WO2024000521A1 - 通信方法和设备 - Google Patents

通信方法和设备 Download PDF

Info

Publication number
WO2024000521A1
WO2024000521A1 PCT/CN2022/103148 CN2022103148W WO2024000521A1 WO 2024000521 A1 WO2024000521 A1 WO 2024000521A1 CN 2022103148 W CN2022103148 W CN 2022103148W WO 2024000521 A1 WO2024000521 A1 WO 2024000521A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
signals
signal
channel
priority
Prior art date
Application number
PCT/CN2022/103148
Other languages
English (en)
French (fr)
Inventor
张轶
徐婧
梁彬
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/103148 priority Critical patent/WO2024000521A1/zh
Publication of WO2024000521A1 publication Critical patent/WO2024000521A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and more specifically, to communications methods and devices.
  • the embodiment of the present application provides a communication method that can avoid conflicts between various signals/channels. .
  • the first aspect of the embodiment of the present application provides a communication method, including:
  • the first device transmits the plurality of signals/channels according to the first information corresponding to each of the plurality of signals/channels; wherein the signal/channel types corresponding to the plurality of signals/channels include at least one of the following:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • the second aspect of the embodiment of the present application provides a communication method, including:
  • the second device receives multiple signals/channels, and the multiple signals/channels are transmitted according to the first information corresponding to each of the multiple signals/channels; wherein, the signals/channels corresponding to the multiple signals/channels are Channel type includes at least one of the following:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • the third aspect of the embodiment of the present application provides a device, including:
  • a transmission module configured to transmit the plurality of signals/channels according to the first information corresponding to each of the plurality of signals/channels; wherein the signal/channel types corresponding to the plurality of signals/channels include at least one of the following item:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • the fourth aspect of the embodiment of the present application provides a device, including:
  • the receiving module receives a plurality of signals/channels, and the plurality of signals/channels are transmitted according to the first information corresponding to each of the plurality of signals/channels; wherein, the signals/channels corresponding to the plurality of signals/channels are Channel type includes at least one of the following:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • a fifth aspect of the embodiment of the present application provides a device, including a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, so that the device performs the communication method described in the first aspect or the second aspect.
  • a sixth aspect of the embodiments of the present application provides a chip for implementing the communication method described in the first aspect or the second aspect.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the communication method described in the first aspect or the second aspect.
  • a seventh aspect of the embodiments of the present application provides a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is run by a device, it causes the device to perform the communication method described in the first or second aspect.
  • An eighth aspect of the embodiments of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the communication method described in the first aspect or the second aspect.
  • a ninth aspect of the embodiments of the present application provides a computer program that, when run on a computer, causes the computer to perform the communication method described in the first aspect or the second aspect.
  • the first device transmits multiple signals/channels according to the first information corresponding to each of the multiple signals/channels, which can avoid transmission conflicts between the various signals/channels.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figures 2A-2H are schematic diagrams of sensing modes respectively.
  • Figure 3A is a schematic diagram of the feedback/reporting link of measurement results/sensing results.
  • Figure 3B is a schematic diagram of the feedback/reporting link of measurement results/sensing results.
  • Figure 4 is a schematic flowchart of a communication method 400 according to an embodiment of the present application.
  • Figure 5 is a schematic flowchart of a communication method 500 according to an embodiment of the present application.
  • Figure 6 is a schematic block diagram of a device 600 according to an embodiment of the present application.
  • Figure 7 is a schematic block diagram of a device 700 according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a device 800 according to an embodiment of the present application.
  • Figure 9 is a schematic block diagram of a chip 900 according to an embodiment of the present application.
  • Figure 10 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi wireless fidelity
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) network deployment (or networking) scenarios, and can also be applied to Non-Standalone (NSA) network deployment (or networking) scenarios.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • NSA Non-Standalone
  • the communication system in the embodiment of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiment of the present application can also be applied to licensed spectrum , among which, licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are general terms that apply wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolution base station
  • gNB NR network network equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • Figure 1 illustrates a communication system 100.
  • the communication system includes a network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110 , and the coverage of each network device 110 may include other numbers of terminal devices 120 , which is not limited in this embodiment of the present application.
  • the communication system 100 may also include other network entities such as Mobility Management Entity (MME), Access and Mobility Management Function (AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • network equipment may include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks used to communicate with access network equipment.
  • the access network equipment can be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or authorized auxiliary access long-term evolution (LAA- Evolutionary base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also known as "small base station"), pico base station, access point (access point, AP), Transmission point (TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbre
  • the communication equipment may include network equipment and terminal equipment with communication functions.
  • the network equipment and terminal equipment may be specific equipment in the embodiments of the present application, which will not be described again here; the communication equipment also It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • Wireless communication and sensing are two important applications of modern radio frequency technology. Perception uses radio waves to detect parameters of the physical environment to achieve environmental perception such as target positioning, action recognition, and imaging. Traditional sensing and wireless communication exist independently, and the separated design results in a waste of wireless spectrum and hardware resources. Entering the B5G (Beyond 5G) and 6G era, the communication spectrum has moved towards millimeter wave, terahertz, and visible light communications. In the future, the spectrum of wireless communication will overlap with the traditional sensing spectrum. The integrated communication and sensing technology integrates the two functions of wireless communication and sensing.
  • B5G Beyond 5G
  • 6G era the communication spectrum has moved towards millimeter wave, terahertz, and visible light communications. In the future, the spectrum of wireless communication will overlap with the traditional sensing spectrum.
  • the integrated communication and sensing technology integrates the two functions of wireless communication and sensing.
  • wireless communication hardware modules can be reused to implement sensing functions and reduce costs.
  • communication perception integration technology enables future wireless communication systems to have perception capabilities, providing a foundation for the development of future smart transportation, smart cities, smart factories, drones and other businesses.
  • Mode 1 as shown in Figure 2A is spontaneous self-receiving sensing by the base station.
  • the sending node of the signal/channel used for sensing (hereinafter referred to as the sensing signal/channel) is the base station (such as gNB).
  • the base station After the base station sends the sensing signal (Sensing signal), it is reflected by the sensed target (the vehicle as shown in Figure 2A) , the reflected signal returns to the base station (it can also be considered as the sensing signal returning to the base station).
  • the base station is both a sending node and a receiving node of sensing signals/channels.
  • the signal/channel described in the embodiment of this application can also be called a channel/signal.
  • Mode 2B is the terminal's spontaneous self-sensing.
  • the sending node of the sensing signal/channel is the terminal device. After the terminal device sends the sensing signal (Sensing signal), it is reflected by the sensing target (the vehicle as shown in Figure 2B), and the reflected signal (Reflected signal) returns to the terminal device (also It can be considered as the sensing signal returned to the terminal device).
  • the terminal device is both a sending node and a receiving node of sensing signals/channels.
  • Mode 3 shown in Figure 2C is base station cooperative sensing.
  • the sending node of the sensing signal/channel is a base station (such as gNB).
  • the base station After the base station sends the sensing signal (Sensing signal), it is reflected by the sensing target (the vehicle as shown in Figure 2C), and the reflected signal (Reflected signal) is transmitted to Another base station (can also be considered as transmitting the sensing signal to another base station), which is the receiving node of the sensing signal/channel.
  • Mode 4 as shown in Figure 2D is terminal cooperative sensing.
  • the sending node of the sensing signal/channel is a terminal device. After the terminal device sends the sensing signal (Sensing signal), it is reflected by the sensing target (the vehicle as shown in Figure 2D), and the reflected signal (Reflected signal) is transmitted to another The terminal device (can also be considered as transmitting the sensing signal to another terminal device), and the other terminal device is the receiving node of the sensing signal/channel.
  • Mode 5 as shown in Figure 2E is base station-terminal cooperative sensing.
  • the sending node of the sensing signal/channel is a base station (such as gNB).
  • the base station After the base station sends the sensing signal (Sensing signal), it is reflected by the sensing target (the vehicle as shown in Figure 2E), and the reflected signal (Reflected signal) is transmitted to the terminal device.
  • the sensing signal is transmitted to the terminal device
  • the terminal device is the receiving node of the sensing signal/channel.
  • Mode six as shown in Figure 2F is terminal-base station cooperative sensing.
  • the sending node of the sensing signal/channel is the terminal device.
  • the terminal device After the terminal device sends the sensing signal (Sensing signal), it is reflected by the sensing target (the vehicle as shown in Figure 2F), and the reflected signal (Reflected signal) is transmitted to the base station (also known as the base station). It can be considered that the sensing signal is transmitted to the base station), and the base station is the receiving node of the sensing signal/channel.
  • the sensed target is the sending node of the sensing signal/channel.
  • the terminal device as a sensed target, sends a sensing signal (Sensing signal) to the base station (such as gNB), and the base station (such as gNB) receives the sensing signal (Sensing signal) and senses the terminal device.
  • the sensed target is the receiving node that senses the signal/channel.
  • the base station such as gNB
  • the terminal device is the receiving node of the sensing signal/channel.
  • the terminal device After receiving the sensing signal, the terminal device sends a feedback signal (Feedback) to the base station.
  • one implementation method is to report the measurement result/sensing result (processed or unprocessed) to the sensing control node or sensing The sending node of the signal/channel.
  • this method there also needs to be a feedback/reporting link for the measurement results/sensing results, as shown in Figures 3A and 3B; another implementation method is for the receiving node of the sensing signal/channel to directly The measurement results/perception results are processed. In this way, there is no need to feedback the measurement results/perception results.
  • the communication system needs to have both wireless communication and perception functions.
  • three signal/channel types may occur: the first signal/channel group, the first signal/channel group is the signal/channel (group) used for sensing; the second signal/channel group, the second signal/channel group
  • the signal/channel group is a signal/channel (group) used for communication; the third signal/channel group is a signal/channel (group) that can be used for communication and sensing at the same time.
  • the first signal/channel group is a signal/channel group used for sensing, and may include multiple signals/channels used for sensing, or may include multiple reflection (or refraction) signals/channels used for sensing, or may include A plurality of signals/channels (also referred to as signals/channels for sensing) carrying associated control information for sensing (the control information is used to indicate transmission parameters of the associated signal/channel for sensing)
  • the control signal/channel corresponding to the channel may also include multiple signals/channels carrying measurement result feedback (or report) information corresponding to the signal/channel for sensing (also known as the signal/channel corresponding to the sensing signal/channel).
  • Measurement result feedback signal/channel may include multiple signals/channels carrying sensing result feedback (or report) information corresponding to the signal/channel used for sensing (also known as sensing corresponding to the signal/channel used for sensing) Resulting feedback signal/channel).
  • the control signal/channel corresponding to the signal/channel used for sensing can carry the control information corresponding to the signal/channel used for sensing.
  • Figure 4 is a schematic flow chart of a communication method 400 according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 and 2A-2H, but is not limited thereto. The method includes at least part of the following.
  • the first device transmits the multiple signals/channels according to the first information corresponding to each of the multiple signals/channels; wherein the signal/channel types corresponding to the multiple signals/channels include at least one of the following: item:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • all of the plurality of signals/channels correspond to signal/channel types used for sensing, or all of the plurality of signals/channels correspond to signal/channel types used for communication, or All of the plurality of signals/channels correspond to signal/channel types used for communication and sensing.
  • some of the multiple signals/channels correspond to signal/channel types used for sensing, and other parts correspond to signal/channel types used for communication.
  • some of the multiple signals/channels correspond to signal/channel types used for sensing, and other parts correspond to signal/channel types used for communication and sensing.
  • some of the plurality of signals/channels correspond to signal/channel types used for communication, and other parts correspond to signal/channel types used for communication and sensing.
  • the first part of the signals/channels in the plurality of signals/channels corresponds to a signal/channel type used for sensing
  • the second part of the signals/channels corresponds to a signal/channel type used for communication
  • the third part of the signals/channels corresponds to a signal/channel type used for communication. Types of signals/channels for communication and sensing.
  • the signal/channel corresponding to the signal/channel type used for sensing includes at least one of the following:
  • the reflected signal/channel corresponding to the signal/channel used for sensing
  • control signal/channel corresponding to the signal/channel used for sensing
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing
  • the reflected signal/channel corresponding to the signal/channel used for sensing can also be called the refracted signal/channel corresponding to the signal/channel used for sensing. It can refer to the signal/channel used for sensing that is formed after the signal/channel for sensing reaches the sensed target.
  • the signal/channel obtained after reflection or refraction from the sensing target.
  • the control signal/channel corresponding to the signal/channel used for sensing can carry the control information corresponding to the signal/channel used for sensing.
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing can carry the measurement result, which is the result of measurement using the signal/channel used for sensing or other related signals/channels.
  • the relevant other signals/channels may be signals/channels used specifically for measurement.
  • the sensing result feedback signal/channel corresponding to the signal/channel used for sensing can carry the sensing result, which is the result obtained by sensing using the signal/channel used for sensing.
  • the first information includes at least one of the following:
  • Priority of signals/channels where the priority of signals/channels can refer to the priorities between different signals/channels corresponding to the same signal/channel type; for example, the priority of multiple signal/channel types that are used for sensing Among the signals/channels, the priority of different signals/channels.
  • the first device needs to transmit 3 signals/channels, including signal/channel A, signal/channel B, and signal/channel C; the three signals/channels all correspond to the signal/channel types used for sensing. 3 signals/channels Each signal/channel in corresponds to a priority.
  • embodiments of the present application may not limit whether each of the multiple signals/channels corresponds to the same signal/channel type, that is, the first information refers to the priority of the signal/channel corresponding to any signal/channel type.
  • the first device needs to transmit 3 signals/channels, including signal/channel D, signal/channel E, and signal/channel F.
  • Each of the 3 signals/channels can correspond to a signal/channel type, and different signals
  • the signal/channel types corresponding to /channels can be the same or different; each of the three signals/channels corresponds to a priority.
  • the priority of the signal/channel type corresponding to the signal/channel can refer to the priority of the signal/channel type used for sensing, the signal/channel type used for communication Priority of channel types, and/or priority of signal/channel types used for communication and sensing.
  • Time domain resource allocation information can be used to determine the signal/channel group to which the signal/channel to be transmitted belongs.
  • Different signal/channel groups correspond to different time domain resource sets.
  • Different signal/channel groups The signals/channels in the channel group are transmitted in the time domain resource set corresponding to the signal/channel group.
  • the priority of the signal/channel in (1) above can also be expressed as other related information used to characterize the priority of the signal/channel, such as the fifth generation mobile communication quality identifier (5QI, 5G QoS Identifier) of the signal/channel ), the quality of service (QoS, Quality of Service) of the signal/channel or the importance of the signal/channel, etc.;
  • 5QI fifth generation mobile communication quality identifier
  • 5G QoS Identifier the quality of service
  • QoS Quality of Service
  • the priority of the signal/channel type corresponding to the signal/channel in the above (1) can also be expressed as other related information used to characterize the priority of the signal/channel type, such as the 5QI of the signal/channel type corresponding to the signal/channel. , the QoS of the signal/channel type corresponding to the signal/channel, or the importance of the signal/channel type corresponding to the signal/channel, etc.
  • the priority order of signal/channel types or the priority relationship between different signal/channel types may include:
  • the signal/channel type used for sensing has a higher priority than the signal/channel type used for communication; and/or,
  • Signal/channel types used for communication and sensing have a higher priority than signal/channel types used for communication.
  • the priority order of signal/channel types may also include:
  • the signal/channel type used for communication has a higher priority than the signal/channel type used for sensing; and/or,
  • Signal/channel types used for communication and sensing have a higher priority than signal/channel types used for sensing.
  • the priority order of the signal/channel types or the priority relationship between different signal/channel types may be indicated by the first information or indicated by other information.
  • the first information corresponding to each signal/channel can be agreed by the protocol, configured or indicated by a control node (such as a sensing control node, network side device, terminal device, etc.), and/or corresponding to the signal/channel. Control information indication.
  • a control node such as a sensing control node, network side device, terminal device, etc.
  • Multiple signals/channels include one or more first signals/channels to be sent and one or more second signals/channels to be received;
  • the multiple signals/channels include multiple first signals/channels to be sent.
  • the first device does not have/has not reported the ability to send and receive signals/channels at the same time; it can be understood that the first device does not have the ability to send and receive signals/channels at the same time or the first device has not reported the ability to send and receive signals at the same time /channel capabilities;
  • the first device has/reports the ability to send and receive signals/channels at the same time; it can be understood that the first device has the ability to send and receive signals/channels at the same time or the first device reports the ability to send and receive signals/channels at the same time .
  • the first device reports the ability to send and receive signals/channels at the same time to relevant devices (such as perception control devices, network side devices, terminal devices, etc.), it indicates that the first device has the ability to send and receive signals/channels at the same time. ; If the first device does not report the ability to send and receive signals/channels at the same time to relevant devices (such as perception control devices, network side devices, terminal devices, etc.), it means that the first device does not have the ability to send and receive signals/channels at the same time. ability.
  • relevant devices such as perception control devices, network side devices, terminal devices, etc.
  • the plurality of signals/channels include one or more first signals/channels to be sent and one or more second signals/channels to be received; wherein the one or more first signals/channels to be sent and the one or more first signals/channels to be received One or more second signals/channels partially or completely collide in the time domain.
  • the first device does not have or does not report the ability to send and receive signals/channels simultaneously. For example, the first device does not report the ability to send and receive signals/channels at the same time to a related device (such as a perception control device), indicating that the first device does not have the ability to send and receive signals/channels at the same time.
  • a related device such as a perception control device
  • S410 may specifically include or be executed as: the first device determines the first information corresponding to each of the one or more first signals/channels, and the corresponding first information of each of the one or more second signals/channels.
  • the first information is transmitted on multiple signals/channels.
  • the first device when the first priority is higher than the second priority, the first device sends part or all of the one or more first signals/channels; or,
  • the first device receives part or all of the one or more second signals/channels;
  • the first priority is the priority of the signal/channel with the highest priority among the one or more first signals/channels; the second priority is the signal with the highest priority among the one or more second signals/channels. /Channel priority.
  • the priority of each of the plurality of signals/channels is determined by the first information corresponding to each signal/channel.
  • the first information used to determine the priority of each of the plurality of signals/channels may include at least one of the following:
  • the priority of the signal/channel the priority of the signal/channel type corresponding to the signal/channel.
  • the first device will simultaneously send (i.e., to be sent) M1 (M1 is a positive integer) first signals/channels and receive (i.e., to be received) N1 (N1 is a positive integer) second signals/channels. Signals/channels, M1 first signals/channels and N1 second signals/channels partially or completely conflict in the time domain.
  • the first device determines the The signal/channel with the highest priority among one signal/channel may have one or more) priorities (corresponding to the above-mentioned first priority), and the signal/channel with the highest priority among N1 second signals/channels (hereinafter referred to as CH2, the signal/channel with the highest priority among the M1 first signals/channels may have one or more) priorities (corresponding to the above-mentioned second priority), which determines whether to send or receive the signal/channel.
  • the priority of CH1 is higher than the priority of CH2, the first device decides to only send the signal/channel; when the priority of CH1 is lower than the priority of CH2, the first device decides to only receive the signal/channel.
  • the first device when the first priority is higher than the second priority, the first device sends part or all of one or more first signals/channels, which may include: the first device sends At least one of the maximum output power and the maximum number of signals/channels that the first device can transmit, transmit part or all of one or more first signals/channels.
  • the first device may send N first signals/channels among one or more first signals/channels, where N is the maximum value that satisfies the first condition and/or the second condition; N is a positive integer, The N first signals/channels are part or all of the one or more first signals/channels; where,
  • the first condition includes: N is less than or equal to the maximum number of signals/channels that the first device can send;
