符号中,下行符号的数量要大于或等于8。比如,针对上行定位信号,终端支持的上行时域资源和下行时域资源的比例不能小于一个门限值,比如该门限值为6:8。比如一个时隙内,上行符号和下行符号的比例不能小于6:8,即一个时隙的14个符号中,上行符号的数量要大于或等于6。
例如,上行时域资源与下行时域资源的比例为不能大于7:3,或者,上行时域资源与下行时域资源的比例为不能小于8:2,或者其他数值,本申请实施例不做限定。
(2)用于相位跟踪测量的时频资源信息。
其中,资源信息不仅可以用于相位跟踪测量,还可以用于其他传输,此处的时频资源信息用于终端进行相位跟踪测量。
(3)用于相位跟踪的载波频率。
其中,载波信号的相位可以用于进行定位,用于相位跟踪的载波频率是指用于定位的载波信号的频率。
(4)终端支持的载波相位的频点范围。
其中,终端由于自身的配置,支持不同的频点范围,以便于在支持的频点范围中进行基于载波相位的定位。
(5)终端的锁相环的带宽是否支持调整。
其中,终端中包括锁相环,通过该锁相环在锁定情况下以调整信号的相位。终端的锁相环的带宽是否支持调整是指终端能否对锁相环的带宽进行调整。
在一些实施例中,采用预设数量的比特指示终端的锁相环的带宽是否支持调整。
例如,若预设数量的比特为第一比特,指示终端的锁相环的带宽支持调整。而若预设数量的比特位第二比特,指示终端的锁相环的带宽不支持调整。
在另一些实施例中,定位信息包括以下至少一项:
(1)终端的定位精度。
其中,定位精度是指对终端定位时的误差范围。例如,定位精度为1分米,或者定位精度为1米,或者为其他数值。
(2)终端的采样频次。
其中,采样频次是指终端在单位时长内采样的次数。例如,该采样频次为1分钟50次,或者1分钟60次,或者其他数值。
(3)终端的测量误差。
其中,测量误差是指终端测量的速度信息的误差。
本申请实施例提供的方案中,终端根据配置或自行测量确定多个参数信息,以便于根据终端的参数信息确定网络设备为终端配置的资源信息,通过终端多样的参数信息确定资源信息,提高了确定的资源信息的准确性,还提供了一种配置资源的方式,保证了资源的配置,进而保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
需要说明的是,本申请实施例是以终端的运动信息、终端的载波参数信息以及终端的定位信息为例进行说明。在另一些实施例中,资源信息也包括多种信息。
在一些实施例中,资源信息包括上行时域资源与下行时域资源的比例以及用于传输定位参考信号的子帧密度。
其中,上行时域资源用于终端向网络设备发送上行传输。下行时域资源用于网络设备向终端发送下行传输。该上行时域资源与下行时域资源的比例是指在一定的子帧内,用于上行传输的时域资源与用于下行传输的时域资源的比例。
例如,上行时域资源与下行时域资源的比例为不能大于7:3,或者,上行时域资源与下行时域资源的比例为不能小于8:2,或者其他数值,本申请实施例不做限定。
其中,用于传输定位参考信号的子帧密度是指资源信息中用于传输定位参考信号的子帧占一定数量子帧的比例。
上述实施例均是以网络设备为终端配置资源信息为例进行说明。而在另一实施例中,网络设备可能无法确定符合要求的资源信息,在此情况下,网络设备会向终端返回错误信息。
在一些实施例中,网络设备响应于未确定资源信息,向终端发送错误信息,错误信息指示网络设备未配置资源信息。
在本申请实施例中,网络设备还存在无法为终端配置符合传输要求的资源信息,则在此情况下,网络设备不向终端发送配置信息,而是向终端发送错误信息,通过该错误信息告知终端无法配置资源信息的情况,终端接收到该错误信息 后,也就可以确定网络设备未基于终端自身测量的信息配置对应的资源信息。
在一些实施例中,若终端确定当前运动信息导致多普勒偏移变化剧烈,或者当前的上行时域资源与下行时域资源的比例较大,导致网络设备无法为终端配置资源信息。
本申请实施例提供的方案中,在网络设备未配置资源信息的情况下,终端对锁相环的带宽进行调整,以便于减小锁相环进行所相所需的时长,进而避免出现周跳的情况,提高后续基于定位参考信号进行定位的准确性。
在一些实施例中,网络设备基于资源信息,向终端发送下行定位参考信号。
其中,该下行定位参考信号为网络设备向终端发送的用于进行定位的信号。
在一些实施例中,该下行定位参考信号包括PRS,或者包括其他类型的信号,本申请实施例不作限定。
在一些实施例中,网络设备基于资源信息,接收终端发送的上行定位参考信号和终端的运动信息,根据上行定位参考信号和运动信息确定终端的当前位置信息。
在本申请实施例中,网络设备为终端配置资源信息,该资源信息包括用于上行传输的资源,因此终端可以通过该资源信息向网络设备发送上行定位参考信号,进而基于上行定位参考信号对终端进行定位。
