WO2021208781A1 - 上行功率分配方法及装置、存储介质、终端 - Google Patents

上行功率分配方法及装置、存储介质、终端 Download PDF

Info

Publication number
WO2021208781A1
WO2021208781A1 PCT/CN2021/085763 CN2021085763W WO2021208781A1 WO 2021208781 A1 WO2021208781 A1 WO 2021208781A1 CN 2021085763 W CN2021085763 W CN 2021085763W WO 2021208781 A1 WO2021208781 A1 WO 2021208781A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
power
channel
uplink channel
priority
Prior art date
Application number
PCT/CN2021/085763
Other languages
English (en)
French (fr)
Inventor
唐焕华
吴大焰
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US17/919,430 priority Critical patent/US20230156611A1/en
Publication of WO2021208781A1 publication Critical patent/WO2021208781A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, in particular to an uplink power allocation method and device, storage medium, and terminal.
  • the New Radio (NR) terminal will adjust the uplink transmission power (which can be referred to as the uplink power) of the overlapping part of NR to ensure that the sum of NR and LTE uplink transmission power does not exceed the specified range.
  • the uplink power which can be referred to as the uplink power
  • EN-DC refers to the dual connection of the fourth generation mobile communication technology (4 Generation, 4G) radio access network and 5G NR, specifically refers to the evolved UMTS terrestrial radio access (Evolved Universal Terrestrial Radio Access, abbreviated as 4G).
  • E-UTRA Primary cell group (Master Cell group, MCG for short), E-UTRA and NR dual connectivity with NR as the Secondary Cell group (SCG) and E-UTRA NR dual connectivity with MCG using E -UTRA and SCG using NR).
  • NE-DC refers to the dual connection of 5G NR and 4G wireless access network, specifically refers to the dual connection of E-UTRA and NR with NR as MCG and E-UTRA as SCG.
  • the uplink transmission power of the overlap NR is unconditionally reduced, or even Actively abandon the transmission of NR when the power drops too much.
  • PRACH Physical Random Access Channel
  • this method of reducing the uplink transmission power of NR or even giving up the transmission will be effective for the NR chain.
  • the connection performance of the road has a greater impact. Specifically, it will reduce or even worsen the connection performance of the NR link in the Connect state of the Radio Resource Control (Radio Resource Control, referred to as RRC). In severe cases, the NR may not even be able to stay on the network or drop the network.
  • RRC Radio Resource Control
  • the technical problem solved by the present invention is how to optimize the allocation strategy of NR and LTE transmission power in NSA to improve the connection performance of the NR link in the RRC connection state.
  • an embodiment of the present invention provides an uplink power allocation method, including: determining an overlapping set of the first uplink channel for the first uplink channel to be transmitted, wherein the overlapping set is the same as the A set of uplink channels in which the first uplink channel overlaps in time, and at least a part of the uplink channels that overlap in time with the first uplink channel and the first uplink channel belong to a different communication system;
  • the priority of each uplink channel in the overlapping set is determined at least according to the channel type, the information carried in the uplink signal, the carrier type, and the periodicity Sorting; according to the priority sorting, the uplink power of each uplink channel in the overlapping set is re-allocated until the sum of the uplink power of each uplink channel in the overlapping set is less than or equal to the preset maximum total transmit power, where priority The lower the level of the uplink channel, the
  • the uplink power adjustment amount of the uplink channel is closer to zero.
  • the uplink power of each uplink channel in the overlapping set is re-allocated according to the priority order until the sum of the uplink power of each uplink channel in the overlapping set is less than or equal to the preset maximum total transmit power
  • the method includes: according to the priority ordering, determining the remaining allocatable uplink power according to the uplink power of the uplink channel with the highest priority and the preset maximum total transmission power; and reallocating the overlapping set based on the remaining allocatable uplink power The remaining uplink channels except for the uplink channel with the highest priority, so that the sum of the uplink power of the remaining uplink channels is less than or equal to the remaining allocatable uplink power.
  • the uplink of each uplink channel in the overlapping set is re-allocated according to the priority.
  • Power until the sum of the uplink power of each uplink channel in the overlapping set is less than or equal to the preset maximum total transmit power includes: determining the minimum value of the first uplink channel in the respective reallocation results of the multiple overlapping sets as The updated uplink power of the first uplink channel.
  • the uplink allocation method further includes: for each uplink channel in the multiple overlapping sets except for the first uplink channel, determining the minimum value of the uplink channel in the multiple overlapping sets as The updated uplink power of the uplink channel.
  • the determining the priority ordering of the uplink channels in the overlapping set at least according to the channel type, the information carried in the uplink signal, the carrier type, and the periodicity includes: according to the priority of the PRACH is the highest, and the priority of the PUCCH is the second.
  • the priority of each uplink channel is determined in the order of the lowest priority of PUSCH and the priority of each uplink channel; the priority of the uplink channel carrying HARQ-ACK and/or uplink scheduling request in the uplink signal is the highest, and the uplink channel carrying CSI in the uplink signal
  • the priority is second, and the priority of the uplink channel that does not carry HARQ-ACK, uplink scheduling request or CSI in the uplink signal is the lowest, and the priority of each uplink channel is determined;
  • the priority of the aperiodic uplink channel is the highest, half
  • the priority of the static uplink channel is second, and the priority of the static uplink channel is the lowest, and the priority of each uplink channel is determined; according to the associated cell, the priority of the uplink channel of the primary cell in the carrier aggregation is the highest and the associated The priority of the uplink channel of the primary and secondary cell in the carrier aggregation is the second in the cell, and the uplink channel of the associated cell is the secondary cell in the carrier aggregat
  • the determining the priority order of the uplink channels in the overlapping set at least according to the channel type, the information carried in the uplink signal, the carrier type, and the periodicity further includes: for the same channel type, the uplink signal carries the same
  • the priority order of the multiple uplink channels is determined according to the current uplink transmission scenario, where the scenarios include NE-DC scenarios and EN-DC scenarios Scenes.
  • the determining the priority order of the multiple uplink channels according to the current uplink transmission scenario includes: if the current uplink transmission scenario is an NE-DC scenario, for the same channel type and the uplink signal carries the same For multiple uplink channels with the same information and carrier type and/or the same periodicity, it is determined that the priority of the uplink channel belonging to the NR communication system is higher than the priority of the uplink channel belonging to the LTE communication system; if the current uplink transmission scenario is In the EN-DC scenario, for multiple uplink channels with the same channel type, the same information in the uplink signal, the same carrier type and/or the same periodicity, the priority of the uplink channel belonging to the LTE communication system is determined to be higher than that of the uplink channels. The priority of the uplink channel belonging to the NR communication system.
  • the updating the uplink power of the first uplink channel according to the reallocation result includes: recording the uplink power determined by the first uplink channel based on the reallocation result as the adjusted uplink power, and recording the adjusted uplink power
  • the ratio of the power to the original uplink power of the first uplink channel is determined as the power adjustment coefficient of the first uplink channel; according to the uplink power of the first uplink channel in the time slots or subframes before and after the transmission moment, Fine-tuning the power adjustment coefficient so that the uplink power of the uplink channel changes smoothly in time; and updating the uplink power of the first uplink channel based on the adjusted power adjustment coefficient.
  • an embodiment of the present invention also provides an uplink power allocation device, including: a determining module, for a first uplink channel to be transmitted, determining an overlapping set of the first uplink channel, wherein the overlapping set Is a set of uplink channels that overlap in time with the first uplink channel, and at least a part of the uplink channels that overlap in time with the first uplink channel belong to different communications from the first uplink channel System; a priority sorting module, when the sum of the uplink power of each uplink channel in the overlapping set is greater than the preset maximum total transmission power, at least according to the channel type, the information carried in the uplink signal, the carrier type, and the periodicity to determine the Priority ranking of the uplink channels in the overlapping set; an allocation module for re-allocating the uplink power of each uplink channel in the overlapping set according to the priority ranking, until the sum of the uplink power of each uplink channel in the overlapping set Less than or equal to the preset maximum total transmit power, where
  • an embodiment of the present invention further provides a storage medium on which computer instructions are stored, and the computer instructions execute the steps of the above method when the computer instructions are executed by a processor.
  • an embodiment of the present invention further provides a terminal, which includes the above uplink power distribution device, or includes a memory and a processor, and the memory stores computer instructions that can run on the processor.
  • the processor executes the steps of the above method when the computer instructions are executed.
  • An embodiment of the present invention provides an uplink power allocation method, which includes: determining an overlapping set of the first uplink channel for a first uplink channel to be transmitted, where the overlapping set is the same time as the first uplink channel.
  • the uplink channel set that overlaps in the upper direction, and at least a part of the uplink channels that overlap the first uplink channel in time and the first uplink channel belong to a different communication system; when each uplink channel in the overlapping set When the sum of the uplink power of the channel is greater than the preset maximum total transmission power, the priority order of each uplink channel in the overlapping set is determined at least according to the channel type, the information carried in the uplink signal, the carrier type, and the periodicity; Re-allocate the uplink power of each uplink channel in the overlapping set until the sum of the uplink power of each uplink channel in the overlapping set is less than or equal to the preset maximum total transmission power, wherein the uplink channel with the lower priority , The larger the uplink power adjustment amount of the uplink channel
  • the uplink transmission power of the overlapping part of the NR under the NSA is directly and unconditionally reduced, or even the NR transmission is abandoned.
  • the NR terminal using the scheme of this embodiment evaluates the types and importance of the overlapped NR and LTE uplink transmission channels respectively , And optimize the allocation of NR and LTE uplink transmission power accordingly.
  • the impact on the NR link connection performance in the RRC connected state can be reduced on the premise that the connection performance of the LTE link in the RRC connected state is not substantially affected.
  • the uplink channels belonging to the LTE communication system and the uplink channels belonging to the NR communication system in the overlapping set are comprehensively sorted according to the channel type and other consideration factors to ensure that the NR uplink channels and LTE channels that carry signaling related to link connection performance