  • the second condition includes: the sum of the first powers corresponding to each of the N first signals/channels is less than or equal to the maximum output power.
  • the first device has 4 first signals/channels to send and 5 second signals/channels to receive; the first signal/channel with the highest priority among the 4 first signals/channels has a priority higher than 5
  • the first device determines the priority according to the maximum output power of the first device and the maximum number of signals/channels that the first device can send (assuming For 3), it is determined to send 3 first signals/channels among the 4 first signals/channels, and the sum of the first powers corresponding to each of the 3 first signals/channels is less than the maximum output power.
  • the first device when the first priority is higher than the second priority, sends part or all of the one or more first signals/channels, which may include: the first device sends the one or At least one first signal/channel among the plurality of first signals/channels, wherein the priority of the sent first signal/channel is higher than the priority of the unsent first signal/channel, and the unsent first signal/channel Including a first signal/channel other than the transmitted first signal/channel among the one or more first signals/channels.
  • the first device only sends all or part of the M1 first signals/channels, and the first device sends part or all of the M1 first signals/channels in the following manner:
  • the first device sends all of the M1 first signals/channels; or ,
  • the first device sends part of the M1 first signals/channels.
  • the first device may send at least one first signal/channel among the M1 first signals/channels, wherein the priority of the sent first signal/channel is higher than the priority of the unsent first signal/channel,
  • the unsent first signals/channels include first signals/channels other than the sent first signals/channels among the M1 first signals/channels; and each of the at least one first signals/channels sent is a first signal/channel.
  • the sum of the first powers corresponding to the channels is less than or equal to the maximum output power.
  • the first device sorts M1 first signals/channels from high to low priority, selects P1 (P1 is a positive integer) first signals/channels from high to low, and selects P1 first signals/channels.
  • the priority of any first signal/channel among the signals/channels is higher than the priority of any remaining first signal/channel; and the P1 first signals/channels are sent, so that the P1 first signals/channels sent by the first device are
  • the sum of the first powers corresponding to each first signal/channel in the channel is less than or equal to the maximum output power of the first device
  • P1 is the sum of the first powers corresponding to each first signal/channel in the first signal/channel that satisfies P1
  • the maximum value is less than or equal to the maximum output power of the first device.
  • the priority of the first signal/channel may be represented by a priority index, for example, a larger priority index indicates a higher priority, or a smaller priority index indicates a higher priority. If the larger the priority index is, the higher the priority is. Then the specific way for the aforementioned first device to sort the M1 first signals/channels from high to low priority can be: according to the priority index from high to low. Sort in small order. If the smaller the priority index is, the higher the priority is, then the method by which the aforementioned first device sorts the M1 first signals/channels from high to low priority can be: according to the priority index from small to large Sorted in order.
  • the first device determines the maximum output power of the first device and the number corresponding to each of the M1 first signals/channels.
  • the first power is to send part or all of Pmax (Pmax is a positive integer) first signals/channels;
  • Pmax is the maximum number of signals/channels that the first device can send, and Pmax is a positive integer
  • the priority of any first signal/channel among the Pmax first signals/channels is higher than the priority of any first signal/channel among the one or more first signals/channels except the Pmax first signals/channels. .
  • the first device sorts M1 first signals/channels according to priority, selects P first signals/channels from high to low, and the priority of any first signal/channel among the P first signals/channels is equal to The priority is higher than the remaining first signals/channels (that is, the M1 first signals/channels except the P first signals/channels);
  • the first device sends the Pmax first signals/channels
  • the first device sends part of the Pmax first signals/channels. Specifically, the first device sends at least one first signal/channel among the Pmax first signals/channels, where the priority of the sent first signal/channel is higher than the priority of the unsent first signal/channel,
  • the unsent first signals/channels include first signals/channels other than the sent first signals/channels among the Pmax first signals/channels; and each of the at least one sent first signals/channels is a first signal/channel. /The sum of the first powers corresponding to the channels is less than or equal to the maximum output power.
  • the first device sorts the Pmax first signals/channels in order of priority from high to low, and determines P2 (P2 is a positive integer) first signals/channels among them.
  • the P2 first signals/channels are The priority of any first signal/channel in is higher than the priority of the remaining first signals/channels (that is, the first signals/channels among the Pmax first signals/channels except the P2 first signals/channels) level; and sends the P2 first signals/channels, and the sum of the first powers corresponding to each of the P2 first signals/channels sent by the first device is less than or equal to the maximum output power of the first device , and P2 is the maximum value that satisfies the above conditions.
  • the priority of the first signal/channel may be represented by a priority index, for example, a larger priority index indicates a higher priority, or a smaller priority index indicates a higher priority. If the larger the priority index, the higher the priority, then the specific way for the aforementioned first device to sort the Pmax first signals/channels in order from high to low priority can be: according to the priority index from high to low. Sort in small order. If the smaller the priority index is, the higher the priority is, then the aforementioned first device can sort the Pmax first signals/channels in order from high to low priority as follows: according to the priority index from small to large. Sorted in order.
  • the first device only receives all or part of the N1 first signals/channels, and the first device receives part or all of the N1 first signals/channels in the following manner:
  • the first device In the case that there is no or the first device does not report the maximum number of signals/channels that the first device can receive, or the maximum number of signals/channels that the first device can receive is greater than or equal to N1, the first device The device receives N1 second signals/channels.
  • the first device receives Pmax’ second signals/channels.
  • the first device can sort the N1 second signals/channels in order from high to low priority, and select Pmax' second signals/channels for reception, wherein any of the received second signals/channels
  • the priority of the second signal/channel is higher than the priority of any unreceived second signal/channel, and the unreceived second signal/channel includes the one or more second signals/channels except the received second signal/channel.
  • the priority of the second signal/channel may be represented by a priority index, for example, a larger priority index indicates a higher priority, or a smaller priority index indicates a higher priority. If the larger the priority index, the higher the priority, then the specific way for the aforementioned first device to sort the N1 second signals/channels in order from high to low priority may be: according to the priority index from high to low. Sort in small order. If the smaller the priority index is, the higher the priority is, then the method for the aforementioned first device to sort the N1 second signals/channels from high to low priority can be: according to the priority index from small to large Sorted in order.
  • each of the first signal/channel to be sent and the second signal/channel to be received may be any type of signal/channel.
  • the first information corresponding to each signal/channel includes the priority of the signal/channel.
  • each of the first signal/channel to be sent and the second signal/channel to be received can correspond to any signal/channel type.
  • the first information of each signal/channel may include the priority of the signal/channel type corresponding to the signal/channel.
  • the signal/channel type corresponding to each signal/channel can be any type among the signal/channel type used for sensing, the signal/channel type used for communication, and the signal/channel type used for communication and sensing.
  • Each signal The first information corresponding to the signal/channel may be the priority of the signal/channel type corresponding to the signal/channel.
  • the priority order of different signal/channel types can be in any order, including but not limited to: signal/channel types used for sensing have a higher priority than signal/channel types used for communication, and signals/channel types used for communication and The signal/channel type used for sensing has a higher priority than the signal/channel type used for communication; or the signal/channel type used for communication has a higher priority than the signal/channel type used for sensing, And the signal/channel type used for communication and sensing has a higher priority than the signal/channel type used for sensing.
  • each of the first signal/channel to be sent and the second signal/channel to be received may all correspond to the signal used for sensing.
  • each signal/channel can be any of the following signals/channels:
  • the reflected signal/channel corresponding to the signal/channel used for sensing
  • control signal/channel corresponding to the signal/channel used for sensing
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing
  • the first information corresponding to each signal/channel may be specified by the protocol, or configured or indicated by the control node, or indicated by the control information corresponding to the signal/channel.
  • the multiple signals/channels include multiple first signals/channels to be sent, and one or more first signals/channels to be sent partially or completely conflict in the time domain.
  • S410 may specifically include or be executed as: the first device sends part or all of the one or more first signals/channels according to the first information corresponding to each of the one or more first signals/channels.
  • the first device sends the one or more first signals/channels according to at least one of a maximum output power of the first device and a maximum number of signals/channels that the first device can send. part or all.
  • the first device may send N first signals/channels among one or more first signals/channels, where N is the maximum value that satisfies the first condition and/or the second condition; N is a positive integer, The N first signals/channels are part or all of the one or more first signals/channels; wherein,
  • the first condition includes: N is less than or equal to the maximum number of signals/channels that the first device can send;
  • the second condition includes: the sum of the first powers corresponding to each of the N first signals/channels is less than or equal to the maximum output power.
  • the first device sends part or all of the one or more first signals/channels, including: the first device sends at least one first signal/ of the one or more first signals/channels. channel, in which the priority of the sent first signal/channel is higher than the priority of the unsent first signal/channel, and the unsent first signal/channel includes the one or more first signals/channels except those that are sent. A first signal/channel other than the first signal/channel.
  • the first device will send M2 (M2 is a positive integer) first signals/channels at the same time, and the first device sends some or all of the M2 first signals/channels in the following manner:
  • the first device sends all of the M2 first signals/channels; or ,
  • the first device sends part of the M2 first signals/channels.
  • the first device may send at least one first signal/channel among the M2 first signals/channels, and the priority of the sent first signal/channel is higher than the priority of the unsent first signal/channel,
  • the unsent first signal/channel is the first signal/channel among the M2 first signals/channels other than the sent first signal/channel; and each of the at least one first signal/channel sent is the first signal/channel.
  • the sum of the first powers corresponding to the channels is less than or equal to the maximum output power.
  • the first device sorts M2 first signals/channels in order from high to low priority, and determines P3 (P3 is a positive integer) first signals/channels, where any of the P3 first signals/channels
  • P3 is a positive integer
  • the priority of the first signal/channel is higher than the priority of the remaining first signals/channels (that is, the first signals/channels among the M2 first signals/channels except the P3 first signals/channels); and send the P3 first signals/channels, such that the sum of the first powers corresponding to each of the P3 first signals/channels sent by the first device is less than or equal to the maximum output power of the first device, and P3 satisfies The maximum value of the above conditions.
  • the priority of the first signal/channel may be represented by a priority index, for example, a larger priority index indicates a higher priority, or a smaller priority index indicates a higher priority. If the larger the priority index, the higher the priority, then the specific way for the aforementioned first device to sort the M2 first signals/channels in order from high to low priority can be: according to the priority index from high to low. Sort in small order. If the smaller the priority index is, the higher the priority is, then the method by which the aforementioned first device sorts the M2 first signals/channels from high to low can be: according to the priority index from small to large. Sorted in order.
  • the first device determines the maximum output power of the first device and the number corresponding to each of the M2 first signals/channels.
  • the first power is to send part or all of Pmax (Pmax is a positive integer) first signals/channels;
  • Pmax is the maximum number of signals/channels that the first device can send; Pmax is a positive integer;
  • the priority of any first signal/channel among the Pmax first signals/channels is higher than that of any first signal/channel among the one or more first signals/channels except the Pmax first signals/channels. priority.
  • the first device sorts M2 first signals/channels according to priority and determines Pmax first signals/channels;
  • the first device sends the Pmax first signals/channels with the highest priority.
  • the first device sends part of the Pmax first signals/channels. Specifically, the first device sends at least one first signal/channel among the Pmax first signals/channels, where the priority of the sent first signal/channel is higher than the priority of the unsent first signal/channel, The unsent first signals/channels include first signals/channels other than the sent first signals/channels among the Pmax first signals/channels; and each of the at least one first signals/channels sent is the first signal/ The sum of the first powers corresponding to the channels is less than or equal to the maximum output power.
  • the first device sorts the Pmax first signals/channels in order from high to low priority, and determines P4 (P4 is a positive integer) first signals/channels, and P2 first signals/channels.
  • the priority is higher than the priority of the remaining first signals/channels (that is, the Pmax first signals/channels except the P4 first signals/channels); and the P4 first signals/channels are sent, and the first The sum of the first powers corresponding to each of the P4 first signals/channels sent by the device is less than or equal to the maximum output power of the first device, and P4 is the maximum value that satisfies the above conditions. For example, a larger priority index indicates a higher priority, or a smaller priority index indicates a higher priority.
  • the specific way for the aforementioned first device to sort the Pmax first signals/channels in order from high to low priority can be: according to the priority index from high to low. Sort in small order. If the smaller the priority index is, the higher the priority is, then the aforementioned first device can sort the Pmax first signals/channels in order from high to low priority as follows: according to the priority index from small to large. Sorted in order.
  • each of the first signals/channels to be sent may be any type of signal/channel, and the first information of each signal/channel includes the priority of the signal/channel.
  • each of the first signals/channels to be sent may be any type of signal/channel, and the first information of each signal/channel may include the priority of the signal/channel type corresponding to the signal/channel.
  • the signal/channel type corresponding to each signal/channel can be any type among the signal/channel type used for sensing, the signal/channel type used for communication, and the signal/channel type used for communication and sensing, then the signal The first information of the channel may be the priority of the signal/channel type corresponding to the signal/channel.
  • the priority order of different signal/channel types can be in any order, for example, the signal/channel type used for sensing has a higher priority than the signal/channel type used for communication, and the signal/channel type used for communication and sensing has a higher priority.
  • the channel type has a higher priority than the signal/channel type used for communication; alternatively, the signal/channel type used for communication has a higher priority than the signal/channel type used for sensing, and it is used for communication
  • the priority of the signal/channel type used for and sensing is higher than the priority of the signal/channel type used for sensing.
  • each of the first signals/channels to be sent may correspond to the signal/channel type used for perception, and each signal/channel (including the first signal/channel and the second signal/channel) may be any of the following signals /channel:
  • the reflected signal/channel corresponding to the signal/channel used for sensing
  • control signal/channel corresponding to the signal/channel used for sensing
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing
  • the first information of each signal/channel may be specified by a protocol, configured or indicated by a control node, or indicated by control information corresponding to the signal/channel.
  • the plurality of signals/channels includes one or more first signals/channels to be transmitted and one or more second signals/channels to be received.
  • S410 may specifically include or be executed as: the first device determines the first information corresponding to each of the one or more first signals/channels, and the corresponding first information of each of the one or more second signals/channels.
  • the first information is transmitted on multiple signals/channels.
  • the first device transmits some or all of the one or more first signals/channels, wherein the transmitted first signals/channels have a higher priority than untransmitted first signals /The priority of the channel, the unsent first signal/channel is the first signal/channel among the one or more first signals/channels other than the sent first signal/channel;
  • the first device receives some or all of the one or more second signals/channels, wherein any of the received second signals/channels has a higher priority than any unreceived second signals/channels.
  • the priority of the second signal/channel, the unreceived second signal/channel including the second signal/channel among the one or more second signals/channels other than the received second signal/channel;
  • the priority of each of the plurality of signals/channels is determined by the first information corresponding to each signal/channel, and the first information includes at least one of the following: the priority of the signal/channel, the signal corresponding to the signal/channel /Priority of channel type.
  • the first device has/reports the ability to simultaneously send and receive signals/channels.
  • the first device reports the ability to send and receive signals/channels at the same time to a related device (such as a perception control device), which can indicate that the first device has the ability to send and receive signals/channels at the same time.
  • a related device such as a perception control device
  • the first device transmits some or all of one or more first signals/channels, including:
  • the first device sends N first signals/channels among one or more first signals/channels, where N is the maximum value that satisfies the first condition and/or the second condition; N is a positive integer, and N first The signal/channel is part or all of one or more first signals/channels; where,
  • the first condition includes: N is less than or equal to the maximum number of signals/channels that the first device can send;
  • the second condition includes: the sum of the first powers corresponding to each of the N first signals/channels is less than or equal to the maximum output power of the first device.
  • the number of received second signals/channels is less than or equal to the maximum number of signals/channels that the first device can receive.
  • the number of signals/channels transmitted (including transmitted and received) by the first device is less than or equal to the maximum number of signals/channels that the first device can transmit.
  • each of the first signal/channel to be sent and the second signal/channel to be received can be any type of signal/channel, and each signal/channel (including the first signal/channel and the second signal/channel)
  • the first information of a signal/channel) includes the priority of the signal/channel.
  • each of the first signal/channel to be sent and the second signal/channel to be received can correspond to any signal/channel type, and each signal/channel (including the first signal/channel and the second signal/channel ) may include the priority of the signal/channel type corresponding to the signal/channel.
  • the signal/channel type corresponding to each signal/channel can be any type among a signal/channel type used for sensing, a signal/channel type used for communication, and a signal/channel type used for communication and sensing.
  • the signal/channel type The first information of the channel may be the priority of the signal/channel type corresponding to the signal/channel.
  • the priority order of different signal/channel types can be in any order, for example, the signal/channel type used for sensing has a higher priority than the signal/channel type used for communication, and the signal/channel type used for communication and sensing has a higher priority.
  • the channel type has a higher priority than the signal/channel type used for communication; alternatively, the signal/channel type used for communication has a higher priority than the signal/channel type used for sensing, and it is used for communication
  • the priority of the signal/channel type used for and sensing is higher than the priority of the signal/channel type used for sensing.
  • each of the first signal/channel to be sent and the second signal/channel to be received may correspond to the perceived signal/channel type, and each signal/channel (including the first signal/channel and the second signal/channel) can be any of the following signals/channels:
  • the reflected signal/channel corresponding to the signal/channel used for sensing
  • control signal/channel corresponding to the signal/channel used for sensing
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing
  • the first information of each signal/channel may be specified by a protocol, configured or indicated by a control node, or indicated by control information corresponding to the signal/channel.
  • the first device will send M first signals/channels and receive N second signals/channels at the same time, and the M first signals/channels and N second signals/channels conflict in the time domain, then the first device Conflict resolution occurs in the following ways:
  • the M first signals/channels and N second signals/channels are arranged together in the order of priority.
  • the first device determines the Q first signals/channels sent and the S second signals/channels received.
  • the Q The first signals/channels and the S second signals/channels satisfy at least one of the following conditions:
  • the priority of any first signal/channel among the Q first signals/channels is higher than the priority of the remaining first signals/channels, where the remaining first signals/channels are among the M first signals/channels First signals/channels other than the Q first signals/channels; the priority of any second signal/channel among the S second signals/channels is higher than the priority of the remaining second signals/channels, wherein the remaining second signals/channels
  • the second signal/channel is the second signal/channel among the N first signals/channels except the S second signals/channels.
  • the S second signals/channels received by the first device are less than or equal to the maximum number of second signals/channels that the first device can receive;
  • Q+S signals/channels including first signals/channels and second signals/channels transmitted (including sent and received) by the first device are less than or equal to the signals/channels that the first device can transmit ( The maximum number including the first signal/channel and the second signal/channel).
  • the first device transmits multiple signals/channels according to the first information of each of the multiple signals/channels.
  • Different conflict resolution mechanisms are designed according to the first device with different capabilities, which can effectively ensure the transmission of high-priority signals/channels, and at the same time do its best for the transmission of low-priority signals/channels according to the capabilities of the first device.
  • the signal/channel corresponding to the signal/channel type used for sensing includes at least one of the following:
  • the reflected signal/channel corresponding to the signal/channel used for sensing
  • control signal/channel corresponding to the signal/channel used for sensing
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing
  • At least one of the priorities of its corresponding reflected signal/channel, control signal/channel, measurement result feedback signal/channel, and sensing result feedback signal/channel can be consistent with the priority of the signal/channel used for sensing.
  • Sensed signals/channels have the same priority.
  • signal/channel A is a signal/channel used for sensing, and at least one of the following signals/channels can have the same priority: signal/channel A, the reflected signal/channel corresponding to signal/channel A, signal/channel A The corresponding control signal/channel, the measurement result feedback signal/channel corresponding to signal/channel A, and the sensing result feedback signal/channel corresponding to signal/channel A.