在一些实施例中,基于上行定位参考信号,确定终端在不同位置的相位信息,根据终端在不同位置的相位信息和终端的运动信息,确定终端的当前位置信息。
可选地,网络设备基于上行定位参考信号,确定终端在不同位置的载波相位差,载波相位差由网络设备自身产生的载波信号与接收的上行定位参考信号之间的相位确定。
可选地,根据终端的运动信息,确定终端在相邻的两个位置之间的距离,根据终端在不同位置的相位信息和终端在相邻的两个位置之间的距离,确定初始整周模糊度,根据初始整周模糊度确定终端的当前位置信息。
其中,终端在不同位置的相位信息、终端在相邻的两个位置之间的距离和初始整周模糊度满足以下关系:
Figure PCTCN2022089670-appb-000033
其中,N为初始整周模糊度,a为终端在第一位置与第二位置之间的距离,b为终端在第二位置与第三位置之间的距离,
Figure PCTCN2022089670-appb-000034
为终端在第一位置的载波相位 差,
Figure PCTCN2022089670-appb-000035
为终端在第二位置的载波相位差,
Figure PCTCN2022089670-appb-000036
为终端在第三位置的载波相位差,λ为上行定位参考信号的波长。
需要说明的是,响应于终端未获取到初始整周模糊度,根据终端的运动信息,确定终端在相邻的两个位置之间的距离。
本申请实施例提供的方法,网络设备通过为终端配置的资源信息接收上行定位参考信号,进而基于上行定位参考信号对终端进行定位,保证了基于终端自身的测量以及载波相位的定位,并且通过终端自身的测量以及载波的相位的结合方式进行定位,提高了定位的准确性。
并且,通过载波的相位和终端的运动信息确定初始整周模糊度,无需再通过搜索固定整周模糊度,简化了确定初始整周模糊度的过程,节省计算量,提高了对终端进行定位的效率。
图13示出了本申请一个示例性实施例提供的一种定位装置的框图,参见图13,该装置包括:
接收模块1301,用于接收网络设备发送的配置信息,配置信息用于为终端配置用于传输定位参考信号的资源信息,定位参考信号用于对终端进行定位。
在一些实施例中,所述资源信息根据运动信息、载波参数信息以及定位信息中的至少一项确定。
在一些实施例中,参见图14,装置还包括:
发送模块1302,用于向网络设备发送运动信息、载波参数信息以及定位信息中的至少一项。
在一些实施例中,发送模块1302,用于响应于所述终端的锁相环的带宽不支持调整,向所述网络设备发送所述运动信息、所述载波参数信息以及所述定位信息中的至少一项。
在一些实施例中,装置还包括:
确定模块1303,用于根据运动信息、载波参数信息以及定位信息中的至少一项,确定请求信息;
发送模块1302,用于向网络设备发送请求信息,请求信息用于获取资源信息。
在一些实施例中,确定模块1303,用于响应于终端的锁相环的带宽不支持调整,根据运动信息、载波参数信息以及定位信息中的至少一项,确定资源信息, 确定资源信息。
在一些实施例中,运动信息包括以下至少一项:
相对于网络设备的速度信息;
终端的加速度信息。
在一些实施例中,载波参数信息包括以下至少一项:
终端支持的上行时域资源与下行时域资源的比例;
用于相位跟踪测量的时频资源信息;
用于相位跟踪的载波频率;
终端支持的载波相位的频点范围;
终端的锁相环的带宽是否支持调整。
在一些实施例中,定位信息包括以下至少一项:
终端的定位精度;
终端的采样频次;
终端的测量误差。
在一些实施例中,资源信息包括上行时域资源与下行时域资源的比例以及用于传输定位参考信号的子帧密度。
在一些实施例中,接收模块1301,还用于响应于所述网络设备未确定所述资源信息,接收所述网络设备发送的错误信息,所述错误信息指示所述网络设备未配置所述资源信息;
调整模块1304,用于对终端中的锁相环的带宽进行调整。
在一些实施例中,调整模块1304,用于响应于终端的锁相环的带宽支持调整,对终端中的锁相环的带宽进行调整。
在一些实施例中,装置还包括:
启动模块1305,用于响应于所述终端的移动速度大于第一速度,,启动IMU辅助载波相位测量功能,IMU辅助载波相位测量功能指示终端根据相位信息和终端的运动信息,确定终端的当前位置信息。
在一些实施例中,装置还包括:
接收模块1301,用于基于资源信息,接收网络设备发送的下行定位参考信号;
确定模块1303,用于基于下行定位参考信号,确定终端在不同位置的相位信息;
确定模块1303,还用于根据终端在不同位置的相位信息和终端的运动信息,确定终端的当前位置信息,运动信息由终端测量确定。
在一些实施例中,确定模块1303,还用于基于下行定位参考信号,确定终端在不同位置的载波相位差,载波相位差由终端自身产生的载波信号与接收的下行定位参考信号之间的相位确定。
