WO2023001060A1 - 一种通信方法及相关装置 - Google Patents

一种通信方法及相关装置 Download PDF

Info

Publication number
WO2023001060A1
WO2023001060A1 PCT/CN2022/105825 CN2022105825W WO2023001060A1 WO 2023001060 A1 WO2023001060 A1 WO 2023001060A1 CN 2022105825 W CN2022105825 W CN 2022105825W WO 2023001060 A1 WO2023001060 A1 WO 2023001060A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
directional
information
communication
lbts
Prior art date
Application number
PCT/CN2022/105825
Other languages
English (en)
French (fr)
Inventor
张萌
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023001060A1 publication Critical patent/WO2023001060A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a communication method and a related device.
  • the transmission of the direct connection communication system or the direct link (Sidelink, SL) communication works on the 4G or 5G licensed spectrum, and the limited spectrum resources will not be enough to support a large increase in data services.
  • SL transmission to unlicensed spectrum.
  • LBT Listen Before Talk
  • the LBT scheme on the unlicensed spectrum generally refers to omnidirectional LBT, but for directional LBT (directional LBT), the existing technology cannot determine the transmission direction of directional LBT in SL communication.
  • Embodiments of the present application provide a communication method and a related device, and the communication method can determine a transmission direction of a directional LBT in SL communication.
  • the present application provides a communication method, which can be applied to a terminal device, and can also be applied to a module (for example, a chip) in the terminal device.
  • the application to the terminal device is used as an example for description below.
  • the method may include: the first terminal device determines the direction of one or more directional LBTs; the first terminal device performs data transmission with the second terminal device in the actual transmission direction corresponding to the direction of the one or more directional LBTs .
  • the terminal device can determine the direction of the directional LBT. Unlike the prior art, the terminal device can only determine the direction of the omnidirectional LBT but cannot determine the direction of the directional LBT. The actual transmission direction corresponding to LBT performs SL communication with another terminal device, so that the efficiency and accuracy of communication can be improved.
  • the method further includes: the first terminal device receiving first indication information from a network device, where the first indication information is used to determine the direction of the one or more directional LBTs .
  • the network device can assist the terminal device in determining the direction of the LBT. Specifically: the terminal device may directly acquire the direction of the directional LBT according to the indication information from the network device for indicating the direction of the directional LBT. In this way, the resource occupation of the terminal device can be reduced, and the running speed can be improved.
  • the determining, by the first terminal device, the direction to direct the LBT includes: receiving, by the first terminal device, feedback information from the second terminal device, where the feedback information includes a channel quality result, Beam report, recommended direction: the first terminal device determines one or more directions of directional LBT according to one or more of the channel quality result, the beam report, and the recommended direction.
  • the terminal devices can determine the direction of directional LBT without the assistance of network devices. Thereby, SL communication with another terminal device can be realized according to the directional LBT direction.
  • the first terminal device receives information from the second terminal device through a physical sidelink shared channel (physical sidelink shared channel, PSSCH)/physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH). of the feedback information.
  • a physical sidelink shared channel physical sidelink shared channel, PSSCH
  • physical sidelink feedback channel Physical Sidelink Feedback Channel, PSFCH
  • the direction of the one or more directional LBTs is the direction of the latest successful transmission between the first terminal device and the second terminal device or the direction of the most recent beam report with the highest quality.
  • the direction of directional LBT is determined as the direction of the latest successful transmission of two terminal devices, which can improve the success rate of directional LBT, and the direction of directional LBT is determined as the best quality RS in the latest beam report
  • the direction in which the beam is located can improve the efficiency and accuracy of communication.
  • the method further includes: the first terminal device receiving second indication information from the network device, where the second indication information is used to indicate the direction of directional LBT and the actual transmission direction Correspondence between.
  • the network device can configure the corresponding relationship to the terminal device in advance. So that the terminal device can obtain the actual transmission direction according to the determined directional LBT and the corresponding relationship, and realize data transmission with another terminal device in the actual transmission direction.
  • the method further includes: the first terminal device sends the one or more directions to the second terminal device Information about the direction of multiple directional LBTs.
  • the terminal device after the terminal device determines the direction of the directional LBT, it can send the information of the direction of the directional LBT to another terminal device, so that another terminal device can monitor the direction of the directional LBT from the terminal device. Information, so that data transmission between two terminal devices can be realized.
  • the first terminal device uses the sidelink control information (Sidelink Control Information, SCI) or the radio resource control (Radio Resource Control, RRC) of the PC-5 port or the PC-5 port
  • SCI Sidelink Control Information
  • RRC Radio Resource Control
  • a medium access control-control element Medium Access Control-Control element, MAC-CE
  • the first indication information is configured by downlink control information (Downlink Control Information, DCI), or configured by a MAC-CE.
  • DCI Downlink Control Information
  • the second indication information is configured by RRC.
  • the present application provides a communication device.
  • the communication device has the function of implementing the actions in the method example of the first aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes:
  • a determination unit configured to determine the direction of one or more directional LBTs
  • a transmission unit configured to perform data transmission with the second terminal device in an actual transmission direction corresponding to the direction of the one or more directional LBTs.
  • the transmission unit is further configured to:
  • the determining unit is specifically configured to:
  • the feedback information includes channel quality results, beam reports, and recommended directions
  • the direction of one or more directional LBTs is determined according to one or more of the channel quality result, the beam report, and the recommended direction.
  • the feedback information from the second terminal device is received through a PSSCH/PSFCH.
  • the direction of the one or more directional LBTs is the direction of the latest successful transmission between the first terminal device and the second terminal device or the direction of the most recent beam report with the highest quality.
  • the transmission unit is further configured to:
  • the transmission unit is further configured to:
  • the directions of the one or more directional LBTs are determined, information about the directions of the one or more directional LBTs is sent to the second terminal device.
  • the one is sent to the second terminal device through the serial communication interface SCI of the SL or the RRC of the PC-5 port or the media access control control element MAC-CE of the PC-5 port. or more information on the direction of the directional LBT.
  • the first indication information is configured by downlink control information DCI, or configured by a medium access control control element MAC-CE.
  • the second indication information is configured by RRC.
  • a communication device in a third aspect, is provided, and the communication device may be a terminal device, or may be a module (for example, a chip) in the terminal device.
  • the device may include a processor, a memory, an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to other communication devices other than the communication device.
  • the other communication device outputs information, and the processor invokes the computer program stored in the memory to execute the communication method provided by the first aspect or any implementation manner of the first aspect.
  • the present application provides a computer-readable storage medium, on which computer instructions are stored.
  • the computer program or computer instructions are run, the above-mentioned first aspect and any possible The methods described in the implementation are executed.
  • the present application provides a computer program product including executable instructions.
  • the computer program product When the computer program product is run on a user device, the method described in the above-mentioned first aspect and any possible implementation thereof is executed. implement.
  • the present application provides a chip system, which includes a processor and may further include a memory, for implementing the method in the above first aspect and any possible implementation thereof.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • LBT Listen Before Talk
  • CCA clear channel assessment
  • a straight link may also be called a side link or a side link. It is a new link introduced to support direct communication between devices. It was first introduced in the application scenario of device-to-device communication (Device-to-Device, D2D), and later the technology was extended to the exchange of information between vehicles and the outside world (vehicle to everything, V2X), which was expanded and enhanced on the original protocol.
  • NR Sidelink is mainly composed of Physical Sidelink Control Channel (PSCCH), PSSCH, Physical Sidelink Broadcast Channel (PSBCH) and PSFCH. Among them, the first three channels already existed in LTE-V2X, and PSFCH was newly introduced in NR V2X to support Hybrid Automatic Repeat reQuest (HARQ) transmission.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Broadcast Channel
  • PSFCH Physical Sidelink Broadcast Channel
  • Mode 1 is that the network device allocates SL transmission resources, for example, the terminal is in a network coverage area, and the network device allocates SL transmission resources to the terminal.
  • the network device may send a control message through a control channel, for example, send DCI through a physical downlink control channel (Physical Downlink Control Channel) PDCCH.
  • a control channel for example, send DCI through a physical downlink control channel (Physical Downlink Control Channel) PDCCH.
  • PDCCH Physical Downlink Control Channel
  • Mode 2 is that the terminal independently selects SL transmission resources according to pre-configured information.