  • the uplink power of the uplink channel can be effectively guaranteed. Avoid blindly reducing the connection performance of the NE link in order to ensure the connection performance of the LTE link.
  • Fig. 1 is a flowchart of an uplink power allocation method according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of an overlapping set according to an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of an uplink power distribution device according to an embodiment of the present invention.
  • the existing NSA NR and LTE uplink transmission power allocation strategy has defects, which seriously affect the connection performance of the NR link in the RRC connection state.
  • NR and LTE have their own transmission power and timing. If the two transmission signals overlap in time, and the sum of the two transmission powers of the overlap exceeds the limit range, based on the prior art, it is necessary to process the transmission of the overlap NR.
  • the existing conventional processing method is: according to the relevant description in the 3rd Generation Partnership Project (3rd Generation Partnership Project, referred to as 3GPP) agreement 38.213 and 38.101-3, the maximum value of the sum of NR and LTE transmit power in different scenarios of NSA, In the EN-DC scenario In the NE-DC scenario, it is Once the sum of the transmission power of the overlapping part of NR and LTE exceeds the maximum value of the above configuration, the transmission power of NR is directly reduced. Moreover, in the EN-EC scenario, if the NR transmission power drops more than X SCALE , the NR transmission can be directly abandoned.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • NR uplink transmission may be more important, directly reducing the transmission power or even canceling the transmission will cause the performance of the NR link in the RRC connection state to decrease. In severe cases, NR may even fail to stay on the network or drop the network.
  • an embodiment of the present invention provides an uplink power allocation method, including: determining an overlapping set of the first uplink channel for the first uplink channel to be transmitted, wherein the overlapping set is the same as the A set of uplink channels in which the first uplink channel overlaps in time, and at least a part of the uplink channels that overlap in time with the first uplink channel and the first uplink channel belong to a different communication system;
  • the priority of each uplink channel in the overlapping set is determined at least according to the channel type, the information carried in the uplink signal, the carrier type, and the periodicity Sorting; according to the priority sorting, reallocate the uplink power of each uplink channel in the overlapping set until the sum of the uplink power of each uplink channel in the overlapping set is less than or equal to the preset maximum total transmit power, wherein priority The lower the level of the uplink channel, the greater the uplink channel
  • the NR terminal When the NR and LTE uplink concurrency processes under NSA overlap and the sum of the overlapped NR and LTE uplink transmission power exceeds the limit, the NR terminal using the scheme of this embodiment evaluates the types and importance of the overlapped NR and LTE uplink transmission channels respectively , And optimize the allocation of NR and LTE uplink transmission power accordingly. As a result, the impact on the NR link connection performance in the RRC connected state can be reduced on the premise that the connection performance of the LTE link in the RRC connected state is not substantially affected.
  • the uplink channels belonging to the LTE communication system and the uplink channels belonging to the NR communication system in the overlapping set are comprehensively sorted according to the channel type and other consideration factors to ensure that the NR uplink channels and LTE channels that carry signaling related to link connection performance
  • the uplink power of the uplink channel can be effectively guaranteed. Avoid blindly reducing the connection performance of the NE link in order to ensure the connection performance of the LTE link.
  • Fig. 1 is a flowchart of an uplink power allocation method according to an embodiment of the present invention.
  • the solution of this embodiment can be applied to an application scenario where NR and LTE are concurrent under NSA. Specifically, it may include NE-DC scenes and EN-DC scenes.
  • the solution in this embodiment can be executed by a user equipment in the above scenario, such as an NR terminal.
  • a user equipment such as an NR terminal.
  • the impact on the NR link connection performance can be reduced while ensuring the LTE link connection performance.
  • the uplink power allocation method provided in the following steps S101 to S104 may be executed by a chip with a power allocation function in the user equipment, or may be executed by a baseband chip in the user equipment.
  • the uplink power allocation method described in this embodiment may include the following steps:
  • Step S101 For the first uplink channel to be sent, an overlapping set of the first uplink channel is determined, where the overlapping set is an uplink channel set that overlaps the first uplink channel in time, and the and At least a part of the uplink channels that overlap in time by the first uplink channel and the first uplink channel belong to a different communication system;
  • Step S102 When the sum of the uplink power of each uplink channel in the overlapping set is greater than the preset maximum total transmit power, determine each of the overlapping sets at least according to the channel type, the information carried in the uplink signal, the carrier type, and the periodicity. Priority ranking of uplink channels;
  • Step S103 Reallocate the uplink power of each uplink channel in the overlapping set according to the priority order, until the sum of the uplink power of each uplink channel in the overlapping set is less than or equal to the preset maximum total transmit power, wherein, The lower the priority of the uplink channel, the greater the uplink power adjustment amount of the uplink channel;
  • Step S104 Update the uplink power of the first uplink channel according to the reallocation result.
  • step S101 in chronological order, before a certain NR or LTE uplink channel is about to be sent, other known and not yet sent uplink channels are sent within the time period of the uplink channel to be sent. LTE or NR uplink channels are judged to determine whether these uplink channels overlap in time.
  • the overlap described in this embodiment may refer to the time overlap of uplink channels of different communication systems. Otherwise, if all the uplink channels of the same communication system are overlapped, it can still be transferred to the internal transmission power allocation processing of the communication system.
  • different communication systems may refer to NR communication systems and LTE communication systems. In practical applications, it can also refer to other communication systems specified by existing or future agreements.
  • step S101 after it is determined that there is an overlap, for the first uplink channel, the sampling points in the time domain may be used as the granularity, and in chronological order, the first uplink channel Calculate the sum of the transmit power of all uplink channels that overlap in time with each sampling point in the time period. And judge whether the sum of the power transmission exceeds the maximum total transmission power under NSA (That is, the preset maximum total transmission power).
  • each "overlapping set” contains all the concurrent uplink channels at that point in time. Further, the overlapping set may be the set with the most concurrent uplink channels.
  • overlapping uplink channel 1 For example, referring to Figure 2, suppose that the first uplink channel has been in time with the other 4 uplink channels (denoted as overlapping uplink channel 1, overlapping uplink channel 2, overlapping uplink channel 3, and overlapping uplink channel 4) during the entire time period. Overlap. Among them, a part of overlapping uplink channel 1, overlapping uplink channel 2, overlapping uplink channel 3, and overlapping uplink channel 4 may be NR uplink channels, and the remaining part may be LTE uplink channels.
  • each uplink channel overlaps with overlapping uplink channel 1, overlapping uplink channel 2 and overlapping uplink channel 3 in time period 1.
  • these four uplink channels can be determined as "overlapping set 1". That is, the overlapping set 1 includes three overlapping uplink channels that can be concurrent with the first uplink channel.
  • the first uplink channel overlaps with the overlapping uplink channel 3 and the overlapping uplink channel 4 in the time period 2.
  • these three uplink channels can be determined as "overlapping set 2". That is, overlapping set 2 includes two overlapping uplink channels that can be concurrent with the first uplink channel.
  • step S102 calculate the sum of the uplink power of all uplink channels in overlapping set 1, if the sum exceeds the maximum total transmit power under NSA. Then step S102 is executed.
  • the priority and power adjustment coefficient of each uplink channel of NR and LTE can be determined through system simulation or according to scenarios. It also satisfies the following principles: it basically does not affect the connection performance of the LTE link in the RRC connection state, and reduces the impact on the connection performance of the NR link in the RRC connection state.
  • the priority is related to the uplink channel type, the information carried in the uplink signal, the carrier type, and the periodicity. For example, when the initial access or the uplink is out of synchronization, the PRACH channel needs to be sent for uplink synchronization with the network side, so the PRACH priority will be the highest.
  • the priority of each uplink channel may be determined in the order of the priority of the PRACH is the highest, the priority of the PUCCH is the second, and the priority of the PUSCH is the lowest.
  • the uplink signal may carry a Hybrid Automatic Repeat reQuest (Hybrid Automatic Repeat reQuest, HARQ for short) acknowledgement message (acknowledge, ACK for short) (HARQ-ACK for short) and/or uplink scheduling
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest, HARQ for short
  • acknowledgement message acknowledge, ACK for short
  • HARQ-ACK uplink scheduling
  • the priority of the uplink channel of the Scheduling Request (SR) is the highest
  • the priority of the uplink channel that carries channel state information (CSI) in the uplink signal is the second
  • the uplink signal does not carry HARQ-ACK
  • the priority of each uplink channel may be determined in the order of the highest priority of the aperiodic uplink channel, the second priority of the semi-static uplink channel, and the lowest priority of the static uplink channel. class.
  • the priority of the uplink channel of the primary cell (Primary Cell, PCell) in the carrier aggregation (Carrier Aggregation, CA) may be the highest, and the associated cell is the carrier aggregation.
  • the priority of the uplink channel of the primary and secondary cell (Primary Secondary Cell, referred to as PSCell) is the second, and the associated cell is the order of the lowest priority of the uplink channel of the secondary cell (Secondary Cell, referred to as SCell) in carrier aggregation, Determine the priority of each uplink channel.
  • Table 1 shows a part of the comprehensive ranking result of the priority of each uplink channel of NR and LTE
  • the priority from high to low is: LTE PRACH (LTE PRACH@PCell) of the primary cell; NR PRACH (NR PRACH@PCell) of the primary cell; primary cell configuration and LTE PUCCH (LTE PUCCH with HARQ-ACK&/SR) with HARQ-ACK and/or SR carried in the uplink signal; LTE PUSCH (LTE PUSCH with HARQ-ACK) with the primary cell configuration and HARQ-ACK carried in the uplink signal; NR PUCCH (NR PUCCH with HARQ-ACK&/SR) configured by the primary cell and HARQ-ACK and/or SR carried in the uplink signal; NR PUSCH (NR PUSCH with HARQ) configured by the primary cell and HARQ-ACK carried in the uplink signal -ACK); LTE PUCCH or LTE PUSCH (LTE PUCCH/PUSCH with CSI) configured by the primary cell and carrying CSI in the uplink channel; NR PUCCH or LTE PUSCH (LTE
  • the priority of each uplink channel configured by the primary and secondary cells can be determined according to the rules of lines 1 to 10, and then the priority of each uplink channel configured by the secondary cell can be determined.