在一些实施例中,确定模块1303,还用于:
根据终端的运动信息,确定终端在相邻的两个位置之间的距离;
根据终端在不同位置的相位信息和终端在相邻的两个位置之间的距离,确定初始整周模糊度;
根据初始整周模糊度确定终端的当前位置信息。
在一些实施例中,终端在不同位置的相位信息、终端在相邻的两个位置之间的距离和初始整周模糊度满足以下关系:
Figure PCTCN2022089670-appb-000037
其中,N为初始整周模糊度,a为终端在第一位置与第二位置之间的距离,b为终端在第二位置与第三位置之间的距离,
Figure PCTCN2022089670-appb-000038
为终端在第一位置的载波相位差,
Figure PCTCN2022089670-appb-000039
为终端在第二位置的载波相位差,
Figure PCTCN2022089670-appb-000040
为终端在第三位置的载波相位差,λ为下行定位参考信号的波长。
在一些实施例中,确定模块1303,还用于响应于终端未获取到初始整周模糊度,根据终端的运动信息,确定终端在相邻的两个位置之间的距离。
在一些实施例中,确定模块1303,还用于:
根据初始整周模糊度和终端在不同位置的相位信息,确定终端在下一位置的预测相位信息;
在预测相位信息与终端的锁相环的相位不同的情况下,采用预测相位信息对终端的锁相环的相位进行更新;
根据更新后的锁相环的相位确定终端的当前位置信息。
在一些实施例中,确定模块1303,还用于响应于终端获取到初始整周模糊度,根据初始整周模糊度和终端在不同位置的相位信息,确定终端在下一位置的预测相位信息。
在一些实施例中,装置还包括:
发送模块1302,用于基于资源信息,向网络设备发送上行定位参考信号和 终端的运动信息,网络设备用于根据上行定位参考信号和运动信息确定终端的当前位置信息。
需要说明的是,上述实施例提供的装置,在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图15示出了本申请一个示例性实施例提供的一种定位装置的框图,参见图15,该装置包括:
发送模块1501,用于向终端发送配置信息,配置信息用于为终端配置用于传输定位参考信号的资源信息,定位参考信号用于对终端进行定位。
在一些实施例中,所述资源信息根据运动信息、载波参数信息以及定位信息中的至少一项确定。
在一些实施例中,参见图16,装置还包括:
接收模块1502,用于接收终端发送的运动信息、载波参数信息以及定位信息中的至少一项。
在一些实施例中,所述运动信息、所述载波参数信息以及所述定位信息中的至少一项由所述终端响应于所述终端的锁相环的带宽不支持调整发送。
在一些实施例中,装置还包括:
接收模块1502,用于接收终端发送的请求信息,请求信息用于获取资源信息,请求信息由终端根据运动信息、载波参数信息以及定位信息中的至少一项确定。
在一些实施例中,请求信息由终端响应于终端的锁相环的带宽不支持调整,根据运动信息、载波参数信息以及定位信息中的至少一项确定。
在一些实施例中,运动信息包括以下至少一项:
相对于网络设备的速度信息;
终端的加速度信息。
在一些实施例中,载波参数信息包括以下至少一项:
终端支持的上行时域资源与下行时域资源的比例;
用于相位跟踪测量的时频资源信息;
用于相位跟踪的载波频率;
终端支持的载波相位的频点范围;
终端的锁相环的带宽是否支持调整。
在一些实施例中,定位信息包括以下至少一项:
终端的定位精度;
终端的采样频次;
终端的测量误差。
在一些实施例中,资源信息包括上行时域资源与下行时域资源的比例以及用于传输定位参考信号的子帧密度。
在一些实施例中,装置还包括:
发送模块1501,用于响应于未确定资源信息,向终端发送错误信息,错误信息指示网络设备未配置资源信息。
在一些实施例中,装置还包括:
发送模块1501,用于基于资源信息,向终端发送下行定位参考信号;
终端用于基于下行定位参考信号,确定终端在不同位置的相位信息,根据终端在不同位置的相位信息和终端的运动信息,确定终端的当前位置信息,运动信息由终端测量确定。
在一些实施例中,装置还包括:
接收模块1502,用于基于资源信息,接收终端发送的上行定位参考信号和终端的运动信息;
确定模块1503,用于根据上行定位参考信号和运动信息确定终端的当前位置信息。
在一些实施例中,确定模块1503,用于:
基于上行定位参考信号,确定终端在不同位置的相位信息;
根据终端在不同位置的相位信息和终端的运动信息,确定终端的当前位置信息。
在一些实施例中,确定模块1503,用于:
基于上行定位参考信号,确定终端在不同位置的载波相位差,载波相位差由网络设备自身产生的载波信号与接收的上行定位参考信号之间的相位确定。
在一些实施例中,确定模块1503,用于:
