WO2024092758A1 - 用于无线通信的方法及终端设备 - Google Patents

用于无线通信的方法及终端设备 Download PDF

Info

Publication number
WO2024092758A1
WO2024092758A1 PCT/CN2022/130005 CN2022130005W WO2024092758A1 WO 2024092758 A1 WO2024092758 A1 WO 2024092758A1 CN 2022130005 W CN2022130005 W CN 2022130005W WO 2024092758 A1 WO2024092758 A1 WO 2024092758A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
resource
resource pool
symbol
time slot
Prior art date
Application number
PCT/CN2022/130005
Other languages
English (en)
French (fr)
Inventor
张世昌
马腾
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/130005 priority Critical patent/WO2024092758A1/zh
Publication of WO2024092758A1 publication Critical patent/WO2024092758A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a method and terminal device for wireless communication.
  • the terminal device when the terminal device performs resource exclusion, it uses single-time slot resources as resource units. That is to say, each element in the candidate resource set obtained after resource exclusion is a single-time slot resource.
  • S PRS sidelink positioning reference signal
  • the present application provides a method and terminal device for wireless communication.
  • the following introduces various aspects involved in the present application.
  • a method for wireless communication including: a terminal device determines first configuration information, wherein the first configuration information is used to configure a side link positioning reference signal SL PRS resource in a resource pool.
  • a terminal device comprising: a processing unit, configured to determine first configuration information, wherein the first configuration information is used to configure a side link positioning reference signal SL PRS resource in a resource pool.
  • a terminal device comprising a processor, a memory and a communication interface, wherein the memory is used to store one or more computer programs, and the processor is used to call the computer programs in the memory so that the terminal device executes part or all of the steps in the method of the first aspect.
  • an embodiment of the present application provides a communication system, which includes the above-mentioned terminal device and/or network device.
  • the system may also include other devices that interact with the terminal device in the solution provided in the embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, which stores a computer program, and the computer program enables a communication device (for example, a terminal device or a network device) to perform some or all of the steps in the methods of the above aspects.
  • a communication device for example, a terminal device or a network device
  • an embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to enable a communication device (e.g., a terminal device or a network device) to perform some or all of the steps in the above-mentioned various aspects of the method.
  • the computer program product can be a software installation package.
  • an embodiment of the present application provides a chip comprising a memory and a processor, wherein the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects.
  • the terminal device can determine the configuration information (also known as "first configuration information") used to configure the SL PRS resources in the resource pool, which helps the terminal device determine the resource unit to be used when performing resource exclusion during the process of selecting the SL PRS resources.
  • first configuration information also known as "first configuration information”
  • FIG1 is a diagram showing an example of a system architecture of a wireless communication system to which an embodiment of the present application can be applied.
  • FIG. 2 is an example diagram of a scenario of sideline communication within network coverage.
  • FIG3 is an example diagram of a scenario of sideline communication with partial network coverage.
  • FIG. 4 is a diagram showing an example scenario of sideline communication outside network coverage.
  • FIG. 5 is a diagram showing an example scenario of side communication based on a central control node.
  • FIG. 6 is an exemplary diagram of a sideline communication method based on broadcasting.
  • FIG. 7 is an example diagram of a sideline communication method based on unicast.
  • FIG. 8 is an example diagram of a sideline communication method based on multicast.
  • FIG. 9 is a schematic diagram of sidelink resource selection in the second mode.
  • Figure 10 is a schematic diagram of resources for transmitting DL PRS.
  • Figure 11 is a schematic diagram of SL PRS resources of an embodiment of the present application.
  • Figure 12 is a schematic diagram of SL PRS resources according to another embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a method for wireless communication according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120.
  • the network device 110 may provide communication coverage for a specific geographical area, and may communicate with the terminal device 120 located in the coverage area.
  • FIG1 exemplarily shows a network device and a terminal device.
  • the wireless communication system 100 may include one or more network devices 110 and/or one or more terminal devices 120.
  • the one or more terminal devices 120 may all be located within the network coverage of the network device 110, or may all be located outside the network coverage of the network device 110, or may be partially located within the coverage of the network device 110 and partially located outside the network coverage of the network device 110, which is not limited in the embodiments of the present application.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • future communication systems such as the sixth generation mobile communication system, satellite communication system, etc.
  • the terminal device in the embodiment of the present application may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT), remote station, remote terminal equipment, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to a user, and can be used to connect people, objects and machines, such as a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • the terminal device in the embodiment of the present application can be a mobile phone, a tablet computer, a laptop, a PDA, a mobile internet device (MID), a wearable device, a vehicle, a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical surgery, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, etc.
  • the terminal device can act as a dispatching entity, which provides a sidelink signal between terminal devices in vehicle-to-everything (V2X) or device-to-device communication (D2D), etc.
  • V2X vehicle-to-everything
  • D2D device-to-device communication
  • a cellular phone and a car communicate with each other using a sidelink signal.
  • the cellular phone and the smart home device communicate with each other without relaying the communication signal through a base station.
  • the terminal device can be used to act as a base station.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be referred to as an access network device or a wireless access network device, such as a base station.
  • the network device in the embodiment of the present application may refer to a wireless access network (RAN) node (or device) that connects a terminal device to a wireless network.
  • RAN wireless access network
  • Base station can broadly cover various names as follows, or be replaced with the following names, such as: NodeB, evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmitting and receiving point (TRP), transmitting point (TP), master station MeNB, auxiliary station SeNB, multi-standard radio (MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, baseband unit (BBU), remote radio unit (RRU), active antenna unit (AAU), remote radio head (RRH), central unit (CU), distributed unit (DU), positioning node, etc.
  • the base station can be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • the base station may also refer to a communication module, modem or chip used to be set in the aforementioned device or apparatus.
  • the base station may also be a mobile switching center and a device that performs the base station function in device-to-device D2D, V2X, machine-to-machine (M2M) communications, a network-side device in a 6G network, and a device that performs the base station function in a future communication system.
  • the base station may support networks with the same or different access technologies. The embodiments of the present application do not limit the specific technology and specific device form adopted by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move based on the location of the mobile base station.
  • a helicopter or drone can be configured to act as a device that communicates with another base station.
  • the network device in the embodiments of the present application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • the gNB may also include an AAU.
  • the network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the scenarios in which the network equipment and terminal equipment are located.
  • Sidelink communication refers to communication technology based on sidelinks.
  • Sidelink communication can be, for example, device-to-device (D2D) or vehicle-to-everything (V2X) communication.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • communication data is received or sent between terminal devices and network devices, while sidelink communication supports direct communication data transmission between terminal devices.
  • direct communication data transmission between terminal devices can have higher spectrum efficiency and lower transmission delay.
  • the vehicle networking system adopts sidelink communication technology.
  • the side communication can be divided into side communication within the network coverage, side communication with partial network coverage, and side communication outside the network coverage.
  • FIG2 is a diagram showing an example of a sideline communication scenario within network coverage.
  • both terminal devices 120a are within the coverage of the network device 110. Therefore, both terminal devices 120a can receive the configuration signaling of the network device 110 (the configuration signaling in this application can also be replaced by configuration information), and determine the sideline configuration according to the configuration signaling of the network device 110. After both terminal devices 120a perform the sideline configuration, sideline communication can be performed on the sideline link.
  • FIG3 is a diagram showing an example of a sidelink communication scenario with partial network coverage.
  • terminal device 120a performs sidelink communication with terminal device 120b.
  • Terminal device 120a is located within the coverage of network device 110, so terminal device 120a can receive the configuration signaling of network device 110 and determine the sidelink configuration according to the configuration signaling of network device 110.
  • Terminal device 120b is located outside the network coverage and cannot receive the configuration signaling of network device 110.
  • terminal device 120b can determine the sidelink configuration according to the pre-configuration information and/or the information carried in the physical sidelink broadcast channel (PSBCH) sent by terminal device 120a located within the network coverage.
  • PSBCH physical sidelink broadcast channel
  • FIG4 is a diagram showing an example of a sideline communication scenario outside network coverage.
  • both terminal devices 120b are outside network coverage.
  • both terminal devices 120b can determine the sideline configuration according to the preconfiguration information. After both terminal devices 120b perform the sideline configuration, sideline communication can be performed on the sideline link.
  • FIG5 is a diagram showing an example of a sideline communication scenario based on a central control node.
  • multiple terminal devices may constitute a communication group, and the communication group has a central control node.
  • the central control node may be a terminal device in the communication group (such as terminal device 1 in FIG5 ), which may also be referred to as a cluster head (CH) terminal device.
  • the central control node may be responsible for completing one or more of the following functions: establishing a communication group, joining and leaving of group members of the communication group, coordinating resources within the communication group, allocating sideline transmission resources to other terminal devices, receiving sideline feedback information from other terminal devices, and coordinating resources with other communication groups.
  • Certain standards or protocols (such as the 3rd Generation Partnership Project (3GPP)) define two modes of sideline communication (also known as “resource selection modes"): a first mode and a second mode.
  • 3GPP 3rd Generation Partnership Project
  • the resources of the terminal device are allocated by the network device.
  • the terminal device can send data on the sidelink according to the resources allocated by the network device.
  • the network device can allocate resources for a single transmission to the terminal device, or it can allocate resources for semi-static transmission to the terminal device.
  • This first mode can be applied to scenarios covered by network devices, such as the scenario shown in Figure 2 above. In the scenario shown in Figure 2, the terminal device 120a is within the network coverage of the network device 110, so the network device 110 can allocate resources used in the sidelink transmission process to the terminal device 120a.
  • the terminal device can autonomously select one or more resources from a resource pool (RP). Then, the terminal device can perform side transmission according to the selected resources.
  • RP resource pool
  • the terminal device 120b is located outside the cell coverage. Therefore, the terminal device 120b can autonomously select resources from a preconfigured resource pool for side transmission.
  • the terminal device 120a can also autonomously select one or more resources from a resource pool configured by the network device 110 for side transmission.
  • the terminal device triggers resource selection or reselection in time slot n, and the resource selection window starts from n+T 1 and ends at n+T 2.
  • T 1 0 ⁇ T 1 ⁇ T proc,1 , when the subcarrier spacing is 15, 30, 60, 120kHz, T proc,1 is 3, 5, 9, 17 time slots.
  • T 2min is less than the remaining delay budget of the service, then T 2min ⁇ T 2 ⁇ the remaining delay budget of the service, otherwise, T 2 is equal to the remaining delay budget (packet delay budget, PDB) of the data packet in time slots.
  • PDB packet delay budget
  • [n+T 1 ,n+T 2 ] can be called a resource selection window.
  • the terminal device performs resource listening from nT 0 to nT proc,0, where T0 is 100 or 1100 milliseconds.
  • T proc,0 is 1, 1, 2, or 4 time slots. [nT 0 to nT proc,0 ] is called the resource listening window.
  • the second mode is performed according to the following two steps.
  • Step 1 The physical layer of the terminal device can exclude resources that are not suitable for side transmission from the resource selection window based on the channel sensing result.
  • the terminal device uses all available resources in the resource pool used by the terminal device in the resource selection window as resource set A.
  • Any resource in set A is denoted as R(x,y), where x and y indicate the frequency domain position and time domain position of the resource, respectively, and represents the resource consisting of L_subch consecutive subchannels starting from subchannel x in time slot y.
  • the initial number of resources in set A is denoted as M total .
  • Ptxlg represents the number of logical time slots after the resource reservation period Ptx of the terminal device is converted.
  • Tscal is equal to the value of T 2 converted into milliseconds.
  • Step 1-2 If the terminal device detects the first sideline control information transmitted in the PSCCH on the vth frequency domain resource E(v,m) in the time slot m within the listening window, the terminal device measures the sidelink reference signal receiving power (SL-RSRP) of the PSCCH or the SL-RSRP of the PSSCH scheduled by the PSCCH (i.e., the SL-RSRP of the corresponding PSSCH sent in the same time slot as the PSCCH). If the measured SL-RSRP is greater than the SL-RSRP threshold and the resource reservation between TBs is activated in the resource pool used by the terminal device, the terminal device assumes that the first sideline control information with the same content is received in the time slot m+q*Prxlg.
  • SL-RSRP sidelink reference signal receiving power
  • Prxlg is the number of logical time slots converted from Prx, where Prx is the resource reservation period indicated by the resource reservation period ("resource reservation period") in the first sideline control information transmitted in the PSCCH intercepted by the terminal device.
  • the terminal device will determine whether the resources indicated by the time domain resource allocation (timeresource assignment) and frequency domain resource allocation (frequency resource assignment) domains of the first sideline control information received in time slot m and these assumed Q first sideline control information received overlap with the resource R(x, y+j*Ptxlg).
  • the above RSRP threshold is determined by the priority P1 carried in the PSCCH detected by the terminal device and the priority P2 of the data to be sent by the terminal device.
  • the configuration of the resource pool used by the terminal device includes a SL-RSRP threshold table, which contains the SL-RSRP thresholds corresponding to all priority combinations.
  • the configuration of the resource pool can be a network device configuration or a pre-configuration. If the remaining resources in the resource set A are less than M total *X% after the above resources are excluded, the SL-RSRP threshold is raised by 3dB, and step 1 is re-executed.
  • the possible values of X are ⁇ 20,35,50 ⁇ .
  • the configuration of the resource pool used by the terminal device includes the correspondence between the priority and the above possible values of X. The terminal device determines the value of X according to the priority of the data to be sent and the correspondence.
  • the physical layer of the terminal device reports the resource set A after resource exclusion as a candidate resource set to a higher layer, for example, the media access control (MAC) layer of the terminal device.
  • MAC media access control
  • Step 2 The MAC layer of the terminal device randomly selects a resource from the reported candidate resource set to send data. That is, the terminal device randomly selects a resource from the candidate resource set to send data.
  • the receiving terminal can be any terminal device around the transmitting terminal.
  • terminal device 1 is the transmitting terminal
  • the receiving terminal corresponding to the transmitting terminal is any terminal device around terminal device 1, for example, it can be terminal device 2-terminal device 6 in Figure 6.
  • some communication systems also support unicast-based data transmission (hereinafter referred to as unicast transmission) and/or multicast-based data transmission (hereinafter referred to as multicast transmission).
  • unicast transmission hereinafter referred to as unicast transmission
  • multicast transmission hereinafter referred to as multicast transmission.
  • NR-V2X new radio vehicle to everything
  • autonomous driving places higher requirements on data interaction between vehicles.
  • data interaction between vehicles requires higher throughput, lower latency, higher reliability, larger coverage, more flexible resource allocation methods, etc. Therefore, in order to improve the performance of data interaction between vehicles, NR-V2X introduces unicast transmission and multicast transmission.
  • the receiving terminal generally has only one terminal device. Taking Figure 7 as an example, unicast transmission is performed between terminal device 1 and terminal device 2.
  • Terminal device 1 can be a sending terminal
  • terminal device 2 can be a receiving terminal
  • terminal device 1 can be a receiving terminal
  • terminal device 2 can be a sending terminal.
  • the receiving terminal can be a terminal device in a communication group, or the receiving terminal can be a terminal device within a certain transmission distance.
  • terminal device 1 terminal device 2, terminal device 3 and terminal device 4 constitute a communication group. If terminal device 1 sends data, the other terminal devices in the group (terminal device 2 to terminal device 4) can all be receiving terminals.
  • the network device can provide the terminal device with downlink positioning reference signal (DL PRS) configurations of four positioning frequency layers.
  • DL PRS configuration parameters are provided in the parameter structure of each positioning frequency layer: DL PRS subcarrier spacing; DL PRS cyclic prefix (CP) length; DL PRS frequency domain resource bandwidth; DL PRS frequency domain starting frequency position of DL PRS resources; DL PRS frequency domain reference point "Point A"; DL PRS comb tooth size "Comb-N".