  • the pre-configuration information of the terminal may be the network pre-configuration information built in the terminal, or in the mobile phone card, or registered before. For example, a terminal in an area without network coverage can independently determine SL transmission resources. Wherein, if the terminal independently selects resources, the resource allocation may be performed by transmitting an SCI control message through the PSSCH.
  • the transmission of SL communication works on the licensed spectrum of 4G or 5G, and the limited spectrum resources will not be enough to support the large increase of data services.
  • SL transmission will be extended to the unlicensed spectrum.
  • the LBT transmission strategy must be implemented first, and the unlicensed spectrum can only be accessed if the channel is detected to be idle.
  • the LBT solution on the unlicensed spectrum generally refers to the omnidirectional LBT, and for the directional LBT, the existing technology cannot determine the transmission direction of the directional LBT in the SL communication.
  • the terminal device can determine the direction of the directional LBT, so as to realize data transmission with another terminal device in the actual transmission direction corresponding to the direction of the directional LBT. transmission.
  • the wireless communication technology introduces the direct connection communication technology or SL communication technology.
  • Object direct communication technology or SL communication technology is different from traditional wireless cellular network communication technology, which can realize direct communication between terminal devices.
  • the data packets transmitted by using the direct connection communication technology or SL communication technology can be directly transmitted from the first terminal device as the sending end to the second terminal device as the receiving end through SL without being forwarded by the network device.
  • the embodiments of the present application are described by using the SL communication technology as an example.
  • FIG. 1 is a schematic structural diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture may include a network device 101 , a first terminal device 102 and a second terminal device 103 .
  • a communication connection is established between the first terminal device 102 and the network device 101 through a traditional wireless cellular network communication technology, and communication may be performed through an uplink (Uplink) and a downlink (Downlink).
  • a communication connection is established between the first terminal device 102 and the second terminal device 103 through an SL communication technology, and communication may be performed through a direct link.
  • the first terminal device 102 may serve as the sending end of the SL communication
  • the second terminal device 103 may serve as the receiving end of the SL communication.
  • the first terminal device 102 and the second terminal device 103 may be fixed or movable.
  • the network device 101 may be an entity for transmitting or receiving a signal, and may be a device for communicating with a terminal device.
  • the network device may be a global system for mobile communications (GSM) system or a code division multiple access (CDMA) system.
  • the evolved base station (evolved NodeB, eNB or eNodeB) in the network can also be a wireless controller in the cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can be a relay station, access point, vehicle-mounted Devices, wearable devices, and network devices in a 5G network or network devices in a future evolved PLMN network are not limited in this embodiment of the application.
  • the network device may be a device in the wireless network, for example, a radio access network (radio access network, RAN) node that connects the terminal to the wireless network.
  • RAN nodes are: base station, next-generation base station gNB, transmission reception point (transmission reception point, TRP), evolved node B (evolved Node B, eNB), home base station, baseband unit (baseband unit, BBU) , or the access point (access point, AP) in the WiFi system, etc.
  • the network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • a centralized unit centralized unit, CU
  • DU distributed unit
  • RAN device including a CU node and a DU node.
  • the first terminal device 102 and the second terminal device 103 are entities on the user side for receiving or transmitting signals, such as user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, Remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device can also be a mobile phone, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a tablet computer (Pad), a computer with a wireless transceiver function, and a virtual reality (VR) terminal device.
  • augmented reality (augmented reality, AR) terminal equipment wireless terminals in industrial control (industrial control), wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wireless terminals in self driving, wireless terminals in remote medical, and smart grids
  • Wireless terminals in transportation safety wireless terminals in smart city, wireless terminals in smart home, wearable devices (such as smart watches, smart bracelets, computer stepper, etc.), terminal equipment in a 5G network or terminal equipment in a future evolved public land mobile network (PLMN), etc.
  • Terminal devices can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted, and can also be deployed on water (such as ships, etc.), and can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • the terminal can also be a terminal in the Internet of Things (Internet of Things, IoT) system.
  • IoT Internet of Things
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • the terminal can also include sensors such as smart printers, train detectors, and gas stations, and its main functions include collecting data (part of the terminal), receiving control information and downlink data from network devices, and sending electromagnetic waves to The network device transmits uplink data.
  • sensors such as smart printers, train detectors, and gas stations
  • its main functions include collecting data (part of the terminal), receiving control information and downlink data from network devices, and sending electromagnetic waves to The network device transmits uplink data.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • EDGE enhanced data rate for GSM evolution
  • WiMAX worldwide interoperability for microwave access
  • the technical solution of the embodiment of the present application can also be applied to other communication systems, such as public land mobile network (public land mobile network, PLMN) system, advanced long-term evolution (LTE advanced, LTE-A) system, fifth generation mobile communication ( The 5th generation, 5G) system, NR system, machine-to-machine communication (machine to machine, M2M) system, or other communication systems that evolve in the future, etc., are not limited in this embodiment of the present application.
  • PLMN public land mobile network
  • LTE advanced, LTE-A advanced long-term evolution
  • 5G 5th generation
  • NR NR system
  • machine-to-machine communication machine to machine, M2M
  • M2M machine to machine
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal or a network device, or a functional module in a terminal or a network device that can call a program and execute the program.
  • terminal devices included in the network architecture shown in FIG. 1 are just an example, and this embodiment of the present application is not limited thereto.
  • more or less terminal devices communicating with network devices may also be included, which are not described one by one in the accompanying drawings for the sake of concise description.
  • the application scenario may not be limited to include network devices and terminal devices, for example, it may also include core network nodes or bearer Devices for virtualizing network functions and the like are obvious to those skilled in the art, and will not be repeated here.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the functions performed by the terminal device in this embodiment may also be performed by a module (for example, a chip) in the terminal device, and the functions performed by the network device in this application may also be performed by a module (for example, a chip) in the network device .
  • the communication method may include the following steps.
  • Step S201 the first terminal device determines the direction of one or more directional LBTs.
  • the directional LBT may refer to the LBT working in a specific direction on the SL in the unlicensed frequency band.
  • the unlicensed frequency band refers to a frequency band other than the licensed frequency band, for example, a 2.4GHz frequency band, a 5GHz frequency band, and a 6GHz frequency band.
  • Step S202 the first terminal device performs data transmission with the second terminal device in an actual transmission direction corresponding to the one or more directional LBT directions.
  • Table 1 is the correspondence between the direction of a directional LBT and its actual transmission direction provided by the embodiment of this application:
  • the corresponding actual transmission direction may be 0°-20°, 20°-40° and 40°-60°
  • the first terminal device may Select a direction from 0°-20°, 20°-40° and 40°-60° to transmit data with the second terminal device.
  • the selected direction may be a direction with the best channel quality, or a direction randomly selected by the first terminal device. It should be understood that the correspondence between the direction of the directional LBT and its actual transmission direction shown in Table 1 is only an example, and the correspondence between the direction of the directional LBT and its actual transmission direction can also be other correspondences, which do not constitute a The definition of the corresponding relationship between the direction of the directional LBT and its actual transmission direction.
  • the direction described in the present invention can be implicitly inferred from the reference signal or channel. For example, by indicating an index number of a channel state information reference signal (Channel State Information-Reference Signal, CSI-RS) resource, it is possible to associate the direction of directional LBT or the direction of SL transmission with the same direction information as the CSI-RS resource or the same spatial parameters.
  • CSI-RS Channel State Information-Reference Signal
  • the reference signal can also be a channel sounding reference signal (Sounding Reference Signal, SRS), a synchronous broadcast block (Synchronization Signal/PBCH, SSB), a tracking reference signal (Tracking Reference Signal, TRS), a direct link SSB (Sidelink SSB, SL SSB), straight-through link CSI-RS (SidelinkCSI-RS, SL CSI-RS) or other reference signals.
  • SRS channel sounding reference signal
  • SSB synchronous broadcast block
  • TRS Track Reference Signal
  • SSB synchronous broadcast block
  • TRS Track Reference Signal
  • a direct link SSB Sidelink SSB, SL SSB
  • straight-through link CSI-RS SidelinkCSI-RS, SL CSI-RS
  • the first terminal device After the first terminal device determines the direction of one or more directional LBTs, it can determine the actual transmission direction corresponding to the direction of one or more directional LBTs according to the correspondence between the direction of the directional LBT and its actual transmission direction, and compare the actual transmission direction with the first The second terminal device performs data transmission.