根据终端的运动信息,确定终端在相邻的两个位置之间的距离;
根据终端在不同位置的相位信息和终端在相邻的两个位置之间的距离,确定初始整周模糊度;
根据初始整周模糊度确定终端的当前位置信息。
在一些实施例中,终端在不同位置的相位信息、终端在相邻的两个位置之间的距离和初始整周模糊度满足以下关系:
Figure PCTCN2022089670-appb-000041
其中,N为初始整周模糊度,a为终端在第一位置与第二位置之间的距离,b为终端在第二位置与第三位置之间的距离,
Figure PCTCN2022089670-appb-000042
为终端在第一位置的载波相位差,
Figure PCTCN2022089670-appb-000043
为终端在第二位置的载波相位差,
Figure PCTCN2022089670-appb-000044
为终端在第三位置的载波相位差,λ为下行定位参考信号的波长。
在一些实施例中,确定模块1503,用于响应于终端未获取到初始整周模糊度,根据终端的运动信息,确定终端在相邻的两个位置之间的距离。
需要说明的是,上述实施例提供的装置,在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图17示出了本申请一个示例性实施例提供的通信设备的结构示意图,该通信设备包括:处理器1701、接收器1702、发射器1703、存储器1704和总线1705。
处理器1701包括一个或者一个以上处理核心,处理器1701通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1702和发射器1703可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1704通过总线1705与处理器1701相连。
存储器1704可用于存储至少一个程序代码,处理器1701用于执行该至少一个程序代码,以实现上述方法实施例中的各个步骤。
此外,通信设备可以为终端或网络设备。存储器1704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可 编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的定位方法。
在示例性实施例中,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端或网络设备上运行时,用于实现如各个方法实施例提供的定位方法。
在示例性实施例中,提供了计算机程序产品,当所述计算机程序产品被终端或网络设备的处理器执行时,其用于实现上述各个方法实施例提供的定位方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (44)

  1. 一种定位方法,其特征在于,所述方法由终端执行,所述方法包括:
    接收网络设备发送的配置信息,所述配置信息用于为所述终端配置用于传输定位参考信号的资源信息,所述定位参考信号用于对所述终端进行定位。
  2. 根据权利要求1所述的方法,其特征在于,所述资源信息根据运动信息、载波参数信息以及定位信息中的至少一项确定。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送运动信息、载波参数信息以及定位信息中的至少一项。
  4. 根据权利要求3所述的方法,其特征在于,所述向所述网络设备发送运动信息、载波参数信息以及定位信息中的至少一项,包括:
    响应于所述终端的锁相环的带宽不支持调整,向所述网络设备发送所述运动信息、所述载波参数信息以及所述定位信息中的至少一项。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据运动信息、载波参数信息以及定位信息中的至少一项,确定请求信息;
    向所述网络设备发送所述请求信息,所述请求信息用于获取所述资源信息。
  6. 根据权利要求5所述的方法,其特征在于,所述根据运动信息、载波参数信息以及定位信息中的至少一项,确定请求信息,包括:
    响应于所述终端的锁相环的带宽不支持调整,根据所述运动信息、所述载波参数信息以及所述定位信息中的至少一项,确定所述请求信息。
  7. 根据权利要求2所述的方法,其特征在于,所述运动信息包括以下至少一项:
    相对于所述网络设备的速度信息;
    所述终端的加速度信息。
  8. 根据权利要求2所述的方法,其特征在于,所述载波参数信息包括以下至少一项:
    所述终端支持的上行时域资源与下行时域资源的比例;
    用于相位跟踪测量的时频资源信息;
    用于相位跟踪的载波频率;
    所述终端支持的载波相位的频点范围;
