WO2018082635A1 - 功率分配方法、功率调整方法、终端和接入网设备 - Google Patents

功率分配方法、功率调整方法、终端和接入网设备 Download PDF

Info

Publication number
WO2018082635A1
WO2018082635A1 PCT/CN2017/109238 CN2017109238W WO2018082635A1 WO 2018082635 A1 WO2018082635 A1 WO 2018082635A1 CN 2017109238 W CN2017109238 W CN 2017109238W WO 2018082635 A1 WO2018082635 A1 WO 2018082635A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
channel
subframe
carried
transmit power
Prior art date
Application number
PCT/CN2017/109238
Other languages
English (en)
French (fr)
Inventor
刘建琴
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17867719.1A priority Critical patent/EP3528558B1/en
Priority to BR112019008993A priority patent/BR112019008993A2/pt
Priority to JP2019523798A priority patent/JP2019536351A/ja
Publication of WO2018082635A1 publication Critical patent/WO2018082635A1/zh
Priority to US16/400,890 priority patent/US11006375B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a power allocation method, a power adjustment method, a terminal, and an access network device.
  • LTE-A Long Term Evolution (Advanced) (LTE-A) system is the 3rd Generation Partnership Project (3GPP) Long Term Evoluting (LTE) system. Further evolution and enhancement of the system.
  • carrier aggregation Carrier Aggregation (CA)
  • CA Carrier Aggregation
  • bandwidth extension Spectrum Aggregation technology or bandwidth extension
  • carrier aggregation the spectrum of two or more component carriers are aggregated together to obtain a wider transmission bandwidth.
  • the uplink subframes on different carriers may overlap.
  • the formation of this phenomenon mainly includes the following two scenarios (the following description takes two carriers as an example, and may actually include multiple carriers). :
  • the lengths of the uplink subframes on the first carrier and the uplink subframes on the second carrier are different, such that one uplink subframe on the second carrier corresponds to multiple uplink subframes on the first carrier.
  • the minimum transmission time granularity ie, the minimum time unit for transmitting data
  • a sub-frame length of a high-frequency 28 GHz is 0.3 ms
  • a sub-frame of a low-frequency 2 GHz is set to 1 ms such that one low frequency subframe corresponds to a plurality of high frequency subframes.
  • the lengths of the uplink subframes on the first carrier and the uplink subframes on the second carrier are similar or the same, but the uplink subframes on the first carrier and the uplink subframes on the second carrier start time.
  • the two carriers belong to the Timing Advance Group ("TAG"), which causes the timing advances of the uplink transmission channels on the two carriers to be different, thereby causing the uplink subframes on the two carriers to start.
  • TAG Timing Advance Group
  • the terminal allocates power to the channel of the corresponding uplink subframe before the uplink data is transmitted through the uplink subframe of the two carriers.
  • the normal power allocation method is determined according to Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the channel transmit power required by the uplink subframes that is, the transmit power of the channel transmitted in the uplink subframe
  • the two carriers are overlapped according to the priority of the channels of the two carriers on the overlapping uplink subframes.
  • the transmit power of the channel on the uplink subframe before performing power allocation, the terminal can obtain two DCIs respectively corresponding to two carriers.
  • the DCI corresponding to the carrier may only obtain the information of the channel on the first several (or one) uplink subframe of the first carrier that overlaps with the uplink subframe of the second carrier, without including the first carrier Several (or one) uplinks
  • the first carrier cannot be considered after the overlap of the two carriers (or a) the transmit power required by the channel on the uplink subframe.
  • the power allocated according to the above scheme may not satisfy the transmission power requirement of the channel on the last several (or one) uplink subframes of the first carrier.
  • the embodiment of the present invention provides a power allocation method, a power adjustment method, a terminal, and an access network. device.
  • the technical solution is as follows:
  • an embodiment of the present invention provides a power allocation method, where the method includes:
  • the terminal determines a first initial transmit power and a second initial transmit power, where the first initial transmit power includes an initial transmit power of a channel transmitted in each of the M first subframes carried by the first carrier
  • the second initial transmit power is an initial transmit power of a channel transmitted in the second subframe carried by the second carrier
  • the terminal When the sum of any of the first initial transmit power and the second initial transmit power is greater than the maximum transmit power of the terminal, the terminal carries the M according to the first carrier Priority ranking of a channel transmitted in a subframe and a channel transmitted in the second subframe carried by the second carrier, and minimum guaranteed power information of a channel carried by the first carrier, to obtain the first carrier
  • the available transmit power of the channel transmitted in the N first subframes and the available transmit power of the channel transmitted in the second subframe carried by the second carrier, the said on the second carrier The second subframe overlaps with the N first subframes on the first carrier, where the M first subframes are the first M first subframes in the N first subframes , N is greater than M, and M and N are positive integers.
  • a minimum guaranteed power is reserved for the latter half of the overlapping region, so that between the two carriers is performed.
  • the power requirement of the second half of the overlap region can be considered in the uplink power allocation, so that the data transmission performance in the uplink subframe of the second half of the overlap region is guaranteed, and the power efficiency and data transmission of the uplink data transmission are realized. Maximize performance.
  • the terminal according to the first carrier, the channel that is transmitted in the M first subframes and the second carrier that is carried in the second subframe
  • the priority ordering of the transmitted channels and the minimum guaranteed power information of the channels carried by the first carrier, and the available transmit powers of the channels transmitted in the N first subframes carried by the first carrier are obtained.
  • the available transmit power of the channel transmitted in the second subframe carried by the second carrier including:
  • the terminal obtains a minimum guaranteed power according to the minimum guaranteed power information of the channel carried by the first carrier;
  • the priority of the channels transmitted in the M first subframes and the channels transmitted by the second carrier in the second subframe are first sorted according to the priority of the first carrier. Determining a first available transmit power and the second available transmit power to ensure that a channel with a higher priority can preferentially obtain power allocation, and after completing the above steps, according to the first available transmit power, the second available transmit power, and The minimum guaranteed power is again subjected to power allocation to ensure the rationality of the power of the channel transmitted in the N first subframes carried by the first carrier.
  • the terminal according to the first carrier, the channel that is transmitted in the M first subframes and the second The priority ordering of the channels carried by the carrier in the second subframe, the first available transmit power of the channel transmitted in the N first subframes carried by the first carrier, and the second carrier carried by the second carrier
  • the second available transmit power of the channel transmitted in the second subframe includes:
  • the first initial transmit power and the second initial transmit power respectively obtaining a channel of the channel that is transmitted by the first carrier in the N first subframes
  • the sum of the first available transmit power of the channel transmitted on one subframe and the second available transmit power of the channel transmitted in the second subframe carried by the second carrier is less than or equal to the maximum transmit power.
  • the first initial transmit power and the second initial transmit power are reduced according to the priority order, so that the channel transmit power finally allocated to the two carriers does not exceed the maximum transmit power of the terminal.
  • the initial transmit power of the channel with the lower priority is reduced until the first available transmit power of the channel transmitted in the N first subframes carried by the first carrier and the second subframe are carried in the second subframe
  • the sum of the second available transmit powers of the channels transmitted in is less than or equal to the maximum transmit power.
  • the initial transmission powers of the channels of different priorities are reduced according to different reduction ratios (the reduction ratio of the lower priority is greater than the reduction ratio of the higher priority) until the first carrier is carried by the first carrier.
  • the sum of the first available transmit power of the channel transmitted in the frame and the second available transmit power of the channel carried in the second subframe carried by the second carrier is less than or equal to the maximum transmit power.
  • the first carrier carries The prioritization of the channel transmitted in the subframe and the channel carried in the second subframe carried by the second carrier includes: priority ordering of the channel type, priority ordering of the UCI carried by the channel, and priority of the channel corresponding carrier At least one of the hierarchical ordering.
  • the priority ranking includes a plurality of different combinations, so that the terminal can perform power allocation by using different priority ranking manners in different scenarios.
  • the priority ordering of the channel type includes at least one of the following:
  • the PRACH When there is a physical random access channel PRACH, the PRACH has the highest priority
  • the priority of the PUCCH is higher than the priority of the PUSCH, or the priority of the PUCCH is higher than the priority of the PUSCH that does not carry the UCI and the PUSCH carrying the UCI The same priority;
  • the priority of carrying the UCI is higher than that of the PUSCH not carrying the UCI;
  • the SRS When the PRACH, PUCCH, PUSCH, and sounding reference signal SRS are simultaneously present, the SRS has the lowest priority.
  • the priority ordering of the UCI carried by the channel includes at least one of the following:
  • the priority of the channel state information is lower than the priority of the scheduling request
  • the priority of the hybrid automatic repeat request information is higher than or equal to the priority of the scheduling request.
  • the priority ordering of the corresponding carriers of the channel includes:
  • Prioritization of carrier-based index number determination, carrier prioritization of high-level configuration, priority ranking determined by carrier-based duplex mode, priority ordering determined by carrier-based radio resource connection RRC connection, and carrier-based mapping At least one of the prioritizations determined by the transmission point.
  • the priority of the carrier supporting the RRC connection is higher than the priority of the carrier not supporting the RRC connection
  • the carrier carrying the RRC information has a higher priority than the carrier not carrying the RRC information.
  • the priority ordering of the channel types includes multiple different combinations, so that the terminal can perform power allocation by using different channel types in different ordering manners in different scenarios.
  • the method further includes:
  • the terminal receives, by the terminal, high layer signaling or physical layer signaling sent by the access network device by using the first carrier or the second carrier, where the high layer signaling or physical layer signaling includes a priority ranking rule, where The prioritization rule is used to determine a prioritization of channels transmitted in the M first subframes and channels transmitted in the second subframe carried by the second carrier carried by the first carrier.
  • the access network device uses the high-level signaling or physical layer signaling sent by the first carrier or the second carrier to transmit a priority ordering rule to the terminal, so that the terminal can sort the rules according to the priority. Successfully complete the power distribution.
  • the high layer signaling may be radio resource control signaling, and the physical layer signaling may be downlink control information signaling.
  • the terminal receives the first carrier bearer sent by the access network device Minimum guaranteed power information for the channel, including:
  • the terminal Receiving, by the terminal, the first signaling sent by the access network device by using the first carrier or the second carrier, where the first signaling is a minimum guaranteed power information of a channel carrying the first carrier High layer signaling or physical layer signaling.
  • the minimum guaranteed power information transmitted by the access network device to the terminal by using the signaling sent by the first carrier or the second carrier ensures that the terminal can successfully complete power allocation according to the minimum guaranteed power information.
  • the transmitting subframe of the first signaling sent by using the first carrier is sent by using the second carrier
  • the transmission subframes of the second signaling overlap, and the second signaling carries power allocation information of the channel carried by the second carrier in the second subframe.
  • the terminal can get Minimum guaranteed power information.
  • the method may further include: the terminal transmitting, according to the available transmit power of the channel transmitted in the N first subframes carried by the first carrier, the channel transmitted in the N first subframes carried by the first carrier, The channel transmitted in the second subframe carried by the second carrier is transmitted according to the available transmit power of the channel transmitted in the second subframe carried by the second carrier.
  • an embodiment of the present invention provides a power adjustment method, where the method includes:
  • the power adjustment factor is used to determine an available transmit power of a channel on a first portion of a subframe and an offset value of available transmit power of a channel on a second portion of the subframe .
  • the power adjustment factor is used to adjust the transmit power of the channel on the two parts of the subframe, so that the transmit power of the channel on the subframe can be adjusted in real time, and the channel on the subframe can be maximized. Power allocation and power efficiency.
  • the offset value may be a ratio or a difference; when the power adjustment factor is a difference, the first power is increased or decreased by controlling the positive and negative of the offset value, thereby obtaining the second power.
  • the power adjustment factor is a ratio
  • the first power is increased or decreased by controlling the power ratio to be greater than or less than 1, thereby obtaining the second power.
  • the terminal receives a power adjustment factor sent by the access network device, including:
  • the terminal receives the power adjustment factor sent by the access network device by using high layer signaling or physical layer signaling.
  • the high layer signaling may be RRC signaling, and the physical layer signaling may be DCI signaling.
  • the power adjustment factor is a cell-specific parameter.
  • an embodiment of the present invention provides a power allocation method, where the method includes:
  • the access network device determines minimum guaranteed power information of the channel carried by the first carrier
  • the access network device sends, to the terminal, minimum guaranteed power information of the channel carried by the first carrier, where the minimum guaranteed power information is used to make the initial transmit power of the first initial transmit power of the terminal and the first
  • the channel transmitted in the M first subframes and the channel transmitted in the second subframe carried by the second carrier carried by the first carrier Priority ordering, and minimum guaranteed power information of the channel carried by the first carrier, obtaining available transmit power of the channel transmitted in the N first subframes carried by the first carrier, and the second The available transmit power of the channel carried in the second subframe that is carried by the carrier, the first initial transmit power including the channel transmitted in each of the first subframes of the M first subframes carried by the first carrier Initial transmit power, the second initial transmit power is an initial transmit power of a channel transmitted in a second subframe carried by a second carrier, and the second subframe on the second carrier is the first carrier
  • the N first subframes overlap, the M first subframes are the first M first subframes are the first M first subframes.
  • the access network device sends the minimum guaranteed power information of the channel carried by the first carrier to the terminal, including:
  • the access network device sends high layer signaling or physical layer signaling to the terminal by using the first carrier or the second carrier, where the high layer signaling or physical layer signaling includes the first carrier Minimum guaranteed power information for the channel.
  • the transmitting subframe of the first signaling sent by using the first carrier is sent by using the second carrier
  • the transmission subframes of the second signaling overlap, and the second signaling carries power allocation information of the channel carried by the second carrier in the second subframe.
  • the method further includes:
  • the access network device sends high layer signaling or physical layer signaling to the terminal by using the first carrier or the second carrier, where the high layer signaling or physical layer signaling includes a priority ordering rule,
  • the prioritization rule is used to determine a priority order of the channels transmitted in the M first subframes carried by the first carrier and the channels transmitted in the second subframe carried by the second carrier.
  • the channel that is transmitted by the first carrier and the second carrier is carried by the second carrier
  • the prioritization of the channels transmitted in the subframe includes at least one of priority ordering of channel types, prioritization of UCI carried by the channel, and prioritization of channel-corresponding carriers.
  • the priority ordering of the channel type includes at least one of the following:
  • the PRACH When there is a physical random access channel PRACH, the PRACH has the highest priority
  • the priority of the PUCCH is higher than the priority of the PUSCH, or the priority of the PUCCH is higher than the priority of the PUSCH that does not carry the UCI and the PUSCH carrying the UCI The same priority;
  • the priority of carrying the UCI is higher than that of the PUSCH not carrying the UCI;
  • SRS When PRACH, PUCCH, PUSCH, and SRS exist simultaneously, SRS has the lowest priority.
  • an embodiment of the present invention provides a power adjustment method, where the method includes:
  • the access network device determines a power adjustment factor
  • the access network device sends the power adjustment factor to the terminal, where the power adjustment factor is used to enable the terminal to obtain the second subframe according to the power adjustment factor and the available transmit power of the channel on the first part of the subframe.
  • the available transmit power of the channel on the portion, the subframe includes the first portion and the second portion, and the second portion is located after the first portion, the power adjustment factor is used to determine the first portion of the subframe.
  • the access network device sends the power adjustment factor to the terminal, including:
  • the access network device sends the power adjustment factor to the terminal by using high layer signaling or physical layer signaling.
  • the power adjustment factor is a cell-specific parameter.
  • an embodiment of the present invention provides a communication device, where the device includes the foregoing first aspect.
  • a unit of the method such as a determining unit, a receiving unit, and a processing unit.
  • an embodiment of the present invention provides a communication apparatus, where the apparatus includes a unit, such as a receiving unit and a processing unit, for implementing the method described in the foregoing second aspect.
  • an embodiment of the present invention provides a communication apparatus, where the apparatus includes a unit, such as a determining unit and a sending unit, for implementing the method described in the foregoing third aspect.
  • an embodiment of the present invention provides a communication apparatus, where the apparatus includes a unit, such as a determining unit and a sending unit, for implementing the method described in the foregoing fourth aspect.
  • a ninth aspect the embodiment of the present invention provides a communication system, where the system includes: a terminal and an access network device, where the terminal includes the communication device provided in the fifth aspect or the sixth aspect, the access The network device comprises the communication device as provided in the seventh or eighth aspect above.
  • an embodiment of the present invention provides a terminal, where the terminal includes a processor, a memory, and a transceiver; the processor, the memory, and the transceiver are coupled by a bus; the memory is configured to store program instructions, where The processor enables the access network device to perform the method of the first aspect or the second aspect by executing program instructions stored in the memory.
  • the embodiment of the present invention further provides a computer readable medium for storing program code for execution by an access network device, the program code comprising the method of the first aspect or the second aspect instruction.
  • an embodiment of the present invention provides an access network device, where the access network device includes a processor, a memory, and a transceiver; the processor, the memory, and the transceiver are coupled by a bus; The program instructions are stored by the processor to enable the terminal to perform the method of the third aspect or the fourth aspect by executing program instructions stored in the memory.
  • the embodiment of the present invention further provides a computer readable medium for storing program code for execution by a terminal, the program code comprising instructions for performing the method of the third aspect or the fourth aspect.
  • the embodiment of the present invention further provides a communication chip, which is applied in a mobile communication system device, where the communication chip includes: a processor, a memory, and a communication interface; the processor, the memory, and the communication interface pass through the bus. Coupling, the memory for storing program instructions, the processor causing a communication system device loaded with the communication chip to perform the first aspect or the second aspect or the first aspect as described above by executing program instructions stored in the memory.
  • the communication chip includes: a processor, a memory, and a communication interface; the processor, the memory, and the communication interface pass through the bus. Coupling, the memory for storing program instructions, the processor causing a communication system device loaded with the communication chip to perform the first aspect or the second aspect or the first aspect as described above by executing program instructions stored in the memory
  • the method provided by any one of the three aspects or the fourth aspect.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another communication system according to an embodiment of the present invention.
  • 3 is a timing diagram of each channel provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of hardware of a terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of hardware of an access network device according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a power allocation method according to an embodiment of the present invention.
  • FIG. 6A is a timing diagram of each channel according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a power adjustment method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another communication apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another communication apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another communication apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a communication chip according to an embodiment of the present invention.
  • FIG. 1 and FIG. 2 are schematic diagrams showing the structure of a communication system according to an embodiment of the present invention.
  • the communication system can be an LTE system or a 5G system.
  • the communication system includes at least one terminal 120 and at least one base station 140.
  • the first application scenario (see Figure 1): Carrier aggregation scenario between access network devices (such as base stations)
  • access network devices such as base stations
  • the terminal 120 simultaneously performs data transmission with the two access network devices 140 to implement carrier aggregation. As shown in FIG. 1, terminal 120 transmits uplink data to one access network device 140 through carrier A, and terminal 120 transmits uplink data to another access network device 140 through carrier B.
  • the two access network devices 140 include data interaction (ideal backhaul) in real time and data interaction (non-ideal backhaul) in real time.