  • the priority can be agreed by the protocol, or configured by the control node (such as the perception control node), or indicated by the perception control information; if the priority of any one of the aforementioned signals/channels has been determined, Then you can get the priority of other signals/channels.
  • the control node configures the priority of signal/channel A to the first device as L, then the first device can determine the reflected signal/channel corresponding to signal/channel A, the control signal/channel corresponding to signal/channel A, and the signal/ The priority of the measurement result feedback signal/channel corresponding to channel A and the sensing result feedback signal/channel corresponding to signal/channel A is also L.
  • the first device transmits multiple signals/channels according to the first information corresponding to each of the multiple signals/channels, including:
  • the first device transmits the first signal/channel group in the first time domain resource set, and transmits the second signal/channel group in the second time domain resource set; the first time domain resource set and the second time domain resource The sets do not overlap; the first signal/channel group contains at least one signal/channel of a plurality of signals/channels, the second signal/channel group contains at least one signal/channel of a plurality of signals/channels, the first signal/channel group
  • the signals/channels included in and the signals/channels included in the second signal/channel group are determined by the first information.
  • the first device receives the first information indicated by the control node, and determines based on the first information that X1 signals/channels among the X signals/channels to be transmitted belong to the first signal/channel group, and X2 signals/channels belong to the first signal/channel group.
  • the first/second time domain resource set may be a resource pool.
  • the first time domain resource set does not overlap with the second time domain resource set, which may mean that there is no time unit that belongs to both the first time domain resource set and the second time domain resource set.
  • the first time domain resource set and the second time domain resource set are agreed upon by a protocol, and/or the first time domain resource set and the second time domain resource set are configured/indicated by the control node.
  • the first signal/channel group includes signals/channels for sensing
  • the second signal/channel group includes signals/channels for communication
  • the transmission of the first signal/channel group and the second signal/channel group occupy different time domain resources, for example, the transmission of the signal/channel group used for sensing and the signal/channel group used for communication occupy different time domain resources.
  • the first signal/channel group can be configured to be transmitted in the first time domain resource set and the second signal/channel group to be transmitted in the second time domain resource set through protocol agreement or perception control node configuration/instruction, and the There is no overlap between the first time domain resource set and the second time domain resource set. That is, a time domain resource unit can only belong to the first time domain resource set or the second time domain resource set.
  • the time domain resource set can include multiple symbols, or multiple time slots, or multiple time domain cycles, etc., also Can include resource pools.
  • the transmission of the third signal/channel group can be configured to occur in the first time domain resource set or the second time domain resource set through protocol agreement or perception control node configuration; or, A third time domain resource set may be defined for the third signal/channel group, the third time domain resource set is used to transmit the third signal/channel group, and the third time domain resource set is the same as the first time domain resource set and the third time domain resource set. There is no overlap between the two time domain resource sets. Signals/channels for communication and sensing may be included in the third signal/channel group.
  • the signal/channel in the third signal/channel group when used for sensing, it is transmitted in the first time domain resource set, and when the signal/channel in the third signal/channel group is used for communication, it is transmitted in the first time domain resource set. Transmitted in the second time domain resource set.
  • the above describes that the first device divides multiple signals/channels to be transmitted into different signal/channel groups, and performs the processing on the signals/channels in the signal/channel group in the time domain resource sets corresponding to the different signal/channel groups.
  • the transmission method can effectively ensure the transmission of high-priority signals/channels and avoid conflicts between signal/channel transmissions.
  • the first signal/channel group is the signal/channel (group) used for sensing, such as sensing reference signal (Sensing RS) 1, Sensing RS 2;
  • the second signal/channel group, the second signal/channel group is a signal/channel (group) used for communication, such as physical uplink shared channel (PUSCH, Physical Uplink Shared Channel), channel sounding signal (SRS, Sounding Reference Signal) , Physical Downlink Shared Channel (PDSCH, Physical Downlink Shared Channel), CSI-RS, Physical Sidelink Shared Channel (PSSCH, Physical Sidelink Shared Channel), Physical Sidelink Control Channel (PSCCH, Physical Sidelink Control Channel);
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • CSI-RS Physical Sidelink Shared Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • the first device will send sensing RS1 and receive PDSCH. Sensing RS1 and PDSCH overlap in the time domain. The first device does not have the ability to transmit and receive the first signal/channel group and the second signal/channel group at the same time, and is used If the signal/channel for communication has a higher priority than the signal/channel used for sensing, the first device only receives the PDSCH.
  • the first signal/channel group is the signal/channel (group) used for sensing, such as sensing reference signal (Sensing RS) 1, Sensing RS 2;
  • the second signal/channel group, the second signal/channel group is a signal/channel (group) used for communication, such as physical uplink shared channel (PUSCH, Physical Uplink Shared Channel), channel sounding signal (SRS, Sounding Reference Signal) , Physical Downlink Shared Channel (PDSCH, Physical Downlink Shared Channel), CSI-RS, Physical Sidelink Shared Channel (PSSCH, Physical Sidelink Shared Channel), Physical Sidelink Control Channel (PSCCH, Physical Sidelink Control Channel);
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • CSI-RS Physical Sidelink Shared Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • the first device is going to send sensing RS1 and PUSCH. Sensing RS1 and PUSCH overlap in the time domain.
  • the first device has the ability to send and receive the first signal/channel group and the second signal/channel group at the same time, and sends sensing RS1 and PUSCH.
  • the total power required by PUSCH exceeds the maximum output power of the terminal, and the priority of the signal/channel used for sensing is higher than the signal/channel used for communication, then the first device gives priority to ensuring the transmit power of sensing RS 1, that is, according to Power allocation is performed in descending order of sensing RS1 and PUSCH, and the total power after allocation is guaranteed to be less than the maximum output power of the terminal.
  • first signal/channel group being a signal/channel (group) for sensing, including a first signal/channel and a second signal/channel;
  • said second signal/channel group being a signal/channel (group) used for communication, including a first signal/channel and a second signal/channel;
  • a third signal/channel group which is a signal/channel (group) used for both communication and sensing, including a first signal/channel and a second signal/channel.
  • Figure 5 is a schematic flow chart of a communication method 500 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least part of the following.
  • the second device receives multiple signals/channels, and the multiple signals/channels are transmitted according to the first information corresponding to each of the multiple signals/channels; wherein, the signals corresponding to the multiple signals/channels /Channel type includes at least one of the following:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • the signal/channel corresponding to the signal/channel type used for sensing includes at least one of the following:
  • the reflected signal/channel corresponding to the signal/channel used for sensing
  • control signal/channel corresponding to the signal/channel used for sensing
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing
  • the first information includes at least one of the following:
  • FIG. 6 is a schematic block diagram of a device 600 according to an embodiment of the present application.
  • the device 600 may include:
  • the transmission module 610 is configured to transmit the plurality of signals/channels according to the first information corresponding to each of the plurality of signals/channels; wherein the signal/channel types corresponding to the plurality of signals/channels include at least the following: One item:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • the signal/channel corresponding to the signal/channel type used for sensing includes at least one of the following:
  • the reflected signal/channel corresponding to the signal/channel used for sensing
  • control signal/channel corresponding to the signal/channel used for sensing
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing
  • the first information includes at least one of the following:
  • the plurality of signals/channels includes one or more first signals/channels to be transmitted and one or more second signals/channels to be received;
  • the transmission module 610 is configured to use the first information corresponding to each of the one or more first signals/channels and the first information corresponding to each of the one or more second signals/channels. , transmit the multiple signals/channels.
  • the signal/channel corresponding to the signal/channel type used for sensing includes at least one of the following:
  • the reflected signal/channel corresponding to the signal/channel used for sensing
  • control signal/channel corresponding to the signal/channel used for sensing
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing
  • the first information includes at least one of the following:
  • the plurality of signals/channels includes one or more first signals/channels to be transmitted and one or more second signals/channels to be received;
  • the transmission module 610 performs processing on the multiple signals based on the first information corresponding to each of the one or more first signals/channels and the first information corresponding to each of the one or more second signals/channels. /channel for transmission.
  • the transmission module 610 when the first priority is higher than the second priority, the transmission module 610 sends part or all of the one or more first signals/channels; or,
  • the transmission module 610 receives part or all of one or more second signals/channels; wherein,
  • the first priority is the priority of the signal/channel with the highest priority among the one or more first signals/channels;
  • the second priority is the priority of the signal/channel with the highest priority among the one or more second signals/channels;
  • the priority of each signal/channel among the plurality of signals/channels is determined by the first information corresponding to each signal/channel.
  • the first information includes the priority of the signal/channel and the priority of the signal/channel type corresponding to the signal/channel. At least one.
  • the device does not have or does not report the ability to transmit and receive signals/channels simultaneously.
  • the plurality of signals/channels includes one or more first signals/channels to be transmitted
  • the transmission module 610 sends part or all of the one or more first signals/channels according to the first information corresponding to each of the one or more first signals/channels.
  • the transmission module 610 transmits part or all of the one or more first signals/channels according to at least one of a maximum output power of the device and a maximum number of signals/channels that the device can transmit.
  • the transmission module 610 sends N first signals/channels among the one or more first signals/channels, where N is the maximum value that satisfies the first condition and/or the second condition; N is positive Integer, N first signals/channels are part or all of one or more first signals/channels; where,
  • the first condition includes: N is less than or equal to the maximum number of signals/channels that the device can send;
  • the second condition includes: the sum of the first powers corresponding to each of the N first signals/channels is less than or equal to the maximum output power.
  • the transmission module 610 transmits at least one of the one or more first signals/channels, wherein the transmitted first signal/channel has a higher priority than the untransmitted first signal/channel
  • the priority level, the unsent first signal/channel includes the first signal/channel among the one or more first signals/channels other than the sent first signal/channel.
  • transmission module 610 transmits all of the one or more first signals/channels.
  • the transmission module 610 sends all first signals/channels in one or more first signals/channels;
  • the maximum number of signals/channels that the device can transmit is greater than or equal to the total number of signals/channels in the one or more first signals/channels, and the maximum output power of the device is greater than or equal to the one or more first signals/channels.
  • the transmission module 610 sends all the first signals/channels in the one or more first signals/channels.
  • the transmission module 610 transmits a portion of the one or more first signals/channels.
  • the maximum number of signals/channels that the device can transmit is less than the total number of signals/channels in the one or more first signals/channels, and/or the maximum output power of the device is less than the one or more first signals/channels.
  • the transmission module 610 sends part of the first signals/channels in one or more first signals/channels.
  • the transmission module 610 sends one or more first signals according to the maximum output power of the device and the first power corresponding to each of the one or more first signals/channels. /part or all of the channel.
  • the transmission module 610 when the maximum output power of the device is greater than or equal to the sum of the first powers corresponding to each of the one or more first signals/channels, the transmission module 610 sends one or more All in the first signal/channel; or,
  • the transmission module 610 sends part of the one or more first signals/channels.
  • the transmission module 610 transmits at least one of the one or more first signals/channels, wherein the transmitted first signal/channel has a higher priority than the untransmitted first signal/channel priority, the unsent first signal/channel includes a first signal/channel among the one or more first signals/channels other than the sent first signal/channel; and at least one of the sent first signals/channels The sum of the first powers corresponding to each of the first signals/channels is less than or equal to the maximum output power.
  • the transmission module 610 determines the maximum output power of the device and one or more first signals/channels. The first power corresponding to each first signal/channel among the plurality of first signals/channels is used to send part or all of the Pmax first signals/channels;
  • Pmax is the maximum number of signals/channels that the first device can send, and Pmax is a positive integer
  • the priority of any first signal/channel among the Pmax first signals/channels is higher than that of any first signal/channel among the one or more first signals/channels except the Pmax first signals/channels. priority.
  • the transmission module 610 when the maximum output power of the device is greater than or equal to the sum of the first powers corresponding to each of the Pmax first signals/channels, the transmission module 610 sends Pmax first signals/channels. all in the channel; or,
  • the transmission module 610 sends part of the Pmax first signals/channels.
  • the transmission module 610 sends at least one first signal/channel among the Pmax first signals/channels, where the priority of the sent first signal/channel is higher than that of the unsent first signal/channel.
  • the priority of the channel, the unsent first signal/channel includes the first signal/channel among the Pmax first signals/channels except the sent first signal/channel; and at least one of the sent first signals/channels
  • the sum of the first powers corresponding to each first signal/channel in a signal/channel is less than or equal to the maximum output power.
  • the transmission module 610 receives part or all of one or more second signals/channels according to the maximum number of signals/channels that the device can receive.
  • the transmission module 610 sends part or all of the one or more first signals/channels, wherein any of the sent first signals/channels has a high priority. Based on the priority of any first signal/channel not sent, the first signal/channel not sent includes the first signal/channel other than the first signal/channel sent among the one or more first signals/channels. A signal/channel; the transmission module 610 receives some or all of the one or more second signals/channels, wherein any of the received second signals/channels has a priority higher than The priority of any second signal/channel that has not been received, including the second signal/channel among the one or more second signals/channels other than the received second signal/channel. signal/channel;
  • the priority of the signal/channel is determined by the first information corresponding to the signal/channel, and the first information includes at least one of the priority of the signal/channel and the priority of the signal/channel type corresponding to the signal/channel.
  • a device has or reports the ability to transmit and receive signals/channels simultaneously.
  • the transmission module 610 sends N first signals/channels among the one or more first signals/channels, where N is the maximum value that satisfies the first condition and/or the second condition; N is positive Integer, N first signals/channels are part or all of one or more first signals/channels; where,
  • the first condition includes: N is less than or equal to the maximum number of signals/channels that the device can send;
  • the second condition includes: the sum of the first powers corresponding to each of the N first signals/channels is less than or equal to the maximum output power of the device.
  • the number of second signals/channels received by the transmission module 610 is less than or equal to the maximum number of signals/channels that the device can receive.
  • the number of signals/channels transmitted by the transmission module 610 is less than or equal to the maximum number of signals/channels that the device can transmit.
  • the first power corresponding to the first signal/channel is determined by a transmit power model corresponding to the first signal/channel.
  • the first information is specified by a protocol
  • the first information is configured or indicated by a control node
  • the first information is indicated by control information corresponding to a signal/channel.
  • the order of priority of signal/channel types includes:
  • the signal/channel type used for sensing has a higher priority than the signal/channel type used for communication; and/or,
  • Signal/channel types used for communication and sensing have a higher priority than signal/channel types used for communication.
  • the order of priority of signal/channel types includes:
  • the signal/channel type used for communication has a higher priority than the signal/channel type used for sensing; and/or,
  • Signal/channel types used for communication and sensing have a higher priority than signal/channel types used for sensing.
  • the transmission module 610 transmits the first signal/channel group in the first time domain resource set, and transmits the second signal/channel group in the second time domain resource set; the first time domain resource set and the third time domain resource set are The two time domain resource sets do not overlap; among them,
  • the signals/channels included in the first signal/channel group and the signals/channels included in the second signal/channel group are determined by the first information.
  • the first time domain resource set and the second time domain resource set are agreed upon by a protocol, and/or the first time domain resource set and the second time domain resource set are configured/indicated by the control node.
  • the first signal/channel group includes signals/channels for sensing
  • the second signal/channel group includes signals/channels for communication
  • the device 600 in the embodiment of the present application can implement the corresponding functions of the first device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the device 600 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described in each module (sub-module, unit or component, etc.) in the device 600 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module ( sub-module, unit or component, etc.) implementation.
  • FIG. 7 is a schematic block diagram of a device 700 according to an embodiment of the present application.
  • the device 700 may include:
  • the receiving module 710 receives a plurality of signals/channels, and the plurality of signals/channels are transmitted according to the first information corresponding to each of the plurality of signals/channels; wherein, the signals corresponding to the plurality of signals/channels /Channel type includes at least one of the following:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • the signal/channel corresponding to the signal/channel type used for sensing includes at least one of the following:
  • the reflected signal/channel corresponding to the signal/channel used for sensing
  • control signal/channel corresponding to the signal/channel used for sensing
  • the measurement result feedback signal/channel corresponding to the signal/channel used for sensing
  • the first information includes at least one of the following:
  • the device 700 in the embodiment of the present application can implement the corresponding functions of the second device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the device 700 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described in each module (sub-module, unit or component, etc.) in the device 700 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module ( sub-module, unit or component, etc.) implementation.
  • Figure 8 is a schematic structural diagram of a device 800 according to an embodiment of the present application.
  • the device 800 includes a processor 810, and the processor 810 can call and run a computer program from the memory, so that the device 800 implements the method in the embodiment of the present application.
  • device 800 may also include memory 820.
  • the processor 810 can call and run the computer program from the memory 820, so that the device 800 implements the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated into the processor 810 .
  • the device 800 may also include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices. Specifically, the device 800 may send information or data to other devices, or receive information sent by other devices. or data.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the device 800 can be a device that transmits multiple signals/channels in the embodiment of the present application, and the device 800 can implement the corresponding processes implemented by the first device in each method of the embodiment of the present application.
  • the processor 810 of the device 800 may be configured to determine a manner of transmitting the multiple signals/channels based on the first information corresponding to each of the multiple signals/channels; wherein, the signals corresponding to the multiple signals/channels /Channel type includes at least one of the following: signal/channel type used for sensing; signal/channel type used for communication; signal/channel type used for communication and sensing.
  • the transceiver 830 of the device 800 may transmit the multiple signals/channels.
  • the device 800 can be a device that receives multiple signals/channels in the embodiment of the present application, and the device 800 can implement the corresponding processes implemented by the second device in each method of the embodiment of the present application. In order to It’s concise and I won’t go into details here.
  • the transceiver 830 in the device 800 may be used to receive multiple signals/channels transmitted by the first device.
  • FIG. 9 is a schematic structural diagram of a chip 900 according to an embodiment of the present application.
  • the chip 900 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • chip 900 may also include memory 920.
  • the processor 910 can call and run the computer program from the memory 920 to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated into the processor 910 .
  • the chip 900 may also include an input interface 930 .
  • the processor 910 can control the input interface 930 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 900 may also include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in each method of the embodiment of the present application. For the sake of brevity, this chip is not mentioned here. Again.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application. For the sake of brevity, this chip is not mentioned here. Again.
  • the chips using the first device and the second device may be the same chip or different chips.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG. 10 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application.
  • the communication system 1000 includes a first device 1010 and a second device 1020.
  • the first device is used to transmit the plurality of signals/channels according to the first information corresponding to each of the plurality of signals/channels; wherein, the signals/channels corresponding to the plurality of signals/channels Channel type includes at least one of the following:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • the second device is configured to receive a plurality of signals/channels, and the plurality of signals/channels are transmitted according to the first information corresponding to each of the plurality of signals/channels; wherein, the plurality of signals/channels are transmitted
  • the signal/channel type corresponding to the signal/channel includes at least one of the following:
  • Types of signals/channels used for communication and sensing are Types of signals/channels used for communication and sensing.
  • the first device 1010 can be used to implement the corresponding functions implemented by the first device in the above method
  • the second device 1020 can be used to implement the corresponding functions implemented by the second device in the above method.
  • no further details will be given here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本申请涉及一种通信方法和设备,包括:第一设备根据多个信号/信道中各个信号/信道对应的第一信息,对多个信号/信道进行传输;其中,多个信号/信道对应的信号/信道类型包括以下至少一项:用于感知的信号/信道类型;用于通信的信号/信道类型;用于通信和感知的信号/信道类型。本申请能够避免各个信号/信道之间的冲突。

