WO2024031533A1 - 用于侧行定位的方法、终端设备及网络设备 - Google Patents

用于侧行定位的方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2024031533A1
WO2024031533A1 PCT/CN2022/111758 CN2022111758W WO2024031533A1 WO 2024031533 A1 WO2024031533 A1 WO 2024031533A1 CN 2022111758 W CN2022111758 W CN 2022111758W WO 2024031533 A1 WO2024031533 A1 WO 2024031533A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
resource
time domain
frequency domain
domain unit
Prior art date
Application number
PCT/CN2022/111758
Other languages
English (en)
French (fr)
Inventor
张世昌
马腾
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/111758 priority Critical patent/WO2024031533A1/zh
Publication of WO2024031533A1 publication Critical patent/WO2024031533A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communication technology, and more specifically, a method, terminal equipment and network equipment for lateral positioning.
  • S PRS sidelink positioning reference signal
  • This application provides a method, terminal equipment and network equipment for lateral positioning. Each aspect involved in this application is introduced below.
  • a method for sideline positioning including: a terminal device determining configuration parameters of a first sideline positioning reference signal SL PRS, where the first SL PRS occupies some or all of the SL PRS resources. , wherein the configuration parameter is used to indicate one or more of the following information: the frequency domain resource used to transmit the first SL PRS in the SL PRS resource; the SL PRS sequence of the first SL PRS.
  • a method for side-link positioning including: the network device sends the configuration parameters of the first side-link positioning reference signal SL PRS to the terminal device, and the first SL PRS occupies part of the SL PRS resource or All resources, wherein the configuration parameter is used to indicate one or more of the following information: the frequency domain resource used to transmit the first SL PRS in the SL PRS resource; the SL PRS sequence of the first SL PRS .
  • a terminal device including: a processing unit for determining configuration parameters of a first sideline positioning reference signal SL PRS, where the first SL PRS occupies some or all of the SL PRS resources, where , the configuration parameter is used to indicate one or more of the following information: the frequency domain resource used to transmit the first SL PRS in the SL PRS resource; the SL PRS sequence of the first SL PRS.
  • a network device including: a sending unit configured to send configuration parameters of a first sideline positioning reference signal SL PRS to a terminal device, where the first SL PRS occupies some or all of the SL PRS resources. resource, wherein the configuration parameter is used to indicate one or more of the following information: the frequency domain resource used to transmit the first SL PRS in the SL PRS resource; the SL PRS sequence of the first SL PRS.
  • a terminal device including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory, so that the terminal The device performs some or all of the steps of the method of the first aspect.
  • a sixth aspect provides a network device, including a processor, a memory, and a transceiver.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the network The device performs some or all of the steps of the method of the second aspect.
  • embodiments of the present application provide a communication system, which includes the above-mentioned terminal device and/or network device.
  • the system may also include other devices that interact with terminal devices or network devices in the solutions provided by the embodiments of this application.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program.
  • the computer program causes a communication device (for example, a terminal device or a network device) to perform the above aspects. some or all of the steps in the method.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a communication device (such as , terminal equipment or network equipment) performs some or all of the steps in the methods of the above aspects.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a chip, which includes a memory and a processor.
  • the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects.
  • the terminal device can determine the configuration parameters of the first SL PRS, so that the terminal device can transmit the first SL PRS to other terminal devices based on the configuration parameters, which helps to achieve sidelink-based positioning.
  • FIG. 1 is an example system architecture diagram of a wireless communication system to which embodiments of the present application can be applied.
  • Figure 2 is an example diagram of a side communication scenario within network coverage.
  • Figure 3 is an example diagram of a sidelink communication scenario with partial network coverage.
  • Figure 4 is an example diagram of a sidelink communication scenario outside network coverage.
  • Figure 5 is an example diagram of a scenario for side communication based on a central control node.
  • Figure 6 is an example diagram of a broadcast-based sidelink communication method.
  • Figure 7 is an example diagram of a unicast-based sidelink communication method.
  • Figure 8 is an example diagram of a multicast-based sidelink communication method.
  • Figure 9 shows a schematic diagram of resources for transmitting DL PRS.
  • Figure 10 is a schematic diagram of SL PRS resources in this embodiment of the present application.
  • Figure 11 is a schematic diagram of SL PRS resources according to another embodiment of the present application.
  • Figure 12 is a flowchart of a method for lateral positioning according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of the resources used to transmit SL PRS and PSSCH DMRS within the SL PRS resources in this embodiment of the present application.
  • Figure 14 is a schematic diagram of resources used to transmit SL PRS and PSSCH DMRS in SL PRS resources according to another embodiment of the present application.
  • Figure 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of a network device according to an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 1 is an example system architecture diagram of a wireless communication system 100 to which embodiments of the present application can be applied.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • FIG. 1 exemplarily shows a network device and a terminal device.
  • the wireless communication system 100 may include one or more network devices 110 and/or one or more terminal devices 120 .
  • the one or more terminal devices 120 may all be located within the network coverage of the network device 110 , or they may all be located outside the network coverage of the network device 110 , or part of them may be located within the network coverage of the network device 110 .
  • the other part is located outside the network coverage range of the network device 110, which is not limited in the embodiment of the present application.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the terminal equipment in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal equipment, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a vehicle, an industrial control (industrial) Wireless terminals in control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, and transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device may act as a scheduling entity that provides sidelink signals between terminal devices in vehicle-to-everything (V2X) or device-to-device communication (D2D), etc.
  • V2X vehicle-to-everything
  • D2D device-to-device communication
  • the terminal device can be used to act as a base station.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that performs base station functions in device-to-device D2D, V2X, and machine-to-machine (M2M) communications, a network-side device in a 6G network, and a base station in future communication systems. Functional equipment, etc.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • Sidelink communication refers to communication technology based on sidelinks.
  • Sideline communication can be, for example, device-to-device (D2D) or vehicle-to-everything (V2X) communication.
  • Communication data in traditional cellular systems is received or sent between terminal devices and network devices, while sideline communication supports direct transmission of communication data between terminal devices.
  • sideline communication supports direct transmission of communication data between terminal devices.
  • direct transmission of communication data between terminal devices can have higher spectrum efficiency and lower transmission delay.
  • the Internet of Vehicles system uses side-travel communication technology.
  • side-link communication according to the network coverage of the terminal device, side-link communication can be divided into side-link communication within network coverage, side-link communication with partial network coverage, and side-link communication outside network coverage.
  • FIG 2 is an example diagram of a side communication scenario within network coverage.
  • both terminal devices 120a are within the coverage of the network device 110. Therefore, both terminal devices 120a can receive the configuration signaling of the network device 110 (the configuration signaling in this application can also be replaced with configuration information), and determine the side row configuration according to the configuration signaling of the network device 110. After both terminal devices 120a are configured for sidelink, sidelink communication can be performed on the sidelink link.
  • FIG 3 is an example diagram of a sidelink communication scenario with partial network coverage.
  • the terminal device 120a and the terminal device 120b perform side-line communication.
  • the terminal device 120a is located within the coverage of the network device 110, so the terminal device 120a can receive the configuration signaling of the network device 110 and determine the sidelink configuration according to the configuration signaling of the network device 110.
  • the terminal device 120b is located outside the network coverage and cannot receive the configuration signaling of the network device 110.
  • the terminal device 120b may be configured according to the pre-configuration information and/or the information carried in the physical sidelink broadcast channel (PSBCH) sent by the terminal device 120a located within the network coverage. Determine side row configuration. After both the terminal device 120a and the terminal device 120b perform side-link configuration, side-link communication can be performed on the side-link.
  • PSBCH physical sidelink broadcast channel
  • FIG 4 is an example diagram of a sidelink communication scenario outside network coverage.
  • both terminal devices 120b are located outside the network coverage.
  • both terminal devices 120b can determine the side row configuration according to the preconfiguration information.
  • sidelink communication can be performed on the sidelink link.
  • Figure 5 is an example diagram of a scenario for side communication based on a central control node.
  • multiple terminal devices can form a communication group, and the communication group has a central control node.
  • the central control node can be a terminal device in the communication group (terminal device 1 in Figure 5), and the terminal device can also be called a cluster head (cluster header, CH) terminal device.
  • the central control node can be responsible for completing one or more of the following functions: establishment of a communication group, joining and leaving group members of the communication group, resource coordination within the communication group, allocating sideline transmission resources to other terminal devices, Receive sideline feedback information from other terminal devices and coordinate resources with other communication groups.
  • Some standards or protocols (such as the 3rd Generation Partnership Project (3GPP)) define two modes of sideline communication: first mode and second mode.
  • the resources of the terminal device are allocated by the network device.
  • the terminal device can send data on the sidelink according to the resources allocated by the network device.
  • the network device can allocate single-transmission resources to the terminal device or allocate semi-static transmission resources to the terminal device.
  • This first mode can be applied to scenarios covered by network devices, such as the scenario shown in Figure 2 above.
  • the terminal device 120a is located within the network coverage of the network device 110, so the network device 110 can allocate resources used in the sidelink transmission process to the terminal device 120a.
  • the terminal device can autonomously select one or more resources from the resource pool (RP). Then, the terminal device can perform sidelink transmission according to the selected resources.
  • the terminal device 120b is located outside the cell coverage. Therefore, the terminal device 120b can autonomously select resources from the preconfigured resource pool for sidelink transmission.
  • the terminal device 120a can also independently select one or more resources from the resource pool configured by the network device 110 for side transmission.
  • the terminal device can implement the resource allocation scheme in the second mode through the following steps 1 and 2.
  • Step 1 The terminal device uses all available resources in the resource selection window as resource set A. Specifically, it can be divided into two situations: 1-1 and 1-2.
  • the terminal device can determine the corresponding time slot in the selection window for the time slots that are not listened to in the listening window based on the value set of the resource reservation period field in the resource pool configuration used.
  • the terminal equipment listens to the physical sidelink control channel (PSCCH) within the listening window, measure the reference signal received power (RSRP) of the PSCCH or the PSCCH RSRP of scheduled PSSCH. If the measured RSRP is greater than the sidelink reference signal received power (SL-RSRP) threshold, and the resource reservation information in the sidelink control information transmitted in the PSCCH is used to determine the resource selection, Within the window, the corresponding resource is excluded from set A. If the remaining resources in resource set A are less than X% of all resources in resource set A before resource exclusion, raise the SL-RSRP threshold by 3dB and perform step 1 again.
  • RSRP reference signal received power
  • SL-RSRP sidelink reference signal received power
  • the possible values of the above-mentioned X may be ⁇ 20, 35, 50 ⁇ , and the terminal device may determine the parameter X from the value set according to the priority of the data to be sent.
  • the above-mentioned SL-RSRP threshold is related to the priority carried in the PSCCH heard by the terminal and the priority of the data to be sent by the terminal device. The terminal device uses the remaining resources after resource exclusion in set A as a candidate resource set.
  • Step 2 The terminal device randomly selects several resources from the candidate resource set as its sending resources for initial transmission and retransmission.
  • Some sideline communication systems support broadcast-based data transmission (hereinafter referred to as broadcast transmission).
  • the receiving terminal can be any terminal device around the sending terminal.
  • terminal device 1 is a sending terminal
  • the receiving terminal corresponding to the sending terminal is any terminal device around terminal device 1, for example, it can be terminal device 2-terminal device 6 in Figure 6.
  • some communication systems also support unicast-based data transmission (hereinafter referred to as unicast transmission) and/or multicast-based data transmission (hereinafter referred to as multicast transmission).
  • unicast transmission hereinafter referred to as unicast transmission
  • multicast transmission hereinafter referred to as multicast transmission.
  • NR-V2X new radio vehicle to everything
  • autonomous driving places higher requirements on data interaction between vehicles.
  • data interaction between vehicles requires higher throughput, lower latency, higher reliability, larger coverage, more flexible resource allocation, etc. Therefore, in order to improve the data interaction performance between vehicles, NR-V2X introduces unicast transmission and multicast transmission.
  • the receiving terminal generally has only one terminal device. Taking Figure 7 as an example, unicast transmission is performed between terminal device 1 and terminal device 2.
  • Terminal device 1 may be a sending terminal
  • terminal device 2 may be a receiving terminal
  • terminal device 1 may be a receiving terminal
  • terminal device 2 may be a sending terminal.
  • the receiving terminal may be a terminal device within a communication group, or the receiving terminal may be a terminal device within a certain transmission distance.
  • terminal device 1 terminal device 2, terminal device 3 and terminal device 4 form a communication group. If terminal device 1 sends data, other terminal devices (terminal device 2 to terminal device 4) in the group can all be receiving terminals.
  • network equipment can provide downlink positioning reference signals (downlink positioning reference signal, DL PRS) DL PRS configuration of four positioning frequency layers (frequency layers) for terminal equipment.
  • DL PRS downlink positioning reference signal
  • the parameter structure of each positioning frequency layer provides the following DL PRS configuration parameters: DL PRS subcarrier spacing; DL PRS cyclic prefix (CP) length; DL PRS frequency domain resource bandwidth; DL PRS The frequency domain starting frequency position of the resource; the frequency domain reference point "Point A" of DL PRS; the comb tooth size "Comb-N" of DL PRS.
  • the value of the frequency domain resource bandwidth of the DL PRS may be the number of physical resource blocks (PRBs) allocated to the DL PRS.
  • PRBs physical resource blocks
  • the minimum value of the frequency domain resource bandwidth of DL PRS can be 24 PRBs, and the granularity can be 4 PRBs.
  • the maximum value of the frequency domain resource bandwidth of DL PRS can be 272 PRBs.
  • the frequency domain starting frequency position of the DL PRS resource is used to indicate the index number of the starting PRB of the DL PRS in the frequency domain resource allocation.
  • the index number of the PRB is defined relative to the frequency domain reference point "PointA" of the DL PRS.
  • the above DL PRS configuration parameters corresponding to each positioning frequency layer can be applied to all DL PRS resources included in the positioning frequency layer. That is to say, in a positioning frequency layer, all DL PRSs from multiple different TRPs can use the same subcarrier spacing and CP length, the same comb tooth size, be sent on the same frequency subband, and occupy the same bandwidth. Such a design can support terminal equipment to simultaneously receive and measure DL PRS from multiple different TRPs on the same frequency point.
  • the parameters of the TRP layer will also include the configuration parameters of DL PRS. It may include a parameter used to uniquely identify and locate the TRP, for example, the physical cell ID of the TRP, the NR cell global identity (NCGI) of the TRP, the absolute radio frequency channel number (ARFCN) of the TRP, etc.
  • a parameter used to uniquely identify and locate the TRP for example, the physical cell ID of the TRP, the NR cell global identity (NCGI) of the TRP, the absolute radio frequency channel number (ARFCN) of the TRP, etc.