  • the actual transmission direction is one or more.
  • the direction of the directional LBT and its actual transmission direction may be dynamically indicated through high-level signaling or DCI, or the correspondence (association information) between the direction of the directional LBT and its actual transmission direction may be dynamically indicated through high-level signaling or DCI.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 3 is a communication method in Mode-1 for SL transmission.
  • the functions performed by the terminal device in this embodiment may also be performed by a module (for example, a chip) in the terminal device, and the functions performed by the network device in this application may also be performed by a module (for example, a chip) in the network device .
  • the communication method may include the following steps.
  • Step S301 the network device sends to the first terminal device first indication information for determining the direction of one or more directional LBTs.
  • the first terminal device receives first indication information for determining directions of one or more directional LBTs from the network device.
  • the directional LBT may refer to the LBT working in a specific direction on the SL in the unlicensed frequency band.
  • the unlicensed frequency band refers to a frequency band other than the licensed frequency band, for example, a 2.4GHz frequency band, a 5GHz frequency band, and a 6GHz frequency band.
  • the first indication information may be information on one or more directions oriented to the LBT, and may also be information on an actual transmission direction used for data transmission between the first terminal device and the second terminal device.
  • the first indication information may be issued by the network device to the first terminal device on its own initiative, or after the first terminal device sends request information requesting one or more LBT directions to the network device, the network device For sending to the first terminal device, the embodiment of the present application does not limit the manner in which the network device sends the first indication information.
  • the first indication information since there may be multiple beam (beam) directions in the SL channel occupancy time (Channel Occupancy Time, COT), therefore, the first indication information may be used to determine the direction of one or more directional LBTs.
  • the network device may send the first indication information to the first terminal device through DCI (for SL).
  • the specific first indication information can be indicated by field (field) through spatialrelation-info or transmission configuration indicator (Transmission Configuration Indicator, TCI-state) (QCL type-D).
  • TCI-state Transmission Configuration Indicator
  • either spatialrelation-info or TCI-state can carry direction information.
  • the field can be based on the existing DCI indicating the LBT type and other parameters, and then additionally indicate the direction information of a directional LBT, or combine the existing LBT type parameters and add the direction information indicating the directional LBT Then follow instructions.
  • the RS contained in TCI-state can include SL RS that may be introduced in the future (such as CSI-RS for SL beam measurement (CSI-RS for Beam Measurement, CSI-RS for BM), SL TRS, etc.), SLCSI-RS, UuRS may also be included.
  • the network device may also send the first indication information to the first terminal device through the MAC-CE.
  • Step S302 the network device sends to the first terminal device second indication information for indicating the correspondence between the direction of the directed LBT and the actual transmission direction.
  • step S302 may be performed before step S301, may also be performed after step S301, or may be performed in parallel with step S301.
  • the network device sends the first instruction information to the first terminal device and sends the second
  • the order of the indication information is not limited.
  • the second indication information may be pre-configured by the network device to the first terminal device through high layer signaling, for example, the second indication information may be configured by RRC.
  • Step S303 The first terminal device determines the direction of one or more directional LBTs.
  • the first terminal device may determine the direction of one or more directional LBTs according to the first indication information.
  • the determined method can satisfy any of the following:
  • the first terminal device may learn the directions of one or more directional LBTs according to the received first indication information.
  • the first terminal device may, according to the received first indication, The information and the correspondence between the direction of the LBT known in advance and the actual transmission direction determine the direction of the LBT corresponding to the actual transmission direction.
  • Step S304 the first terminal device sends one or more pieces of information oriented to the direction of the LBT to the second terminal device.
  • the second terminal device receives information from the first terminal device of one or more direction-oriented LBTs.
  • the first terminal device After the first terminal device determines the direction of one or more directional LBTs, it can send information about the direction of one or more directional LBTs to the second terminal device, so that the second terminal device can monitor the information from the first terminal device.
  • the second terminal device may monitor the information from the first terminal device in the direction of the one or more directional LBTs in real time, or periodically monitor the information from the first terminal device in the direction of the one or more directional LBTs.
  • the cycle time can be 1ms, 10ms, etc.
  • the first terminal device may send the one or more LBT direction information to the second terminal device through the SCI or the RRC of the PC-5 port or the MAC-CE of the PC-5 port.
  • Step S305 the first terminal device performs data transmission with the second terminal device in an actual transmission direction corresponding to the one or more directional LBT directions.
  • step S305 corresponds to step S202, and related descriptions in step S305 may refer to the description of step S202 above, and details are not repeated here to avoid repetition.
  • the first terminal device determines the direction of one or more directional LBTs, for method 1 of step S303, the first terminal device performs LBT in the determined directions of one or more directional LBTs.
  • the corresponding relationship of the actual transmission direction determines the actual transmission direction, and sends data to the second terminal device in the actual transmission direction; for the second method of step S303, the first terminal device performs LBT in one or more determined directional LBT directions, if If successful, the data may be sent to the second terminal device in the actual transmission direction indicated by the first indication information.
  • one first terminal device communicates with multiple second terminal devices at the same time, different actual transmission directions (single broadcast), or use combined wide beams to send data to multiple second terminal devices (multicast).
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 4 is directed to a communication method in Mode-2 of SL transmission.
  • the functions performed by the terminal device in this embodiment may also be performed by a module (for example, a chip) in the terminal device, and the functions performed by the network device in this application may also be performed by a module (for example, a chip) in the network device .
  • the communication method may include the following steps.
  • Step S401 the second terminal device sends feedback information including channel quality results, beam reports, and recommended directions to the first terminal device.
  • the first terminal device receives feedback information including channel quality results, beam reports, and recommended directions from the second terminal device.
  • the first terminal device may send request information to the first terminal device, requesting information such as channel quality results, beam reports, and recommended directions.
  • the second terminal device After receiving the request information from the first terminal device, the second terminal device sends feedback information including channel quality result, beam report, recommended direction and other information to the first terminal device.
  • the second terminal device may send feedback information to the first terminal device through the PSSCH/PSFCH.
  • Step S402 The first terminal device determines the direction of one or more directional LBTs.
  • the first terminal device may determine directions of one or more directional LBTs according to the feedback information.
  • the determined method can satisfy any of the following:
  • the second terminal device may recommend a data transmission direction to the first terminal device, that is, recommend one or more directional LBT directions, and the first terminal device determines the one or more directional LBT directions recommended by the second terminal device as The direction of the target oriented LBT.
  • Method 2 The first terminal device determines the direction of the one or more directional LBTs as the direction of the latest successful transmission between the first terminal device and the second terminal device or as the direction of the RS with the best quality in the latest beam report. The direction in which the beam is located.
  • the first terminal device may determine according to the priorities of different information in the feedback information. For example, the recommended direction has the highest priority, the beam report has the second highest priority, and the channel quality result has the lowest priority. Different information is given corresponding weights, and the directions of one or more directional LBTs are obtained through calculation.
  • Step S403 the first terminal device sends one or more pieces of information directional to the LBT to the second terminal device.
  • step S403 corresponds to step S304, and related descriptions in step S403 may refer to the description of step S304 above, and details are not repeated here to avoid repetition.
  • Step S404 the first terminal device performs data transmission with the second terminal device in an actual transmission direction corresponding to the one or more directional LBT directions.
  • step S404 corresponds to step S202, and related descriptions in step S404 may refer to the description of step S202 above, and details are not repeated here to avoid repetition.
  • the corresponding relationship between the direction of directional LBT and the actual transmission direction may be configured by the network device to the first terminal device in advance, for example, the network device sends the second indication information to the first terminal device, and the second indication information is used to indicate The correspondence between the direction of the directional LBT and the actual transmission direction. It can be understood that the first terminal device may know in advance the correspondence between the direction of the LBT orientation and the actual transmission direction in the form of preconfig.
  • the first terminal device can determine the actual transmission direction according to the determined one or more directional LBT directions, the corresponding relationship between the directional LBT direction and the actual transmission direction, and in the actual transmission direction, the first terminal device and the second terminal The device transmits data.
  • one first terminal device communicates with multiple second terminal devices at the same time, different actual transmission directions (single broadcast), or use combined wide beams to send data to multiple second terminal devices (multicast).