Description

通信方法和设备 技术领域
本申请涉及通信领域,更具体地,涉及通信方法和设备。
背景技术
在通信系统中,有时需要传输多个信号/信道;如何实现多个信号/信道之间的冲突处理,是需要解决的技术问题。
发明内容
本申请实施例提供一种通信方法,可以避免各个信号/信道之间的冲突。。
本申请实施例的第一方面提供了一种通信方法,包括:
第一设备根据多个信号/信道中各个信号/信道对应的第一信息,对该多个信号/信道进行传输;其中,该多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
本申请实施例的第二方面提供了一种通信方法,包括:
第二设备接收多个信号/信道,该多个信号/信道是根据该多个信号/信道中各个信号/信道对应的第一信息进行传输的;其中,该多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
本申请实施例的第三方面提供了一种设备,包括:
传输模块,用于根据多个信号/信道中各个信号/信道对应的第一信息,对该多个信号/信道进行传输;其中,该多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
本申请实施例的第四方面提供了一种设备,包括:
接收模块,接收多个信号/信道,该多个信号/信道是根据该多个信号/信道中各个信号/信道对应的第一信息进行传输的;其中,该多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
本申请实施例的第五方面提供了一种设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该设备执行上述第一方面或第二方面所述的通信方法。
本申请实施例的第六方面提供了一种芯片,用于实现上述第一方面或第二方面所述的通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述第一方面或第二方面所述的通信方法。
本申请实施例的第七方面提供了一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述第一方面或第二方面所述的通信方法。
本申请实施例的第八方面提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第二方面所述的通信方法。
本申请实施例的第九方面提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面所述的通信方法。
本申请实施例,第一设备根据多个信号/信道中各个信号/信道对应的第一信息,对多个信号/信道进行传输,能够避免各个信号/信道之间的传输冲突。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2A-2H分别为感知的模式示意图。
图3A是测量结果/感知结果的反馈/报告链路示意性一。
图3B是测量结果/感知结果的反馈/报告链路示意性一。
图4是根据本申请一实施例的的通信方法400的示意性流程图。
图5是根据本申请一实施例的的通信方法500的示意性流程图。
图6是根据本申请一实施例的设备600示意性框图。
图7是根据本申请一实施例设备700的示意性框图。
图8是根据本申请一实施例的设备800示意性结构图。
图9是根据本申请实施例的芯片900的示意性框图。
图10是根据本申请实施例的通信系统1000的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统、第六代通信(6th-Generation,6G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信,或物联网(Internet of Things,IoT)通信等,本申请实施例也可以应用于这些通信系统。
在一种实施方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网(或组网)场景,还可以应用于非独立(Non-Standalone,NSA)布网(或组网)场景。
在一种实施方式中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼 镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。在一种实施方式中,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
在一种实施方式中,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
无线通信和感知(Sensing)是现代射频技术的两大重要应用。感知利用无线电波探测物理环境的参数,以实现目标定位、动作识别、成像等环境感知。传统的感知与无线通信是独立存在的,分离化的设计存在无线频谱和硬件资源的浪费。进入B5G(Beyond 5G)、6G时代,通信频谱迈向了毫米波、太赫兹、可见光通信,未来无线通信的频谱会与传统的感知频谱重合。通信感知一体化技术将无线通信和感知两个功能融合,可以利用无线通信的无线资源来实现感知的功能;可以利用广泛部署的蜂窝网络实现更大范围内的感知业务;可以利用基站和多个终端进行联合感知,实现更高的感知精度;可以复用无 线通信的硬件模块实现感知功能,降低成本。总之通信感知一体化技术使得未来无线通信系统具有感知能力,为未来的智慧交通、智慧城市、智慧工厂、无人机等业务的发展提供一种基础。
对于感知,可以分为如图2A-2H所示的8种模式。
如图2A所示的模式一为基站自发自收感知。用于感知的信号/信道(以下简称感知信号/信道)的发送节点为基站(如gNB),基站发送感知信号(Sensing signal)后,经由被感知目标(如图2A中所示的车辆)反射,反射信号(Reflected signal)返回至基站(也可以认为是感知信号返回至基站)。基站既是感知信号/信道的发送节点、也是感知信号/信道的接收节点。本申请实施例中所述的信号/信道又可以称为信道/信号。
如图2B所示的模式二为终端自发自收感知。感知信号/信道的发送节点为终端设备,终端设备发送感知信号(Sensing signal)后,经由被感知目标(如图2B中所示的车辆)反射,反射信号(Reflected signal)返回至终端设备(也可以认为是感知信号返回至终端设备)。终端设备既是感知信号/信道的发送节点、也是感知信号/信道的接收节点。
如图2C所示的模式三为基站协作感知。感知信号/信道的发送节点为一个基站(如gNB),该基站发送感知信号(Sensing signal)后,经由被感知目标(如图2C中所示的车辆)反射,反射信号(Reflected signal)传输至另一个基站(也可以认为是感知信号传输至另一个基站),该另一个基站为感知信号/信道的接收节点。
如图2D所示的模式四为终端协作感知。感知信号/信道的发送节点为一个终端设备,该终端设备发送感知信号(Sensing signal)后,经由被感知目标(如图2D中所示的车辆)反射,反射信号(Reflected signal)传输至另一个终端设备(也可以认为是感知信号传输至另一个终端设备),该另一个终端设备为感知信号/信道的接收节点。
如图2E所示的模式五为基站-终端协作感知。感知信号/信道的发送节点为基站(如gNB),该基站发送感知信号(Sensing signal)后,经由被感知目标(如图2E中所示的车辆)反射,反射信号(Reflected signal)传输终端设备(也可以认为是感知信号传输至终端设备),该终端设备为感知信号/信道的接收节点。
如图2F所示的模式六为终端-基站协作感知。感知信号/信道的发送节点为终端设备,该终端设备发送感知信号(Sensing signal)后,经由被感知目标(如图2F中所示的车辆)反射,反射信号(Reflected signal)传输至基站(也可以认为是感知信号传输至基站),该基站为感知信号/信道的接收节点。
如图2G所示的模式七中,被感知目标为感知信号/信道的发送节点。例如,终端设备作为被感知目标,向基站(如gNB)发送感知信号(Sensing signal),基站(如gNB)接收该感知信号(Sensing signal)、并感知该终端设备。
如图2H所示的模式八中,被感知目标为感知信号/信道的接收节点。例如,基站(如gNB)发送感知信号(Sensing signal),终端设备是感知信号/信道的接收节点,终端设备接收到该感知信号后,向基站发送反馈信号(Feedback)。
感知信号/信道的接收节点在接收感知信号或者感知信号的反射/折射信号后,一种实现方式是将(经过处理后或者未经过处理的)测量结果/感知结果报告给感知控制节点、或者感知信号/信道的发送节点,这种方式下,还需要存在测量结果/感知结果的反馈/报告链路,如图3A和3B所示;另外一种实现方式是感知信号/信道的接收节点直接对测量结果/感知结果进行处理,这种方式下,无需对测量结果/感知结果进行反馈。
在无线通信感知一体化的研究中,需要通信系统同时兼备无线通信和感知的功能。例如,在此系统中,可能出现三种信号/信道类型:第一信号/信道组,第一信号/信道组是用于感知的信号/信道(组);第二信号/信道组,第二信号/信道组是用于通信的信号/信道(组);第三信号/信道组,第三信号/信道组是可以同时用于通信和感知的信号/信道(组)。那么当系统中的节点需要执行以下操作时,节点如何进行冲突处理,是需要讨论的问题:
1)同时发送以上三种类型的信号/信道组的至少两种类型;
2)同时接收以上三种类型的信号/信道组的至少两种类型;
3)同时发送/接收以上三种类型的信号/信道组的至少两种类型;
并且,在以上三种类型的信号/信道组的每种类型的信号/信道组中可以包含多个信号/信道。例如第一信号/信道组是用于感知的信号/信道组,可以包含多个用于感知的信号/信道,也可以包含多个用于感知的反射(或折射)信号/信道,也可以包含多个承载用于感知的信号/信道关联的控制信息(所述控制信息用于指示关联的用于感知的信号/信道的传输参数)的信号/信道(又可以称为用于感知的信号/信道对应的控制信号/信道)、也可以包含多个承载用于感知的信号/信道对应的测量结果反馈(或报告)信息的信号/信道(又可以称为用于感知的信号/信道对应的测量结果反馈信号/信道),或者可以包含多个 承载用于感知的信号/信道对应的感知结果反馈(或报告)信息的信号/信道(又可以称为用于感知的信号/信道对应的感知结果反馈信号/信道)。用于感知的信号/信道对应的控制信号/信道,可以承载用于感知的信号/信道所对应的控制信息,当系统中的设备需要执行以下操作时,设备如何进行冲突处理,以解决不同信号/信道占用资源的冲突问题,是需要讨论的问题:
1)同时发送第一信号/信道组中的至少两个信号/信道;
2)同时接收第一信号/信道组中的至少两个信号/信道;
3)同时发送/接收第一信号/信道组中的至少两个信号/信道。
图4是根据本申请一实施例的通信方法400的示意性流程图。该方法可选地可以应用于图1和图2A-2H所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S410、第一设备根据多个信号/信道中各个信号/信道对应的第一信息,对该多个信号/信道进行传输;其中,该多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
例如,该多个信号/信道中的全部信号/信道都对应用于感知的信号/信道类型,或者该多个信号/信道中的全部信号/信道都对应用于通信的信号/信道类型,或者该多个信号/信道中的全部信号/信道都对应用于通信和感知的信号/信道类型。或者,该多个信号/信道中的部分信号/信道对应用于感知的信号/信道类型、其他部分对应用于通信的信号/信道类型。或者,该多个信号/信道中的部分信号/信道对应用于感知的信号/信道类型、其他部分对应用于通信和感知的信号/信道类型。或者,该多个信号/信道中的部分信号/信道对应用于通信的信号/信道类型、其他部分对应用于通信和感知的信号/信道类型。或者,该多个信号/信道中的第一部分信号/信道对应用于感知的信号/信道类型、第二部分信号/信道对应用于通信的信号/信道类型、第三部分信号/信道对应用于通信和感知的信号/信道类型。
在一种实施方式中,用于感知的信号/信道类型对应的信号/信道包括以下至少之一:
用于感知的信号/信道;
用于感知的信号/信道对应的反射信号/信道;
用于感知的信号/信道对应的控制信号/信道;
用于感知的信号/信道对应的测量结果反馈信号/信道;
用于感知的信号/信道对应的感知结果反馈信号/信道。
其中,用于感知的信号/信道对应的反射信号/信道,又可以称为用于感知的信号/信道对应的折射信号/信道,可以指用于感知的信号/信道到达被感知目标后、由被感知目标反射或折射后得到的信号/信道。
用于感知的信号/信道对应的控制信号/信道,可以承载用于感知的信号/信道所对应的控制信息。
用于感知的信号/信道对应的测量结果反馈信号/信道可以承载测量结果,该测量结果是利用用于感知的信号/信道或相关的其他信号/信道进行测量所得到的结果。例如,相关的其他信号/信道可以是专门用于测量的信号/信道。
用于感知的信号/信道对应的感知结果反馈信号/信道可以承载感知结果,该感知结果是利用用于感知的信号/信道进行感知所得到的结果。
在一些实施方式中,第一信息包括以下至少一项:
(1)信号/信道的优先级;其中,信号/信道的优先级可以指对应同一信号/信道类型的不同信号/信道之间的优先级;例如,对应用于感知的信号/信道类型的多个信号/信道中,不同信号/信道的优先级。例如,第一设备待传输3个信号/信道,包括信号/信道A、信号/信道B和信号/信道C;三个信号/信道均对应用于感知的信号/信道类型,3个信号/信道中的每个信号/信道各自对应一个优先级。或者,本申请实施例可以不限制多个信号/信道中各个信号/信道是否对应同一信号/信道类型,即,该第一信息是指对应任意信号/信道类型的信号/信道的优先级。例如,第一设备待传输3个信号/信道,包括信号/信道D、信号/信道E和信号/信道F,3个信号/信道中各个信号/信道可以对应的信号/信道类型,并且不同信号/信道对应的信号/信道类型可以相同或不同;3个信号/信道中的每个信号/信道各自对应一个优先级。
(2)信号/信道对应的信号/信道类型的优先级;其中,信号/信道对应的信号/信道类型的优先级可以指用于感知的信号/信道类型的优先级、用于通信的信号/信道类型的优先级、和/或用于通信和感知的信号/信道类型的优先级。
(3)时域资源分配信息;其中,时域资源分配信息可以用于确定待传输的信号/信道所属的信号/信道组,不同的信号/信道组对应不同的时域资源集合,不同信号/信道组中的信号/信道在该信号/信道组对应的时域资源集合中传输。
其中,上述(1)中的信号/信道的优先级也可以表示为其他用于表征信号/信道优先级的相关信息, 如信号/信道的第五代移动通信服务质量标识(5QI,5G QoS Identifier)、信号/信道的服务质量(QoS,Quality of Service)或信号/信道的重要性等;
上述(1)中的信号/信道对应的信号/信道类型的优先级也可以表示为其他用于表征信号/信道类型优先级的相关信息,如信号/信道对应的所述信号/信道类型的5QI、信号/信道对应的信号/信道类型的QoS或述信号/信道对应的信号/信道类型的重要性等。在一些实施方式中,信号/信道类型的优先级的顺序或不同的信号/信道类型间的优先级的关系可以包括:
用于感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级;和/或,
用于通信和感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级。
又如,信号/信道类型的优先级的顺序还可以包括:
用于通信的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级;和/或,
用于通信和感知的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级。
在一些实施方式中,该信号/信道类型的优先级的顺序或不同的信号/信道类型间的优先级的关系可以通过第一信息指示或者通过其他信息指示。
在一些实施方式中,各个信号/信道对应的第一信息可以由协议约定、由控制节点(如感知控制节点、网络侧设备、终端设备等)配置或指示、和/或由信号/信道对应的控制信息指示。
在本申请实施例中,按照上述多个信号/信道的不同情况,至少存在以下情况和对应的实现方案。
情况一:多个信号/信道包括待发送的一个或多个第一信号/信道和待接收的一个或多个第二信号/信道;
情况二:所述多个信号/信道包括待发送的多个第一信号/信道。
其中,情况一中,根据第一设备能力的不同,又可以存在以下两种情况:
(1)第一设备不具备/没有上报同时发送和接收信号/信道的能力;可以理解为,第一设备不具备同时发送和接收信号/信道的能力或者第一设备没有上报同时发送和接收信号/信道的能力;
(2)第一设备具备/上报同时发送和接收信号/信道的能力;可以理解为,第一设备具备同时发送和接收信号/信道的能力或者第一设备上报同时发送和接收信号/信道的能力。
例如,如果第一设备向相关设备(如感知控制设备、网络侧设备、终端设备等)上报同时发送和接收信号/信道的能力,则表明该第一设备具备同时发送和接收信号/信道的能力;如果第一设备没有向相关设备(如感知控制设备、网络侧设备、终端设备等)上报同时发送和接收信号/信道的能力,则表明该第一设备不具备同时发送和接收信号/信道的能力。
以下分别针对上述各种情况进行具体介绍:
具体实施例一:
多个信号/信道包括待发送的一个或多个第一信号/信道和待接收的一个或多个第二信号/信道;其中,待发送的一个或多个第一信号/信道和待接收的一个或多个第二信号/信道在时域上部分或全部冲突。
在一些实施方式中,第一设备不具备或没有上报同时发送和接收信号/信道的能力。例如,第一设备没有向相关设备(如感知控制设备)上报同时发送和接收信号/信道的能力,表明该第一设备不具备同时发送和接收信号/信道的能力。
S410可以具体包括或执行为:第一设备根据该一个或多个第一信号/信道中各信号/信道对应的第一信息、以及该一个或多个第二信号/信道中各信号/信道对应的第一信息,对多个信号/信道进行传输。
在一些实施方式中,在第一优先级高于第二优先级的情况下,第一设备发送该一个或多个第一信号/信道中的部分或全部;或者,
在第二优先级高于第一优先级的情况下,第一设备接收该一个或多个第二信号/信道中的部分或全部;
其中,第一优先级为该一个或多个第一信号/信道中优先级最高的信号/信道的优先级;第二优先级为该一个或多个第二信号/信道中优先级最高的信号/信道的优先级。
其中,上述多个信号/信道中各信号/信道的优先级由各信号/信道对应的第一信息确定。在一些具体实施例中,用于确定上述多个信号/信道中各信号/信道的优先级的第一信息可以包括以下至少之一:
信号/信道的优先级;信号/信道对应的信号/信道类型的优先级。
在一些具体实施例中,第一设备将要同时发送(即待发送)的M1(M1为正整数)个第一信号/信道并接收(即待接收)的N1(N1为正整数)个第二信号/信道,M1个第一信号/信道和N1个第二信号/信道在时域上部分或全部冲突。在第一设备不具备/没有上报同时发送和接收信号/信道的能力的情况下,第一设备根据M1个第一信号/中优先级最高的信号/信道(以下简称CH1,所述M1个第一信号/中优先级最高的信号/信道可以有一个或多个)的优先级(对应于上述第一优先级)、以及N1个第二信号/信道中优先级最高的信号/信道(以下简称CH2,所述M1个第一信号/中优先级最高的信号/信道可以有一个 或多个)的优先级(对应于上述第二优先级),决定发送还是接收信号/信道。在CH1的优先级高于CH2的优先级的情况下,第一设备决定只发送信号/信道;在CH1的优先级低于CH2的优先级的情况下,第一设备决定只接收信号/信道。
在一些实施方式中,在第一优先级高于第二优先级的情况下,第一设备发送一个或多个第一信号/信道中的部分或全部,可以包括:第一设备根据第一设备的最大输出功率和第一设备能够发送的信号/信道的最大个数中的至少一项,发送一个或多个第一信号/信道中的部分或全部。
具体地,第一设备可以发送一个或多个第一信号/信道中的N个第一信号/信道,其中,N为满足第一条件和/或第二条件的最大值;N为正整数,N个第一信号/信道为该一个或多个第一信号/信道中的部分或全部;其中,
第一条件包括:N小于或等于第一设备能够发送的信号/信道的最大个数;
第二条件包括:N个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于最大输出功率。
例如,第一设备待发送4个第一信号/信道、并且待接收5个第二信号/信道;在4个第一信号/信道中优先级最高的第一信号/信道的优先级高于5个第二信号/信道中优先级最高的第二信号/信道的优先级的情况下,第一设备根据第一设备的最大输出功率和第一设备能够发送的信号/信道的最大个数(假定为3),确定发送4个第一信号/信道中的3个第一信号/信道,该3个第一信号/信道中各个第一信号/信道对应的第一功率之和小于最大输出功率。
在一些实施方式中,在第一优先级高于第二优先级的情况下,第一设备发送一个或多个第一信号/信道中的部分或全部,可以包括:第一设备发送该一个或多个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,未发送的第一信号/信道包括该一个或多个第一信号/信道中除发送的第一信号/信道以外的第一信号/信道。
(一)、如果M1个第一信号/信道中的优先级最高的信号/信道(如CH1)的优先级高于N1个第二信号/信道中的优先级最高的信号/信道(如CH2)的优先级,则第一设备只发送M1个第一信号/信道中的全部或部分,第一设备通过以下方式发送M1个第一信号/信道中的部分或全部:
(1)在不存在第一设备能够发送的信号/信道的最大个数或者第一设备未上报第一设备能够发送的信号/信道的最大个数,或者,第一设备能够发送的信号/信道的最大个数大于或等于M1的情况下:
如果第一设备的最大输出功率大于或等于M1个第一信号/信道中各个第一信号/信道对应的第一功率之和,则第一设备发送M1个第一信号/信道中的全部;或者,
如果第一设备的最大输出功率小于M1个第一信号/信道中各个第一信号/信道对应的第一功率之和,则第一设备发送M1个第一信号/信道中的部分。具体地,第一设备可以发送M1个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,未发送的第一信号/信道包括该M1个第一信号/信道中除发送的第一信号/信道以外的第一信号/信道;并且发送的该至少一个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于该最大输出功率。例如,第一设备按照优先级由高到低的顺序对M1个第一信号/信道进行排序,由高到低选取P1(P1为正整数)个第一信号/信道,选取的P1个第一信号/信道中任意第一信号/信道的优先级高于剩余的任意第一信号/信道的优先级;并发送该P1个第一信号/信道,使得第一设备发送的P1个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于第一设备的最大输出功率,且P1为满足P1第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于第一设备的最大输出功率的最大值。第一信号/信道的优先级可以由优先级索引表示,例如,优先级索引越大表示优先级越高,或者,优先级索引越小表示优先级越高。如果优先级索引越大表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对M1个第一信号/信道进行排序的具体方式可以为:按照优先级索引由大到小的顺序进行排序。如果优先级索引越小表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对M1个第一信号/信道进行排序的方式可以为:按照优先级索引由小到大的顺序进行排序。