  • the uplink data and the downlink data are respectively transmitted by using an uplink subframe and a downlink subframe of the carrier A (or the carrier B) as a carrier.
  • the start time of the subframe in which the terminal 120 transmits the uplink data to the two access network devices 140 is different due to different TAG timing advances, and therefore, regardless of the two subframes
  • the lengths of the two access network devices are not aligned or/or overlapped. Or there is a case where there is an overlap between one uplink subframe corresponding to one access network device and at least two uplink subframes corresponding to another access network device.
  • the start time of the uplink subframe in which the terminal 120 transmits the uplink data to the two access network devices 140 is the same, and therefore, only two subframes When the lengths of the two are large, there is a time of misalignment and/or overlap between the two uplink subframes. Or there is a case where there is an overlap between one uplink subframe corresponding to one access network device and at least two uplink subframes corresponding to another access network device.
  • the second application scenario (see Figure 2): Single access network device carrier aggregation
  • the terminal 120 performs data transmission by using two or more carriers to implement carrier aggregation. As shown in FIG. 2, the terminal 120 simultaneously transmits uplink data to the access network device 140 through carriers A and B.
  • terminal 120 is different due to different TAG timing advances.
  • the start time of the uplink subframe in which the uplink data is sent to the access network device 140 is different. Therefore, regardless of whether the lengths of the two subframes are different or smaller, the uplink subframes corresponding to the two access network devices are not aligned. And / or overlapping time. Or there is a case where there is an overlap between one uplink subframe corresponding to one access network device and at least two uplink subframes corresponding to another access network device.
  • the start time of the uplink subframe in which the terminal 120 transmits the uplink data to the access network device 140 is the same, and therefore, only two subframes
  • the uplink subframes corresponding to the two access network devices have time of misalignment and/or overlap. Or there is a case where there is an overlap between one uplink subframe corresponding to one access network device and at least two uplink subframes corresponding to another access network device.
  • the terminal implements carrier aggregation transmission with a low frequency carrier (High Frequency Carrier) and a high frequency carrier (High Frequency Carrier), and the length of the subframe on the low frequency carrier is greater than the subframe on the high frequency carrier.
  • the length of the subframe on the low frequency carrier is a long subframe
  • the subframe on the high frequency carrier is a short subframe
  • one long subframe on the low frequency carrier overlaps with multiple short subframes on the high frequency carrier.
  • a terminal When a terminal allocates transmit power for a long subframe i and a plurality of short subframes that overlap therewith, it is necessary to know the channel transmit power required for these short subframes, and the channel transmit power required for each short subframe usually passes through the DCI.
  • the information carried (such as scheduling decisions and power control commands) is determined.
  • the terminal allocates transmit power for the long subframe i and the short subframes (i 1 to iN) overlapping with it at time t.
  • the DCI received by the terminal includes DCI 1 and DCI 2, where DCI 1 carries There is information for determining the channel transmission power of the long subframe i, and the DCI 2 carries only information for determining the channel transmission power of the first M short subframes among the N short subframes that overlap with the long subframe i, and is used for The information of the channel transmission power of the NM short subframes is determined to be carried in the DCI 3, so that the power allocation of the latter NM short subframes cannot be considered in the conventional manner for power allocation at time t.
  • the transmission power of the long subframe is also affected.
  • the first two short subframes of the multiple short subframes that overlap with the long subframe may be the uplink subframe, and the required channel transmission power is compared. Large, and then several short subframes are downlink subframes, and the required channel transmission power is small; if the priority of the short subframe channel is higher than the long subframe, according to the existing power allocation mode, since the power is limited, the priority is given.
  • the power is allocated to the short subframe of the overlapping region, so that the uplink data that can be allocated to the long subframe may not reach the required channel transmission power, and the channel transmission allocated by the uplink data transmission on the short subframe The power exceeds the channel transmission power actually required in most of the time, and finally causes the waste of the transmission power of the uplink data transmission in the short subframe and the power allocation of the uplink data transmission on the long subframe.
  • the terminal and the access network device provided by the embodiments of the present invention are described below in conjunction with a specific hardware structure.
  • FIG. 4 shows a hardware structure of a terminal 120 implemented by an embodiment of the present invention.
  • the terminal 120 includes a processor 21, a transceiver 22, and a memory 23.
  • the processor 21 includes one or more processing cores, and the processor 21 runs software programs and modules. Thereby performing various functional applications and information processing.
  • the transceiver 22 includes a receiver Rx and a transmitter Tx.
  • the transceiver 22 can also be implemented as a communication chip.
  • the communication chip can include a receiving module, a transmitting module, a modem module, and the like, for modulating and demodulating information. The information is received or transmitted via a wireless signal.
  • Transceiver 22, memory 23, and processor 21 are coupled by a bus.
  • the memory 23 can be used to store software programs as well as modules.
  • the memory can store an operating system 24, at least one of the functions described by the application module 25.
  • the application module 25 includes at least a determination module 250 for determining information, a receiving module 251 for receiving information, and a processing module 252 for processing information.
  • the determining module 250 is configured to determine a first initial transmit power and a second initial transmit power, where the first initial transmit power includes a channel transmitted by each first subframe in the M first subframes carried by the first carrier
  • the initial transmit power, the second initial transmit power is the initial transmit power of the channel transmitted in the second subframe that is carried by the second carrier
  • the receiving module 251 is configured to receive the first carrier that is sent by the access network device a minimum guaranteed power information of the carried channel;
  • the processing module 252 configured to: when a sum of any of the first initial transmit power and the second initial transmit power is greater than a maximum transmit power of the terminal, And prioritizing a channel transmitted in the M first subframes and a channel transmitted in the second subframe carried by the second carrier, and a minimum channel of the first carrier Assuring the power information, obtaining the available transmit power of the channel transmitted
  • the processor 21 is configured to execute each module in the application module 25 to implement the steps required by the terminal in FIG. 6.
  • the receiving module 251 is configured to receive a power adjustment factor sent by the access network device, where the processing module 252 is configured to obtain, according to the power adjustment factor and the available transmit power of the channel on the first part of the subframe, the second part of the subframe.
  • Available transmit power of the upper channel, the subframe includes the first portion and the second portion, and the second portion is located after the first portion, the power adjustment factor is used to determine the first portion of the subframe The available transmit power of the channel and the offset of the available transmit power of the channel on the second portion of the subframe.
  • the processor 21 is configured to execute the various modules in the application module 25 to implement the steps required by the terminal as in FIG.
  • the memory 23 is a computer readable storage medium that can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable and programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable and programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • the structure of the terminal 120 shown in FIG. 4 does not constitute a limitation to the terminal, and may include more or less components or combinations of components, or different component arrangements.
  • FIG. 5 shows a hardware structure of an access network device 140 implemented by an embodiment of the present invention.
  • the access network device 140 includes a processor 31, a transceiver 32, and a memory 33.
  • the processor 31 includes one or more processing cores, and the processor 31 executes various functional applications and information processing by running software programs and modules.
  • the transceiver 32 includes a receiver Rx and a transmitter Tx.
  • the transceiver 32 can also be implemented as a communication chip.
  • the communication chip can include a receiving module, a transmitting module, a modem module, etc., for modulating and demodulating information. The information is received or transmitted via a wireless signal.
  • Transceiver 32, memory 33, and processor 31 are coupled by a bus.
  • Memory 33 can be used to store software programs as well as modules.
  • the memory can store an operating system 34, at least one of the functions described by the application module 35.
  • the application module 35 includes at least a determination module 351 for determining information and a transmission module 352 for transmitting information.
  • a determining module 351 configured to determine minimum guaranteed power information of a channel carried by the first carrier
  • a sending module 352 configured to send, to the terminal, minimum guaranteed power information of the channel carried by the first carrier, where the minimum guaranteed power information is used
  • the sum of any initial transmit power and the second initial transmit power of the first initial transmit power is greater than the maximum transmit power of the terminal, according to the first subframes that are carried by the first carrier in the M first subframes Prioritizing the channel transmitted in the second carrier and the channel in the second subframe, and the minimum guaranteed power information of the channel carried by the first carrier, obtaining N in the first carrier
  • the processor 31 is configured to execute each module in the application module 35 to implement the steps required by the access network device in FIG. 6.
  • the determining module 351 is configured to determine a power adjustment factor
  • the sending module 352 is configured to send the power adjustment factor to the terminal, where the power adjustment factor is used to enable the terminal to use the power adjustment factor and the first part of the subframe.
  • the available transmit power of the channel results in the available transmit power of the channel on the second portion of the subframe, the subframe comprising the first portion and the second portion, and the second portion being located after the first portion
  • the power adjustment factor is used to determine an available transmit power of the channel on the first portion of the subframe and an offset value of the available transmit power of the channel on the second portion of the subframe.
  • the processor 31 is configured to execute the various modules in the application module 35 to implement the steps required by the access network device as in FIG.
  • memory 33 is a computer readable medium that can be implemented by any type of volatile or nonvolatile memory device, or a combination thereof, such as static random access memory (SRAM), electrically erasable and programmable only Read Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable and programmable only Read Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • the structure of the access network device 140 shown in FIG. 5 does not constitute a limitation on the access network device, and may include more or less components or combinations of certain components than illustrated. Or different parts arrangement.
  • FIG. 6 a power distribution method according to an embodiment of the present invention is shown. The method is implemented by using the system shown in FIG. 1 or FIG. 2, and the method includes:
  • the terminal determines a first initial transmit power and a second initial transmit power, where the first initial transmit power includes an initial transmit power of a channel transmitted in each first subframe of the M first subframes carried by the first carrier.
  • the second initial transmit power is the initial transmit power of the channel transmitted in the second subframe carried by the second carrier.
  • the terminal Before the power allocation, the terminal will receive DCI (such as DCI 1 and DCI2 in FIG. 3), where DCI 1 carries information for determining the channel transmission power of the long subframe i, and DCI 2 only carries the information for determining the long subframe i There is information on the channel transmission power of the first M short subframes among the overlapping N short subframes.
  • the terminal determines the first initial transmit power and the second initial transmit power according to the DCI described above.
  • the access network device determines minimum guaranteed power information of a channel carried by the first carrier.
  • the minimum guaranteed power information of the channel carried by the first carrier may be an index of a ratio of the minimum guaranteed power to the maximum transmit power.
  • the minimum guaranteed power of the channel carried by the first carrier is greater than or equal to 0, and the ratio of the minimum guaranteed power to the maximum transmit power PCMAX may be a percentage (in%).
  • the ratio of the minimum guaranteed power to the maximum transmit power of the channel carried by the first carrier may be any one of the candidate values listed below: 0%, 5%, 10%, 15%, 20%, 30%, 37 %, 44%, 50%, 56%, 63%, 70%, 80%, 90%, 95%, 100%.
  • the minimum guaranteed power of the channel carried by the first carrier is determined according to the index in the minimum guaranteed power information. For example, if the index is 6, the ratio of the corresponding minimum guaranteed power to the maximum transmit power is 30%, and the maximum transmit power can be calculated according to the maximum transmit power. Minimum guaranteed power.
  • the access network device may determine the first carrier according to the type and priority of the data to be transmitted on the overlapping uplink short subframes. Minimum guaranteed power information of the carried channel.
  • the access network device may determine minimum guaranteed power information of the channel carried by the first carrier according to the data type to be transmitted on the uplink short subframes that overlap. Specifically, when the channel priority in the data to be transmitted on the uplink short subframes is high (for example, several data types with the highest priority), the minimum guaranteed power and the maximum of the channel carried by the first carrier are The ratio of the transmitted power can be greater than or equal to the set value (eg, 50%). For example, when there is a physical random access channel among the data types to be transmitted on the overlapping uplink short subframes, the channel carried by the first carrier is considered in consideration of the higher priority of the physical random access channel.
  • the minimum guaranteed power information may be any one of the above candidate values of 50% or more.
  • the minimum guaranteed power information of the channel carried by the first carrier which is referred to in step S101, is used only for the uplink data allocation of the first carrier in the overlapping uplink subframes of the first carrier during the validity period.
  • the validity period can be a number of times (for example, one or several times) or a time (for example, a period of time).
  • the minimum guaranteed power information of the channel carried by the first carrier in the step S101 may be used for the power allocation of the terminal on the uplink subframes of the first carrier at any time.
  • the access network device sends, to the terminal, minimum guaranteed power information of a channel carried by the first carrier.
  • the S102 may include: the access network device sends the high layer signaling or the physical layer signaling to the terminal, and the high layer signaling or the physical layer signaling includes the minimum guaranteed power information of the channel carried by the first carrier.
  • the high layer signaling may be Radio Resource Control (RRC) signaling
  • RRC Radio Resource Control
  • DCI DCI signaling
  • the S102 may include: the access network device sends, by using the first carrier or the second carrier, minimum guaranteed power information of a channel carried by the first carrier.
  • the high layer signaling or the physical layer signaling may be the high layer signaling or the physical layer signaling sent by the second carrier, or the high layer signaling or the physical layer signaling may also be the high layer signaling sent by the first carrier. Or physical layer signaling.
  • the physical layer signaling physical layer signaling sent by the primary carrier (such as the second carrier described above), or physical Layer signaling is physical layer signaling sent by a secondary carrier (such as the first carrier described above).
  • DCI signaling is DCI signaling sent by the primary carrier, or DCI signaling is DCI signaling sent by the secondary carrier.
  • the DCI signaling may be a DCI signaling dedicated to transmitting minimum guaranteed power information (different from DCI signaling for downlink grant (DL grant)).
  • the access network device further sends power allocation information of the channels in the N first subframes carried by the first carrier to the terminal by using indication signaling.
  • the indication signaling is high layer signaling or physical layer signaling carrying power allocation information of a channel on each first subframe of the N first subframes carried by the first carrier.
  • the indication signaling is the physical layer signaling
  • the transmission subframe of the first signaling sent by the first carrier overlaps with the transmission subframe of the second signaling sent by the second carrier
  • the second signaling carries power allocation information of a channel carried by the second carrier in the second subframe.
  • DCI2 carries power allocation information of channels in N first subframes carried by the first carrier.
  • the access network device sends two DCIs to the terminal, where the two DCIs are used to indicate the power allocation information of the channel in the M first subframes carried by the first carrier, and the first The power allocation information of the channels in the NM first subframes carried by the carrier.
  • S103 The terminal receives minimum guaranteed power information of a channel carried by the first carrier transmitted by the access network device.
  • the S103 may include: receiving, by the terminal, the first signaling sent by the access network device by using the first carrier or the second carrier, where the first signaling is a high layer signaling that carries minimum guaranteed power information of the channel carried by the first carrier or Physical layer signaling.
  • the transmission subframe of the first signaling sent by the first carrier overlaps with the transmission subframe of the second signaling sent by the second carrier, and the second signaling carries the second carrier and is carried in the second subframe. Power allocation information for the channel.
  • the second signaling may be DCI 1
  • the first signaling may be DCI2, and there is an overlap between the transmission subframes of DCI 1 and DCI2.
  • the minimum guaranteed power information of the channel carried in the DCI2 carrying the first carrier can be used in the power allocation described later.
  • the terminal receives power allocation information of channels in the N first subframes that are carried by the first carrier that is sent by the access network device by using the indication signaling.
  • the second subframe on the second carrier overlaps with the N first subframes on the first carrier, and the M first subframes are the first M first subframes in the N first subframes.
  • N is greater than M, and M and N are positive integers.
  • the first subframe and the second subframe may both be uplink subframes.
  • the M first subframes have the same length, but the transmitted channels may be different.
  • the overlapping time of the second subframe on the second carrier and the N first subframes on the first carrier is greater than or equal to a preset threshold, where the overlap time refers to a length of time in which the overlapping portion exists, and the threshold It may be a time or a proportion of the length of the N first subframes, for example, fifty percent of the length of the N first subframes.
  • one uplink subframe (second subframe) on the low frequency carrier (second carrier) overlaps with three uplink subframes (first subframe) on the high frequency carrier (first carrier)
  • the low frequency carrier may be 2 GHz, and the high frequency carrier is 28 GHz; or, the high and low frequency carriers may be other values, as long as the relationship between the corresponding uplink subframe lengths is 1 to 3
  • the terminal The priority of the channel of the first two uplink subframes on the high frequency carrier and the channel of one uplink subframe on the low frequency carrier overlapping the high frequency carrier and the uplink data transmission on the high frequency carrier
  • the minimum guaranteed power information obtains the transmit power of the uplink data transmission on the three uplink subframes of the high frequency carrier and the transmit power of the uplink data transmission on one uplink subframe on the low frequency carrier.
  • S104 can include:
  • the terminal obtains a minimum guaranteed power according to the minimum guaranteed power information of the channel carried by the first carrier.
  • the terminal stores the candidate value of the ratio of the minimum guaranteed power to the maximum transmit power. After obtaining the index of the minimum guaranteed power, according to the index, Among these candidate values, the ratio of the minimum guaranteed power to the maximum transmit power is determined, and then the minimum guaranteed power can be calculated according to the ratio and the maximum transmit power.
  • the terminal sorts the priorities of the channels transmitted in the M first subframes and the channels transmitted by the second carrier in the second subframe that are carried by the first carrier, and obtains the N carriers carried by the first carrier.
  • step S1042 the terminal needs to obtain the priority first in order to determine the priority order of the channels transmitted in the M first subframes and the channels transmitted in the second subframe carried by the second carrier.
  • a collation which is used to determine the prioritization between channels of an uplink subframe.
  • the priority ordering rule may be pre-defined in advance, and is stored in the terminal in advance, and the terminal may directly acquire the priority when determining the priority.
  • the prioritization rule is sent by the access network device to the terminal.
  • the process may specifically include:
  • Step 1 The access network device sends the priority ordering rule to the terminal.
  • the access network device may send a priority ordering rule to the terminal through high layer signaling or physical layer signaling.
  • the high layer signaling may be RRC signaling, and the physical layer signaling may be DCI signaling.
  • the access network device may send the priority ordering rule to the terminal by using the first carrier or the second carrier.
  • the access network device sends high layer signaling or physical layer signaling to the base station through the first carrier or the second carrier, and the high layer signaling or physical layer signaling includes a priority ordering rule, and the priority ordering rule is used to determine the first
  • the priority of the channels transmitted in the M first subframes carried by the one carrier and the channels transmitted in the second subframe carried by the second carrier are prioritized. Different scenarios have different priority ordering rules.
  • the access network device can configure different priority ordering rules for different users according to different scenarios.
  • the physical layer signaling sent by the physical layer signaling is the primary carrier (such as the second carrier), or the physical layer signaling is the physical layer signaling sent by the secondary carrier (such as the first carrier described above).
  • DCI signaling is DCI signaling sent by the primary carrier, or DCI signaling is DCI signaling sent by the secondary carrier.
  • the prioritization of the channels includes:
  • At least one of priority ordering of channel types priority ordering of uplink control information (Uplink Control Information (UCI)) carried by the channel, and priority ordering of channel-corresponding carriers.
  • UCI Uplink Control Information
  • the priority ordering of the channel types includes at least one of the following:
  • PRACH Physical Random Access Channel
  • the PUCCH has a higher priority than the PUSCH, or the PUCCH.
  • Priority is higher than the priority of the PUSCH that does not carry UCI and carries The priority of the PUSCH of the UCI is the same;