  • the step S102 may further include: for multiple uplink channels with the same channel type, the same information carried in the uplink signal, the same carrier type and/or the same periodicity, determining according to the current uplink transmission scenario The priority order of the multiple uplink channels, where the scenarios include NE-DC scenarios and EN-DC scenarios.
  • the current uplink transmission scenario is the NE-DC scenario
  • the same information carried in the uplink signal, the same carrier type and/or the same periodicity it is determined that they belong to NR communication.
  • the priority of the uplink channel of the system is higher than the priority of the uplink channel belonging to the LTE communication system.
  • the current uplink transmission scenario is the EN-DC scenario
  • the same information carried in the uplink signal the same carrier type and/or the same periodicity
  • the priority of the channel is higher than the priority of the uplink channel belonging to the NR communication system.
  • Table 1 shows the prioritization results of the EN-DC scenario as an example. Because this scenario is based on the LTE communication system, the connection performance of the LTE link is more important. Therefore, in Table 1, the priority of the NR uplink channel with the same channel type, uplink signal carrying the same information, the same carrier type, and the same periodicity is lower than the priority of the LTE uplink channel.
  • the priority ranking at this time can be the NR uplink channel first.
  • the same is the LTE PRACH of the primary cell and the NR PRACH of the primary cell.
  • the priority of the NR PRACH of the primary cell is higher than the LTE PRACH of the primary cell.
  • step S103 by adjusting the uplink power adjustment coefficients of NR and LTE, the optimal distribution of power is realized, and the power sum is reduced to the maximum total transmission power of NSA.
  • the uplink channel of NR can be expressed as CH NR , the original calculated value of its uplink power (ie, uplink transmission power) is P NR (CH NR ), and the power adjustment coefficient ⁇ NR (CH NR ) , Where 0 ⁇ NR (CH NR ) ⁇ 1; denote the uplink channel of LTE as CH LTE, the original calculated value of its uplink power (ie, uplink transmission power) is P LTE (CH LTE ), and the power adjustment coefficient ⁇ LTE ( CH LTE ), where 0 ⁇ LTE (CH LTE ) ⁇ 1.
  • the power adjustment coefficient ⁇ NR (CH NR ) of NR and the power adjustment coefficient ⁇ LTE (CH LTE ) of LTE can be adjusted separately to realize the optimal allocation of NR and LTE.
  • Uplink power In order to take into account the connection performance of the LTE link and the NR link in the RRC connection state at the same time.
  • n is the number of overlapping NR uplink channels
  • m is the number of overlapping LTE uplink channels.
  • the uplink power adjustment amount of the uplink channel is closer to zero. That is, for the uplink channel with the higher priority, the power adjustment coefficient of the uplink channel is closer to 1.
  • the step S103 may include the steps of: according to the priority ordering, determining the remaining allocatable uplink power according to the uplink power of the uplink channel with the highest priority and the preset maximum total transmission power; The remaining allocatable uplink power is redistributed to the remaining uplink channels in the overlapping set except the uplink channel with the highest priority, so that the sum of the uplink power of the remaining uplink channels is less than or equal to the remaining allocatable uplink power.
  • the power adjustment coefficient of the uplink channel can be obtained.
  • the overlapping set includes two uplink channels: NR PRACH configured by the primary cell and LTE PUSCH configured by the primary cell, but the LTE PUSCH does not carry HARQ-ACK and CSI. And the sum of the uplink power of these two uplink channels exceeds At this time, the LTE PUSCH does not carry signaling related to the connection performance of the LTE link, and the NR PRACH configured by the primary cell has a greater impact on the connection performance of the NR uplink. Therefore, according to the priority order, it is determined that the uplink power of NR PRACH remains unchanged, while the uplink power of LTE PUSCH is reduced to Subtract the remaining power value of the uplink power of the NR PRACH.
  • the first uplink channel may determine multiple overlapping sets in the entire time period.
  • the step S103 may include the step of: reallocating the first uplink in the respective results of the multiple overlapping sets The minimum value of the channel is determined as the updated uplink power of the first uplink channel.
  • N is greater than or equal to 2.
  • step S102 the uplink power of each uplink channel in each overlapping set can be optimally allocated one by one according to the priority ranking of each uplink channel of NR and LTE as shown in Table 1, until all N overlapping sets are completed.
  • the minimum value of the uplink power of the first uplink channel may be selected from the re-allocation results of the N overlapping sets after the uplink power optimal allocation is performed as the final uplink power of the first uplink channel.
  • the same method can be used to select the minimum value of the uplink power of other overlapping uplink channels in the overlapping set to update the uplink power of the corresponding uplink channel.
  • the uplink allocation method may further include the step of: for each uplink channel in the multiple overlapping sets except the first uplink channel, placing the uplink channel in the multiple The minimum value in the overlapping set is determined as the updated uplink power of the uplink channel.
  • the step S104 may include the step of recording the uplink power determined by the first uplink channel based on the reallocation result as the adjusted uplink power, and comparing the adjusted uplink power with the first uplink channel
  • the ratio of the original uplink power of is determined as the power adjustment coefficient of the first uplink channel; the power adjustment coefficient is fine-tuned according to the uplink power of the first uplink channel in the time slots or subframes before and after the transmission moment , So that the uplink power of the uplink channel changes smoothly in time; and the uplink power of the first uplink channel is updated based on the adjusted power adjustment coefficient.
  • the first uplink channel also has uplink transmission in the preceding and following time slots or subframes, it can be ensured that the sum of power does not exceed the maximum total transmission power of the NSA according to the priority and the scenario, etc.
  • the power adjustment coefficient of each uplink channel determined in the reallocation result is fine-tuned, so that the uplink power of the uplink channel corresponding to the previous and subsequent time slots or subframes changes more smoothly, and there is no sudden change in time.
  • the NR terminal using the scheme of this embodiment evaluates the types of the overlapped NR and LTE uplink transmission channels respectively And the importance, and optimize the allocation of NR and LTE uplink transmission power accordingly.
  • the impact on the NR link connection performance in the RRC connected state can be reduced on the premise that the connection performance of the LTE link in the RRC connected state is not substantially affected.
  • the uplink channels belonging to the LTE communication system and the uplink channels belonging to the NR communication system in the overlapping set are comprehensively sorted according to the channel type and other consideration factors to ensure that the NR uplink channels and LTE channels that carry signaling related to link connection performance
  • the uplink power of the uplink channel can be effectively guaranteed. Avoid blindly reducing the connection performance of the NE link in order to ensure the connection performance of the LTE link.
  • Fig. 3 is a schematic structural diagram of an uplink power distribution device according to an embodiment of the present invention. Those skilled in the art understand that the uplink power distribution device 3 described in this embodiment can be used to implement the method and technical solutions described in the embodiments described in FIG. 1 and FIG. 2.
  • the uplink power allocation apparatus 3 of this embodiment may include: a determining module 31, for a first uplink channel to be transmitted, determining an overlapping set of the first uplink channel, wherein the overlapping set Is a set of uplink channels that overlap in time with the first uplink channel, and at least a part of the uplink channels that overlap in time with the first uplink channel belong to different communications from the first uplink channel System; priority sorting module 32, when the sum of the uplink power of each uplink channel in the overlapping set is greater than the preset maximum total transmission power, at least according to the channel type, the information carried in the uplink signal, the carrier type, and the periodicity The priority ranking of the uplink channels in the overlapping set; the allocation module 33 is configured to re-allocate the uplink power of each uplink channel in the overlapping set according to the priority ranking until the uplink power of each uplink channel in the overlapping set The sum is less than or equal to the preset maximum total transmit power, where the lower the priority of the
  • the above-mentioned uplink power distribution device may correspond to a chip with a power distribution function in a user equipment, or a chip with a data processing function, such as a System-On-a-Chip (SOC for short), Baseband chips, etc.; or corresponding to a chip module with a XX function chip included in the user equipment; or corresponding to a chip module with a data processing function chip, or corresponding to a user equipment.
  • SOC System-On-a-Chip
  • modules/units contained in the various devices and products described in the above embodiments may be software modules/units, hardware modules/units, or part software modules/units, and partly software modules/units. It is a hardware module/unit.
  • the various modules/units contained therein can be implemented in the form of hardware such as circuits, or at least part of the modules/units can be implemented in the form of software programs. Runs on the integrated processor inside the chip, and the remaining (if any) part of the modules/units can be implemented by hardware methods such as circuits; for each device and product applied to or integrated in the chip module, the modules/units contained therein can be All are implemented by hardware such as circuits. Different modules/units can be located in the same component (such as a chip, circuit module, etc.) or different components of the chip module, or at least part of the modules/units can be implemented by software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) part of the modules/units can be implemented by hardware methods such as circuits; for each device and product applied to or integrated in the terminal, the modules contained therein
  • the modules/units can all be implemented by hardware such as circuits, and different modules/units can be located in the same component (for example, chip, circuit module, etc.) or different components in the terminal, or at least part of the modules/units can be implemented in the form of software programs Implementation, the software program runs on the processor integrated inside the terminal, and the remaining (if any) part of the modules/units can be implemented by hardware such as circuits.
  • the embodiment of the present invention also discloses a storage medium on which computer instructions are stored, and when the computer instructions are run, the method and technical solutions described in the embodiments shown in FIG. 1 and FIG. 2 are executed.
  • the storage medium may include a computer-readable storage medium such as a non-volatile memory or a non-transitory memory.
  • the storage medium may include ROM, RAM, magnetic disk or optical disk, etc.
  • the embodiment of the present invention also discloses a terminal, including the uplink power distribution device 3 shown in FIG. 3 above.
  • the terminal may include a memory and a processor, and computer instructions that can run on the processor are stored in the memory, and the processor executes the implementation shown in FIGS. 1 and 2 when the computer instructions are executed.
  • the terminal may be an NR terminal, and the NR terminal includes, but is not limited to, a mobile phone and other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行功率分配方法及装置、存储介质、终端,所述方法包括:确定第一上行信道的重叠集合;当重叠集合中各上行信道的上行功率之和大于预设最大发送总功率时,至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定重叠集合中各上行信道的优先级排序;按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率,其中,优先级越低的上行信道,所述上行信道的上行功率调整量越大;根据重新分配结果更新所述第一上行信道的上行功率。通过本发明提供方案能够优化NSA下NR与LTE发送功率的分配策略,以改善RRC连接态下NR链路的连接性能。