(2)在第一设备能够发送的信号/信道的最大个数小于M1情况下,第一设备根据第一设备的最大输出功率和M1个第一信号/信道中各第一信号/信道对应的第一功率,发送Pmax(Pmax为正整数)个第一信号/信道中的部分或全部;其中,
Pmax为第一设备能够发送的信号/信道的最大个数,所述Pmax为正整数;
Pmax个第一信号/信道中任意第一信号/信道的优先级高于该一个或多个第一信号/信道中除该Pmax个第一信号/信道以外的任意第一信号/信道的优先级。
例如,第一设备按照优先级对M1个第一信号/信道进行排序,从高到低选取P个第一信号/信道,P个第一信号/信道中任意第一信号/信道的优先级均高于剩余的(即该M1个第一信号/信道中除该P个第一信号/信道以外的)第一信号/信道的优先级;
如果第一设备的最大输出功率大于或等于Pmax个第一信号/信道中各个第一信号/信道对应的第一功率之和,则第一设备发送该Pmax个第一信号/信道;
如果第一设备的最大输出功率小于Pmax个第一信号/信道中各个第一信号/信道对应的第一功率之和,则第一设备发送该Pmax个第一信号/信道中的部分。具体地,第一设备发送该Pmax个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,该未发送的第一信号/信道包括该Pmax个第一信号/信道中除发送的第一信号/信道以外的第一信号/信道;并且发送的至少一个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于最大输出功率。例如,第一设备按照优先级由高到低的顺序对Pmax个第一信号/信道进行排序,确定其中的P2(P2为正整数)个第一信号/信道,该P2个第一信号/信道中的任意第一信号/信道的优先级均高于剩余第一信号/信道(即该Pmax个第一信号/信道中除该P2个第一信号/信道以外的第一信号/信道)的优先级;并发送该P2个第一信号/信道,第一设备发送的P2个的第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于第一设备的最大输出功率,且P2为满足以上条件的最大值。第一信号/信道的优先级可以由优先级索引表示,例如,优先级索引越大表示优先级越高,或者,优先级索引越小表示优先级越高。如果优先级索引越大表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对Pmax个第一信号/信道进行排序的具体方式可以为:按照优先级索引由大到小的顺序进行排序。如果优先级索引越小表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对Pmax个第一信号/信道进行排序的方式可以为:按照优先级索引由小到大的顺序进行排序。
(二)、如果M1个第一信号/信道中的优先级最高的信号/信道(如CH1)的优先级低于N1个第二信号/信道中的优先级最高的信号/信道(如CH2)的优先级,则第一设备只接收N1个第一信号/信道中的全部或部分,第一设备通过以下方式接收N1个第一信号/信道中的部分或全部:
(1)在不存在或者第一设备未上报第一设备能够接收的信号/信道的最大个数,或者,第一设备能够接收的信号/信道的最大个数大于或等于N1情况下,第一设备接收N1个第二信号/信道。
(2)在第一设备能够接收的信号/信道的最大个数(以下记为Pmax’,Pmax’为正整数)小于N1情况下,第一设备接收Pmax’个第二信号/信道。例如,第一设备可以按照优先级由高到低的顺序对N1个第二信号/信道进行排序,并选取Pmax’个第二信号/信道进行接收,其中接收的第二信号/信道中的任意第二信号/信道的优先级高于未接收的任意第二信号/信道的优先级,未接收的第二信号/信道包括该一个或多个第二信号/信道中除接收的第二信号/信道以外的第二信号/信道。第二信号/信道的优先级可以由优先级索引表示,例如,优先级索引越大表示优先级越高,或者,优先级索引越小表示优先级越高。如果优先级索引越大表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对N1个第二信号/信道进行排序的具体方式可以为:按照优先级索引由大到小的顺序进行排序。如果优先级索引越小表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对N1个第二信号/信道进行排序的方式可以为:按照优先级索引由小到大的顺序进行排序。
在上述实施例中,待发送的第一信号/信道和待接收的第二信号/信道中各个信号/信道(包括第一信号/信道和第二信号/信道)可以为任意类型的信号/信道,各个信号/信道对应的第一信息包括该信号/信道的优先级。
在上述实施例中,待发送的第一信号/信道和待接收的第二信号/信道中各个信号/信道(包括第一信号/信道和第二信号/信道)可以对应任意的信号/信道类型,各个信号/信道的第一信息可以包括该信号/信道对应的信号/信道类型的优先级。其中,各个信号/信道对应的信号/信道类型可以为用于感知的信号/信道类型、用于通信的信号/信道类型、和用于通信和感知的信号/信道类型中的任意类型,各个信号/信道对应的第一信息可以为该信号/信道对应的信号/信道类型的优先级。不同的信号/信道类型的优先级顺序可以为任意顺序,包括但不限于:用于感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级,并且用于通信和感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级;或者,用于通信的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级,并且用于通信和感知的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级。
在上述实施例中,待发送的第一信号/信道和待接收的第二信号/信道中各个信号/信道(包括第一信号/信道和第二信号/信道)可以都对应用于感知的信号/信道类型,各个信号/信道可以为以下任意信号/信道:
用于感知的信号/信道;
用于感知的信号/信道对应的反射信号/信道;
用于感知的信号/信道对应的控制信号/信道;
用于感知的信号/信道对应的测量结果反馈信号/信道;
用于感知的信号/信道对应的感知结果反馈信号/信道。
各个信号/信道对应的第一信息可以由协议约定、或者由控制节点配置或指示、或者由信号/信道对应的控制信息指示。
具体实施例二:
多个信号/信道包括待发送的多个第一信号/信道,待发送的一个或多个第一信号/信道在时域上部分或全部冲突。
S410可以具体包括或执行为:第一设备根据该一个或多个第一信号/信道中各信号/信道对应的第一信息,发送该一个或多个第一信号/信道中的部分或全部。
在一些实施方式中,第一设备根据第一设备的最大输出功率和第一设备能够发送的信号/信道的最大个数中的至少一项,发送该一个或多个第一信号/信道中的部分或全部。
具体地,第一设备可以发送一个或多个第一信号/信道中的N个第一信号/信道,其中,N为满足第一条件和/或第二条件的最大值;N为正整数,N个第一信号/信道为所述一个或多个第一信号/信道中的部分或全部;其中,
第一条件包括:N小于或等于第一设备能够发送的信号/信道的最大个数;
第二条件包括:N个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于所述最大输出功率。
在一些实施方式中,第一设备发送一个或多个第一信号/信道中的部分或全部,包括:第一设备发送所述一个或多个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,未发送的第一信号/信道包括该一个或多个第一信号/信道中除发送的第一信号/信道以外的第一信号/信道。
例如,第一设备将要同时发送M2(M2为正整数)个第一信号/信道,第一设备通过以下方式发送M2个第一信号/信道中的部分或全部:
(1)在不存在或者第一设备未上报第一设备能够发送的信号/信道的最大个数,或者,第一设备能够发送的信号/信道的最大个数大于或等于M2情况下:
如果第一设备的最大输出功率大于或等于M2个第一信号/信道中各个第一信号/信道对应的第一功率之和,则第一设备发送M2个第一信号/信道中的全部;或者,
如果第一设备的最大输出功率小于M2个第一信号/信道中各个第一信号/信道对应的第一功率之和,则第一设备发送M2个第一信号/信道中的部分。具体地,第一设备可以发送M2个第一信号/信道中的至少一个第一信号/信道,并且发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,未发送的第一信号/信道为该M2个第一信号/信道中除发送的第一信号/信道以外的第一信号/信道;并且发送的至少一个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于该最大输出功率。例如,第一设备按照优先级由高到低的顺序对M2个第一信号/信道进行排序,确定P3(P3为正整数)个第一信号/信道,其中P3个第一信号/信道中任意第一信号/信道的优先级高于剩余第一信号/信道(即M2个第一信号/信道中除该P3个第一信号/信道以外的第一信号/信道)的优先级;并发送该P3个第一信号/信道,使得第一设备发送的P3个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于第一设备的最大输出功率,且P3为满足以上条件的最大值。第一信号/信道的优先级可以由优先级索引表示,例如,优先级索引越大表示优先级越高,或者,优先级索引越小表示优先级越高。如果优先级索引越大表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对M2个第一信号/信道进行排序的具体方式可以为:按照优先级索引由大到小的顺序进行排序。如果优先级索引越小表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对M2个第一信号/信道进行排序的方式可以为:按照优先级索引由小到大的顺序进行排序。
(2)在第一设备能够发送的信号/信道的最大个数小于M2情况下,第一设备根据第一设备的最大输出功率和M2个第一信号/信道中各个第一信号/信道对应的第一功率,发送Pmax(Pmax为正整数)个第一信号/信道中的部分或全部;其中,
Pmax为第一设备能够发送的信号/信道的最大个数;Pmax为正整数;
所述Pmax个第一信号/信道中任意第一信号/信道的优先级高于该一个或多个第一信号/信道中除该Pmax个第一信号/信道以外的任意第一信号/信道的优先级。
例如,第一设备按照优先级对M2个第一信号/信道进行排序,确定Pmax个第一信号/信道;
如果第一设备的最大输出功率大于或等于Pmax个第一信号/信道中各个第一信号/信道对应的第一功率之和,则第一设备发送该Pmax个优先级最高的第一信号/信道;
如果第一设备的最大输出功率小于Pmax个第一信号/信道中各个第一信号/信道对应的第一功率之和,则第一设备发送该Pmax个第一信号/信道中的部分。具体地,第一设备发送该Pmax个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优 先级,未发送的第一信号/信道包括该Pmax个第一信号/信道中除发送的第一信号/信道以外的第一信号/信道;并且发送的至少一个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于最大输出功率。例如,第一设备按照优先级由高到低的顺序对Pmax个第一信号/信道进行排序,确定其中的P4(P4为正整数)个第一信号/信道,P2个第一信号/信道的优先级高于剩余的第一信号/信道(即Pmax个第一信号/信道中除该P4个第一信号/信道以外的)的优先级;并发送该P4个第一信号/信道,第一设备发送的P4个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于第一设备的最大输出功率,且P4为满足以上条件的最大值。例如,优先级索引越大表示优先级越高,或者,优先级索引越小表示优先级越高。如果优先级索引越大表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对Pmax个第一信号/信道进行排序的具体方式可以为:按照优先级索引由大到小的顺序进行排序。如果优先级索引越小表示优先级越高,则前述的第一设备按照优先级由高到低的顺序对Pmax个第一信号/信道进行排序的方式可以为:按照优先级索引由小到大的顺序进行排序。
在本示例中,待发送的第一信号/信道中各个信号/信道可以为任意类型的信号/信道,各个信号/信道的第一信息包括该信号/信道的优先级。
或者,待发送的第一信号/信道中各个信号/信道可以为任意类型的信号/信道,各个信号/信道的第一信息可以包括该信号/信道对应的信号/信道类型的优先级。例如,各个信号/信道对应的信号/信道类型可以为用于感知的信号/信道类型、用于通信的信号/信道类型、和用于通信和感知的信号/信道类型中的任意类型,则信号/信道的第一信息可以为该信号/信道对应的信号/信道类型的优先级。不同信号/信道类型的优先级顺序可以为任意顺序,例如,用于感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级,并且用于通信和感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级;或者,用于通信的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级,并且用于通信和感知的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级。
或者,待发送的第一信号/信道中各个信号/信道可以都对应用于感知的信号/信道类型,各个信号/信道(包括第一信号/信道和第二信号/信道)可以为以下任意信号/信道:
用于感知的信号/信道;
用于感知的信号/信道对应的反射信号/信道;
用于感知的信号/信道对应的控制信号/信道;
用于感知的信号/信道对应的测量结果反馈信号/信道;
用于感知的信号/信道对应的感知结果反馈信号/信道。
各个信号/信道的第一信息可以由协议约定、或者由控制节点配置或指示、或者由信号/信道对应的控制信息指示。
具体实施例三:
多个信号/信道包括待发送的一个或多个第一信号/信道和待接收的一个或多个第二信号/信道。
S410可以具体包括或执行为:第一设备根据该一个或多个第一信号/信道中各信号/信道对应的第一信息、以及该一个或多个第二信号/信道中各信号/信道对应的第一信息,对多个信号/信道进行传输。
在一些实施方式中,第一设备发送该一个或多个第一信号/信道中的部分或全部第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,该未发送的第一信号/信道为该一个或多个第一信号/信道中除该发送的第一信号/信道以外的第一信号/信道;
第一设备接收该一个或多个第二信号/信道中的部分或全部第二信号/信道,其中接收的第二信号/信道中的任意第二信号/信道的优先级高于未接收的任意第二信号/信道的优先级,该未接收的第二信号/信道包括该一个或多个第二信号/信道中除该接收的第二信号/信道以外的第二信号/信道;
其中,上述多个信号/信道中各信号/信道的优先级由各信号/信道对应的第一信息确定,第一信息包括以下至少一项:信号/信道的优先级、信号/信道对应的信号/信道类型的优先级。
在一些实施方式中,第一设备具备/上报同时发送和接收信号/信道的能力。第一设备向相关设备(如感知控制设备)上报同时发送和接收信号/信道的能力,可以表明该第一设备具备同时发送和接收信号/信道的能力。
在一些实施方式中,第一设备发送一个或多个第一信号/信道中的部分或全部第一信号/信道,包括:
第一设备发送一个或多个第一信号/信道中的N个第一信号/信道,其中,N为满足第一条件和/或第二条件的最大值;N为正整数,N个第一信号/信道为一个或多个第一信号/信道中的部分或全部;其中,
第一条件包括:N小于或等于所述第一设备能够发送的信号/信道的最大个数;
第二条件包括:N个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于第一设备的最大输出功率。
在一些实施方式中,接收的第二信号/信道的个数小于或等于第一设备能够接收的信号/信道的最大 个数。
在一些实施方式中,第一设备传输的(包括发送的和接收的)信号/信道的个数小于或等于第一设备能够传输的信号/信道的最大个数。
在本示例中,待发送的第一信号/信道和待接收的第二信号/信道中各个信号/信道可以为任意类型的信号/信道,各个信号/信道(包括第一信号/信道和第二信号/信道)的第一信息包括该信号/信道的优先级。
或者,待发送的第一信号/信道和待接收的第二信号/信道中各个信号/信道可以对应任意的信号/信道类型,各个信号/信道(包括第一信号/信道和第二信号/信道)的第一信息可以包括该信号/信道对应的信号/信道类型的优先级。例如,各个信号/信道对应的信号/信道类型可以为用于感知的信号/信道类型、用于通信的信号/信道类型、和用于通信和感知的信号/信道类型中的任意类型,信号/信道的第一信息可以为该信号/信道对应的信号/信道类型的优先级。不同信号/信道类型的优先级顺序可以为任意顺序,例如,用于感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级,并且用于通信和感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级;或者,用于通信的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级,并且用于通信和感知的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级。
或者,待发送的第一信号/信道和待接收的第二信号/信道中各个信号/信道可以都对应用于感知的信号/信道类型,各个信号/信道(包括第一信号/信道和第二信号/信道)可以为以下任意信号/信道:
用于感知的信号/信道;
用于感知的信号/信道对应的反射信号/信道;
用于感知的信号/信道对应的控制信号/信道;
用于感知的信号/信道对应的测量结果反馈信号/信道;
用于感知的信号/信道对应的感知结果反馈信号/信道。
各个信号/信道的第一信息可以由协议约定、或者由控制节点配置或指示、或者由信号/信道对应的控制信息指示。
例如,第一设备将要同时发送M个第一信号/信道和接收N个第二信号/信道,M个第一信号/信道与N个第二信号/信道在时域上冲突,则第一设备通过以下方式进行冲突解决:
将M个第一信号/信道和N个第二信号/信道一同按照优先级的顺序排列,第一设备确定发送的Q个第一信号/信道和接收的S个第二信号/信道,该Q个第一信号/信道和S个第二信号/信道满足以下条件中至少之一:
(1)该Q个第一信号/信道中任意第一信号/信道的优先级高于剩余第一信号/信道的优先级,其中剩余第一信号/信道为该M个第一信号/信道中除该Q个第一信号/信道以外的第一信号/信道;该S个第二信号/信道中任意第二信号/信道的优先级高于剩余第二信号/信道的优先级,其中剩余第二信号/信道为该N个第一信号/信道中除该S个第二信号/信道以外的第二信号/信道。
(2)第一设备发送的Q个第一信号/信道中各个第一信号/信道对应的第一功率之和小于第一设备的最大输出功率,且Q为满足上述条件的最大值。
(3)第一设备接收的S个第二信号/信道小于或等于第一设备能够接收的第二信号/信道的最大个数;
(4)第一设备传输的(包括发送的和接收的)Q+S个信号/信道(包括第一信号/信道和第二信号/信道)小于或等于第一设备能够传输的信号/信道(包括第一信号/信道和第二信号/信道)的最大个数。
以上介绍了第一设备根据多个信号/信道中各个信号/信道的第一信息、对多个信号/信道进行传输的三种具体示例。根据不同能力的第一设备设计了不同的冲突解决机制,可以有效保证高优先级信号/信道的传输,同时根据第一设备的能力对低优先级的信号/信道的传输尽力而为。
在本申请的各个示例中,用于感知的信号/信道类型对应的信号/信道包括以下至少之一:
用于感知的信号/信道;
用于感知的信号/信道对应的反射信号/信道;
用于感知的信号/信道对应的控制信号/信道;
用于感知的信号/信道对应的测量结果反馈信号/信道;
用于感知的信号/信道对应的感知结果反馈信号/信道。
对于一个用于感知的信号/信道来说,其对应的反射信号/信道、控制信号/信道、测量结果反馈信号/信道、感知结果反馈信号/信道的优先级中至少之一可以与该用于感知的信号/信道的优先级相同。
例如,信号/信道A是用于感知的信号/信道,以下信号/信道中至少之一可以具有相同的优先级:信号/信道A、信号/信道A对应的反射信号/信道、信号/信道A对应的控制信号/信道、信号/信道A对 应的测量结果反馈信号/信道、信号/信道A对应的感知结果反馈信号/信道。优先级可以由协议约定的、或者由控制节点(如感知控制节点)配置、或者由感知控制信息指示的;如果前述几个信号/信道中的其中任意一个信号/信道的优先级已被确定,则可以得到其他信号/信道的优先级。例如,控制节点向第一设备配置了信号/信道A的优先级为L,则第一设备可以确定信号/信道A对应的反射信号/信道、信号/信道A对应的控制信号/信道、信号/信道A对应的测量结果反馈信号/信道、信号/信道A对应的感知结果反馈信号/信道的优先级也是L。
具体实施例四:
第一设备根据多个信号/信道中各个信号/信道对应的第一信息,对多个信号/信道进行传输,包括:
第一设备在第一时域资源集合中传输第一信号/信道组,并在第二时域资源集合中传输第二信号/信道组;第一时域资源集合与所述第二时域资源集合不重叠;第一信号/信道组包含多个信号/信道中的至少一个信号/信道,第二信号/信道组包含多个信号/信道中的至少一个信号/信道,第一信号/信道组中包含的信号/信道及所述第二信号/信道组中包含的信号/信道由第一信息确定。
例如,第一设备接收控制节点指示的第一信息,根据该第一信息确定待传输的X个信号/信道中的X1个信号/信道属于第一信号/信道组、X2个信号/信道属于第二信号/信道组(X=X1+X2),从而在第一信号/信道组所对应的第一时域资源集合中传输该X1个信号/信道,并在第二信号/信道组所对应的第二时域资源集合中传输该X2个信号/信道。
在一些实施方式中,第一/二时域资源集合可以为一个资源池。第一时域资源集合与所述第二时域资源集合不重叠,可以指不存在既属于第一时域资源集合、又属于第二时域资源集合的时间单元。
在一些实施方式中,第一时域资源集合和所述第二时域资源集合由协议约定,和/或,第一时域资源集合和第二时域资源集合由控制节点配置/指示。