  • the priority of carrying the UCI is higher than that of the PUSCH not carrying the UCI;
  • the SRS Sounding Reference Signal
  • the priority ordering of the UCI carried by the channel includes at least one of the following:
  • the priority of the channel state information is lower than the priority of the scheduling request
  • the priority of the hybrid automatic repeat request information is higher than or equal to the priority of the scheduling request.
  • the priority ordering of the corresponding carriers of the channel includes:
  • Prioritization of carrier-based index number determination, carrier prioritization of high-level configuration, priority ranking determined by carrier-based duplex mode, priority ordering determined by carrier-based radio resource connection RRC connection, and carrier-based mapping At least one of the prioritizations determined by the transmission point.
  • the priority of the carrier supporting the RRC connection is higher than the priority of the carrier not supporting the RRC connection
  • the carrier carrying the RRC information has a higher priority than the carrier not carrying the RRC information.
  • the above-mentioned priority ordering may also be set according to the actual scenario.
  • the primary carrier transmits the RACH
  • the secondary carrier transmits an acknowledgement command (Acknowledgment, referred to as “ACK”) (transmitted through the PUSCH), at this time, the channel type Prioritization in PRACH>PUSCH.
  • ACK acknowledgement command
  • the priority order of the channel types may be: PRACH>PUCCH>PUSCH with UCI>PUSCH without UCI>SRS. That is, the random access channel among the uplink channels among the multiple carriers has the highest priority, followed by the uplink control channel, and then the uplink shared channel for transmitting the UCI and the uplink shared channel for not transmitting the UCI, and finally the sounding reference signal.
  • the scenario involves multiple beam scanning scenarios.
  • the terminal sends multiple random access channels (RACHs) through multiple beams for time division, with 10 RACHs.
  • RACHs random access channels
  • the terminal sends multiple random access channels (RACHs) through multiple beams for time division, with 10 RACHs.
  • RACHs random access channels
  • the terminal sends multiple random access channels (RACHs) through multiple beams for time division, with 10 RACHs.
  • RACHs random access channels
  • the terminal sends multiple random access channels (RACHs) through multiple beams for time division, with 10 RACHs.
  • RACHs random access channels
  • the priority ordering of the channel corresponding carrier or the cell group may be: the priority of any uplink channel of the primary carrier or the cell group is greater than or equal to the priority of any uplink channel of the secondary carrier or the cell group.
  • this step can include:
  • the access network device determines a corresponding priority ranking rule according to the type of the data channel to be scheduled; the access network device sends the corresponding priority ranking rule to the terminal.
  • Step 2 The terminal receives the priority ordering rule sent by the access network device.
  • the terminal receives the high layer signaling or the physical layer signaling that is sent by the access network device by using the first carrier or the second carrier, and the high layer signaling or the physical layer signaling includes a priority ordering rule, and the priority ordering rule is used to determine the first
  • the priority of the channels transmitted in the M first subframes carried by the one carrier and the channels transmitted in the second subframe carried by the second carrier are prioritized.
  • the third step the terminal determines, according to the priority ordering rule, the priority order of the channels transmitted in the M first subframes carried by the first carrier and the channels transmitted in the second subframe carried by the second carrier.
  • the terminal first selects a first subframe from the M first subframes of the first carrier according to the received priority ordering rule, and then uses the channel and the first transmitted in the first subframe.
  • the channels transmitted in the two subframes are prioritized for comparison.
  • Selecting a first subframe from the M first subframes of the first carrier specifically includes: selecting a first subframe with the highest channel priority among the M first subframes.
  • the first subframe with the lowest channel priority among the M first subframes may be selected, or the first channel priority of the M first subframes is selected to be in the set rank (for example, the priority is at the second). Subframe.
  • the priority ordering rule includes only one of the foregoing prioritizations, for example, only the priority order of the types of channels is included. In this case, if the channels of the two uplink subframes are of the same type, the priorities are the same.
  • the priority ordering rule includes only two or more of the foregoing prioritization, for example, the priority order of the type including the channel and the priority ordering of the UCI carried by the channel, in this case, if the type of the channel of the two uplink subframes The same, if both are channel types carrying uplink control information, the priority of the UCI carried by the channel is compared.
  • the channel transmitted in the M first subframes carried by the first carrier and the channel transmitted in the second subframe carried by the second carrier may be Prioritizing, obtaining a first available transmit power of a channel transmitted in the N first subframes carried by the first carrier and a second available transmit power of the channel transmitted on the second subframe carried by the second carrier, including :
  • the first initial transmit power and the second initial transmit power are reduced according to the prioritization, and the first available transmit power of the channel transmitted in the N first subframes carried by the first carrier and the second carrier are respectively obtained.
  • a second available transmit power of the channel transmitted in the second subframe the first available transmit power of the channel transmitted in the N first subframes carried by the first carrier and the second subframe being carried in the second subframe.
  • the sum of the second available transmit powers of the transmitted channels is less than or equal to the maximum transmit power.
  • the initial transmit power of the channel with the lower priority is reduced until the first available transmit power of the channel transmitted in the N first subframes carried by the first carrier and the second subframe are carried in the second subframe
  • the sum of the second available transmit powers of the channels transmitted in is less than or equal to the maximum transmit power.
  • the initial transmission powers of the channels of different priorities are reduced according to different reduction ratios (the reduction ratio of the lower priority is greater than the reduction ratio of the higher priority) until the first carrier is carried by the first carrier.
  • the sum of the first available transmit power of the channel transmitted in the frame and the second available transmit power of the channel carried in the second subframe carried by the second carrier is less than or equal to the maximum transmit power.
  • the terminal determines, according to at least one of the first available transmit power and the second available transmit power, and the minimum guaranteed power, the available transmit power and the second carrier bearer of the channel transmitted in the N first subframes carried by the first carrier. At least one of available transmit power of a channel transmitted in the second subframe.
  • the terminal may determine, according to the manner, the available transmit power of the channel transmitted in the N first subframes carried by the first carrier: Maximum ⁇ P_priority, P_guranteed ⁇ , and P_priority is the N carriers carried by the first carrier.
  • the first available transmit power of the channel transmitted in one subframe, P_guranteed is the minimum guaranteed power.
  • the available transmit power of the channel transmitted in the second subframe carried by the second carrier may be the second available transmit power.
  • the available transmit power of the channel transmitted in the N first subframes carried by the first carrier may be determined by taking the minimum value or the average value, which is not limited herein.
  • the sum of the available transmit power of the channel transmitted in the N first subframes and the available transmit power of the channel transmitted in the second subframe carried by the second carrier carried by the first carrier is less than Or equal to the maximum emission power.
  • the method may further include: the terminal transmitting, according to the available transmit power of the channel transmitted in the N first subframes carried by the first carrier, the channel transmitted in the N first subframes carried by the first carrier, according to The available transmit power of the channel transmitted in the second subframe carried by the second carrier transmits the channel transmitted in the second subframe carried by the second carrier.
  • the method may further include: the first subframes that are received by the terminal according to the first carrier.
  • the available transmit power of the transmitted channel transmits the channel transmitted in the N first subframes carried by the first carrier, and transmits the second available transmit power according to the second transmit power of the channel transmitted in the second subframe carried by the second carrier The carrier carried by the carrier in the second subframe.
  • the method may further include: transmitting, by the terminal, the N first subframes according to the first carrier The first available transmit power of the channel transmits the channel transmitted in the N first subframes carried by the first carrier, and transmits the second carrier bearer according to the available transmit power of the channel transmitted in the second subframe carried by the second carrier The channel transmitted in the second subframe.
  • the minimum guaranteed power is reserved for the second half of the overlap region.
  • the power requirement of the second half can be considered, so that the data transmission performance in the uplink subframe of the second half of the overlap region is guaranteed, and the power efficiency of the uplink data transmission is achieved. Maximize data transfer performance.
  • FIG. 7 a power adjustment method according to an embodiment of the present invention is shown. The method is implemented by using the system shown in FIG. 1 or FIG. 2, and the method includes:
  • the access network device determines a power adjustment factor.
  • the power adjustment factor is used to determine the available transmit power of the channel on the first part of the subframe and the offset value of the available transmit power of the channel on the second part of the subframe, specifically for when the terminal performs data transmission on the uplink subframe. And adjusting the transmit power of the data on the uplink subframe. Specifically, the terminal sends the uplink data on the first part of the uplink subframe by using the first power, and then calculates the second power according to the offset and the first power, and sends the uplink subframe by using the second power. Upstream data on the second part.
  • the offset value may be a ratio or a difference; when the power adjustment factor is a difference, the first power is increased or decreased by controlling the positive and negative of the offset value, thereby obtaining the second power.
  • the power adjustment factor is a ratio
  • the first power is increased or decreased by controlling the power ratio to be greater than or less than 1, thereby obtaining the second power.
  • step S201 may include: the access network device determines a cell where the terminal is located; and the access network device determines a corresponding power adjustment factor according to the cell where the terminal is located.
  • S202 The access network device sends a power adjustment factor to the terminal.
  • the S202 may include: the access network device sends a power adjustment factor to the terminal by using high layer signaling or physical layer signaling.
  • the high layer signaling may be RRC signaling, and the physical layer signaling may be DCI signaling.
  • the physical layer signaling physical layer signaling transmitted on the primary carrier (such as the second carrier described above), or The physical layer signaling is physical layer signaling transmitted on the secondary carrier (such as the first carrier described above).
  • the DCI signaling is DCI signaling transmitted on the primary carrier, or the DCI signaling is DCI signaling transmitted on the secondary carrier.
  • S203 The terminal receives a power adjustment factor sent by the access network device.
  • the S203 may include: receiving, by the terminal, a power adjustment factor sent by the access network device by using high layer signaling or physical layer signaling.
  • the terminal obtains, according to the power adjustment factor and the transmit power of the channel of the terminal on the first part of the uplink subframe, the transmit power of the channel of the terminal on the second part of the uplink subframe, where the uplink subframe includes the first part and the second part, And the second part is located after the first part.
  • the terminal After determining the transmit power of the two parts according to the power adjustment factor, the terminal transmits an uplink subframe by using the determined two transmit powers.
  • the two parts of an uplink subframe may be divided according to symbols or time slots, which is not limited herein.
  • the power adjustment factor is used to adjust the transmit power of the channel on the two parts of the uplink subframe, so that the transmit power of the channel on the two parts of the uplink subframe can be adjusted in real time, so that Maximize the power allocation and power efficiency of the channels on the two parts of the uplink subframe.
  • FIG. 8 is a block diagram of a communication device provided by an embodiment of the present application.
  • the communication device can be implemented as a whole or a part of the terminal through a dedicated hardware circuit or a combination of hardware and software.
  • the communication device includes a determining unit 801, a receiving unit 802, and a processing unit 803.
  • the determining unit 801 is configured to determine a first initial transmit power and a second initial transmit power, where the first initial transmit power includes a channel that is transmitted by each first subframe in the M first subframes that is carried by the first carrier.
  • the initial transmit power, the second initial transmit power is the initial transmit power of the channel transmitted in the second subframe carried by the second carrier;
  • the receiving unit 802 is configured to receive the minimum of the channel carried by the first carrier sent by the access network device Guaranteed power information;
  • the processing unit 803 is configured to: when the sum of any of the first initial transmit power and the second initial transmit power is greater than the maximum transmit power of the terminal, according to the first carrier carried by the first carrier
  • the priority ordering of the channel transmitted in the frame and the channel transmitted in the second subframe carried by the second carrier, and the minimum guaranteed power information of the channel carried by the first carrier obtain the first first sub-bearers carried by the first carrier
  • the available transmit power of the channel transmitted in the frame and the available transmit power of the channel transmitted in the second subframe carried by the second carrier, the second subframe on the second carrier and the first N first sub-frame is present on the waves overlap, M first sub-frame N first subframe of the first subframe of the first M, N greater than M, and M, N is a positive
  • the processing unit 803 is configured to:
  • processing unit 803 is configured to:
  • the first initial transmit power and the second initial transmit power are reduced according to the prioritization, and the first available transmit power of the channel transmitted in the N first subframes carried by the first carrier and the second carrier are respectively obtained.
  • a second available transmit power of the channel transmitted in the second subframe the first available transmit power of the channel transmitted in the N first subframes carried by the first carrier and the second subframe being carried in the second subframe.
  • the sum of the second available transmit powers of the transmitted channels is less than or equal to the maximum transmit power.
  • the priority sequence of the channel transmitted in the M first subframes and the channel carried in the second subframe carried by the second carrier carried by the first carrier includes: priority ordering of channel types At least one of a prioritization of UCI carried by the channel and a prioritization of a channel-corresponding carrier.
  • the PRACH When there is a physical random access channel PRACH, the PRACH has the highest priority
  • the priority of the PUCCH is higher than the priority of the PUSCH, or the priority of the PUCCH is higher than the priority of the PUSCH that does not carry the UCI and the PUSCH carrying the UCI The same priority;
  • the priority of carrying the UCI is higher than that of the PUSCH not carrying the UCI;
  • SRS When PRACH, PUCCH, PUSCH, and SRS exist simultaneously, SRS has the lowest priority.
  • the receiving unit 802 is further configured to:
  • the high layer signaling or the physical layer signaling includes a priority ordering rule, and the priority ordering rule is used to determine the bearer of the first carrier
  • the channels transmitted in the M first subframes are prioritized with the channels carried in the second subframe carried by the second carrier.
  • the receiving unit 802 is configured to:
  • the transmission subframe of the first signaling sent by the first carrier overlaps with the transmission subframe of the second signaling sent by the second carrier, and the second signaling carries the second carrier and is carried in the second subframe. Power allocation information for the channel.
  • receiving unit 802 may be implemented by a receiver, or may be implemented by a processor in cooperation with a receiver; the determining unit 801 and the processing unit 803 may be implemented by a processor or the processor may execute program instructions in the memory. achieve.
  • FIG. 9 is a block diagram of a communication apparatus according to another embodiment of the present application.
  • the communication device can be implemented as a whole or a part of the access network device through a dedicated hardware circuit or a combination of hardware and software.
  • the communication device includes a determining unit 901 and a transmitting unit 902.
  • the determining unit 901 is configured to determine minimum guaranteed power information of a channel carried by the first carrier
  • the sending unit 902 is configured to send, to the terminal, minimum guaranteed power information of a channel carried by the first carrier.
  • the sending unit 902 is configured to:
  • the high-level signaling or the physical layer signaling is sent to the terminal by using the first carrier or the second carrier, and the high-layer signaling or the physical layer signaling includes the minimum guaranteed power information of the channel carried by the first carrier.
  • the transmission subframe of the first signaling sent by the first carrier overlaps with the transmission subframe of the second signaling sent by the second carrier, and the second signaling carries the second carrier and is carried in the second subframe. Power allocation information for the channel.
  • the sending unit 902 is further configured to:
  • the high layer signaling or the physical layer signaling includes a priority ordering rule, and the priority ordering rule is used to determine the M number of the first carrier
  • the channel transmitted in one subframe is prioritized with the channel transmitted in the second subframe carried by the second carrier.
  • the priority sequence of the channel transmitted in the M first subframes and the channel carried in the second subframe carried by the second carrier carried by the first carrier includes: priority ordering of channel types At least one of a prioritization of UCI carried by the channel and a prioritization of a channel-corresponding carrier.
  • the PRACH When there is a physical random access channel PRACH, the PRACH has the highest priority
  • the priority of the PUCCH is higher than the priority of the PUSCH, or the priority of the PUCCH is higher than the priority of the PUSCH that does not carry the UCI and the PUSCH carrying the UCI The same priority;
  • the priority of carrying the UCI is higher than that of the PUSCH not carrying the UCI;
  • SRS When PRACH, PUCCH, PUSCH, and SRS exist simultaneously, SRS has the lowest priority.
  • the determining unit 901 may be implemented by a processor or the processor may execute the program instructions in the memory
  • the sending unit 902 may be implemented by a transmitter or by a processor in cooperation with a transmitter.
  • FIG. 10 is a block diagram of a communication device provided by an embodiment of the present application.
  • the communication device can be implemented as a whole or a part of the terminal through a dedicated hardware circuit or a combination of hardware and software.
  • the communication device includes a receiving unit 1001 and a processing unit 1002.
  • the receiving unit 1001 is configured to receive a power adjustment factor sent by the access network device.
  • the processing unit 1002 is configured to obtain, according to the power adjustment factor and the available transmit power of the channel on the first part of the subframe, the available transmit power of the channel on the second part of the subframe, where the subframe includes the first part and the second part, and the second part is located After the first portion, the power adjustment factor is used to determine an offset value of the available transmit power of the channel on the first portion of the subframe and the available transmit power of the channel on the second portion of the subframe.
  • the receiving unit 1001 is configured to:
  • the power adjustment factor is a cell-specific parameter.
  • receiving unit 1001 may be implemented by a receiver, or may be implemented by a processor in cooperation with a receiver; the processing unit 1002 may be implemented by a processor, or the processor may execute a program instruction in a memory.
  • FIG. 11 is a block diagram of a communication device provided by an embodiment of the present application.
  • the message sending device can be implemented as a whole or a part of the access network device through a dedicated hardware circuit or a combination of software and hardware.
  • the communication device includes a determining unit 1101 and a transmitting unit 1102.
  • the determining unit 1101 is configured to determine a power adjustment factor.
  • the sending unit 1102 is configured to send a power adjustment factor to the terminal, where the power adjustment factor is used to enable the terminal to obtain the available transmit power of the channel on the second part of the subframe according to the power adjustment factor and the available transmit power of the channel on the first part of the subframe.
  • Frame package Include the first part and the second part, and the second part is located after the first part, the power adjustment factor is used to determine the available transmit power of the channel on the first part of the subframe and the offset value of the available transmit power of the channel on the second part of the subframe .
  • the sending unit 1102 is configured to:
  • the power adjustment factor is sent to the terminal through high layer signaling or physical layer signaling.
  • the power adjustment factor is a cell-specific parameter.
  • the foregoing determining unit 1101 may be implemented by a processor, or the processor may execute the program instructions in the memory; the sending unit 1102 may be implemented by a transmitter, or the processor may be implemented by using a transmitter.
  • FIG. 12 is a structural diagram of a communication chip provided by an embodiment of the present application, which is applied to a mobile communication system device, such as the foregoing access network device or terminal.
  • the communication chip includes a processor 1210, a memory 1220, and a communication interface 1230.
  • the processor 1210 is coupled to the memory 1220 and the communication interface 1230 via a bus, respectively.
  • Communication interface 1230 is used to communicate with other communication devices.
  • Processor 1210 includes one or more processing cores.
  • the processor 1210 runs an operating system or application module.
  • the memory 1220 can store an operating system 1222, an application module 1224 required for at least one function.
  • the application module 1224 includes a receiving module 1224a, a processing module 1224b, and a sending module 1224c.
  • the receiving module 1224a is configured to implement steps related to receiving;
  • the processing module 1224b is configured to implement steps related to computing or processing;
  • the transmitting module 1224c is configured to implement steps related to transmitting.
  • memory 1220 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable In addition to Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk
  • Optical Disk Optical Disk
  • FIG. 12 does not constitute a limitation of the above-described communication chip, and may include more or less components or combinations of certain components, or different component arrangements.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种功率分配方法、功率调整方法、终端和接入网设备,属于通信技术领域。所述方法包括:终端确定第一初始发射功率和第二初始发射功率;接收接入网设备发送的第一载波承载的信道的最小保证功率信息;当第一初始发射功率中的任一初始发射功率与第二初始发射功率之和大于最大发射功率时,根据第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序以及最小保证功率信息,得到第一载波承载的在N个第一子帧中传输的信道的可用发射功率和第二载波承载的在第二子帧中传输的信道的可用发射功率,第二子帧与N个第一子帧存在交叠,M个第一子帧为N个第一子帧中的前M个第一子帧。