  • the value of the frequency domain resource bandwidth of the DL PRS may be the number of physical resource blocks (PRBs) allocated to the DL PRS.
  • PRBs physical resource blocks
  • the minimum value of the frequency domain resource bandwidth of the DL PRS may be 24 PRBs, and the granularity may be 4 PRBs.
  • the maximum value of the frequency domain resource bandwidth of the DL PRS may be 272 PRBs.
  • the frequency domain starting frequency position of the DL PRS resource is used to indicate the index number of the starting PRB of the DL PRS in the frequency domain resource allocation.
  • the PRB index number is defined relative to the frequency domain reference point "Point A" of the DL PRS.
  • the above DL PRS configuration parameters corresponding to each positioning frequency layer can be applied to all DL PRS resources contained in the positioning frequency layer. That is to say, in a positioning frequency layer, all DL PRS from multiple different TRPs can use the same subcarrier spacing and CP length, the same comb size, be sent on the same frequency subband, and occupy the same bandwidth.
  • Such a design can support terminal devices to simultaneously receive and measure DL PRS from multiple different TRPs on the same frequency point.
  • the parameters of the TRP layer will also include the configuration parameters of the DL PRS. It may include a parameter for uniquely identifying the TRP, such as the physical cell ID of the TRP, the NR cell global identifier (NCGI) of the TRP, the absolute radio frequency channel number (ARFCN) of the TRP, etc.
  • a parameter for uniquely identifying the TRP such as the physical cell ID of the TRP, the NR cell global identifier (NCGI) of the TRP, the absolute radio frequency channel number (ARFCN) of the TRP, etc.
  • NGI NR cell global identifier
  • ARFCN absolute radio frequency channel number
  • up to 2 DL PRS resource sets can be configured in each TRP layer.
  • the configuration parameters of DL PRS in the parameters of the TRP layer for each DL PRS resource set include the DL PRS resource set identification identifier (expressed by "nr-DL-PRS-ResourceSetID”); the transmission period and time slot offset of DL PRS (expressed by "dl-PRS-Periodicity-and-ResourceSetSlotOffset”); the repetition factor of DL PRS resources (expressed by "dl-PRS-ResourceRepetitionFactor”); the time interval for repeated transmission of DL PRS resources (expressed by "dl-PRS-ResourceTimeGap”); the muting configuration of DL PRS; and the number of orthogonal frequency division multiplexing (OFDM) symbols (hereinafter referred to as "symbols”) occupied by DL PRS resources (expressed by "dl-PRS-NumSymbols").
  • OFDM orthogonal frequency division multiplexing
  • the transmission period and time slot offset of the above DL PRS are used to indicate the time domain transmission behavior of all DL PRS resources in the DL PRS resource set.
  • the minimum value of the configurable DL PRS transmission period is 4 milliseconds
  • the maximum value of the configurable DL PRS transmission period is 10240 milliseconds.
  • the configuration of DL PRS supports flexible subcarrier spacing including 15KHz, 30KHz, 60KHz and 120KHz. Under different subcarrier spacing conditions, the configurable DL PRS transmission period value range can be the same.
  • Figure 10 shows a schematic diagram of resources for transmitting DL PRS when the comb size is 2 and the RE offset is 0 and 1 respectively.
  • the repetition factor of the above DL PRS resource is used to indicate the number of repeated transmissions of the DL PRS resource in each DL PRS transmission cycle.
  • the repeated transmission of the same DL PRS resource can be used by the terminal device to aggregate the DL PRS energy of multiple transmissions, which helps to increase the coverage distance of the DL PRS and improve the positioning accuracy.
  • the repeated transmission of the DL PRS resource can also be used by the terminal device for receiving beam scanning operations. The terminal device can use different receiving beams to receive the repeated transmission of the same DL PRS resource, so as to find the best TRP transmission beam and terminal device receiving beam matching.
  • the repeated transmission of DL PRS resources will increase the transmission overhead of DLPRS.
  • the repetition factor of DL PRS resources is 1, 2, 4, 6, 8, 16 and 32.
  • the time interval for repeated transmission of the above-mentioned DL PRS resource is used to indicate the number of time slots between two consecutive repeated transmissions of the same DL PRS resource.
  • the above-mentioned DL PRS silent configuration is used to instruct DL PRS not to send DL PRS on certain allocated time-frequency resources.
  • the silent configuration can be understood as DL PRS is not sent on all allocated time-frequency resources, but intentionally not sent on certain designated time-frequency resources.
  • the silent configuration can avoid conflicts between DL PRS and other signals (such as synchronization signal block (SSB)).
  • the silent configuration can avoid interference between signals sent by different TRPs.
  • the silent configuration can instruct the TRP that is closer to the terminal device not to send DL PRS, and configure the TRP that is farther away from the terminal device to send DL PRS. In this way, the terminal device can receive DL PRS from the farther TRP without being interfered by the TRP that instructs silence.
  • the number of OFDM symbols occupied by the above-mentioned DL PRS resources is used to indicate the number of OFDM symbols allocated to a DL PRS resource in a time slot.
  • the DL PRS configuration parameters included in the above TRP layer parameters can be applied to all DL PRS resources in the DL PRS resource set corresponding to the TRP layer. Therefore, DL PRS resources belonging to the same DL PRS resource set will send DL PRS with the same transmission period and the same number of repeated transmissions, and DL PRS will occupy the same number of OFDM symbols.
  • the DL PRS configuration parameters may also include: a DL PRS resource identification ID (expressed by "nr-DL-PRS-ResourceID”); a sequence ID of DL PRS (expressed by "dl-PRS-SequenceID”); a starting frequency domain resource unit offset of DL PRS (expressed by "dl-PRS-CombSizeN-AndReOffset”); a resource slot offset of DL PRS (expressed by "dl-PRS-ResourceSlotOffset”); an OFDM symbol offset of DL PRS (expressed by "dl-PRS-ResourceSymbolOffset”); and quasi co-location (QCL) information of DL PRS (expressed by "dl-PRS-QCL-Info”).
  • a DL PRS resource identification ID expressed by "nr-DL-PRS-ResourceID”
  • sequence ID of DL PRS expressed by "dl-PRS-SequenceID”
  • the starting frequency domain resource unit offset of the above DL PRS is used to indicate the frequency domain resource unit offset value used for resource mapping on the first allocated OFDM symbol of the DL PRS resource in a time slot.
  • the terminal device can determine the frequency domain resource unit offset value used for resource mapping on each OFDM symbol.
  • the resource slot offset of the DL PRS is used to indicate the slot offset relative to the DL PRS resource set. This parameter can determine the slot position of each DL PRS resource.
  • the OFDM symbol offset of the DL PRS is used to indicate the time-frequency resource allocation position of the DL PRS resource in a time slot. This parameter can be used to indicate the index number of the starting OFDM symbol in the time slot.
  • the above-mentioned QCL information of DL PRS is used to indicate the QCL information of DL PRS.
  • Side-traffic based positioning is one of the enhancement schemes of R18 positioning technology.
  • the positioning requirements of V2X use cases, public safety use cases, commercial use cases and Industrial Internet of Things (IIOT) use cases will be considered, and the following functions will be considered to support: absolute positioning, ranging/direction finding, and relative positioning; the positioning method combining side-traffic measurements and Uu interface measurements will be studied; the side-traffic positioning reference signal will be studied, including signal design, physical layer control signaling, resource allocation, physical layer measurements, and related physical layer processes; the positioning system architecture and signaling process, such as configuration, measurement reporting, etc. will be studied.
  • IIOT Industrial Internet of Things
  • the terminal device can directly determine its own absolute location based on the measurement results, or it is called absolute positioning based on the terminal device.
  • the terminal device can report the measurement results to a positioning server, such as LMF, which then calculates the absolute position of the terminal device and notifies the terminal device.
  • This method is called terminal device-assisted absolute positioning.
  • the terminal device can estimate the round-trip time, arrival angle, signal reception strength and other information of the received positioning reference signal, and estimate the relative distance and relative direction.
  • the positioning technology can be enhanced by introducing positioning based on the sidelink.
  • the time domain position of the SL PRS resources of the sidelink communication system in the embodiment of this application is first introduced below.
  • the time domain unit set may include one or more time domain units
  • all the time domain units in the time domain unit set may be used to transmit the SL PRS, that is, the time domain units included in the time domain unit set are SL PRS resources.
  • some of the time domain units in the time domain unit set may be used to transmit the SL PRS.
  • a time domain unit in a time domain unit set for transmitting a SL PRS may be divided into one or more SL PRS resources, wherein the SL PRS resource may be reserved or selected as a whole by a terminal device, or in other words, the SL PRS resource may be a basic time domain unit for resource reservation by a terminal device.
  • the time domain unit used to transmit the SL PRS in the time domain unit set can be divided into multiple SL PRS resources, it helps to improve the flexibility of SL PRS resource selection. If the time domain unit used to transmit the SL PRS in the time domain unit set can be divided into one SL PRS resource, it helps to simplify the complexity of SL PRS resource reservation or selection.
  • one or more time domain units included in one SL PRS resource may belong to one resource pool (e.g., SLPRS resource pool).
  • the time domain units of the SL PRS resource included in one time domain unit set are less than or equal to the number of time domain units in the time domain unit set that belong to the sidelink resource pool.
  • the SL PRS resource may also be used to transmit a PSSCH demodulation reference signal (DMRS), in which case the PSSCH DMRS may be referred to as a second-type SL PRS. Accordingly, the SL PRS may be referred to as a first-type SLPRS.
  • DMRS PSSCH demodulation reference signal
  • the above-mentioned SL PRS resource may also be used only to transmit a first-type SL PRS.
  • the SL PRS resource can be composed of one or more symbols belonging to the SL PRS resource pool, and the symbols belonging to the same SL PRS resource can be located in the same time slot, and the symbol of the SL PRS resource is less than or equal to the number of symbols belonging to the SL PRS resource pool in a time slot.
  • one SL PRS resource in the resource pool occupies multiple continuous time domain units in the time domain. Taking a symbol as a time domain unit as an example, one SL PRS resource in the resource pool occupies multiple continuous symbols in the time domain.
  • the time domain units occupied by the SL PRS resource in the time domain may not be continuous in the time domain, or only part of the time domain units are continuous in the time domain, and the embodiment of the present application does not limit this.
  • the above-mentioned time domain unit set may be any time domain unit set in a known communication system, such as a time slot, a subframe, a frame, etc.
  • the above-mentioned time domain unit set may also be any time domain unit set introduced in a future communication system, which is not limited in the embodiments of the present application.
  • time domain unit may be any time domain unit in a known communication system, such as a symbol, a time slot, a subframe, a frame, etc.
  • time domain unit may also be any time domain unit introduced in a future communication system, which is not limited in the embodiments of the present application.
  • a symbol used to transmit an SL PRS in a time slot may be considered as one SL PRS resource.
  • a time slot includes 14 symbols: symbols 0 to 13, and symbols 0 to 13 may all be used to transmit an SL PRS. In this case, symbols 0 to 13 may be considered as one SL PRS resource.
  • the symbols used to transmit the SL PRS in the time slot can be regarded as multiple SL PRS resources.
  • the symbol set includes 14 symbols: symbols 0 to 13. Symbols 0 to 5 can be regarded as the first SL PRS resource, symbols 6 to 9 can be regarded as the second SL PRS resource, and symbols 10 to 13 can be regarded as the third SL PRS resource.
  • each element in the candidate resource set obtained after resource exclusion is a single-slot resource, where a single-slot resource is a resource composed of L_subch consecutive sub-channels in a time slot.
  • a single-slot resource is a resource composed of L_subch consecutive sub-channels in a time slot.
  • how the terminal device determines the resource unit when performing resource exclusion is an unresolved issue.
  • an embodiment of the present application provides a method for wireless communication, in which a terminal device can determine configuration information (also known as "first configuration information") used to configure SL PRS resources within a resource pool, which helps the terminal device determine the resource unit to be used when performing resource exclusion during the process of selecting SL PRS resources.
  • configuration information also known as "first configuration information”
  • the resource pool may be a resource pool with frequency division multiplexing resources.
  • the resource pool used for SL PRS transmission may occupy the entire side BWP. That is, the resource pool may include a resource pool occupying one side BWP.
  • the resource pool may include a shared resource pool or a dedicated resource pool between sideline communications.
  • the shared resource pool between the sideline communications may be understood as including resources for sending other sideline information other than SL PRS and SL PRS resources, wherein the other sideline information may include PSSCH, wherein the PSSCH may be, for example, a PSSCH sent by a backward terminal device (i.e., a terminal device in 3GPP version 16 and version 17).
  • the dedicated resource pool may be understood as a resource pool that does not include resources for sending PSSCH but includes SL PRS resources.
  • Figure 13 is a schematic flow chart of a method for wireless communication according to an embodiment of the present application. The method shown in Figure 13 includes step S1310.
  • step S1310 the terminal device determines first configuration information.
  • the above-mentioned first configuration information is used to configure the SL PRS resources in the resource pool.
  • the terminal device can determine the first configuration information based on the configuration information of the resource pool, wherein the configuration information of the resource pool can be pre-configured or configured, which is not limited in the embodiments of the present application.
  • the first configuration information may include one or more of the following: a first parameter, a second parameter, and a third parameter.
  • a first parameter a parameter that modifies the first configuration information
  • a second parameter a parameter that modifies the second configuration information
  • a third parameter a parameter that modifies the third parameter.
  • the above-mentioned first parameter can be used to indicate the time domain position of the SL PRS resources allowed within a time slot of the resource pool.
  • the first parameter includes a fourth parameter, wherein the fourth parameter is used to indicate a starting symbol allowed to be occupied by SL PRS resources within a time slot, or in other words, the fourth parameter is used to indicate a starting symbol position of SL PRS allowed within a time slot.
  • the starting symbol that allows SL PRS resource occupation in a time slot may be one or more.
  • all 14 symbols included in a time slot can be used for SL PRS transmission (or SL PRS transmission), and the starting symbol that allows SL PRS resource occupation in the time slot is symbol 0.
  • all 14 symbols included in a time slot can be used for SL PRS transmission, and the starting symbol that allows SL PRS resource occupation in the time slot may include multiple symbols: symbol 0, symbol 6, and symbol 10.
  • the first parameter may include a fifth parameter, where the fifth parameter is used to indicate the number of symbols allowed to be occupied by the SLPRS resource in a time slot.
  • the fifth parameter may be used to indicate the minimum value (which may be represented by S_min) of the number of symbols that the SL PRS resource is allowed to occupy in a time slot. That is, the number of symbols contained in any SL PRS resource in a time slot should not be less than S_min. For example, the number of consecutive symbols contained in any SL PRS resource in a time slot should not be less than S_min.
  • the physical layer of the terminal device when the higher layer of the terminal device triggers the physical layer of the terminal device to select or reselect resources, the physical layer of the terminal device should regard all SL PRS resources configured or pre-configured within the resource selection window as a candidate resource set, and the number of consecutive symbols contained in any SLPRS resource should not be less than S_min.
  • the above parameter S_min can be applicable to the scenario where the time domain resources occupied by the SL PRS resources include a plurality of consecutive symbols starting with a certain symbol in the time slot, that is, the scenario where the starting symbol of the time domain resources occupied by the SL PRS resources is relatively flexible.
  • this parameter can also be used in other scenarios, and the embodiment of the present application does not limit this.
  • the sending time of the indication signaling indicating the sending of the SL PRS should be earlier than the sending time of the indicated SL PRS, and the time interval between the end point of the indication signaling and the starting point of the SL PRS should be greater than a specific threshold to ensure that the receiving terminal can decode the indication signaling between the sending of the SL PRS.