Description

上行功率分配方法及装置、存储介质、终端
本申请要求2020年4月17日提交中国专利局、申请号为202010307168.2、发明名称为“上行功率分配方法及装置、存储介质、终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体地涉及一种上行功率分配方法及装置、存储介质、终端。
背景技术
通常而言,在非独立组网(Non-Standalone operation mode,简称NSA)下进行NR与长期演进(Long Term Evolution,简称LTE)的上行发送时,针对NR与LTE的上行发送信号的重叠(overlap)部分,新无线(New Radio,简称NR)终端会对重叠部分NR的上行发送功率(可简称为上行功率)进行调整,以确保NR与LTE上行发送功率之和不超出规定范围。
在NSA下进行NR和LTE的上行发送主要包括两种场景:EN-DC和NE-DC。其中,EN-DC是指第四代移动通信技术(4 Generation,简称4G)无线接入网与5G NR的双连接,具体是指以演进的UMTS陆地无线接入(Evolved Universal Terrestrial Radio Access,简称E-UTRA)为主小区组(Master Cell group,简称MCG)、以NR为辅小区组(Secondary Cell group,简称SCG)的E-UTRA和NR双连接(E-UTRA NR dual connectivity with MCG using E-UTRA and SCG using NR)。NE-DC是指5G NR与4G无线接入网的双连接,具体是指以NR为MCG、以E-UTRA为SCG的E-UTRA和NR双连接。
不论是EN-DC还是NE-DC,当出现前述上行发送存在重叠部分、 且重叠部分NR与LTE的上行发送功率之和超出限制的情形时,都无条件地降低重叠部分NR的上行发送功率,甚至在功率降低较多时主动放弃NR的发送。但是,如果此时NR上发送的是较为重要的信道(如物理随机接入信道(Physical Random Access Channel,简称PRACH)),则这种降低NR的上行发送功率甚至放弃发送的做法,对NR链路的连接性能影响较大。具体而言,会降低甚至恶化无线资源控制(Radio Resource Control,简称RRC)连接态(Connect)下NR链路的连接性能,严重时NR甚至无法驻网或掉网。
发明内容
本发明解决的技术问题是如何优化NSA下NR与LTE发送功率的分配策略,以改善RRC连接态下NR链路的连接性能。
为解决上述技术问题,本发明实施例提供一种上行功率分配方法,包括:对于即将发送的第一上行信道,确定所述第一上行信道的重叠集合,其中,所述重叠集合为与所述第一上行信道在时间上相重叠的上行信道集合,所述与所述第一上行信道在时间上相重叠的上行信道中的至少一部分与所述第一上行信道属于不同的通信系统;当所述重叠集合中各上行信道的上行功率之和大于预设最大发送总功率时,至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序;按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率,其中,优先级越低的上行信道,所述上行信道的上行功率调整量越大;根据重新分配结果更新所述第一上行信道的上行功率。
可选的,优先级越高的上行信道,所述上行信道的上行功率调整量越趋近于零。
可选的,所述按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率包括:按照所述优先级排序,根据 优先级最高的上行信道的上行功率以及所述预设最大发送总功率确定剩余可分配上行功率;基于所述剩余可分配上行功率重新分配所述重叠集合中除优先级最高的上行信道之外的剩余上行信道,以使所述剩余上行信道的上行功率之和小于等于所述剩余可分配上行功率。
可选的,当各上行信道的上行功率之和大于预设最大发送总功率的重叠集合的数量为多个时,所述按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率包括:将多个重叠集合各自的重新分配结果中所述第一上行信道的最小值确定为所述第一上行信道的更新后的上行功率。
可选的,所述上行分配方法还包括:对于多个重叠集合中除所述第一上行信道外的每一上行信道,将所述上行信道在所述多个重叠集合中的最小值确定为所述上行信道的更新后的上行功率。
可选的,所述至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序包括:按照PRACH的优先级最高、PUCCH的优先级次之以及PUSCH的优先级最低的顺序确定各上行信道的优先级;按照上行信号中携带有HARQ-ACK和/或上行调度请求的上行信道的优先级最高、上行信号中携带有CSI的上行信道的优先级次之,以及上行信号中未携带HARQ-ACK、上行调度请求或者CSI的上行信道的优先级最低的顺序,确定各上行信道的优先级;按照非周期的上行信道的优先级最高、半静态的上行信道的优先级次之以及静态的上行信道的优先级最低的顺序,确定各上行信道的优先级;按照关联的小区为载波聚合中的主小区的上行信道的优先级最高、关联的小区为载波聚合中的主辅小区的上行信道的优先级次之,以及关联的小区为载波聚合中的辅小区的上行信道的优先级最低的顺序,确定各上行信道的优先级。
可选的,所述至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序还包 括:对于信道类型相同、上行信号中携带有相同的信息、载波类型相同和/或周期性相同的多个上行信道,根据当前上行发送的场景确定所述多个上行信道的优先级顺序,其中,所述场景包括NE-DC场景和EN-DC场景。
可选的,所述根据当前上行发送的场景确定所述多个上行信道的优先级顺序包括:若当前上行发送的场景为NE-DC场景,则对于信道类型相同、上行信号中携带有相同的信息、载波类型相同和/或周期性相同的多个上行信道,确定其中属于NR通信系统的上行信道的优先级高于其中属于LTE通信系统的上行信道的优先级;若当前上行发送的场景为EN-DC场景,则对于信道类型相同、上行信号中携带有相同的信息、载波类型相同和/或周期性相同的多个上行信道,确定其中属于LTE通信系统的上行信道的优先级高于其中属于NR通信系统的上行信道的优先级。
可选的,所述根据重新分配结果更新所述第一上行信道的上行功率包括:将所述第一上行信道基于重新分配结果确定的上行功率记作调整后上行功率,将所述调整后上行功率与所述第一上行信道的原始上行功率之比确定为所述第一上行信道的功率调整系数;根据所述第一上行信道在即将发送时刻的前后时隙或子帧上的上行功率,对所述功率调整系数进行微调,以使所述上行信道的上行功率在时间上平稳变化;基于调整后的功率调整系数更新所述第一上行信道的上行功率。
为解决上述技术问题,本发明实施例还提供一种上行功率分配装置,包括:确定模块,对于即将发送的第一上行信道,确定所述第一上行信道的重叠集合,其中,所述重叠集合为与所述第一上行信道在时间上相重叠的上行信道集合,所述与所述第一上行信道在时间上相重叠的上行信道中的至少一部分与所述第一上行信道属于不同的通信系统;优先级排序模块,当所述重叠集合中各上行信道的上行功率之和大于预设最大发送总功率时,至少根据信道类型、上行信号中携 带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序;分配模块,用于按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率,其中,优先级越低的上行信道,所述上行信道的上行功率调整量越大;更新模块,用于根据重新分配结果更新所述第一上行信道的上行功率。
为解决上述技术问题,本发明实施例还提供一种存储介质,其上存储有计算机指令,所述计算机指令被处理器运行时执行上述方法的步骤。
为解决上述技术问题,本发明实施例还提供一种终端,包括上述上行功率分配装置,或者,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例提供一种上行功率分配方法,包括:对于即将发送的第一上行信道,确定所述第一上行信道的重叠集合,其中,所述重叠集合为与所述第一上行信道在时间上相重叠的上行信道集合,所述与所述第一上行信道在时间上相重叠的上行信道中的至少一部分与所述第一上行信道属于不同的通信系统;当所述重叠集合中各上行信道的上行功率之和大于预设最大发送总功率时,至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序;按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率,其中,优先级越低的上行信道,所述上行信道的上行功率调整量越大;根据重新分配结果更新所述第一上行信道的上行功率。
较之现有技术直接无条件降低NSA下重叠部分NR的上行发送功率甚至放弃NR发送。当NSA下NR与LTE上行并发过程发生重 叠且重叠部分NR和LTE的上行发送功率之和超过限制时,采用本实施例方案的NR终端分别评估重叠部分NR与LTE上行发送信道的类型与重要性,并据此优化分配NR与LTE的上行发送功率。由此,能够在基本不影响RRC连接态下LTE链路连接性能的前提下,降低对RRC连接态下NR链路连接性能的影响。具体而言,针对重叠集合内属于LTE通信系统的上行信道和属于NR通信系统的上行信道,按信道类型等考量因素综合排序,以确保承载有如链路连接性能相关信令的NR上行信道和LTE上行信道的上行功率均能得到有效保证。避免为了确保LTE链路的连接性能而一味地降低NE链路的连接性能。
附图说明
图1是本发明实施例的一种上行功率分配方法的流程图;
图2是本发明实施例的一种重叠集合的示意图;
图3是本发明实施例的一种上行功率分配装置的结构示意图。
具体实施方式
如背景技术所言,现有NSA下NR与LTE上行发送功率的分配策略存在缺陷,严重影响RRC连接态下NR链路的连接性能。
具体而言,在移动通信终端进行NSA的NR与LTE上行并发过程中,NR和LTE都有各自的发送功率与时序。如果两者发送信号在时间上存在重叠,并且重叠部分的两者发送功率之和超出了限制范围,则基于现有技术,需要对重叠部分NR的发送进行处理。
现有的常规处理方式是:根据第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)协议38.213和38.101-3里的相关描述,NSA不同场景下NR与LTE发送功率之和的最大值,在EN-DC场景下为