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device may be a terminal or a module (for example, a chip) in the terminal.
  • the apparatus 500 at least includes: a determination unit 501 and a transmission unit 502; wherein:
  • a determination unit 501 configured to determine the direction of one or more directional LBTs
  • the transmission unit 502 is configured to perform data transmission with the second terminal device in an actual transmission direction corresponding to the direction of the one or more directional LBTs.
  • the transmission unit 502 is further configured to:
  • the determining unit 501 is specifically configured to:
  • the feedback information includes channel quality results, beam reports, and recommended directions
  • the direction of one or more directional LBTs is determined according to one or more of the channel quality result, the beam report, and the recommended direction.
  • the feedback information from the second terminal device is received through PSSCH/PSFCH.
  • the direction of the one or more directional LBTs is the direction of the latest successful transmission between the first terminal device and the second terminal device or the direction of the RS with the best quality in the latest beam report The direction in which the beam is located.
  • the transmission unit 502 is further configured to:
  • the transmission unit 502 is further configured to:
  • the directions of the one or more directional LBTs are determined, information about the directions of the one or more directional LBTs is sent to the second terminal device.
  • the one or more Orientation information for the direction of the LBT is not limited to the one or more Orientation information for the direction of the LBT.
  • the first indication information is configured by downlink control information DCI, or configured by a media access control control element MAC-CE.
  • the second indication information is configured by RRC.
  • the apparatus 600 may include one or more processors 601 , and the processors 601 may also be referred to as processing units, and may implement certain control functions.
  • the processor 601 may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process Data for Software Programs.
  • the processor 601 can also store instructions and/or data 603, and the instructions and/or data 603 can be executed by the processor, so that the device 600 executes the method described in the above-mentioned embodiment. described method.
  • the processor 601 may include a transceiver unit configured to implement receiving and sending functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit, or a communication interface.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the apparatus 600 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the device 600 may include one or more memories 602, on which instructions 604 may be stored, and the instructions may be executed on the processor, so that the device 600 executes the above-mentioned method embodiments. described method.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be set separately or integrated together. For example, the corresponding relationships described in the foregoing method embodiments may be stored in a memory, or stored in a processor.
  • the apparatus 600 may further include a transceiver 605 and/or an antenna 606 .
  • the processor 601 may be called a processing unit, and controls the apparatus 600 .
  • the transceiver 605 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver device, or a transceiver module, etc., and is used to implement a transceiver function.
  • the apparatus 600 in the embodiment of the present application may be used to execute the method described in FIG. 2 in the embodiment of the present application.
  • the communication device 600 may be a terminal device, or a module (for example, a chip) in the terminal device.
  • the processor 601 is used to control the determination unit 501 performs the operations performed in the above embodiments
  • the transceiver 605 is used to perform the operations performed by the transmission unit 502 in the above embodiments
  • the transceiver 605 is also used to send information to other communication devices other than the communication device.
  • the foregoing terminal device or modules within the terminal device may also be used to perform various methods performed by the terminal device in the above method embodiment in FIG. 2 , which will not be repeated here.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • the devices described in the above embodiments may be network devices or terminal devices, but the scope of the devices described in this application is not limited thereto, and the structure of the devices may not be limited by FIG. 5 .
  • a device may be a stand-alone device or may be part of a larger device.
  • the device may be:
  • a set of one or more ICs may also include a storage unit for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 7 is a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • a terminal device 700 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, analyze and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 7 shows only one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processor is mainly used to control the entire terminal and execute software. Programs, which process data for software programs.
  • the processor in FIG. 7 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capability, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • a terminal device 700 includes a transceiver unit 701 and a processing unit 702 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 701 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 701 for realizing the sending function can be regarded as a sending unit