    所述终端的锁相环的带宽是否支持调整。
  9. 根据权利要求2所述的方法,其特征在于,所述定位信息包括以下至少一项:
    所述终端的定位精度;
    所述终端的采样频次;
    所述终端的测量误差。
  10. 根据权利要求1所述的方法,其特征在于,所述资源信息包括上行时域资源与下行时域资源的比例以及所述用于传输所述定位参考信号的子帧密度。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于所述网络设备未确定所述资源信息,接收所述网络设备发送的错误信息,所述错误信息指示所述网络设备未配置所述资源信息;
    对所述终端中的锁相环的带宽进行调整。
  12. 根据权利要求11所述的方法,其特征在于,所述对所述终端中的锁相环的带宽进行调整,包括:
    响应于所述终端的锁相环的带宽支持调整,对所述终端中的锁相环的带宽进行调整。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于所述终端的移动速度大于第一速度,启动惯性测量元件IMU辅助载 波相位测量功能,所述IMU辅助载波相位测量功能指示所述终端根据相位信息和所述终端的运动信息,确定所述终端的当前位置信息。
  14. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述资源信息,接收所述网络设备发送的下行定位参考信号;
    基于所述下行定位参考信号,确定所述终端在不同位置的相位信息;
    根据所述终端在不同位置的相位信息和所述终端的运动信息,确定所述终端的当前位置信息,所述运动信息由所述终端测量确定。
  15. 根据权利要求14所述的方法,其特征在于,所述基于所述下行定位参考信号,确定所述终端在不同位置的相位信息,包括:
    基于所述下行定位参考信号,确定所述终端在不同位置的载波相位差,所述载波相位差由所述终端自身产生的载波信号与接收的所述下行定位参考信号之间的相位确定。
  16. 根据权利要求14所述的方法,其特征在于,所述根据所述终端在不同位置的相位信息和所述终端的运动信息,确定所述终端的当前位置信息,包括:
    根据所述终端的运动信息,确定所述终端在相邻的两个位置之间的距离;
    根据所述终端在不同位置的相位信息和所述终端在相邻的两个位置之间的距离,确定初始整周模糊度;
    根据所述初始整周模糊度确定所述终端的当前位置信息。
  17. 根据权利要求16所述的方法,其特征在于,所述终端在不同位置的相位信息、所述终端在相邻的两个位置之间的距离和所述初始整周模糊度满足以下关系:
    Figure PCTCN2022089670-appb-100001
    其中,N为初始整周模糊度,a为所述终端在第一位置与第二位置之间的距离,b为所述终端在所述第二位置与第三位置之间的距离,
    Figure PCTCN2022089670-appb-100002
    为所述终端在所述第一位置的载波相位差,
    Figure PCTCN2022089670-appb-100003
    为所述终端在所述第二位置的载波相位差,
    Figure PCTCN2022089670-appb-100004
    为 所述终端在所述第三位置的载波相位差,λ为所述下行定位参考信号的波长。
  18. 根据权利要求16所述的方法,其特征在于,所述根据所述终端的运动信息,确定所述终端在相邻的两个位置之间的距离,包括:
    响应于所述终端未获取到所述初始整周模糊度,根据所述终端的运动信息,确定所述终端在相邻的两个位置之间的距离。
  19. 根据权利要求14所述的方法,其特征在于,所述根据所述终端在不同位置的相位信息和所述终端的运动信息,确定所述终端的当前位置信息,包括:
    根据初始整周模糊度和所述终端在不同位置的相位信息,确定所述终端在下一位置的预测相位信息;
    在所述预测相位信息与所述终端的锁相环的相位不同的情况下,采用所述预测相位信息对所述终端的锁相环的相位进行更新;
    根据更新后的锁相环的相位确定所述终端的当前位置信息。
  20. 根据权利要求19所述的方法,其特征在于,所述根据初始整周模糊度和所述终端在不同位置的相位信息,确定所述终端在下一位置的预测相位信息,包括:
    响应于所述终端获取到所述初始整周模糊度,根据所述初始整周模糊度和所述终端在不同位置的相位信息,确定所述终端在下一位置的预测相位信息。
  21. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述资源信息,向所述网络设备发送上行定位参考信号和所述终端的运动信息,所述网络设备用于根据所述上行定位参考信号和所述运动信息确定所述终端的当前位置信息。