Description

功率分配方法、功率调整方法、终端和接入网设备 技术领域
本申请涉及通信技术领域,特别涉及一种功率分配方法、功率调整方法、终端和接入网设备。
背景技术
高级长期演进(Long Term Evolution–Advanced,简称“LTE-A”)系统是第三代合作伙伴计划(3rd Generation Partnership Project,简称“3GPP”)长期演进(Long Term Evolut ion,简称“LTE”)系统的进一步演进和增强系统。在LTE-A系统中,为了满足国际电信联盟对于第四代通信技术的峰值数据速率要求引入了载波聚合(Carrier Aggregation,简称“CA”)技术,也称频谱聚合(Spectrum Aggregation)技术或者带宽扩展(Bandwidth Extension)技术。载波聚合中,两个或更多的成员载波(Component Carrier)的频谱被聚合在一起以得到更宽的传输带宽。
在载波聚合场景下,不同载波上的上行子帧会存在交叠的现象,这种现象的形成主要包括以下两种情况(下述描述均以两个载波为例,实际可以包括多个载波):
第一种情况,第一载波上的上行子帧和第二载波上的上行子帧的长度相差较大,使得第二载波上的一个上行子帧对应第一载波上的多个上行子帧。具体地,在5G高频场景下,不同载频下的最小传输时间粒度(即传输数据的最小时间单元)不同,例如,高频28GHz的一个子帧长度为0.3ms,而低频2GHz的一个子帧长度可设置为1ms,从而使得一个低频子帧对应了多个高频子帧。
第二种情况,第一载波上的上行子帧和第二载波上的上行子帧的长度相近或相同,但由于第一载波上的上行子帧和第二载波上的上行子帧起始时间不同,从而使得第一载波上的上行子帧和第二载波上的上行子帧之间位置出现偏差,导致第二载波上的一个上行子帧和第一载波上的两个上行子帧之间存在交叠。具体地,两个载波属于两个定时提前组(Timing Advance Group,简称“TAG”),导致两个载波上的上行发送信道的定时提前量不同,进而导致两个载波上的上行子帧的起始时间不同并会存在交叠。
而终端在通过两个载波的上行子帧传输上行数据前,要为对应的上行子帧的信道分配功率,通常的功率分配方法是根据下行控制信息(Downlink Control Information,简称“DCI”)确定每个上行子帧需要的信道发射功率(也即上行子帧中传输的信道的发射功率),然后根据两个载波在交叠的上行子帧上的信道的优先级,确定两个载波在交叠的上行子帧上的信道的发射功率。具体地,在进行功率分配之前,终端可以获得分别与两个载波对应的两个DCI。对于第二载波而言,根据其对应的DCI即可确定需要进行功率分配的一个上行子帧上的待传输信道的信息,包括功率分配信息等,而对于第一载波而言,在获得第二载波对应的DCI时,可能只能获得与第二载波的这个上行子帧发生重叠的第一载波的前若干个(或一个)上行子帧上的信道的信息,而不包括第一载波的后若干个(或一个)上行子 帧上的信道的信息,造成根据所述两个载波交叠的上行子帧上的信道的优先级进行功率分配时,无法考虑第一载波在所述两个载波交叠的后若干个(或一个)上行子帧上的信道需要的发射功率。
由于上述原因,使得按照上述方案分配的功率可能不满足第一载波的后若干个(或一个)上行子帧上的信道的发射功率需求。
另外,在第二载波的一个上行子帧(长子帧)与第一载波的多个上行子帧(短子帧)存在交叠的场景中,可能由于其中一个短子帧所要分配的功率较多,导致整个长子帧的功率分配不能被有效满足的情况。
发明内容
为了解决现有技术中第一载波和第二载波的上行子帧存在交叠时,功率分配不合理的问题,本发明实施例提供了一种功率分配方法、功率调整方法、终端和接入网设备。所述技术方案如下:
第一方面,本发明实施例提供了一种功率分配方法,所述方法包括:
终端确定第一初始发射功率和第二初始发射功率,所述第一初始发射功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,所述第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率;
所述终端接收接入网设备发送的所述第一载波承载的信道的最小保证功率信息;
当所述第一初始发射功率中的任一初始发射功率与所述第二初始发射功率之和大于所述终端的最大发射功率时,所述终端根据所述第一载波承载的在M个第一子帧中传输的信道与所述第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,所述第二载波上的所述第二子帧与所述第一载波上的所述N个第一子帧存在交叠,所述M个第一子帧为所述N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
本申请通过在一个载波的上行子帧与另一个载波的多个上行子帧间存在交叠时,通过为交叠区域的后半部分预留最小保证功率,从而使得在进行两个载波间的上行功率分配时可以考虑到交叠区域的后半部分的功率需求,进而使得交叠区域的后半部分的上行子帧上的数据传输性能得到保证,实现了上行数据传输的功率效率和数据传输性能的最大化。
在第一方面的第一种可能的实现方式中,所述终端根据所述第一载波承载的在M个第一子帧中传输的信道与所述第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,包括:
所述终端根据所述第一载波承载的信道的最小保证功率信息得到最小保证功率;
所述终端根据所述第一载波承载的在M个所述第一子帧中传输的信道与所述第二载波承载的在所述第二子帧中传输的信道的优先级排序,得到所述第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率以及所述第二载波承载的在第二子帧中传输的信道的第二可用发射功率;
所述终端根据所述第一可用发射功率和所述第二可用发射功率中的至少一个以及所述最小保证功率,确定所述第一载波承载的在N个第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率中的至少一个。
在该实现方式中,先根据第一载波承载的在M个所述第一子帧中传输的信道与所述第二载波承载的在所述第二子帧中传输的信道的优先级排序,确定第一可用发射功率和所述第二可用发射功率,保证优先级高的信道能够优先获得功率分配,而在完成上述步骤后,在根据第一可用发射功率、所述第二可用发射功率及最小保证功率再次进行功率分配,保证第一载波承载的在N个所述第一子帧中传输的信道的功率的合理性。
结合第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述终端根据所述第一载波承载的在M个第一子帧中传输的信道与所述第二载波承载的在第二子帧中传输的信道的优先级排序,得到所述第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率以及所述第二载波承载的在第二子帧中传输的信道的第二可用发射功率,包括:
基于所述优先级排序,对所述第一初始发射功率与所述第二初始发射功率进行缩减,分别得到所述第一载波承载的在所述N个第一子帧中传输的信道的第一可用发射功率与所述第二载波承载的在所述第二子帧中传输的信道的第二可用发射功率,所述第一载波承载的在所述N个第一子帧中每一个第一子帧上传输的信道的第一可用发射功率与所述第二载波承载的在所述第二子帧中传输的信道的第二可用发射功率之和小于或等于所述最大发射功率。
在该实现方式中,按照优先级排序对第一初始发射功率与所述第二初始发射功率进行缩减,保证最终分配给两个载波的信道发射功率不超过终端的最大发射功率。
具体地,对优先级低的信道的初始发射功率进行缩减,直到第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率与第二载波承载的在第二子帧中传输的信道的第二可用发射功率之和小于或等于最大发射功率。
或者,对不同优先级的信道的按照不同的缩减比例对各自的初始发射功率进行缩减(优先级低的缩减比例大于优先级高的缩减比例),直到第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率与第二载波承载的在第二子帧中传输的信道的第二可用发射功率之和小于或等于最大发射功率。
结合第一方面或其第一种可能的实现方式或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一载波承载的在M个所述第一子帧中传输的信道与第二载波承载的在所述第二子帧中传输的信道的优先级排序包括:信道类型的优先级排序,信道携带的UCI的优先级排序和信道对应载波的优先级排序中的至少一种。
在该实现方式中,优先级排序包括多种不同的组合方式,使得终端在不同场景下可以采用不同的优先级排序方式进行功率分配。
结合第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述信道类型的优先级排序包括以下至少一种:
当存在有物理随机接入信道PRACH时,PRACH的优先级最高;
当物理上行控制信道PUCCH和物理上行共享信道PUSCH同时存在时,PUCCH的优先级高于PUSCH的优先级,或者,PUCCH的优先级高于未携带UCI的PUSCH的优先级且和携带UCI的PUSCH的优先级相同;
当携带上行控制信息UCI的PUSCH和未携带UCI的PUSCH同时存在时,携带UCI的优先级高于未携带UCI的PUSCH;
在PRACH、PUCCH、PUSCH和探测参考信号SRS同时存在时,SRS的优先级最低。
具体地,信道携带的UCI的优先级排序包括以下至少一种:
当存在有信道状态信息和调度请求时,信道状态信息的优先级低于调度请求的优先级;
当存在有混合自动重传请求信息和调度请求时,混合自动重传请求信息的优先级高于或等于调度请求的优先级。
具体地,信道对应载波的优先级排序包括:
基于载波的索引序号确定的优先级排序、高层配置的载波优先级排序、基于载波的双工方式确定的优先级排序、基于载波的无线资源连接RRC连接情况确定的优先级排序和基于载波对应的传输点确定的优先级排序中的至少一种。
其中,基于载波的RRC连接情况确定的优先级排序包括以下至少一种:
支持RRC连接的载波的优先级高于不支持RRC连接的载波的优先级;
承载RRC信息的载波的优先级高于不承载RRC信息的载波的优先级。
在上述实现方式中,信道类型的优先级排序包括多种不同的组合方式,使得终端在不同场景下可以采用不同的信道类型的优先级排序方式进行功率分配。
结合第一方面或其第一种可能的实现方式或第二种可能的实现方式,在第一方面的第五种可能的实现方式中,所述方法还包括:
所述终端接收所述接入网设备通过所述第一载波或所述第二载波发送的高层信令或物理层信令,所述高层信令或物理层信令包括优先级排序规则,所述优先级排序规则用于确定所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
在该实现方式中,接入网设备通过所述第一载波或所述第二载波发送的高层信令或物理层信令,向终端传输的优先级排序规则,保证终端可以根据优先级排序规则顺利完成功率分配。
其中,高层信令可以为无线资源控制信令,物理层信令可以为下行控制信息信令。
结合第一方面或其第一种可能的实现方式或第二种可能的实现方式,在第一方面的第六种可能的实现方式中,所述终端接收接入网设备发送的第一载波承载的信道的最小保证功率信息,包括:
所述终端接收所述接入网设备通过所述第一载波或所述第二载波发送的第一信令,所述第一信令为携带所述第一载波承载的信道的最小保证功率信息的高层信令或物理层信令。
在该实现方式中,接入网设备通过所述第一载波或所述第二载波发送的信令,向终端传输的最小保证功率信息,保证终端可以根据最小保证功率信息顺利完成功率分配。
结合第六种可能的实现方式,在第一方面的第七种可能的实现方式中,通过所述第一载波发送的所述第一信令的传输子帧与通过所述第二载波发送的第二信令的传输子帧存在交叠,所述第二信令携带所述第二载波在第二子帧中承载的信道的功率分配信息。
在该实现方式中,传输最小保证功率信息的第一信令和携带所述第二载波在第二子帧中承载的信道的功率分配信息的第二信令交叠,保证在功率分配开始时,终端能够获取到 最小保证功率信息。
可选地,该方法还可以包括:终端按照第一载波承载的在N个第一子帧中传输的信道的可用发射功率发射第一载波承载的在N个第一子帧中传输的信道,按照第二载波承载的在第二子帧中传输的信道的可用发射功率发射第二载波承载的在第二子帧中传输的信道。
第二方面,本发明实施例提供了一种功率调整方法,所述方法包括:
终端接收接入网设备发送的功率调整因子;
所述终端根据所述功率调整因子和子帧第一部分上的信道的可用发射功率得到所述子帧第二部分上的信道的可用发射功率,所述子帧包括所述第一部分和所述第二部分,且所述第二部分位于所述第一部分之后,所述功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值。
本申请通过在数据传输过程中,采用功率调整因子对子帧的两个部分上的信道的发射功率进行调整,使得子帧上的信道的发射功率可以实时调整,可以最大化子帧上的信道的功率分配和功率效率。
其中,偏移值可以为比值或差值;当功率调整因子为差值时,通过控制偏移值的正负来实现增大或者减小第一功率,从而得到第二功率。当功率调整因子为比值时,通过控制功率比值大于或小于1来实现增大或者减小第一功率,从而得到第二功率。
在第二方面的第一种可能的实现方式中,所述终端接收接入网设备发送的功率调整因子,包括:
所述终端接收所述接入网设备通过高层信令或物理层信令发送的所述功率调整因子。
其中,高层信令可以为RRC信令,物理层信令可以为DCI信令。
结合第二方面或其第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述功率调整因子是小区特定的参数。
第三方面,本发明实施例提供了一种功率分配方法,所述方法包括:
接入网设备确定第一载波承载的信道的最小保证功率信息;
所述接入网设备向终端发送所述第一载波承载的信道的最小保证功率信息,所述最小保证功率信息用于使所述终端当第一初始发射功率中的任一初始发射功率与第二初始发射功率之和大于所述终端的最大发射功率时,根据所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,所述第一初始发射功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,所述第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率,所述第二载波上的所述第二子帧与所述第一载波上的所述N个第一子帧存在交叠,所述M个第一子帧为所述N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
在第三方面的第一种可能的实现方式中,所述接入网设备向终端发送所述第一载波承载的信道的最小保证功率信息,包括:
所述接入网设备通过所述第一载波或所述第二载波向所述终端发送高层信令或物理层信令,所述高层信令或物理层信令包括所述第一载波承载的信道的最小保证功率信息。
结合第一种可能的实现方式,在第三方面的第二种可能的实现方式中,通过所述第一载波发送的所述第一信令的传输子帧与通过所述第二载波发送的第二信令的传输子帧存在交叠,所述第二信令携带所述第二载波在第二子帧中承载的信道的功率分配信息。
结合第三方面或其第一种可能的实现方式或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述方法还包括:
所述接入网设备通过所述第一载波或所述第二载波向所述终端发送高层信令或物理层信令,所述高层信令或物理层信令包括优先级排序规则,所述优先级排序规则用于确定所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
结合第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序包括:信道类型的优先级排序,信道携带的UCI的优先级排序和信道对应载波的优先级排序中的至少一种。
结合第四种可能的实现方式,在第三方面的第五种可能的实现方式中,所述信道类型的优先级排序包括以下至少一种:
当存在有物理随机接入信道PRACH时,PRACH的优先级最高;
当物理上行控制信道PUCCH和物理上行共享信道PUSCH同时存在时,PUCCH的优先级高于PUSCH的优先级,或者,PUCCH的优先级高于未携带UCI的PUSCH的优先级且和携带UCI的PUSCH的优先级相同;
当携带上行控制信息UCI的PUSCH和未携带UCI的PUSCH同时存在时,携带UCI的优先级高于未携带UCI的PUSCH;
在PRACH、PUCCH、PUSCH和SRS同时存在时,SRS的优先级最低。
第四方面,本发明实施例提供了一种功率调整方法,所述方法包括:
接入网设备确定功率调整因子;
所述接入网设备向终端发送所述功率调整因子,所述功率调整因子用于使所述终端根据所述功率调整因子和子帧第一部分上的信道的可用发射功率得到所述子帧第二部分上的信道的可用发射功率,所述子帧包括所述第一部分和所述第二部分,且所述第二部分位于所述第一部分之后,所述功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值。
在第四方面的第一种可能的实现方式中,所述接入网设备向终端发送所述功率调整因子,包括:
所述接入网设备通过高层信令或物理层信令向所述终端发送所述功率调整因子。
结合第四方面或其第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述功率调整因子是小区特定的参数。
第五方面,本发明实施例提供了一种通信装置,所述装置包括用于实现上述第一方面 所述的方法的单元,例如确定单元、接收单元、处理单元。
第六方面,本发明实施例提供了一种通信装置,所述装置包括用于实现上述第二方面所述的方法的单元,例如接收单元、处理单元。
第七方面,本发明实施例提供了一种通信装置,所述装置包括用于实现上述第三方面所述的方法的单元,例如确定单元、发送单元。
第八方面,本发明实施例提供了一种通信装置,所述装置包括用于实现上述第四方面所述的方法的单元,例如确定单元、发送单元。
第九方面,本发明实施例提供了一种通信系统,所述系统包括:终端和接入网设备,所述终端包括如上述第五方面或第六方面所提供的通信装置,所述接入网设备包括如上述第七方面或第八方面所提供的通信装置。
第十方面,本发明实施例提供了一种终端,所述终端包括处理器、存储器以及收发器;所述处理器、存储器以及收发器通过总线耦合;所述存储器用于存储程序指令,所述处理器通过执行存储在所述存储器内的程序指令使得所述接入网设备能够执行第一方面或第二方面所述的方法。
第十一方面,本发明实施例还提供了一种计算机可读介质,用于存储供接入网设备执行的程序代码,所述程序代码包括执行第一方面或第二方面所述的方法的指令。
第十二方面,本发明实施例提供了一种接入网设备,所述接入网设备包括处理器、存储器以及收发器;所述处理器、存储器以及收发器通过总线耦合;所述存储器用于存储程序指令,所述处理器通过执行存储在所述存储器内的程序指令使得所述终端能够执行第三方面或第四方面所述的方法。
第十三方面,本发明实施例还提供了一种计算机可读介质,用于存储供终端执行的程序代码,所述程序代码包括执行第三方面或第四方面所述的方法的指令。
第十四方面,本发明实施例还提供了一种通信芯片,应用在移动通信系统设备中,所述通信芯片包括:处理器、存储器以及通信接口;所述处理器、存储器以及通信接口通过总线耦合,所述存储器用于存储程序指令,所述处理器通过执行存储在所述存储器内的程序指令使得装载有所述通信芯片的通信系统设备能够执行如上述第一方面或第二方面或第三方面或第四方面中任意一种可能的实施方式提供的方法。
附图说明
图1是本发明实施例提供的一种通信系统的架构示意图;
图2是本发明实施例提供的另一种通信系统的架构示意图;
图3是本发明实施例提供的各信道的时序图;
图4是本发明实施例提供的一种终端的硬件结构示意图;
图5是本发明实施例提供的一种接入网设备的硬件结构示意图;
图6是本发明实施例提供的一种功率分配方法流程图;
图6A是本发明实施例提供各信道的时序图;
图7是本发明实施例提供的一种功率调整方法流程图;
图8是本发明实施例提供的一种通信装置的结构示意图;