  • NGI NR cell global identity
  • ARFCN absolute radio frequency channel number
  • up to 2 DL PRS resource sets can be configured in each TRP layer.
  • the configuration parameters of DL PRS in the parameters of the TRP layer for each DL PRS resource set include the DL PRS resource set identification identifier (expressed by "nr-DL-PRS-ResourceSetID”); the transmission cycle and time slot offset of DL PRS (expressed by "dl-PRS-Periodicity-and-ResourceSetSlotOffset”); DL PRS resource repetition factor (represented by “dl-PRS-ResourceRepetitionFactor”); DL PRS resource repeated sending interval (represented by "dl-PRS-ResourceTimeGap” ); the muting configuration of DL PRS; and the number of orthogonal frequency division multiplexing (OFDM) symbols (hereinafter referred to as "symbols”) occupied by DL PRS resources (use “dl-PRS-NumSymbols" express).
  • OFDM orthogonal frequency division multiplexing
  • the above-mentioned transmission cycle and time slot offset of DL PRS are used to indicate the time domain transmission behavior of all DL PRS resources in the DL PRS resource set.
  • the minimum value of the configurable DL PRS transmission period is 4 milliseconds
  • the maximum value of the configurable DL PRS transmission period is 10240 milliseconds.
  • DL PRS configuration supports flexible subcarrier spacing including 15KHz, 30KHz, 60KHz and 120KHz. In the case of different subcarrier spacing, the configurable DL PRS transmission cycle value range can be the same.
  • Figure 9 shows a schematic diagram of the resources for transmitting DL PRS when the comb tooth size is 2 and the RE offset is 0 and 1 respectively.
  • the repetition factor of the above DL PRS resource is used to indicate the number of repeated transmissions of the DL PRS resource in each DL PRS transmission cycle.
  • repeated transmissions of the same DL PRS resource can be used by terminal devices to aggregate the DL PRS energy of multiple transmissions, which helps increase the coverage distance of DL PRS and improve positioning accuracy.
  • repeated transmission of DL PRS resources can also be used by terminal equipment to perform receive beam scanning operations. The terminal device can use different receive beams to receive repeated transmissions of the same DL PRS resource to find the best match between the TRP transmit beam and the terminal device receive beam.
  • repeated transmission of DL PRS resources will increase the transmission overhead of DL PRS.
  • the repetition factor value of DL PRS resources is 1, 2, 4, 6, 8 , 16 and 32.
  • the above-mentioned time interval for repeated transmission of DL PRS resources is used to indicate the number of time slots between two consecutive repeated transmissions of the same DL PRS resource.
  • the above silent configuration of DL PRS is used to instruct DL PRS not to send DL PRS on certain allocated time and frequency resources.
  • Silent configuration can be understood as DL PRS will not be sent on all allocated time and frequency resources, but intentionally not sent on some designated time and frequency resources.
  • silent configuration can avoid conflicts between DL PRS and other signals (such as synchronization signal block (SSB)).
  • silent configuration can avoid interference between signals sent by different TRPs.
  • SSB synchronization signal block
  • the terminal device can receive the message without being interfered by the TRP that indicates silence.
  • DL PRS from distant TRP.
  • the number of OFDM symbols occupied by the above DL PRS resources is used to indicate the number of OFDM symbols allocated by a DL PRS resource within a time slot.
  • the DL PRS configuration parameters included in the above parameters of the TRP layer can be applied to all DL PRS resources in the DL PRS resource set corresponding to the TRP layer. Therefore, DL PRS resources belonging to the same DL PRS resource set will send DL PRS with the same transmission period and the same number of repeated transmissions, and the DL PRS occupies the same number of OFDM symbols.
  • the DL PRS configuration parameters may also include: DL PRS resource identification ID (represented by "nr-DL-PRS-ResourceID”); DL PRS sequence ID (represented by “dl- PRS-SequenceID”); the starting frequency domain resource unit offset of DL PRS (represented by “dl-PRS-CombSizeN-AndReOffset”); the resource slot offset of DL PRS (represented by "dl-PRS-ResourceSlotOffset” ); OFDM symbol offset of DL PRS (represented by "dl-PRS-ResourceSymbolOffset”); Quasi Co-Location (QCL) information of DL PRS (represented by "dl-PRS-QCL-Info”).
  • DL PRS resource identification ID represented by "nr-DL-PRS-ResourceID”
  • DL PRS sequence ID represented by "dl- PRS-SequenceID”
  • the starting frequency domain resource unit offset of DL PRS represented by "dl-PRS-Comb
  • the above-mentioned starting frequency domain resource unit offset of DL PRS is used to indicate the frequency domain resource unit offset value used for resource mapping of DL PRS resources on the first allocated OFDM symbol in a time slot.
  • the terminal device can determine the frequency domain resource unit offset value used for resource mapping on each OFDM symbol.
  • the above resource slot offset of DL PRS is used to indicate the slot offset relative to the DL PRS resource set.
  • This parameter can determine the time slot location of each DL PRS resource.
  • the OFDM symbol offset of the above DL PRS is used to indicate the time-frequency resource allocation position of the DL PRS resource within a time slot.
  • This parameter can be used to indicate the index number of the starting OFDM symbol within the slot.
  • the above QCL information of DL PRS is used to indicate the QCL information of DL PRS.
  • Positioning based on side lines is one of the enhanced solutions for R18 positioning technology.
  • scenarios and requirements for supporting NR positioning use cases within cellular network coverage, partial coverage and outside coverage will be considered.
  • V2X use cases, public safety use cases, Positioning requirements for commercial use cases and industrial internet of things (IIOT) use cases and consider supporting the following functions: absolute positioning, ranging/direction finding, and relative positioning; study the combination of lateral measurements and Uu interface measurements Positioning methods; study sideline positioning reference signals, including signal design, physical layer control signaling, resource allocation, physical layer measurements, and related physical layer processes; study positioning system architecture and signaling processes, such as configuration, measurement reporting wait.
  • the terminal device can directly determine its own absolute geography based on the measurement results, or it is called absolute positioning based on the terminal device.
  • the terminal device can report the measurement results to a positioning server, such as LMF, and then the LMF calculates the absolute position of the terminal device and notifies the terminal device.
  • This method is called terminal device-assisted absolute positioning.
  • the terminal equipment can estimate the relative distance and relative direction based on the received positioning reference signal by estimating the signal's round-trip time, angle of arrival, signal reception strength and other information.
  • the time domain unit set can include one or more time domain units. In some implementations, all time domain units in the time domain unit set can be used to transmit SL PRS.
  • the time domain unit included in the time domain unit set is SL PRS. resource. In other implementations, some of the time domain units in the time domain unit set may be used to transmit SL PRS.
  • the time domain unit used to transmit SL PRS in the time domain unit set may be divided into one or more SL PRS resources.
  • the SL PRS resource can be reserved or selected by a terminal device as a whole, or in other words, the SL PRS resource can be the basic time domain unit for resource reservation by the terminal device.
  • the time domain unit used to transmit SL PRS in the time domain unit set can be divided into multiple SL PRS resources, it will help to improve the flexibility of SL PRS resources. If the time domain unit used to transmit SL PRS in the time domain unit set can be divided into one SL PRS resource, it will help simplify the complexity of SL PRS resource reservation or selection.
  • one or more time domain units included in a SL PRS resource may belong to a resource pool (eg, SL PRS resource pool).
  • the time domain units of the SL PRS resources included in a time domain unit set are less than or equal to the number of time domain units belonging to the sidelink resource pool in the time domain unit set.
  • SL PRS resources can also be used to transmit PSSCH demodulation reference signal (DMRS).
  • PSSCH DMRS can be called the second type SL PRS.
  • SL PRS can be called the first type SLPRS.
  • the above-mentioned SL PRS resources may also be used only to transmit the first type of SL PRS.
  • the SL PRS resource can be composed of one or more symbols belonging to the SL PRS resource pool, and the symbols belonging to the same SL PRS resource can be located in the same within a time slot, and the symbols of the SL PRS resource are less than or equal to the number of symbols belonging to the SL PRS resource pool in a time slot.
  • the above time domain unit set may be any time domain unit set in known communication systems, such as time slots, subframes, frames, etc.
  • the above time domain unit set may also be any time domain unit set introduced in future communication systems, and this is not limited in the embodiments of the present application.
  • time domain unit may be any time domain unit in known communication systems, such as symbols, time slots, subframes, frames, etc.
  • the above time domain unit can also be any time domain unit introduced in future communication systems, and this is not limited in the embodiments of the present application.
  • time domain units in the time domain unit set are used to transmit SL PRS as an example, and the SL PRS resources of the embodiment of the present application are introduced with reference to Figures 10 to 11.
  • the time domain unit used to transmit SL PRS in the time domain unit set can be regarded as an SL PRS resource.
  • the time domain unit set includes 14 time domain units: time domain units 0 to 13, and time domain units 0 to 10 are used to transmit SL PRS, and time domain units 11 to 13 are used for sideline communication, for example, Transmit PSCCH, PSSCH or PSFCH, etc.
  • time domain units 0 to 10 can be regarded as one SL PRS resource.
  • the time domain unit used to transmit SL PRS in the time domain unit set can be regarded as multiple SL PRS resources.
  • the time domain unit set includes 14 time domain units: time domain units 0 to 13, and time domain units 0 to 10 are used to transmit SL PRS, and time domain units 11 to 13 are used for sideline communication, for example, Transmit PSCCH, PSSCH or PSFCH, etc.
  • time domain units 0 to 3 can be regarded as one SL PRS resource, that is, SL PRS resource 1.
  • Time domain units 4 to 6 can be regarded as one SL PRS resource, namely SL PRS resource 2.
  • Time domain units 7 to 10 can be regarded as a SL PRS resource, namely SL PRS resource 3.
  • DL PRS configuration parameters are configured by network equipment (for example, access network equipment and core network equipment). If a sidelink-based positioning solution is introduced, how the terminal device obtains the configuration parameters of the PRS (also known as the "first SL PRS") transmitted in the sidelink is an urgent problem that needs to be solved.
  • network equipment for example, access network equipment and core network equipment.
  • embodiments of the present application provide a method for side positioning.
  • the terminal device can determine the configuration parameters of the first SL PRS, so that the terminal device can transmit the first SL PRS to other terminal devices based on the configuration parameters, which helps to achieve sidelink-based positioning.
  • the flow chart of the method for lateral positioning according to the embodiment of the present application is introduced below with reference to FIG. 12 .
  • the method shown in Figure 12 may include step S1210.
  • step S1210 the terminal device determines the configuration parameters of the first side row positioning reference signal SL PRS.
  • the above-mentioned first SL PRS can occupy some or all of the SL PRS resources, or in other words, the first SL PRS can occupy some or all of the time domain units in the SL PRS resources.
  • the introduction of SL PRS resources can be found above. For the sake of brevity, we will not go into details here.
  • the applicable scope of the above configuration parameters may be one or more of the SL BWP that can be used for SL PRS transmission, the SL PRS resource pool, and the SL frequency layer that can be used for SL PRS.
  • SL PRS sent in all resource pools available for SL PRS sending within the SL BWP range can use the above configuration parameters.
  • the configuration parameters are configured for the SL frequency layer, SL PRS sent in all resource pools available for SL PRS transmission within the SL frequency layer range can use the above configuration parameters.
  • the configuration parameters are configured for the SL PRS resource pool, SL PRS sent in all resource pools available for SL PRS transmission in the SL PRS resource pool can use the above configuration parameters.
  • the above configuration parameters can be configured by the network device for the terminal device.
  • the network equipment may include access network equipment and/or core network equipment (for example, LMF).
  • the network device can configure the above configuration parameters for the SL PRS resource pool.
  • the network device can configure the above configuration parameters for the SL BWP that can be used for SL PRS transmission.
  • the network device can configure the above configuration parameters for the SL frequency layer that can be used for SL PRS.
  • the above configuration parameters may be preconfigured.
  • the above configuration parameters can be pre-configured for the SL PRS resource pool.
  • the above configuration parameters can be preconfigured for the SL BWP that can be used for SL PRS transmission.
  • the above configuration parameters can be preconfigured for the SL frequency layer that can be used for SL PRS. The embodiments of the present application do not limit this.
  • the above configuration parameters can be selected independently by the terminal device.
  • the determination method will be introduced in detail below, and for the sake of brevity, it will not be repeated here.
  • the above-mentioned first SL PRS configuration parameters may include one or more of the following configuration parameters: subcarrier spacing of the first SL PRS; CP length of the first SL PRS; frequency domain of the first SL PRS Resource bandwidth; frequency domain starting frequency position of the first SL PRS resource; frequency domain reference point of the first SL PRS; comb tooth size of the first SL PRS.
  • the above-mentioned first SL PRS configuration parameters may be used to configure the transmission of the first SL PRS.
  • the configuration parameter may be used to indicate the time domain resource of the first SL PRS in the SL PRS resource, the frequency domain resource of the first SL PRS in the SL PRS resource, the first SL PRS signal sequence in the SL PRS resource, the first SL PRS signal sequence in the SL PRS resource, and the frequency domain resource of the first SL PRS in the SL PRS resource.
  • the transmission parameters of a SL PRS (for example, the transmission period of the first SL PRS, the time interval for repeated transmission, etc.).
  • the configuration parameter of the first SL PRS indicates the frequency domain resource of the first SL PRS in the SL PRS resource
  • the configuration parameter may include the reference time domain unit of the SL PRS resource corresponding to the resource used to transmit the SL PRS.
  • the first frequency domain offset value; and/or the comb tooth size corresponding to the first SL PRS is transmitted within the SL PRS resource.
  • the above-mentioned reference time domain unit may be the earliest time domain unit among the time domain units included in the SL PRS resource, or in other words, the reference time domain unit may be the earliest time domain unit in the time domain position in the SL PRS resource.
  • the reference time domain unit may be time domain unit 0 in the SL PRS resource.
  • the reference time domain unit may also be the latest (or last) time domain unit with a time domain position in the SL PRS resource.
  • the reference time domain unit may also be any time domain unit in the SL PRS resource.
  • the above-mentioned first frequency domain offset value may be a resource element (RE) offset value.
  • the above-mentioned first frequency domain offset value may also be an offset value represented by other frequency domain units. Embodiments of the present application There is no limit to this.
  • the frequency domain offset value of the first SL PRS transmitted on other time domain units (also called “first time domain units") in the SL PRS resource except the reference time domain unit may be based on the first frequency domain unit.
  • the domain offset value is determined.
  • the frequency domain offset value for transmitting the first SL PRS on the first time domain unit may be based on the first frequency domain offset value, the time interval between the first time domain unit and the reference time domain unit, and The comb tooth size of the first SL PRS is determined.