Figure PCTCN2021085763-appb-000001
而在NE-DC场景下则为
Figure PCTCN2021085763-appb-000002
NR与LTE的重叠部分发送功率之和一旦超出上述配置的最大值,则直接降低NR的发送功率。并且,在EN-EC场景下,如果NR发送功率下降幅度超过了X SCALE,则可以直接放弃NR的发送。
但是,由于NR上行发送的信道有可能较为重要,直接降低发送功率甚至打掉发送的话,会导致RRC连接态下NR链路的连接性能下降,严重时NR甚至无法驻网或掉网。
为解决上述技术问题,本发明实施例提供一种上行功率分配方法,包括:对于即将发送的第一上行信道,确定所述第一上行信道的重叠集合,其中,所述重叠集合为与所述第一上行信道在时间上相重叠的上行信道集合,所述与所述第一上行信道在时间上相重叠的上行信道中的至少一部分与所述第一上行信道属于不同的通信系统;当所述重叠集合中各上行信道的上行功率之和大于预设最大发送总功率时,至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序;按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率,其中,优先级越低的上行信道,所述上行信道的上行功率调整量越大;根据重新分配结果更新所述第一上行信道的上行功率。其中,即将发送指的是将要发送,或者准备进行发送;不同的通信系统指的是采用不同通信协议的通信系统,例如LTE通信系统和NR通信系统为不同的通信系统。
当NSA下NR与LTE上行并发过程发生重叠且重叠部分NR和LTE的上行发送功率之和超过限制时,采用本实施例方案的NR终端分别评估重叠部分NR与LTE上行发送信道的类型与重要性,并据此优化分配NR与LTE的上行发送功率。由此,能够在基本不影响RRC连接态下LTE链路连接性能的前提下,降低对RRC连接态下NR链路连接性能的影响。具体而言,针对重叠集合内属于LTE通信系统的上行信道和属于NR通信系统的上行信道,按信道类型等考量因素综合排序,以确保承载有如链路连接性能相关信令的NR上行信道和LTE上行信道的上行功率均能得到有效保证。避免为了确保LTE链路的连接性能而一味地降低NE链路的连接性能。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明实施例的一种上行功率分配方法的流程图。
本实施例方案可以应用于NSA下NR和LTE并发的应用场景。具体而言,可以包括NE-DC场景和EN-DC场景。
本实施例方案可以由处于上述场景的用户设备执行,如NR终端。以在出现重叠且重叠部分各上行信道的上行功率之和超出限制时,能够在确保LTE链路连接性能的情况下,降低对NR链路连接性能的影响。
在具体实施中,下述步骤S101~步骤S104所提供的上行功率分配方法可以由用户设备中的具有功率分配功能的芯片执行,也可以由用户设备中的基带芯片执行。
具体地,参考图1,本实施例所述上行功率分配方法可以包括如下步骤:
步骤S101,对于即将发送的第一上行信道,确定所述第一上行信道的重叠集合,其中,所述重叠集合为与所述第一上行信道在时间上相重叠的上行信道集合,所述与所述第一上行信道在时间上相重叠的上行信道中的至少一部分与所述第一上行信道属于不同的通信系统;
步骤S102,当所述重叠集合中各上行信道的上行功率之和大于预设最大发送总功率时,至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序;
步骤S103,按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率,其中,优先级越低的上行信道,所述上行信道的上行功率调整量越大;
步骤S104,根据重新分配结果更新所述第一上行信道的上行功率。
在一个具体实施中,所述步骤S101中,可以按照时间先后顺序,在即将发送某个NR或LTE上行信道之前,对该即将发送的上行信道的时间段内,已知的且尚未发送的其它LTE或NR上行信道进行判断,以确定这些上行信道是否存在时间上的重叠。
进一步,如果没有重叠,则转入NR与LTE各自内部发送功率分配的处理。如果存在重叠,则执行所述步骤S102至步骤S104。
进一步,本实施例所述重叠,可以指不同通信系统的上行信道在时间上重叠。否则,如果发生重叠的都是同一通信系统的上行信道,则仍可以转入该通信系统内部发送功率分配的处理。其中,不同的通信系统可以指NR通信系统和LTE通信系统。在实际应用中,也可以指现有或未来协议规定的其他通信系统。
在一个具体实施中,所述步骤S101中,在确定存在重叠后,对于所述第一上行信道,可以以其时域的采样点为颗粒度,按照时间先后顺序,在所述第一上行信道的时间段内,逐个采样点计算与其在时间上发生重叠的所有上行信道的发送功率之和。并判断该功率发送之和是否超出了NSA下最大发送总功率
Figure PCTCN2021085763-appb-000003
(即所述预设最大发送总功率)。
进一步地,考虑到在所述第一上行信道的时间段内,可能存在不同时间点上重叠的上行信道类型不同的情况。为区分,可以设定“重叠集合”:每个“重叠集合”里包含该时间点里所有并发的上行信道。进一步,所述重叠集合可以是能并发的上行信道最多的集合。
例如,参考图2,假设第一上行信道在整个时间段内先后与其它4个上行信道(分别记作重叠上行信道1、重叠上行信道2、重叠上行信道3和重叠上行信道4)存在时间上的重叠。其中,重叠上行信道1、重叠上行信道2、重叠上行信道3和重叠上行信道4中的一部 分可以是NR上行信道,其中的剩余部分可以是LTE上行信道。
根据图2示出的各上行信道的占用时间段可知,第一上行信道与重叠上行信道1、重叠上行信道2和重叠上行信道3在时间段1发生重叠。相应的,可以将这四个上行信道确定为“重叠集合1”。也即,重叠集合1中包括了3个能与第一上行信道并发的重叠上行信道。
进一步,第一上行信道与重叠上行信道3和重叠上行信道4在时间段2发生重叠。相应的,可以将这三个上行信道确定为“重叠集合2”。也即,重叠集合2中包括了2个能与第一上行信道并发的重叠上行信道。
进一步,计算重叠集合1中所有上行信道的上行功率之和,如果加和超出NSA下最大发送总功率
Figure PCTCN2021085763-appb-000004
则执行步骤S102。
类似的,计算重叠集合2中所有上行信道的上行功率之和,如果加和超出NSA下最大发送总功率
Figure PCTCN2021085763-appb-000005
则同样执行步骤S102。
如果重叠集合1中所有上行信道的上行功率之和以及重叠集合2中所有上行信道的上行功率之和均未超出NSA下最大发送总功率
Figure PCTCN2021085763-appb-000006
则转入NR与LTE各自内部发送功率分配的处理。
在一个具体实施中,在所述步骤S102中,NR和LTE各上行信道的优先级以及功率调整系数,可以通过系统仿真或依据场景等确定。并满足如下原则:基本不影响RRC连接态下LTE链路连接性能,并且降低对RRC连接态下NR链路连接性能的影响。
具体而言,优先级与上行信道类型、上行信号中携带的信息、载波类型以及周期性等相关。例如,在初始接入或上行链路失步时,需要发送PRACH信道进行与网侧的上行同步,故PRACH的优先级会最高。
相应的,在所述步骤S102中,可以按照PRACH的优先级最高、PUCCH的优先级次之以及PUSCH的优先级最低的顺序确定各上行信道的优先级。
进一步地,在所述步骤S102中,可以按照上行信号中携带有混合自动重传请求(Hybrid Automatic Repeat reQuest,简称HARQ)确认消息(acknowledge,简称ACK)(简称HARQ-ACK)和/或上行调度请求(Scheduling Request,简称SR)的上行信道的优先级最高、上行信号中携带有信道状态信息(Channel State Information,简称CSI)的上行信道的优先级次之,以及上行信号中未携带HARQ-ACK、上行调度请求或者CSI的上行信道的优先级最低的顺序,确定各上行信道的优先级。
进一步地,在所述步骤S102中,可以按照非周期的上行信道的优先级最高、半静态的上行信道的优先级次之以及静态的上行信道的优先级最低的顺序,确定各上行信道的优先级。
进一步地,在所述步骤S102中,可以按照关联的小区为载波聚合(Carrier Aggregation,简称CA)中的主小区(Primary Cell,简称PCell)的上行信道的优先级最高、关联的小区为载波聚合中的主辅小区(Primary Secondary Cell,简称PSCell)的上行信道的优先级次之,以及关联的小区为载波聚合中的辅小区(Secondary Cell,简称SCell)的上行信道的优先级最低的顺序,确定各上行信道的优先级。
例如,表1示出NR和LTE的各上行信道的优先级综合排序结果的一部分
序号 上行信道优先级(降序)
1 LTE PRACH@PCell
2 NR PRACH@PCell
3 LTE PUCCH with HARQ-ACK&/SR
4 LTE PUSCH with HARQ-ACK
5 NR PUCCH with HARQ-ACK&/SR
6 NR PUSCH with HARQ-ACK
7 LTE PUCCH/PUSCH with CSI
8 NR PUCCH/PUSCH with CSI
9 LTE PUSCH without HARQ-ACK/CSI
10 NR PUSCH without HARQ-ACK/CSI
…… ……
如表1所示,在EN-DC场景下,优先级从高到低依次为:主小区的LTE PRACH(LTE PRACH@PCell);主小区的NR PRACH(NR PRACH@PCell);主小区配置且上行信号中携带有HARQ-ACK和/或SR的LTE PUCCH(LTE PUCCH with HARQ-ACK&/SR);主小区配置且上行信号中携带有HARQ-ACK的LTE PUSCH(LTE PUSCH with HARQ-ACK);主小区配置且上行信号中携带有HARQ-ACK和/或SR的NR PUCCH(NR PUCCH with HARQ-ACK&/SR);主小区配置且上行信号中携带有HARQ-ACK的NR PUSCH(NR PUSCH with HARQ-ACK);主小区配置且上行信道中携带有CSI的LTE PUCCH或LTE PUSCH(LTE PUCCH/PUSCH with CSI);主小区配置且上行信道中携带有CSI的NR PUCCH或NR PUSCH(NR PUCCH/PUSCH with CSI);主小区配置且上行信号未携带HARQ-ACK和CSI的LTE PUSCH(LTE PUSCH without HARQ-ACK/CSI);主小区配置且上行信号未携带HARQ-ACK和CSI的NR PUSCH(NR PUSCH without HARQ-ACK/CSI)。