图9是本发明实施例提供的另一种通信装置的结构示意图;
图10是本发明实施例提供的另一种通信装置的结构示意图;
图11是本发明实施例提供的另一种通信装置的结构示意图;
图12是本发明实施例提供的一种通信芯片的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1和图2示出了本发明实施例提供的通信系统的结构示意图。该通信系统可以是LTE系统或5G系统。该通信系统包括:至少一个终端120和至少一个基站140。
图1和图2示出的通信系统分别对应两种不同的应用场景。为便于对本发明实施例提供的技术方案的理解,首先结合图1和图2介绍一下本申请的应用场景。
第一种应用场景(参见图1):接入网设备(如基站)间的载波聚合场景
终端120同时与两个接入网设备140进行数据传输,实现载波聚合。如图1所示,终端120通过载波A向一个接入网设备140传输上行数据,终端120通过载波B向另一个接入网设备140传输上行数据。这种场景下,两个接入网设备140之间包括可以实时进行数据交互(理想回传)和不可以实时进行数据交互(非理想回传)两种情况。上行数据和所述下行数据分别以载波A(或载波B)的上行子帧和下行子帧作为载体进行传输。
如果载波A和载波B属于2个不同的TAG,由于不同的TAG定时提前量不同,终端120向两个接入网设备140发送上行数据的子帧的起始时间不同,因此,无论两个子帧的长度相差较大或较小,两个接入网设备对应的上行子帧间均存在不对齐和/或重叠的时间。或存在一个接入网设备对应的一个上行子帧和另一个接入网设备对应的至少两个上行子帧间存在交叠的情况。
如果载波A和载波B属于2相同的TAG,由于相同的TAG定时提前量相同,终端120向两个接入网设备140发送上行数据的上行子帧的起始时间相同,因此,只有两个子帧的长度相差较大时,两个上行子帧间才存在不对齐和/或重叠的时间。或存在一个接入网设备对应的一个上行子帧和另一个接入网设备对应的至少两个上行子帧间存在交叠的情况。
第二种应用场景(参见图2):单接入网设备载波聚合
终端120通过两个以上载波进行数据传输,实现载波聚合。如图2所示,终端120同时通过载波A和B向接入网设备140传输上行数据。
如果载波A和载波B属于2个不同的TAG,由于不同的TAG定时提前量不同,终端120 向接入网设备140发送上行数据的上行子帧的起始时间不同,因此,无论两个子帧的长度相差较大或较小,两个接入网设备对应的上行子帧间均存在不对齐和/或重叠的时间。或存在一个接入网设备对应的一个上行子帧和另一个接入网设备对应的至少两个上行子帧间存在交叠的情况。
如果载波A和载波B属于两个相同的TAG,由于相同的TAG定时提前量相同,终端120向接入网设备140发送上行数据的上行子帧的起始时间相同,因此,只有两个子帧的长度相差较大时,两个接入网设备对应的上行子帧间均存在不对齐和/或重叠的时间。或存在一个接入网设备对应的一个上行子帧和另一个接入网设备对应的至少两个上行子帧间存在交叠的情况。
下面结合图3对两个子帧的长度相差较大的情况进行说明。如图3所示,终端通过低频载波(Low Frequency Carrier)和高频载波(High Frequency Carrier)与接入网设备实现载波聚合传输,低频载波上的子帧的长度大于高频载波上的子帧的长度,低频载波上的子帧为长子帧,高频载波上的子帧为短子帧,低频载波上的一个长子帧与高频载波上的多个短子帧发生交叠。
终端为长子帧i和与其存在交叠的多个短子帧分配发射功率时,需要知道这些短子帧所需要的信道发射功率,而每个短子帧所需要的信道发射功率通常通过DCI中携带的信息(例如调度决策和功率控制命令)确定。如图3所示,终端在t时刻为长子帧i和与其存在交叠的短子帧(i 1到iN)分配发射功率,此时终端接收到的DCI包括DCI 1和DCI2,其中DCI 1携带有用于确定长子帧i的信道发射功率的信息,而DCI2仅携带有用于确定与长子帧i存在交叠的N个短子帧中前M个短子帧的信道发射功率的信息,而用于确定后N-M个短子帧的信道发射功率的信息携带在DCI 3中,因此按照传统方式在t时刻进行功率分配就无法考虑到后N-M个短子帧的功率需求。
另外,在一些场景中如果仅按照现有的方式进行功率分配,也会对长子帧的发射功率造成影响。
例如,在动态时分双工(Time Division Duplexing,简称“TDD”)中,与长子帧存在交叠的多个短子帧中可能前2个短子帧是上行子帧,所需信道发射功率较大,而后若干个短子帧为下行子帧,所需信道发射功率较小;若短子帧的信道的优先级高于长子帧,按照现有的功率分配方式,由于在功率受限时优先将功率分配给了交叠区域的短子帧,从而导致可分配给长子帧上的上行数据可能达不到所需的信道发射功率,而短子帧上的上行数据传输所分配到的信道发射功率,在多数时间内均超过其实际所需的信道发射功率,最终造成短子帧上的上行数据传输的发射功率的浪费和长子帧上的上行数据传输的功率分配的不足。
本申请的所有实施例既适用于第一种应用场景也适用于第二种应用场景。
下面结合具体的硬件结构对实现本发明实施例提供的终端和接入网设备进行说明。
图4示出了实现本发明实施例提供的一种终端120的硬件结构。如图4所示,该终端120包括:处理器21、收发器22、存储器23。
处理器21包括一个或者一个以上处理核心,处理器21通过运行软件程序以及模块, 从而执行各种功能应用以及信息处理。
收发器22包括接收机Rx和发射机Tx,收发器22还可以实现成为一通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制解调,并通过无线信号接收或发送该信息。
收发器22、存储器23以及处理器21通过总线耦合。存储器23可用于存储软件程序以及模块。存储器可存储操作系统24、至少一个功能所述的应用程序模块25。
应用程序模块25至少包括:用于确定信息的确定模块250、用于接收信息的接收模块251和用于处理信息的处理模块252。确定模块250用于确定第一初始发射功率和第二初始发射功率,所述第一初始发射功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,所述第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率;接收模块251,用于接收接入网设备发送的所述第一载波承载的信道的最小保证功率信息;处理模块252,用于当所述第一初始发射功率中的任一初始发射功率与所述第二初始发射功率之和大于所述终端的最大发射功率时,根据所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,所述第二载波上的所述第二子帧与所述第一载波上的所述N个第一子帧存在交叠,所述M个第一子帧为所述N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
可选地,处理器21用于执行应用程序模块25中的各个模块,实现如图6中由终端所需要执行的步骤。
或者,接收模块251,用于接收接入网设备发送的功率调整因子;处理模块252,用于根据所述功率调整因子和子帧第一部分上的信道的可用发射功率得到所述子帧第二部分上的信道的可用发射功率,所述子帧包括所述第一部分和所述第二部分,且所述第二部分位于所述第一部分之后,所述功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值。
相应地,处理器21用于执行应用程序模块25中的各个模块,实现如图7中由终端所需要执行的步骤。
此外,存储器23是一种计算机可读存储介质,可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员可以理解,图4中所示出的终端120的结构并不构成对终端的限定,可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
图5示出了实现本发明实施例提供的一种接入网设备140的硬件结构。参见图5,该接入网设备140包括:处理器31、收发器32、存储器33。
处理器31包括一个或者一个以上处理核心,处理器31通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器32包括接收机Rx和发射机Tx,收发器32还可以实现成为一通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制解调,并通过无线信号接收或发送该信息。
收发器32、存储器33以及处理器31通过总线耦合。存储器33可用于存储软件程序以及模块。存储器可存储操作系统34、至少一个功能所述的应用程序模块35。应用程序模块35至少包括:用于确定信息的确定模块351和用于发送信息的发送模块352。确定模块351,用于确定第一载波承载的信道的最小保证功率信息;发送模块352,用于向终端发送所述第一载波承载的信道的最小保证功率信息,所述最小保证功率信息用于使所述终端当第一初始发射功率中的任一初始发射功率与第二初始发射功率之和大于所述终端的最大发射功率时,根据所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,所述第一初始发射功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,所述第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率,所述第二载波上的所述第二子帧与所述第一载波上的所述N个第一子帧存在交叠,所述M个第一子帧为所述N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
可选地,处理器31用于执行应用程序模块35中的各个模块,实现如图6中由接入网设备所需要执行的步骤。
或者,确定模块351,用于确定功率调整因子;发送模块352,用于向终端发送所述功率调整因子,所述功率调整因子用于使所述终端根据所述功率调整因子和子帧第一部分上的信道的可用发射功率得到所述子帧第二部分上的信道的可用发射功率,所述子帧包括所述第一部分和所述第二部分,且所述第二部分位于所述第一部分之后,所述功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值。
相应地,处理器31用于执行应用程序模块35中的各个模块,实现如图7中由接入网设备所需要执行的步骤。
此外,存储器33是一种计算机可读介质,可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员可以理解,图5中所示出的接入网设备140的结构并不构成对接入网设备的限定,可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
参见图6,其示出了本发明实施例提供的一种功率分配方法,该方法采用图1或图2所示的系统实现,该方法包括:
S100:终端确定第一初始发射功率和第二初始发射功率,第一初始发射功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率。
在功率分配前,终端会接收到DCI(例如图3中的DCI 1和DCI2),其中DCI 1携带有用于确定长子帧i的信道发射功率的信息,而DCI2仅携带有用于确定与长子帧i存在交叠的N个短子帧中前M个短子帧的信道发射功率的信息。终端根据上述DCI确定第一初始发射功率和第二初始发射功率。
S101:接入网设备确定第一载波承载的信道的最小保证功率信息。
其中,第一载波承载的信道的最小保证功率信息可以为最小保证功率与最大发射功率的比值的索引。
其中,第一载波承载的信道的最小保证功率大于或等于0,且最小保证功率与最大发射功率PCMAX的比值可以是百分比(in%)。
例如,第一载波承载的信道的最小保证功率与最大发射功率的比值可以为下面列举的候选取值中的任意一个:0%,5%,10%,15%,20%,30%,37%,44%,50%,56%,63%,70%,80%,90%,95%,100%。根据最小保证功率信息中的索引确定第一载波承载的信道的最小保证功率,例如索引为6,则对应的最小保证功率与最大发射功率的比值为30%,则根据最大发射功率即可计算出最小保证功率。
在确定第一载波承载的信道的最小保证功率信息时,可选地,接入网设备可以根据在交叠的若干个上行短子帧上的待传输数据的类型和优先级,确定第一载波承载的信道的最小保证功率信息。
其中,接入网设备可以根据交叠的若干个上行短子帧上的待传输数据类型确定第一载波承载的信道的最小保证功率信息。具体地,当交叠的若干个上行短子帧上的待传输数据中的信道优先级较高(例如优先级最高的若干种数据类型)时,第一载波承载的信道的最小保证功率与最大发射功率的比值可以大于或等于设定值(如50%)。例如,当在交叠的若干个上行短子帧上的待传输数据类型中有物理随机接入信道时,考虑到物理随机接入信道的优先级较高,因此所述第一载波承载的信道的最小保证功率信息可以为大于等于50%的上述候选取值中的任意一个。
在一种实现方式中,步骤S101中所指的第一载波承载的信道的最小保证功率信息,仅用于终端在有效期内为第一载波在交叠的若干个上行子帧上的上行数据分配功率时使用,该有效期可以是次数(例如一次或几次),也可以是时间(例如一段时间内)。
在另一种实现方式中,步骤S101中所指的第一载波承载的信道的最小保证功率信息可以用于终端在任意一次为第一载波在交叠的若干个上行子帧上的功率分配使用。
S102:接入网设备向终端发送第一载波承载的信道的最小保证功率信息。
实现时,S102可以包括:接入网设备向终端发送高层信令或物理层信令,高层信令或物理层信令包括第一载波承载的信道的最小保证功率信息。
其中,高层信令可以为无线资源控制(Radio Resource Control,简称“RRC”)信令,物理层信令可以为DCI信令。
实现时,S102可以包括:接入网设备通过第一载波或第二载波发送第一载波承载的信道的最小保证功率信息。
也就是说,高层信令或物理层信令可以为通过第二载波发送的高层信令或物理层信令,或者高层信令或物理层信令也可以为通过第一载波发送的高层信令或物理层信令。
进一步地,物理层信令为主载波(如上述的第二载波)发送的物理层信令,或者物理 层信令为辅载波(如上述的第一载波)发送的物理层信令。例如,DCI信令为主载波发送的DCI信令,或者DCI信令为辅载波发送的DCI信令。DCI信令可以为一种专用于传输最小保证功率信息的DCI信令(不同于用于进行下行链路授权(DL grant)的DCI信令)。
可选地,接入网设备还通过指示信令向终端发送第一载波承载的在N个第一子帧中的信道的功率分配信息。所述指示信令为承载了第一载波承载的在N个第一子帧中每个第一子帧上的信道的功率分配信息的高层信令或物理层信令。其中,当所述指示信令为物理层信令时,通过第一载波发送的所述第一信令的传输子帧与通过第二载波发送的第二信令的传输子帧存在交叠,第二信令携带第二载波在第二子帧中承载的信道的功率分配信息。
例如,如图3所示,DCI2承载了第一载波承载的在N个第一子帧中的信道的功率分配信息。或者,在DCI2和/或DCI2之前接入网设备向终端发送了2个DCI,两个DCI分别用于指示第一载波承载的在M个第一子帧中的信道的功率分配信息和第一载波承载的在N-M个第一子帧中的信道的功率分配信息。
S103:终端接收接入网设备传输的第一载波承载的信道的最小保证功率信息。
实现时,S103可以包括:终端接收接入网设备通过第一载波或第二载波发送的第一信令,第一信令为携带第一载波承载的信道的最小保证功率信息的高层信令或物理层信令。
其中,通过第一载波发送的第一信令的传输子帧与通过第二载波发送的第二信令的传输子帧存在交叠,第二信令携带第二载波在第二子帧中承载的信道的功率分配信息。
以图3为例,第二信令可以为DCI 1,第一信令可以为DCI2,DCI 1和DCI2的传输子帧间存在交叠。另外,DCI2中携带第一载波承载的信道的最小保证功率信息可以在后述的功率分配中使用。
可选地,终端接收接入网设备通过指示信令发送的第一载波承载的在N个第一子帧中的信道的功率分配信息。
S104:当第一初始发射功率中的任一初始发射功率与第二初始发射功率之和大于终端的最大发射功率时,终端根据第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,以及第一载波承载的信道的最小保证功率信息,得到第一载波承载的在N个第一子帧中传输的信道的可用发射功率和第二载波承载的在第二子帧中传输的信道的可用发射功率。
其中,第二载波上的第二子帧与第一载波上的N个第一子帧存在交叠,M个第一子帧为N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
其中,第一子帧和第二子帧均可以为上行子帧。M个第一子帧的长度相同,但传输的信道可以不同。
进一步地,第二载波上的第二子帧与第一载波上的N个第一子帧的交叠时间大于或等于预设阈值,其中交叠时间是指存在交叠部分的时间长度,阈值可以为一个时间也可以是在N个第一子帧时间长度中所占的比例,例如N个第一子帧时间长度的百分之五十。
例如,参见图6A,低频载波(第二载波)上的一个上行子帧(第二子帧)与高频载波(第一载波)上的3个上行子帧(第一子帧)交叠(例如,低频载波可以是2GHz,高频载波为28GHz;或者,高低频载波可以为其他数值,只要其对应的上行子帧长度之间关系为1比3即可),在进行功率分配时,终端可以根据高频载波上的前2个上行子帧的信道和与其存在交叠的低频载波上的一个上行子帧的信道的优先级以及高频载波上的上行数据传输的 最小保证功率信息,得到高频载波的3个上行子帧上的上行数据传输的发射功率和低频载波上的一个上行子帧上的上行数据传输的发射功率。
实现时,S104可以包括:
S1041:终端根据第一载波承载的信道的最小保证功率信息得到最小保证功率。
以步骤S101中的最小保证功率信息为最小保证功率的索引为例,终端中存储有最小保证功率与最大发射功率的比值的候选取值,在获取到最小保证功率的索引后,根据该索引从这些候选取值中确定出最小保证功率与最大发射功率的比值,然后根据该比值及最大发射功率即可计算出最小保证功率。
S1042:终端根据第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,得到第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率以及第二载波承载的在第二子帧上中传输的信道的第二可用发射功率。
在步骤S1042中,终端为了确定出第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,需要先获取优先级排序规则,优先级排序规则用于确定上行子帧的信道之间的优先级排序。
在一种实现方式中,优先级排序规则可以是事先预定义的,预先存储在终端中,终端在优先级确定时,直接获取即可。
在另一种实现方式中,该优先级排序规则由接入网设备发送给终端。该过程具体可以包括:
第一步:接入网设备将优先级排序规则发送给终端。
实现时,接入网设备可以通过高层信令或物理层信令向终端发送优先级排序规则。
其中,高层信令可以为RRC信令,物理层信令可以为DCI信令。
实现时,接入网设备可以通过第一载波或第二载波将优先级排序规则发送给终端。
也就是说,接入网设备通过第一载波或第二载波向基站发送高层信令或物理层信令,高层信令或物理层信令包括优先级排序规则,优先级排序规则用于确定第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。不同场景有不同的优先级排序规则,接入网设备可根据不同的场景为不同的用户配置不同的优先级排序规则。
进一步地,物理层信令为主载波(如上述的第二载波)发送的物理层信令,或者物理层信令为辅载波(如上述的第一载波)发送的物理层信令。例如,DCI信令为主载波发送的DCI信令,或者DCI信令为辅载波发送的DCI信令。
在本实施例中,信道的优先级排序包括种:
信道的类型的优先级排序、信道携带的上行控制信息(Uplink Control Information,简称“UCI”)的优先级排序、信道对应载波的优先级排序中的至少一种。
具体地,信道类型的优先级排序包括以下至少一种:
当存在有物理随机接入信道(Physical Random Access Channel,简称“PRACH”)时,PRACH的优先级最高;