  • the time domain resources occupied by the SL PRS resources include multiple consecutive symbols starting with a certain symbol in the time slot. That is to say, the starting point and end point of the time domain resources occupied by the SL PRS resources are relatively flexible, which helps to improve the flexibility of SL PRS resource selection.
  • the number of symbols allowed to be occupied by SL PRS resources in a time slot may include one or more. In other scenarios, the number of symbols allowed to be occupied by SL PRS resources in multiple time slots in the resource pool may be different. For example, if there are time slots with different time domain lengths in the resource pool, the allowed SL PRS starting positions may be different in different time slots. That is, the resource pool includes a first time slot and a second time slot, the time domain lengths of the first time slot and the second time slot are different, the first time slot corresponds to a first value of the fourth parameter, the second time slot corresponds to a second value of the fourth parameter, and the first value and the second value are different.
  • the SL PRS start symbol allowed in the time slot may be ⁇ 0,6,10 ⁇ .
  • the SL PRS start symbol allowed in the time slot may be ⁇ 0,6 ⁇ .
  • the number of symbols allowed to be occupied by SL PRS resources in multiple time slots in the resource pool can be the same.
  • multiple start symbols may be allowed in a time slot.
  • the multiple start symbols include a first symbol and a second symbol that are adjacent in time domain position, and the SL PRS resource corresponding to the first symbol includes the first symbol and a symbol between the first symbol and the second symbol in the time domain.
  • the SL PRS resources corresponding to the starting symbol i include symbols between the starting symbol i and the starting symbol i+n.
  • the first starting symbol in the time slot is symbol 0
  • the second starting symbol is symbol 6
  • the SL PRS resources corresponding to symbol 0 may include symbols 0 to 5.
  • the last starting symbol among the multiple starting symbols is the third symbol
  • the last symbol among the symbols that can be used for SLPRS transmission in a time slot is the fourth symbol
  • the SL PRS resources corresponding to the third symbol occupy the third symbol, the fourth symbol, and the symbols between the third symbol and the fourth symbol in the time domain.
  • the SL PRS resources corresponding to the start symbol j include the start symbol j, symbol j+m, and symbols located between the start symbol j and symbol j+m in the time domain.
  • the last start symbol in the time slot is symbol 10
  • the last symbol in the time slot that can be used for SL PRS transmission is symbol 13
  • the SL PRS resources corresponding to symbol 10 may include 4 symbols, namely symbols 10 to 13.
  • the above time slot may include symbols for automatic gain control, symbols for transceiver conversion, and symbols used to indicate the occupation of the side channel for SL PRS transmission.
  • the symbols that can be used for SL PRS transmission also called “target symbols”
  • the symbols occupied by SL PRS resources also called “target symbols”
  • target symbols may include one or more of the above symbols.
  • the applicable scenarios of the fourth parameter and the fifth parameter in the embodiment of the present application are not limited.
  • the above parameters can be applicable to one or more of the following scenarios: Scenario 1, the number of frequency domain units (e.g., resource blocks (RB)) occupied by an SL PRS in the resource pool is equal to all RBs (also known as the "first bandwidth") that can be used for SL PRS transmission in the resource pool, and the frequency domain resources occupied by the SL PRS resources include the target resource element (RE) (or specific RE) in the first frequency domain unit in the resource pool that can be used for SL PRS transmission.
  • the starting frequency domain position and the interval are C REs, where C is the SL PRS comb tooth size configured in the resource pool.
  • the time domain resources occupied by the SL PRS resources include a plurality of continuous symbols starting from a specific symbol in a time slot.
  • the specific RE and/or specific symbol can be understood as a parameter pre-configured, pre-defined or configured by the network device.
  • the number of frequency domain units (e.g., RBs) occupied by an SL PRS in the resource pool is less than or equal to the first bandwidth
  • the frequency domain resources occupied by the SLPRS resource include REs with a starting frequency domain position of a specific RE in the first RB occupied by the SL PRS resource and an interval of C, where C is the SL PRS comb tooth size configured in the resource pool.
  • the time domain resources occupied by the SL PRS resource include a plurality of continuous symbols starting from a specific symbol in a time slot.
  • the specific symbol can be understood as a symbol that is preconfigured, predefined, or configured by a network device.
  • the above-mentioned second parameter can be used to indicate the comb tooth size of the SL PRS resource in the resource pool, wherein the comb tooth size is used to indicate the number of symbols spaced between two adjacent comb tooth resources occupied by the SL PRS resource.
  • the comb tooth sizes of the SL PRS resources in the resource pool may be the same.
  • the comb tooth size of the SL PRS resources in the resource pool may be one of ⁇ 1, 2, 4, 6, 8, 12 ⁇ .
  • the comb tooth sizes of the SL PRS resources in the resource pool may be different.
  • the comb tooth size of the SL PRS resources in the resource pool may be multiple of ⁇ 1, 2, 4, 6, 8, 12 ⁇ .
  • the comb tooth sizes of the SL PRS resources in the resource pool can be the same, which helps to simplify the setting method of the comb tooth size.
  • the comb tooth size may be configured by a configuration parameter of a resource pool, or may be predefined by a protocol. For example, if the comb tooth sizes of the SL PRS resources in a resource pool are the same, the comb tooth size may be configured by a configuration parameter of the resource pool.
  • SL PRS resources with different time domain starting positions in the resource pool correspond to different comb tooth sizes.
  • the comb tooth size corresponding to the SL PRS resource with symbol 0 as the starting symbol can be 4.
  • the comb tooth size corresponding to the SLPRS resource with symbol 6 as the starting symbol can be 2.
  • the comb tooth size corresponding to the SL PRS resource with symbol 10 as the starting symbol can be 2.
  • SL PRS resources with different starting positions correspond to different comb tooth sizes, which helps to improve the rationality of the comb tooth size.
  • SL PRS resources with different starting positions can also correspond to the same comb tooth size.
  • the comb tooth size can be directly indicated by the second parameter.
  • the second parameter C0 can be 4.
  • the second parameter C1 can be 2.
  • the comb tooth size can also be predefined by the protocol.
  • the protocol can define the corresponding relationship between the comb tooth size and the starting symbol. Accordingly, the comb tooth size corresponding to the starting symbol can be determined based on the starting symbol. The embodiment of the present application is not limited to this.
  • SL PRS resources with different time domain lengths in the resource pool correspond to different comb tooth sizes.
  • the first SL PRS resource its time domain length is 6 symbols, and the corresponding comb tooth size can be 4.
  • the corresponding comb tooth size can be 2.
  • SL PRS resources with different time domain lengths correspond to different comb tooth sizes, which helps to improve the rationality of the comb tooth size.
  • SL PRS resources with different time domain lengths can also correspond to the same comb tooth size.
  • the comb tooth size can be directly indicated by the second parameter.
  • the second parameter C0 can be 4.
  • the second parameter C1 can be 2.
  • the comb tooth size can also be predefined by a protocol.
  • a protocol can define the correspondence between the comb tooth size and the starting symbol. Accordingly, the comb tooth size corresponding to the starting symbol can be determined based on the starting symbol. This embodiment of the present application is not limited to this.
  • the comb size of the SL PRS resources within the resource pool can be determined based on the number of symbols contained in the SL PRS resources or the number of symbols contained in the SL PRS resources that can be used to transmit the SL PRS.
  • the comb tooth size corresponding to the SL PRS resource can be the value closest to N-Y in ⁇ 1,2,4,6,8,12 ⁇ .
  • the comb tooth size corresponding to the SL PRS resource can be a value not greater than N-Y in ⁇ 1, 2, 4, 6, 8, 12 ⁇ .
  • AGC automatic gain control
  • the comb tooth size is determined based on the number of symbols contained in the SL PRS resource or the number of symbols contained in the SL PRS resource that can be used to transmit the SL PRS, which can be predefined by the standard.
  • the above-mentioned method for determining the comb tooth size can also be configured or preconfigured by the network device.
  • the applicable scenarios of the third parameter mentioned above in the embodiment of the present application are not limited.
  • the above parameters may be applicable to scenario 1 and/or scenario 2.
  • the third parameter is also applicable to scenario 3 and/or scenario 4.
  • Scenario 3 the number of frequency domain units (e.g., RBs) occupied by an SL PRS resource in the resource pool is equal to the first bandwidth, and the frequency domain resources occupied by the SL PRS resource are resource elements with an interval of C starting from a specific RE in the first RB in the resource pool that can be used for SL PRS transmission, where C is the SL PRS comb tooth size configured in the resource pool.
  • the time domain resources occupied by the SL PRS resource include multiple consecutive symbols starting from a symbol in a time slot.
  • the number of frequency domain units (e.g., RBs) occupied by an SL PRS resource in the resource pool is less than or equal to the first bandwidth
  • the frequency domain resources occupied by the SL PRS resource include REs with a starting frequency domain position of a specific RE in the first RB occupied by the SL PRS resource and an interval of C, where C is the SL PRS comb tooth size configured in the resource pool.
  • the time domain resources occupied by the SL PRS resource include multiple consecutive symbols starting from a symbol in a time slot.
  • the third parameter is used to indicate the frequency domain position of the SL PRS resources allowed in the resource pool.
  • the third parameter may include the sixth parameter and/or the seventh parameter.
  • the sixth parameter mentioned above is used to indicate the starting RE index allowed for SL PRS resource occupation in the resource pool.
  • the starting RE index indicated by the sixth parameter is any value within the value range corresponding to the comb tooth size. For example, assuming that the value range of the comb tooth size is [0, C-1], the starting RE index is any value within the range [0, C-1]. This configuration of the starting RE helps to improve the flexibility of SL PRS resource selection.
  • one or more starting REs in the resource pool may be determined by resource pool configuration parameters.
  • the starting RE may also be predefined by a protocol or configured by a network device.
  • multiple SL PRS resources in a resource pool may correspond to different starting REs.
  • multiple SL PRS resources containing different numbers of symbols may correspond to different starting REs.
  • multiple SLPRS resources corresponding to different starting symbols may correspond to different starting REs.
  • different SL PRS resources may correspond to different starting REs, which helps to make a certain number of RE intervals between different SL PRS resources, thereby reducing in-band leakage (IBE) interference.
  • IBE in-band leakage
  • the sixth parameter may indicate a starting RE corresponding to each SL PRS resource.
  • the resource pool may include a first SL PRS resource and a second SL PRS resource, and if the comb tooth sizes allowed by the first SL PRS resource and the second SL PRS resource are different, the sixth parameter includes parameters corresponding to the first SL PRS resource and the second SL PRS resource, respectively, wherein the first SL PRS resource and the second SL PRS resource contain different numbers of symbols, or the first SL PRS resource and the second SL PRS resource have different starting symbols in a time slot of the resource pool.
  • the seventh parameter mentioned above is used to indicate the RE interval between adjacent SL PRS resources in the resource pool, or in other words, to indicate the number of REs between adjacent SL PRS resources in the resource pool.
  • the RE interval d may be explicitly indicated by the seventh parameter, where the RE interval d is a value not greater than the comb tooth size C. Accordingly, the starting RE index corresponding to the SL PRS resource allowed in the resource pool may be 0, 0+d, ..., 0+floor(C/d)*d, where floor(.) indicates rounding down.
  • the applicable scenario of the fourth parameter in the embodiment of the present application is not limited.
  • the fourth parameter can be applicable to one or more of scenarios 1 to 4.
  • the first configuration information includes parameters indicating the time domain position that the SL PRS resource is allowed to occupy within a time slot of the resource pool; or, if the resource pool is a second type of resource pool, an SL PRS resource in the resource pool occupies all time domain resources that can be used for SL PRS transmission within a time slot.
  • the first type of resource pool may be a resource pool for performing channel sensing based on first measurement information
  • the second type of resource pool may be a resource pool for performing channel sensing based on second measurement information; wherein the first measurement information is measurement information of DMRS for PSCCH, and the second measurement information is measurement information of DMRS for PSSCH.
  • the first configuration information can configure the starting symbol corresponding to the SL PRS resources allowed in each time slot in the resource pool (i.e., the fourth parameter), and the number of symbols occupied by the SL PRS resources corresponding to the starting symbol (i.e., the fifth parameter).
  • the terminal device considers that one SL PRS resource includes all symbols available for SL PRS transmission in one time slot.
  • the symbols available for SL PRS transmission may not include: symbols occupied by PSSCH DMRS; and/or symbols occupied by other physical channels.
  • the time domain resources occupied by PSCCH are usually located in the front time domain position in a time slot, there may be more choices for the time domain position occupied by SL PRS resources in the resource pool for channel monitoring based on the first measurement information. Therefore, the parameters of the time domain position allowed to be occupied by SL PRS resources in a time slot of the resource pool can be indicated by the first configuration information, which helps to improve the rationality of SLPRS resources.
  • SL PRS resources can occupy all time domain resources that can be used for SL PRS transmission in a time slot.
  • the scheme of associating the time domain position occupied by the above-mentioned SL PRS with the resource pool type can be applicable to one or more of the following scenarios: Scenario 5, the number of frequency domain units (for example, RBs) occupied by an SL PRS resource in the resource pool is equal to the first bandwidth, and the frequency domain resources occupied by the SL PRS resource include REs with a starting frequency domain position of the target RE (or specific RE) in the first frequency domain unit of the resource pool that can be used for SL PRS transmission and an interval of C, where C is the SL PRS comb tooth size configured in the resource pool.
  • Scenario 5 the number of frequency domain units (for example, RBs) occupied by an SL PRS resource in the resource pool is equal to the first bandwidth
  • the frequency domain resources occupied by the SL PRS resource include REs with a starting frequency domain position of the target RE (or specific RE) in the first frequency domain unit of the resource pool that can be used for SL PRS transmission and an interval of C
  • the number of frequency domain units (e.g., RBs) occupied by an SL PRS resource in the resource pool is less than or equal to the first bandwidth, and the frequency domain resources occupied by the SL PRS resource include REs with a starting frequency domain position at a specific RE in the first RB occupied by the SL PRS resource and an interval of C, where C is the SL PRS comb tooth size configured in the resource pool.
  • RBs frequency domain units
  • the above introduces the parameters that the first configuration information may include in an embodiment of the present application.
  • the following introduces a scheme in which a terminal device performs resource selection or resource reselection based on the first configuration information in an embodiment of the present application.
  • the above method also includes: step S1320, the terminal device performs resource selection/reselection for SL PRS resources in the resource pool according to the first configuration information.
  • the frequency domain resources occupied by the SL PRS resource may include REs with an interval of C starting from the target RE in the first RB in the resource pool that can be used for SL PRS transmission, where C represents the comb tooth size corresponding to the SL PRS resource.
  • the SL PRS resource can be expressed as R(e, y, s), where e represents the index of the starting RE of the SL PRS resource in the RB, y represents the index of the time slot where the resource unit corresponding to the SL PRS resource is located, and s represents the index of the starting symbol of the SL PRS resource in the time slot.
  • the physical layer of the terminal device may regard all SL PRS resources configured or preconfigured within the resource selection window as a candidate resource set. Then, the physical layer of the terminal device may exclude resources that are reserved by other terminal devices and/or whose interference level may be higher than a specific threshold from the candidate resource set based on the channel sensing result. Finally, the physical layer of the terminal device reports the remaining resources to the higher layer of the terminal device.
  • a higher layer e.g., MAC layer
  • the above-mentioned specific threshold can be configured or pre-configured by the network device, or can also be pre-defined by the protocol, which is not limited in the embodiments of the present application.
  • the resource selection/reselection is also based on the eighth parameter and/or the ninth parameter.
  • the eighth parameter is used to indicate the index of the first frequency domain unit of the SL PRS resource in the resource pool (denoted by "x").
  • the frequency domain unit may be F consecutive RBs, where F ⁇ 1 and is a positive integer.