在一些实施方式中,第一信号/信道组中包括用于感知的信号/信道,第二信号/信道组中包括用于通信的信号/信道。
在一些实施方式中,第一信号/信道组与第二信号/信道组的传输占用不同的时域资源,如用于感知的信号/信道组与用于通信的信号/信道组的传输占用不同的时域资源。可以通过协议约定、或者感知控制节点配置/指示的方式,配置第一信号/信道组在第一时域资源集合中传输、第二信号/信道组在第二时域资源集合中传输,并且第一时域资源集合和第二时域资源集合不存在重叠。即对于一个时域资源单元,只可能属于第一时域资源集合或者第二时域资源集合,时域资源集合可以包括多个符号、或者多个时隙、或者多个时域周期等,也可以包括资源池。
另外,若存在第三信号/信道组,可以通过协议约定或者感知控制节点配置的方式,配置第三信号/信道组的传输发生在第一时域资源集合或者第二时域资源集合;或者,可以为第三信号/信道组定义第三时域资源集合,第三时域资源集合用于传输第三信号/信道组,并且第三时域资源集合与第一时域资源集合和所述第二时域资源集均不发生重叠。第三信号/信道组中可以包括用于通信和感知的信号/信道。由例如,当第三信号/信道组中的信号/信道用于感知时,其在第一时域资源集合中传输,当第三信号/信道组中的信号/信道用于通信时,其在第二时域资源集合中传输。
以上介绍了第一设备将待传输的多个信号/信道划分为不同的信号/信道组,并在不同信号/信道组对应的时域资源集合中对该信号/信道组中的信号/信道进行传输的方法,可以有效保证高优先级信号/信道的传输,避免信号/信道传输之间的冲突。
以下举几个具体的实施例,介绍本申请实施例的通信方法。
实施例1:
在感知通信系统中,存在以下两种信号/信道类型中的至少两种:
-第一信号/信道组,第一信号/信道组是用于感知的信号/信道(组),例如感知参考信号(Sensing RS)1,Sensing RS 2;
-第二信号/信道组,第二信号/信道组是用于通信的信号/信道(组),例如物理上行共享信道(PUSCH,Physical Uplink Shared Channel)、信道探测信号(SRS,Sounding Reference Signal)、物理下行共享信道(PDSCH,Physical Downlink Shared Channel)、CSI-RS、物理侧行链路共享信道(PSSCH,Physical Sidelink Shared Channel)、物理侧行链路控制信道(PSCCH,Physical Sidelink Control Channel);
第一设备将要发送sensing RS 1和接收PDSCH,Sensing RS1和PDSCH在时域上重叠,第一设备不具备同时发送和接收第一信号/信道组和第二信号/信道组的能力,且用于通信的信号/信道的优先级高于用于感知的信号/信道,则第一设备只接收PDSCH。
实施例2:
在感知通信系统中,存在以下两种信号/信道类型中的至少两种:
-第一信号/信道组,第一信号/信道组是用于感知的信号/信道(组),例如感知参考信号(Sensing RS)1,Sensing RS 2;
-第二信号/信道组,第二信号/信道组是用于通信的信号/信道(组),例如物理上行共享信道(PUSCH,Physical Uplink Shared Channel)、信道探测信号(SRS,Sounding Reference Signal)、物理下行共享信道(PDSCH,Physical Downlink Shared Channel)、CSI-RS、物理侧行链路共享信道(PSSCH,Physical Sidelink Shared Channel)、物理侧行链路控制信道(PSCCH,Physical Sidelink Control Channel);
第一设备将要发送sensing RS1和PUSCH,sensing RS1和PUSCH在时域上重叠,第一设备具备同时发送和接收第一信号/信道组和第二信号/信道组的能力,且发送sensing RS 1和PUSCH所需的总功率超过了终端的最大输出功率,且用于感知的信号/信道的优先级高于用于通信的信号/信道,则第一设备优先保证sensing RS 1的发送功率,即按照sensing RS1、PUSCH的降序进行功率分配,且保证分配后总功率小于终端最大输出功率。
实施例3:
在感知通信系统中,存在以下三种信号/信道类型中的至少两种:
-第一信号/信道组,所述第一信号/信道组是用于感知的信号/信道(组),包括第一个信号/信道和第二个信号/信道;
-第二信号/信道组,所述第二信号/信道组是用于通信的信号/信道(组),包括第一个信号/信道和第二个信号/信道;
-第三信号/信道组,所述第三信号/信道组是同时用于通信和感知的信号/信道(组),包括第一个信号/信道和第二个信号/信道。
一种优先级举例如下(降序排列):
1)第三信号/信道组包括的第一个信号/信道
2)第三信号/信道组包括的第二个信号/信道
3)第二信号/信道组包括的第一个信号/信道
4)第二信号/信道组包括的第二个信号/信道
5)第一信号/信道组包括的第一个信号/信道
6)第一信号/信道组包括的第二个信号/信道
或者,另一种优先级举例如下(降序排列):
1)第三信号/信道组包括的第一个信号/信道
2)第二信号/信道组包括的第一个信号/信道
3)第一信号/信道组包括的第一个信号/信道
4)第三信号/信道组包括的第二个信号/信道
5)第二信号/信道组包括的第二个信号/信道
6)第一信号/信道组包括的第二个信号/信道
也就是,基于不同组信号/信道的优先级,以及同组之间信号/信道的优先级共同确定全部信号/信道优先级时,可以先按照不同信号/信道组的优先级排列,再按照同组中信号/信道的优先级排列;也可以按照不同信号/信道组的优先级与同组中不同信号/信道的优先级混合排列,即不排除任意顺序分布。
图5是根据本申请一实施例的通信方法500的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S510:第二设备接收多个信号/信道,该多个信号/信道是根据该多个信号/信道中各个信号/信道对应的第一信息进行传输的;其中,多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
在一些实施方式中,用于感知的信号/信道类型对应的信号/信道包括以下至少之一:
用于感知的信号/信道;
用于感知的信号/信道对应的反射信号/信道;
用于感知的信号/信道对应的控制信号/信道;
用于感知的信号/信道对应的测量结果反馈信号/信道;
用于感知的信号/信道对应的感知结果反馈信号/信道。
在一些实施方式中,第一信息包括以下至少之一:
信号/信道的优先级;
信号/信道对应的信号/信道类型的优先级;
时域资源分配信息。
本实施例中的其他相关内容可参照图4所述实施例中的相关内容,在此不再赘述。
图6是根据本申请一实施例的设备600的示意性框图。该设备600可以包括:
传输模块610,用于根据多个信号/信道中各个信号/信道对应的第一信息,对该多个信号/信道进行传输;其中,该多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
在一些实施方式中,该用于感知的信号/信道类型对应的信号/信道包括以下至少之一:
用于感知的信号/信道;
用于感知的信号/信道对应的反射信号/信道;
用于感知的信号/信道对应的控制信号/信道;
用于感知的信号/信道对应的测量结果反馈信号/信道;
用于感知的信号/信道对应的感知结果反馈信号/信道。
在一些实施方式中,该第一信息包括以下至少之一:
该信号/信道的优先级;
该信号/信道对应的信号/信道类型的优先级;
时域资源分配信息。
在一些实施方式中,该多个信号/信道包括待发送的一个或多个第一信号/信道和待接收的一个或多个第二信号/信道;
传输模块610,用于根据该一个或多个第一信号/信道中各信号/信道对应的该第一信息及该一个或多个第二信号/信道中各信号/信道对应的该第一信息,对该多个信号/信道进行传输。
在一些实施方式中,用于感知的信号/信道类型对应的信号/信道包括以下至少之一:
用于感知的信号/信道;
用于感知的信号/信道对应的反射信号/信道;
用于感知的信号/信道对应的控制信号/信道;
用于感知的信号/信道对应的测量结果反馈信号/信道;
用于感知的信号/信道对应的感知结果反馈信号/信道。
在一些实施方式中,第一信息包括以下至少之一:
信号/信道的优先级;
信号/信道对应的信号/信道类型的优先级;
时域资源分配信息。
在一些实施方式中,多个信号/信道包括待发送的一个或多个第一信号/信道和待接收的一个或多个第二信号/信道;
其中,传输模块610根据一个或多个第一信号/信道中各信号/信道对应的第一信息及一个或多个第二信号/信道中各信号/信道对应的第一信息,对多个信号/信道进行传输。
在一些实施方式中,在第一优先级高于第二优先级的情况下,传输模块610发送一个或多个第一信号/信道中的部分或全部;或者,
在第二优先级高于第一优先级的情况下,传输模块610接收一个或多个第二信号/信道中的部分或全部;其中,
第一优先级为一个或多个第一信号/信道中优先级最高的信号/信道的优先级;
第二优先级为一个或多个第二信号/信道中优先级最高的信号/信道的优先级;
多个信号/信道中各信号/信道的优先级由各信号/信道对应的第一信息确定,第一信息包括信号/信道的优先级和信号/信道对应的信号/信道类型的优先级中的至少之一。
在一些实施方式中,设备不具备或没有上报同时发送和接收信号/信道的能力。
在一些实施方式中,多个信号/信道包括待发送的一个或多个第一信号/信道;
传输模块610根据一个或多个第一信号/信道中各信号/信道对应的第一信息,发送一个或多个第一信号/信道中的部分或全部。
在一些实施方式中,传输模块610根据设备的最大输出功率和设备能够发送的信号/信道的最大个数中的至少一项,发送一个或多个第一信号/信道中的部分或全部。
在一些实施方式中,传输模块610发送一个或多个第一信号/信道中的N个第一信号/信道,其中, N为满足第一条件和/或第二条件的最大值;N为正整数,N个第一信号/信道为一个或多个第一信号/信道中的部分或全部;其中,
第一条件包括:N小于或等于设备能够发送的信号/信道的最大个数;
第二条件包括:N个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于最大输出功率。
在一些实施方式中,传输模块610发送一个或多个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,所述未发送的第一信号/信道包括所述一个或多个第一信号/信道中除所述发送的第一信号/信道以外的第一信号/信道。
在一些实施方式中,传输模块610发送一个或多个第一信号/信道中的全部第一信号/信道。
在一些实施方式中,在不存在或者设备未上报设备能够发送的信号/信道的最大个数,并且设备的最大输出功率大于或等于一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,传输模块610发送一个或多个第一信号/信道中的全部第一信号/信道;
或者,在设备能够发送的信号/信道的最大个数大于或等于一个或多个第一信号/信道中的信号/信道总数,并且设备的最大输出功率大于或等于一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,传输模块610发送一个或多个第一信号/信道中的全部第一信号/信道。
在一些实施方式中,传输模块610发送一个或多个第一信号/信道中的部分第一信号/信道。
在一些实施方式中,在设备能够发送的信号/信道的最大个数小于一个或多个第一信号/信道中的信号/信道总数,和/或,设备的最大输出功率小于一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,传输模块610发送一个或多个第一信号/信道中的部分第一信号/信道。
在一些实施方式中,在不存在或者设备未上报设备能够发送的信号/信道的最大个数,或者,设备能够发送的信号/信道的最大个数大于或等于一个或多个第一信号/信道中的信号/信道总数的情况下,传输模块610根据设备的最大输出功率和一个或多个第一信号/信道中各个第一信号/信道对应的第一功率,发送一个或多个第一信号/信道中的部分或全部。
在一些实施方式中,在设备的最大输出功率大于或等于一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,传输模块610发送一个或多个第一信号/信道中的全部;或者,
在设备的最大输出功率小于一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,传输模块610发送一个或多个第一信号/信道中的部分。
在一些实施方式中,传输模块610发送一个或多个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,所述未发送的第一信号/信道包括所述一个或多个第一信号/信道中除所述发送的第一信号/信道以外的第一信号/信道;并且发送的至少一个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于所述最大输出功率。
在一些实施方式中,在设备能够发送的信号/信道的最大个数小于一个或多个第一信号/信道中的信号/信道总数的情况下,传输模块610根据设备的最大输出功率和一个或多个第一信号/信道中各个第一信号/信道对应的第一功率,发送Pmax个第一信号/信道中的部分或全部;
Pmax为第一设备能够发送的信号/信道的最大个数,Pmax为正整数;
Pmax个第一信号/信道中任意第一信号/信道的优先级高于所述一个或多个第一信号/信道中除所述Pmax个第一信号/信道以外的任意第一信号/信道的优先级。
在一些实施方式中,在设备的最大输出功率大于或等于Pmax个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,传输模块610发送Pmax个第一信号/信道中的全部;或者,
在设备的最大输出功率小于Pmax个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,传输模块610发送Pmax个第一信号/信道中的部分。
在一些实施方式中,传输模块610发送发送所述Pmax个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,所述未发送的第一信号/信道包括所述Pmax个第一信号/信道中除所述发送的第一信号/信道以外的第一信号/信道;并且发送的至少一个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于所述最大输出功率。
在一些实施方式中,传输模块610根据设备能够接收的信号/信道的最大个数,接收一个或多个第二信号/信道中的部分或全部。
在一些实施方式中,传输模块610发送一个或多个第一信号/信道中的部分或全部第一信号/信道,其中发送的第一信号/信道中的任意第一信号/信道的优先级高于未发送的任意第一信号/信道的优先级,所述未发送的第一信号/信道包括所述一个或多个第一信号/信道中除所述发送的第一信号/信道以外的第一信号/信道;传输模块610接收一个或多个第二信号/信道中的部分或全部第二信号/信道,其中接收的第二信号/信道中的任意第二信号/信道的优先级高于未接收的任意第二信号/信道的优先级,所述未接 收的第二信号/信道包括所述一个或多个第二信号/信道中除所述接收的第二信号/信道以外的第二信号/信道;
其中,信号/信道的优先级由信号/信道对应的第一信息确定,第一信息包括信号/信道的优先级和信号/信道对应的信号/信道类型的优先级中的至少之一。
在一些实施方式中,设备具备或上报同时发送和接收信号/信道的能力。
在一些实施方式中,传输模块610发送一个或多个第一信号/信道中的N个第一信号/信道,其中,N为满足第一条件和/或第二条件的最大值;N为正整数,N个第一信号/信道为一个或多个第一信号/信道中的部分或全部;其中,
第一条件包括:N小于或等于设备能够发送的信号/信道的最大个数;
第二条件包括:N个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于设备的最大输出功率。
在一些实施方式中,传输模块610接收的第二信号/信道的个数小于或等于设备能够接收的信号/信道的最大个数。
在一些实施方式中,传输模块610传输的信号/信道的个数小于或等于设备能够传输的信号/信道的最大个数。
在一些实施方式中,第一信号/信道对应的第一功率由第一信号/信道对应的发送功率模型确定。
在一些实施方式中,第一信息由协议约定、第一信息由控制节点配置或指示、和/或第一信息由信号/信道对应的控制信息指示。
在一些实施方式中,信号/信道类型的优先级的顺序包括:
用于感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级;和/或,
用于通信和感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级。
在一些实施方式中,信号/信道类型的优先级的顺序包括:
用于通信的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级;和/或,
用于通信和感知的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级。
在一些实施方式中,传输模块610在第一时域资源集合中传输第一信号/信道组,并在第二时域资源集合中传输第二信号/信道组;第一时域资源集合与第二时域资源集合不重叠;其中,
第一信号/信道组中包含的信号/信道及第二信号/信道组中包含的信号/信道由第一信息确定。
在一些实施方式中,第一时域资源集合和第二时域资源集合由协议约定,和/或,第一时域资源集合和第二时域资源集合由控制节点配置/指示。
在一些实施方式中,第一信号/信道组中包括用于感知的信号/信道,第二信号/信道组中包括用于通信的信号/信道。
本申请实施例的设备600能够实现前述的方法实施例中的第一设备的对应功能。该设备600中各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的设备600中各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图7是根据本申请一实施例设备700的示意性框图,该设备700可以包括,包括:
接收模块710,接收多个信号/信道,该多个信号/信道是根据该多个信号/信道中各个信号/信道对应的第一信息进行传输的;其中,该多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
在一些实施方式中,用于感知的信号/信道类型对应的信号/信道包括以下至少之一:
用于感知的信号/信道;
用于感知的信号/信道对应的反射信号/信道;
用于感知的信号/信道对应的控制信号/信道;
用于感知的信号/信道对应的测量结果反馈信号/信道;
用于感知的信号/信道对应的感知结果反馈信号/信道。
在一些实施方式中,第一信息包括以下至少之一:
信号/信道的优先级;
信号/信道对应的信号/信道类型的优先级;
时域资源分配信息。
本实施例中,设备700的其他相关功能可参照图6所示设备的相关内容,在此不再赘述。
本申请实施例的设备700能够实现前述的方法实施例中的第二设备的对应功能。该备700中各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的设备700中各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图8是根据本申请实施例的设备800示意性结构图。该设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以使设备800实现本申请实施例中的方法。
在一种实施方式中,设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以使设备800实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
在一种实施方式中,设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
在一种实施方式中,该设备800可为本申请实施例传输多个信号/信道的设备,并且该设备800可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。设备800的处理器810可以用于根据多个信号/信道中各个信号/信道对应的第一信息,确定对所述多个信号/信道进行传输的方式;其中,多个信号/信道对应的信号/信道类型包括以下至少一项:用于感知的信号/信道类型;用于通信的信号/信道类型;用于通信和感知的信号/信道类型。设备800的收发器830可以对该多个信号/信道进行传输。
在一种实施方式中,该设备800可为本申请实施例的接收多个信号/信道的设备,并且该设备800可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。设备800中的收发器830可以用于对第一设备发送的多个信号/信道进行接收。
图9是根据本申请实施例的芯片900的示意性结构图。该芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种实施方式中,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
在一种实施方式中,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种实施方式中,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种实施方式中,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
在一种实施方式中,该芯片可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
应用第一设备和第二设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连 接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图10是根据本申请实施例的通信系统1000的示意性框图。该通信系统1000包括第一设备1010和第二设备1020。
其中,该第一设备用于,根据多个信号/信道中各个信号/信道对应的第一信息,对所述多个信号/信道进行传输;其中,所述多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
该第二设备用于,接收多个信号/信道,所述多个信号/信道是根据所述多个信号/信道中各个信号/信道对应的第一信息进行传输的;其中,所述多个信号/信道对应的信号/信道类型包括以下至少一项:
用于感知的信号/信道类型;
用于通信的信号/信道类型;
用于通信和感知的信号/信道类型。
其中,该第一设备1010可以用于实现上述方法中由第一设备实现的相应的功能,以及该第二设备1020可以用于实现上述方法中由第二设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (44)