当物理上行控制信道(Physical Uplink Control Channel,简称“PUCCH”)和物理上行共享信道(Physical Uplink Shared Channel,简称“PUSCH”)同时存在时,PUCCH的优先级高于PUSCH的优先级,或者,PUCCH的优先级高于未携带UCI的PUSCH的优先级且和携带 UCI的PUSCH的优先级相同;
当携带上行控制信息UCI的PUSCH和未携带UCI的PUSCH同时存在时,携带UCI的优先级高于未携带UCI的PUSCH;
在PRACH、PUCCH、PUSCH和探测参考信号(Sounding Reference Signal,简称“SRS”)同时存在时,SRS的优先级最低。
具体地,信道携带的UCI的优先级排序包括以下至少一种:
当存在有信道状态信息和调度请求时,信道状态信息的优先级低于调度请求的优先级;
当存在有混合自动重传请求信息和调度请求时,混合自动重传请求信息的优先级高于或等于调度请求的优先级。
具体地,信道对应载波的优先级排序包括:
基于载波的索引序号确定的优先级排序、高层配置的载波优先级排序、基于载波的双工方式确定的优先级排序、基于载波的无线资源连接RRC连接情况确定的优先级排序和基于载波对应的传输点确定的优先级排序中的至少一种。
其中,基于载波的RRC连接情况确定的优先级排序包括以下至少一种:
支持RRC连接的载波的优先级高于不支持RRC连接的载波的优先级;
承载RRC信息的载波的优先级高于不承载RRC信息的载波的优先级。
上述优先级排序还可以根据实际场景对应设置,例如,在一种场景下,采用主载波传输RACH,辅载波传输确认指令(Acknowledgment,简称“ACK”)(通过PUSCH承载),此时信道类型的优先级排序中PRACH>PUSCH。
进一步地,信道类型的优先级排序可以为:PRACH>PUCCH>PUSCH with UCI>PUSCH without UCI>SRS。即多个载波间的上行信道中随机接入信道的优先级最高,其次为上行控制信道,然后为传输UCI的上行共享信道和不传UCI的上行共享信道,最后为探测参考信号。
在另一种场景下,该场景涉及多波束扫描的场景,具体地:终端将多份随机接入信道(Random Access Channel,简称“RACH”)通过多个波束进行时分发送,以10份RACH为例,在两个载波的上行子帧存在交叠的场景中,如果前6份RACH的发送子帧和第i-1个长子帧交叠,后6份RACH的发送子帧和第i个长子帧交叠,则在为第i个长子帧及交叠的短子帧分配信道发射功率时,信道的类型的优先级排序中RACH的优先级可以小于PUCCH,即PUCCH>PRACH。
在另一种场景下,信道对应载波或小区组的优先级排序可以为:主载波或小区组的任意上行信道的优先级大于或等于辅载波或小区组的任意上行信道的优先级。
实现时,该步骤可以包括:
接入网设备根据即将被调度的数据信道的类型确定对应的优先级排序规则;接入网设备将对应的优先级排序规则发送给终端。
第二步:终端接收接入网设备发送的优先级排序规则。
具体地,终端接收接入网设备通过第一载波或第二载波发送的高层信令或物理层信令,高层信令或物理层信令包括优先级排序规则,优先级排序规则用于确定第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
第三步:终端根据优先级排序规则确定第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
在一种实现方式中,终端根据接收到的优先级排序规则先从第一载波的M个第一子帧中选择出一个第一子帧,然后采用这个第一子帧中传输的信道和第二子帧中传输的信道进行优先级比较。
从第一载波的M个第一子帧中选择一个第一子帧具体包括:选择这M个第一子帧中信道优先级最高的第一子帧。也可以选择这M个第一子帧中信道优先级最低的第一子帧,或者选择这M个第一子帧中信道优先级处于设定排位(例如优先级处于第二)的第一子帧。
在比较两个上行子帧的信道优先级时,根据不同的优先级排序规则有不同的比较方式。
当优先级排序规则只包括前述优先级排序中的一个时,例如只包括信道的类型的优先级排序,此时,如果两个上行子帧的信道的类型相同,则优先级相同。
当优先级排序规则只包括前述优先级排序中的两个以上时,例如包括信道的类型的优先级排序和信道携带的UCI的优先级排序,此时,如果两个上行子帧的信道的类型相同,如均为携带了上行控制信息的信道类型时,则比较信道携带的UCI的优先级。
在获取到优先级排序规则并确定了优先级排序后,即可根据第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,得到第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率以及第二载波承载的在第二子帧上传输的信道的第二可用发射功率,包括:
基于优先级排序,对第一初始发射功率与第二初始发射功率进行缩减,分别得到第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率与第二载波承载的在第二子帧中传输的信道的第二可用发射功率,第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率与第二载波承载的在第二子帧中传输的信道的第二可用发射功率之和小于或等于最大发射功率。
具体地,对优先级低的信道的初始发射功率进行缩减,直到第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率与第二载波承载的在第二子帧中传输的信道的第二可用发射功率之和小于或等于最大发射功率。
或者,对不同优先级的信道的按照不同的缩减比例对各自的初始发射功率进行缩减(优先级低的缩减比例大于优先级高的缩减比例),直到第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率与第二载波承载的在第二子帧中传输的信道的第二可用发射功率之和小于或等于最大发射功率。
S1043:终端根据第一可用发射功率和第二可用发射功率中的至少一个以及最小保证功率,确定第一载波承载的在N个第一子帧中传输的信道的可用发射功率和第二载波承载的在第二子帧中传输的信道的可用发射功率中的至少一个。在步骤S1043中,终端可以根据如下方式确定第一载波承载的在N个第一子帧中传输的信道的可用发射功率:Maximum{P_priority,P_guranteed},P_priority为第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率,P_guranteed为最小保证功率。此时,第二载波承载的在第二子帧中传输的信道的可用发射功率可以为第二可用发射功率。
除了上述取最大值的方案外,还可以采用取最小值或者平均值的方式确定第一载波承载的在N个第一子帧中传输的信道的可用发射功率,这里不做限制。
需要说明的是,最终得到的第一载波承载的在N个第一子帧中传输的信道的可用发射功率和第二载波承载的在第二子帧中传输的信道的可用发射功率之和小于或等于最大发射 功率。
进一步地,该方法还可以包括:终端按照第一载波承载的在N个第一子帧中传输的信道的可用发射功率发射第一载波承载的在N个第一子帧中传输的信道,按照第二载波承载的在第二子帧中传输的信道的可用发射功率发射第二载波承载的在第二子帧中传输的信道。
或者,步骤S1043中只确定出第一载波承载的在N个第一子帧中传输的信道的可用发射功率时,该方法还可以包括:终端按照第一载波承载的在N个第一子帧中传输的信道的可用发射功率发射第一载波承载的在N个第一子帧中传输的信道,按照第二载波承载的在第二子帧中传输的信道的第二可用发射功率发射第二载波承载的在第二子帧中传输的信道。
或者,步骤S1043中只确定出第二载波承载的在第二子帧中传输的信道的可用发射功率时,该方法还可以包括:终端按照第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率发射第一载波承载的在N个第一子帧中传输的信道,按照第二载波承载的在第二子帧中传输的信道的可用发射功率发射第二载波承载的在第二子帧中传输的信道。
本申请通过在一个载波或小区组的上行子帧与另一个载波或小区组的多个上行子帧间存在交叠时,通过为交叠区域的后半部分预留最小保证功率,从而使得在进行两个载波间的上行功率分配时可以考虑到后半部分的功率需求,进而使得交叠区域的后半部分的上行子帧上的数据传输性能得到保证,实现了上行数据传输的功率效率和数据传输性能的最大化。
参见图7,其示出了本发明实施例提供的一种功率调整方法,该方法采用图1或图2所示的系统实现,该方法包括:
S201:接入网设备确定功率调整因子。
其中,功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值,具体用于在终端进行上行子帧上的数据发送时,对该上行子帧上的数据的发射功率进行调整。具体地,终端采用第一功率发送该上行子帧的第一部分上的上行数据,然后采用根据该偏移量和第一功率进行计算得到第二功率,采用第二功率发送该上行子帧的第二部分上的上行数据。
具体地,上述偏移值可以为比值或差值;当功率调整因子为差值时,通过控制偏移值的正负来实现增大或者减小第一功率,从而得到第二功率。当功率调整因子为比值时,通过控制功率比值大于或小于1来实现增大或者减小第一功率,从而得到第二功率。
实现时,功率调整因子是小区特定的参数,即功率调整因子的设置以小区为单位,即功率调整因子是个小区特定的参数。实现时,步骤S201可以包括:接入网设备确定终端所在的小区;接入网设备根据终端所在的小区确定对应的功率调整因子。
S202:接入网设备向终端发送功率调整因子。
实现时,S202可以包括:接入网设备通过高层信令或物理层信令向终端发送功率调整因子。
其中,高层信令可以为RRC信令,物理层信令可以为DCI信令。
进一步地,物理层信令为主载波(如上述的第二载波)上传输的物理层信令,或者物 理层信令为辅载波(如上述的第一载波)上传输的物理层信令。例如,DCI信令为主载波上传输的DCI信令,或者DCI信令为辅载波上传输的DCI信令。
S203:终端接收接入网设备发送的功率调整因子。
实现时,S203可以包括:终端接收接入网设备通过高层信令或物理层信令发送的功率调整因子。
S204:终端根据功率调整因子和终端在上行子帧的第一部分上的信道的发射功率得到终端在上行子帧的第二部分上的信道的发射功率,上行子帧包括第一部分和第二部分,且第二部分位于第一部分之后。
终端根据功率调整因子确定两个部分的发送功率后,将一个上行子帧通过确定出的两种发射功率进行发送。一个上行子帧的两个部分可以按照符号或时隙进行划分,这里不做限定。
本申请通过在数据传输过程中,采用功率调整因子对上行子帧的两个部分上的信道的发射功率进行调整,使得上行子帧的两个部分上的信道的发射功率可以实时调整,从而可最大化上行子帧的两个部分上的信道的功率分配和功率效率。
以下为本发明实施例的装置实施例,对于装置实施例中未详细描述的细节,请参考上述对应的方法实施例。
图8示出了本申请一个实施例提供的通信装置的框图。该通信装置可以通过专用硬件电路,或者,软硬件的结合实现成为终端的全部或一部分。该通信装置包括:确定单元801、接收单元802和处理单元803。其中,确定单元801用于确定第一初始发射功率和第二初始发射功率,第一初始发射功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率;接收单元802用于接收接入网设备发送的第一载波承载的信道的最小保证功率信息;处理单元803用于当第一初始发射功率中的任一初始发射功率与第二初始发射功率之和大于终端的最大发射功率时,根据第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,以及第一载波承载的信道的最小保证功率信息,得到第一载波承载的在N个第一子帧中传输的信道的可用发射功率和第二载波承载的在第二子帧中传输的信道的可用发射功率,第二载波上的第二子帧与第一载波上的N个第一子帧存在交叠,M个第一子帧为N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
其中,处理单元803,用于:
根据第一载波承载的信道的最小保证功率信息得到最小保证功率;
根据第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,得到第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率以及第二载波承载的在第二子帧中传输的信道的第二可用发射功率;
根据第一可用发射功率和第二可用发射功率中的至少一个以及最小保证功率,确定第一载波承载的在N个第一子帧中传输的信道的可用发射功率和第二载波承载的在第二子帧中传输的信道的可用发射功率中的至少一个。
可选地,处理单元803,用于:
基于优先级排序,对第一初始发射功率与第二初始发射功率进行缩减,分别得到第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率与第二载波承载的在第二子帧中传输的信道的第二可用发射功率,第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率与第二载波承载的在第二子帧中传输的信道的第二可用发射功率之和小于或等于最大发射功率。
在本发明实施例中,第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序包括:信道类型的优先级排序,信道携带的UCI的优先级排序和信道对应载波的优先级排序中的至少一种。
其中,信道类型的优先级排序包括以下至少一种:
当存在有物理随机接入信道PRACH时,PRACH的优先级最高;
当物理上行控制信道PUCCH和物理上行共享信道PUSCH同时存在时,PUCCH的优先级高于PUSCH的优先级,或者,PUCCH的优先级高于未携带UCI的PUSCH的优先级且和携带UCI的PUSCH的优先级相同;
当携带上行控制信息UCI的PUSCH和未携带UCI的PUSCH同时存在时,携带UCI的优先级高于未携带UCI的PUSCH;
在PRACH、PUCCH、PUSCH和SRS同时存在时,SRS的优先级最低。
可选地,接收单元802,还用于:
接收接入网设备通过第一载波或第二载波发送的高层信令或物理层信令,高层信令或物理层信令包括优先级排序规则,优先级排序规则用于确定第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
可选地,接收单元802,用于:
接收接入网设备通过第一载波或第二载波发送的第一信令,第一信令为携带第一载波承载的信道的最小保证功率信息的高层信令或物理层信令。
其中,通过第一载波发送的第一信令的传输子帧与通过第二载波发送的第二信令的传输子帧存在交叠,第二信令携带第二载波在第二子帧中承载的信道的功率分配信息。
相关细节可结合参考图6所述的方法实施例。
需要说明的是,上述接收单元802可以由接收机实现,或者,由处理器配合接收机来实现;上述确定单元801和处理单元803可以由处理器实现或者,处理器执行存储器中的程序指令来实现。
图9是本申请另一个实施例提供的通信装置的框图。该通信装置可以通过专用硬件电路,或者,软硬件的结合实现成为接入网设备的全部或一部分。该通信装置包括:确定单元901和发送单元902。其中,确定单元901用于确定第一载波承载的信道的最小保证功率信息;发送单元902用于向终端发送第一载波承载的信道的最小保证功率信息。
具体地,发送单元902,用于:
通过第一载波或第二载波向终端发送高层信令或物理层信令,高层信令或物理层信令包括第一载波承载的信道的最小保证功率信息。
其中,通过第一载波发送的第一信令的传输子帧与通过第二载波发送的第二信令的传输子帧存在交叠,第二信令携带第二载波在第二子帧中承载的信道的功率分配信息。
可选地,发送单元902,还用于:
通过第一载波或第二载波向终端发送高层信令或物理层信令,高层信令或物理层信令包括优先级排序规则,优先级排序规则用于确定第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
在本发明实施例中,第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序包括:信道类型的优先级排序,信道携带的UCI的优先级排序和信道对应载波的优先级排序中的至少一种。
其中,信道类型的优先级排序包括以下至少一种:
当存在有物理随机接入信道PRACH时,PRACH的优先级最高;
当物理上行控制信道PUCCH和物理上行共享信道PUSCH同时存在时,PUCCH的优先级高于PUSCH的优先级,或者,PUCCH的优先级高于未携带UCI的PUSCH的优先级且和携带UCI的PUSCH的优先级相同;
当携带上行控制信息UCI的PUSCH和未携带UCI的PUSCH同时存在时,携带UCI的优先级高于未携带UCI的PUSCH;
在PRACH、PUCCH、PUSCH和SRS同时存在时,SRS的优先级最低。
相关细节可结合参考图6所述的方法实施例。
需要说明的是,确定单元901可以由处理器来实现或者,处理器执行存储器中的程序指令来实现,发送单元902可以由发射机实现,或者,由处理器配合发射机来实现。
图10示出了本申请一个实施例提供的通信装置的框图。该通信装置可以通过专用硬件电路,或者,软硬件的结合实现成为终端的全部或一部分。该通信装置包括:接收单元1001和处理单元1002。其中,接收单元1001,用于接收接入网设备发送的功率调整因子。处理单元1002,用于根据功率调整因子和子帧第一部分上的信道的可用发射功率得到子帧第二部分上的信道的可用发射功率,子帧包括第一部分和第二部分,且第二部分位于第一部分之后,功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值。
在一种实现方式中,接收单元1001,用于:
接收接入网设备通过高层信令或物理层信令发送的功率调整因子。
其中,功率调整因子是小区特定的参数。
相关细节可结合参考图7所述的方法实施例。
需要说明的是,上述接收单元1001可以由接收机实现,或者,由处理器配合接收机来实现;上述处理单元1002可以由处理器来实现,或者,处理器执行存储器中的程序指令来实现。
图11示出了本申请一个实施例提供的通信装置的框图。该消息发送装置可以通过专用硬件电路,或者,软硬件的结合实现成为接入网设备的全部或一部分。该通信装置包括:确定单元1101和发送单元1102。其中,确定单元1101,用于确定功率调整因子。发送单元1102,用于向终端发送功率调整因子,功率调整因子用于使终端根据功率调整因子和子帧第一部分上的信道的可用发射功率得到子帧第二部分上的信道的可用发射功率,子帧包 括第一部分和第二部分,且第二部分位于第一部分之后,功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值。
在一种实现方式中,发送单元1102,用于:
通过高层信令或物理层信令向终端发送功率调整因子。
其中,功率调整因子是小区特定的参数。
相关细节可结合参考图7所述的方法实施例。
需要说明的是,上述确定单元1101可以由处理器来实现,或者,处理器执行存储器中的程序指令来实现;上述发送单元1102可以由发射机实现,或者处理器配合发射机来实现。
图12示出了本申请一个实施例提供的通信芯片的结构图,应用在移动通信系统设备中,例如前述接入网设备或终端。该通信芯片包括:处理器1210、存储器1220和通信接口1230。处理器1210通过总线分别与存储器1220和通信接口1230相连。
通信接口1230用于与实现其它通信设备之间的通信。
处理器1210包括一个或一个以上处理核心。处理器1210通过运行操作系统或应用程序模块。
可选地,存储器1220可存储操作系统1222、至少一个功能所需的应用程序模块1224。可选地,应用程序模块1224包括:接收模块1224a、处理模块1224b和发送模块1224c。其中,接收模块1224a用于实现有关接收的步骤;处理模块1224b用于实现有关计算或处理的步骤;发送模块1224c用于实现有关发送的步骤。
此外,存储器1220可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员可以理解,图12中所示出的结构并不构成上述通信芯片的限定,可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (40)