  • the value of F can be configured, pre-configured, or defined by the standard by the network device.
  • F can be defined by the standard as 1, that is, the frequency domain unit is 1 RB.
  • F can be configured or pre-configured by the network device as an integer greater than 1.
  • the frequency domain unit may be referred to as a subchannel. Accordingly, the number of subchannels included in the resource pool is CEIL(N_RB/F), where N_RB is the total number of RBs included in the resource pool configured or preconfigured by the network device.
  • the number of RBs it contains is mod(N_RB,F), where mod(.) represents a modulo operation, and the number of RBs contained in other sub-channels in the resource pool can be F.
  • the ninth parameter mentioned above is used to indicate the number of frequency domain units contained in the SL PRS selected by the terminal device (which can be represented by "N_f").
  • the ninth parameter may be the exact value of the number of frequency domain units included in the SL PRS selected by the terminal device.
  • the upper layer of the terminal device may indicate the exact value of N_f through the ninth parameter, and accordingly, the physical layer of the terminal device may regard all SL PRS resources configured or preconfigured in the resource selection window as a candidate resource set, and the number of frequency domain units included in any SL PRS resource is N_f.
  • the physical layer of the terminal device may exclude resources based on the channel sensing result, and finally, the physical layer of the terminal device may report the remaining resources to the upper layer of the terminal device.
  • the ninth parameter is used to indicate the minimum value of the number of frequency domain units.
  • the upper layer of the terminal device can indicate the minimum value of N_f, and accordingly, the physical layer of the terminal device can regard all SL PRS resources configured or preconfigured in the resource selection window as a candidate resource set, and the number of frequency domain units contained in any SL PRS resource is not less than N_f. Afterwards, the physical layer of the terminal device can regard SL PRS resources with different N_f values as candidate resources, and then exclude resources according to the channel listening results, and finally the physical layer of the terminal device can report the remaining resources to the upper layer of the terminal device.
  • the SL PRS resource is represented as R(x, N_f, e, y, s), where e represents the index of the starting RE of the SL PRS resource in the RB, y represents the index of the time slot where the resource unit is located, and s represents the index of the starting symbol of the SL PRS resource in the time slot.
  • Fig. 14 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1400 shown in Fig. 14 includes: a processing unit 1410 .
  • Processing unit 1410 is used to determine first configuration information, where the first configuration information is used to configure side link positioning reference signal SL PRS resources in a resource pool.
  • the first configuration information includes one or more of the following: a first parameter for indicating the time domain position of the SL PRS resources allowed within a time slot of the resource pool; a second parameter for indicating the comb tooth size of the SL PRS resources within the resource pool; and a third parameter for indicating the frequency domain position of the SL PRS resources allowed within the resource pool.
  • the first parameter includes one or more of the following: a fourth parameter for indicating the starting symbol allowed to be occupied by the SL PRS resources within the one time slot; and a fifth parameter for indicating the number of symbols allowed to be occupied by the SL PRS resources within the one time slot.
  • the resource pool includes a first time slot and a second time slot, the first time slot and the second time slot have different time domain lengths, the first time slot corresponds to a first value of the fourth parameter, the second time slot corresponds to a second value of the fourth parameter, and the first value and the second value are different.
  • multiple start symbols are allowed in the one time slot, the multiple start symbols include a first symbol and a second symbol that are adjacent in time domain position, and the SL PRS resource corresponding to the first symbol includes the first symbol and the symbol between the first symbol and the second symbol in the time domain; or multiple start symbols are allowed in the one time slot, the last start symbol among the multiple start symbols is a third symbol, the last symbol among the symbols that can be used for SL PRS transmission in the one time slot is a fourth symbol, and the SL PRS resource corresponding to the third symbol occupies the third symbol, the fourth symbol, and the symbol between the third symbol and the fourth symbol in the time domain.
  • the target symbol within the one time slot includes one or more of the following: a symbol for automatic gain control within the one time slot; a symbol for transceiver conversion within the one time slot; and a symbol occupied by a side channel for indicating SL PRS transmission within the one time slot; wherein the target symbol is a symbol that can be used for SL PRS transmission within the one time slot or a symbol occupied by an SL PRS resource within the one time slot.
  • the fifth parameter is used to indicate the minimum number of symbols allowed to be occupied by SL PRS resources within the one time slot.
  • an SL PRS resource within the resource pool occupies multiple consecutive symbols in the time domain.
  • the comb tooth size of the SL PRS resources in the resource pool satisfies one or more of the following: the comb tooth size of the SL PRS resources in the resource pool is the same; SL PRS resources with different time domain starting positions in the resource pool correspond to different comb tooth sizes; SL PRS resources with different time domain lengths in the resource pool correspond to different comb tooth sizes; and the comb tooth size of the SLPRS resources in the resource pool is determined based on the number of symbols contained in the SL PRS resources or the number of symbols contained in the SL PRS resources that can be used to transmit SLPRS.
  • the third parameter includes one or more of the following: a sixth parameter for indicating the starting resource element RE index allowed to be occupied by SL PRS resources in the resource pool; and a seventh parameter for indicating the RE interval between adjacent SL PRS resources in the resource pool.
  • the RE index indicated by the sixth parameter is any value within the value range corresponding to the comb tooth size.
  • the resource pool includes a first SL PRS resource and a second SL PRS resource. If the comb tooth sizes allowed by the first SL PRS resource and the second SL PRS resource are different, the sixth parameter includes parameters corresponding to the first SL PRS resource and the second SL PRS resource respectively; wherein the first SL PRS resource and the second SL PRS resource contain different numbers of symbols, or the first SL PRS resource and the second SL PRS resource have different starting symbols within a time slot of the resource pool.
  • the first configuration information includes parameters indicating the time domain position that SL PRS resources are allowed to occupy within a time slot of the resource pool; or, if the resource pool is a second type of resource pool, an SL PRS in the resource pool occupies all time domain resources that can be used for SL PRS transmission within a time slot.
  • the first type of resource pool is a resource pool for performing channel monitoring based on first measurement information
  • the second type of resource pool is a resource pool for performing channel monitoring based on second measurement information
  • the first measurement information is measurement information for DMRS of PSCCH
  • the second measurement information is measurement information for DMRS of PSSCH.
  • the terminal device further includes: the terminal device performing resource selection/reselection for SL PRS resources in the resource pool according to the first configuration information.
  • the resource selection/reselection is also based on one or more of the following parameters: an eighth parameter, used to indicate the index of the first frequency domain unit of the SL PRS resource in the resource pool; and a ninth parameter, used to indicate the number of frequency domain units contained in the SL PRS selected by the terminal device; wherein the first bandwidth is the total bandwidth occupied by the resource blocks in the resource pool that can be used for SL PRS transmission, or in other words, the first bandwidth is the total frequency domain units (e.g., RBs) occupied by the resource blocks in the resource pool that can be used for SL PRS transmission.