  1. 一种通信方法,包括:
    第一设备根据多个信号/信道中各个信号/信道对应的第一信息,对所述多个信号/信道进行传输;其中,所述多个信号/信道对应的信号/信道类型包括以下至少一项:
    用于感知的信号/信道类型;
    用于通信的信号/信道类型;
    用于通信和感知的信号/信道类型。
  2. 根据权利要求1所述的方法,其中,所述用于感知的信号/信道类型对应的信号/信道包括以下至少之一:
    用于感知的信号/信道;
    用于感知的信号/信道对应的反射信号/信道;
    用于感知的信号/信道对应的控制信号/信道;
    用于感知的信号/信道对应的测量结果反馈信号/信道;
    用于感知的信号/信道对应的感知结果反馈信号/信道。
  3. 根据权利要求1或2所述的方法,其中,所述第一信息包括以下至少之一:
    所述信号/信道的优先级;
    所述信号/信道对应的信号/信道类型的优先级;
    时域资源分配信息。
  4. 根据权利要求1-3中任一所述的方法,其中,所述多个信号/信道包括待发送的一个或多个第一信号/信道和待接收的一个或多个第二信号/信道;
    其中,所述第一设备根据多个信号/信道中各个信号/信道对应的第一信息,对所述多个信号/信道进行传输,包括:
    所述第一设备根据所述一个或多个第一信号/信道中各信号/信道对应的所述第一信息及所述一个或多个第二信号/信道中各信号/信道对应的所述第一信息,对所述多个信号/信道进行传输。
  5. 根据权利要求4所述的方法,其中,所述第一设备根据所述一个或多个第一信号/信道中各信号/信道对应的所述第一信息及所述一个或多个第二信号/信道中各信号/信道对应的所述第一信息,对所述多个信号/信道进行传输,包括:
    在第一优先级高于第二优先级的情况下,所述第一设备发送所述一个或多个第一信号/信道中的部分或全部;或者,
    在第二优先级高于第一优先级的情况下,所述第一设备接收所述一个或多个第二信号/信道中的部分或全部;
    其中,所述第一优先级为所述一个或多个第一信号/信道中优先级最高的信号/信道的优先级;所述第二优先级为所述一个或多个第二信号/信道中优先级最高的信号/信道的优先级;
    所述多个信号/信道中各信号/信道的优先级由所述各信号/信道对应的所述第一信息确定,所述第一信息包括所述信号/信道的优先级和所述信号/信道对应的信号/信道类型的优先级中的至少之一。
  6. 根据权利要求5所述的方法,其中,所述第一设备不具备或没有上报同时发送和接收信号/信道的能力。
  7. 根据权利要求1-3中任一所述的方法,其中,所述多个信号/信道包括待发送的多个第一信号/信道;
    其中,所述第一设备根据多个信号/信道中各个信号/信道对应的第一信息,对所述多个信号/信道进行传输,包括:
    所述第一设备根据所述多个第一信号/信道中各信号/信道对应的所述第一信息,发送所述多个第一信号/信道中的部分或全部。
  8. 根据权利要求5、6或7所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的部分或全部,包括:
    所述第一设备根据所述第一设备的最大输出功率和所述第一设备能够发送的信号/信道的最大个数中的至少一项,发送所述一个或多个第一信号/信道中的部分或全部。
  9. 根据权利要求8所述的方法,其中,所述第一设备根据所述第一设备能够发送的信号/信道的最大个数和最大输出功率中的至少一项,发送所述一个或多个第一信号/信道中的部分或全部,包括:
    所述第一设备发送所述一个或多个第一信号/信道中的N个第一信号/信道,其中,所述N为满足第一条件和/或第二条件的最大值;所述N为正整数,所述N个第一信号/信道为所述一个或多个第一信号 /信道中的部分或全部;其中,
    所述第一条件包括:所述N小于或等于所述第一设备能够发送的信号/信道的最大个数;
    所述第二条件包括:所述N个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于所述最大输出功率。
  10. 根据权利要求5-9任一项所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的部分或全部,包括:
    所述第一设备发送所述一个或多个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,所述未发送的第一信号/信道包括所述一个或多个第一信号/信道中除所述发送的第一信号/信道以外的第一信号/信道。
  11. 根据权利要求5-10任一项所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的部分或全部,包括:
    所述第一设备发送所述一个或多个第一信号/信道中的全部第一信号/信道。
  12. 根据权利要求11所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的全部第一信号/信道,包括:
    在不存在或者第一设备未上报所述第一设备能够发送的信号/信道的最大个数,并且所述第一设备的最大输出功率大于或等于所述一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,所述第一设备发送所述一个或多个第一信号/信道中的全部第一信号/信道;或者,
    在所述第一设备能够发送的信号/信道的最大个数大于或等于所述一个或多个第一信号/信道中的信号/信道总数,并且所述第一设备的最大输出功率大于或等于所述一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,所述第一设备发送所述一个或多个第一信号/信道中的全部第一信号/信道。
  13. 根据权利要求5-10任一项所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的部分或全部,包括:
    所述第一设备发送所述一个或多个第一信号/信道中的部分第一信号/信道。
  14. 根据权利要求13所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的部分第一信号/信道,包括:
    在所述第一设备能够发送的信号/信道的最大个数小于所述一个或多个第一信号/信道中的信号/信道总数,和/或,所述第一设备的最大输出功率小于所述一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,所述第一设备发送所述一个或多个第一信号/信道中的部分第一信号/信道。
  15. 根据权利要求5-10任一项所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的部分或全部,包括:
    在不存在或者第一设备未上报所述第一设备能够发送的信号/信道的最大个数,或者,所述第一设备能够发送的信号/信道的最大个数大于或等于所述一个或多个第一信号/信道中的信号/信道总数的情况下,所述第一设备根据所述第一设备的最大输出功率和所述一个或多个第一信号/信道中各个第一信号/信道对应的第一功率,发送所述一个或多个第一信号/信道中的部分或全部。
  16. 根据权利要求15所述的方法,其中,所述第一设备根据所述第一设备的最大输出功率和所述一个或多个第一信号/信道中各个第一信号/信道对应的第一功率,发送所述一个或多个第一信号/信道中的部分或全部,包括:
    在所述第一设备的最大输出功率大于或等于所述一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,所述第一设备发送所述一个或多个第一信号/信道中的全部;或者,
    在所述第一设备的最大输出功率小于所述一个或多个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,所述第一设备发送所述一个或多个第一信号/信道中的部分。
  17. 根据权利要求16所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的部分,包括:
    所述第一设备发送所述一个或多个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,所述未发送的第一信号/信道包括所述一个或多个第一信号/信道中除所述发送的第一信号/信道以外的第一信号/信道;并且发送的至少一个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于所述最大输出功率。
  18. 根据权利要求5-10任一项所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的部分或全部,包括:
    在所述第一设备能够发送的信号/信道的最大个数小于所述一个或多个第一信号/信道中的信号/信 道总数的情况下,所述第一设备根据所述第一设备的最大输出功率和所述一个或多个第一信号/信道中各个第一信号/信道对应的第一功率,发送Pmax个第一信号/信道中的部分或全部;
    所述Pmax为所述第一设备能够发送的信号/信道的最大个数,所述Pmax为正整数;
    所述Pmax个第一信号/信道中任意第一信号/信道的优先级高于所述一个或多个第一信号/信道中除所述Pmax个第一信号/信道以外的任意第一信号/信道的优先级。
  19. 根据权利要求18所述的方法,其中,所述第一设备根据所述第一设备的最大输出功率和所述一个或多个第一信号/信道中各个第一信号/信道对应的第一功率,发送Pmax个第一信号/信道中的部分或全部,包括:
    在所述第一设备的最大输出功率大于或等于所述Pmax个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,所述第一设备发送所述Pmax个第一信号/信道中的全部;或者,
    在所述第一设备的最大输出功率小于所述Pmax个第一信号/信道中各个第一信号/信道对应的第一功率之和的情况下,所述第一设备发送所述Pmax个第一信号/信道中的部分。
  20. 根据权利要求19所述的方法,其中,所述第一设备发送所述Pmax个第一信号/信道中的部分,包括:
    所述第一设备发送所述Pmax个第一信号/信道中的至少一个第一信号/信道,其中发送的第一信号/信道的优先级高于未发送的第一信号/信道的优先级,所述未发送的第一信号/信道包括所述Pmax个第一信号/信道中除所述发送的第一信号/信道以外的第一信号/信道;并且发送的至少一个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于所述最大输出功率。
  21. 根据权利要求5所述的方法,其中,所述第一设备接收所述一个或多个第二信号/信道中的部分或全部,包括:
    所述第一设备根据所述第一设备能够接收的信号/信道的最大个数,接收所述一个或多个第二信号/信道中的部分或全部。
  22. 根据权利要求4所述的方法,其中,所述第一设备根据所述一个或多个第一信号/信道对应的所述第一信息及所述一个或多个第二信号/信道对应的所述第一信息,对所述多个信号/信道进行传输,包括:
    第一设备发送所述一个或多个第一信号/信道中的部分或全部第一信号/信道,其中发送的第一信号/信道中的任意第一信号/信道的优先级高于未发送的任意第一信号/信道的优先级,所述未发送的第一信号/信道包括所述一个或多个第一信号/信道中除所述发送的第一信号/信道以外的第一信号/信道;
    第一设备接收所述一个或多个第二信号/信道中的部分或全部第二信号/信道,其中接收的第二信号/信道中的任意第二信号/信道的优先级高于未接收的任意第二信号/信道的优先级,所述未接收的第二信号/信道包括所述一个或多个第二信号/信道中除所述接收的第二信号/信道以外的第二信号/信道;
    其中,所述信号/信道的优先级由所述信号/信道对应的所述第一信息确定,所述第一信息包括所述信号/信道的优先级和所述信号/信道对应的信号/信道类型的优先级中的至少之一。
  23. 根据权利要求22所述的方法,其中,所述第一设备具备或上报同时发送和接收信号/信道的能力。
  24. 根据权利要求22或23所述的方法,其中,所述第一设备发送所述一个或多个第一信号/信道中的部分或全部第一信号/信道,包括:
    所述第一设备发送所述一个或多个第一信号/信道中的N个第一信号/信道,其中,所述N为满足第一条件和/或第二条件的最大值;所述N为正整数,所述N个第一信号/信道为所述一个或多个第一信号/信道中的部分或全部;其中,
    所述第一条件包括:所述N小于或等于所述第一设备能够发送的信号/信道的最大个数;
    所述第二条件包括:所述N个第一信号/信道中各个第一信号/信道对应的第一功率之和小于或等于所述第一设备的最大输出功率。
  25. 根据权利要求22或23所述的方法,其中,所述接收的第二信号/信道的个数小于或等于所述第一设备能够接收的信号/信道的最大个数。
  26. 根据权利要求22或23所述的方法,其中,所述第一设备传输的信号/信道的个数小于或等于所述第一设备能够传输的信号/信道的最大个数。
  27. 根据权利要求9、12、15-20或24所述的方法,其中,所述第一信号/信道对应的第一功率由所述第一信号/信道对应的发送功率模型确定。
  28. 根据权利要求1-27中任一所述的方法,其中,所述第一信息由协议约定、所述第一信息由控制节点配置或指示、和/或所述第一信息由信号/信道对应的控制信息指示。
  29. 根据权利要求1-28所述的方法,其中,所述信号/信道类型的优先级的顺序包括:
    用于感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级;和/或,
    用于通信和感知的信号/信道类型的优先级高于用于通信的信号/信道类型的优先级。
  30. 根据权利要求1-28所述的方法,其中,所述信号/信道类型的优先级的顺序包括:
    用于通信的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级;和/或,
    用于通信和感知的信号/信道类型的优先级高于用于感知的信号/信道类型的优先级。
  31. 根据权利要求1-3所述的方法,其中,所述第一设备根据多个信号/信道中各个信号/信道对应的第一信息,对所述多个信号/信道进行传输,包括:
    所述第一设备在第一时域资源集合中传输第一信号/信道组,并在第二时域资源集合中传输第二信号/信道组;所述第一时域资源集合与所述第二时域资源集合不重叠;其中,
    所述第一信号/信道组包含所述多个信号/信道中的至少一个信号/信道,所述第二信号/信道组包含所述多个信号/信道中的至少一个信号/信道,所述第一信号/信道组中包含的信号/信道及所述第二信号/信道组中包含的信号/信道由所述第一信息确定。
  32. 根据权利要求31所述的方法,其中,所述第一时域资源集合和所述第二时域资源集合由协议约定,和/或,所述第一时域资源集合和所述第二时域资源集合由控制节点配置/指示。
  33. 根据权利要求31或32所述的方法,其中,所述第一信号/信道组中包括用于感知的信号/信道,所述第二信号/信道组中包括用于通信的信号/信道。
  34. 一种通信方法,包括:
    第二设备接收多个信号/信道,所述多个信号/信道是根据所述多个信号/信道中各个信号/信道对应的第一信息进行传输的;其中,所述多个信号/信道对应的信号/信道类型包括以下至少一项:
    用于感知的信号/信道类型;
    用于通信的信号/信道类型;
    用于通信和感知的信号/信道类型。
  35. 根据权利要求34所述的方法,其中,所述用于感知的信号/信道类型对应的信号/信道包括以下至少之一:
    用于感知的信号/信道;
    用于感知的信号/信道对应的反射信号/信道;
    用于感知的信号/信道对应的控制信号/信道;
    用于感知的信号/信道对应的测量结果反馈信号/信道;
    用于感知的信号/信道对应的感知结果反馈信号/信道。
  36. 根据权利要求34或35所述的方法,其中,所述第一信息包括以下至少之一:
    所述信号/信道的优先级;
    所述信号/信道对应的信号/信道类型的优先级;
    时域资源分配信息。
  37. 一种设备,包括:
    传输模块,用于根据多个信号/信道中各个信号/信道对应的第一信息,对所述多个信号/信道进行传输;其中,所述多个信号/信道对应的信号/信道类型包括以下至少一项:
    用于感知的信号/信道类型;
    用于通信的信号/信道类型;
    用于通信和感知的信号/信道类型。
  38. 一种设备,包括:
    接收模块,接收多个信号/信道,所述多个信号/信道是根据所述多个信号/信道中各个信号/信道对应的第一信息进行传输的;其中,所述多个信号/信道对应的信号/信道类型包括以下至少一项:
    用于感知的信号/信道类型;
    用于通信的信号/信道类型;
    用于通信和感知的信号/信道类型。
  39. 一种设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至33或34-36中任一项所述的方法。
  40. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至33或34-36中任一项所述的方法。
  41. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至33或34-36中任一项所述的方法。
  42. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1 至33或34-36中任一项所述的方法。
  43. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至33或34-36中任一项所述的方法。
  44. 一种通信系统,包括:
    第一设备,用于执行如权利要求1至33中任一项所述的方法;
    第二设备,用于执行如权利要求34-36中所述的方法。
PCT/CN2022/103148 2022-06-30 2022-06-30 通信方法和设备 WO2024000521A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103148 WO2024000521A1 (zh) 2022-06-30 2022-06-30 通信方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103148 WO2024000521A1 (zh) 2022-06-30 2022-06-30 通信方法和设备