  • the first frequency domain offset value in the SL PRS resource is The comb tooth size of the first SL PRS in the SL PRS resource is The frequency domain offset value k corresponding to the first time domain unit can be based on the formula Determine, where k′ can be determined based on the time interval D between the first time domain unit and the reference time domain unit and Table 1, l represents the index of the first time domain unit within the SL PRS resource, Indicates the index of the reference time domain unit within the SL PRS resource.
  • the SL PRS resources will include time domain units for transmitting PSSCH DMRS.
  • the frequency domain offset value corresponding to the time domain unit used to transmit PSSCH DMRS may be a preset value, such as 0. The following describes the calculation method of the frequency domain offset value corresponding to the first time domain unit in the above scenario in combination with Method 1 and Method 2.
  • Method 1 the frequency domain offset value corresponding to the first time domain unit may be determined based on the first frequency domain offset value and the first parameter.
  • the first parameter is used to indicate the number of time domain units between the reference time domain unit and the first time domain unit in the SL PRS resource, and/or the number of time domain units used to transmit PSSCH DMRS in the SL PRS resource.
  • the frequency domain offset value corresponding to the first time domain unit may be based on the first frequency domain offset value, the first parameter, the time interval between the first time domain unit and the reference time domain unit, and the first time domain unit.
  • the comb tooth size of a SL PRS is determined.
  • the frequency domain offset value k corresponding to the first time domain unit can be based on the formula Determine, where k′ can be determined based on the time interval D between the first time domain unit and the reference time domain unit and Table 1, l represents the index of the first time domain unit within the SL PRS resource, represents the index of the reference time domain unit in the SL PRS resource, and ⁇ represents the first parameter, that is, the number of time domain units used to transmit PSSCH DMRS between the reference time domain unit and the first time domain unit in the SL PRS resource.
  • Figure 13 shows a schematic diagram of resources used to transmit SL PRS and PSSCH DMRS within the SL PRS resources in this embodiment of the present application.
  • the SL PRS resource includes time domain unit n, time domain unit n+1 and time domain unit n+2, and time domain unit n is a reference time domain unit, and the first frequency domain offset corresponding to the reference time domain unit is 0, the comb tooth size of the first SL PRS is 2, and the first parameter ⁇ is 1.
  • the frequency domain offset value corresponding to time domain unit n+2 is 1.
  • the resource distribution within the SL PRS resources used to transmit SL PRS and PSSCH DMRS can be seen in Figure 13.
  • Method 2 the frequency domain offset value corresponding to the first time domain unit may be determined based on the first frequency domain offset value and the second parameter.
  • the second parameter is used to indicate the number of time domain units used to transmit PSSCH DMRS between the earliest time domain unit and the first time domain unit in the SL PRS resource and the number of second time domain units.
  • the above-mentioned second time domain unit is the first time domain unit after the time domain unit for transmitting PSSCH DMRS in the SL PRS resource (also called PSSCH DMRS time domain unit).
  • the second time domain unit is the first time domain unit used to transmit SL PRS after the time domain unit that transmits PSSCH DMRS in the SL PRS resource.
  • the frequency domain offset value corresponding to the frequency domain resource used to transmit the first SL PRS in the second time domain unit and the frequency domain offset corresponding to the resource used to transmit the PSSCH DMRS in the SL PRS resource can be set The values are different. It is helpful to stagger the frequency domain resources for transmitting the first SL PRS in the second time domain unit and the frequency domain resources for transmitting the PSSCH DMRS in the PSSCH DMRS time domain unit. For example, if the frequency domain offset value corresponding to the resource used to transmit PSSCH DMRS in the SL PRS resource is 0, then the frequency domain offset value corresponding to the second time domain unit is 1.
  • the frequency domain offset value corresponding to the second time domain unit may be the same as the frequency domain offset value corresponding to the PSSCH DMRS time domain unit, which is not limited in the embodiment of the present application.
  • the frequency domain offset value corresponding to the first time domain unit may be based on the first frequency domain offset value, the second parameter, the time interval between the first time domain unit and the reference time domain unit, and the first time domain unit.
  • the comb tooth size of a SL PRS is determined.
  • the frequency domain offset value k corresponding to the first time domain unit can be based on the formula Determine, where k′ can be determined based on the time interval D between the first time domain unit and the reference time domain unit and Table 1, l represents the index of the first time domain unit within the SL PRS resource, represents the index of the reference time domain unit in the SL PRS resource, 2* ⁇ represents the second parameter, that is, the number of time domain units used to transmit PSSCH DMRS between the reference time domain unit and the first time domain unit in the SL PRS resource and The sum of the number of second time domain units.
  • Figure 14 shows a schematic diagram of resources used to transmit SL PRS and PSSCH DMRS within SL PRS resources according to another embodiment of the present application.
  • the time domain unit set includes time domain units 0 to 13, and time domain units 1 to 12 belong to SL PRS resources, time domain unit 0 is used for AGC, and time domain unit 13 is used for GP.
  • the time domain unit 1 is a reference time domain unit
  • the time domain unit 4 and the time domain unit 10 are time domain units used to transmit PSSCH DMRS
  • the time domain unit 5 located after the time domain unit 4 and the time domain unit 5 located after the time domain unit Domain unit 11 is the second time domain unit.
  • Time domain units 2 to 3, 6 to 9, and 12 are first time domain units.
  • the frequency domain offset value corresponding to the first time domain unit can be determined according to the method introduced in the above method 2.
  • the parameter D corresponding to time domain unit 2 is 1
  • the parameter D corresponding to time domain unit 3 is 2
  • the parameter D corresponding to time domain unit 6 is 3
  • the parameter D corresponding to time domain unit 7 is 4
  • the parameter D corresponding to time domain unit 8 is 4.
  • the corresponding parameter D is 5, the parameter D corresponding to the time domain unit 9 is 6, and the parameter D corresponding to the time domain unit 12 is 7.
  • the frequency domain position k 1 for transmitting the first SL PRS may be calculated based on the first frequency domain offset value k.
  • the value of k 1 indicates the reference point used to determine the frequency domain position.
  • the first frequency domain offset value can be selected independently by the terminal device.
  • the first frequency domain offset value may be determined based on a resource listening result of the terminal device for the SL PRS resource.
  • the terminal device can receive the SL PRS resource reservation information sent by other terminal devices, measure the received power of signals sent by other terminals (such as SL RSRP), and exclude the resources reserved by terminals with higher signal received power, and finally use the remaining Determine the first frequency domain offset value in the resource.
  • the terminal device may also randomly determine the first frequency domain offset value, which is not limited in the embodiment of the present application.
  • the terminal device can independently select the SL PRS transmission resource in the SL PRS resource pool
  • the first frequency domain offset value used by the terminal device to send the SL PRS can be independently determined by the terminal device.
  • the terminal device can independently select the SL PRS transmission resource in the SL PRS resource pool
  • the first frequency domain offset value can also be selected by the network device.
  • the first frequency domain offset value may be configured by the network device for the terminal device.
  • the network device may determine the first frequency domain offset value based on the comb tooth size of the first SL PRS.
  • the network device can also be determined based on other methods, and the embodiment of the present application does not limit this.
  • the solution of the embodiment of the present application is introduced above by taking the configuration parameter including the first frequency domain offset value as an example.
  • the following is introduced by taking the configuration parameter including the comb tooth size of the first SL PRS as an example.
  • the comb tooth size is used to indicate the frequency domain interval between two adjacent SL PRS transmissions by the terminal device within the SL PRS resource.
  • two adjacent SL PRSs can be understood as the time domain resources occupied by the two SL PRSs are discontinuous, but the terminal device does not transmit other SL PRSs between the sending times of the two SL PRSs.
  • two adjacent SL PRSs can be understood as the time domain resources occupied by the two SL PRSs are continuous and adjacent.
  • the above frequency domain spacing is associated with the number of time domain units transmitting PSSCH DMRS in the SL PRS resource.
  • the above frequency domain interval is related to whether the SL PRS resources include resources for transmitting PSSCH DMRS.
  • the frequency domain interval corresponding to the SLPRS in the SL PRS resource can be 2 frequency domain units, that is, the comb tooth size can be 2.
  • the SL PRS resources do not include resources for transmitting PSSCH DMRS.
  • the frequency domain interval corresponding to the SLPRS in the SL PRS resources can be 1 frequency domain unit, that is, the comb tooth size can be 1.
  • the comb tooth size corresponding to the first SL PRS is less than or equal to the number of symbols used to send SL PRS in the SL PRS resource.
  • the comb tooth size corresponding to the first SL PRS may be less than or equal to the number of symbols contained in the SL PRS resource minus 1.
  • the configuration parameters belong to a configuration parameter set, and the configuration parameter set includes one or more candidate values of the configuration parameters.
  • the comb tooth size corresponding to the first SL PRS may belong to a comb tooth size set, and the comb tooth size set includes one or more comb tooth size candidate values.
  • the set of comb tooth sizes can be expressed as ⁇ 2, 4, 6, 12 ⁇ , in which the candidate values including the four comb tooth sizes are 2, 4, 6, and 12 respectively.
  • configuration parameter set may be configured by the network device or may be predefined by the protocol, which is not limited in the embodiments of this application.
  • the candidate values in the configuration parameter set can be associated with the resource pool type in which the SL PRS resource is located.
  • the resource pool types can include dedicated resource pools and shared resource pools.
  • the dedicated resource pool indicates that all resources in the resource pool are only used to send SL PRS, or that all resources in the resource pool are only used to send SL PRS and PSSCH DMRS.
  • the shared resource pool indicates that all resources in the resource pool can be used to send sidelink signals such as SL PRS, PSSCH DMRS, PSCCH, and PSSCH.
  • the candidate value of the comb tooth size corresponding to the resource pool may include one or more of the comb tooth size set. If the resource pool is a shared resource pool, the candidate value of the comb tooth size corresponding to the resource pool may be one of the comb tooth size sets.
  • the candidate value of the comb tooth size corresponding to the resource pool can include one of 2, 4, 6, and 12 or more. If the resource pool is a shared resource pool, the candidate value of the comb tooth size corresponding to the resource pool may be 2.
  • the terminal device can independently determine the comb tooth size corresponding to the first SL PRS from the above comb tooth size set, or the network device can select the comb tooth size corresponding to the first SL PRS for the terminal device from the comb tooth size set.
  • the embodiments of the present application do not limit this.
  • the comb tooth size corresponding to the first SL PRS may be determined based on the expected comb tooth size of the terminal device. That is to say, the terminal device can send the desired comb tooth size to the network device, so that the network device configures the comb tooth size corresponding to the first SL PRS for the terminal device based on the desired comb tooth size.
  • the terminal device may determine a desired comb tooth size based on positioning requirements (eg, time required for positioning). Generally, if positioning needs to be completed in a shorter time, a smaller comb tooth size can be selected as the desired comb tooth size of the terminal device. On the contrary, if positioning can be completed within a longer period of time, a larger comb tooth size can be selected as the desired comb tooth size of the terminal device.
  • positioning requirements eg, time required for positioning
  • a smaller comb tooth size can be selected as the comb tooth size corresponding to the first SL PRS.
  • a larger comb tooth size can be selected as the comb tooth size corresponding to the first SL PRS.
  • the comb tooth size corresponding to the first SL PRS is preconfigured, and the first frequency domain offset value is indicated by the network device.
  • the terminal device can determine based on the preconfiguration information of the SL PRS resource pool. That is, during the preconfiguration process of the SL PRS resource pool, you can configure the comb tooth size of the SL PRS in the specified SL PRS resource pool.
  • the network device may send configuration parameters to the terminal device to configure the first frequency domain offset.
  • configuring the comb tooth size in the SL PRS resource pool in a pre-configured manner helps to simplify the complexity of coordinating SL PRS resources between different terminal devices.
  • the comb tooth size corresponding to the first SL PRS is preconfigured, and the first frequency domain offset value is independently selected by the terminal device.
  • the terminal device can determine based on the preconfiguration information of the SL PRS resource pool. That is, during the preconfiguration process of the SL PRS resource pool, you can configure the comb tooth size of the SL PRS in the specified SL PRS resource pool.
  • the terminal device may select the first frequency domain offset according to the resource listening result.
  • configuring the comb tooth size in the SL PRS resource pool in a pre-configured manner helps to simplify the complexity of coordinating SL PRS resources between different terminal devices.
  • the comb tooth size and the first frequency domain offset corresponding to the first SL PRS are configured by the network device.
  • the terminal device may send first information to the network device, where the first information is used to indicate the desired comb tooth size of the terminal device.
  • the network device may determine the comb tooth size corresponding to the first SL PRS and the first frequency domain offset based on the comb tooth size expected by the terminal device. Then, the network device can send configuration parameters to the terminal device, where the configuration parameters include a comb tooth size corresponding to an SL PRS and a first frequency domain offset.
  • the terminal device may determine a desired comb tooth size based on positioning requirements.
  • the network device can configure the comb tooth size corresponding to the first SL PRS for the terminal device based on the comb tooth size expected by the terminal device, which helps to meet the positioning requirements of different terminal devices.
  • the comb tooth size corresponding to the first SL PRS and the first frequency domain offset value are determined independently by the terminal device.
  • the terminal device can select the comb tooth size corresponding to the first SL PRS from the comb tooth size set.
  • the terminal device may select the first frequency domain offset according to the resource listening result.
  • the comb tooth size corresponding to the first SL PRS is independently determined by the terminal device, and the first frequency domain offset value is configured by the network device.
  • the terminal device can select the comb tooth size corresponding to the first SL PRS from the comb tooth size set. In some implementations, the terminal device can send a SL PRS corresponding comb tooth size to the network device.
  • the network device can select the comb tooth size corresponding to the first SL PRS based on the terminal device, and configure the first frequency domain offset value for the terminal device.
  • FIG. 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1500 shown in FIG. 15 includes a processing unit 1510.
  • the processing unit 1510 is used to determine the configuration parameters of the first side row positioning reference signal SL PRS.
  • the first SL PRS occupies some or all of the SL PRS resources, wherein the configuration parameters are used to indicate one of the following or A variety of information: the frequency domain resources used to transmit the first SL PRS in the SL PRS resources; the SL PRS sequence of the first SL PRS.
  • the configuration parameter if the configuration parameter is used to indicate the frequency domain resource of the first SL PRS, the configuration parameter includes the reference time domain unit of the SL PRS resource used to transmit the SL PRS.
  • the first frequency domain offset value corresponding to the resource; and/or the comb tooth size corresponding to the first SL PRS is transmitted in the SL PRS resource.
  • the reference time domain unit is the earliest time domain unit among the time domain units included in the SL PRS resource.