  • an eighth parameter used to indicate the index of the first frequency domain unit of the SL PRS resource in the resource pool
  • a ninth parameter used to indicate the number of frequency domain units contained in the SL PRS selected by the terminal device
  • the ninth parameter is used to indicate a minimum value of the number of the frequency domain units.
  • the resource pool includes one or more of the following resource pools: a resource pool occupying a sidewalk BWP; and a shared resource pool between the sidewalk communications.
  • the processing unit 1410 may be a processor 1510.
  • the terminal device 1400 may further include a transceiver 1530 and a memory 1520, as specifically shown in FIG15 .
  • FIG15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dotted lines in FIG15 indicate that the unit or module is optional.
  • the device 1500 may be used to implement the method described in the above method embodiment.
  • the device 1500 may be a chip, a terminal device, or a network device.
  • the device 1500 may include one or more processors 1510.
  • the processor 1510 may support the device 1500 to implement the method described in the above method embodiment.
  • the processor 1510 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor may also be other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the apparatus 1500 may further include one or more memories 1520.
  • the memory 1520 stores a program, which can be executed by the processor 1510, so that the processor 1510 executes the method described in the above method embodiment.
  • the memory 1520 may be independent of the processor 1510 or integrated in the processor 1510.
  • the apparatus 1500 may further include a transceiver 1530.
  • the processor 1510 may communicate with other devices or chips through the transceiver 1530.
  • the processor 1510 may transmit and receive data with other devices or chips through the transceiver 1530.
  • the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied to a terminal or network device provided in the present application, and the program enables a computer to execute the method performed by the terminal or network device in each embodiment of the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied to the terminal or network device provided in the embodiment of the present application, and the program enables the computer to execute the method performed by the terminal or network device in each embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided in the embodiment of the present application, and the computer program enables a computer to execute the method executed by the terminal or network device in each embodiment of the present application.
  • the "indication" mentioned can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or an association relationship between the two, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition or “pre-configuration” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the “protocol” may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, and the present application does not limit this.
  • the term "and/or" is only a description of the association relationship of the associated objects, indicating that there can be three relationships.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be read by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种用于无线通信的方法及终端设备。该方法包括:终端设备确定第一配置信息,所述第一配置信息用于配置资源池内的侧行链路定位参考信号SL PRS资源。在本申请实施例中,终端设备可以确定用于配置资源池内的SL PRS资源的配置信息,有助于终端设备在选择SL PRS资源的过程中,确定执行资源排除时使用的资源单元。

Description

用于无线通信的方法及终端设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及用于无线通信的方法及终端设备。
背景技术
目前,在资源选择模式中的第二模式下,终端设备在执行资源排除时,是以单时隙资源为资源单元进行的。也即是说,资源排除后的得到的候选资源集合中的每一个元素均为单时隙资源。然而,在选择侧行参考信号(sidelink positioning reference signal,SL PRS)资源的过程中,终端设备在进行资源排除时如何确定资源单元是一个尚未解决的问题。
发明内容
本申请提供一种用于无线通信的方法及终端设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种用于无线通信的方法,包括:终端设备确定第一配置信息,所述第一配置信息用于配置资源池内的侧行链路定位参考信号SL PRS资源。
第二方面,提供了一种终端设备,包括:处理单元,用于确定第一配置信息,所述第一配置信息用于配置资源池内的侧行链路定位参考信号SL PRS资源。
第三方面,提供一种终端设备,包括处理器、存储器以及通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,使得所述终端设备执行第一方面的方法中的部分或全部步骤。
第四方面,本申请实施例提供了一种通信系统,该系统包括上述的终端设备和/或网络设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与终端设备进行交互的其他设备。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得通信设备(例如,终端设备或网络设备)执行上述各个方面的方法中的部分或全部步骤。
第六方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使通信设备(例如,终端设备或网络设备)执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第七方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
在本申请实施例中,终端设备可以确定用于配置资源池内的SL PRS资源的配置信息(又称“第一配置信息”),有助于终端设备在选择SL PRS资源的过程中,确定执行资源排除时使用的资源单元。
附图说明
图1为可应用本申请实施例的无线通信系统的系统架构示例图。
图2为网络覆盖内的侧行通信的场景示例图。
图3为部分网络覆盖的侧行通信的场景示例图。
图4为网络覆盖外的侧行通信的场景示例图。
图5是基于中央控制节点的侧行通信的场景示例图。
图6为基于广播的侧行通信方式的示例图。
图7为基于单播的侧行通信方式的示例图。
图8为基于组播的侧行通信方式的示例图。
图9为第二模式下侧行资源选择的示意图。
图10为传输DL PRS的资源的示意图。
图11是本申请实施例的SL PRS资源的示意图。
图12是本申请另一实施例的SL PRS资源的示意图。
图13是本申请实施例的用于无线通信的方法的示意性流程图。
图14是本申请实施例的终端设备的示意图。
图15是本申请实施例的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
通信系统架构
图1是可应用本申请实施例的无线通信系统100的系统架构示例图。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和一个终端设备,可选地,该无线通信系统100可以包括一个或多个网络设备110和/或一个或多个终端设备120。针对一个网络设备110,该一个或多个终端设备120可以均位于该网络设备110的网络覆盖范围内,也可以均位于该网络设备110的网络覆盖范围外,也可以一部分位于该网络设备110的覆盖范围内,另一部分位于该网络设备110的网络覆盖范围外,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequencydivision duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端设备、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、车辆、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medicalsurgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。例如,终端设备可以充当调度实体,其在车辆外联(vehicle-to-everything,V2X)或设备到设备通信(device-to-device,D2D)等中的终端设备之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。可选地,终端设备可以用于充当基站。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(baseband unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributedunit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、V2X、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
不同网络覆盖情况下的侧行通信
侧行通信指的是基于侧行链路的通信技术。侧行通信例如可以是设备到设备(device to device,D2D)或车联网(vehicle to everything,V2X)通信。传统的蜂窝系统中的通信数据在终端设备和网络设备之 间进行接收或者发送,而侧行通信支持在终端设备与终端设备之间直接进行通信数据传输。相比于传统的蜂窝通信,终端设备与终端设备直接进行通信数据的传输可以具有更高的频谱效率以及更低的传输时延。例如,车联网系统采用侧行通信技术。
在侧行通信中,根据终端设备所处的网络覆盖的情况,可以将侧行通信分为网络覆盖内的侧行通信,部分网络覆盖的侧行通信,及网络覆盖外的侧行通信。
图2为网络覆盖内的侧行通信的场景示例图。在图2所示的场景中,两个终端设备120a均处于网络设备110的覆盖范围内。因此,两个终端设备120a均可以接收网络设备110的配置信令(本申请中的配置信令也可替换为配置信息),并根据网络设备110的配置信令确定侧行配置。在两个终端设备120a均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图3为部分网络覆盖的侧行通信的场景示例图。在图3所示的场景中,终端设备120a与终端设备120b进行侧行通信。终端设备120a位于网络设备110的覆盖范围内,因此终端设备120a能够接收到网络设备110的配置信令,并根据网络设备110的配置信令确定侧行配置。终端设备120b位于网络覆盖范围外,无法接收网络设备110的配置信令。在这种情况下,终端设备120b可以根据预配置(pre-configuration)信息和/或位于网络覆盖范围内的终端设备120a发送的物理侧行广播信道(physical sidelinkbroadcast channel,PSBCH)中携带的信息确定侧行配置。在终端设备120a和终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图4为网络覆盖外的侧行通信的场景示例图。在图4所示的场景中,两个终端设备120b均位于网络覆盖范围外。在这种情况下,两个终端设备120b均可以根据预配置信息确定侧行配置。在两个终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
基于中央控制节点的侧行通信
图5为基于中央控制节点的侧行通信的场景示例图。在该侧行通信场景中,多个终端设备可以构成一个通信组,且该通信组内具有中央控制节点。该中央控制节点可以为通信组内的一个终端设备(如图5中的终端设备1),该终端设备又可以称为簇头(cluster header,CH)终端设备。该中央控制节点可以负责完成以下功能中的一项或多项:通信组的建立,通信组的组成员的加入和离开,在通信组内进行资源协调,为其他终端设备分配侧行传输资源,接收其他终端设备的侧行反馈信息,以及与其他通信组进行资源协调。
侧行通信的模式
某些标准或协议(如第三代合作伙伴计划(3rd Generation Partnership Project,3GPP))定义了两种侧行通信的模式(又称“资源选择模式”):第一模式和第二模式。
在第一模式下,终端设备的资源(本申请提及的资源也可称为传输资源,如时频资源)是由网络设备分配的。终端设备可以根据网络设备分配的资源在侧行链路上进行数据的发送。网络设备可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。该第一模式可以应用于有网络设备覆盖的场景,如前文图2所示的场景。在图2所示的场景中,终端设备120a位于网络设备110的网络覆盖范围内,因此网络设备110可以为终端设备120a分配侧行传输过程中使用的资源。
在第二模式下,终端设备可以自主在资源池(resource pool,RP)中选取一个或多个资源。然后,终端设备可以根据选择出的资源进行侧行传输。例如,在图4所示的场景中,终端设备120b位于小区覆盖范围外。因此,终端设备120b可以在预配置的资源池中自主选取资源进行侧行传输。或者,在图2所示的场景中,终端设备120a也可以在网络设备110配置的资源池中自主选取一个或多个资源进行侧行传输。
为了便于理解,下文结合图9介绍上述第二模式。如图9所示,终端设备在时隙n触发资源选择或重选,资源选择窗从n+T 1开始,到n+T 2结束。0≤T 1≤T proc,1,当子载波间隔是15,30,60,120kHz时,T proc,1为3,5,9,17个时隙。如果T 2min小于业务的剩余时延预算,则T 2min≤T 2≤业务的剩余时延预算,否则,T 2等于以时隙为单位的数据包的剩余时延预算(packet delay budget,PDB)。T 2min的取值集合为{1,5,10,20}*2 μ个时隙,其中μ=0,1,2,3对应于子载波间隔是15,30,60,120kHz的情况,终端设备根据自身待发送数据的优先级从该取值集合中确定T 2min。其中,[n+T 1,n+T 2]可以称为资源选择窗。
终端设备在n-T 0到n-T proc,0进行资源侦听,T0的取值为100或1100毫秒。当子载波间隔是15,30,60,120kHz时,T proc,0为1,1,2,4个时隙。[n-T 0到n-T proc,0]称为资源侦听窗。
在一些实现方式中,第二模式按照以下两个步骤进行。
步骤1:终端设备的物理层可以根据信道侦听结果从资源选择窗中排除不适合用于侧行传输的资源。
终端设备将资源选择窗内所有属于终端设备所用资源池的可用资源作为资源集合A,集合A中的任意一个资源记为R(x,y),其中,x和y分别指示资源的频域位置和时域位置,表示时隙y内从子信道x开始的连续L_subch个子信道组成的资源。记集合A中资源的初始数量为M total
步骤1-1:如果终端设备在侦听窗内时隙a发送数据,没有进行侦听,则终端设备将判断时隙a+q*Prxlg与资源R(x,y+j*Ptxlg)是否重叠,如果重叠,则把资源R(x,y)从资源集合A中排除。其中j=0,1,2,3…C-1,C由终端设备生成的随机数值确定。Ptxlg表示终端设备的资源预留周期Ptx转化为逻辑时隙后的数目。Prxlg为Prx转化为逻辑时隙后的数目,这里Prx为资源池内任何一个允许的资源预留周期。如果Prx<Tscal并且n-m<=Prxlg,
Figure PCTCN2022130005-appb-000001
否则Q=1。Tscal等于T 2转化为毫秒后的值。
步骤1-2:如果终端设备在侦听窗内时隙m内的第v个频域资源E(v,m)上侦听到PSCCH中传输的第一侧行控制信息,则终端设备测量该PSCCH的侧链路参考信号接收功率(sidelink reference signalreceiving power,SL-RSRP)或者该PSCCH调度的PSSCH的SL-RSRP(即与该PSCCH在同一时隙中发送的对应的PSSCH的SL-RSRP),如果测量的SL-RSRP大于SL-RSRP门限,且终端设备所用资源池内激活了TB间的资源预留,则终端设备假定在时隙m+q*Prxlg上收到了相同内容的第一侧行控制信息。其中q=1,2,3…Q,如果Prx<Tscal并且n-m<=Prxlg,
Figure PCTCN2022130005-appb-000002
否则Q=1。Tscal等于T 2转化为毫秒后的值。Prxlg为Prx转化为逻辑时隙后的数目,这里Prx为终端设备侦听到的PSCCH中传输的第一侧行控制信息中资源预留周期(“resource reservation period”)指示的资源预留周期。终端设备将判断在时隙m收到的第一侧行控制信息和这些假定收到的Q个第一侧行控制信息的时域资源分配(timeresource assignment)和频域资源分配(frequency resource assignment)域指示的资源与资源R(x,y+j*Ptxlg)是否重叠,若重叠则从集合A中排除对应资源R(x,y)。上述j=0,1,2,3…C-1,C由终端设备生成的随机计数器的值确定。Ptxlg是Ptx转化为逻辑时隙后的数目,Ptx为进行资源选择的终端设备确定的资源预留周期。
上述RSRP门限是由终端设备侦听到的PSCCH中携带的优先级P1和终端设备待发送数据的优先级P2决定的。终端设备所用资源池的配置中包含一张SL-RSRP门限表,该SL-RSRP门限表包含了所有优先级组合对应的SL-RSRP门限。资源池的配置可以是网络设备配置或者预配置的。如果在上述资源排除后资源集合A中剩余资源不足M total*X%,则将SL-RSRP门限抬升3dB,重新执行步骤1,X可能的取值为{20,35,50},终端设备所用资源池的配置中包含优先级与上述X可能取值的对应关系,终端设备根据待发送数据的优先级及该对应关系,确定X的值。
终端设备的物理层将资源排除后的资源集合A作为候选资源集合上报给高层,例如,终端设备的媒体访问控制(media access control,MAC)层。
步骤2:终端设备的MAC层从上报的候选资源集合中随机选择资源发送数据。即终端设备从候选资源集合中随机选择资源发送数据。
侧行通信的数据传输方式
某些侧行通信系统(如长期演进-车联网(long term evolution vehicle to everything,LTE-V2X))支持基于广播的数据传输方式(下文简称广播传输)。对于广播传输,接收端终端可以为发送端终端周围的任意一个终端设备。以图6为例,终端设备1是发送端终端,该发送端终端对应的接收端终端是终端设备1周围的任意一个终端设备,例如可以是图6中的终端设备2-终端设备6。
除了广播传输之外,某些通信系统还支持基于单播的数据传输方式(下文简称单播传输)和/或基于组播的数据传输方式(下文简称组播传输)。例如,新无线-车联网(new radio vehicle to everything,NR-V2X)希望支持自动驾驶。自动驾驶对车辆之间的数据交互提出了更高的要求。例如,车辆之间的数据交互需要更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配方式等。因此,为了提升车辆之间的数据交互性能,NR-V2X引入了单播传输和组播传输。
对于单播传输,接收端终端一般只有一个终端设备。以图7为例,终端设备1和终端设备2之间进行的是单播传输。终端设备1可以为发送端终端,终端设备2可以为接收端终端,或者终端设备1可以为接收端终端,终端设备2可以为发送端终端。
对于组播传输,接收端终端可以是一个通信组内的终端设备,或者,接收端终端可以是在一定传输距离内的终端设备。以图8为例,终端设备1、终端设备2、终端设备3和终端设备4构成一个通信组。如果终端设备1发送数据,则该组内的其他终端设备(终端设备2至终端设备4)均可以是接收端终端。
基于下行链路的定位
在基于下行链路的定位中,网络设备可以为终端设备提供4个定位频率层(frequency layer)的下行定位参考信号(downlink positioning reference signal,DL PRS)配置。其中,每个定位频率层的参数结构中提供了以下DL PRS的配置参数:DL PRS的子载波间隔;DL PRS的循环前缀(cyclic prefix,CP)长度;DL PRS的频域资源带宽;DL PRS资源的频域起始频率位置;DL PRS的频域参考点“PointA”;DL PRS的梳齿尺寸“Comb-N”。
其中,DL PRS的频域资源带宽的取值可以是分配给DL PRS的物理资源块(physical resource block, PRB)的个数。在一些情况下,DL PRS的频域资源带宽的最小值可以是24个PRB,颗粒度可以是4个PRB。DL PRS的频域资源带宽的最大值可以是272个PRB。
DL PRS资源的频域起始频率位置用于指示DL PRS在频域资源分配的起始PRB的索引号。PRB的索引号是相对于DL PRS的DL PRS的频域参考点“PointA”所定义的。
每个定位频率层所对应的上述DL PRS配置参数可以应用于该定位频率层所包含的所有DL PRS资源上。也就是说,在一个定位频率层里面,来自多个不同TRP的所有DL PRS可以使用同样的子载波间隔和CP长度,同样的梳齿尺寸,发送在同样的频率子带上,并且占用一样的带宽。这样的设计可以支持终端设备同时接收并测量同一频点上来自多个不同的TRP的DL PRS。
在一些场景中,TRP层的参数中也会包括DL PRS的配置参数。可以包括一个用于唯一识别定位TRP的参数,例如,该TRP的物理小区ID,该TRP的NR小区全局标识(NCGI)、该TRP的绝对无线频道编号(absolute radio frequency channel number,ARFCN)等。通常,每个TRP层里面可以最多配置2个DL PRS资源集。针对每个DL PRS资源集TRP层的参数中DL PRS的配置参数包括DL PRS资源集合识别标识(用“nr-DL-PRS-ResourceSetID”表示);DL PRS的传输周期和时隙偏移(用“dl-PRS-Periodicity-and-ResourceSetSlotOffset”表示);DL PRS资源的重复因子(用“dl-PRS-ResourceRepetitionFactor”表示);DL PRS资源重复发送的时间间隔(用“dl-PRS-ResourceTimeGap”表示);DL PRS的静默(muting)配置;以及DL PRS资源所占的正交频分复用(orthogonal frequencydivision multiplexing,OFDM)符号(下文简称“符号”)数(用“dl-PRS-NumSymbols”表示)。
上述DL PRS的传输周期和时隙偏移用于指示DL PRS资源集中所有DL PRS资源的时域发送行为。在一些实现方式中,可配置的DL PRS的传输周期的最小值是4毫秒,而可配置的DL PRS的传输周期的最大值是10240毫秒。目前,DL PRS的配置支持灵活的子载波间隔包括15KHz,30KHz,60KHz和120KHz。在不同的子载波间隔情况下,可配置的DL PRS传输周期值范围可以是一样的。图10示出了梳齿尺寸为2,RE偏移分别为0和1的情况下传输DL PRS的资源的示意图。
上述DL PRS资源的重复因子用于指示DL PRS资源在每个DL PRS传输周期内的重复传输次数。目前,同一个DL PRS资源的重复传输可以被终端设备用来聚合多次传输的DL PRS能量,有助于增加DL PRS的覆盖距离以及提高定位精度。在FR2系统中,DL PRS资源的重复传输还可以被终端设备用来做接收波束扫描操作。终端设备可以用不同的接收波束来接收同一个DL PRS资源的重复传输,从而找到最佳的TRP发送波束和终端设备接收波束匹配。另一方面,DL PRS资源的重复发送会增加DLPRS的传输开销,目前为了控制传输开销,在3GPP NR R16的规范中,DL PRS资源的重复因子取值为1,2,4,6,8,16和32。
上述DL PRS资源重复发送的时间间隔用于指示同一个DL PRS资源的连续两次重复传输之间的时隙数。
上述DL PRS的静默配置用于指示DL PRS在某些分配时频资源上不发送DL PRS。静默配置可以理解为DL PRS并不会在所有的分配的时频资源上发送,而是有意在某些指定的时频资源上不发送。一方面,静默配置可以避免DL PRS和其他信号(比如,同步信号块(synchronization signal block,SSB))发生冲突,另一方面,静默配置可以避免不同TRP发送的信号之间的干扰,例如,可以通过静默配置指示与终端设备相距较近的TRP的DL PRS不发送,并配置与终端设备相距较远的TRP发送DL PRS,这样,终端设备便可以不受指示静默的TRP的干扰,而收到来自较远的TRP的DL PRS。
上述DL PRS资源所占的OFDM符号数用于指示一个DL PRS资源在一个时隙内部所分配的OFDM符号数量。
通常,上述TRP层的参数中包括的DL PRS配置参数可以应用于TRP层对应的DL PRS资源集中的所有的DL PRS资源。因此,属于同一DL PRS资源集的DL PRS资源会以相同的传输周期、相同的重复传输次数发送DL PRS,并且DL PRS占用相同个数的OFDM符号。
在一些实现方式中,针对每个DL PRS资源,DL PRS配置参数还可以包括:DL PRS资源识别ID(用“nr-DL-PRS-ResourceID”表示);DL PRS的序列ID(用“dl-PRS-SequenceID”表示);DL PRS的起始频域资源单元偏移(用“dl-PRS-CombSizeN-AndReOffset”表示);DL PRS的资源时隙偏移(用“dl-PRS-ResourceSlotOffset”表示);DL PRS的OFDM符号偏移(用“dl-PRS-ResourceSymbolOffset”表示);DL PRS的准共址(Quasi Co-Location,QCL)信息(用“dl-PRS-QCL-Info”表示)。
上述DL PRS的起始频域资源单元偏移用于指示DL PRS资源在一个时隙内的第一个分配的OFDM符号上资源映射所用的频域资源单元偏移值。通常,根据该参数以及TS38.211中定义的相对偏移值,终端设备可以确定每个OFDM符号上资源映射所使用的频域资源单元偏移值。
上述DL PRS的资源时隙偏移用于指示相对于DL PRS资源集的时隙偏移。该参数可以确定每个DL PRS资源所处的时隙位置。
上述DL PRS的OFDM符号偏移用于指示DL PRS资源在一个时隙内的时频资源分配位置。该参数可以用于指示时隙内的起始OFDM符号的索引号。
上述DL PRS的QCL信息用于指示DL PRS的QCL信息。
基于侧行链路的定位
基于侧行的定位为R18定位技术的增强方案之一,在这一课题中将考虑支持蜂窝网络覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求,将考虑V2X用例,公共安全用例,商业用例和工业互联网(industrial internet of things,IIOT)用例的定位要求,并考虑支持以下功能:绝对定位,测距/测向,及相对定位;研究侧行测量量和Uu接口测量量相结合的定位方法;研究侧行定位参考信号,包括信号设计,物理层控制信令,资源分配,物理层测量量,及相关的物理层过程等;研究定位系统架构及信令过程,例如配置,测量上报等。
对于绝对定位,终端设备可以根据测量结果直接确定自身的绝对地理或者称为基于终端设备的绝对定位。或者,终端设备可以将测量结果上报给定位服务器,例如LMF,然后由LMF计算终端设备的绝对位置并通知该终端设备,这种方式称为终端设备辅助的绝对定位。对于测距/测向或相对定位,终端设备设备可以根据接收到的定位参考信号估计信号的往返时间,到达角,信号接收强度等信息,对相对距离和相对方向进行估计。
如上文所述,目前希望通过引入基于侧行链路的定位,来对定位技术进行增强。为了便于理解本申请,下文先介绍本申请实施例中侧行通信系统SL PRS资源的时域位置。
假设时域单元集合可以包括一个或多个时域单元,在一些实现方式中,时域单元集合中的全部时域单元可以用于传输SL PRS,即时域单元集合包括的时域单元为SL PRS资源。在另一些实现方式中,时域单元集合中的部分时域单元可以用于传输SL PRS。
在一些实现方式中,时域单元集合中用于传输SL PRS的时域单元可以被划分为一个或多个SL PRS资源。其中,SL PRS资源可以作为一个整体被一个终端设备预留或选择,或者说,SL PRS资源可以是终端设备进行资源预留的基本时域单元。
在本申请实施例中,若时域单元集合中用于传输SL PRS的时域单元可以被划分为多个SL PRS资源,有助于提高SL PRS资源选择的灵活性。若时域单元集合中用于传输SL PRS的时域单元可以被划分为一个SL PRS资源,有助于简化SL PRS资源预留或选择的复杂度。
在一些实现方式中,一个SL PRS资源包括的一个或多个时域单元可以属于一个资源池(例如,SLPRS资源池)。在另一些实现方式中,一个时域单元集合中包括的SL PRS资源的时域单元小于或等于时域单元集合中属于侧行资源池的时域单元的个数。
在一些实现方式中,SL PRS资源还可以用于传输PSSCH解调参考信号(demodulation referencesignal,DMRS),此时,PSSCH DMRS可以称为第二类SL PRS。相应地,SL PRS可以称为第一类SLPRS。当然,在本申请实施例中,上述SL PRS资源还可以仅用于传输第一类SL PRS。
以时域单元集合为时隙,且时域单元集合为符号为例,SL PRS资源可以由属于SL PRS资源池的一个或多个符号组成,且属于同一个SL PRS资源的符号可以位于同一个时隙内,且SL PRS资源的符号小于或等于一个时隙内属于SL PRS资源池的符号的个数。
在一些实现方式中,资源池内的一个SL PRS资源在时域上占用连续的多个时域单元,以符号作为时域单元为例,资源池内的一个SL PRS资源在时域上占用连续的多个符号。当然,在本申请实施例中,SL PRS资源在时域上占用的时域单元可以不在时域上连续,或者仅部分时域单元在时域上连续,本申请实施例对此不作限定。
上述时域单元集合可以是已知通信系统中任一种时域单元集合,例如,时隙、子帧、帧等。当然,上述时域单元集合还可以是未来通信系统中引入的任一种时域单元集合,本申请实施例对此不作限定。
另外,上述时域单元可以是已知通信系统中任一种时域单元,例如,符号、时隙、子帧、帧等。当然,上述时域单元还可以是未来通信系统中引入的任一种时域单元,本申请实施例对此不作限定。
下文以符号作为时域单元,相应地,时隙作为时域单元集合为例,结合图11至图12介绍本申请实施例的SL PRS资源。
在一些实现方式中,时隙中用于传输SL PRS的符号可以视为一个SL PRS资源。参见图11,假设时隙包括14个符号:符号0~13,并且符号0~13均可以用于传输SL PRS。此时,符号0~13可以视为一个SL PRS资源。
在一些实现方式中,时隙中用于传输SL PRS的符号可以视为多个SL PRS资源。参见图11,假设符号集合包括14个符号:符号0~13。其中符号0~5可以视为第一个SL PRS资源,符号6~9可以视为第二个SL PRS资源,符号10~13可以视为第三个SL PRS资源。
在上文介绍的资源选择模式中的第二模式下,终端设备在执行资源排除时,是以单时隙资源为资源 单元进行的。也即是说,资源排除后的得到的候选资源集合中的每一个元素均为单时隙资源,其中,单时隙资源为一个时隙内连续L_subch个子信道组成的资源。然而,在选择SL PRS资源的过程中,终端设备在进行资源排除时如何确定资源单元是一个尚未解决的问题。
因此,本申请实施例提供了一种无线通信的方法,在该方案中,终端设备可以确定用于配置资源池内的SL PRS资源的配置信息(又称“第一配置信息”),有助于终端设备在选择SL PRS资源的过程中,确定执行资源排除时使用的资源单元。
在一些场景中,上述资源池可能是存在频分复用资源的资源池,此时,如果在该资源池中的其他频域资源上发送SL PRS可能会影响其它频域资源上发送的侧行信息(例如,侧行信道和/或侧行信息)的接收,因此,用于SL PRS传输的资源池可以占用整个侧行BWP。也即是说,上述资源池可以包括占用一个侧行BWP的资源池。
当然,在本申请实施例中,上述资源池可以包括侧行通信之间的共享资源池或专用资源池。上述侧行通信之间的共享资源池可以理解为包括用于发送除SL PRS之外的其他侧行信息的资源以及SL PRS资源,其中,其他侧行信息可以包括PSSCH,其中,PSSCH例如可以是后向终端设备(即3GPP版本16和版本17中的终端设备)发送的PSSCH。上述专用资源池可以理解为不包含用于发送PSSCH资源,但包含SL PRS资源的资源池。
下文结合图13介绍本申请实施例的用于无线通信的方法。图13是本申请实施例的用于无线通信的方法的示意性流程图。图13所示的方法包括步骤S1310。
在步骤S1310中,终端设备确定第一配置信息。
上述第一配置信息用于配置资源池内的SL PRS资源。在一些实现方式中,终端设备可以根据资源池的配置信息确定第一配置信息,其中,资源池的配置信息可以预配置或配置的,本申请实施例对此不作限定。
在一些实现方式中,上述第一配置信息可以包括以下中的一种或多种:第一参数、第二参数以及第三参数。下文分别对上述参数进行介绍。
上述第一参数可以用于指示资源池的一个时隙内允许的SL PRS资源的时域位置。
在一些实现方式中,第一参数包括第四参数,其中,第四参数用于指示一个时隙内允许SL PRS资源占用的起始符号,或者说,第四参数用于指示一个时隙内允许的SL PRS起始符号位置。
在一些场景中,一个时隙内允许SL PRS资源占用的起始符号可以为一个或多个。例如,参见图11所示,1个时隙中包括的14个符号均可用于SL PRS传输(或者说,SL PRS发送),并且,在该时隙内允许SL PRS资源占用的起始符号为符号0。又例如,参见图12所示,1个时隙中包括的14个符号均可用于SL PRS传输,并且,在该时隙内允许SL PRS资源占用的起始符号可以包括多个:符号0、符号6以及符号10。
在另一些实现方式中,第一参数可以包括第五参数,其中,第五参数用于指示一个时隙内允许SLPRS资源占用的符号数量。
在一些实现方式中,第五参数可以用于指示一个时隙内允许SL PRS资源占用的符号数量的最小值(可以用S_min表示)。也即是说,在一个时隙内的任何一个SL PRS资源所包含的符号数应不小于S_min。例如,在一个时隙内的任何一个SL PRS资源所包含的连续的符号的数量应不小于S_min。
相应地,在一些实现方式中,终端设备的高层触发终端设备的物理层进行资源选择或重选时,终端设备的物理层应将资源选择窗内配置或预配置的所有SL PRS资源视为候选资源集合,且任何一个SLPRS资源包含的连续的符号的数量应不小于S_min。
需要说明的是,在本申请实施例中,上述参数S_min可以适用于SL PRS资源占用的时域资源包括以时隙内某个符号为起始符号的连续多个符号的场景,也即是说,适用SL PRS资源占用的时域资源的起始符号比较灵活的场景。当然,在其他场景也可以使用该参数,本申请实施例对此不作限定。
另外,在上述场景中,为了保证接收终端能够正确接收SL PRS,指示SL PRS发送的指示信令的发送时间应早于所指示的SL PRS的发送时间,且指示信令的终点和SL PRS起点之间的时间间隔应大于特定门限,以保证接收终端能够在SL PRS发送之间解码指示信令。
在本申请实施例中,SL PRS资源占用的时域资源包括以时隙内某个符号为起始符号的连续多个符号,也即是说,SL PRS资源占用的时域资源的起点和终点相对来说比较灵活,有助于提高SL PRS资源选择的灵活性。
在一些场景中,一个时隙内允许SL PRS资源占用的符号数量可以包括一个或多个。在另一些场景中,资源池中的多个时隙内允许SL PRS资源占用的符号数量可以不同。例如,如果资源池内存在不同时域长度的时隙,则在不同的时隙上,允许的SL PRS起始位置可以不同。也即是说,资源池包括第一时隙和第二时隙,第一时隙和第二时隙的时域长度不同,第一时隙对应第四参数的第一取值,第二时隙 对应第四参数的第二取值,第一取值和第二取值不同。
例如,假设时隙中包括的14个符号可用于SL PRS传输,则在该时隙内允许的SL PRS起始符号可以为{0,6,10}。假设时隙中包括的10个符号可用于SL PRS传输,则在该时隙内允许的SL PRS起始符号可以为{0,6}。
当然,在本申请实施例中,资源池中的多个时隙内允许SL PRS资源占用的符号数量可以相同。
如上文介绍,一个时隙内可以允许多个起始符号。在一些实现方式中,多个起始符号包含时域位置相邻的第一符号和第二符号,第一符号对应的SL PRS资源在时域上包括第一符号以及第一符号和第二符号之间的符号。
也即是说,假设时隙包括两个起始符号i以及起始符号i+n,相应地,起始符号i对应的SL PRS资源包括起始符号i以及起始符号i+n之间的符号。例如,参见图12所示,时隙中的第一个起始符号为符号0,第二个起始符号为符号6,那么符号0对应的SL PRS资源可以包括符号0~5。