  22. 一种定位方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向终端发送配置信息,所述配置信息用于为所述终端配置用于传输定位参考信号的资源信息,所述定位参考信号用于对所述终端进行定位。
  23. 根据权利要求22所述的方法,其特征在于,所述资源信息根据运动信息、载波参数信息以及定位信息中的至少一项确定。
  24. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    接收所述终端发送的运动信息、载波参数信息以及定位信息中的至少一项。
  25. 根据权利要求24所述的方法,其特征在于,所述运动信息、所述载波参数信息以及所述定位信息中的至少一项由所述终端响应于所述终端的锁相环的带宽不支持调整发送。
  26. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    接收所述终端发送的请求信息,所述请求信息用于获取所述资源信息,所述请求信息由所述终端根据运动信息、载波参数信息以及定位信息中的至少一项确定。
  27. 根据权利要求26所述的方法,其特征在于,所述请求信息由所述终端响应于所述终端的锁相环的带宽不支持调整,根据所述运动信息、所述载波参数信息以及所述定位信息中的至少一项确定。
  28. 根据权利要求23所述的方法,其特征在于,所述运动信息包括以下至少一项:
    相对于所述网络设备的速度信息;
    所述终端的加速度信息。
  29. 根据权利要求23所述的方法,其特征在于,所述载波参数信息包括以下至少一项:
    所述终端支持的上行时域资源与下行时域资源的比例;
    用于相位跟踪测量的时频资源信息;
    用于相位跟踪的载波频率;
    所述终端支持的载波相位的频点范围;
    所述终端的锁相环的带宽是否支持调整。
  30. 根据权利要求23所述的方法,其特征在于,所述定位信息包括以下至少一项:
    所述终端的定位精度;
    所述终端的采样频次;
    所述终端的测量误差。
  31. 根据权利要求22所述的方法,其特征在于,所述资源信息包括上行时域资源与下行时域资源的比例以及所述用于传输所述定位参考信号的子帧密度。
  32. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    响应于未确定所述资源信息,向所述终端发送错误信息,所述错误信息指示所述网络设备未配置所述资源信息。
  33. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    基于所述资源信息,向所述终端发送下行定位参考信号;
    所述终端用于基于所述下行定位参考信号,确定所述终端在不同位置的相位信息,根据所述终端在不同位置的相位信息和所述终端的运动信息,确定所述终端的当前位置信息,所述运动信息由所述终端测量确定。
  34. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    基于所述资源信息,接收所述终端发送的上行定位参考信号和所述终端的运动信息;
    根据所述上行定位参考信号和所述运动信息确定所述终端的当前位置信息。
  35. 根据权利要求34所述的方法,其特征在于,所述根据所述上行定位参考信号和所述运动信息确定所述终端的当前位置信息,包括:
    基于所述上行定位参考信号,确定所述终端在不同位置的相位信息;
    根据所述终端在不同位置的相位信息和所述终端的运动信息,确定所述终 端的当前位置信息。
  36. 根据权利要求35所述的方法,其特征在于,所述基于所述上行定位参考信号,确定所述终端在不同位置的相位信息,包括:
    基于所述上行定位参考信号,确定所述终端在不同位置的载波相位差,所述载波相位差由所述网络设备自身产生的载波信号与接收的所述上行定位参考信号之间的相位确定。
  37. 根据权利要求35所述的方法,其特征在于,所述根据所述终端在不同位置的相位信息和所述终端的运动信息,确定所述终端的当前位置信息,包括:
    根据所述终端的运动信息,确定所述终端在相邻的两个位置之间的距离;
    根据所述终端在不同位置的相位信息和所述终端在相邻的两个位置之间的距离,确定初始整周模糊度;
    根据所述初始整周模糊度确定所述终端的当前位置信息。
  38. 根据权利要求37所述的方法,其特征在于,所述终端在不同位置的相位信息、所述终端在相邻的两个位置之间的距离和所述初始整周模糊度满足以下关系:
    Figure PCTCN2022089670-appb-100005
    其中,N为初始整周模糊度,a为所述终端在第一位置与第二位置之间的距离,b为所述终端在所述第二位置与第三位置之间的距离,
    Figure PCTCN2022089670-appb-100006
    为所述终端在所述第一位置的载波相位差,
    Figure PCTCN2022089670-appb-100007
    为所述终端在所述第二位置的载波相位差,
    Figure PCTCN2022089670-appb-100008
    为所述终端在所述第三位置的载波相位差,λ为所述上行定位参考信号的波长。
  39. 根据权利要求37所述的方法,其特征在于,所述根据所述终端的运动信息,确定所述终端在相邻的两个位置之间的距离,包括:
    响应于所述终端未获取到所述初始整周模糊度,根据所述终端的运动信息,确定所述终端在相邻的两个位置之间的距离。
  40. 一种定位装置,其特征在于,所述装置包括:
    接收模块,用于接收网络设备发送的配置信息,所述配置信息用于为所述终端配置用于传输定位参考信号的资源信息,所述定位参考信号用于对所述终端进行定位。
  41. 一种定位装置,其特征在于,所述装置包括:
    发送模块,用于向终端发送配置信息,配置信息用于为所述终端配置用于传输定位参考信号的资源信息,所述定位参考信号用于对所述终端进行定位。
  42. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至21任一所述的定位方法。
  43. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求22至39任一所述的定位方法。
  44. 一种计算机可读存储介质,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现如权利要求1至39任一所述的定位方法。
PCT/CN2022/089670 2022-04-27 2022-04-27 定位方法、装置、设备及存储介质 WO2023206173A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001440.1A CN117322094A (zh) 2022-04-27 2022-04-27 定位方法、装置、设备及存储介质
PCT/CN2022/089670 WO2023206173A1 (zh) 2022-04-27 2022-04-27 定位方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089670 WO2023206173A1 (zh) 2022-04-27 2022-04-27 定位方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023206173A1 true WO2023206173A1 (zh) 2023-11-02

Family

ID=88516703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089670 WO2023206173A1 (zh) 2022-04-27 2022-04-27 定位方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117322094A (zh)
WO (1) WO2023206173A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343579A (zh) * 2018-12-19 2020-06-26 电信科学技术研究院有限公司 一种定位方法和相关设备
WO2021097598A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 侧行定位方法和装置
WO2021183197A1 (en) * 2020-03-10 2021-09-16 Qualcomm Incorporated Physical layer considerations for ue positioning
CN113691929A (zh) * 2020-05-15 2021-11-23 大唐移动通信设备有限公司 定位方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343579A (zh) * 2018-12-19 2020-06-26 电信科学技术研究院有限公司 一种定位方法和相关设备
WO2021097598A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 侧行定位方法和装置
WO2021183197A1 (en) * 2020-03-10 2021-09-16 Qualcomm Incorporated Physical layer considerations for ue positioning
CN113691929A (zh) * 2020-05-15 2021-11-23 大唐移动通信设备有限公司 定位方法及装置

Also Published As

Publication number Publication date
CN117322094A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US10444324B2 (en) Single node location system and method
US10355351B2 (en) Antenna array pointing direction estimation and control
EP2602633B1 (en) Position optimization
CN104755955B (zh) 使用多尺度的受控带宽感应无线设备之间的距离
EP3077841B1 (en) Systems and methods of transmitter location detection
US8914037B2 (en) Numerically stable computation of heading without a reference axis
US20180340777A1 (en) Positioning Method and Device
CN105052215A (zh) 移动装置功率管理同时提供位置服务
JP7077598B2 (ja) 位置決定及び追跡のための方法、プログラム、及びシステム
CN112204414A (zh) 蜂窝网络中的载波相位定位
TWI698141B (zh) 決定無線裝置的軌跡路徑
US20240151859A1 (en) Method for adaptive location information obtainment in a wireless network
CN114080023A (zh) 定位方法、定位系统、终端及可读存储介质
WO2023206173A1 (zh) 定位方法、装置、设备及存储介质
EP2856199A1 (en) Determining location and orientation of directional tranceivers
Sineglazov et al. Unmanned aerial vehicle navifation system based on IEEE 802.15. 4 standard radiounits
US20230239719A1 (en) Technologies for in-device coexistence in network communication
CN115866742A (zh) 定位方法、装置、设备、存储介质及程序产品
Bekkelien et al. Hybrid positioning framework for mobile devices
CN105203991B (zh) 一种车辆定位方法及装置
CN113574346A (zh) 定位方法及装置
US11877239B2 (en) Systems and methods for optimizing a radio metric within a mesh network by waking up nodes
US11638233B2 (en) Refined location estimates using ultra-wideband communication links
Liu et al. A GPS Information Sharing System Based on Bluetooth Technology
US11837886B2 (en) Charging device and method for positioning electronic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001440.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939026

Country of ref document: EP

Kind code of ref document: A1