  • the SL PRS resources also include a first time domain unit used to transmit the first SL PRS, and the resources for transmitting the first SL PRS in the first time domain unit correspond to
  • the frequency domain offset value is determined based on the first frequency domain offset value and/or the first parameter, the first parameter is used to indicate the reference time domain unit in the SL PRS resource and the first time domain unit The number of time domain units between, and/or the number of time domain units used to transmit PSSCH DMRS.
  • the SL PRS resources also include a second time domain unit used to transmit the first SL PRS, and the frequency domain resources of the first SL PRS in the second time domain unit are The corresponding frequency domain offset value is different from the frequency domain offset value corresponding to the resource for transmitting PSSCH DMRS in the SL PRS resource.
  • the second time domain unit is the first time domain unit after the time domain unit for transmitting PSSCH DMRS in the SL PRS resource.
  • the configuration parameters are determined based on the resource interception result of the terminal device for the SL PRS resource.
  • the comb tooth size is used to indicate that the terminal device in the SL PRS resource transmits two The frequency domain separation between adjacent SL PRS.
  • the frequency domain interval is associated with the number of time domain units for transmitting PSSCH DMRS in the SL PRS resource.
  • the frequency domain interval is 2 resource units RE.
  • the comb tooth size corresponding to the first SL PRS is less than or equal to the number of symbols used to send SL PRS in the SL PRS resource.
  • the configuration parameter belongs to a configuration parameter set, and the configuration parameter set includes candidate values of one or more configuration parameters.
  • the candidate values in the configuration parameter set are associated with resource pool types.
  • the comb tooth size corresponding to the first SL PRS is determined based on the expected comb tooth size of the terminal device.
  • the configuration parameters are determined through one or more of the following methods: selection by the terminal device; network device configuration.
  • FIG. 16 is a schematic diagram of a network device according to an embodiment of the present application.
  • the network device 1600 shown in FIG. 16 includes: a sending unit 1610.
  • the sending unit 1610 is configured to send the configuration parameters of the first sideline positioning reference signal SL PRS to the terminal device.
  • the first SL PRS occupies some or all of the SL PRS resources, where the configuration parameters are used to indicate the following One or more pieces of information: the frequency domain resource used to transmit the first SL PRS in the SL PRS resource; the SL PRS sequence of the first SL PRS.
  • the configuration parameter if the configuration parameter is used to indicate the frequency domain resource of the first SL PRS, the configuration parameter includes the reference time domain unit of the SL PRS resource used to transmit the SL PRS.
  • the first frequency domain offset value corresponding to the resource; and/or the comb tooth size corresponding to the first SL PRS is transmitted in the SL PRS resource.
  • the reference time domain unit is the earliest time domain unit among the time domain units included in the SL PRS resource.
  • the SL PRS resources also include a first time domain unit used to transmit the first SL PRS, and the resources for transmitting the first SL PRS in the first time domain unit correspond to
  • the frequency domain offset value is determined based on the first frequency domain offset value and/or the first parameter, the first parameter is used to indicate the reference time domain unit in the SL PRS resource and the first time domain unit The number of time domain units between, and/or the number of time domain units used to transmit PSSCH DMRS.
  • the SL PRS resources also include a second time domain unit used to transmit the first SL PRS, and the frequency domain resources of the first SL PRS in the second time domain unit are The corresponding frequency domain offset value is different from the frequency domain offset value corresponding to the resource for transmitting PSSCH DMRS in the SL PRS resource.
  • the second time domain unit is the first time domain unit after the time domain unit for transmitting PSSCH DMRS in the SL PRS resource.
  • the configuration parameters are determined based on the resource interception result of the terminal device for the SL PRS resource.
  • the comb tooth size is used to indicate that the terminal device in the SL PRS resource transmits two The frequency domain separation between adjacent SL PRS.
  • the frequency domain interval is associated with the number of time domain units transmitting PSSCH DMRS in the SL PRS resource.
  • the frequency domain interval is 2 REs.
  • the comb tooth size corresponding to the first SL PRS is less than or equal to the number of OFDM symbols used to send SL PRS in the SL PRS resource.
  • the configuration parameter belongs to a configuration parameter set, and the configuration parameter set includes candidate values of one or more configuration parameters.
  • the candidate values in the configuration parameter set are associated with resource pool types.
  • the comb tooth size corresponding to the first SL PRS is determined based on the expected comb tooth size of the terminal device.
  • the network device is an access network device or a core network device.
  • the processing unit 1510 may be a processor 1710.
  • the terminal device 1500 may also include a transceiver 1730 and a memory 1720, as specifically shown in Figure 17.
  • the sending unit 1610 may be a transceiver 1740.
  • the network device 1600 may also include a transceiver 1730 and a memory 1720, as shown in FIG. 17 .
  • Figure 17 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dashed line in Figure 17 indicates that the unit or module is optional.
  • the device 1700 can be used to implement the method described in the above method embodiment.
  • Device 1700 may be a chip, terminal device or network device.
  • Apparatus 1700 may include one or more processors 1710.
  • the processor 1710 can support the device 1700 to implement the method described in the foregoing method embodiments.
  • the processor 1710 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 1700 may also include one or more memories 1720.
  • the memory 1720 stores a program, which can be executed by the processor 1710, so that the processor 1710 executes the method described in the foregoing method embodiment.
  • the memory 1720 may be independent of the processor 1710 or integrated in the processor 1710.
  • Apparatus 1700 may also include a transceiver 1730.
  • Processor 1710 may communicate with other devices or chips through transceiver 1730.
  • the processor 1710 can transmit and receive data with other devices or chips through the transceiver 1730 .
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • the "instruction" mentioned may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the term "correspondence” can mean that there is a direct correspondence or indirect correspondence between the two, or it can also mean that there is an association between the two, or it can also mean indicating and being instructed, configuring and being configured, etc. relation.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种用于侧行定位的方法、终端设备及网络设备。该方法包括终端设备确定第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,其中,所述配置参数用于指示以下一种或多种信息:所述SL PRS资源中用于传输所述第一SL PRS的频域资源;所述第一SL PRS的SL PRS序列。在本申请实施例中,终端设备可以确定第一SL PRS的配置参数,以便终端设备可以基于配置参数向其他终端设备传输第一SL PRS,有助于实现基于侧行链路的定位。

Description

用于侧行定位的方法、终端设备及网络设备 技术领域
本申请涉及通信技术领域,并且更为具体地,用于侧行定位的方法、终端设备及网络设备。
背景技术
目前希望通过引入基于侧行链路的定位,来对定位技术进行增强,那么终端设备如何获取测定定位参考信号(sidelink positioning reference signal,SL PRS)的配置参数是亟待解决的问题。