在另一些实现方式中,多个起始符号中的最后一个起始符号为第三符号,一个时隙内的可用于SLPRS传输的符号中的最后一个符号为第四符号,第三符号对应的SL PRS资源在时域上占用第三符号、第四符号、以及第三符号和第四符号之间的符号。
也即是说,假设起始符号j为时隙中的最后一个起始符号,并且该时隙中的最后一个可用于SL PRS传输的符号为符号j+m,相应地,起始符号j对应的SL PRS资源包括起始符号j、符号j+m以及时域上位于起始符号j以及符号j+m之间的符号。例如,继续参见图12所示,时隙中的最后一个起始符号为符号10,并且该时隙中的最后一个可用于SL PRS传输的符号为符号13,那么符号10对应的SL PRS资源可以包括4个符号,即符号10~13。
在一些场景中,上述时隙内可能包括用于自动增益控制的符号、用于收发转换的符号、以及用于指示SL PRS发送的侧行信道所占用的符号。此时,在本申请实施例中,可用于SL PRS传输的符号(又称“目标符号”)可以包括上述符号中的一种或多种。在本申请的另一些实施例中,SL PRS资源占用的符号(又称“目标符号”)可以包括上述符号中的一种或多种。
需要说明的是,本申请实施例中上述第四参数和第五参数的适用场景不作限定。在一些实现方式中,上述参数可以适用于以下一种或多种场景:场景1,资源池内一个SL PRS占用的频域单元(例如,资源块(resource block,RB))数量等于资源池内的可用于SL PRS传输的全部RB(又称“第一带宽”),并且,SL PRS资源占用的频域资源包括以资源池的第一个可用于SL PRS传输的频域单元内的目标资源元素(resource element,RE)(或者说,特定RE)起始频域位置且间隔为C的RE,其中,C为资源池内配置的SL PRS梳齿尺寸。另外,SL PRS资源占用的时域资源包括从一个时隙内特定符号开始的连续多个符号。其中,特定RE和/或特定符号可以理解为是预配置、预定义或网络设备配置的参数。
场景2:资源池内一个SL PRS占用的频域单元(例如,RB)数量小于或等于第一带宽,并且,SLPRS资源占用的频域资源包括以该SL PRS资源占用的第一个RB内的特定RE为起始频域位置,且间隔为C的RE,其中C为资源池内配置的SL PRS梳齿尺寸。另外,SL PRS资源占用的时域资源包括从一个时隙内特定符号开始的连续多个符号。其中,特定符号可以理解为是预配置、预定义或网络设备配置的符号。
上述第二参数可以用于指示资源池内的SL PRS资源的梳齿尺寸,其中,梳齿尺寸用于指示SL PRS资源占用的两个相邻的梳齿资源之间间隔的符号的数量。
在一些实现方式中,资源池内的SL PRS资源的梳齿尺寸可以相同。例如,资源池内的SL PRS资源的梳齿尺寸可以为{1,2,4,6,8,12}中的一个。当然,在本申请实施例中,资源池内的SL PRS资源的梳齿尺寸可以不同。例如,资源池内的SL PRS资源的梳齿尺寸可以为{1,2,4,6,8,12}中的多个。
在本申请实施例中,资源池内的SL PRS资源的梳齿尺寸可以相同,有助于简化梳齿尺寸的设置方式。
在本申请实施例中,梳齿尺寸可以是由资源池的配置参数配置的,或者由协议预定义的。例如,若资源池内的SL PRS资源的梳齿尺寸相同,则梳齿尺寸可以是由资源池的配置参数配置的。
在一些实现方式中,资源池内的时域起始位置不同的SL PRS资源对应不同的梳齿尺寸。例如,继续参见图12,以符号0为起始符号的SL PRS资源对应的梳齿尺寸可以为4。以符号6为起始符号的SLPRS资源对应的梳齿尺寸可以为2。以符号10为起始符号的SL PRS资源对应的梳齿尺寸可以为2。不同起始位置的SL PRS资源对应不同的梳齿尺寸,有助于提高梳齿尺寸的合理性。当然,在本申请实施例中,不同起始位置的SL PRS资源也可以对应相同的梳齿尺寸。
在本申请实施例中,上述梳齿尺寸可以由上述第二参数直接指示。例如,对于以符号0为起始符号的SL PRS资源而言,第二参数C0可以为4。对于以符号6为起始符号的SL PRS资源而言,第二参数C1可以为2。对于以符号10为起始符号的SL PRS资源而言,第二参数C1可以为2。当然,在本申请 实施例中,上述梳齿尺寸还可以通过协议预定义,例如,协议可以定义梳齿尺寸与起始符号之间的对应关系,相应地,可以基于起始符号确定与该起始符号对应的梳齿尺寸。本申请实施例对此不作限定。
在一些实现方式中,资源池内的时域长度不同的SL PRS资源对应不同的梳齿尺寸。例如,继续参见图12,对于第一个SL PRS资源而言,其时域长度为6个符号,对应的梳齿尺寸可以为4。对于第二个SL PRS资源以及第三个SL PRS资源而言,其时域长度为4个符号,对应的梳齿尺寸可以为2。不同时域长度的SL PRS资源对应不同的梳齿尺寸,有助于提高梳齿尺寸的合理性。当然,在本申请实施例中,不同时域长度的SL PRS资源也可以对应相同的梳齿尺寸。
在本申请实施例中,上述梳齿尺寸可以由上述第二参数直接指示。例如,继续参见图12,对于第一个SL PRS资源而言,第二参数C0可以为4。对于第二个SL PRS资源以及第三个SL PRS资源而言,第二参数C1可以为2。当然,在本申请实施例中,上述梳齿尺寸还可以通过协议预定义,例如,协议可以定义梳齿尺寸与起始符号之间的对应关系,相应地,可以基于起始符号确定与该起始符号对应的梳齿尺寸。本申请实施例对此不作限定。
在一些实现方式中,资源池内的SL PRS资源的梳齿尺寸可以基于SL PRS资源包含的符号数量或者SL PRS资源包含的可用于传输SL PRS的符号数量确定。
例如,假设SL PRS资源包括N个符号,且SL PRS资源中不能用于SL PRS传输的符号的数量为Y,相应地,SL PRS资源对应的梳齿尺寸可以为{1,2,4,6,8,12}中最接近N-Y的值。
又例如,假设SL PRS资源包括N个符号,且SL PRS资源中不能用于SL PRS传输的符号的数量为Y,相应地,SL PRS资源对应的梳齿尺寸可以为{1,2,4,6,8,12}中不大于N-Y的值。
需要说明的是,如果SL PRS资源中仅包括一个自动增益控制(automatic gain control,AGC)符号和一个收发转换符号不能用于SL PRS传输,则Y=2。如果SL PRS资源中除一个AGC符号和一个收发转换符号之外,还包括一个用于指示SL PRS发送的SL信道的符号不能用于SL PRS发送,则Y=3。
另外,在本申请实施例中,对于一个资源池而言,基于SL PRS资源包含的符号数量或者SL PRS资源包含的可用于传输SL PRS的符号数量确定梳齿尺寸,可以标准预定义。当然,在本申请实施例中,上述梳齿尺寸的确定方式还可以由网络设备配置或预配置。
需要说明的是,本申请实施例中上述第三参数的适用场景不作限定。在一些实现方式中,上述参数可以适用于场景1和/或场景2。在另一些实现方式中,第三参数还适用于场景3和/或场景4。场景3,资源池内一个SL PRS资源占用的频域单元(例如,RB)数量等于第一带宽,且SL PRS资源占用的频域资源为从资源池的第一个可用于SL PRS发送的RB内的特定RE开始间隔为C的资源元素,其中C为资源池内配置的SL PRS梳齿尺寸。另外,SL PRS资源占用的时域资源包括从一个时隙内某个符号开始的连续多个符号。
场景4:资源池内一个SL PRS资源占用的频域单元(例如,RB)数量小于或等于第一带宽,并且,SL PRS资源占用的频域资源包括以该SL PRS资源占用的第一个RB内的特定RE为起始频域位置,且间隔为C的RE,其中C为资源池内配置的SL PRS梳齿尺寸。另外,SL PRS资源占用的时域资源包括从一个时隙内某个符号开始的连续多个符号。
上述第三参数用于指示资源池内允许的SL PRS资源的频域位置。在一些实现方式中,上述第三参数可以包括第六参数和/或第七参数。
上述第六参数用于指示资源池内允许SL PRS资源占用的起始RE索引。
在一些实现方式中,第六参数指示的起始RE索引为梳齿尺寸对应的取值范围内的任意值。例如,假设梳齿尺寸的取值范围为[0,C-1],相应地,起始RE索引是指[0,C-1]范围内的任意值。这种起始RE的配置方式有助于提高SL PRS资源选择的灵活性。
在本申请实施例中,上述资源池内的一个或多个起始RE可以通过资源池配置参数确定。当然,在本申请实施例中,上述起始RE还可以通过协议预定义,或者,由网络设备配置。
在一些实现方式中,资源池内的多个SL PRS资源之间可以对应不同的起始RE。例如,针对包含的符号数量不同的多个SL PRS资源,可以对应不同的起始RE。又例如,对应不同起始符号的多个SLPRS资源,可以对应不同的起始RE。
在本申请实施例中,不同的SL PRS资源可以对应不同的起始RE,有助于使得不同SL PRS资源之间存在一定数目的RE间隔,从而降低带内泄露(In-Band Emission,IBE)干扰。当然,如果不考虑上述问题,多个SL PRS资源之间可以对应相同的起始RE。
在一些实现方式中,第六参数可以指示每个SL PRS资源对应的起始RE。在一些实现方式中,资源池可以包括第一SL PRS资源和第二SL PRS资源,如果第一SL PRS资源和第二SL PRS资源允许的梳齿尺寸不同,则第六参数包括第一SL PRS资源和第二SL PRS资源各自对应的参数,其中,第一SLPRS资源和第二SL PRS资源包含的符号数量不同,或者,第一SL PRS资源和第二SL PRS资源在资 源池的一个时隙内的起始符号不同。
上述第七参数用于指示资源池内的相邻SL PRS资源之间的RE间隔,或者说,用于指示资源池内的相邻SL PRS资源之间间隔的RE的数量。
在一些实现方式中,可以通过第七参数明确指示RE间隔d,其中,RE间隔d是不大于梳齿尺寸C的值。相应地,资源池内允许SL PRS资源对应的起始RE索引可以为0,0+d,…,0+floor(C/d)*d,其中floor(.)表示向下取整。
需要说明的是,本申请实施例中第四参数的适用场景不作限定。在一些实现方式中,,上述第四参数可以适用于场景1~4中的一种或多种。
在一些实现方式中,如果资源池为第一类型的资源池,则第一配置信息包含指示资源池的一个时隙内允许SL PRS资源占用的时域位置的参数;或者,如果资源池为第二类型的资源池,则资源池的一个SL PRS资源占用一个时隙内的可用于SL PRS传输的时域资源的全部资源。
在一些实现方式中,上述第一类型的资源池可以为基于第一测量信息进行信道侦听的资源池,第二类型的资源池为基于第二测量信息进行信道侦听的资源池;其中,第一测量信息为针对PSCCH的DMRS的测量信息,第二测量信息为针对PSSCH的DMRS的测量信息。
例如,如果资源池内配置为通过PSCCH的DMRS测量L1RSRP用于信道侦听操作(sensingoperation),则第一配置信息可以配置资源池内每个时隙中允许的SL PRS资源对应的起始符号(即第四参数),以及以对应起始符号的SL PRS资源占用的符号的数量(即第五参数)。
又例如,如果资源池内配置为通过PSSCH的DMRS测量L1RSRP用于信道侦听操作,则终端设备认为一个SL PRS资源包括一个时隙内所有可用于SL PRS传输的符号。其中,可用于SL PRS传输的符号可以不包括:被PSSCH DMRS占用的符号;和/或被其它物理信道占用的符号。
在本申请实施例中,由于PSCCH占用的时域资源通常在一个时隙中靠前的时域位置,因此,基于第一测量信息进行信道侦听的资源池中,SL PRS资源占用的时域位置可能有较多的选择,因此,可以通过第一配置信息指示资源池的一个时隙内允许SL PRS资源占用的时域位置的参数,有助于提高SLPRS资源的合理性。
由于PSSCH占用的时域资源通常在一个时隙中较多的时域资源,因此,基于第二测量信息进行信道侦听的资源池中,SL PRS资源占用的时域位置可能没有较多的选择,因此,SL PRS资源可以占用一个时隙内的可用于SL PRS传输的时域资源的全部资源。
另外,在本申请实施例中,上述SL PRS占用的时域位置与资源池类型关联的方案,可以适用于以下一种或多种场景:场景5,资源池内一个SL PRS资源占用的频域单元(例如,RB)数量等于第一带宽,并且,SL PRS资源占用的频域资源包括以资源池的第一个可用于SL PRS传输的频域单元内的目标RE(或者说,特定RE)起始频域位置且间隔为C的RE,其中C为资源池内配置的SL PRS梳齿尺寸。
场景6:资源池内一个SL PRS资源占用的频域单元(例如,RB)数量小于或等于第一带宽,并且,SL PRS资源占用的频域资源包括以该SL PRS资源占用的第一个RB内的特定RE为起始频域位置,且间隔为C的RE,其中C为资源池内配置的SL PRS梳齿尺寸。
上文介绍了本申请实施例中第一配置信息可以包含的参数,下文介绍本申请实施例中,终端设备基于第一配置信息进行资源选择或资源重选的方案。
在一些实现方式中,上述方法还包括:步骤S1320,终端设备根据第一配置信息在资源池中进行针对SL PRS资源的资源选择/重选。
在一些场景中,如果资源池内一个SL PRS资源占用的频域单元(例如,RB)数量等于第一带宽,则SL PRS资源占用的频域资源可以包括从资源池的第一个可用于SL PRS传输的RB内的目标RE开始,间隔为C的RE,其中C表示SL PRS资源对应的梳齿尺寸。
相应地,在上述情况下,SL PRS资源可以表示为R(e,y,s),其中,e表示SL PRS资源的起始RE在RB内的索引,y表示SL PRS资源对应的资源单元所在时隙的索引,s表示SL PRS资源的起始符号在所在时隙内索引。
在一些实现方式中,终端设备的高层(例如,MAC层)触发终端设备的物理层进行资源选择或重选时,终端设备的物理层可以将资源选择窗内配置或预配置的所有SL PRS资源视为候选资源集合。然后,终端设备的物理层可以根据信道侦听结果从候选资源集合中排除被其它终端设备预留和/或干扰水平可能高于特定门限的资源。最后,终端设备的物理层将剩余的资源上报终端设备的高层。
需要说明的是,上述特定门限可以由网络设备配置或预配置,或者还可以由协议预定义,本申请实施例对此不作限定。
在另一些场景中,如果资源池支持一个SL PRS资源占用的频域单元(例如,RB)数量小于或等于 第一带宽,则资源选择/重选还基于第八参数和/或第九参数。
上述第八参数用于指示资源池内的SL PRS资源的第一个频域单元的索引(用“x表示”)。在一些实现方式中,上述频域单元可以为连续的F个RB,其中F≥1且为正整数。
在本申请实施例中,上述F的取值可以由网络设备配置,预配置,或标准定义。例如,F可以由标准定义为1,即频域单元为1个RB。又例如,F可以由网络设备配置或预配置为大于1的整数。
在一些实现方式中,如果F的值为1,则频域单元可以称为子信道。相应地,资源池内包含的子信道的数目为CEIL(N_RB/F),其中,N_RB为网络设备配置或预配置的资源池包含的RB的总数。
在一些场景中,如果F不能整除N_RB,则对于资源池内索引值最大的子信道而言,其包含的RB的个数为mod(N_RB,F),其中,mod(.)表示取模运算,资源池内的其它子信道包含的RB个数可以为F。
上述第九参数用于指示终端设备选择的SL PRS所包含的频域单元的数量(可以用“N_f”表示)。
在一些实现方式中,第九参数可以为终端设备选择的SL PRS所包含的频域单元的数量的确切值。例如,终端设备的高层可以通过第九参数指示N_f的确切值,相应地,终端设备的物理层可以将资源选择窗内配置或预配置的所有SL PRS资源视为候选资源集合,且任何一个SL PRS资源包含的频域单元数目均为N_f。之后,终端设备的物理层可以根据信道侦听结果进行资源排除,最后,终端设备的物理层可以将剩余的资源上报终端设备的高层。
在另一些实现方式中,第九参数用于指示频域单元的数量的最小值。例如,终端设备的高层可以指示N_f的最小值,相应地,终端设备的物理层可以将资源选择窗内配置或预配置的所有SL PRS资源视为候选资源集合,且任何一个SL PRS资源包含的频域单元数目不小于N_f。之后,终端设备的物理层可以将N_f值不同的SL PRS资源作为候选资源,然后根据信道侦听结果进行资源排除,最后终端设备的物理层可以将剩余的资源上报终端设备的高层。
在一些实现方式中,如果资源池支持一个SL PRS资源的占用的频域单元(例如,RB)数量小于或等于第一带宽,SL PRS资源表示为R(x,N_f,e,y,s),其中,e表示SL PRS资源的起始RE在所在RB内索引,y表示资源单元所在时隙的索引,s表示SL PRS资源的起始符号在所在时隙内索引。
上文结合图1至图13,详细描述了本申请的方法实施例,下面结合图14至图15,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图14是本申请实施例的终端设备的示意图。图14所示的终端设备1400包括:处理单元1410。
处理单元1410,用于确定第一配置信息,所述第一配置信息用于配置资源池内的侧行链路定位参考信号SL PRS资源。
在一些实现方式中,所述第一配置信息包括以下中的一种或多种:第一参数,用于指示所述资源池的一个时隙内允许的SL PRS资源的时域位置;第二参数,用于指示所述资源池内的SL PRS资源的梳齿尺寸;以及第三参数,用于指示所述资源池内允许的SL PRS资源的频域位置。
在一些实现方式中,所述第一参数包括以下中的一种或多种:第四参数,用于指示所述一个时隙内允许SL PRS资源占用的起始符号;以及第五参数,用于指示所述一个时隙内允许SL PRS资源占用的符号数量。
在一些实现方式中,所述资源池包括第一时隙和第二时隙,所述第一时隙和所述第二时隙的时域长度不同,所述第一时隙对应所述第四参数的第一取值,所述第二时隙对应所述第四参数的第二取值,所述第一取值和所述第二取值不同。
在一些实现方式中,所述一个时隙内允许多个所述起始符号,多个所述起始符号包含时域位置相邻的第一符号和第二符号,所述第一符号对应的SL PRS资源在时域上包括所述第一符号以及所述第一符号和所述第二符号之间的符号;或者所述一个时隙内允许多个所述起始符号,多个所述起始符号中的最后一个起始符号为第三符号,所述一个时隙内的可用于SL PRS传输的符号中的最后一个符号为第四符号,所述第三符号对应的SL PRS资源在时域上占用所述第三符号、所述第四符号、以及所述第三符号和所述第四符号之间的符号。
在一些实现方式中,所述一个时隙内的目标符号包括以下中的一种或多种:所述一个时隙内的用于自动增益控制的符号;所述一个时隙内的用于收发转换的符号;以及所述一个时隙内的用于指示SL PRS发送的侧行信道所占用的符号;其中,所述目标符号为所述一个时隙内的可用于SL PRS传输的符号或所述一个时隙内的一个SL PRS资源占用的符号。
在一些实现方式中,所述第五参数用于指示所述一个时隙内允许SL PRS资源占用的符号数量的最小值。
在一些实现方式中,所述资源池内的一个SL PRS资源在时域上占用连续的多个符号。
在一些实现方式中,所述资源池内的SL PRS资源的梳齿尺寸满足以下中的一种或多种:所述资源池内的SL PRS资源的梳齿尺寸相同;所述资源池内的时域起始位置不同的SL PRS资源对应不同的梳齿尺寸;所述资源池内的时域长度不同的SL PRS资源对应不同的梳齿尺寸;以及所述资源池内的SLPRS资源的梳齿尺寸基于所述SL PRS资源包含的符号数量或者所述SL PRS资源包含的可用于传输SLPRS的符号数量确定。
在一些实现方式中,所述第三参数包括以下中的一种或多种:第六参数,用于指示所述资源池内允许SL PRS资源占用的起始资源元素RE索引;以及第七参数,用于指示所述资源池内的相邻SL PRS资源之间的RE间隔。
在一些实现方式中,所述第六参数指示的所述RE索引为所述梳齿尺寸对应的取值范围内的任意值。
在一些实现方式中,所述资源池包括第一SL PRS资源和第二SL PRS资源,如果所述第一SL PRS资源和所述第二SL PRS资源允许的梳齿尺寸不同,则所述第六参数包括所述第一SL PRS资源和所述第二SL PRS资源各自对应的参数;其中,所述第一SL PRS资源和所述第二SL PRS资源包含的符号数量不同,或者,所述第一SL PRS资源和所述第二SL PRS资源在所述资源池的一个时隙内的起始符号不同。
在一些实现方式中,如果所述资源池为第一类型的资源池,则所述第一配置信息包含指示所述资源池的一个时隙内允许SL PRS资源占用的时域位置的参数;或者,如果所述资源池为第二类型的资源池,则所述资源池的一个SL PRS占用一个时隙内的可用于SL PRS传输的时域资源的全部资源。
在一些实现方式中,所述第一类型的资源池为基于第一测量信息进行信道侦听的资源池,所述第二类型的资源池为基于第二测量信息进行信道侦听的资源池;其中,所述第一测量信息为针对PSCCH的DMRS的测量信息,所述第二测量信息为针对PSSCH的DMRS的测量信息。
在一些实现方式中,所述终端设备还包括:所述终端设备根据所述第一配置信息在所述资源池中进行针对SL PRS资源的资源选择/重选。
在一些实现方式中,如果所述资源池支持一个SL PRS资源占用的频域单元(例如,RB)数量小于或等于第一带宽,则所述资源选择/重选还基于以下参数中的一种或多种:第八参数,用于指示所述资源池内的SL PRS资源的第一个频域单元的索引;以及第九参数,用于指示所述终端设备选择的SL PRS所包含的频域单元的数量;其中,所述第一带宽为所述资源池内的可用于SL PRS传输的资源块占用的全部带宽,或者说,第一带宽为资源池内的可用于SL PRS传输的资源块占用的全部频域单元(例如,RB)。
在一些实现方式中,所述第九参数用于指示所述频域单元的数量的最小值。
在一些实现方式中,所述资源池包括以下资源池中的一种或多种:占用一个侧行BWP的资源池;以及和侧行通信之间的共享资源池。
在可选的实施例中,所述处理单元1410可以为处理器1510。终端设备1400还可以包括收发器1530和存储器1520,具体如图15所示。
图15是本申请实施例的通信装置的示意性结构图。图15中的虚线表示该单元或模块为可选的。该装置1500可用于实现上述方法实施例中描述的方法。装置1500可以是芯片、终端设备或网络设备。
装置1500可以包括一个或多个处理器1510。该处理器1510可支持装置1500实现前文方法实施例所描述的方法。该处理器1510可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digitalsignal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置1500还可以包括一个或多个存储器1520。存储器1520上存储有程序,该程序可以被处理器1510执行,使得处理器1510执行前文方法实施例所描述的方法。存储器1520可以独立于处理器1510也可以集成在处理器1510中。
装置1500还可以包括收发器1530。处理器1510可以通过收发器1530与其他设备或芯片进行通信。例如,处理器1510可以通过收发器1530与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种用于无线通信的方法,其特征在于,包括:
    终端设备确定第一配置信息,所述第一配置信息用于配置资源池内的侧行链路定位参考信号SL PRS资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配置信息包括以下中的一种或多种:
    第一参数,用于指示所述资源池的一个时隙内允许的SL PRS资源的时域位置;
    第二参数,用于指示所述资源池内的SL PRS资源的梳齿尺寸;以及
    第三参数,用于指示所述资源池内允许的SL PRS资源的频域位置。
  3. 根据权利要求2所述的方法,其特征在于,所述第一参数包括以下中的一种或多种:
    第四参数,用于指示所述一个时隙内允许SL PRS资源占用的起始符号;以及
    第五参数,用于指示所述一个时隙内允许SL PRS资源占用的符号数量。
  4. 根据权利要求3所述的方法,其特征在于,所述资源池包括第一时隙和第二时隙,所述第一时隙和所述第二时隙的时域长度不同,所述第一时隙对应所述第四参数的第一取值,所述第二时隙对应所述第四参数的第二取值,所述第一取值和所述第二取值不同。
  5. 根据权利要求3或4所述的方法,其特征在于:
    所述一个时隙内允许多个所述起始符号,多个所述起始符号包含时域位置相邻的第一符号和第二符号,所述第一符号对应的SL PRS资源在时域上包括所述第一符号以及所述第一符号和所述第二符号之间的符号;或者
    所述一个时隙内允许多个所述起始符号,多个所述起始符号中的最后一个起始符号为第三符号,所述一个时隙内的可用于SL PRS传输的符号中的最后一个符号为第四符号,所述第三符号对应的SL PRS资源在时域上占用所述第三符号、所述第四符号、以及所述第三符号和所述第四符号之间的符号。
  6. 根据权利要求5所述的方法,其特征在于,所述一个时隙内的目标符号包括以下中的一种或多种:
    所述一个时隙内的用于自动增益控制的符号;
    所述一个时隙内的用于收发转换的符号;以及
    所述一个时隙内的用于指示SL PRS发送的侧行信道所占用的符号;
    其中,所述目标符号为所述一个时隙内的可用于SL PRS传输的符号或所述一个时隙内的一个SL PRS资源占用的符号。
  7. 根据权利要求3-6中任一项所述的方法,其特征在于,所述第五参数用于指示所述一个时隙内允许SL PRS资源占用的符号数量的最小值。
  8. 根据权利要求2-7中任一项所述的方法,其特征在于,所述资源池内的一个SL PRS资源在时域上占用连续的多个符号。
  9. 根据权利要求2-8中任一项所述的方法,其特征在于,所述资源池内的SL PRS资源的梳齿尺寸满足以下中的一种或多种:
    所述资源池内的SL PRS资源的梳齿尺寸相同;
    所述资源池内的时域起始位置不同的SL PRS资源对应不同的梳齿尺寸;
    所述资源池内的时域长度不同的SL PRS资源对应不同的梳齿尺寸;以及
    所述资源池内的SL PRS资源的梳齿尺寸基于所述SL PRS资源包含的符号数量或者所述SL PRS资源包含的可用于传输SL PRS的符号数量确定。
  10. 根据权利要求2-9中任一项所述的方法,其特征在于,所述第三参数包括以下中的一种或多种:
    第六参数,用于指示所述资源池内允许SL PRS资源占用的起始资源元素RE索引;以及
    第七参数,用于指示所述资源池内的相邻SL PRS资源之间的RE间隔。
  11. 根据权利要求10所述的方法,其特征在于,所述第六参数指示的所述RE索引为所述梳齿尺寸对应的取值范围内的任意值。
  12. 根据权利要求10或11所述的方法,其特征在于,所述资源池包括第一SL PRS资源和第二SL PRS资源,如果所述第一SL PRS资源和所述第二SL PRS资源允许的梳齿尺寸不同,则所述第六参数包括所述第一SL PRS资源和所述第二SL PRS资源各自对应的参数;
    其中,所述第一SL PRS资源和所述第二SL PRS资源包含的符号数量不同,或者,所述第一SL PRS资源和所述第二SL PRS资源在所述资源池的一个时隙内的起始符号不同。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于:
    如果所述资源池为第一类型的资源池,则所述第一配置信息包含指示所述资源池的一个时隙内允 许SL PRS资源占用的时域位置的参数;或者,
    如果所述资源池为第二类型的资源池,则所述资源池的一个SL PRS占用一个时隙内的可用于SL PRS传输的时域资源的全部资源。
  14. 根据权利要求13所述的方法,其特征在于:
    所述第一类型的资源池为基于第一测量信息进行信道侦听的资源池,所述第二类型的资源池为基于第二测量信息进行信道侦听的资源池;
    其中,所述第一测量信息为针对PSCCH的DMRS的测量信息,所述第二测量信息为针对PSSCH的DMRS的测量信息。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一配置信息在所述资源池中进行针对SL PRS资源的资源选择/重选。
  16. 根据权利要求15所述的方法,其特征在于,如果所述资源池支持一个SL PRS资源占用的带宽小于或等于第一带宽,则所述资源选择/重选还基于以下参数中的一种或多种:
    第八参数,用于指示所述资源池内的SL PRS资源的第一个频域单元的索引;以及
    第九参数,用于指示所述终端设备选择的SL PRS所包含的频域单元的数量;
    其中,所述第一带宽为所述资源池内的可用于SL PRS传输的资源块占用的全部带宽。
  17. 根据权利要求16所述的方法,其特征在于,所述第九参数用于指示所述频域单元的数量的最小值。
  18. 根据权利要求1-17中任一项所述的方法,其特征在于,所述资源池包括以下资源池中的一种或多种:
    占用一个侧行BWP的资源池;以及
    和侧行通信之间的共享资源池。
  19. 一种终端设备,其特征在于,包括:
    处理单元,用于确定第一配置信息,所述第一配置信息用于配置资源池内的侧行链路定位参考信号SL PRS资源。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第一配置信息包括以下中的一种或多种:
    第一参数,用于指示所述资源池的一个时隙内允许的SL PRS资源的时域位置;
    第二参数,用于指示所述资源池内的SL PRS资源的梳齿尺寸;以及
    第三参数,用于指示所述资源池内允许的SL PRS资源的频域位置。
  21. 根据权利要求20所述的终端设备,其特征在于,所述第一参数包括以下中的一种或多种:
    第四参数,用于指示所述一个时隙内允许SL PRS资源占用的起始符号;以及
    第五参数,用于指示所述一个时隙内允许SL PRS资源占用的符号数量。
  22. 根据权利要求21所述的终端设备,其特征在于,所述资源池包括第一时隙和第二时隙,所述第一时隙和所述第二时隙的时域长度不同,所述第一时隙对应所述第四参数的第一取值,所述第二时隙对应所述第四参数的第二取值,所述第一取值和所述第二取值不同。
  23. 根据权利要求21或22所述的终端设备,其特征在于:
    所述一个时隙内允许多个所述起始符号,多个所述起始符号包含时域位置相邻的第一符号和第二符号,所述第一符号对应的SL PRS资源在时域上包括所述第一符号以及所述第一符号和所述第二符号之间的符号;或者
    所述一个时隙内允许多个所述起始符号,多个所述起始符号中的最后一个起始符号为第三符号,所述一个时隙内的可用于SL PRS传输的符号中的最后一个符号为第四符号,所述第三符号对应的SL PRS资源在时域上占用所述第三符号、所述第四符号、以及所述第三符号和所述第四符号之间的符号。
  24. 根据权利要求23所述的终端设备,其特征在于,所述一个时隙内的目标符号包括以下中的一种或多种:
    所述一个时隙内的用于自动增益控制的符号;
    所述一个时隙内的用于收发转换的符号;以及
    所述一个时隙内的用于指示SL PRS发送的侧行信道所占用的符号;
    其中,所述目标符号为所述一个时隙内的可用于SL PRS传输的符号或所述一个时隙内的一个SL PRS资源占用的符号。
  25. 根据权利要求21-24中任一项所述的终端设备,其特征在于,所述第五参数用于指示所述一个时隙内允许SL PRS资源占用的符号数量的最小值。
  26. 根据权利要求20-25中任一项所述的终端设备,其特征在于,所述资源池内的一个SL PRS资源在时域上占用连续的多个符号。
  27. 根据权利要求20-26中任一项所述的终端设备,其特征在于,所述资源池内的SL PRS资源的梳齿尺寸满足以下中的一种或多种:
    所述资源池内的SL PRS资源的梳齿尺寸相同;
    所述资源池内的时域起始位置不同的SL PRS资源对应不同的梳齿尺寸;
    所述资源池内的时域长度不同的SL PRS资源对应不同的梳齿尺寸;以及
    所述资源池内的SL PRS资源的梳齿尺寸基于所述SL PRS资源包含的符号数量或者所述SL PRS资源包含的可用于传输SL PRS的符号数量确定。
  28. 根据权利要求20-27中任一项所述的终端设备,其特征在于,所述第三参数包括以下中的一种或多种:
    第六参数,用于指示所述资源池内允许SL PRS资源占用的起始资源元素RE索引;以及
    第七参数,用于指示所述资源池内的相邻SL PRS资源之间的RE间隔。
  29. 根据权利要求28所述的终端设备,其特征在于,所述第六参数指示的所述RE索引为所述梳齿尺寸对应的取值范围内的任意值。
  30. 根据权利要求28或29所述的终端设备,其特征在于,所述资源池包括第一SL PRS资源和第二SL PRS资源,如果所述第一SL PRS资源和所述第二SL PRS资源允许的梳齿尺寸不同,则所述第六参数包括所述第一SL PRS资源和所述第二SL PRS资源各自对应的参数;
    其中,所述第一SL PRS资源和所述第二SL PRS资源包含的符号数量不同,或者,所述第一SL PRS资源和所述第二SL PRS资源在所述资源池的一个时隙内的起始符号不同。
  31. 根据权利要求19-30中任一项所述的终端设备,其特征在于:
    如果所述资源池为第一类型的资源池,则所述第一配置信息包含指示所述资源池的一个时隙内允许SL PRS资源占用的时域位置的参数;或者,
    如果所述资源池为第二类型的资源池,则所述资源池的一个SL PRS占用一个时隙内的可用于SL PRS传输的时域资源的全部资源。
  32. 根据权利要求31所述的终端设备,其特征在于:
    所述第一类型的资源池为基于第一测量信息进行信道侦听的资源池,所述第二类型的资源池为基于第二测量信息进行信道侦听的资源池;
    其中,所述第一测量信息为针对PSCCH的DMRS的测量信息,所述第二测量信息为针对PSSCH的DMRS的测量信息。
  33. 根据权利要求19-32中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    所述终端设备根据所述第一配置信息在所述资源池中进行针对SL PRS资源的资源选择/重选。
  34. 根据权利要求33所述的终端设备,其特征在于,如果所述资源池支持一个SL PRS资源占用的带宽小于或等于第一带宽,则所述资源选择/重选还基于以下参数中的一种或多种:
    第八参数,用于指示所述资源池内的SL PRS资源的第一个频域单元的索引;以及
    第九参数,用于指示所述终端设备选择的SL PRS所包含的频域单元的数量;
    其中,所述第一带宽为所述资源池内的可用于SL PRS传输的资源块占用的全部带宽。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第九参数用于指示所述频域单元的数量的最小值。
  36. 根据权利要求19-35中任一项所述的终端设备,其特征在于,所述资源池包括以下资源池中的一种或多种:
    占用一个侧行BWP的资源池;以及
    和侧行通信之间的共享资源池。
  37. 一种终端设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,并控制所述收发器接收或发送信号,以使所述终端执行如权利要求1-18中任一项所述的方法。
  38. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-18中任一项所述的方法。
  39. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-18中任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-18中任一项所述的方法。
  41. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-18中任一项所述的方法。
  42. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-18中任一项所述的方法。
PCT/CN2022/130005 2022-11-04 2022-11-04 用于无线通信的方法及终端设备 WO2024092758A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130005 WO2024092758A1 (zh) 2022-11-04 2022-11-04 用于无线通信的方法及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130005 WO2024092758A1 (zh) 2022-11-04 2022-11-04 用于无线通信的方法及终端设备

Publications (1)

Publication Number Publication Date
WO2024092758A1 true WO2024092758A1 (zh) 2024-05-10

Family

ID=90929406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130005 WO2024092758A1 (zh) 2022-11-04 2022-11-04 用于无线通信的方法及终端设备

Country Status (1)

Country Link
WO (1) WO2024092758A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583553A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 信号传输方法及装置
WO2022045798A1 (ko) * 2020-08-26 2022-03-03 엘지전자 주식회사 네트워크 설정 기반의 사이드링크 측위 방법 및 장치
CN114257355A (zh) * 2020-09-23 2022-03-29 展讯通信(上海)有限公司 直连通信下prs资源指示方法及装置、存储介质、终端
WO2022184240A1 (en) * 2021-03-02 2022-09-09 Huawei Technologies Co., Ltd. Method and apparatus for user device positioning based on sidelink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583553A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 信号传输方法及装置
US20220321294A1 (en) * 2019-09-29 2022-10-06 Datang Mobile Communications Equipment Co., Ltd. Signal communication method and device
WO2022045798A1 (ko) * 2020-08-26 2022-03-03 엘지전자 주식회사 네트워크 설정 기반의 사이드링크 측위 방법 및 장치
CN114257355A (zh) * 2020-09-23 2022-03-29 展讯通信(上海)有限公司 直连通信下prs资源指示方法及装置、存储介质、终端
WO2022184240A1 (en) * 2021-03-02 2022-09-09 Huawei Technologies Co., Ltd. Method and apparatus for user device positioning based on sidelink

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
CN106559872B (zh) 一种资源分配方法、装置及无线接入系统
US20180092067A1 (en) System and Method for D2D Communication
WO2020088551A1 (zh) 发送和接收数据的方法以及通信装置
WO2020143804A1 (zh) 一种旁链路资源的配置方法及装置
TWI640215B (zh) 經由錨定載波的小區存取方法和裝置
CN115002787B (zh) 通信方法及终端设备
WO2024036671A1 (zh) 侧行通信的方法及装置
WO2024066145A1 (zh) 侧行通信的方法及装置
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
WO2023028969A1 (zh) 通信方法及终端
WO2024092758A1 (zh) 用于无线通信的方法及终端设备
WO2020164392A1 (zh) 一种通信方法及装置
WO2024031533A1 (zh) 用于侧行定位的方法、终端设备及网络设备
WO2024092625A1 (zh) 无线通信的方法及装置
WO2024031233A1 (zh) 通信方法及终端设备
WO2024065420A1 (zh) 用于侧行通信的方法及终端设备
WO2024108585A1 (zh) 用于侧行通信的方法、终端设备以及网络设备
WO2024092670A1 (zh) 侧行传输方法及终端设备
WO2023123051A1 (zh) 通信方法和终端设备
WO2023205954A1 (zh) 侧行通信方法、终端设备及网络设备
WO2024065762A1 (zh) 无线通信的方法及终端设备
US20240049284A1 (en) Communication method and terminal device
WO2024060187A1 (zh) 用于侧行通信方法以及终端设备
WO2023108417A1 (zh) 通信方法及终端设备