Publications (1)

Publication Number Publication Date
WO2024000521A1 true WO2024000521A1 (zh) 2024-01-04

Family

ID=89383851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103148 WO2024000521A1 (zh) 2022-06-30 2022-06-30 通信方法和设备

Country Status (1)

Country Link
WO (1) WO2024000521A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024363A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种干扰处理方法及装置
CN110719646A (zh) * 2018-07-13 2020-01-21 维沃移动通信有限公司 一种上行传输方法及终端
CN112242884A (zh) * 2019-07-19 2021-01-19 大唐移动通信设备有限公司 信息传输方法及装置
US20210282157A1 (en) * 2016-08-10 2021-09-09 Panasonic Intellectual Property Corporation Of America Wireless communication method, apparatus and system
WO2021208781A1 (zh) * 2020-04-17 2021-10-21 展讯通信(上海)有限公司 上行功率分配方法及装置、存储介质、终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210282157A1 (en) * 2016-08-10 2021-09-09 Panasonic Intellectual Property Corporation Of America Wireless communication method, apparatus and system
CN108024363A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种干扰处理方法及装置
CN110719646A (zh) * 2018-07-13 2020-01-21 维沃移动通信有限公司 一种上行传输方法及终端
CN112242884A (zh) * 2019-07-19 2021-01-19 大唐移动通信设备有限公司 信息传输方法及装置
WO2021208781A1 (zh) * 2020-04-17 2021-10-21 展讯通信(上海)有限公司 上行功率分配方法及装置、存储介质、终端

Similar Documents

Publication Publication Date Title
US20230063901A1 (en) Sidelink feedback method and terminal device
WO2021237675A1 (zh) 无线通信方法和终端设备
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
US20230007682A1 (en) Data transmission method, terminal device and network device
US20230239097A1 (en) Wireless communication method, terminal device and network device
US20220394503A1 (en) Wireless communication method and device
US20230107139A1 (en) Relay discovery method and terminal
WO2021160013A1 (zh) 无线通信的方法和装置以及通信设备
WO2024000521A1 (zh) 通信方法和设备
US20230224754A1 (en) Quality of service (qos) control method, terminal device, and network device
WO2023201594A1 (zh) 一种指示方法、终端设备和网络设备
WO2023102914A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123516A1 (zh) 资源的指示方法、终端设备和网络设备
WO2023092456A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023108556A1 (zh) 无线通信的方法、终端设备和网络设备
US20220338093A1 (en) Communication method, device, and system
WO2022236511A1 (zh) 侦听方法、终端设备、网络设备、芯片和存储介质
WO2023108341A1 (zh) 频率信息的处理方法、第一通信单元和第二通信单元
WO2023044735A1 (zh) 无线通信的方法和终端设备
WO2023001060A1 (zh) 一种通信方法及相关装置
WO2023141824A1 (zh) 无线通信的方法和终端设备
WO2023102848A1 (zh) 无线通信的方法和终端设备
WO2023108555A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141823A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024130573A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948623

Country of ref document: EP

Kind code of ref document: A1