按此优先级排序,第11行开始可以按第1至10行的规律确定主辅小区配置的各上行信道的优先级,然后确定辅小区配置的各上行信道的优先级。
在一个具体实施中,所述步骤S102还可以包括:对于信道类型相同、上行信号中携带有相同的信息、载波类型相同和/或周期性相同的多个上行信道,根据当前上行发送的场景确定所述多个上行信道的优先级顺序,其中,所述场景包括NE-DC场景和EN-DC场景。
具体地,若当前上行发送的场景为NE-DC场景,则对于信道类型相同、上行信号中携带有相同的信息、载波类型相同和/或周期性相同的多个上行信道,确定其中属于NR通信系统的上行信道的优先 级高于其中属于LTE通信系统的上行信道的优先级。
若当前上行发送的场景为EN-DC场景,则对于信道类型相同、上行信号中携带有相同的信息、载波类型相同和/或周期性相同的多个上行信道,确定其中属于LTE通信系统的上行信道的优先级高于其中属于NR通信系统的上行信道的优先级。
例如,表1是以EN-DC场景为例展现的优先级排序结果,因该场景是以LTE通信系统为主,LTE链路的连接性能更为重要。因此,表1中,同样的信道类型、上行信号携带同样信息、载波类型相同以及周期性相同的NR上行信道的优先级低于LTE上行信道的优先级。
又例如,如果在NE-DC场景中,由于此时NR链路的连接性能更为重要,此时的优先级排序可以以NR的上行信道为先。例如,同样是主小区的LTE PRACH和主小区的NR PRACH,在NE-DC场景中,主小区的NR PRACH的优先级高于主小区的LTE PRACH。
在一个具体实施中,在所述步骤S103中,通过调整NR与LTE的上行功率调整系数,来实现功率的优化分配,同时将功率和降至NSA最大发送总功率
Figure PCTCN2021085763-appb-000007
具体而言,在NSA场景下,可将NR的上行信道表示为CH NR,其上行功率(即上行发送功率)的原始计算值为P NR(CH NR),功率调整系数α NR(CH NR),其中0≤α NR(CH NR)≤1;将LTE的上行信道表示为CH LTE,其上行功率(即上行发送功率)的原始计算值为P LTE(CH LTE),功率调整系数α LTE(CH LTE),其中0≤α LTE(CH LTE)≤1。
如果NR与LTE的上行信道存在时间上的重叠,则可以通过分别调整NR的功率调整系数α NR(CH NR)以及LTE的功率调整系数α LTE(CH LTE),来实现优化分配NR与LTE的上行功率。以同时兼顾RRC连接态下LTE链路和NR链路的连接性能。
例如,可以基于公式
Figure PCTCN2021085763-appb-000008
Figure PCTCN2021085763-appb-000009
进行优化分配。其中,
Figure PCTCN2021085763-appb-000010
如果相同时间点上存在两个以上重叠的NR或LTE上行信道,则上述公式可以扩展为
Figure PCTCN2021085763-appb-000011
Figure PCTCN2021085763-appb-000012
其中,n为存在重叠的NR上行信道数,m为存在重叠的LTE上行信道数。
在一个具体实施中,优先级越高的上行信道,所述上行信道的上行功率调整量越趋近于零。也即,优先级越高的上行信道,所述上行信道的功率调整系数越接近于1。
在一个具体实施中,所述步骤S103可以包括步骤:按照所述优先级排序,根据优先级最高的上行信道的上行功率以及所述预设最大发送总功率确定剩余可分配上行功率;基于所述剩余可分配上行功率重新分配所述重叠集合中除优先级最高的上行信道之外的剩余上行信道,以使所述剩余上行信道的上行功率之和小于等于所述剩余可分配上行功率。
进一步地,将低优先级的上行信道的上行功率除以其原上行功率,即可得到所述上行信道的功率调整系数。
优先级越低,所述上行信道的上行功率降低的越多,相应的,所述上行信道的功率调整系数越小。
例如,假设重叠集合包括两个上行信道:主小区配置的NR PRACH以及主小区配置的LTE PUSCH,但LTE PUSCH未携带HARQ-ACK和CSI。且这两个上行信道的上行功率之和超出
Figure PCTCN2021085763-appb-000013
由于此时LTE PUSCH上没有携带影响LTE链路连接性能相关的信令,且主小区配置的NR PRACH对于NR上行链路的连接性能影响较大。因此,按照优先级排序,确定NR PRACH的上行功率保持不变,而 将LTE PUSCH的上行功率降至
Figure PCTCN2021085763-appb-000014
减去NR PRACH的上行功率的剩余功率值。
在一个具体实施中,参考图2,第一上行信道在整个时间段内可能确定出多个重叠集合。
当各上行信道的上行功率之和大于预设最大发送总功率的重叠集合的数量为多个时,所述步骤S103可以包括步骤:将多个重叠集合各自的重新分配结果中所述第一上行信道的最小值确定为所述第一上行信道的更新后的上行功率。
具体而言,假设所述步骤S101中选出的上行信道的上行功率之和超出NSA最大发送总功率
Figure PCTCN2021085763-appb-000015
的重叠集合数量为N个,N大于等于2。
在执行步骤S102时,可以根据如表1所示的NR和LTE各上行信道的优先级排序,逐个对每一重叠集合中各上行信道的上行功率进行优化分配,直到N个重叠集合都完成。
在执行所述步骤S103时,可以从经过上行功率优化分配后的N个重叠集合的重新分配结果中,选取第一上行信道的上行功率的最小值作为所述第一上行信道的最终上行功率。
进一步地,可以采用同样的方式选取重叠集合中其它发生重叠的上行信道的上行功率的最小值,来更新对应上行信道的上行功率。
也即,在所述步骤S104之后,所述上行分配方法还可以包括步骤:对于多个重叠集合中除所述第一上行信道外的每一上行信道,将所述上行信道在所述多个重叠集合中的最小值确定为所述上行信道的更新后的上行功率。
在一个具体实施中,所述步骤S104可以包括步骤:将所述第一上行信道基于重新分配结果确定的上行功率记作调整后上行功率,将所述调整后上行功率与所述第一上行信道的原始上行功率之比确定为所述第一上行信道的功率调整系数;根据所述第一上行信道在即将 发送时刻的前后时隙或子帧上的上行功率,对所述功率调整系数进行微调,以使所述上行信道的上行功率在时间上平稳变化;基于调整后的功率调整系数更新所述第一上行信道的上行功率。
具体地,如果所述第一上行信道在前后时隙或子帧上也有上行传输,则可以根据优先级以及场景等,在确保功率之和不超出NSA最大发送总功率
Figure PCTCN2021085763-appb-000016
的前提下,对重新分配结果中确定的各上行信道的功率调整系数进行微调,使得前后时隙或子帧对应上行信道的上行功率变化较为平稳,不至于在时间上出现突变。
由上,当NSA下NR与LTE上行并发过程发生重叠且重叠部分NR和LTE的上行发送功率之和超过限制时,采用本实施例方案的NR终端分别评估重叠部分NR与LTE上行发送信道的类型与重要性,并据此优化分配NR与LTE的上行发送功率。由此,能够在基本不影响RRC连接态下LTE链路连接性能的前提下,降低对RRC连接态下NR链路连接性能的影响。
具体而言,针对重叠集合内属于LTE通信系统的上行信道和属于NR通信系统的上行信道,按信道类型等考量因素综合排序,以确保承载有如链路连接性能相关信令的NR上行信道和LTE上行信道的上行功率均能得到有效保证。避免为了确保LTE链路的连接性能而一味地降低NE链路的连接性能。
图3是本发明实施例的一种上行功率分配装置的结构示意图。本领域技术人员理解,本实施例所述上行功率分配装置3可以用于实施上述图1和图2所述实施例中所述的方法技术方案。
具体地,参考图3,本实施例所述上行功率分配装置3可以包括:确定模块31,对于即将发送的第一上行信道,确定所述第一上行信道的重叠集合,其中,所述重叠集合为与所述第一上行信道在时间上相重叠的上行信道集合,所述与所述第一上行信道在时间上相重叠的上行信道中的至少一部分与所述第一上行信道属于不同的通信系统;优先级排序模块32,当所述重叠集合中各上行信道的上行功率之和 大于预设最大发送总功率时,至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序;分配模块33,用于按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率,其中,优先级越低的上行信道,所述上行信道的上行功率调整量越大;更新模块34,用于根据重新分配结果更新所述第一上行信道的上行功率。
关于所述上行功率分配装置3的工作原理、工作方式的更多内容,可以参照上述图1和图2中的相关描述,这里不再赘述。
在具体实施中,上述的上行功率分配装置可以对应于用户设备中具有功率分配功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,简称SOC)、基带芯片等;或者对应于用户设备中包括具有XX功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于用户设备。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬 件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
进一步地,本发明实施例还公开一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述图1和图2所示实施例中所述的方法技术方案。优选地,所述存储介质可以包括诸如非挥发性(non-volatile)存储器或者非瞬态(non-transitory)存储器等计算机可读存储介质。所述存储介质可以包括ROM、RAM、磁盘或光盘等。
进一步地,本发明实施例还公开一种终端,包括上述图3所示的上行功率分配装置3。或者,所述终端可以包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述图1和图2所示实施例中所述的方法技术方案。所述终端可以为NR终端,所述NR终端包括但不限于手机等形态。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (12)