  1. 一种功率分配方法,其特征在于,所述方法包括:
    终端确定第一初始发射功率和第二初始发射功率,所述第一初始发射功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,所述第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率;
    所述终端接收接入网设备发送的所述第一载波承载的信道的最小保证功率信息;
    当所述第一初始发射功率中的任一初始发射功率与所述第二初始发射功率之和大于所述终端的最大发射功率时,所述终端根据所述第一载波承载的在M个第一子帧中传输的信道与所述第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,所述第二载波上的所述第二子帧与所述第一载波上的所述N个第一子帧存在交叠,所述M个第一子帧为所述N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述终端根据所述第一载波承载的在M个第一子帧中传输的信道与所述第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,包括:
    所述终端根据所述第一载波承载的信道的最小保证功率信息得到最小保证功率;
    所述终端根据所述第一载波承载的在M个所述第一子帧中传输的信道与所述第二载波承载的在所述第二子帧中传输的信道的优先级排序,得到所述第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率以及所述第二载波承载的在第二子帧中传输的信道的第二可用发射功率;
    所述终端根据所述第一可用发射功率和所述第二可用发射功率中的至少一个以及所述最小保证功率,确定所述第一载波承载的在N个第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率中的至少一个。
  3. 根据权利要求2所述的方法,其特征在于,所述终端根据所述第一载波承载的在M个第一子帧中传输的信道与所述第二载波承载的在第二子帧中传输的信道的优先级排序,得到所述第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率以及所述第二载波承载的在第二子帧中传输的信道的第二可用发射功率,包括:
    基于所述优先级排序,对所述第一初始发射功率与所述第二初始发射功率进行缩减,分别得到所述第一载波承载的在所述N个第一子帧中传输的信道的第一可用发射功率与所述第二载波承载的在所述第二子帧中传输的信道的第二可用发射功率,所述第一载波承载的在所述N个第一子帧中每一个第一子帧上传输的信道的第一可用发射功率与所述第二载波承载的在所述第二子帧中传输的信道的第二可用发射功率之和小于或等于所述最大发射功率。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一载波承载的在M个所述第一子帧中传输的信道与第二载波承载的在所述第二子帧中传输的信道的优先级排序包括:信道类型的优先级排序,信道携带的UCI的优先级排序和信道对应载波的优先级排序中的至 少一种。
  5. 根据权利要求4所述的方法,其特征在于,所述信道类型的优先级排序包括以下至少一种:
    当存在有物理随机接入信道PRACH时,PRACH的优先级最高;
    当物理上行控制信道PUCCH和物理上行共享信道PUSCH同时存在时,PUCCH的优先级高于PUSCH的优先级,或者,PUCCH的优先级高于未携带上行控制信息UCI的PUSCH的优先级且和携带UCI的PUSCH的优先级相同;
    当携带上行控制信息UCI的PUSCH和未携带UCI的PUSCH同时存在时,携带UCI的优先级高于未携带UCI的PUSCH;
    在PRACH、PUCCH、PUSCH和探测参考信号SRS同时存在时,SRS的优先级最低。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述接入网设备通过所述第一载波或所述第二载波发送的高层信令或物理层信令,所述高层信令或物理层信令包括优先级排序规则,所述优先级排序规则用于确定所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
  7. 根据权利要求1-3任一项所述的方法,其特征在于,所述终端接收接入网设备发送的第一载波承载的信道的最小保证功率信息,包括:
    所述终端接收所述接入网设备通过所述第一载波或所述第二载波发送的第一信令,所述第一信令为携带所述第一载波承载的信道的最小保证功率信息的高层信令或物理层信令。
  8. 根据权利要求7所述的方法,其特征在于,通过所述第一载波发送的所述第一信令的传输子帧与通过所述第二载波发送的第二信令的传输子帧存在交叠,所述第二信令携带所述第二载波在第二子帧中承载的信道的功率分配信息。
  9. 一种功率调整方法,其特征在于,所述方法包括:
    终端接收接入网设备发送的功率调整因子;
    所述终端根据所述功率调整因子和子帧第一部分上的信道的可用发射功率得到所述子帧第二部分上的信道的可用发射功率,所述子帧包括所述第一部分和所述第二部分,且所述第二部分位于所述第一部分之后,所述功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值。
  10. 根据权利要求9所述的方法,其特征在于,所述终端接收接入网设备发送的功率调整因子,包括:
    所述终端接收所述接入网设备通过高层信令或物理层信令发送的所述功率调整因子。
  11. 根据权利要求9或10所述的方法,其特征在于,所述功率调整因子是小区特定的参数。
  12. 一种功率分配方法,其特征在于,所述方法包括:
    接入网设备确定第一载波承载的信道的最小保证功率信息;
    所述接入网设备向终端发送所述第一载波承载的信道的最小保证功率信息,所述最小保证功率信息用于使所述终端当第一初始发射功率中的任一初始发射功率与第二初始发射功率 之和大于所述终端的最大发射功率时,根据所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,所述第一初始发射功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,所述第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率,所述第二载波上的所述第二子帧与所述第一载波上的所述N个第一子帧存在交叠,所述M个第一子帧为所述N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述接入网设备向终端发送所述第一载波承载的信道的最小保证功率信息,包括:
    所述接入网设备通过所述第一载波或所述第二载波向所述终端发送高层信令或物理层信令,所述高层信令或物理层信令包括所述第一载波承载的信道的最小保证功率信息。
  14. 根据权利要求13所述的方法,其特征在于,通过所述第一载波发送的所述第一信令的传输子帧与通过所述第二载波发送的第二信令的传输子帧存在交叠,所述第二信令携带所述第二载波在第二子帧中承载的信道的功率分配信息。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备通过所述第一载波或所述第二载波向所述终端发送高层信令或物理层信令,所述高层信令或物理层信令包括优先级排序规则,所述优先级排序规则用于确定所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
  16. 根据权利要求15所述的方法,其特征在于,所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序包括:信道类型的优先级排序,信道携带的UCI的优先级排序和信道对应载波的优先级排序中的至少一种。
  17. 根据权利要求16所述的方法,其特征在于,所述信道类型的优先级排序包括以下至少一种:
    当存在有物理随机接入信道PRACH时,PRACH的优先级最高;
    当物理上行控制信道PUCCH和物理上行共享信道PUSCH同时存在时,PUCCH的优先级高于PUSCH的优先级,或者,PUCCH的优先级高于未携带UCI的PUSCH的优先级且和携带UCI的PUSCH的优先级相同;
    当携带上行控制信息UCI的PUSCH和未携带UCI的PUSCH同时存在时,携带UCI的优先级高于未携带UCI的PUSCH;
    在PRACH、PUCCH、PUSCH和SRS同时存在时,SRS的优先级最低。
  18. 一种功率调整方法,其特征在于,所述方法包括:
    接入网设备确定功率调整因子;
    所述接入网设备向终端发送所述功率调整因子,所述功率调整因子用于使所述终端根据所述功率调整因子和子帧第一部分上的信道的可用发射功率得到所述子帧第二部分上的信道的可用发射功率,所述子帧包括所述第一部分和所述第二部分,且所述第二部分位于所述第一部分之后,所述功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二 部分上的信道的可用发射功率的偏移值。
  19. 根据权利要求18所述的方法,其特征在于,所述接入网设备向终端发送所述功率调整因子,包括:
    所述接入网设备通过高层信令或物理层信令向所述终端发送所述功率调整因子。
  20. 根据权利要求18或19所述的方法,其特征在于,所述功率调整因子是小区特定的参数。
  21. 一种终端,其特征在于,所述终端包括:
    确定单元,用于确定第一初始发射功率和第二初始发射功率,所述第一初始发射功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,所述第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率;
    接收单元,用于接收接入网设备发送的所述第一载波承载的信道的最小保证功率信息;
    处理单元,用于当所述第一初始发射功率中的任一初始发射功率与所述第二初始发射功率之和大于所述终端的最大发射功率时,根据所述第一载波承载的在M个第一子帧中传输的信道与所述第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,所述第二载波上的所述第二子帧与所述第一载波上的所述N个第一子帧存在交叠,所述M个第一子帧为所述N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
  22. 根据权利要求21所述的终端,其特征在于,所述处理单元,用于:
    根据所述第一载波承载的信道的最小保证功率信息得到最小保证功率;
    根据所述第一载波承载的在M个所述第一子帧中传输的信道与所述第二载波承载的在所述第二子帧中传输的信道的优先级排序,得到所述第一载波承载的在N个第一子帧中传输的信道的第一可用发射功率以及所述第二载波承载的在第二子帧中传输的信道的第二可用发射功率;
    根据所述第一可用发射功率和所述第二可用发射功率中的至少一个以及所述最小保证功率,确定所述第一载波承载的在N个第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率中的至少一个。
  23. 根据权利要求22所述的终端,其特征在于,所述处理单元,用于:
    基于所述优先级排序,对所述第一初始发射功率与所述第二初始发射功率进行缩减,分别得到所述第一载波承载的在所述N个第一子帧中传输的信道的第一可用发射功率与所述第二载波承载的在所述第二子帧中传输的信道的第二可用发射功率,所述第一载波承载的在所述N个第一子帧中传输的信道的第一可用发射功率与所述第二载波承载的在所述第二子帧中传输的信道的第二可用发射功率之和小于或等于所述最大发射功率。
  24. 根据权利要求21-23任一项所述的终端,其特征在于,所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序包括:信道类型的优先级排序,信道携带的UCI的优先级排序和信道对应载波的优先级排序中的至少一种。
  25. 根据权利要求24所述的终端,其特征在于,所述信道类型的优先级排序包括以下至 少一种:
    当存在有物理随机接入信道PRACH时,PRACH的优先级最高;
    当物理上行控制信道PUCCH和物理上行共享信道PUSCH同时存在时,PUCCH的优先级高于PUSCH的优先级,或者,PUCCH的优先级高于未携带UCI的PUSCH的优先级且和携带UCI的PUSCH的优先级相同;
    当携带上行控制信息UCI的PUSCH和未携带UCI的PUSCH同时存在时,携带UCI的优先级高于未携带UCI的PUSCH;
    在PRACH、PUCCH、PUSCH和SRS同时存在时,SRS的优先级最低。
  26. 根据权利要求21-23任一项所述的终端,其特征在于,所述接收单元,还用于:
    接收所述接入网设备通过所述第一载波或所述第二载波发送的高层信令或物理层信令,所述高层信令或物理层信令包括优先级排序规则,所述优先级排序规则用于确定所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
  27. 根据权利要求21-23任一项所述的终端,其特征在于,所述接收单元,用于:
    接收所述接入网设备通过所述第一载波或所述第二载波发送的第一信令,所述第一信令为携带所述第一载波承载的信道的最小保证功率信息的高层信令或物理层信令。
  28. 根据权利要求21-23任一项所述的终端,其特征在于,通过所述第一载波发送的所述第一信令的传输子帧与通过所述第二载波发送的第二信令的传输子帧存在交叠,所述第二信令携带所述第二载波在第二子帧中承载的信道的功率分配信息。
  29. 一种终端,其特征在于,所述终端包括:
    接收单元,用于接收接入网设备发送的功率调整因子;
    处理单元,用于根据所述功率调整因子和子帧第一部分上的信道的可用发射功率得到所述子帧第二部分上的信道的可用发射功率,所述子帧包括所述第一部分和所述第二部分,且所述第二部分位于所述第一部分之后,所述功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值。
  30. 根据权利要求29所述的终端,其特征在于,所述接收单元,用于:
    接收所述接入网设备通过高层信令或物理层信令发送的所述功率调整因子。
  31. 根据权利要求29或30所述的终端,其特征在于,所述功率调整因子是小区特定的参数。
  32. 一种接入网设备,其特征在于,所述接入网设备包括:
    确定单元,用于确定第一载波承载的信道的最小保证功率信息;
    发送单元,用于向终端发送所述第一载波承载的信道的最小保证功率信息,所述最小保证功率信息用于使所述终端当第一初始发射功率中的任一初始发射功率与第二初始发射功率之和大于所述终端的最大发射功率时,根据所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序,以及所述第一载波承载的信道的最小保证功率信息,得到所述第一载波承载的在N个所述第一子帧中传输的信道的可用发射功率和所述第二载波承载的在第二子帧中传输的信道的可用发射功率,所述第一初始发射 功率包括第一载波承载的在M个第一子帧中的每个第一子帧中传输的信道的初始发射功率,所述第二初始发射功率为第二载波承载的在第二子帧中传输的信道的初始发射功率,所述第二载波上的所述第二子帧与所述第一载波上的所述N个第一子帧存在交叠,所述M个第一子帧为所述N个第一子帧中的前M个第一子帧,N大于M,且M、N为正整数。
  33. 根据权利要求32所述的接入网设备,其特征在于,所述发送单元,用于:
    通过所述第一载波或所述第二载波向所述终端发送高层信令或物理层信令,所述高层信令或物理层信令包括所述第一载波承载的信道的最小保证功率信息。
  34. 根据权利要求33所述的接入网设备,其特征在于,通过所述第一载波发送的所述第一信令的传输子帧与通过所述第二载波发送的第二信令的传输子帧存在交叠,所述第二信令携带所述第二载波在第二子帧中承载的信道的功率分配信息。
  35. 根据权利要求32-34任一项所述的接入网设备,其特征在于,所述发送单元,还用于:
    通过所述第一载波或所述第二载波向所述终端发送高层信令或物理层信令,所述高层信令或物理层信令包括优先级排序规则,所述优先级排序规则用于确定所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序。
  36. 根据权利要求35所述的接入网设备,其特征在于,所述第一载波承载的在M个第一子帧中传输的信道与第二载波承载的在第二子帧中传输的信道的优先级排序包括:信道类型的优先级排序,信道携带的UCI的优先级排序和信道对应载波的优先级排序中的至少一种。
  37. 根据权利要求36所述的接入网设备,其特征在于,所述信道类型的优先级排序包括以下至少一种:
    当存在有物理随机接入信道PRACH时,PRACH的优先级最高;
    当物理上行控制信道PUCCH和物理上行共享信道PUSCH同时存在时,PUCCH的优先级高于PUSCH的优先级,或者,PUCCH的优先级高于未携带UCI的PUSCH的优先级且和携带UCI的PUSCH的优先级相同;
    当携带上行控制信息UCI的PUSCH和未携带UCI的PUSCH同时存在时,携带UCI的优先级高于未携带UCI的PUSCH;
    在PRACH、PUCCH、PUSCH和SRS同时存在时,SRS的优先级最低。
  38. 一种接入网设备,其特征在于,所述接入网设备包括:
    确定单元,用于确定功率调整因子;
    发送单元,用于向终端发送所述功率调整因子,所述功率调整因子用于使所述终端根据所述功率调整因子和子帧第一部分上的信道的可用发射功率得到所述子帧第二部分上的信道的可用发射功率,所述子帧包括所述第一部分和所述第二部分,且所述第二部分位于所述第一部分之后,所述功率调整因子用于确定子帧第一部分上的信道的可用发射功率和子帧第二部分上的信道的可用发射功率的偏移值。
  39. 根据权利要求38所述的接入网设备,其特征在于,所述发送单元,用于:
    通过高层信令或物理层信令向所述终端发送所述功率调整因子。
  40. 根据权利要求38或39所述的接入网设备,其特征在于,所述功率调整因子是小区特定的参数。
PCT/CN2017/109238 2016-11-03 2017-11-03 功率分配方法、功率调整方法、终端和接入网设备 WO2018082635A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17867719.1A EP3528558B1 (en) 2016-11-03 2017-11-03 Power allocation method, power adjustment method, terminal, and access network device
BR112019008993A BR112019008993A2 (pt) 2016-11-03 2017-11-03 método de alocação de potência, método de ajuste de potência, terminal, e dispositivo de rede de acesso
JP2019523798A JP2019536351A (ja) 2016-11-03 2017-11-03 電力割振り方法、電力調整方法、端末、およびアクセスネットワークデバイス
US16/400,890 US11006375B2 (en) 2016-11-03 2019-05-01 Power allocation method, power adjustment method, terminal, and access network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610956516.2 2016-11-03
CN201610956516.2A CN108024323B (zh) 2016-11-03 2016-11-03 功率分配方法、功率调整方法、终端和接入网设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/400,890 Continuation US11006375B2 (en) 2016-11-03 2019-05-01 Power allocation method, power adjustment method, terminal, and access network device