发明内容
本申请提供一种用于侧行定位的方法、终端设备及网络设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种用于侧行定位的方法,包括:终端设备确定第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,其中,所述配置参数用于指示以下一种或多种信息:所述SL PRS资源中用于传输所述第一SL PRS的频域资源;所述第一SL PRS的SL PRS序列。
第二方面,提供一种用于侧行定位的方法,包括:网络设备向终端设备发送第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,其中,所述配置参数用于指示以下一种或多种信息:所述SL PRS资源中用于传输所述第一SL PRS的频域资源;所述第一SL PRS的SL PRS序列。
第三方面,提供了一种终端设备,包括:处理单元,用于确定第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,其中,所述配置参数用于指示以下一种或多种信息:所述SL PRS资源中用于传输所述第一SL PRS的频域资源;所述第一SL PRS的SL PRS序列。
第四方面,提供了一种网络设备,包括:发送单元,用于向终端设备发送第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,其中,所述配置参数用于指示以下一种或多种信息:所述SL PRS资源中用于传输所述第一SL PRS的频域资源;所述第一SL PRS的SL PRS序列。
第五方面,提供一种终端设备,包括处理器、存储器以及通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,使得所述终端设备执行第一方面的方法中的部分或全部步骤。
第六方面,提供一种网络设备,包括处理器、存储器、收发器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,使得所述网络设备执行第二方面的方法中的部分或全部步骤。
第七方面,本申请实施例提供了一种通信系统,该系统包括上述的终端设备和/或网络设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与终端设备或网络设备进行交互的其他设备。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得通信设备(例如,终端设备或网络设备)执行上述各个方面的方法中的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使通信设备(例如,终端设备或网络设备)执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
在本申请实施例中,终端设备可以确定第一SL PRS的配置参数,以便终端设备可以基于配置参数向其他终端设备传输第一SL PRS,有助于实现基于侧行链路的定位。
附图说明
图1为可应用本申请实施例的无线通信系统的系统架构示例图。
图2为网络覆盖内的侧行通信的场景示例图。
图3为部分网络覆盖的侧行通信的场景示例图。
图4为网络覆盖外的侧行通信的场景示例图。
图5是基于中央控制节点的侧行通信的场景示例图。
图6为基于广播的侧行通信方式的示例图。
图7为基于单播的侧行通信方式的示例图。
图8为基于组播的侧行通信方式的示例图。
图9示出了传输DL PRS的资源的示意图。
图10是本申请实施例的SL PRS资源的示意图。
图11是本申请另一实施例的SL PRS资源的示意图。
图12是本申请实施例的用于侧行定位的方法的流程图。
图13是本申请实施例的SL PRS资源内用于传输SL PRS以及PSSCH DMRS的资源的示意图。
图14是本申请另一实施例的SL PRS资源内用于传输SL PRS以及PSSCH DMRS的资源的示意图。
图15是本申请实施例的终端设备的示意图。
图16是本申请实施例的网络设备的示意图。
图17是本申请实施例的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
通信系统架构
图1是可应用本申请实施例的无线通信系统100的系统架构示例图。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和一个终端设备,可选地,该无线通信系统100可以包括一个或多个网络设备110和/或一个或多个终端设备120。针对一个网络设备110,该一个或多个终端设备120可以均位于该网络设备110的网络覆盖范围内,也可以均位于该网络设备110的网络覆盖范围外,也可以一部分位于该网络设备110的覆盖范围内,另一部分位于该网络设备110的网络覆盖范围外,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端设备、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、车辆、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。例如,终端设备可以充当调度实体,其在车辆外联(vehicle-to-everything,V2X)或设备到设备通信(device-to-device,D2D)等中的终端设备之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。可选地,终端设备可以用于充当基站。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point, TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、V2X、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
不同网络覆盖情况下的侧行通信
侧行通信指的是基于侧行链路的通信技术。侧行通信例如可以是设备到设备(device to device,D2D)或车联网(vehicle to everything,V2X)通信。传统的蜂窝系统中的通信数据在终端设备和网络设备之间进行接收或者发送,而侧行通信支持在终端设备与终端设备之间直接进行通信数据传输。相比于传统的蜂窝通信,终端设备与终端设备直接进行通信数据的传输可以具有更高的频谱效率以及更低的传输时延。例如,车联网系统采用侧行通信技术。
在侧行通信中,根据终端设备所处的网络覆盖的情况,可以将侧行通信分为网络覆盖内的侧行通信,部分网络覆盖的侧行通信,及网络覆盖外的侧行通信。
图2为网络覆盖内的侧行通信的场景示例图。在图2所示的场景中,两个终端设备120a均处于网络设备110的覆盖范围内。因此,两个终端设备120a均可以接收网络设备110的配置信令(本申请中的配置信令也可替换为配置信息),并根据网络设备110的配置信令确定侧行配置。在两个终端设备120a均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图3为部分网络覆盖的侧行通信的场景示例图。在图3所示的场景中,终端设备120a与终端设备120b进行侧行通信。终端设备120a位于网络设备110的覆盖范围内,因此终端设备120a能够接收到网络设备110的配置信令,并根据网络设备110的配置信令确定侧行配置。终端设备120b位于网络覆盖范围外,无法接收网络设备110的配置信令。在这种情况下,终端设备120b可以根据预配置(pre-configuration)信息和/或位于网络覆盖范围内的终端设备120a发送的物理侧行广播信道(physical sidelink broadcast channel,PSBCH)中携带的信息确定侧行配置。在终端设备120a和终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图4为网络覆盖外的侧行通信的场景示例图。在图4所示的场景中,两个终端设备120b均位于网络覆盖范围外。在这种情况下,两个终端设备120b均可以根据预配置信息确定侧行配置。在两个终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
基于中央控制节点的侧行通信
图5为基于中央控制节点的侧行通信的场景示例图。在该侧行通信场景中,多个终端设备可以构成一个通信组,且该通信组内具有中央控制节点。该中央控制节点可以为通信组内的一个终端设备(如图5中的终端设备1),该终端设备又可以称为簇头(cluster header,CH)终端设备。该中央控制节点可以负责完成以下功能中的一项或多项:通信组的建立,通信组的组成员的加入和离开,在通信组内进行资源协调,为其他终端设备分配侧行传输资源,接收其他终端设备的侧行反馈信息,以及与其他通信组进行资源协调。
侧行通信的模式
某些标准或协议(如第三代合作伙伴计划(3rd Generation Partnership Project,3GPP))定义了两种侧行通信的模式:第一模式和第二模式。
在第一模式下,终端设备的资源(本申请提及的资源也可称为传输资源,如时频资源)是由网络设备分配的。终端设备可以根据网络设备分配的资源在侧行链路上进行数据的发送。网络设备可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。该第一模式可以应用于有网络设备覆盖的场景,如前文图2所示的场景。在图2所示的场景中,终端设备120a位于网络设备110的网 络覆盖范围内,因此网络设备110可以为终端设备120a分配侧行传输过程中使用的资源。
在第二模式下,终端设备可以自主在资源池(resource pool,RP)中选取一个或多个资源。然后,终端设备可以根据选择出的资源进行侧行传输。例如,在图4所示的场景中,终端设备120b位于小区覆盖范围外。因此,终端设备120b可以在预配置的资源池中自主选取资源进行侧行传输。或者,在图2所示的场景中,终端设备120a也可以在网络设备110配置的资源池中自主选取一个或多个资源进行侧行传输。
在一些实现方式中,终端设备可以通过以下步骤1和步骤2来实现第二模式下的资源分配方案。
步骤1:终端设备将资源选择窗内所有的可用资源作为资源集合A。具体可以分为两种情况1-1以及情况1-2。
情况1-1中,如果终端设备在侦听窗内某些时隙没有进行侦听,则这些没有侦听的时隙在选择窗内对应的时隙上的全部资源被排除掉。在一些实现方式中,终端设备可以基于所用资源池配置中的资源预留周期(resource reservation period)域的取值集合确定侦听窗内没有侦听的时隙在选择窗内对应的时隙。
情况1-2中,如果终端设备在侦听窗内侦听到物理侧行控制信道(physical sidelink control channel,PSCCH),测量该PSCCH的参考信号接收功率(reference signal received power,RSRP)或者该PSCCH调度的PSSCH的RSRP。如果测量的RSRP大于侧行参考信号接收功率(sidelink reference signal received power,SL-RSRP)阈值,并且根据该PSCCH中传输的侧行控制信息中的资源预留信息确定其预留的资源在资源选择窗内,则从集合A中排除对应资源。如果资源集合A中剩余资源不足资源集合A进行资源排除前全部资源的X%,则将SL-RSRP阈值抬升3dB,重新执行步骤1。在一些实现方式中,上述X可能的取值可以为{20,35,50},终端设备可以根据待发送数据的优先级从该取值集合中确定参数X。另外,上述SL-RSRP阈值与终端侦听到的PSCCH中携带的优先级以及终端设备待发送数据的优先级有关。终端设备将集合A中经资源排除后的剩余资源作为候选资源集合。
步骤2:终端设备从候选资源集合中随机选择若干资源,作为其初次传输以及重传的发送资源。
侧行通信的数据传输方式
某些侧行通信系统(如长期演进-车联网(long term evolution vehicle to everything,LTE-V2X))支持基于广播的数据传输方式(下文简称广播传输)。对于广播传输,接收端终端可以为发送端终端周围的任意一个终端设备。以图6为例,终端设备1是发送端终端,该发送端终端对应的接收端终端是终端设备1周围的任意一个终端设备,例如可以是图6中的终端设备2-终端设备6。
除了广播传输之外,某些通信系统还支持基于单播的数据传输方式(下文简称单播传输)和/或基于组播的数据传输方式(下文简称组播传输)。例如,新无线-车联网(new radio vehicle to everything,NR-V2X)希望支持自动驾驶。自动驾驶对车辆之间的数据交互提出了更高的要求。例如,车辆之间的数据交互需要更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配方式等。因此,为了提升车辆之间的数据交互性能,NR-V2X引入了单播传输和组播传输。
对于单播传输,接收端终端一般只有一个终端设备。以图7为例,终端设备1和终端设备2之间进行的是单播传输。终端设备1可以为发送端终端,终端设备2可以为接收端终端,或者终端设备1可以为接收端终端,终端设备2可以为发送端终端。
对于组播传输,接收端终端可以是一个通信组内的终端设备,或者,接收端终端可以是在一定传输距离内的终端设备。以图8为例,终端设备1、终端设备2、终端设备3和终端设备4构成一个通信组。如果终端设备1发送数据,则该组内的其他终端设备(终端设备2至终端设备4)均可以是接收端终端。
基于下行链路的定位
在基于下行链路的定位中,网络设备可以为终端设备提供4个定位频率层(frequency layer)的下行定位参考信号(downlink positioning reference signal,DL PRS)DL PRS配置。其中,每个定位频率层的参数结构中提供了以下DL PRS的配置参数:DL PRS的子载波间隔;DL PRS的循环前缀(cyclic prefix,CP)长度;DL PRS的频域资源带宽;DL PRS资源的频域起始频率位置;DL PRS的频域参考点“Point A”;DL PRS的梳齿尺寸“Comb-N”。
其中,DL PRS的频域资源带宽的取值可以是分配给DL PRS的物理资源块(physical resource block,PRB)的个数。在一些情况下,DL PRS的频域资源带宽的最小值可以是24个PRB,颗粒度可以是4个PRB。DL PRS的频域资源带宽的最大值可以是272个PRB。
DL PRS资源的频域起始频率位置用于指示DL PRS在频域资源分配的起始PRB的索引号。PRB的索引号是相对于DL PRS的DL PRS的频域参考点“PointA”所定义的。
每个定位频率层所对应的上述DL PRS配置参数可以应用于该定位频率层所包含的所有DL PRS资源上。也就是说,在一个定位频率层里面,来自多个不同TRP的所有DL PRS可以使用同样的子载波间隔和CP长度,同样的梳齿尺寸,发送在同样的频率子带上,并且占用一样的带宽。这样的设计可以 支持终端设备同时接收并测量同一频点上来自多个不同的TRP的DL PRS。
在一些场景中,TRP层的参数中也会包括DL PRS的配置参数。可以包括一个用于唯一识别定位TRP的参数,例如,该TRP的物理小区ID,该TRP的NR小区全局标识(NCGI)、该TRP的绝对无线频道编号(absolute radio frequency channel number,ARFCN)等。通常,每个TRP层里面可以最多配置2个DL PRS资源集。针对每个DL PRS资源集TRP层的参数中DL PRS的配置参数包括DL PRS资源集合识别标识(用“nr-DL-PRS-ResourceSetID”表示);DL PRS的传输周期和时隙偏移(用“dl-PRS-Periodicity-and-ResourceSetSlotOffset”表示);DL PRS资源的重复因子(用“dl-PRS-ResourceRepetitionFactor”表示);DL PRS资源重复发送的时间间隔(用“dl-PRS-ResourceTimeGap”表示);DL PRS的静默(muting)配置;以及DL PRS资源所占的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(下文简称“符号”)数(用“dl-PRS-NumSymbols”表示)。
上述DL PRS的传输周期和时隙偏移用于指示DL PRS资源集中所有DL PRS资源的时域发送行为。在一些实现方式中,可配置的DL PRS的传输周期的最小值是4毫秒,而可配置的DL PRS的传输周期的最大值是10240毫秒。目前,DL PRS的配置支持灵活的子载波间隔包括15KHz,30KHz,60KHz和120KHz。在不同的子载波间隔情况下,可配置的DL PRS传输周期值范围可以是一样的。图9示出了梳齿尺寸为2,RE偏移分别为0和1的情况下传输DL PRS的资源的示意图。
上述DL PRS资源的重复因子用于指示DL PRS资源在每个DL PRS传输周期内的重复传输次数。目前,同一个DL PRS资源的重复传输可以被终端设备用来聚合多次传输的DL PRS能量,有助于增加DL PRS的覆盖距离以及提高定位精度。在FR2系统中,DL PRS资源的重复传输还可以被终端设备用来做接收波束扫描操作。终端设备可以用不同的接收波束来接收同一个DL PRS资源的重复传输,从而找到最佳的TRP发送波束和终端设备接收波束匹配。另一方面,DL PRS资源的重复发送会增加DL PRS的传输开销,目前为了控制传输开销,在3GPP NR R16的规范中,DL PRS资源的重复因子取值为1,2,4,6,8,16和32。
上述DL PRS资源重复发送的时间间隔用于指示同一个DL PRS资源的连续两次重复传输之间的时隙数。
上述DL PRS的静默配置用于指示DL PRS在某些分配时频资源上不发送DL PRS。静默配置可以理解为DL PRS并不会在所有的分配的时频资源上发送,而是有意在某些指定的时频资源上不发送。一方面,静默配置可以避免DL PRS和其他信号(比如,同步信号块(synchronization signal block,SSB))发生冲突,另一方面,静默配置可以避免不同TRP发送的信号之间的干扰,例如,可以通过静默配置指示与终端设备相距较近的TRP的DL PRS不发送,并配置与终端设备相距较远的TRP发送DL PRS,这样,终端设备便可以不受指示静默的TRP的干扰,而收到来自较远的TRP的DL PRS。
上述DL PRS资源所占的OFDM符号数用于指示一个DL PRS资源在一个时隙内部所分配的OFDM符号数量。