  1. 一种上行功率分配方法,其特征在于,包括:
    对于即将发送的第一上行信道,确定所述第一上行信道的重叠集合,其中,所述重叠集合为与所述第一上行信道在时间上相重叠的上行信道集合,所述与所述第一上行信道在时间上相重叠的上行信道中的至少一部分与所述第一上行信道属于不同的通信系统;
    当所述重叠集合中各上行信道的上行功率之和大于预设最大发送总功率时,至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序;
    按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率,其中,优先级越低的上行信道,所述上行信道的上行功率调整量越大;
    根据重新分配结果更新所述第一上行信道的上行功率。
  2. 根据权利要求1所述的上行功率分配方法,其特征在于,优先级越高的上行信道,所述上行信道的上行功率调整量越趋近于零。
  3. 根据权利要求1所述的上行功率分配方法,其特征在于,所述按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率包括:
    按照所述优先级排序,根据优先级最高的上行信道的上行功率以及所述预设最大发送总功率确定剩余可分配上行功率;
    基于所述剩余可分配上行功率重新分配所述重叠集合中除优先级最高的上行信道之外的剩余上行信道,以使所述剩余上行信道的上行功率之和小于等于所述剩余可分配上行功率。
  4. 根据权利要求1至3中任一项所述的上行功率分配方法,其特征在于,当各上行信道的上行功率之和大于预设最大发送总功率的重叠集合的数量为多个时,所述按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率包括:
    将多个重叠集合各自的重新分配结果中所述第一上行信道的最小值确定为所述第一上行信道的更新后的上行功率。
  5. 根据权利要求4所述的上行功率分配方法,其特征在于,还包括:
    对于多个重叠集合中除所述第一上行信道外的每一上行信道,将所述上行信道在所述多个重叠集合中的最小值确定为所述上行信道的更新后的上行功率。
  6. 根据权利要求1所述的上行功率分配方法,其特征在于,所述至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序包括:
    按照PRACH的优先级最高、PUCCH的优先级次之以及PUSCH的优先级最低的顺序确定各上行信道的优先级;
    按照上行信号中携带有HARQ-ACK和/或上行调度请求的上行信道的优先级最高、上行信号中携带有CSI的上行信道的优先级次之,以及上行信号中未携带HARQ-ACK、上行调度请求或者CSI的上行信道的优先级最低的顺序,确定各上行信道的优先级;
    按照非周期的上行信道的优先级最高、半静态的上行信道的优先级次之以及静态的上行信道的优先级最低的顺序,确定各上行信道的优先级;
    按照关联的小区为载波聚合中的主小区的上行信道的优先级最高、关联的小区为载波聚合中的主辅小区的上行信道的优先级次之,以及关联的小区为载波聚合中的辅小区的上行信道的优先级最低的顺序,确定各上行信道的优先级。
  7. 根据权利要求6所述的上行功率分配方法,其特征在于,所述至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序还包括:
    对于信道类型相同、上行信号中携带有相同的信息、载波类型相同和/或周期性相同的多个上行信道,根据当前上行发送的场景确定所述多个上行信道的优先级顺序,其中,所述场景包括NE-DC场景和EN-DC场景。
  8. 根据权利要求7所述的上行功率分配方法,其特征在于,所述根据当前上行发送的场景确定所述多个上行信道的优先级顺序包括:
    若当前上行发送的场景为NE-DC场景,则对于信道类型相同、上行信号中携带有相同的信息、载波类型相同和/或周期性相同的多个上行信道,确定其中属于NR通信系统的上行信道的优先级高于其中属于LTE通信系统的上行信道的优先级;
    若当前上行发送的场景为EN-DC场景,则对于信道类型相同、上行信号中携带有相同的信息、载波类型相同和/或周期性相同的多个上行信道,确定其中属于LTE通信系统的上行信道的优先级高于其中属于NR通信系统的上行信道的优先级。
  9. 根据权利要求1所述的上行功率分配方法,其特征在于,所述根据重新分配结果更新所述第一上行信道的上行功率包括:
    将所述第一上行信道基于重新分配结果确定的上行功率记作调整后上行功率,将所述调整后上行功率与所述第一上行信道的原始上行功率之比确定为所述第一上行信道的功率调整系数;
    根据所述第一上行信道在即将发送时刻的前后时隙或子帧上的上行功率,对所述功率调整系数进行微调,以使所述上行信道的上行功率在时间上平稳变化;
    基于调整后的功率调整系数更新所述第一上行信道的上行功率。
  10. 一种上行功率分配装置,其特征在于,包括:
    确定模块,对于即将发送的第一上行信道,确定所述第一上行信道的重叠集合,其中,所述重叠集合为与所述第一上行信道在时间上相重叠的上行信道集合,所述与所述第一上行信道在时间上相重叠的上行信道中的至少一部分与所述第一上行信道属于不同的通信系统;
    优先级排序模块,当所述重叠集合中各上行信道的上行功率之和大于预设最大发送总功率时,至少根据信道类型、上行信号中携带的信息、载波类型以及周期性确定所述重叠集合中各上行信道的优先级排序;
    分配模块,用于按照所述优先级排序重新分配所述重叠集合中各上行信道的上行功率,直至所述重叠集合中各上行信道的上行功率之和小于等于所述预设最大发送总功率,其中,优先级越低的上行信道,所述上行信道的上行功率调整量越大;
    更新模块,用于根据重新分配结果更新所述第一上行信道的上行功率。
  11. 一种存储介质,其上存储有计算机指令,其特征在于,所述计算机指令被处理器运行时执行权利要求1至9任一项所述方法的步骤。
  12. 一种终端,包括上述权利要求10所述的上行功率分配装置,或者,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1至9任一项所述方法的步骤。
PCT/CN2021/085763 2020-04-17 2021-04-07 上行功率分配方法及装置、存储介质、终端 WO2021208781A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/919,430 US20230156611A1 (en) 2020-04-17 2021-04-07 Uplink power distribution method and device, storage medium, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010307168.2A CN111511005B (zh) 2020-04-17 2020-04-17 上行功率分配方法及装置、存储介质、终端
CN202010307168.2 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021208781A1 true WO2021208781A1 (zh) 2021-10-21