  • the transceiver unit 701 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the above-mentioned receiving unit and sending unit may be one integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and sending unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the transceiver unit 701 is configured to perform the operations performed by the transmission unit 502 in the above embodiments, and the processing unit 702 is configured to perform the operations performed by the determination unit 501 in the above embodiments.
  • the terminal device 700 may also be used to execute the various methods performed by the terminal device in the above method embodiment in FIG. 2 , which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the process related to the terminal device in the communication method provided by the above method embodiment can be implemented.
  • the embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored.
  • the program is executed by a processor, the process related to the network device in the communication method provided by the above method embodiment can be implemented.
  • the embodiment of the present application also provides a computer program product, which, when running on a computer or a processor, causes the computer or processor to execute one or more steps in any one of the above-mentioned communication methods. If each component module of the above-mentioned device is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in the computer-readable storage medium.
  • the embodiment of the present application also provides a chip system, including at least one processor and a communication interface, the communication interface and the at least one processor are interconnected through lines, and the at least one processor is used to run computer programs or instructions to execute It includes some or all of the steps described in any one of the method embodiments corresponding to FIG. 2 above.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the present application also discloses a communication system, which includes a terminal device and a network device.
  • a communication system which includes a terminal device and a network device.
  • FIG. 2 For a specific description, reference may be made to the communication method shown in FIG. 2 .
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile memory and nonvolatile memory.
  • the non-volatile memory can be a hard disk (hard disk drive, HDD), a solid-state drive (solid-state drive, SSD), a read-only memory (read-only memory, ROM), a programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous dRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct rambus RAM, DR RAM
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.
  • modules/units in the device of the embodiment of the present application can be combined, divided and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了通信方法及相关装置,其中该方法应用于直通链路(Sidelink,SL)场景,包括:第一终端设备确定一个或多个定向(Listen Before Talk,LBT)的方向;所述第一终端设备在与所述一个或多个定向LBT的方向对应的实际传输方向与第二终端设备进行数据传输。通过本申请提供的技术方案,可以确定SL通信中定向LBT的传输方向。

Description

一种通信方法及相关装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及相关装置。
背景技术
在现有协议中,物物直连通信系统或者直通链路(Sidelink,SL)通信的传输工作在4G或5G的授权频谱上,有限的频谱资源将不足以支持数据业务的大量增加,未来会将SL传输扩展到未授权频谱上。在使用未授权频谱(unlicensed)之前,要先进行先听后发(Listen Before Talk,LBT)的传输策略,若监听到信道空闲,才能接入该未授权频谱。在R17之前,未授权频谱上的LBT方案一般指的是全向LBT,而对于定向LBT(directional LBT),现有技术无法确定SL通信中的定向LBT的传输方向。
发明内容
本申请实施例提供了一种通信方法及相关装置,该通信方法可以确定SL通信中定向LBT的传输方向。
第一方面,本申请提供了一种通信方法,该方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片),下面以应用于终端设备为例进行描述。该方法可以包括:第一终端设备确定一个或多个定向LBT的方向;所述第一终端设备在与所述一个或多个定向LBT的方向对应的实际传输方向与第二终端设备进行数据传输。
在本申请提供的方案中,终端设备可以确定定向LBT的方向,不同于现有技术中,终端设备只能确定全向LBT方向而无法确定定向LBT方向,本申请实施例,终端设备可以在定向LBT对应的实际传输方向,与另一终端设备进行SL通信,从而可以提高通信的效率和准确性。
在一种可能的实现方式中,所述方法还包括:所述第一终端设备接收来自网络设备的第一指示信息,所述第一指示信息用于确定所述一个或多个定向LBT的方向。
在本申请提供的方案中,针对SL传输的模式一,网络设备可以辅助终端设备确定定向LBT的方向。具体地:终端设备可以根据来自于网络设备的用于指示定向LBT方向的指示信息直接获取到定向LBT的方向。这样可以减小终端设备的资源占用,提升运行速度。
在一种可能的实现方式中,所述第一终端设备确定定向LBT的方向,包括:所述第一终端设备接收来自所述第二终端设备的反馈信息,所述反馈信息包括信道质量结果、波束报告、推荐方向;所述第一终端设备根据所述信道质量结果、所述波束报告、所述推荐方向中的一个或多个确定一个或多个定向LBT的方向。
在本申请提供的方案中,针对SL传输的模式二,当两个终端设备在没有网络的区域需要SL传输时,终端设备可以无需网络设备的辅助,自行确定定向LBT的方向。从而可以实现根据定向LBT方向与另一终端设备进行SL通信。
在一种可能的实现方式中,所述第一终端设备通过物理直通链路共享信道 (physicalsidelinksharedchannel,PSSCH)/物理直通链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)接收来自所述第二终端设备的所述反馈信息。
在一种可能的实现方式中,所述一个或多个定向LBT的方向为所述第一终端设备与所述第二终端设备最近一次成功传输的方向或者为最近一次所述波束报告中质量最好参考信号(Conference Signal,RS)的波束所在的方向。
在本申请提供的方案中,将定向LBT的方向确定为两个终端设备最近一次成功传输的方向,可以提高定向LBT的成功率,将定向LBT的方向确定为最近一次波束报告中质量最好RS的波束所在的方向,可以提高通信的效率和准确性。
在一种可能的实现方式中,所述方法还包括:所述第一终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示定向LBT的方向与实际传输方向之间的对应关系。
在本申请提供的方案中,定向LBT的方向和实际传输方向之间存在对应关系,网络设备可以预先将对应关系配置给终端设备。以使终端设备可以根据确定的定向LBT以及对应关系,得到实际传输方向,实现在实际传输方向上与另一终端设备的数据传输。
在一种可能的实现方式中,所述第一终端设备确定一个或多个定向LBT的方向之后,所述方法还包括:所述第一终端设备向所述第二终端设备发送所述一个或多个定向LBT的方向的信息。
在本申请提供的方案中,终端设备确定定向LBT的方向后,可以将定向LBT的方向的信息发送给另一终端设备,这样另一终端设备可以在这些定向LBT的方向上监听来自终端设备的信息,以此可以实现两个终端设备的数据传输。
在一种可能的实现方式中,所述第一终端设备通过直通链路控制信息(Sidelink Control Information,SCI)或者PC-5口的无线资源控制(Radio Resource Control,RRC)或者PC-5口的媒体接入控制控制元素(Medium Access Control-Control element,MAC-CE)向所述第二终端设备发送所述一个或多个定向LBT的方向的信息。
在一种可能的实现方式中,所述第一指示信息由下行控制信息(Downlink Control Information,DCI)配置,或由MAC-CE配置。
在一种可能的实现方式中,所述第二指示信息由RRC配置。
第二方面,本申请提供了一种通信装置。
有益效果可以参见第一方面的描述,此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
该通信装置包括:
确定单元,用于确定一个或多个定向LBT的方向;
传输单元,用于在与所述一个或多个定向LBT的方向对应的实际传输方向与第二终端设备进行数据传输。
在一种可能的实现方式中,所述传输单元,还用于:
接收来自网络设备的第一指示信息,所述第一指示信息用于确定所述一个或多个定向LBT的方向。
在一种可能的实现方式中,所述确定单元,具体用于:
接收来自所述第二终端设备的反馈信息,所述反馈信息包括信道质量结果、波束报告、推荐方向;
根据所述信道质量结果、所述波束报告、所述推荐方向中的一个或多个确定一个或多个定向LBT的方向。
在一种可能的实现方式中,通过PSSCH/PSFCH接收来自所述第二终端设备的所述反馈信息。
在一种可能的实现方式中,所述一个或多个定向LBT的方向为所述第一终端设备与所述第二终端设备最近一次成功传输的方向或者为最近一次所述波束报告中质量最好RS的波束所在的方向。
在一种可能的实现方式中,所述传输单元,还用于:
接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示定向LBT的方向与实际传输方向之间的对应关系。
在一种可能的实现方式中,所述传输单元,还用于:
确定一个或多个定向LBT的方向之后,向所述第二终端设备发送所述一个或多个定向LBT的方向的信息。
在一种可能的实现方式中,通过SL的串行通信接口SCI或者PC-5口的RRC或者PC-5口的媒体接入控制控制元素MAC-CE向所述第二终端设备发送所述一个或多个定向LBT的方向的信息。
在一种可能的实现方式中,所述第一指示信息由下行控制信息DCI配置,或由媒体接入控制控制元素MAC-CE配置。
在一种可能的实现方式中,所述第二指示信息由RRC配置。
第三方面,提供了一种通信装置,该通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。该装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序执行第一方面或第一方面的任一实施方式提供的通信方法。
第四方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机指令,当该计算机程序或计算机指令运行时,使得上述第一方面及其任一种可能的实现中所述方法被执行。
第五方面,本申请提供了一种包括可执行指令的计算机程序产品,当所述计算机程序产品在用户设备上运行时,使得上述第一方面及其任一种可能的实现中所述方法被执行。
第六方面,本申请提供了芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面及其任一种可能的实现中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种网络架构的结构示意图;
图2是本申请实施例提供的一种通信方法的流程示意图;
图3是本申请实施例提供的另一种通信方法的流程示意图;
图4是本申请实施例提供的又一种通信方法的流程示意图;
图5是本申请实施例提供的一种通信装置的结构示意图;
图6是本申请实施例提供的另一种通信装置的结构示意图;
图7是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。先给出本申请实施例可能出现的技术术语的定义:
(1)先听后发机制
先听后发(Listen Before Talk,LBT),也称为监听避让,是一种信道接入机制,能使无限局域网之间有效共享相同的频谱资源。因为非授权频段上信道的可用性并不能时刻得到保证,LBT要求在传输数据前先监听信道,进行空闲信道评估(Clear Channel Assessment,CCA),在确保信道空闲的情况下再进行数据传输。
(2)直通链路
直通链路(sidelink,SL),也可以称为侧行链路或者边链路。是为了支持设备间直接通信而引入的新的链路。最早是在设备到设备通信(Device-to-Device,D2D)应用场景下引入的,后面技术延伸到车对外界的信息交换(vehicle to everything,V2X)就在原本协议上进行了扩充和增强。NR Sidelink主要由物理直通链路控制信道(Physical Sidelink Control Channel,PSCCH)、PSSCH、物理直通链路广播信道(Physical Sidelink Broadcast Channel,PSBCH)和PSFCH组成。其中前三种信道在LTE-V2X时已经存在,PSFCH是在NR V2X为了支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)传输新引入的。
(3)SL传输模式
SL数据传输的资源选择有2种模式。
模式一(Mode-1)是由网络设备进行SL传输资源的分配,例如终端在有网络覆盖区域内,由网络设备给终端分配SL传输资源。其中,网络设备可以通过控制信道下发控制消息,例如通过物理下行控制信道(Physical Downlink Control Channel)PDCCH下发DCI。
模式二(Mode-2)是终端根据预配置的信息,自主地选择SL传输资源。终端是预配置信息可以是内置在终端中、或手机卡中、或之前注册过的网络预配置信息。例如终端在无网络覆盖区域,可以自主确定SL传输资源。其中,如果是终端自主进行资源选择,则可以通过PSSCH传输SCI控制消息进行资源分配。
在现有协议中,SL通信的传输工作在4G或5G的授权频谱上,有限的频谱资源将不足以支持数据业务的大量增加,未来会将SL传输扩展到未授权频谱上。在使用未授权频谱(unlicensed)之前,要先进行LBT的传输策略,若监听到信道空闲,才能接入该未授权频谱。在R17之前,未授权频谱上的LBT方案一般指的是全向LBT,而对于定向LBT,现有技术无法确定SL通信中的定向LBT的传输方向。
本申请实施例所要解决的技术问题可以包括:在本申请实施例中,终端设备可以确定定向LBT的方向,从而实现在与该定向LBT的方向对应的实际传输方向上与另一终端设备进行数据传输。
基于上述,为了更好地理解本申请提出的一种通信方法及相关装置,下面先对本申请实施例应用的网络架构进行描述。
随着无线通信技术的发展,用户对通信需求日益增加。为了满足用户的通信需求,无线通信技术中引入了物物直连通信技术或者SL通信技术。物物直连通信技术或者SL通信技术不同于传统无线蜂窝网络通信技术,可以实现终端设备之间的直接通信。应用物物直连通信技术或者SL通信技术传输的数据包无需经过网络设备的转发,可以直接由作为发送端的第一终端设备通过SL传输至作为接收端的第二终端设备。其中,为了便于描述,本申请实施例均以SL通信技术进行示例性说明。
请参阅图1,图1是本申请实施例提供的一种网络架构的结构示意图。如图1所示,该网络架构可以包括网络设备101、第一终端设备102和第二终端设备103。其中,第一终端设备102与网络设备101之间通过传统无线蜂窝网络通信技术建立通信连接,可以通过上行链路(Uplink)和下行链路(Downlink)进行通信。其中,第一终端设备102与第二终端设备103之间通过SL通信技术建立通信连接,可以通过直通链路进行通信。其中,第一终端设备102可以作为SL通信的发送端,第二终端设备103可以作为SL通信的接收端。第一终端设备102和第二终端设备103可以是固定位置的,也可以是可移动的。
网络设备101,可以是用于发射或接收信号的实体,可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系 统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。网络设备可以是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:基站、下一代基站gNB、发送接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站、基带单元(baseband unit,BBU),或WiFi系统中的接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
第一终端设备102与第二终端设备103,是用户侧的一种用于接收或发射信号的实体,如用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是手机(mobilephone)、蜂窝电话、无绳电话、会话启动协议(session initiationprotocol,SIP)电话、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴设备(例如智能手表、智能手环、计步器等),5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载,也可以部署在水面(如轮船等),还可以部署在空中(例如飞机、气球和卫星上等)。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。此外,在本申请实施例中,终端还可以是物联网(internet of things,IoT)系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特 点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。此外,在本申请实施例中,终端还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信系统(global system for mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码多分址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信(universal mobile telecommunications system,UMTS)系统、增强型数据速率GSM演进(enhanced data rate for GSM evolution,EDGE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统。本申请实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(public land mobile network,PLMN)系统,高级的长期演进(LTE advanced,LTE-A)系统、第五代移动通信(the 5th generation,5G)系统、NR系统、机器与机器通信(machine to machine,M2M)系统、或者未来演进的其它通信系统等,本申请实施例对此不作限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或网络设备,或者,是终端或网络设备中能够调用程序并执行程序的功能模块。
需要说明的是,图1所示的网络架构中所包含的终端设备的数量和类型仅仅是一种举例,本申请实施例并不限制于此。例如,还可以包括更多的或者更少的与网络设备进行通信的终端设备,为简明描述,不在附图中一一描述。此外,在如图1所示的网络架构中,尽管示出了网络设备和终端设备,但是该应用场景中可以并不限于包括网络设备和终端设备,例如还可以包括核心网节点或用于承载虚拟化网络功能的设备等,这些对于本领域技术人员而言是显而易见的,在此不再一一赘述。
结合上述的网络架构,下面对本申请实施例提供的一种通信方法进行描述。请参阅图2,图2是本申请实施例提供的一种通信方法的流程示意图。本实施例中由终端设备执行 的功能也可以由终端设备中的模块(例如,芯片)来执行,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。如图2所示,该通信方法可以包括以下步骤。
步骤S201:第一终端设备确定一个或多个定向LBT的方向。
定向LBT可以是指工作在非授权频段的SL上特定方向的LBT。其中,非授权频段是指授权频段之外的频段,例如,2.4GHz频段、5GHz频段和6GHz频段等。第一终端设备与第二终端设备进行SL的数据传输时,需要先确定一个或多个定向LBT的方向,在该方向上进行LBT以便后续与第二终端设备进行SL的数据传输。
步骤S202:第一终端设备在与所述一个或多个定向LBT的方向对应的实际传输方向与第二终端设备进行数据传输。
其中,定向LBT的方向与实际传输方向之间存在对应关系。例如,请参阅表1,表1是本申请实施例提供的一种定向LBT的方向与其实际传输方向的对应关系:
表1定向LBT的方向与其实际传输方向的对应关系
定向LBT的方向 实际传输方向
0°~60° 0°~20°,20°~40°,40°~60°
0°~120° 0°~30°,30°~60°,60°~90°,90°~120°
60°~120° 60°~80°,80°~100°,100°~120°
如表1所示,当定向LBT的方向为0°~60°时,其对应的实际传输方向可以为0°~20°,20°~40°和40°~60°,第一终端设备可以从0°~20°,20°~40°和40°~60°中选取一个方向与第二终端设备进行数据传输。选取的方向可以为信道质量最好的方向,或者为第一终端设备随机从中选取的方向。应理解,表1所示的定向LBT的方向与其实际传输方向的对应关系仅为一种示例,定向LBT的方向与其实际传输方向的对应关系还可以是其它的对应关系,并不构成对本申请中的定向LBT的方向与其实际传输方向的对应关系的限定。本发明中所述的方向可以由参考信号或者信道来隐式推断出。例如,通过指示一个信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)资源的索引号,就可以关联定向LBT的方向或者SL传输方向采用和所述CSI-RS资源相同的方向信息或者相同的空间参数。其中,参考信号还可以是信道探测参考信号(Sounding Reference Signal,SRS)、同步广播块(Synchronization Signal/PBCH,SSB)、追踪参考信号(Tracking Reference Signal,TRS)、直通链路SSB(Sidelink SSB,SL SSB)、直通链路CSI-RS(SidelinkCSI-RS,SL CSI-RS)或者其他参考信号。
第一终端设备确定一个或多个定向LBT的方向之后,可以根据定向LBT的方向与其实际传输方向的对应关系确定一个或多个定向LBT的方向对应的实际传输方向,并在实际传输方向与第二终端设备进行数据传输。其中,实际传输方向为一个或多个。其中,所述定向LBT的方向与其实际传输方向可以通过高层信令或者DCI动态指示,或者所述定向LBT的方向与其实际传输方向的对应关系(关联信息)可以通过高层信令或者DCI动态指示。