通常,上述TRP层的参数中包括的DL PRS配置参数可以应用于TRP层对应的DL PRS资源集中的所有的DL PRS资源。因此,属于同一DL PRS资源集的DL PRS资源会以相同的传输周期、相同的重复传输次数发送DL PRS,并且DL PRS占用相同个数的OFDM符号。
在一些实现方式中,针对每个DL PRS资源,DL PRS配置参数还可以包括:DL PRS资源识别ID(用“nr-DL-PRS-ResourceID”表示);DL PRS的序列ID(用“dl-PRS-SequenceID”表示);DL PRS的起始频域资源单元偏移(用“dl-PRS-CombSizeN-AndReOffset”表示);DL PRS的资源时隙偏移(用“dl-PRS-ResourceSlotOffset”表示);DL PRS的OFDM符号偏移(用“dl-PRS-ResourceSymbolOffset”表示);DL PRS的准共址(Quasi Co-Location,QCL)信息(用“dl-PRS-QCL-Info”表示)。
上述DL PRS的起始频域资源单元偏移用于指示DL PRS资源在一个时隙内的第一个分配的OFDM符号上资源映射所用的频域资源单元偏移值。通常,根据该参数以及TS38.211中定义的相对偏移值,终端设备可以确定每个OFDM符号上资源映射所使用的频域资源单元偏移值。
上述DL PRS的资源时隙偏移用于指示相对于DL PRS资源集的时隙偏移。该参数可以确定每个DL PRS资源所处的时隙位置。
上述DL PRS的OFDM符号偏移用于指示DL PRS资源在一个时隙内的时频资源分配位置。该参数可以用于指示时隙内的起始OFDM符号的索引号。
上述DL PRS的QCL信息用于指示DL PRS的QCL信息。
基于侧行链路的定位
基于侧行的定位为R18定位技术的增强方案之一,在这一课题中将考虑支持蜂窝网络覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求,将考虑V2X用例,公共安全用例,商业用例和工业互联网(industrial internet of things,IIOT)用例的定位要求,并考虑支持以下功能:绝对定位,测距/测向,及 相对定位;研究侧行测量量和Uu接口测量量相结合的定位方法;研究侧行定位参考信号,包括信号设计,物理层控制信令,资源分配,物理层测量量,及相关的物理层过程等;研究定位系统架构及信令过程,例如配置,测量上报等。
对于绝对定位,终端设备可以根据测量结果直接确定自身的绝对地理或者称为基于终端设备的绝对定位。或者,终端设备可以将测量结果上报给定位服务器,例如LMF,然后由LMF计算终端设备的绝对位置并通知该终端设备,这种方式称为终端设备辅助的绝对定位。对于测距/测向或相对定位,终端设备设备可以根据接收到的定位参考信号估计信号的往返时间,到达角,信号接收强度等信息,对相对距离和相对方向进行估计。
如上文所述,目前希望通过引入基于侧行链路的定位,来对定位技术进行增强。为了便于理解本申请,下文先介绍本申请实施例中侧行通信系统SL PRS资源的时域位置。
假设时域单元集合可以包括一个或多个时域单元,在一些实现方式中,时域单元集合中的全部时域单元可以用于传输SL PRS,即时域单元集合包括的时域单元为SL PRS资源。在另一些实现方式中,时域单元集合中的部分时域单元可以用于传输SL PRS。
在一些实现方式中,时域单元集合中用于传输SL PRS的时域单元可以被划分为一个或多个SL PRS资源。其中,SL PRS资源可以作为一个整体被一个终端设备预留或选择,或者说,SL PRS资源可以是终端设备进行资源预留的基本时域单元。
在本申请实施例中,若时域单元集合中用于传输SL PRS的时域单元可以被划分为多个SL PRS资源,有助于提高SL PRS资源的灵活性。若时域单元集合中用于传输SL PRS的时域单元可以被划分为一个SL PRS资源,有助于简化SL PRS资源预留或选择的复杂度。
在一些实现方式中,一个SL PRS资源包括的一个或多个时域单元可以属于一个资源池(例如,SL PRS资源池)。在另一些实现方式中,一个时域单元集合中包括的SL PRS资源的时域单元小于或等于时域单元集合中属于侧行资源池的时域单元的个数。
在一些实现方式中,SL PRS资源还可以用于传输PSSCH解调参考信号(demodulation reference signal,DMRS),此时,PSSCH DMRS可以称为第二类SL PRS。相应地,SL PRS可以称为第一类SLPRS。当然,在本申请实施例中,上述SL PRS资源还可以仅用于传输第一类SL PRS。
以时域单元集合为时隙,且时域单元集合为符号为例,SL PRS资源可以由属于SL PRS资源池的一个或多个符号组成,且属于同一个SL PRS资源的符号可以位于同一个时隙内,且SL PRS资源的符号小于或等于一个时隙内属于SL PRS资源池的符号的个数。
上述时域单元集合可以是已知通信系统中任一种时域单元集合,例如,时隙、子帧、帧等。当然,上述时域单元集合还可以是未来通信系统中引入的任一种时域单元集合,本申请实施例对此不作限定。
另外,上述时域单元可以是已知通信系统中任一种时域单元,例如,符号、时隙、子帧、帧等。当然,上述时域单元还可以是未来通信系统中引入的任一种时域单元,本申请实施例对此不作限定。
下文以时域单元集合中的部分时域单元用于传输SL PRS为例,结合图10至图11介绍本申请实施例的SL PRS资源。
在一些实现方式中,时域单元集合中用于传输SL PRS的时域单元可以视为一个SL PRS资源。参见图10,假设时域单元集合包括14个时域单元:时域单元0~13,并且时域单元0~10用于传输SL PRS,时域单元11~13用于侧行通信,例如,传输PSCCH、PSSCH或者PSFCH等。此时,时域单元0~10可以视为一个SL PRS资源。
在一些实现方式中,时域单元集合中用于传输SL PRS的时域单元可以视为多个SL PRS资源。参见图11,假设时域单元集合包括14个时域单元:时域单元0~13,并且时域单元0~10用于传输SL PRS,时域单元11~13用于侧行通信,例如,传输PSCCH、PSSCH或者PSFCH等。此时,时域单元0~3可以视为一个SL PRS资源,即SL PRS资源1。时域单元4~6可以视为一个SL PRS资源,即SL PRS资源2。时域单元7~10可以视为一个SL PRS资源,即SL PRS资源3。
如上文介绍,在下行定位场景中,DL PRS配置参数是由网络设备(例如,接入网设备和核心网设备)配置的。如果引入基于侧行链路的定位方案,那么终端设备如何获取侧行链路中传输的PRS(又称“第一SL PRS”)的配置参数是亟待解决的问题。
因此,为了解决上述问题,本申请实施例提供了一种用于侧行定位的方法。在本申请实施例中,终端设备可以确定第一SL PRS的配置参数,以便终端设备可以基于配置参数向其他终端设备传输第一SL PRS,有助于实现基于侧行链路的定位。为了便于理解,下文结合图12介绍本申请实施例的用于侧行定位的方法的流程图。图12所示的方法可以包括步骤S1210。
在步骤S1210中,终端设备确定第一侧行定位参考信号SL PRS的配置参数。
上述第一SL PRS可以占用SL PRS资源中的部分或全部资源,或者说,第一SL PRS可以占用SL  PRS资源中的部分或全部时域单元。其中,SL PRS资源的介绍可以参见上文,为了简洁,在此不再赘述。
在一些实现方式中,上述配置参数的适用范围可以为可用于SL PRS发送的SL BWP、SL PRS资源池以及可用于SL PRS的SL频率层中的一种或多种。
也就是说,如果配置参数是针对SL BWP配置的,则在SL BWP范围内的所有可用于SL PRS发送的资源池内发送的SL PRS可以采用上述配置参数。如果配置参数是针对SL频率层配置的,则在SL频率层范围内的所有可用于SL PRS发送的资源池内发送的SL PRS可以采用上述配置参数。如果配置参数是针对SL PRS资源池配置的,则在SL PRS资源池内的所有可用于SL PRS发送的资源池内发送的SL PRS可以采用上述配置参数。下文主要以针对SL PRS资源池的配置参数为例说明。
在本申请实施例中,上述配置参数的确定方式有多种。在一些实现方式中,上述配置参数可以由网络设备为终端设备配置。其中,网络设备可以包括接入网设备和/或核心网设备(例如,LMF)。例如,网络设备可以针对SL PRS资源池进行上述配置参数的配置。又例如,网络设备可以针对可用于SL PRS发送的SL BWP进行上述配置参数的配置,又例如,网络设备可以针对可用于SL PRS的SL频率层进行上述配置参数的配置。
在另一些实现方式中,上述配置参数可以是预配置的。例如,可以针对SL PRS资源池进行上述配置参数的预配置。又例如,可以针对可用于SL PRS发送的SL BWP进行上述配置参数的预配置,又例如,可以针对可用于SL PRS的SL频率层进行上述配置参数的预配置。本申请实施例对此不作限定。
在另一些实现方式中,上述配置参数可以由终端设备自主选择。下文将具体介绍确定方式,为了简洁,在此不再赘述。
在一些实现方式中,上述第一SL PRS配置参数可以包括以下配置参数中的一种或多种:第一SL PRS的子载波间隔;第一SL PRS的CP长度;第一SL PRS的频域资源带宽;第一SL PRS资源的频域起始频率位置;第一SL PRS的频域参考点;第一SL PRS的梳齿尺寸。第一SL PRS资源集合识别标识;第一SL PRS的传输周期和时隙偏移;第一SL PRS资源的重复因子;第一SL PRS资源重复发送的时间间隔;第一SL PRS的静默配置;第一SL PRS资源所占的符号数;第一SL PRS资源识别ID;第一SL PRS的序列指示信息(例如序列标识);第一SL PRS的起始频域资源单元偏移;第一SL PRS的资源时隙偏移;第一SL PRS的OFDM符号偏移;以及第一SL PRS的准共址信息。
在一些实现方式中,上述第一SL PRS配置参数可以用于配置第一SL PRS的传输。例如,配置参数可以用于指示SL PRS资源中第一SL PRS的时域资源、SL PRS资源中第一SL PRS的频域资源、SL PRS资源中第一SL PRS信号序列、SL PRS资源中第一SL PRS的传输参数(例如,第一SL PRS的传输周期、重复发送的时间间隔等)。
在一些实现方式中,若第一SL PRS的配置参数指示SL PRS资源中第一SL PRS的频域资源,配置参数可以包括SL PRS资源的参考时域单元上用于传输SL PRS的资源对应的第一频域偏移值;和/或SL PRS资源内传输第一SL PRS对应的梳齿尺寸。
上述参考时域单元可以是SL PRS资源包括的时域单元中最早的时域单元,或者说,参考时域单元可以是SL PRS资源中时域位置最早的时域单元。继续参见图10所示,参考时域单元可以为SL PRS资源中的时域单元0。在本申请实施例中,参考时域单元还可以为SL PRS资源中的时域位置最晚(或者说最后)一个时域单元。当然,在本申请实施例中,参考时域单元还可以为SL PRS资源中的任一个时域单元。
上述第一频域偏移值可以是资源元素(resource element,RE)偏移值,当然,上述第一频域偏移值还可以是以其他频域单元表示的偏移值,本申请实施例对此不作限定。
在一些实现方式中,SL PRS资源中除参考时域单元之外的其他时域单元(又称“第一时域单元”)上传输第一SL PRS的频域偏移值可以基于第一频域偏移值确定。
在一些实现方式中,第一时域单元上传输第一SL PRS的频域偏移值可以基于第一频域偏移值、第一时域单元与参考时域单元之间的时间间隔,以及第一SL PRS的梳齿尺寸确定。
以参考时域单元为SL PRS资源内最早的时域单元为例,假设SL PRS资源内的第一频域偏移值为
Figure PCTCN2022111758-appb-000001
SL PRS资源内第一SL PRS的梳齿尺寸为
Figure PCTCN2022111758-appb-000002
第一时域单元对应的频域偏移值k可以基于公式
Figure PCTCN2022111758-appb-000003
确定,其中,k′可以基于第一时域单元与参考时域单元之间的时间间隔D以及表1确定,
Figure PCTCN2022111758-appb-000004
l表示SL PRS资源内第一时域单元的索引,
Figure PCTCN2022111758-appb-000005
表示SL PRS资源内参考时域单元的索引。
表1
Figure PCTCN2022111758-appb-000006
Figure PCTCN2022111758-appb-000007
如上文所述,在一些场景中,SL PRS资源中会包括用于传输PSSCH DMRS的时域单元。在一些实现方式中,用于传输PSSCH DMRS的时域单元对应的频域偏移值可以为预设值,例如可以为0。下文结合方式1和方式2介绍在上述场景中,第一时域单元对应的频域偏移值的计算方式。
方式1,第一时域单元对应的频域偏移值可以基于第一频域偏移值以及第一参数确定。其中,第一参数用于指示SL PRS资源内参考时域单元与第一时域单元之间的时域单元数量,和/或SL PRS资源内用于传输PSSCH DMRS的时域单元的数量。
在一些实现方式中,第一时域单元对应的频域偏移值可以基于第一频域偏移值、第一参数、第一时域单元与参考时域单元之间的时间间隔,以及第一SL PRS的梳齿尺寸确定。
以参考时域单元为SL PRS资源内最早的时域单元为例,假设SL PRS资源内的第一频域偏移值为
Figure PCTCN2022111758-appb-000008
SL PRS资源内第一SL PRS的梳齿尺寸为
Figure PCTCN2022111758-appb-000009
第一时域单元对应的频域偏移值k可以基于公式
Figure PCTCN2022111758-appb-000010
确定,其中,k′可以基于第一时域单元与参考时域单元之间的时间间隔D以及表1确定,
Figure PCTCN2022111758-appb-000011
l表示SL PRS资源内第一时域单元的索引,
Figure PCTCN2022111758-appb-000012
表示SL PRS资源内参考时域单元的索引,Δ表示第一参数,即SL PRS资源内参考时域单元与第一时域单元之间用于传输PSSCH DMRS的时域单元的个数。
图13示出了本申请实施例的SL PRS资源内用于传输SL PRS以及PSSCH DMRS的资源的示意图。假设SL PRS资源包括时域单元n、时域单元n+1以及时域单元n+2,并且时域单元n为参考时域单元,参考时域单元对应的第一频域偏移
Figure PCTCN2022111758-appb-000013
为0,第一SL PRS的梳齿尺寸
Figure PCTCN2022111758-appb-000014
为2,第一参数Δ为1。相应地,基于上述公式可以计算出时域单元n+2对应的频域偏移值为1,则SL PRS资源内用于传输SL PRS以及PSSCH DMRS的资源分布情况可以参见图13所示。
方式2,第一时域单元对应的频域偏移值可以基于第一频域偏移值、第二参数确定。
其中,第二参数用于指示SL PRS资源内最早的时域单元与第一时域单元之间用于传输PSSCH DMRS的时域单元的数量以及第二时域单元的个数。
在一些实现方式中,上述第二时域单元为SL PRS资源内传输PSSCH DMRS的时域单元(又称PSSCH DMRS时域单元)之后的第一个时域单元。或者说,第二时域单元是SL PRS资源内位于传输PSSCH DMRS的时域单元之后的第一个用于传输SL PRS的时域单元。
在一些实现方式中,可以设置第二时域单元内用于传输第一SL PRS的频域资源对应的频域偏移值与SL PRS资源内用于传输PSSCH DMRS的资源对应的频域偏移值不同。有助于将第二时域单元内传输第一SL PRS的频域资源,与PSSCH DMRS时域单元内传输PSSCH DMRS的频域资源错开。例如,SL PRS资源内用于传输PSSCH DMRS的资源对应的频域偏移值为0,则第二时域单元对应的频域偏移值为1。
当然,在本申请实施例中,第二时域单元对应的频域偏移值可以与PSSCH DMRS时域单元对应的频域偏移值相同,本申请实施例对此不作限定。
在一些实现方式中,第一时域单元对应的频域偏移值可以基于第一频域偏移值、第二参数、第一时域单元与参考时域单元之间的时间间隔,以及第一SL PRS的梳齿尺寸确定。
以参考时域单元为SL PRS资源内最早的时域单元为例,假设SL PRS资源内的第一频域偏移值为
Figure PCTCN2022111758-appb-000015
SL PRS资源内第一SL PRS的梳齿尺寸为
Figure PCTCN2022111758-appb-000016
第一时域单元对应的频域偏移值k可以基于公式
Figure PCTCN2022111758-appb-000017
确定,其中,k′可以基于第一时域单元与参考时域单元之间的时间间隔D以及表1确定,
Figure PCTCN2022111758-appb-000018
l表示SL PRS资源内第一时域单元的索引,
Figure PCTCN2022111758-appb-000019
表示SL PRS资源内参考时域单元的索引,2*Δ表示第二参数,即SL PRS资源内参考时域单元与第一时域单元之间用于传输PSSCH DMRS的时域单元的个数与第二时域单元的个数之和。
图14示出了本申请另一实施例的SL PRS资源内用于传输SL PRS以及PSSCH DMRS的资源的示意图。假设时域单元集合包括时域单元0~13,并且时域单元1~12属于SL PRS资源,时域单元0用于AGC,时域单元13用于GP。且时域单元1为参考时域单元,时域单元4以及时域单元10为用于传输PSSCH DMRS的时域单元,位于时域单元4之后的时域单元5以及位于时域单元之后的时域单元11为第二时域单元。时域单元2~3,6~9,以及12为第一时域单元。
相应地,第一时域单元对应的频域偏移值可以按照上述方式2介绍的方法确定。其中,时域单元2对应的参数D为1,时域单元3对应的参数D为2,时域单元6对应的参数D为3,时域单元7对应的参数D为4,时域单元8对应的参数D为5,时域单元9对应的参数D为6,时域单元12对应的参数D为7。
在一些实现方式中,基于上述方式计算第一频域偏移值k之后,可以基于第一频域偏移值k计算传输第一SL PRS的频域位置k 1。以第一频域偏移值
Figure PCTCN2022111758-appb-000020
为例,
Figure PCTCN2022111758-appb-000021
Figure PCTCN2022111758-appb-000022
其中,m=0,1,…。k 1的取值指示用于确定频域位置的参考点。