Publications (1)

Publication Number Publication Date
WO2018082635A1 true WO2018082635A1 (zh) 2018-05-11

Family

ID=62076663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109238 WO2018082635A1 (zh) 2016-11-03 2017-11-03 功率分配方法、功率调整方法、终端和接入网设备

Country Status (6)

Country Link
US (1) US11006375B2 (zh)
EP (1) EP3528558B1 (zh)
JP (1) JP2019536351A (zh)
CN (1) CN108024323B (zh)
BR (1) BR112019008993A2 (zh)
WO (1) WO2018082635A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087437A1 (en) * 2018-11-01 2020-05-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method of wireless communication of same
WO2020087454A1 (zh) * 2018-11-01 2020-05-07 Oppo广东移动通信有限公司 调整功率的方法和终端设备
US11356962B2 (en) 2019-01-07 2022-06-07 Qualcomm Incorporated Power control in NR-NR dual connectivity
CN111565454A (zh) * 2019-02-14 2020-08-21 索尼公司 电子装置、无线通信方法和计算机可读介质
CN111586819B (zh) * 2019-02-15 2023-10-20 华为技术有限公司 一种上行保证功率信息发送、接收方法及设备
CN111615184B (zh) * 2019-04-22 2023-12-22 维沃移动通信有限公司 处理方法及终端
CN112399545B (zh) * 2019-08-16 2024-04-12 华为技术有限公司 一种信号发送方法及装置
CN113784427B (zh) * 2021-08-18 2023-06-06 中国联合网络通信集团有限公司 功率控制方法及装置
CN116017659A (zh) * 2021-10-22 2023-04-25 华为技术有限公司 一种功率分配方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103781163A (zh) * 2009-02-09 2014-05-07 交互数字专利控股公司 在wtru中进行上行链路功率控制的方法和wtru
CN104936297A (zh) * 2014-03-18 2015-09-23 北京三星通信技术研究有限公司 配置有包含d2d子帧服务小区的系统的功率控制方法及用户设备
CN104936275A (zh) * 2014-03-20 2015-09-23 中兴通讯股份有限公司 一种上行功率控制的方法、系统、以及终端和基站

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161908C (zh) 2001-07-20 2004-08-11 华为技术有限公司 带功率偏置的物理公共分组信道传输方法
US8472967B2 (en) * 2008-02-01 2013-06-25 Qualcomm Incorporated Allocating transmit power among two or more carriers assigned to a wireless communication device
CN101959234B (zh) * 2009-07-21 2013-07-17 鼎桥通信技术有限公司 一种多载波hsupa的实现方法
CN102573030B (zh) * 2011-12-08 2014-11-05 电信科学技术研究院 一种上行功率控制方法及装置
RU2627299C1 (ru) * 2013-09-04 2017-08-07 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и устройство для управления мощностью восходящей линии связи в системе беспроводной связи
US9900844B2 (en) * 2014-01-13 2018-02-20 Samsung Electronics Co., Ltd. Uplink transmissions for dual connectivity
EP3099118B1 (en) * 2014-01-22 2019-06-12 LG Electronics Inc. Method for performing power control, and user equipment
EP3509362A1 (en) * 2014-01-29 2019-07-10 Interdigital Patent Holdings, Inc. Uplink transmissions in wireless communications
JP2015216440A (ja) * 2014-05-08 2015-12-03 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信方法及び無線通信システム
CN105393608B (zh) * 2014-07-03 2019-04-12 华为技术有限公司 一种用户设备及功率分配的方法
US9749970B2 (en) * 2015-02-27 2017-08-29 Qualcomm Incorporated Power control and power headroom for component carrier
US10602454B2 (en) * 2016-05-10 2020-03-24 Lg Electronics Inc. Method for controlling uplink transmission power in wireless communication system and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103781163A (zh) * 2009-02-09 2014-05-07 交互数字专利控股公司 在wtru中进行上行链路功率控制的方法和wtru
CN104936297A (zh) * 2014-03-18 2015-09-23 北京三星通信技术研究有限公司 配置有包含d2d子帧服务小区的系统的功率控制方法及用户设备
CN104936275A (zh) * 2014-03-20 2015-09-23 中兴通讯股份有限公司 一种上行功率控制的方法、系统、以及终端和基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on the remaining issues for sidelink power control", 3GPP TSG-RAN WG1 MEETING #86BIS R1-1609373 - LISBON, PORTUGAL; 20161010 - 20161014, 9 October 2016 (2016-10-09), XP051149416 *
See also references of EP3528558A4 *
ZTE: "Discussion on PSD offset with PSCCH and PSSCH", 3GPP TSG-RAN WG1 MEETING #86BIS R1-1609812 - LISBON, PORTUGAL; 20161010 - 20161014, 9 October 2016 (2016-10-09), XP051149839 *

Also Published As

Publication number Publication date
BR112019008993A2 (pt) 2019-10-01
EP3528558A1 (en) 2019-08-21
CN108024323B (zh) 2020-09-08
EP3528558A4 (en) 2019-10-16
US11006375B2 (en) 2021-05-11
JP2019536351A (ja) 2019-12-12
CN108024323A (zh) 2018-05-11
EP3528558B1 (en) 2022-05-11
US20190261291A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2018082635A1 (zh) 功率分配方法、功率调整方法、终端和接入网设备
WO2019029375A1 (en) METHOD AND DEVICE FOR DUPLICATING LATERAL BINDING DATA
CN104685809A (zh) 用于使用通信系统中的多个小区的方法和装置
US11363644B2 (en) Methods and apparatus for indicating channel access
CN114499803B (zh) 发送数据的方法、通信装置、计算机存储介质
JP7543393B2 (ja) 多数の構成されたグラントリソースによるharqプロセスの共有
US11456843B2 (en) Resource allocation method for sub-PRB uplink transmission
US20220272557A1 (en) Systems and methods for determining information indicative of cancelation
CN108811128B (zh) 一种功率控制方法及终端设备
CN110100399B (zh) 信道检测机制的确定方法、装置、设备及存储介质
EP3823397A1 (en) Traffic-dependent transmission for interference reduction
CN113647182A (zh) 无线通信的方法和设备
US11528714B2 (en) Data transmission method and apparatus
WO2021087955A1 (zh) 功率分配方法以及装置
WO2021026841A1 (zh) 调度请求传输的方法和设备
WO2021056313A1 (zh) 上行逻辑信道复用的方法和终端设备
US20230094455A1 (en) Communication method, apparatus, device, and readable storage medium
TW202131740A (zh) 用於處理實體上鏈路控制通道碰撞的裝置及方法
CN116420368A (zh) 动态触发用于上行控制信道的载波
CN113890698A (zh) 旁链路传输方法、传输装置和通信设备
WO2024119448A1 (zh) 用于无线传输的处理方法、装置、设备、存储介质及产品
WO2024092673A1 (zh) 数据信道的调度方法、装置、设备及存储介质
CN114731666B (zh) 传输资源确定方法及相关装置
WO2022021411A1 (zh) Harq进程确定方法、装置、设备及介质
WO2023134457A1 (zh) 通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019523798

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008993

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017867719

Country of ref document: EP

Effective date: 20190513

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019008993

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, RELATORIO DESCRITIVO E DESENHOS (SE HOUVER) ADAPTADOS A NORMA VIGENTE, CONFORME CONSTA NO DEPOSITO INTERNACIONAL INICIAL PCT/CN2017/109238 DE 03/11/2017, POIS OS MESMOS NAO FORAM APRESENTADOS ATE O MOMENTO.

ENP Entry into the national phase

Ref document number: 112019008993

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190502