请参阅图3,图3是本申请实施例提供的另一种通信方法的流程示意图。图3是针对SL传输的模式一(Mode-1)下的通信方法。本实施例中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。如图3所示,该通信方法可以包括以下步骤。
步骤S301:网络设备向第一终端设备发送用于确定一个或多个定向LBT的方向的第一指示信息。相应地,第一终端设备接收来自网络设备的用于确定一个或多个定向LBT的方向的第一指示信息。
定向LBT可以是指工作在非授权频段的SL上特定方向的LBT。其中,非授权频段是指授权频段之外的频段,例如,2.4GHz频段、5GHz频段和6GHz频段等。第一指示信息可以是一个或多个定向LBT的方向的信息,也可以是第一终端设备与第二终端设备进行数据传输使用的实际传输方向的信息。
第一指示信息可以是由网络设备主动向第一终端设备下发的,也可以是第一终端设备向网络设备发送请求一个或多个定向LBT的方向的请求信息后,网络设备根据该请求信息向第一终端设备发送的,本申请实施例对网络设备下发第一指示信息的方式不作限制。其中,由于SL信道占用时间(Channel Occupancy Time,COT)中可能存在有多个波束(beam)方向,因此,第一指示信息可以用于确定一个或多个定向LBT的方向。
网络设备可以通过DCI(对于SL)向第一终端设备发送第一指示信息。具体第一指示信息可以通过spatialrelation-info或者传输配置指示(Transmission Configuration Indicator,TCI-state)(QCL type-D)来进行字段(field)指示。其中,spatialrelation-info或TCI-state都可以承载有方向信息。可以理解,所述字段可以是现有的DCI指示LBT类型等参数的基础上,再额外指示一个定向LBT的方向信息的字段,或者是结合现有LBT类型参数再加上指示定向LBT的方向信息然后一并指示。其中,TCI-state包含的RS可以包括未来可能引入的SL RS(例如用于SL的波束测量CSI-RS(CSI-RSfor Beam Measurement,CSI-RS for BM),SL TRS等),SLCSI-RS,也可以包括UuRS。或者网络设备还可以通过MAC-CE向第一终端设备发送第一指示信息。
步骤S302:网络设备向第一终端设备发送用于指示定向LBT的方向与实际传输方向之间的对应关系的第二指示信息。
定向LBT的方向与实际传输方向之间存在对应关系,具体描述可以参考上述步骤S202中的描述,在此不再赘述。可以理解的是,步骤S302可以在步骤S301之前执行,也可以在步骤S301之后执行,还可以是与步骤S301并行执行,本申请对网络设备向第一终端设备发送第一指示信息和发送第二指示信息的顺序不作限定。
其中,第二指示信息可以由网络设备预先通过高层信令配置给第一终端设备,例如,第二指示信息可以由RRC配置。
步骤S303:第一终端设备确定一个或多个定向LBT的方向。
第一终端设备接收来自网络设备的用于确定一个或多个定向LBT的方向的第一指示信息后,可以根据第一指示信息确定一个或多个定向LBT的方向。确定的方式可以满足以 下任一种:
方式一,在第一指示信息直接指示一个或多个定向LBT的方向的情况下,第一终端设备可以根据接收到的第一指示信息获知一个或多个定向LBT的方向。
方式二,在第一指示信息为第一终端设备与第二终端设备预先已知定向LBT的方向与实际传输方向之间的对应关系的情况下,第一终端设备可以根据接收到的第一指示信息以及预先已知的定向LBT的方向与实际传输方向之间的对应关系确定该实际传输方向所对应的LBT的方向。
步骤S304:第一终端设备向第二终端设备发送一个或多个定向LBT的方向的信息。相应地,第二终端设备接收来自第一终端设备的一个或多个定向LBT的方向的信息。
第一终端设备确定一个或多个定向LBT的方向之后,可以将一个或多个定向LBT的方向的信息发送给第二终端设备,这样第二终端设备可以在这些一个或多个定向LBT的方向上监听来自第一终端设备的信息。其中,第二终端设备可以实时地在这些一个或多个定向LBT的方向上监听来自第一终端设备的信息,也可以是周期性地在这些一个或多个定向LBT的方向上监听来自第一终端设备的信息,周期时间可以是1ms,10ms等。
其中,第一终端设备可以通过SCI或者PC-5口的RRC或者PC-5口的MAC-CE向第二终端设备发送所述一个或多个定向LBT的方向的信息。
步骤S305:第一终端设备在与所述一个或多个定向LBT的方向对应的实际传输方向与第二终端设备进行数据传输。
应理解,步骤S305与步骤S202对应,步骤S305中的相关描述可以参见上述步骤S202的描述,此处为了避免重复,不再赘述。
另外,第一终端设备确定一个或多个定向LBT的方向之后,对于步骤S303的方式一,第一终端设备在确定的一个多个定向LBT的方向进行LBT,若成功,根据定向LBT的方向与其实际传输方向的对应关系确定实际传输方向,在该实际传输方向上向第二终端设备发送数据;对于步骤S303的方式二,第一终端设备在确定的一个多个定向LBT的方向进行LBT,若成功,可以在第一指示信息指示的实际传输方向上向第二终端设备发送数据。
对于一个第一终端设备和多个第二终端设备的场景:一个第一终端设备和多个第二终端设备同时进行通信,可以针对每个不同的第一终端设备用不同的实际传输方向(单播),也可以用并集的宽波束给多个第二终端设备发送数据(多播)。
请参阅图4,图4是本申请实施例提供的又一种通信方法的流程示意图。图4针对SL传输的模式二(Mode-2)下的通信方法。本实施例中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。如图4所示,该通信方法可以包括以下步骤。
步骤S401:第二终端设备向第一终端设备发送包括信道质量结果、波束报告、推荐方向的反馈信息。相应地,第一终端设备接收来自第二终端设备的包括信道质量结果、波束报告、推荐方向的反馈信息。
第一终端设备可以在确定一个或多个定向LBT方向前,向第一终端设备发送请求信息,请求信道质量结果、波束报告、推荐方向等信息。第二终端设备接收来自第一终端设备的请求信息后,向第一终端设备发送包括信道质量结果、波束报告、推荐方向等信息的反馈信息。
第二终端设备可以通过PSSCH/PSFCH向第一终端设备发送反馈信息。
步骤S402:第一终端设备确定一个或多个定向LBT的方向。
第一终端设备接收来自第二终端设备的包括信道质量结果、波束报告、推荐方向的反馈信息之后,可以根据这些反馈信息确定一个或多个定向LBT的方向。确定的方式可以满足以下任一种:
方式一,第二终端设备可以向第一终端设备推荐数据传输方向,即推荐一个或多个定向LBT的方向,第一终端设备将第二终端设备推荐的一个或多个定向LBT的方向确定为目标定向LBT的方向。
方式二,第一终端设备将所述一个或多个定向LBT的方向确定为第一终端设备与第二终端设备最近一次成功传输的方向或者确定为最近一次所述波束报告中质量最好RS的波束所在的方向。
方式三,第一终端设备可以根据反馈信息中的不同信息的优先级来确定。例如,推荐方向的优先级最高,波束报告的优先级次高,信道质量结果的优先级最低,分别赋予不同信息相应的权重,通过计算得到一个或多个定向LBT的方向。
步骤S403:第一终端设备向第二终端设备发送一个或多个定向LBT的方向的信息。
应理解,步骤S403与步骤S304对应,步骤S403中的相关描述可以参见上述步骤S304的描述,此处为了避免重复,不再赘述。
步骤S404:第一终端设备在与所述一个或多个定向LBT的方向对应的实际传输方向与第二终端设备进行数据传输。
应理解,步骤S404与步骤S202对应,步骤S404中的相关描述可以参见上述步骤S202的描述,此处为了避免重复,不再赘述。
另外,定向LBT的方向与实际传输方向之间的对应关系可以是网络设备提前配置给第一终端设备的,例如,网络设备向第一终端设备发送第二指示信息,第二指示信息用于指示定向LBT的方向与实际传输方向之间的对应关系。可以理解为,第一终端设备可以通过preconfig的形式预先已知定向LBT的方向与实际传输方向之间的对应关系。
第一终端设备可以根据确定的一个或多个定向LBT的方向、定向LBT的方向与实际传输方向之间的对应关系确定实际传输方向,在该实际传输方向上,第一终端设备与第二终端设备进行数据传输。
对于一个第一终端设备和多个第二终端设备的场景:一个第一终端设备和多个第二终端设备同时进行通信,可以针对每个不同的第一终端设备用不同的实际传输方向(单播),也可以用并集的宽波束给多个第二终端设备发送数据(多播)。
上面描述了本申请实施例提供的方法实施例,下面对本申请实施例涉及的虚拟装置实施例进行描述。
请参阅图5,图5是本申请实施例提供的一种通信装置的结构示意图,该装置可以为终端,也可以为终端中的模块(例如,芯片)。如图5所示,该装置500,至少包括:确定单元501和传输单元502;其中:
确定单元501,用于确定一个或多个定向LBT的方向;
传输单元502,用于在与所述一个或多个定向LBT的方向对应的实际传输方向与第二终端设备进行数据传输。
在一个实施例中,所述传输单元502,还用于:
接收来自网络设备的第一指示信息,所述第一指示信息用于确定所述一个或多个定向LBT的方向。
在一个实施例中,所述确定单元501,具体用于:
接收来自所述第二终端设备的反馈信息,所述反馈信息包括信道质量结果、波束报告、推荐方向;
根据所述信道质量结果、所述波束报告、所述推荐方向中的一个或多个确定一个或多个定向LBT的方向。
在一个实施例中,通过PSSCH/PSFCH接收来自所述第二终端设备的所述反馈信息。
在一个实施例中,所述一个或多个定向LBT的方向为所述第一终端设备与所述第二终端设备最近一次成功传输的方向或者为最近一次所述波束报告中质量最好RS的波束所在的方向。
在一个实施例中,所述传输单元502,还用于:
接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示定向LBT的方向与实际传输方向之间的对应关系。
在一个实施例中,所述传输单元502,还用于:
确定一个或多个定向LBT的方向之后,向所述第二终端设备发送所述一个或多个定向LBT的方向的信息。
在一个实施例中,通过SL的串行通信接口SCI或者PC-5口的RRC或者PC-5口的媒体接入控制控制元素MAC-CE向所述第二终端设备发送所述一个或多个定向LBT的方向的信息。
在一个实施例中,所述第一指示信息由下行控制信息DCI配置,或由媒体接入控制控制元素MAC-CE配置。
在一个实施例中,所述第二指示信息由RRC配置。
有关上述确定单元501和传输单元502更详细的描述可以直接参考上述图2所示的方法实施例中终端设备的相关描述,这里不加赘述。
基于上述网络架构,请参阅图6,图6是本申请实施例提供的另一种通信装置的结构 示意图。如图6所示,该装置600可以包括一个或多个处理器601,处理器601也可以称为处理单元,可以实现一定的控制功能。处理器601可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器601也可以存有指令和/或数据603,所述指令和/或数据603可以被所述处理器运行,使得所述装置600执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器601中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路,或者是通信接口。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置600可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置600中可以包括一个或多个存储器602,其上可以存有指令604,所述指令可在所述处理器上被运行,使得所述装置600执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置600还可以包括收发器605和/或天线606。所述处理器601可以称为处理单元,对所述装置600进行控制。所述收发器605可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中的装置600可以用于执行本申请实施例中图2中描述的方法。
在一个实施例中,该通信装置600可以为终端设备,也可以为终端设备中的模块(例如,芯片),存储器602中存储的计算机程序指令被执行时,该处理器601用于控制确定单元501执行上述实施例中执行的操作,收发器605用于执行上述实施例中传输单元502执行的操作,收发器605还用于向该通信装置之外的其它通信装置发送信息。上述终端设备或者终端设备内的模块还可以用于执行上述图2方法实施例中终端设备执行的各种方法,不再赘述。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs) 等。
以上实施例描述中的装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图5的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