在一些实现方式中,k 1=0可以表示参考点为分配给该终端设备的频域资源中最早的频域资源,例如,分配给该终端设备的第一个PRB中的第一个RE。在另一些实现方式中,k 1=0可以表示参考点为SL PRS资源池的起始频域资源,例如,SL PRS资源池中第一个PRB的第一个RE。在另一些实现方式中,k 1=0可以表示参考点为当前SL BWP的起始频域资源,例如,当前SL BWP的第一个PRB的第一个RE。
如上文所述,第一频域偏移值可以由终端设备自主选择。在一些实现方式中,第一频域偏移值可以是基于终端设备的针对SL PRS资源的资源侦听结果确定的。例如,终端设备可以接收其它终端设备发送的SL PRS资源预留信息,并测量其他终端发送信号的接收功率(例如SL RSRP),并排除信号接收功率较高的终端预留的资源,最终在剩余的资源中确定第一频域偏移值。当然,在本申请实施例中,终端设备也可以随机确定第一频域偏移值,本申请实施例对此不作限定。
需要说明的是,如果在SL PRS的资源池内可以由终端设备自主选择SL PRS发送资源,该终端设备发送SL PRS所采用的第一频域偏移值可以由终端设备自主确定,当然,在本申请实施例中,如果在SL PRS的资源池内可以由终端设备自主选择SL PRS发送资源,第一频域偏移值也可以由网络设备选择。
如上文所述,第一频域偏移值可以由网络设备为终端设备配置。在一些实现方式,网络设备可以基于第一SL PRS的梳齿尺寸确定第一频域偏移值。当然,在本申请实施例中,网络设备还可以基于其他方式确定,本申请实施例对此不作限定。
上文以配置参数包括第一频域偏移值为例介绍了本申请实施例的方案,下文以配置参数包括第一SL PRS的梳齿尺寸为例进行介绍。
在一些实现方式中,梳齿尺寸用于指示SL PRS资源内终端设备传输两个相邻的SL PRS之间的频域间隔。
需要说明的是,上述相邻的两个SL PRS可以理解为两个SL PRS占用的时域资源不连续,但是在两个SL PRS的发送时间之间终端设备并未传输其他SL PRS。或者相邻的两个SL PRS可以理解为两个SL PRS占用的时域资源连续且相邻。
在一些实现方式中,上述频域间隔与SL PRS资源中传输PSSCH DMRS的时域单元的数量关联。或者说,上述频域间隔与SL PRS资源中是否包含传输PSSCH DMRS的资源关联。
例如,在SL PRS资源内包括用于传输PSSCH DMRS的资源,则SL PRS资源内SLPRS对应的频域间隔可以为2个频域单元,即梳齿尺寸可以为2。又例如,在SL PRS资源内不包括用于传输PSSCH DMRS的资源,SL PRS资源内SLPRS对应的频域间隔可以为1个频域单元,即梳齿尺寸可以为1。
在一些实现方式中,第一SL PRS对应的梳齿尺寸小于或等于SL PRS资源内用于发送SL PRS的符号个数。例如,第一SL PRS对应的梳齿尺寸可以小于或等于SL PRS资源内包含的符号数减1。
在一些实现方式中,配置参数属于配置参数集合,配置参数集合包括一个或多个配置参数的候选值。或者说,第一SL PRS对应的梳齿尺寸可以属于梳齿尺寸集合,在梳齿尺寸集合中包括一个或多个梳齿尺寸候选值。例如,梳齿尺寸集合可以表示为{2,4,6,12},其中,包括4个梳齿尺寸的候选值分别为2,4,6,12。
需要说明的是,配置参数集合可以是网络设备配置的,也可以是协议预定义的,本申请实施例对此不作限定。
在一些实现方式中,配置参数集合中的候选值可以与SL PRS资源所在的资源池类型关联。其中,资源池类型可以包括专用资源池和共享资源池。专用资源池指示资源池内的全部资源仅用于发送SL PRS,或者资源池内的全部资源仅用于发送SL PRS以及PSSCH DMRS。共享资源池指示资源池内的全部资源可以用于发送SL PRS、PSSCH DMRS、PSCCH、PSSCH等侧行信号。
在一些实现方式中,若资源池为专用资源池,则该资源池对应的梳齿尺寸的候选值可以包括梳齿尺寸集合中的一个或多个。若资源池为共享资源池,则该资源池对应的梳齿尺寸的候选值可以为梳齿尺寸集合中的一个。
以梳齿尺寸集合为{2,4,6,12}为例,若资源池为专用资源池,则该资源池对应的梳齿尺寸的候选值可以包括2,4,6,12中的一个或多个。若资源池为共享资源池,则该资源池对应的梳齿尺寸的候选值可以为2。
相应地,终端设备可以从上述梳齿尺寸集合中自主确定第一SL PRS对应的梳齿尺寸,或者,网络设备可以从梳齿尺寸集合中为终端设备选择第一SL PRS对应的梳齿尺寸。本申请实施例对此不作限定。
在一些实现方式中,第一SL PRS对应的梳齿尺寸可以是基于终端设备的期望梳齿尺寸确定的。也即是说,终端设备可以将期望的梳齿尺寸发送给网络设备,以便网络设备基于期望的梳齿尺寸为终端设备配置第一SL PRS对应的梳齿尺寸。
在一些实现方式中,终端设备可以基于定位需求(例如,定位所需的时间)确定期望的梳齿尺寸。通常,若需要在较短的时间内完成定位,可以选择较小的梳齿尺寸作为终端设备期望的梳齿尺寸。相反地,若可以在较长的时间内完成定位,可以选择较大的梳齿尺寸作为终端设备期望的梳齿尺寸。
当然,在本申请实施例中,也可以直接定位需求选择第一SL PRS对应的梳齿尺寸。通常,若需要在较短的时间内完成定位,可以选择较小的梳齿尺寸作为第一SL PRS对应的梳齿尺寸。相反地,若可以在较长的时间内完成定位,可以选择较大的梳齿尺寸作为第一SL PRS对应的梳齿尺寸。
上文分别介绍的第一频域偏移值与第一SL PRS对应的梳齿尺寸的确定方式。需要说明的是,上述两个参数的各个配置方式可以结合使用。为了简洁,下文仅以5种可能的结合方式为例进行介绍。
结合方式1中,第一SL PRS对应的梳齿尺寸是预配置的,第一频域偏移值是由网络设备指示的。
对于第一SL PRS对应的梳齿尺寸而言,终端设备可以基于SL PRS资源池的预配置信息确定。即在对SL PRS资源池预配置过程中,可以配置指定SL PRS资源池内SL PRS的梳齿尺寸。
对于第一频域偏移值而言,网络设备可以向终端设备发送配置参数,配置第一频域偏移。
在本申请实施例中,以预配置的方式在SL PRS资源池内配置梳齿尺寸,有助于简化不同的终端设备之间协调SL PRS资源的复杂度。
结合方式2中,第一SL PRS对应的梳齿尺寸是预配置的,第一频域偏移值是由终端设备自主选择的。
对于第一SL PRS对应的梳齿尺寸而言,终端设备可以基于SL PRS资源池的预配置信息确定。即在对SL PRS资源池预配置过程中,可以配置指定SL PRS资源池内SL PRS的梳齿尺寸。
对于第一频域偏移值而言,终端设备可以根据资源侦听结果选择第一频域偏移。
在本申请实施例中,以预配置的方式在SL PRS资源池内配置梳齿尺寸,有助于简化不同的终端设备之间协调SL PRS资源的复杂度。
结合方式3中,第一SL PRS对应的梳齿尺寸以及第一频域偏移由网络设备配置。
在一些实现方式中,终端设备可以向网络设备发送第一信息,第一信息用于指示终端设备期望的梳齿尺寸。相应地,网络设备可以基于终端设备期望的梳齿尺寸,确定第一SL PRS对应的梳齿尺寸以及第一频域偏移。然后,网络设备可以向终端设备发送配置参数,该配置参数包括一SL PRS对应的梳齿尺寸以及第一频域偏移。
在一些实现方式中,终端设备可以基于定位需求确定期望的梳齿尺寸。
在本申请实施例中,网络设备可以基于终端设备期望的梳齿尺寸,为终端设备配置第一SL PRS对应的梳齿尺寸,有助于满足不同终端设备的定位需求。
结合方式4中,第一SL PRS对应的梳齿尺寸以及第一频域偏移值由终端设备自主确定。
对于第一SL PRS对应的梳齿尺寸而言,终端设备可以从梳齿尺寸集合中选择第一SL PRS对应的梳齿尺寸。
对于第一频域偏移值而言,终端设备可以根据资源侦听结果选择第一频域偏移。
结合方式5中,第一SL PRS对应的梳齿尺寸由终端设备自主确定,第一频域偏移值由网络设备配置。
对于第一SL PRS对应的梳齿尺寸而言,终端设备可以从梳齿尺寸集合中选择第一SL PRS对应的梳齿尺寸。在一些实现方式中,终端设备可以向网络设备发送一SL PRS对应的梳齿尺寸。
对于第一频域偏移值而言,网络设备可以基于终端设备选择第一SL PRS对应的梳齿尺寸,为终端设备配置第一频域偏移值。
上文结合图1至图14,详细描述了本申请的方法实施例,下面结合图15至图17,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图15是本申请实施例的终端设备的示意图。图15所示的终端设备1500包括:处理单元1510。
处理单元1510,用于确定第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,其中,所述配置参数用于指示以下一种或多种信息:所述SL PRS资源中用于传输所述第一SL PRS的频域资源;所述第一SL PRS的SL PRS序列。
在一种可能的实现方式中,若所述配置参数用于指示所述第一SL PRS的频域资源,所述配置参数包括所述SL PRS资源的参考时域单元上用于传输SL PRS的资源对应的第一频域偏移值;和/或所述SL PRS资源内传输所述第一SL PRS对应的梳齿尺寸。
在一种可能的实现方式中,若所述配置参数包括所述第一频域偏移值,所述参考时域单元为所述SL PRS资源包括的时域单元中最早的时域单元。
在一种可能的实现方式中,所述SL PRS资源还包括用于传输所述第一SL PRS的第一时域单元,所述第一时域单元内传输所述第一SL PRS的资源对应的频域偏移值基于所述第一频域偏移值和/或第一参数确定,所述第一参数用于指示所述SL PRS资源内参考时域单元与所述第一时域单元之间的时域单元数量,和/或用于传输PSSCH DMRS的时域单元的数量。
在一种可能的实现方式中,所述SL PRS资源还包括用于传输所述第一SL PRS的第二时域单元,所述第二时域单元内所述第一SL PRS的频域资源对应的频域偏移值与所述SL PRS资源内传输PSSCH DMRS的资源对应的频域偏移值不同。
在一种可能的实现方式中,所述第二时域单元为所述SL PRS资源内传输PSSCH DMRS的时域单元之后的第一个时域单元。
在一种可能的实现方式中,所述配置参数是基于所述终端设备的针对所述SL PRS资源的资源侦听结果确定的。
在一种可能的实现方式中,若所述配置参数用于指示所述第一SL PRS对应的梳齿尺寸,所述梳齿尺寸用于指示所述SL PRS资源内所述终端设备传输两个相邻的SL PRS之间的频域间隔。
在一种可能的实现方式中,所述频域间隔与所述SL PRS资源中传输PSSCH DMRS的时域单元的数量关联。
在一种可能的实现方式中,若所述SL PRS资源中包含传输PSSCH DMRS的时域单元,所述频域间隔为2个资源单元RE。
在一种可能的实现方式中,所述第一SL PRS对应的梳齿尺寸小于或等于所述SL PRS资源内用于发送SL PRS的符号个数。
在一种可能的实现方式中,所述配置参数属于配置参数集合,所述配置参数集合包括一个或多个配置参数的候选值。
在一种可能的实现方式中,所述配置参数集合中的候选值与资源池类型关联。
在一种可能的实现方式中,所述第一SL PRS对应的梳齿尺寸是基于所述终端设备的期望梳齿尺寸确定的。
在一种可能的实现方式中,所述配置参数是通过以下一种或多种方式确定的:所述终端设备选择的;网络设备配置。
图16是本申请实施例的网络设备的示意图。图16所示的网络设备1600包括:发送单元1610。
发送单元1610,用于向终端设备发送第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,其中,所述配置参数用于指示以下一种或多种信息:所述SL PRS资源中用于传输所述第一SL PRS的频域资源;所述第一SL PRS的SL PRS序列。
在一种可能的实现方式中,若所述配置参数用于指示所述第一SL PRS的频域资源,所述配置参数包括所述SL PRS资源的参考时域单元上用于传输SL PRS的资源对应的第一频域偏移值;和/或所述SL PRS资源内传输所述第一SL PRS对应的梳齿尺寸。
在一种可能的实现方式中,若所述配置参数包括所述第一频域偏移值,所述参考时域单元为所述SL PRS资源包括的时域单元中最早的时域单元。
在一种可能的实现方式中,所述SL PRS资源还包括用于传输所述第一SL PRS的第一时域单元,所述第一时域单元内传输所述第一SL PRS的资源对应的频域偏移值基于所述第一频域偏移值和/或第一参数确定,所述第一参数用于指示所述SL PRS资源内参考时域单元与所述第一时域单元之间的时域单元数量,和/或用于传输PSSCH DMRS的时域单元的数量。
在一种可能的实现方式中,所述SL PRS资源还包括用于传输所述第一SL PRS的第二时域单元,所述第二时域单元内所述第一SL PRS的频域资源对应的频域偏移值与所述SL PRS资源内传输PSSCH DMRS的资源对应的频域偏移值不同。
在一种可能的实现方式中,所述第二时域单元为所述SL PRS资源内传输PSSCH DMRS的时域单元之后的第一个时域单元。
在一种可能的实现方式中,所述配置参数是基于所述终端设备的针对所述SL PRS资源的资源侦听结果确定的。
在一种可能的实现方式中,若所述配置参数用于指示所述第一SL PRS对应的梳齿尺寸,所述梳齿尺寸用于指示所述SL PRS资源内所述终端设备传输两个相邻的SL PRS之间的频域间隔。
在一种可能的实现方式中,所述频域间隔与所述SL PRS资源中传输PSSCH DMRS的时域单元的数量关联。
在一种可能的实现方式中,若所述SL PRS资源中包含传输PSSCH DMRS的时域单元,所述频域间隔为2个RE。
在一种可能的实现方式中,所述第一SL PRS对应的梳齿尺寸小于或等于所述SL PRS资源内用于发送SL PRS的OFDM符号个数。
在一种可能的实现方式中,所述配置参数属于配置参数集合,所述配置参数集合包括一个或多个配置参数的候选值。
在一种可能的实现方式中,所述配置参数集合中的候选值与资源池类型关联。
在一种可能的实现方式中,所述第一SL PRS对应的梳齿尺寸是基于所述终端设备的期望梳齿尺寸确定的。
在一种可能的实现方式中,所述网络设备为接入网设备或核心网设备。
在可选的实施例中,所述处理单元1510可以为处理器1710。终端设备1500还可以包括收发器1730和存储器1720,具体如图17所示。
在可选的实施例中,所述发送单元1610可以为收发器1740。网络设备1600还可以包括收发器1730和存储器1720,具体如图17所示。
图17是本申请实施例的通信装置的示意性结构图。图17中的虚线表示该单元或模块为可选的。该装置1700可用于实现上述方法实施例中描述的方法。装置1700可以是芯片、终端设备或网络设备。
装置1700可以包括一个或多个处理器1710。该处理器1710可支持装置1700实现前文方法实施例所描述的方法。该处理器1710可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置1700还可以包括一个或多个存储器1720。存储器1720上存储有程序,该程序可以被处理器1710执行,使得处理器1710执行前文方法实施例所描述的方法。存储器1720可以独立于处理器1710也可以集成在处理器1710中。
装置1700还可以包括收发器1730。处理器1710可以通过收发器1730与其他设备或芯片进行通信。例如,处理器1710可以通过收发器1730与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例 如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (67)

  1. 一种用于侧行定位的方法,其特征在于,包括:
    终端设备确定第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,
    其中,所述配置参数用于指示以下一种或多种信息:
    所述SL PRS资源中用于传输所述第一SL PRS的频域资源;
    所述第一SL PRS的SL PRS序列。
  2. 如权利要求1所述的方法,其特征在于,若所述配置参数用于指示所述第一SL PRS的频域资源,所述配置参数包括所述SL PRS资源的参考时域单元上用于传输SL PRS的资源对应的第一频域偏移值;和/或
    所述SL PRS资源内传输所述第一SL PRS对应的梳齿尺寸。
  3. 如权利要求2所述的方法,其特征在于,若所述配置参数包括所述第一频域偏移值,所述参考时域单元为所述SL PRS资源包括的时域单元中最早的时域单元。
  4. 如权利要求2或3所述的方法,其特征在于,所述SL PRS资源还包括用于传输所述第一SL PRS的第一时域单元,所述第一时域单元内传输所述第一SL PRS的资源对应的频域偏移值基于所述第一频域偏移值和/或第一参数确定,所述第一参数用于指示所述SL PRS资源内参考时域单元与所述第一时域单元之间的时域单元数量,和/或用于传输PSSCH DMRS的时域单元的数量。
  5. 如权利要求2或3所述的方法,其特征在于,所述SL PRS资源还包括用于传输所述第一SL PRS的第二时域单元,所述第二时域单元内所述第一SL PRS的频域资源对应的频域偏移值与所述SL PRS资源内传输PSSCH DMRS的资源对应的频域偏移值不同。
  6. 如权利要求5所述的方法,其特征在于,所述第二时域单元为所述SL PRS资源内传输PSSCH DMRS的时域单元之后的第一个时域单元。
  7. 如权利要求2-6中任一项所述的方法,其特征在于,所述配置参数是基于所述终端设备的针对所述SL PRS资源的资源侦听结果确定的。
  8. 如权利要求2所述的方法,其特征在于,若所述配置参数用于指示所述第一SL PRS对应的梳齿尺寸,所述梳齿尺寸用于指示所述SL PRS资源内所述终端设备传输两个相邻的SL PRS之间的频域间隔。
  9. 如权利要求8所述的方法,其特征在于,所述频域间隔与所述SL PRS资源中传输PSSCH DMRS的时域单元的数量关联。
  10. 如权利要求9所述的方法,其特征在于,若所述SL PRS资源中包含传输PSSCH DMRS的时域单元,所述频域间隔为2个资源单元RE。
  11. 如权利要求8-10中任一项所述的方法,其特征在于,所述第一SL PRS对应的梳齿尺寸小于或等于所述SL PRS资源内用于发送SL PRS的OFDM符号个数。
  12. 如权利要求8-11中任一项所述的方法,其特征在于,所述配置参数属于配置参数集合,所述配置参数集合包括一个或多个配置参数的候选值。
  13. 如权利要求12所述的方法,其特征在于,所述配置参数集合中的候选值与资源池类型关联。
  14. 如权利要求8-13中任一项所述的方法,其特征在于,所述第一SL PRS对应的梳齿尺寸是基于所述终端设备的期望梳齿尺寸确定的。
  15. 如权利要求1-14中任一项所述的方法,其特征在于,所述配置参数是通过以下一种或多种方式确定的:所述终端设备选择的;网络设备配置。
  16. 一种用于侧行定位的方法,其特征在于,包括:
    网络设备向终端设备发送第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,
    其中,所述配置参数用于指示以下一种或多种信息:
    所述SL PRS资源中用于传输所述第一SL PRS的频域资源;
    所述第一SL PRS的SL PRS序列。
  17. 如权利要求16所述的方法,其特征在于,若所述配置参数用于指示所述第一SL PRS的频域资源,所述配置参数包括所述SL PRS资源的参考时域单元上用于传输SL PRS的资源对应的第一频域偏移值;和/或
    所述SL PRS资源内传输所述第一SL PRS对应的梳齿尺寸。
  18. 如权利要求17所述的方法,其特征在于,若所述配置参数包括所述第一频域偏移值,所述参 考时域单元为所述SL PRS资源包括的时域单元中最早的时域单元。
  19. 如权利要求17或18所述的方法,其特征在于,所述SL PRS资源还包括用于传输所述第一SL PRS的第一时域单元,所述第一时域单元内传输所述第一SL PRS的资源对应的频域偏移值基于所述第一频域偏移值和/或第一参数确定,所述第一参数用于指示所述SL PRS资源内参考时域单元与所述第一时域单元之间的时域单元数量,和/或用于传输PSSCH DMRS的时域单元的数量。
  20. 如权利要求17或18所述的方法,其特征在于,所述SL PRS资源还包括用于传输所述第一SL PRS的第二时域单元,所述第二时域单元内所述第一SL PRS的频域资源对应的频域偏移值与所述SL PRS资源内传输PSSCH DMRS的资源对应的频域偏移值不同。
  21. 如权利要求20所述的方法,其特征在于,所述第二时域单元为所述SL PRS资源内传输PSSCH DMRS的时域单元之后的第一个时域单元。
  22. 如权利要求17-21中任一项所述的方法,其特征在于,所述配置参数是基于所述终端设备的针对所述SL PRS资源的资源侦听结果确定的。
  23. 如权利要求17所述的方法,其特征在于,若所述配置参数用于指示所述第一SL PRS对应的梳齿尺寸,所述梳齿尺寸用于指示所述SL PRS资源内所述终端设备传输两个相邻的SL PRS之间的频域间隔。
  24. 如权利要求23所述的方法,其特征在于,所述频域间隔与所述SL PRS资源中传输PSSCH DMRS的时域单元的数量关联。
  25. 如权利要求24所述的方法,其特征在于,若所述SL PRS资源中包含传输PSSCH DMRS的时域单元,所述频域间隔为2个RE。
  26. 如权利要求23-25中任一项所述的方法,其特征在于,所述第一SL PRS对应的梳齿尺寸小于或等于所述SL PRS资源内用于发送SL PRS的OFDM符号个数。
  27. 如权利要求23-26中任一项所述的方法,其特征在于,所述配置参数属于配置参数集合,所述配置参数集合包括一个或多个配置参数的候选值。
  28. 如权利要求27所述的方法,其特征在于,所述配置参数集合中的候选值与资源池类型关联。
  29. 如权利要求23-28中任一项所述的方法,其特征在于,所述第一SL PRS对应的梳齿尺寸是基于所述终端设备的期望梳齿尺寸确定的。
  30. 如权利要求17-29中任一项所述的方法,其特征在于,所述网络设备为接入网设备或核心网设备。
  31. 一种终端设备,其特征在于,包括:
    处理单元,用于确定第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,其中,所述配置参数用于指示以下一种或多种信息:
    所述SL PRS资源中用于传输所述第一SL PRS的频域资源;
    所述第一SL PRS的SL PRS序列。
  32. 如权利要求31所述的终端设备,其特征在于,若所述配置参数用于指示所述第一SL PRS的频域资源,所述配置参数包括所述SL PRS资源的参考时域单元上用于传输SL PRS的资源对应的第一频域偏移值;和/或
    所述SL PRS资源内传输所述第一SL PRS对应的梳齿尺寸。
  33. 如权利要求32所述的终端设备,其特征在于,若所述配置参数包括所述第一频域偏移值,所述参考时域单元为所述SL PRS资源包括的时域单元中最早的时域单元。
  34. 如权利要求32或33所述的终端设备,其特征在于,所述SL PRS资源还包括用于传输所述第一SL PRS的第一时域单元,所述第一时域单元内传输所述第一SL PRS的资源对应的频域偏移值基于所述第一频域偏移值和/或第一参数确定,所述第一参数用于指示所述SL PRS资源内参考时域单元与所述第一时域单元之间的时域单元数量,和/或用于传输PSSCH DMRS的时域单元的数量。
  35. 如权利要求32或33所述的终端设备,其特征在于,所述SL PRS资源还包括用于传输所述第一SL PRS的第二时域单元,所述第二时域单元内所述第一SL PRS的频域资源对应的频域偏移值与所述SL PRS资源内传输PSSCH DMRS的资源对应的频域偏移值不同。
  36. 如权利要求35所述的终端设备,其特征在于,所述第二时域单元为所述SL PRS资源内传输PSSCH DMRS的时域单元之后的第一个时域单元。
  37. 如权利要求32-36中任一项所述的终端设备,其特征在于,所述配置参数是基于所述终端设备的针对所述SL PRS资源的资源侦听结果确定的。
  38. 如权利要求32所述的终端设备,其特征在于,若所述配置参数用于指示所述第一SL PRS对应的梳齿尺寸,所述梳齿尺寸用于指示所述SL PRS资源内所述终端设备传输两个相邻的SL PRS之间 的频域间隔。
  39. 如权利要求38所述的终端设备,其特征在于,所述频域间隔与所述SL PRS资源中传输PSSCH DMRS的时域单元的数量关联。
  40. 如权利要求39所述的终端设备,其特征在于,若所述SL PRS资源中包含传输PSSCH DMRS的时域单元,所述频域间隔为2个资源单元RE。
  41. 如权利要求38-40中任一项所述的终端设备,其特征在于,所述第一SL PRS对应的梳齿尺寸小于或等于所述SL PRS资源内用于发送SL PRS的OFDM符号个数。
  42. 如权利要求38-41中任一项所述的终端设备,其特征在于,所述配置参数属于配置参数集合,所述配置参数集合包括一个或多个配置参数的候选值。
  43. 如权利要求42所述的终端设备,其特征在于,所述配置参数集合中的候选值与资源池类型关联。
  44. 如权利要求38-43中任一项所述的终端设备,其特征在于,所述第一SL PRS对应的梳齿尺寸是基于所述终端设备的期望梳齿尺寸确定的。
  45. 如权利要求31-44中任一项所述的终端设备,其特征在于,所述配置参数是通过以下一种或多种方式确定的:所述终端设备选择的;网络设备配置。
  46. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送第一侧行定位参考信号SL PRS的配置参数,所述第一SL PRS占用SL PRS资源中的部分或全部资源,
    其中,所述配置参数用于指示以下一种或多种信息:
    所述SL PRS资源中用于传输所述第一SL PRS的频域资源;
    所述第一SL PRS的SL PRS序列。
  47. 如权利要求46所述的网络设备,其特征在于,若所述配置参数用于指示所述第一SL PRS的频域资源,所述配置参数包括所述SL PRS资源的参考时域单元上用于传输SL PRS的资源对应的第一频域偏移值;和/或
    所述SL PRS资源内传输所述第一SL PRS对应的梳齿尺寸。
  48. 如权利要求47所述的网络设备,其特征在于,若所述配置参数包括所述第一频域偏移值,所述参考时域单元为所述SL PRS资源包括的时域单元中最早的时域单元。
  49. 如权利要求47或48所述的网络设备,其特征在于,所述SL PRS资源还包括用于传输所述第一SL PRS的第一时域单元,所述第一时域单元内传输所述第一SL PRS的资源对应的频域偏移值基于所述第一频域偏移值和/或第一参数确定,所述第一参数用于指示所述SL PRS资源内参考时域单元与所述第一时域单元之间的时域单元数量,和/或用于传输PSSCH DMRS的时域单元的数量。
  50. 如权利要求47或48所述的网络设备,其特征在于,所述SL PRS资源还包括用于传输所述第一SL PRS的第二时域单元,所述第二时域单元内所述第一SL PRS的频域资源对应的频域偏移值与所述SL PRS资源内传输PSSCH DMRS的资源对应的频域偏移值不同。
  51. 如权利要求50所述的网络设备,其特征在于,所述第二时域单元为所述SL PRS资源内传输PSSCH DMRS的时域单元之后的第一个时域单元。
  52. 如权利要求47-51中任一项所述的网络设备,其特征在于,所述配置参数是基于所述终端设备的针对所述SL PRS资源的资源侦听结果确定的。
  53. 如权利要求47所述的网络设备,其特征在于,若所述配置参数用于指示所述第一SL PRS对应的梳齿尺寸,所述梳齿尺寸用于指示所述SL PRS资源内所述终端设备传输两个相邻的SL PRS之间的频域间隔。
  54. 如权利要求53所述的网络设备,其特征在于,所述频域间隔与所述SL PRS资源中传输PSSCH DMRS的时域单元的数量关联。
  55. 如权利要求54所述的网络设备,其特征在于,若所述SL PRS资源中包含传输PSSCH DMRS的时域单元,所述频域间隔为2个RE。
  56. 如权利要求53-55中任一项所述的网络设备,其特征在于,所述第一SL PRS对应的梳齿尺寸小于或等于所述SL PRS资源内用于发送SL PRS的OFDM符号个数。
  57. 如权利要求53-56中任一项所述的网络设备,其特征在于,所述配置参数属于配置参数集合,所述配置参数集合包括一个或多个配置参数的候选值。
  58. 如权利要求57所述的网络设备,其特征在于,所述配置参数集合中的候选值与资源池类型关联。
  59. 如权利要求53-58中任一项所述的网络设备,其特征在于,所述第一SL PRS对应的梳齿尺寸 是基于所述终端设备的期望梳齿尺寸确定的。
  60. 如权利要求47-59中任一项所述的网络设备,其特征在于,所述网络设备为接入网设备或核心网设备。
  61. 一种终端设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,并控制所述收发器接收或发送信号,以使所述终端执行如权利要求1-15中任一项所述的方法。
  62. 一种网络设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,并控制所述收发器接收或发送信号,以使所述网络设备执行如权利要求16-30中任一项所述的方法。
  63. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-30中任一项所述的方法。
  64. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-30中任一项所述的方法。
  65. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-30中任一项所述的方法。
  66. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-30中任一项所述的方法。
  67. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-30中任一项所述的方法。
PCT/CN2022/111758 2022-08-11 2022-08-11 用于侧行定位的方法、终端设备及网络设备 WO2024031533A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111758 WO2024031533A1 (zh) 2022-08-11 2022-08-11 用于侧行定位的方法、终端设备及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111758 WO2024031533A1 (zh) 2022-08-11 2022-08-11 用于侧行定位的方法、终端设备及网络设备

Publications (1)

Publication Number Publication Date
WO2024031533A1 true WO2024031533A1 (zh) 2024-02-15

Family

ID=89850342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111758 WO2024031533A1 (zh) 2022-08-11 2022-08-11 用于侧行定位的方法、终端设备及网络设备

Country Status (1)

Country Link
WO (1) WO2024031533A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111213393A (zh) * 2017-08-17 2020-05-29 苹果公司 基于地理位置信息选择用于侧行链路通信的资源
WO2022059887A1 (ko) * 2020-09-17 2022-03-24 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 측위와 관련된 신호를 송수신하는 방법 및 이를 위한 장치
US20220201774A1 (en) * 2020-12-17 2022-06-23 Qualcomm Incorporated Sidelink positioning reference signal configuration
CN114731638A (zh) * 2019-11-18 2022-07-08 华为技术有限公司 侧行定位方法和装置
CN114885429A (zh) * 2021-02-05 2022-08-09 北京紫光展锐通信技术有限公司 通信方法及装置、存储介质、发送ue、网络设备以及接收ue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111213393A (zh) * 2017-08-17 2020-05-29 苹果公司 基于地理位置信息选择用于侧行链路通信的资源
CN114731638A (zh) * 2019-11-18 2022-07-08 华为技术有限公司 侧行定位方法和装置
WO2022059887A1 (ko) * 2020-09-17 2022-03-24 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 측위와 관련된 신호를 송수신하는 방법 및 이를 위한 장치
US20220201774A1 (en) * 2020-12-17 2022-06-23 Qualcomm Incorporated Sidelink positioning reference signal configuration
CN114885429A (zh) * 2021-02-05 2022-08-09 北京紫光展锐通信技术有限公司 通信方法及装置、存储介质、发送ue、网络设备以及接收ue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on potential solutions for sidelink positioning", 3GPP DRAFT; R1-2203566, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153041 *

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
CN106559872B (zh) 一种资源分配方法、装置及无线接入系统
WO2017132995A1 (zh) 业务传输的方法和装置
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
WO2018228537A1 (zh) 信息发送、接收方法及装置
US20210144731A1 (en) Data transmission method, network device, communications device, and storage medium
CN115843115A (zh) 侧行通信的方法及装置
WO2019015445A1 (zh) 一种通信方法及装置
CN115589596A (zh) 侧行通信的方法及装置
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2024031533A1 (zh) 用于侧行定位的方法、终端设备及网络设备
WO2024092758A1 (zh) 用于无线通信的方法及终端设备
WO2023123051A1 (zh) 通信方法和终端设备
WO2024031233A1 (zh) 通信方法及终端设备
WO2024031414A1 (zh) 用于侧行定位的方法、终端设备及网络设备
WO2024055235A1 (zh) 用于侧行通信的方法、第一设备以及终端设备
WO2023123073A1 (zh) 通信方法、终端设备及网络设备
WO2023108417A1 (zh) 通信方法及终端设备
WO2023205954A1 (zh) 侧行通信方法、终端设备及网络设备
WO2024055241A1 (zh) 通信方法、终端设备以及网络设备
WO2023028992A1 (zh) 无线通信的方法和终端
US11937276B1 (en) Method and device for sidelink communication
US20240049284A1 (en) Communication method and terminal device
WO2024108585A1 (zh) 用于侧行通信的方法、终端设备以及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954500

Country of ref document: EP

Kind code of ref document: A1