Family

ID=71874456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085763 WO2021208781A1 (zh) 2020-04-17 2021-04-07 上行功率分配方法及装置、存储介质、终端

Country Status (3)

Country Link
US (1) US20230156611A1 (zh)
CN (1) CN111511005B (zh)
WO (1) WO2021208781A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000521A1 (zh) * 2022-06-30 2024-01-04 Oppo广东移动通信有限公司 通信方法和设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511005B (zh) * 2020-04-17 2022-11-29 展讯通信(上海)有限公司 上行功率分配方法及装置、存储介质、终端
CN114173406B (zh) * 2020-09-11 2023-07-11 中国移动通信集团设计院有限公司 上行功率调整方法、装置、电子设备及存储介质
CN113260034B (zh) * 2021-06-22 2021-10-08 展讯通信(上海)有限公司 上行信道发送功率分配方法及装置、终端和存储介质
CN116471651A (zh) * 2022-01-11 2023-07-21 华为技术有限公司 通信方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925969A (zh) * 2015-09-04 2018-04-17 三星电子株式会社 用于控制无线通信系统中上行链路传输功率的方法和装置
CN110167123A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种功率控制方法及装置
CN110741693A (zh) * 2017-06-14 2020-01-31 Idac控股公司 用于无线网络内的适应性上行链路功率控制的方法、设备及系统
CN111511005A (zh) * 2020-04-17 2020-08-07 展讯通信(上海)有限公司 上行功率分配方法及装置、存储介质、终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140369324A1 (en) * 2012-01-20 2014-12-18 Zte Corporation Uplink signal sending method and user equipment
CN104683082B (zh) * 2013-12-03 2018-10-09 索尼公司 无线通信系统和在无线通信系统中进行无线通信的方法
AU2015229021B2 (en) * 2014-03-14 2018-07-05 Apple Inc. Uplink channel transmission in dual connectivity
US9999002B2 (en) * 2014-03-21 2018-06-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Uplink power scaling for dual connectivity
WO2020061774A1 (zh) * 2018-09-25 2020-04-02 Oppo广东移动通信有限公司 一种功率分配方法、终端设备及存储介质
US11622337B2 (en) * 2018-10-05 2023-04-04 Apple Inc. Power allocation in new radio and long term evolution dual connectivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925969A (zh) * 2015-09-04 2018-04-17 三星电子株式会社 用于控制无线通信系统中上行链路传输功率的方法和装置
CN110741693A (zh) * 2017-06-14 2020-01-31 Idac控股公司 用于无线网络内的适应性上行链路功率控制的方法、设备及系统
CN110167123A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种功率控制方法及装置
CN111511005A (zh) * 2020-04-17 2020-08-07 展讯通信(上海)有限公司 上行功率分配方法及装置、存储介质、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AT&T: "Power Control for Option 4 DC", 3GPP DRAFT; R1-1809075 POWERCONTROLFOROPTION4, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 11 August 2018 (2018-08-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051516444 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000521A1 (zh) * 2022-06-30 2024-01-04 Oppo广东移动通信有限公司 通信方法和设备

Also Published As

Publication number Publication date
US20230156611A1 (en) 2023-05-18
CN111511005A (zh) 2020-08-07
CN111511005B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2021208781A1 (zh) 上行功率分配方法及装置、存储介质、终端
US11671209B2 (en) Method and apparatus for determining HARQ timing in communication systems
US10863530B2 (en) Method and apparatus for adjusting timing in wireless communication system
US9713103B2 (en) Wireless communications system and method for performing wireless communication in wireless communications system
JP5915741B2 (ja) 電力制御方法及び端末装置
US20160374084A1 (en) Shanghai langbo communication technology company limited
EP3139685A1 (en) Communication method and device on unlicensed frequency band in ue and base station
US9686756B2 (en) Wireless communication apparatus and wireless communication method
US9986557B2 (en) Communication method in wireless communication system on basis of carrier aggregation
US20160157184A1 (en) Power control method for uplink channel, user equipment and communication system
CN107295666B (zh) 一种功率分配方法及装置
CN108347762B (zh) 功率余量报告的上报方法和上报装置
WO2018082635A1 (zh) 功率分配方法、功率调整方法、终端和接入网设备
US9838972B2 (en) Method for controlling power of uplink channel, user equipment and communication system
WO2020177630A1 (zh) 信道或信号的发送方法及装置、存储介质
CN106851809A (zh) 确定功率的方法及用户设备
US9386543B2 (en) Methods and devices for calculation of uplink transmission power
US11057104B2 (en) Information transmission method and apparatus
EP3965482A1 (en) Transmitting power determination method and apparatus and communication device
TW202019221A (zh) 一種回饋資源配置方法、終端設備及網路設備
US20180331964A1 (en) Scheduling Mechanism for Ultra-Reliable Low-Latency Communication Data Transmissions
WO2021188852A1 (en) Ue-based energy efficient uplink data split in dual connectivity
CN107437980B (zh) 一种站间载波聚合系统中的数据传输方法和装置
WO2023093618A1 (zh) 数据传输方法、装置、电子设备和计算机存储介质
CN106572474B (zh) 频带共享网络的pdcch调度及功率调整的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788803

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21788803

Country of ref document: EP

Kind code of ref document: A1