请参阅图7,图7是本申请实施例提供的一种终端设备的结构示意图。为了便于说明,图7仅示出了终端设备的主要部件。如图7所示,终端设备700包括处理器、存储器、控制电路、天线、以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图7仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图7中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央 处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备700的收发单元701,将具有处理功能的处理器视为终端设备700的处理单元702。如图7所示,终端设备700包括收发单元701和处理单元702。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元701中用于实现接收功能的器件视为接收单元,将收发单元701中用于实现发送功能的器件视为发送单元,即收发单元701包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
在一个实施例中,收发单元701用于执行上述实施例中传输单元502执行的操作,处理单元702用于执行上述实施例中确定单元501执行的操作。该终端设备700还可以用于执行上述图2方法实施例中终端设备执行的各种方法,不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与网络设备相关的流程。
本申请实施例还提供了一种计算机程序产品,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个通信方法中的一个或多个步骤。上述所涉及的设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
本申请实施例还提供一种芯片系统,包括至少一个处理器和通信接口,所述通信接口和所述至少一个处理器通过线路互联,所述至少一个处理器用于运行计算机程序或指令,以执行包括上述图2对应的方法实施例中记载的任意一种的部分或全部步骤。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还公开一种通信系统,该系统包括终端设备和网络设备,具体描述可以参考图2所示的通信方法。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是硬盘(hard disk drive,HDD)、固态硬盘(solid-state drive,SSD)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。 易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static rAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous dRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
还应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块/单元可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种通信方法,其特征在于,应用于直通链路SL场景,包括:
    第一终端设备确定一个或多个定向先听后发LBT的方向;
    所述第一终端设备在与所述一个或多个定向LBT的方向对应的实际传输方向与第二终端设备进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自网络设备的第一指示信息,所述第一指示信息用于确定所述一个或多个定向LBT的方向。
  3. 根据权利要求1所述的方法,其特征在于,所述第一终端设备确定定向LBT的方向,包括:
    所述第一终端设备接收来自所述第二终端设备的反馈信息,所述反馈信息包括信道质量结果、波束报告、推荐方向;
    所述第一终端设备根据所述信道质量结果、所述波束报告、所述推荐方向中的一个或多个确定一个或多个定向LBT的方向。
  4. 根据权利要求3所述的方法,其特征在于,所述第一终端设备通过物理直通链路共享信道PSSCH/物理直通链路反馈信道PSFCH接收来自所述第二终端设备的所述反馈信息。
  5. 根据权利要求3或4所述的方法,其特征在于,所述一个或多个定向LBT的方向为所述第一终端设备与所述第二终端设备最近一次成功传输的方向或者为最近一次所述波束报告中质量最好参考信号RS的波束所在的方向。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示定向LBT的方向与实际传输方向之间的对应关系。
  7. 根据权利要求1所述的方法,其特征在于,所述第一终端设备确定一个或多个定向LBT的方向之后,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送所述一个或多个定向LBT的方向的信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一终端设备通过直通链路控制信息SCI或者PC-5口的无线资源控制RRC或者PC-5口的媒体接入控制控制元素MAC-CE向所述第二终端设备发送所述一个或多个定向LBT的方向的信息。
  9. 根据权利要求2所述的方法,其特征在于,所述第一指示信息由下行控制信息DCI配置,或由媒体接入控制控制元素MAC-CE配置。
  10. 根据权利要求6所述的方法,其特征在于,所述第二指示信息由无线资源控制RRC配置。
  11. 一种通信装置,其特征在于,包括:
    确定单元,用于确定一个或多个定向先听后发LBT的方向;
    传输单元,用于在与所述一个或多个定向LBT的方向对应的实际传输方向与第二终端 设备进行数据传输。
  12. 一种通信装置,其特征在于,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述存储器中存储的存储计算机程序被所述处理器调用时,使得如权利要求1-10任意一项所述的方法被实现。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被处理器执行时,使得如权利要求1-10任意一项所述的方法被实现。
  14. 一种包括可执行指令的计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或计算机指令,当所述计算机程序或计算机指令被处理器执行时,使得如权利要求1-10任意一项所述的方法被实现。
  15. 一种芯片系统,其特征在于,包括至少一个处理器、存储器和接口电路,所述存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,使得如权利要求1-10任意一项所述的方法被实现。
PCT/CN2022/105825 2021-07-21 2022-07-14 一种通信方法及相关装置 WO2023001060A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110826339.7A CN115696270A (zh) 2021-07-21 2021-07-21 一种通信方法及相关装置
CN202110826339.7 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023001060A1 true WO2023001060A1 (zh) 2023-01-26

Family

ID=84978892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105825 WO2023001060A1 (zh) 2021-07-21 2022-07-14 一种通信方法及相关装置

Country Status (2)

Country Link
CN (1) CN115696270A (zh)
WO (1) WO2023001060A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888256A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 数据传输、接收方法、装置、基站及终端
US20190215781A1 (en) * 2018-01-10 2019-07-11 Comcast Cable Communications, Llc Power Control for Channel State Information
CN110536432A (zh) * 2018-09-21 2019-12-03 中兴通讯股份有限公司 一种信息传输的方法、装置和设备
CN112398613A (zh) * 2019-08-15 2021-02-23 华为技术有限公司 一种用于指示信号传输的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888256A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 数据传输、接收方法、装置、基站及终端
US20190215781A1 (en) * 2018-01-10 2019-07-11 Comcast Cable Communications, Llc Power Control for Channel State Information
CN110536432A (zh) * 2018-09-21 2019-12-03 中兴通讯股份有限公司 一种信息传输的方法、装置和设备
CN112398613A (zh) * 2019-08-15 2021-02-23 华为技术有限公司 一种用于指示信号传输的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "On LBT for Beam-Based Transmission for NR-U", 3GPP DRAFT; R1-1804885 ON LBT FOR BEAM-BASED TRANSMISSION FOR NR-U, vol. RAN WG1, 7 April 2018 (2018-04-07), Sanya, China, pages 1 - 6, XP051414224 *

Also Published As

Publication number Publication date
CN115696270A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2021097598A1 (zh) 侧行定位方法和装置
WO2021057473A1 (zh) 一种共生网络中载波的调度方法、装置及存储介质
US20220060290A1 (en) Wireless communication method, receiving-end device, and sending-end device
TW202019213A (zh) 傳輸訊號的方法、網路設備及終端設備
US11533644B2 (en) Wireless communication method, terminal device, and network device
WO2023125223A1 (zh) 下行传输的方法及装置
WO2020073257A1 (zh) 无线通信方法和终端设备
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
WO2021204016A1 (zh) 通信方法以及通信装置
US20230362869A1 (en) Wireless communication method and device
US20220394503A1 (en) Wireless communication method and device
US20230127511A1 (en) Communication method and communication device
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2023001060A1 (zh) 一种通信方法及相关装置
WO2021160013A1 (zh) 无线通信的方法和装置以及通信设备
WO2022061545A1 (zh) 一种通信方法和装置
WO2021062869A1 (zh) 无线通信方法和终端设备
WO2021072602A1 (zh) 链路失败检测的方法和装置
CN116530183A (zh) 波束管理方法、终端设备和网络设备
WO2020010985A1 (zh) 终端覆盖方法、通信装置及计算机可读存储介质
WO2023197846A1 (zh) 一种通信方法、通信装置及通信系统
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022082434A1 (zh) 用于终端间通信的方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024000521A1 (zh) 通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE