WO2023185989A1 - Reference signal (rs) measurement and report adaptation - Google Patents

Reference signal (rs) measurement and report adaptation Download PDF

Info

Publication number
WO2023185989A1
WO2023185989A1 PCT/CN2023/084989 CN2023084989W WO2023185989A1 WO 2023185989 A1 WO2023185989 A1 WO 2023185989A1 CN 2023084989 W CN2023084989 W CN 2023084989W WO 2023185989 A1 WO2023185989 A1 WO 2023185989A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
ports
mode
report
subset
Prior art date
Application number
PCT/CN2023/084989
Other languages
French (fr)
Inventor
Ali Nader
Andres Reial
Rui Fan
Ilmiawan SHUBHI
Sina MALEKI
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Rui Fan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ), Rui Fan filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Publication of WO2023185989A1 publication Critical patent/WO2023185989A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present disclosure is related to the field of telecommunication, and in particular, to a user equipment (UE) , a network node, and methods for reference signal (RS) measurement and/or report adaptation.
  • UE user equipment
  • RS reference signal
  • RAN Radio Access Network
  • 5G fifth generation
  • NR New Radio
  • the network (NW) power consumption for 5G NR is said to be less compared to Long Term Evolution (LTE) because of its lean design. In the current implementation, however, NR will most likely consume more power compared to LTE, e.g., due to the higher bandwidth, and more so due to introduction of additional elements such as 64 TX/RX ports with associated digital Radio Frequency (RF) chains.
  • LTE Long Term Evolution
  • RF Radio Frequency
  • the NW may need to use full configuration even when the maximum NW support is actually rarely needed by the UEs.
  • an increased number of TX/RX ports also leads to an increase to the number of reference signals (e.g., Channel State Information Reference Signal or CSI-RS) needed to be transmitted by the NW (and to be measured by the UEs) for a proper signal detection.
  • the additional TX/RX ports may result in another additional power consumption, i.e., to transmit a larger number of CSI-RSs to the UEs.
  • the larger number of CSI-RS transmissions may also consume the valuable NW resources.
  • a method at a UE for RS measurement adaptation comprises: receiving, from a network node, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; determining at least a first of the one or more RS configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration; measuring the first set of RS ports at least based on the first RS configuration.
  • the method further comprises: determining at least a second of the one or more RS configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS configuration is not in any mode associated with the second RS configuration; and preventing the second set of RS ports from being measured based on the second RS configuration.
  • a method at a UE for RS measurement adaptation comprises: receiving, from a network node, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; determining at least a first of the one or more RS configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant; measuring the first subset of RS ports at least based on the first RS configuration variant.
  • the method further comprises: determining at least a second of the one or more RS configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second RS configuration variant is not in any mode associated with the second RS configuration variant; and preventing the second subset of RS ports from being measured based on the second RS configuration variant.
  • the method further comprises: transmitting, to the network node, a report message indicating a measurement for the first set of RS ports or the first subset of RS ports.
  • the multiple modes comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of Physical Downlink Control Channel (PDCCH) , Physical Downlink Shared Channel (PDSCH) , and Demodulation Reference Signal (DMRS) ; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna
  • PDCCH Physical Down
  • At least one of the one or more RS configurations or at least one of the one or more RS configuration variants indicates at least one of: time/frequency resources; a number of RS ports; one or more identifiers or indexes of one or more RS ports; a power offset compared to at least one of PDCCH, PDSCH, and Synchronous Signal (SS) and Physical Broadcast Channel (PBCH) Block (SSB) ; a rate; a bandwidth; and a density.
  • SS Synchronous Signal
  • PBCH Physical Broadcast Channel
  • SSB Synchronous Signal
  • PBCH Physical Broadcast Channel Block
  • At least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, indicates at least one of: a lower rate; a lower bandwidth; a lower density; and a different power offset.
  • At least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration variants in the first mode when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, indicates at least one of: a higher rate; a higher bandwidth; a higher density; and a different power offset.
  • an RS configuration or RS configuration variant in the second mode which indicates a lower bandwidth than that indicated by another RS configuration or RS configuration variant in the first mode, indicates a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode.
  • the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated comprises: receiving, from the network node, a message indicating the first RS configuration or the first RS configuration variant to be activated.
  • the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated comprises: determining whether there is at least one RS configuration or RS configuration variant whose associated set of RS ports or associated subset of RS ports has a same state as that of another antenna port associated with at least one of PDCCH, PDSCH, and DMRS or not; and determining the at least one RS configuration or RS configuration variant, as the first RS configuration or the first RS configuration variant to be activated, in response to determining that there is the at least one RS configuration or RS configuration variant.
  • the state is a Transmission Configuration Indicator (TCI) state.
  • TCI Transmission Configuration Indicator
  • the method before the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated, the method further comprises: receiving, from the network node, a message indicating that the UE is to determine an RS configuration or an RS configuration variant to be activated based on its own decision.
  • the message indicates at least one of: which RS port or RS ports are in which mode; which RS or RSs are in which mode; and whether the UE is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not.
  • the method before the step of transmitting, to the network node, a report message, the method further comprises: receiving, from the network node, a message indicating that the UE is to transmit the report message periodically or aperiodically, wherein the step of transmitting, to the network node, a report message is performed in response to the received message.
  • the method further comprises: receiving, from the network node, a message indicating one or more conditions, wherein at least one of the step of measuring the first set of RS ports, the step of measuring the first subset of RS ports, and the step of transmitting, to the network node, a report message is performed only in response to at least one of the one or more conditions being fulfilled.
  • the first RS configuration or the first RS configuration variant indicates that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed, wherein the method further comprises: performing power compensation during at least one of PDCCH reception, PDSCH reception, and channel assessment at least based on the changed power relationship.
  • the message comprises at least one of: a powerControlOffset Information Element (IE) ; a powerControlOffsetSS IE; and an IE indicating a UE position-specific power offset.
  • IE powerControlOffset Information Element
  • IE powerControlOffsetSS IE
  • an IE indicating a UE position
  • the method further comprises at least one of: transmitting, to the network node, a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled; measuring the first set of RS ports or the first subset of RS ports excluding the one or more indicated RS occasions; and receiving, from the network node, a message indicating that the one or more indicated RS occasions are muted.
  • a set of RS ports or a subset of RS ports in the second mode is not measured for at least one of: pathloss estimation for power control; Precoding Matrix Index (PMI) determination; Channel Quality Information (CQI) determination; and Rank Indicator (RI) estimation.
  • a set of RS ports or a subset of RS ports in the second mode is measured for at least one of: Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) Reference Signal Received Power (CRI-RSRP) reporting; and SSB-Index-RSRP reporting.
  • which of one or more procedures that are exempt for RS ports in the second mode is determined by at least one of: a configuration from the network node; and a configuration hardcoded or pre-configured at the UE.
  • At least one of the messages is received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; Medium Access Control (MAC) Control Element (CE) ; and Downlink Control Information (DCI) .
  • an RS comprises at least one of: a CSI-RS; and an SSB.
  • the CSI-RS configurations or configuration variants in the second mode indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants.
  • each of the SSB configurations or configuration variants is associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  • at least one of the one or more RS configurations or at least one of the one or more RS configuration variants corresponds to an antenna muting pattern at the network node.
  • a UE configured to: a receiving module configured to receive, from a network node, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module configured to determine at least a first of the one or more RS configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration; and a measuring module configured to measure the first set of RS ports at least based on the first RS configuration.
  • a UE configured to: a receiving module configured to receive, from a network node, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a determining module configured to determine at least a first of the one or more RS configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant; and a measuring module configured to measure the first subset of RS ports at least based on the first RS configuration variant.
  • a method at a UE for RS report adaptation comprises: receiving, from the network node, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; determining at least a first of the one or more RS report configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration; and transmitting, to the network node, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
  • the method further comprises: determining at least a second of the one or more RS report configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS report configuration is not in any mode associated with the second RS report configuration; and preventing the second set of RS ports from being reported based on the second RS report configuration.
  • a method at a UE for RS report adaptation comprises: receiving, from the network node, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; determining at least a first of the one or more RS report configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant; and transmitting, to the network node, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
  • the method further comprises: determining at least a second of the one or more RS report configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second RS report configuration variant is not in any mode associated with the second RS report configuration variant; and preventing the second subset of RS ports from being reported based on the second RS report configuration variant.
  • the multiple modes comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  • At least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants indicates at least one of: the report message is to be transmitted periodically; the report message is to be transmitted semi-persistently; the report message is to be transmitted aperiodically; and the report message is to be transmitted only when a condition is fulfilled.
  • the condition comprises at least one of: whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode.
  • the measured link quality comprises at least one of: RSRP; Reference Signal Received Quality (RSRQ) ; Signal to Interference plus Noise Ratio (SINR) ; and Block Error Rate (BLER) .
  • the method before the step of transmitting, to the network node, a report message, the method further comprises: determining whether the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all the other subsets of RS ports in the second mode, wherein the step of transmitting, to the network node, a report message comprises: transmitting, to the network node, the report message only in response to determining that the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than the measurements for all the other sets of RS ports or all the other subsets of RS ports in the second mode.
  • each RS report configuration there is one associated RS report configuration variant at most.
  • at least one of the messages is received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI.
  • an RS comprises at least one of: a CSI-RS; and an SSB.
  • a UE configured to: a receiving module configured to receive, from the network node, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module configured to determine at least a first of the one or more RS report configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration; and a transmitting module configured to transmit, to the network node, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
  • a UE comprises: a receiving module configured to a receiving module configured to receive, from the network node, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a determining module configured to determine at least a first of the one or more RS report configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant; and a transmitting module configured to transmit, to the network node, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
  • a UE comprises: a processor; a memory storing instructions which, when executed by the processor, cause the processor to perform the method of any of the first, second, fifth, and sixth aspects.
  • a method at a network node for RS measurement adaptation comprises: transmitting, to a UE, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; determining at least a first of the one or more RS configurations to be activated at the UE, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration; and transmitting one or more RSs at least based on the first RS configuration.
  • the method further comprises: determining at least a second of the one or more RS configurations to be deactivated at the UE, a second set of one or more RS ports associated with the second RS configuration being not in any mode associated with the second RS configuration; and preventing one or more RSs from being transmitted based on the second RS configuration.
  • a method at a network node for RS measurement adaptation comprises: transmitting, to a UE, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; determining at least a first of the one or more RS configuration variants to be activated at the UE, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant; transmitting one or more RSs at least based on the first RS configuration variant.
  • the method further comprises: determining at least a second of the one or more RS configuration variants to be deactivated at the UE, a second subset of one or more RS ports associated with the second RS configuration variant being not in any mode associated with the second RS configuration variant; and preventing one or more RSs from being transmitted based on the second RS configuration variant.
  • the method further comprises: receiving, from the UE, a report message indicating a measurement for the first set of RS ports or the first subset of RS ports.
  • the multiple modes comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co- located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  • At least one of the one or more RS configurations or at least one of the one or more RS configuration variants indicates at least one of: time/frequency resources; a number of RS ports; one or more identifiers or indexes of one or more RS ports; a power offset compared to at least one of PDCCH, PDSCH, and SSB; a rate; a bandwidth; and a density.
  • At least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, indicates at least one of: a lower rate; a lower bandwidth; a lower density; and a different power offset.
  • At least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration variants in the first mode when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, indicates at least one of: a higher rate; a higher bandwidth; a higher density; and a different power offset.
  • an RS configuration or RS configuration variant in the second mode which indicates a lower bandwidth than that indicated by another RS configuration or RS configuration variant in the first mode, indicates a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode.
  • the method before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method further comprises: transmitting, to the UE, a message indicating the first RS configuration or the first RS configuration variant to be activated.
  • the method before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method further comprises at least one of: transmitting, to the UE, a message indicating a state for at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; transmitting, to the UE, a message indicating a state for the first set or subset of RS ports; and transmitting, to the UE, a message indicating a state for the second set or subset of RS ports.
  • the state is a TCI state.
  • the method before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method further comprises: transmitting, to the UE, a message indicating that the UE is to determine an RS configuration or an RS configuration variant to be activated based on its own decision.
  • the message indicates at least one of: which RS port or RS ports are in which mode; which RS or RSs are in which mode; and whether the UE is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not.
  • the method before the step of receiving, from the UE, a report message, the method further comprises: transmitting, to the UE, a message indicating that the UE is to transmit the report message periodically or aperiodically, wherein the step of receiving, from the UE, a report message is performed in response to the transmitted message.
  • the method further comprises: transmitting, to the UE, a message indicating one or more conditions, wherein the step of receiving, from the UE, a report message is performed only in response to at least one of the one or more conditions being fulfilled at the UE.
  • the first RS configuration or the first RS configuration variant indicates that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed.
  • the message comprises at least one of: a powerControlOffset Information Element (IE) ; a powerControlOffsetSSIE; and an IE indicating a UE position-specific power offset.
  • IE powerControlOffset Information Element
  • the method further comprises at least one of: receiving, from the UE, a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled; muting the one or more indicated RS occasions while transmitting the first set of RS ports or the first subset of RS ports; transmitting, to the UE, a message indicating that the one or more indicated RS occasions are muted.
  • a set of RS ports or a subset of RS ports in the second mode is not used for at least one of: pathloss estimation for power control; PMI determination; CQI determination; and RI estimation.
  • a set of RS ports or a subset of RS ports in the second mode is used for at least one of: CRI-RSRP reporting; and SSB-Index-RSRP reporting.
  • which of one or more procedures that are exempt for RS ports in the second mode is determined by at least one of: a configuration from another node; and a configuration hardcoded or pre-configured at the network node.
  • at least one of the messages is received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI.
  • an RS comprises at least one of: a CSI-RS; and an SSB.
  • the CSI-RS configurations or configuration variants in the second mode indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants.
  • each of the SSB configurations or configuration variants is associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  • at least one of the one or more RS configurations or at least one of the one or more RS configuration variants corresponds to an antenna muting pattern at the network node.
  • the method further comprises: utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS configuration or the first RS configuration variant, for reception and/or transmission sleep. In some embodiments, the method further comprises: transmitting at a lower output power in response to the first RS configuration or the first RS configuration variant indicating a lower bandwidth and/or a lower density.
  • the method further comprises: in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS, remapping the at least one of PDCCH, PDSCH, and DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
  • a network node configured to transmit, to a UE, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module configured to determine at least a first of the one or more RS configurations to be activated at the UE, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration; and a second transmitting module configured to transmit one or more RSs at least based on the first RS configuration.
  • a network node comprising: a first transmitting module configured to transmit, to a UE, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a determining module configured to determine at least a first of the one or more RS configuration variants to be activated at the UE, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant; a second transmitting module configured to transmit one or more RSs at least based on the first RS configuration variant.
  • a method at a network node for RS report adaptation comprises: transmitting, to a UE, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; determining at least a first of the one or more RS report configurations to be activated at the UE, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration; transmitting one or more RSs over the first set of RS ports; and receiving, from the UE, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
  • the method further comprises: determining at least a second of the one or more RS report configurations to be deactivated at the UE, a second set of one or more RS ports associated with the second RS report configuration being not in any mode associated with the second RS report configuration; and transmitting, to the UE, a message explicitly or implicitly indicating that a measurement for the second set of RS ports is not to be reported by the UE based on the second RS report configuration.
  • a method at a network node for RS report adaptation comprises: transmitting, to a UE, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; determining at least a first of the one or more RS report configuration variants to be activated at the UE, the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant; transmitting one or more RSs over the first subset of RS ports; and receiving, from the UE, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
  • the method further comprises: determining at least a second of the one or more RS report configuration variants to be deactivated at the UE, a second subset of one or more RS ports associated with the second RS report configuration variant being not in any mode associated with the second RS report configuration variant; and transmitting, to the UE, a message explicitly or implicitly indicating that a measurement for the second subset of RS ports is not to be reported based on the second RS report configuration variant.
  • the multiple modes comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  • At least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants indicates at least one of:the report message is to be transmitted periodically; the report message is to be transmitted semi-persistently; the report message is to be transmitted aperiodically; and the report message is to be transmitted only when a condition is fulfilled.
  • the condition comprises at least one of: whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode.
  • the measured link quality comprises at least one of: RSRP; RSRQ; SINR; and BLER.
  • the reception of the report message indicates that the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all other subsets of RS ports in the second mode.
  • at least one of the messages is transmitted via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI.
  • an RS comprises at least one of: a CSI-RS; and an SSB.
  • the method further comprises: utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS report configuration or the first RS report configuration variant, for reception and/or transmission sleep. In some embodiments, the method further comprises: transmitting at a lower output power in response to the first RS report configuration or the first RS report configuration variant indicating a lower bandwidth and/or a lower density.
  • the method further comprises: in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS, remapping the at least one of PDCCH, PDSCH, and DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
  • a network node comprising: a first transmitting module configured to transmit, to a UE, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module configured to determine at least a first of the one or more RS report configurations to be activated at the UE, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration; a second transmitting module configured to transmit one or more RSs over the first set of RS ports; and a receiving module configured to receive, from the UE, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
  • a network node comprising: a first transmitting module configured to transmit, to a UE, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a determining module configured to determine at least a first of the one or more RS report configuration variants to be activated at the UE, the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant; a second transmitting module configured to transmit one or more RSs over the first subset of RS ports; and a receiving module configured to received, from the UE, a report message indicating a measurement for the first subset
  • a network node comprises: a processor; a memory storing instructions which, when executed by the processor, cause the processor to perform the method of any of the tenth, eleventh, fourteenth, and fifteenth aspects.
  • a computer program comprising instructions.
  • the instructions when executed by at least one processor, cause the at least one processor to carry out the method of any of the first, second, fifth, sixth, tenth, eleventh, fourteenth, and fifteenth aspects.
  • a carrier containing the computer program of the nineteenth aspect is provided.
  • the carrier is one of an electronic signal, optical signal, radio signal, or computer readable storage medium.
  • a telecommunications system comprises: one or more UEs of any of the third, the fourth, seventh, eighth, ninth aspects; and at least one network node of any of the twelfth, thirteenth, sixteenth, seventeenth, and eighteenth aspects.
  • Fig. 1 is a diagram illustrating an exemplary telecommunications network in which UEs and gNB may be operated according to an embodiment of the present disclosure.
  • Fig. 2 is a diagram illustrating an exemplary overview of CSI-RS parameters and its configurations with which RS measurement and/or report adaptation may be applicable according to an embodiment of the present disclosure.
  • Fig. 3 is a diagram illustrating an exemplary scenario where RS measurement and/or report adaptation may be applicable according to an embodiment of the present disclosure.
  • Fig. 4 is a diagram illustrating an exemplary scenario where RS measurement and/or report adaptation are applied according to an embodiment of the present disclosure.
  • Fig. 5 is a diagram illustrating another exemplary scenario where RS measurement and/or report adaptation are applied according to another embodiment of the present disclosure.
  • Fig. 6 is a diagram illustrating yet another exemplary scenario where RS measurement and/or report adaptation are applied according to yet another embodiment of the present disclosure.
  • Fig. 7 is a flow chart illustrating an exemplary method at a UE for RS measurement adaptation according to an embodiment of the present disclosure.
  • Fig. 8 is a flow chart illustrating another exemplary method at a UE for RS measurement adaptation according to another embodiment of the present disclosure.
  • Fig. 9 is a flow chart illustrating an exemplary method at a UE for RS report adaptation according to an embodiment of the present disclosure.
  • Fig. 10 is a flow chart illustrating another exemplary method at a UE for RS report adaptation according to another embodiment of the present disclosure.
  • Fig. 11 is a flow chart illustrating an exemplary method at a network node for RS measurement adaptation according to an embodiment of the present disclosure.
  • Fig. 12 is a flow chart illustrating another exemplary method at a network node for RS measurement adaptation according to another embodiment of the present disclosure.
  • Fig. 13 is a flow chart illustrating an exemplary method at a network node for RS report adaptation according to an embodiment of the present disclosure.
  • Fig. 14 is a flow chart illustrating another exemplary method at a network node for RS report adaptation according to another embodiment of the present disclosure.
  • Fig. 15 schematically shows an embodiment of an arrangement which may be used in a UE or a network node according to an embodiment of the present disclosure.
  • Fig. 16 through Fig. 19 are block diagrams of exemplary UEs according to some embodiment of the present disclosure.
  • Fig. 20 through Fig. 23 are block diagrams of exemplary network nodes according to some embodiment of the present disclosure.
  • Fig. 24 schematically illustrates a telecommunication network connected via an intermediate network to a host computer according to an embodiment of the present disclosure.
  • Fig. 25 is a generalized block diagram of a host computer communicating via a base station with a user equipment over a partially wireless connection according to an embodiment of the present disclosure.
  • Fig. 26 to Fig. 29 are flowcharts illustrating methods implemented in a communication system including a host computer, a base station, and a user equipment according to an embodiment of the present disclosure.
  • the term "or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
  • the term “each, " as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.
  • processing circuits may in some embodiments be embodied in one or more application-specific integrated circuits (ASICs) .
  • these processing circuits may comprise one or more microprocessors, microcontrollers, and/or digital signal processors programmed with appropriate software and/or firmware to carry out one or more of the operations described above, or variants thereof.
  • these processing circuits may comprise customized hardware to carry out one or more of the functions described above. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
  • the inventive concept of the present disclosure may be applicable to any appropriate communication architecture, for example, to Global System for Mobile Communications (GSM) /General Packet Radio Service (GPRS) , Enhanced Data Rates for GSM Evolution (EDGE) , Code Division Multiple Access (CDMA) , Wideband CDMA (WCDMA) , Time Division -Synchronous CDMA (TD-SCDMA) , CDMA2000, Worldwide Interoperability for Microwave Access (WiMAX) , Wireless Fidelity (Wi-Fi) , 4th Generation Long Term Evolution (LTE) , LTE-Advance (LTE-A) , or 5G NR, etc.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • CDMA Code Division Multiple Access
  • WCDMA Wideband CDMA
  • TD-SCDMA Time Division -Synchronous CDMA
  • CDMA2000 Code Division -Synchronous CDMA
  • the terms used herein may also refer to their equivalents in any other infrastructure.
  • the term "User Equipment” or “UE” used herein may refer to a terminal device, a mobile device, a mobile terminal, a mobile station, a user device, a user terminal, a wireless device, a wireless terminal, or any other equivalents.
  • the term “gNB” used herein may refer to a network node, a base station, a base transceiver station, an access point, a hot spot, a NodeB, an Evolved NodeB, a network element, or any other equivalents.
  • indicator used herein may refer to a parameter, a coefficient, an attribute, a property, a setting, a configuration, a profile, an identifier, a field, one or more bits/octets, an information element, or any data by which information of interest may be indicated directly or indirectly.
  • CSI-RS CSI-RS
  • SSB Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • PT-RS Phase Tracking Reference Signal
  • 3GPP TS 38.321 V16.7.0 (2021-12) Technical Specification, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Medium Access Control (MAC) protocol specification (Release 16) ; and
  • 3GPP TS 38.331 V16.7.0 (2021-12) Technical Specification, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification (Release 16) .
  • RRC Radio Resource Control
  • Fig. 1 is a diagram illustrating an exemplary telecommunications network 10 in which UE #1 100-1, UE #2 100-2, and gNB 105 may be operated according to an embodiment of the present disclosure.
  • the telecommunications network 10 is a network defined in the context of 5G NR, the present disclosure is not limited thereto.
  • the network 10 may comprise one or more UEs 100-1 and 100-2 (collectively, UE (s) 100) and a RAN node 105, which could be a base station, a Node B, an evolved NodeB (eNB) , a gNB, or an AN node which provides the UEs 100 with access to the network. Further, the network 10 may comprise its core network portion that is not shown in Fig. 1.
  • the network 10 may comprise additional nodes, less nodes, or some variants of the existing nodes shown in Fig. 1.
  • the entities e.g., an eNB
  • the gNB 105 e.g., the gNB 105
  • some of the entities may be same as those shown in Fig. 1, and others may be different.
  • UEs 100 and one gNB 105 are shown in Fig. 1, the present disclosure is not limited thereto. In some other embodiments, any number of UEs and/or any number of gNBs may be comprised in the network 10.
  • the UEs 100 may be communicatively connected to the gNB 105 which in turn may be communicatively connected to a corresponding Core Network (CN) and then the Internet, such that the UEs 100 may finally communicate its user plane data with other devices outside the network 10, for example, via the gNB 105.
  • CN Core Network
  • CSI-RS reporting is one of crucial features that enable a power efficient RAN.
  • the CSI-RS generation procedures are defined in 3GPP TS 38.211 Section 7.4.1.5.
  • the CSI-RS may be used for time/frequency tracking, CSI computation, L1 -Reference Signal Received Power (L1-RSRP) computation, L1 -Signal to Interference plus Noise Ratio (L1-SINR) computation and mobility. Configured with CSI-RS, the UE then needs to follow the procedures described in 3GPP TS 38.214 Section 5.1.6.1.
  • the UE For a CSI-RS resource associated with an NZP-CSI-RS-ResourceSet with the higher layer parameter repetition set to "on" , the UE shall not expect to be configured with CSI-RS over the symbols during which the UE is also configured to monitor the Control Resource Set (CORESET) , while for other NZP-CSI-RS-ResourceSet configurations, if the UE is configured with a CSI-RS resource and a search space set associated with a CORESET in the same Orthogonal Frequency Division Multiplexing (OFDM) symbol (s) , the UE may assume that the CSI-RS and a PDCCH DM-RS transmitted in all the search space sets associated with CORESET are quasi co-located with 'typeD' , if 'typeD' is applicable.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the UE shall not expect to be configured with the CSI-RS in Physical Resource Blocks (PRBs) that overlap those of the CORESET in the OFDM symbols occupied by the search space set (s) .
  • PRBs Physical Resource Blocks
  • the UE is not expected to receive CSI-RS and SIB1 message in the overlapping PRBs in the OFDM symbols where SIB1 is transmitted.
  • DRX Discontinuous Reception
  • the UE is configured to monitor DCI format 2_6 and configured by higher layer parameter ps-TransmitOtherPeriodicCSI to report CSI with the higher layer parameter reportConfigType set to 'periodic' and reportQuantity set to quantities other than 'cri-RSRP' and 'ssb-Index-RSRP' when drx-onDurationTimer in DRX-Config is not started, the most recent CSI measurement occasion occurs in DRX active time or during the time duration indicated by drx-onDurationTimer in DRX-Config also outside DRX active time for CSI to be reported;
  • UE is configured to monitor DCI format 2_6 and configured by higher layer parameter ps-TransmitPteriodicL1-RSRP to report L1-RSRP with the higher layer parameter reportConfigType set to 'periodic' and reportQuantity set to cri-RSRP when drx-onDurationTimer in DRX-Config is not started, the most recent CSI measurement occasion occurs in DRX active time or during the time duration indicated by drx-onDurationTimer in DRX-Config also outside DRX active time for CSI to be reported;
  • a UE can be configured with one or more NZP CSI-RS resource set configuration (s) as indicated by the higher layer parameters CSI-ResourceConfig, and NZP-CSI-RS-ResourceSet.
  • Each NZP CSI-RS resource set consists of K ⁇ 1 NZP CSI-RS resource (s) . The following is captured from TS 38.331 regarding CSI-ResourceConfig.
  • the NW can set the CSI-RS resource with different powerControlOffset, scramblingID, etc. The following is captured from TS 38.331.
  • the CSI-RS is mapped according to the configured CSI-RS-ResourceMapping.
  • the NW could set the configuration of the cdm-Type, frequencyDomainAllocation, nrofPorts, etc.
  • - nzp-CSI-RS-ResourceId determines CSI-RS resource configuration identity.
  • - periodicityAndOffset defines the CSI-RS periodicity and slot offset for periodic/semi-persistent CSI-RS. All the CSI-RS resources within one set are configured with the same periodicity, while the slot offset can be same or different for different CSI-RS resources.
  • - resourceMapping defines the number of ports, CDM-type, and OFDM symbol and subcarrier occupancy of the CSI-RS resource within a slot that are given in Clause 7.4.1.5 of TS 38.211.
  • - nrofPorts in resourceMapping defines the number of CSI-RS ports, where the allowable values are given in Clause 7.4.1.5 of TS 38.211.
  • - density in resourceMapping defines CSI-RS frequency density of each CSI-RS port per PRB, and CSI-RS PRB offset in case of the density value of 1/2, where the allowable values are given in Clause 7.4.1.5 of TS 38.211.
  • density 1/2 the odd/even PRB allocation indicated in density is with respect to the common resource block grid.
  • PDSCH Physical Downlink Shared Channel
  • EPRE Energy Per Resource Element
  • - powerControlOffsetSS which is the assumed ratio of NZP CSI-RS EPRE to Synchronous Signal (SS) /Physical Broadcast Channel (PBCH) block EPRE.
  • scramblingID defines scrambling ID of CSI-RS with length of 10 bits.
  • - BWP-Id in CSI-ResourceConfig defines which bandwidth part the configured CSI-RS is located in.
  • - qcl-InfoPeriodicCSI-RS contains a reference to a Transmission Configuration Indicator (TCI) -State indicating Quasi co-location (QCL) source RS (s) and QCL type (s) . If the TCI-State is configured with a reference to an RS configured with qcl-Type set to 'typeD' association, that RS may be an SS/PBCH block located in the same or different component carrier (CC) /DL Bandwidth Part (BWP) or a CSI-RS resource configured as periodic located in the same or different CC/DL BWP.
  • TCI Transmission Configuration Indicator
  • QCL Quasi co-location
  • RS may be an SS/PBCH block located in the same or different component carrier (CC) /DL Bandwidth Part (BWP) or a CSI-RS resource configured as periodic located in the same or different CC/DL BWP.
  • the CSI-RS resource (or the CSI-RS resource-set) that the UE needs to measure is configured in RRC configuration, e.g., in the CSI-MeasConfig information element (IE) .
  • the NW based on its certain consideration, may add, or remove (release) the CSI-RS or the (CSI-RS resource-set) that UE needs to measure. The following is captured from 3GPP TS 38.331.
  • Fig. 2 shows the overview of CSI-RS parameters that was discussed above.
  • Each parameter may be composed of several configurations, e.g., CSI-RS-ResourceMapping may be composed of nrofPorts, or NZP-CSI-RS-Resource may be composed of resourceMapping and powerControlOffsetsSS parameters.
  • CSI-RS-ResourceMapping may be composed of nrofPorts
  • NZP-CSI-RS-Resource may be composed of resourceMapping and powerControlOffsetsSS parameters.
  • Fig. 2 does not include all the configurations for each parameter. It can be observed in Fig. 2 that parameters are simply a mapping with each other using its different configurations. Most of them are mapped to CSI-MeasConfig.
  • the UE may then report its measurement back to the NW.
  • the reporting configuration for CSI can be aperiodic (using Physical Uplink Shared Channel, or PUSCH) , periodic (using Physical Uplink Control Channel, or PUCCH) or semi-persistent (using PUCCH, and DCI activated PUSCH) .
  • the CSI-RS Resources can be periodic, semi-persistent, or aperiodic. Table 5.2.1.4-1 in TS 38.214 (rewritten below) shows the supported combinations of CSI Reporting configurations and CSI-RS Resource configurations and how the CSI Reporting is triggered for each CSI-RS Resource configuration.
  • methods and mechanisms are disclosed that allow for a faster and resource-efficient dynamic CSI-RS configuration adaptation, by using the following alternatives:
  • CSI-MeasConfig can have multiple CSI-RS configurations and using MAC CE or DCI to activate/deactivate one or more configured CSI-RS resource set (or switching between CSI-RS resource sets) .
  • the UE may be configured with more than one CSI-RS configuration.
  • These embodiments aim to provide a fast dynamic adaptation mechanism, in which the UE can be indicated to switch between different CSI-RS configurations.
  • the switching can be for example, done by the NW during the port adaptation, i.e., where the NW determines to change the number of ports that will be used to serve the respective UE.
  • multiple CSI-RS configurations may refer to multiple CSI-RS configurations that can be activated/deactivated or switched through MAC-CE or DCI signaling.
  • a bitfield in a DCI can indicate if the default configuration or another one is activated.
  • the UE may be configured with a first CSI-RS configuration and a second CSI-RS configuration with the first one as the default.
  • An additional bit in the DCI e.g., DCI 1_1 and/or DCI 1_2 can be configured where if the bit status is "1" , the UE receives the bit and thereby considers the second CSI-RS configuration as activated and the default one as deactivated.
  • a bit "0" can be considered as reserved, or that the UE should consider the default CSI-RS configuration as the active one.
  • the number of bits in the DCI may depend on the number of CSI-RS configurations. For example, 2 bits may correspond to four CSI-RS configurations where 00 may refer to the default CSI-RS configuration.
  • a legacy behavior may apply. For example, the UE needs to monitor all of the CSI-RS, which is included in, e.g., CSI-MeasConfig.
  • the additional bitfield in the DCI used for adaptation indication may not be included in the DCI transmitted to the UE.
  • the NW may have flexibility on which CSI-RS should be used at one time instance.
  • the active CSI-RS configurations can be selected by the NW based on, e.g., the state of the port adaptation. For example, the following mechanism can be used by the NW to exploit the multiple CSI-RS configurations.
  • the multiple CSI-RS configurations can be obtained by one of several approaches mentioned above, for example, by configuring the UE to have more than one parameter configuration, for example, parameters inside the CSI-RS-ResourceMapping IE.
  • the NW may decide to change the CSI-RS configuration, for example, when there is no more UEs active in the cell, or no UEs are active that require or can take advantage of transmission with a large number of ports, e.g., sustained transmission with multiple layers and narrow beams. In this situation, the NW may decide to switch from the first CSI-RS configuration suitable for a larger number of ports transmission to the second CSI-RS configuration suitable for a smaller number of ports transmission. As described above, the indication can be done, e.g., via DCI and/or MAC-CE.
  • the NW may then transmit the CSI-RS according to the second CSI-RS configuration.
  • the NW can configure the UE through higher layer signaling e.g., RRC signaling if the activation/deactivation mechanism is DCI based, MAC CE based and also the underlying configuration, e.g., bitfield and its interpretation in the DCI.
  • the UE can be pre-configured e.g., as in standardization documentations, e.g., if there are two fields configured for a parameter, e.g., number of ports, then the UE automatically expects a MAC CE or DCI to be able to activate or deactivate the configurations, as determined in the standards for example.
  • the UE may receive a first CSI-RS configuration and a second CSI-RS configuration according to the example embodiments described herein, for example, through RRC signaling.
  • the UE then may start measuring or report based on the first configuration as the default one, and at one time instant, the UE may receive a MAC CE command or a DCI indicating that the UE should perform measurements or reporting based on the second configuration, and thus the UE measures the CSI-RS based on the second configuration or report CSI based on measuring the second CSI-RS configuration.
  • a group of UEs may receive command to switch to a second configuration. This may for example be implemented as a group MAC or a DCI using group common search space. Then a group of UEs can be configured to, using low signaling overhead and low latency, switch CSI-RS configurations. The individual CSI-RS configurations may still be configured per-UE.
  • the group switching command can for example be formulated as:
  • - all UEs in group switch to specific configuration index, for example, switch to nzp-CSI-RS-ResourcesDefault or nzp-CSI-RS-ResourcesB.
  • - all UEs in group switch to an implicitly indicated configuration, for example, switch to CSI-RS configuration with shortest periodicity, densest allocation in time/frequency, largest number of ports, etc.
  • one or more subsets of RS ports may be measured and/or reported.
  • an RS configuration and/or one or more its variants may be provided at the UE, and the UE may determine which one of the RS configuration and/or the one or more its variants shall be activated/deactivated.
  • an RS configuration itself can be regarded as one of its variants.
  • a gNB with multiple antennas being active during transmission wastes energy in case UEs in the cell are not in need of the beam forming gain formed by the multiple antennas.
  • the gNB may therefore be interested in lowering its energy consumption by employing just enough antennas necessary to maintain a good link towards the UE. Problem is that if the gNB chooses to turn off antennas, it does not have good information about when and/or which antennas to be reactivated as the UE moves around.
  • the UE also needs to be ensured that it knows how to compensate for the power difference between measured CSI-RS and its PDCCH/PDSCH reception or SSBs.
  • some embodiments of the present disclosure describe methods in which the gNB separates the port-to-antenna mapping of data-related ports (e.g., PDCCH/PDSCH/DMRS) from reference signal related ports (e.g., CSI-RS/SSB) . Then certain transceiver chains (herein called the background ports) are muted for data-related ports but the reference signals (such as CSI-RS) are still transmitted through these.
  • the CSI-RSs for some of these background ports may be transmitted at lower rates and potentially over fewer PRBs thereby allowing the gNB to utilize energy saving schemes.
  • the UEs may be informed about the changes.
  • Methods such as those mentioned above may be used to inform the UE about changes in the CSI-RS configurations in a timely and efficient manner. Other methods are however not precluded (such as RRC reconfigurations, broadcast changes, stepping between predefined configurations, or alike) . Also, methods such as those mentioned above may be used for receiving relevant measurements from the UE on the so-called foreground (data-related) and background ports.
  • the power offset between CSI-RS and PDCCH/PDSCH or SSBs can be changed in a dynamic way. All possible power offsets may be first defined in a set by RRC or spec, and then DCI or MAC CE may be used to indicate which specific power offset to apply. Either the power offset for all CSI-RS transmitted over all transceiver chain can change dynamically, or the power offset for those CSI-RS transmitted at those background ports changes dynamically.
  • some methods are also introduced for configuring conditions/events such that UE may measure and/or report on the so-called background ports only when necessary. As such the UE may also save energy as result of less measurement effort on the background ports.
  • the UE may be configured with one or more reference signal (e.g., CSI-RS, or SSB) configurations that may take effect depending on NW antenna muting pattern.
  • each said configuration/variant of the reference signal may specify how many reference signal ports, and/or which reference signal ports, and/or with what associated time/frequency resources, and/or with what associated power offset compared to PDCCH/PDSCH or SSBs within the configured reference signal resource need to be measured and/or reported by the UE to the NW.
  • the said variants may become active depending on whether the NW uses the associated antennas for background or foreground purposes.
  • the gNB may map the said reference signal resources to a first set of antennas (so-called background antennas) , potentially at low rate and over lower bandwidth and/or lower density and/or with different power offset (compared to that typically used for CSI-RSs used for data channel estimation on so-called foreground antennas) .
  • the gNB may map the data-related antenna ports (e.g., PDCCH, PDSCH, DMRS) to a second set of antennas, so-called foreground antennas (could be partially overlapping with first set of antennas) .
  • data-related antenna ports e.g., PDCCH, PDSCH, DMRS
  • foreground antennas could be partially overlapping with first set of antennas
  • there may be other reference signals e.g., CSI-RS, SSB resources
  • CSI-RS CSI-RS, SSB resources
  • the gNB may inform the UE which of the configuration variants are activated, and the UE adapts its reference signal measurements and channel estimates accordingly.
  • the UE may "implicitly" activate a variant of the configuration based on TCI states of the different ports (i.e., the UE would have knowledge of foreground Vs background configuration variants) .
  • the "implicit" activation by the UE may be carried out by the UE if NW has configured the UE to do so, e.g. by providing foreground/background configuration for an RS, or by another indicator such as a Boolean or alike informing the UE that based on TCI state change, the UE applies another variant/configuration.
  • the gNB may achieve time gaps created on non-overlapping first and second set of antennas (since the reference signals are transmitted more seldom) and utilizes them for Rx/Tx sleep.
  • the gNB can transmit at lower output power in case the reference signals are transmitted over smaller BW or at lower density.
  • the gNB may order the UE (periodically or aperiodically) to transmit measurement report on the various reference signals.
  • the gNB may configure the UE with conditions based on which the UE only measures/reports on the reference signals of the background antennas only if the conditions are fulfilled.
  • the gNB may remap the data-related ports to another set of antennas (i.e., the setup of foreground and the background antennas changes) .
  • less transmission power may be used when e.g., data is not transmitted through some of the antennas, or when CSI-RS resources are transmitted at a lower rate and/or over fewer RBs and/or with lower density through some of the antennas.
  • energy saving mode so-called background antennas
  • the gNB may be able to adopt deeper sleep modes on one or more of the antennas/TRX chains, e.g., a light sleep compared to micro sleep.
  • CSI-RS is chosen as the example for reference signals mapped to various antennas.
  • the ideas herein are equally applicable to other reference signals such as SSB or alike.
  • an antenna setup with two panels, or a panel divided into two halves, is exemplified for simplicity, but the ideas herein are equally relevant for other setups.
  • a UE that is configured with N CSI-RS ports will measure all N ports so that it can get a whole picture of the channel from gNB to UE.
  • gNB uses the measurement report from UE to determine how to transmit data to UE via these antenna ports.
  • Fig. 3 is a diagram illustrating an exemplary scenario where RS measurement and/or report adaptation may be applicable according to an embodiment of the present disclosure.
  • an antenna 300 of a gNB e.g., the gNB 105 shown in Fig. 1
  • one or more PDCCH, PDSCH, and/or DMRS ports 320 and a CSI-RS port X 330 are mapped to the antenna elements 310 on both of the antenna panels 301 and 302. That is, both data-related transmissions (PDCCH/PDSCH/DMRS) and CSI-RS related transmission are mapped to all antenna elements.
  • RF signals transmitted by the gNB 105 over these antenna ports/antenna elements form a PDCCH/PDSCH/DMRS beam 325 and a CSI-RS X beam 335, respectively.
  • a UE e.g., the UE 100 shown in Fig. 1
  • the gNB 105 may be served by the gNB 105, as shown in Fig. 3.
  • Fig. 3 shows an antenna with 2 panels, each with 32 antennas, the present disclosure is not limited thereto.
  • Some embodiments of the present disclosure may allow the gNB to utilize muting certain antennas temporarily, e.g., based on the time gap between two CSI-RS transmissions, e.g., 20ms, 40ms, and so on. This is done by not having user data transmitted on some antennas to a specific UE. User data is transmitted on a subset of antennas (called foreground antennas herein) whereas CSI-RS (s) /SSBs could still be transmitted on all or another subset (called background antennas/CSI-RS resources herein) , perhaps at a lower rate and with a smaller BW, with lower density on some subsets, with different power offset.
  • density may refer to how many resource elements (REs) are occupied by a reference symbol per Resource Block (RB) .
  • RB Resource Block
  • a density of 2 means that 2 REs are occupied per RB
  • density of 0.5 means that a single RE is occupied in every other RB.
  • the gNB can utilize the gap intervals to sleep (turning off involved transceivers partially/fully) .
  • This is exemplified in Fig. 4 through Fig. 6, which will be described below. It shall be noted that it is only for simplicity that the examples depict two panels and 64 antennas.
  • each configuration of the reference signal may have one or more variants (sub-configuration) configured in the UE.
  • one variant may become "active" when the RS is in foreground, and another variant may become active when the RS is used for background transmission.
  • the activation of a certain variant may be explicitly indicated to the UE by the gNB by the mechanism mentioned in prior art (e.g., as discussed in the above embodiments) . As such the UE is not necessarily aware of foreground/background status of the RSs.
  • the UE may "implicitly" activate a variant of the configuration based on TCI states of the different ports (i.e., the UE would have knowledge of foreground Vs background configuration variants) .
  • Fig. 4 is a diagram illustrating an exemplary scenario where RS measurement and/or report adaptation are applied according to an embodiment of the present disclosure.
  • Fig. 4 shows an antenna configuration similar to that shown in Fig. 3, and a detailed description thereof is omitted for simplicity.
  • Fig. 4 shows an example in which 3 sets of CSI-RS ports (X 330, Y 340, and Z 350) are mapped to various antennas.
  • the CSI-RS port Z 350 is mapped to the same antennas as the PDCCH/PDSCH/DMRS ports 320′, that is, data-related transmissions (foreground antennas/panel) .
  • the CSI-RS port Y 340 is mapped to the left panel (background panel) 301, and the CSI-RS port X (even though a background reference signal) 330 is mapped to both panels 301 and 302.
  • the gNB may configure three sets of CSI-RS ports X 330, Y 340, and Z 350.
  • Port Z 350 is mapped to the same set of antennas as used for user data transmission (PDCCH/PDSCH/DMRS) . These antennas may be called as foreground antennas herein.
  • CSI-RS port Z 350 is Quasi Co-Located (QCL) with the port 320′used for user data transmission. QCL means that these transmissions share common large scale propagation channel characteristics (e.g., Doppler shift, Doppler spread, Delay spread, etc. ) . Transmissions with the same QCL may share the same Transmission Configuration Indication (TCI) state.
  • TCI Transmission Configuration Indication
  • the UE may, based on said TCI state knowledge, "implicitly" know that CSI-RS port Z 350 is a foreground reference signal as it is sharing the same TCI state as the user data related port 320′. As such the UE would know that the foreground configuration variant is applicable to this RS. For the RSs from the other ports (X 330 and Y 340 in the example) that do not share the same TCI state, the UE would know that the background configuration variant is applicable.
  • a background configuration variant for an RS may be such that the transmission of it by the gNB would be more lightweight (energy friendly) for the NW and potentially also for the UE.
  • the gNB could for example during often occurring transmission gaps on the background antennas be able to turn off the power amplifier on the transceivers associated with the antennas and thereby save energy.
  • the gNB would be able to turn off certain blocks that would have otherwise been needed for high BW associated with those antennas.
  • the intention of such background variant is to keep track of UE coverage in the background while serving the UE with user-data on the foreground antennas.
  • the gNB may change the foreground antennas if gNB decides that e.g., it would better serve services towards the UE.
  • a background RS configuration variant may have a lower periodicity (transmitted at a lower rate) than a foreground variant.
  • the parameter periodicityAndOffsetfor the background variant may be 640 slots (every 640 ms in 15kHz SCS) whereas it may be every 4 slots for a foreground variant.
  • the variant rate may be dependent on how good coverage the UE has, how data-active it is, and at what speed it is moving while associated with the data panel. The better the coverage, the lower the speed, and the lower data activity (e.g., low bit rate) , the more relaxed the CSI-RS transmission on the background port can be.
  • a background RS variant may have a lower density (e.g., 0.5) than a foreground variant (e.g., 3) .
  • a background RS variant may have lower BW (e.g., 4 RBs) than a foreground variant (e.g., 40 RBs) .
  • the background may have a lower BW, but to compensate for the very low BW, an increased density is used so that the UE can perform measurements on sufficient number of REs used for RS (in total the number of REs used would still be less than that for foreground variant) .
  • the UE may measure and report status of the background ports.
  • the gNB may know which ports to mute for data-related transmissions.
  • the gNB may be initially transmitting the CSI-RS ports X 330, Y 340, and Z 350 at same rate on different panels and data may be provided on all antennas (both panels) ; i.e., everything is in foreground mode.
  • the gNB may decide to put the left panel 301 in background mode.
  • the gNB may hand over the data transmission to the left panel 301 instead.
  • the left panel 301 is now in foreground and the right panel 302 in background instead.
  • the UE may also know that a configuration variant swap has occurred.
  • the gNB could go back to transmitting on all antennas again.
  • RSs are not excluded from the present disclosure.
  • SSBs are mapped to all those antennas including the data-muted port, in order to let gNB have the higher possibility to go into deep sleep mode, besides a longer period for CSI-RS, the periodicity of SSB could be extended as well to match that of CSI-RS, particularly if the associated cell is a Scell.
  • Another variant is changing the mapping of SSB from mapping to all antennas to just mapping to those foreground antennas with data only. Then gNB can go to deep sleep mode on those background antennas.
  • the gNB may additionally decide to mute some CSI-RS ports and not only antennas, e.g., if the load in the cell is low or the number of UEs are limited, and this only keep the CSI-RS ports associated with the SSBs. As such the gNB can save additional power by lowering the number of CSI-RS transmissions even further. Note that other constellations may exist, e.g., as exemplified in Fig. 5 with a simpler setup including fewer CSI-RS ports.
  • Fig. 5 is a diagram illustrating another exemplary scenario where RS measurement and/or report adaptation are applied according to another embodiment of the present disclosure.
  • Fig. 5 shows another example in which 2 sets of CSI-RS ports (X 330′, and Y 340) are each mapped to a separate panel. As shown in Fig. 5, CSI-RS port X 330′ is mapped to the same antennas as data-related transmissions (foreground) .
  • Fig. 6 is a diagram illustrating yet another exemplary scenario where RS measurement and/or report adaptation are applied according to yet another embodiment of the present disclosure.
  • Fig. 6 shows an example in which the CSI-RS port is mapped to all antennas, whereas as data-related transmissions are only mapped to one panel.
  • the CSI-RS and the data related beams may cover different areas of the cell as a result.
  • the gNB may stop data-related transmission on one panel (e.g., the left panel 301) . This could be as result of UE reporting very low quality CSI report including e.g., L1-RSRP (could be other quantities such as SINR, RSRQ or alike) on that panel.
  • the gNB may maintain however the CSI-RS transmission on all antennas with same rate and BW. This might because there are other UEs that are currently using said CSI-RS.
  • the gNB may inform the UE that the power relationship between the CSI-RS and PDSCH REs or SSBs have changed (e.g., existing powerControlOffset, powerControlOffsetSS, or other newly introduced parameter indicating power relation to PDCCH/PDSCH) .
  • An example of a new parameter may be UE position-specific power offset since here the power relation is not linear (accounting only for the total PA output power plus BF gain difference) but also depending on where in the beam coverage areas the UE is located.
  • the NW may estimate the position-specific power offset based on multiple CSI-RS port measurements from the UE, where the inter-CSI-port relations may be used to determine the desired CSI-port-to-data-port power offset, e.g.
  • the UE may know that it has to compensate for the power difference during its PDCCH/PDSCH reception and channel assessment. This knowledge may be necessary for the UE to perform proper Automatic Gain Control (AGC) . Signal power offset knowledge is necessary to allow an appropriate scaling of the CSI Reference Signal measurements. The gNB may also keep track of this power difference so that it knows based on UE CSI-report when to re-map data-related ports to all antennas again. In other cases, if PDCCH/PDSCH on subset of ports is power boosted such that the power relation of PDCCH/PDSCH on single port is still valid for CSI-RS on multiple ports, the powerControlOffset may be kept unchanged.
  • AGC Automatic Gain Control
  • the NW is able to indicate the change in the associated power offsets, or other potential changes, e.g., QCL and so on. Nevertheless, this can be done on optional basis also, i.e., the NW can also still apply the example embodiments above without explicit indications to the UE such as power offset adaptation, particularly if such a mechanism is not available on dynamic basis (i.e., L1/L2 signaling for example) . In this case, either the NW can make sure the power offset or other conditions such as QCL are maintained, or alternatively, take that into account while analyzing the report from the UE and also in scheduling the UE with data based on the report.
  • the NW can make sure the power offset or other conditions such as QCL are maintained, or alternatively, take that into account while analyzing the report from the UE and also in scheduling the UE with data based on the report.
  • the UE may additionally relax the CSI-RS or SSB measurements, e.g., if specific conditions are met, and inform the NW accordingly.
  • the NW can decide on turning off some more CSI-RS occasions such that it saves some energy knowing that the UE already has sufficient CSI-RS or SSBs to measure.
  • the NW may optionally decide to indicate to the UE which of the CSI-RS or SSB occasions are not transmitted anymore, e.g., using lower layer signaling such as DCI or MAC-CE.
  • the specific conditions can be same or different from the conditions for determining whether RS measurement and/or report are to be performed or not.
  • the specific conditions may be (pre-) configured in the variants. Therefore, when in foreground there would be a certain powerCtrlOffsetthat would be applicable, whereas when in background another power offset would be relevant.
  • the UE may be configured by various reporting schemes/variants for the background CSI ports.
  • the UE may be configured to report on a periodical/semi-persistent basis (potentially a different period compared to foreground) .
  • the gNB may completely control the rate of measurements and report aperiodically, i.e., the gNB may order the UE to specifically measure and report on the background RSs at specific occasions.
  • the UE may be configured to measure/send the reports for the background RSs only if a certain condition is met, e.g., the UE may transmit the report to gNB when the measured link quality of that port is above a certain value.
  • the certain value can be, for example, an absolute value.
  • the absolute value can be, e.g., predetermined in the standard or configurable by the NW.
  • the value can also be a relative value, e.g., compared to the measurement of the foreground RS.
  • the UE may report the measurement of the background port when it has a link quality better than the measurement of the foreground.
  • the UE may report the measurement of the background port when it has a link quality that is greater than L foreground -L threshold or L foreground + L threshold , where L foreground is the link quality of the foreground CSI-RS port associated with the data transmission and L threshold is an absolute value that may be predetermined in the standard or configured by the NW.
  • the qualities mentioned here could be either based on link measurements such as RSRP, RSRQ, SINR etc. Alternately the conditions could be based on block error rate of the foreground link, e.g., if the BLER of the foreground link exceeds a certain (pre-) configured level, the UE starts measuring/reporting on the background RSs.
  • the UE reports only the best background RS when reporting, whereas in other embodiment more than best is reported. It shall be noted that for this aspect it is not necessary to have more than one variant of each RS configuration.
  • the UE can be configured, e.g., through higher layer signaling such as RRC signaling, e.g., as part of CSI-RS configuration, that which CSI-RS ports are background RSs, and which ones are foreground.
  • the UE can be configured with the conditions as described above upon its validity, then the UE has to follow up some actions, examples of which are given in this invention.
  • the actions can also be configurable by the NW or alternatively pre-configured e.g., as in the standardization documentations.
  • DCI or MAC-CE signaling can be used in order to indicate dynamically to the UE which RSs are background and which ones are foreground RSs.
  • the RSs while the RSs are in background, they may be exempt from certain procedures.
  • the background RSs shall not be used for pathloss estimation for at least one of power control, Precoding Matrix Index (PMI) , Channel Quality Information (CQI) , Rank Indicator (RI) estimation and alike. Instead, they are only used for at least one of CRI-RSRP, SSB-Index-RSRP reporting.
  • the gNB may configure which of the procedures that are exempt for background RSs, whereas in another embodiment, this may be pre-specified in specifications.
  • the associated reporting resources e.g., periodic/semi-persistent PUCCH/PUSCH configurations provided to the UE for reporting
  • the associated reporting resources can be used for other purposes by the gNB while the RSs are in background mode.
  • the gNB Once the gNB has acquired measurements for various setups/variants, it can decide which transceivers are optimal or suitable enough for communication with the UE and based on the results choose to utilize energy saving states on the other transceiver chains. As a result, less energy is used by the gNB.
  • the activation and deactivation of the ports (configurations/variants) may be signaled to the UE in a similar manner as for the measurement requests by the gNB and could be either periodic, semi-periodic, or aperiodic. In one aspect the measurement request and the configuration activation commands may be separately communicated to the UE.
  • Fig. 7 is a flow chart of an exemplary method 700 at a UE for RS measurement adaptation according to an embodiment of the present disclosure.
  • the method 700 may be performed at a user equipment (e.g., the UE 100) .
  • the method 700 may comprise step S710, S720, and S730.
  • the present disclosure is not limited thereto.
  • the method 700 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 700 may be performed in a different order than that described herein.
  • a step in the method 700 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 700 may be combined into a single step.
  • the method 700 may begin at step S710 where a message indicating one or more RS configurations may be received from a network node, each of which being associated with a set of one or more RS ports in at least one of multiple modes.
  • At step S720, at least a first of the one or more RS configurations to be activated may be determined in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration.
  • the first set of RS ports may be measured at least based on the first RS configuration.
  • the method 700 may further comprise: determining at least a second of the one or more RS configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS configuration is not in any mode associated with the second RS configuration; and preventing the second set of RS ports from being measured based on the second RS configuration.
  • Fig. 8 is a flow chart of an exemplary method 800 at a UE for RS measurement adaptation according to an embodiment of the present disclosure.
  • the method 800 may be performed at a user equipment (e.g., the UE 100) .
  • the method 800 may comprise step S810, S820, and S830.
  • the present disclosure is not limited thereto.
  • the method 800 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 800 may be performed in a different order than that described herein.
  • a step in the method 800 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 800 may be combined into a single step.
  • the method 800 may begin at step S810 where a message indicating one or more RS configuration variants associated with a same RS configuration may be received from a network node, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration.
  • At step S820, at least a first of the one or more RS configuration variants to be activated may be determined in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant.
  • the first subset of RS ports may be measured at least based on the first RS configuration variant.
  • the method 800 further comprise: determining at least a second of the one or more RS configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second RS configuration variant is not in any mode associated with the second RS configuration variant; and preventing the second subset of RS ports from being measured based on the second RS configuration variant.
  • the method 700 or 800 may further comprise: transmitting, to the network node, a report message indicating a measurement for the first set of RS ports or the first subset of RS ports.
  • the multiple modes may comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS
  • At least one of the one or more RS configurations or at least one of the one or more RS configuration variants may indicate at least one of: time/frequency resources; a number of RS ports; one or more identifiers or indexes of one or more RS ports; a power offset compared to at least one of PDCCH, PDSCH, and SSB; a rate; a bandwidth; and a density.
  • At least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode, when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, may indicate at least one of: a lower rate; a lower bandwidth; a lower density; and a different power offset.
  • At least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration variants in the first mode when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, may indicate at least one of: a higher rate; a higher bandwidth; a higher density; and a different power offset.
  • an RS configuration or RS configuration variant in the second mode which indicates a lower bandwidth than that indicated by another RS configuration or RS configuration variant in the first mode, may indicate a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode.
  • the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated may comprise: receiving, from the network node, a message indicating the first RS configuration or the first RS configuration variant to be activated.
  • the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated may comprise: determining whether there is at least one RS configuration or RS configuration variant whose associated set of RS ports or associated subset of RS ports has a same state as that of another antenna port associated with at least one of PDCCH, PDSCH, and DMRS or not; and determining the at least one RS configuration or RS configuration variant, as the first RS configuration or the first RS configuration variant to be activated, in response to determining that there is the at least one RS configuration or RS configuration variant.
  • the state is a TCI state.
  • the method 700 or 800 may further comprise: receiving, from the network node, a message indicating that the UE is to determine an RS configuration or an RS configuration variant to be activated based on its own decision.
  • the message may indicate at least one of: which RS port or RS ports are in which mode; which RS or RSs are in which mode; and whether the UE is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not.
  • the method 700 or 800 may further comprise: receiving, from the network node, a message indicating that the UE is to transmit the report message periodically or aperiodically, wherein the step of transmitting, to the network node, a report message may be performed in response to the received message.
  • the method 700 or 800 may further comprise: receiving, from the network node, a message indicating one or more conditions, wherein at least one of the step of measuring the first set of RS ports, the step of measuring the first subset of RS ports, and the step of transmitting, to the network node, a report message may be performed only in response to at least one of the one or more conditions being fulfilled.
  • the first RS configuration or the first RS configuration variant may indicate that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed, wherein the method 700 or 800 may further comprise: performing power compensation during at least one of PDCCH reception, PDSCH reception, and channel assessment at least based on the changed power relationship.
  • the message may comprise at least one of: a powerControlOffset IE; a powerControlOffsetSS IE; and an IE indicating a UE position-specific power offset.
  • the method 700 or 800 may further comprise at least one of: transmitting, to the network node, a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled; measuring the first set of RS ports or the first subset of RS ports excluding the one or more indicated RS occasions; and receiving, from the network node, a message indicating that the one or more indicated RS occasions are muted.
  • a set of RS ports or a subset of RS ports in the second mode may be not measured for at least one of: pathloss estimation for power control; PMI determination; CQI determination; and RI estimation.
  • a set of RS ports or a subset of RS ports in the second mode is measured for at least one of: CRI-RSRP reporting; and SSB-Index-RSRP reporting.
  • which of one or more procedures that are exempt for RS ports in the second mode may be determined by at least one of: a configuration from the network node; and a configuration hardcoded or pre-configured at the UE.
  • At least one of the messages may be received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI.
  • an RS may comprise at least one of: a CSI-RS; and an SSB.
  • the CSI-RS configurations or configuration variants in the second mode may indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants.
  • each of the SSB configurations or configuration variants may be associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  • at least one of the one or more RS configurations or at least one of the one or more RS configuration variants may correspond to an antenna muting pattern at the network node.
  • Fig. 9 is a flow chart of an exemplary method 900 at a UE for RS report adaptation according to an embodiment of the present disclosure.
  • the method 900 may be performed at a user equipment (e.g., the UE 100) .
  • the method 900 may comprise step S910, S920, and S930.
  • the present disclosure is not limited thereto.
  • the method 900 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 900 may be performed in a different order than that described herein.
  • a step in the method 900 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 900 may be combined into a single step.
  • the method 900 may begin at step S910 where a message indicating one or more RS report configurations may be received from the network node, each of which being associated with a set of one or more RS ports in at least one of multiple modes.
  • At step S920, at least a first of the one or more RS report configurations to be activated may be determined in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration.
  • a report message indicating a measurement for the first set of RS ports may be transmitted to the network node at least based on the first RS report configuration.
  • the method 900 may further comprise: determining at least a second of the one or more RS report configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS report configuration is not in any mode associated with the second RS report configuration; and preventing the second set of RS ports from being reported based on the second RS report configuration.
  • Fig. 10 is a flow chart of an exemplary method 1000 at a UE for RS report adaptation according to an embodiment of the present disclosure.
  • the method 1000 may be performed at a user equipment (e.g., the UE 100) .
  • the method 1000 may comprise step S1010, S1020, and S1030.
  • the present disclosure is not limited thereto.
  • the method 1000 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 1000 may be performed in a different order than that described herein.
  • a step in the method 1000 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1000 may be combined into a single step.
  • the method 1000 may begin at step S1010 where a message indicating one or more RS report configuration variants associated with a same RS report configuration may be received from the network node, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration.
  • At step S1020, at least a first of the one or more RS report configuration variants to be activated may be determined in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant.
  • a report message indicating a measurement for the first subset of RS ports may be transmitted to the network node at least based on the first RS report configuration variant.
  • the method 1000 may further comprise: determining at least a second of the one or more RS report configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second RS report configuration variant is not in any mode associated with the second RS report configuration variant; and preventing the second subset of RS ports from being reported based on the second RS report configuration variant.
  • the multiple modes may comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  • At least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants may indicate at least one of: the report message is to be transmitted periodically; the report message is to be transmitted semi-persistently; the report message is to be transmitted aperiodically; and the report message is to be transmitted only when a condition is fulfilled.
  • the condition when the first set of RS ports or the first subset of RS ports is in the second mode, the condition may comprise at least one of: whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode.
  • the measured link quality may comprise at least one of: RSRP; RSRQ; SINR; and BLER.
  • the method 900 or 1000 may further comprise: determining whether the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all the other subsets of RS ports in the second mode, wherein the step of transmitting, to the network node, a report message may comprise: transmitting, to the network node, the report message only in response to determining that the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than the measurements for all the other sets of RS ports or all the other subsets of RS ports in the second mode.
  • each RS report configuration there may be one associated RS report configuration variant at most.
  • at least one of the messages may be received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI.
  • an RS may comprise at least one of: a CSI-RS; and an SSB.
  • Fig. 11 is a flow chart of an exemplary method 1100 at a network node for RS measurement adaptation according to an embodiment of the present disclosure.
  • the method 1100 may be performed at a network node (e.g., the gNB 105) .
  • the method 1100 may comprise steps S1110, S1120, and S1130.
  • the present disclosure is not limited thereto.
  • the method 1100 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 1100 may be performed in a different order than that described herein.
  • a step in the method 1100 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1100 may be combined into a single step.
  • the method 1100 may begin at step S1110 where a message indicating one or more RS configurations may be transmitted to a UE, each of which being associated with a set of one or more RS ports in at least one of multiple modes.
  • At step S1120 at least a first of the one or more RS configurations to be activated at the UE may be determined, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration.
  • one or more RSs may be transmitted at least based on the first RS configuration.
  • the method 1100 may further comprise: determining at least a second of the one or more RS configurations to be deactivated at the UE, a second set of one or more RS ports associated with the second RS configuration being not in any mode associated with the second RS configuration; and preventing one or more RSs from being transmitted based on the second RS configuration.
  • Fig. 12 is a flow chart of an exemplary method 1200 at a network node for RS measurement adaptation according to an embodiment of the present disclosure.
  • the method 1200 may be performed at a network node (e.g., the gNB 105) .
  • the method 1200 may comprise steps S1210, S1220, and S1230.
  • the present disclosure is not limited thereto.
  • the method 1200 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 1200 may be performed in a different order than that described herein.
  • a step in the method 1200 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1200 may be combined into a single step.
  • the method 1200 may begin at step S1210 where a message indicating one or more RS configuration variants associated with a same RS configuration may be transmitted to a UE, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration.
  • At step S1220 at least a first of the one or more RS configuration variants to be activated at the UE may be determined, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant.
  • one or more RSs may be transmitted at least based on the first RS configuration variant.
  • the method 1200 may further comprise: determining at least a second of the one or more RS configuration variants to be deactivated at the UE, a second subset of one or more RS ports associated with the second RS configuration variant being not in any mode associated with the second RS configuration variant; and preventing one or more RSs from being transmitted based on the second RS configuration variant.
  • the method 1100 or 1200 may further comprise: receiving, from the UE, a report message indicating a measurement for the first set of RS ports or the first subset of RS ports.
  • the multiple modes may comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS
  • At least one of the one or more RS configurations or at least one of the one or more RS configuration variants may indicate at least one of: time/frequency resources; a number of RS ports; one or more identifiers or indexes of one or more RS ports; a power offset compared to at least one of PDCCH, PDSCH, and SSB; a rate; a bandwidth; and a density.
  • At least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode, when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, may indicate at least one of: a lower rate; a lower bandwidth; a lower density; and a different power offset.
  • At least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration variants in the first mode, when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, may indicate at least one of: a higher rate; a higher bandwidth; a higher density; and a different power offset.
  • an RS configuration or RS configuration variant in the second mode which indicates a lower bandwidth than that indicated by another RS configuration or RS configuration variant in the first mode, may indicate a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode.
  • the method 1100 or 1200 may further comprise: transmitting, to the UE, a message indicating the first RS configuration or the first RS configuration variant to be activated.
  • the method 1100 or 1200 may further comprise at least one of: transmitting, to the UE, a message indicating a state for at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; transmitting, to the UE, a message indicating a state for the first set or subset of RS ports; and transmitting, to the UE, a message indicating a state for the second set or subset of RS ports.
  • the state may be a TCI state.
  • the method 1100 or 1200 may further comprise: transmitting, to the UE, a message indicating that the UE is to determine an RS configuration or an RS configuration variant to be activated based on its own decision.
  • the message may indicate at least one of: which RS port or RS ports are in which mode; which RS or RSs are in which mode; and whether the UE is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not.
  • the method 1100 or 1200 may further comprise: transmitting, to the UE, a message indicating that the UE is to transmit the report message periodically or aperiodically, wherein the step of receiving, from the UE, a report message may be performed in response to the transmitted message.
  • the method 1100 or 1200 may further comprise: transmitting, to the UE, a message indicating one or more conditions, wherein the step of receiving, from the UE, a report message may be performed only in response to at least one of the one or more conditions being fulfilled at the UE.
  • the first RS configuration or the first RS configuration variant may indicate that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed.
  • the message may comprise at least one of: a powerControlOffset Information Element (IE) ; a powerControlOffsetSS IE; and an IE indicating a UE position-specific power offset.
  • IE powerControlOffset Information Element
  • the method 1100 or 1200 may further comprise at least one of: receiving, from the UE, a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled; muting the one or more indicated RS occasions while transmitting the first set of RS ports or the first subset of RS ports; transmitting, to the UE, a message indicating that the one or more indicated RS occasions are muted.
  • a set of RS ports or a subset of RS ports in the second mode may be not used for at least one of: pathloss estimation for power control; PMI determination; CQI determination; and RI estimation.
  • a set of RS ports or a subset of RS ports in the second mode may be used for at least one of: CRI-RSRP reporting; and SSB-Index-RSRP reporting.
  • which of one or more procedures that are exempt for RS ports in the second mode may be determined by at least one of: a configuration from another node; and a configuration hardcoded or pre-configured at the network node.
  • at least one of the messages may be received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI.
  • an RS may comprise at least one of: a CSI-RS; and an SSB.
  • the CSI-RS configurations or configuration variants in the second mode may indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants.
  • each of the SSB configurations or configuration variants may be associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  • at least one of the one or more RS configurations or at least one of the one or more RS configuration variants may correspond to an antenna muting pattern at the network node.
  • the method 1100 or 1200 may further comprise: utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS configuration or the first RS configuration variant, for reception and/or transmission sleep. In some embodiments, the method 1100 or 1200 may further comprise: transmitting at a lower output power in response to the first RS configuration or the first RS configuration variant indicating a lower bandwidth and/or a lower density.
  • the method 1100 or 1200 may further comprise: in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS, remapping the at least one of PDCCH, PDSCH, and DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
  • Fig. 13 is a flow chart of an exemplary method 1300 at a network node for RS report adaptation according to an embodiment of the present disclosure.
  • the method 1300 may be performed at a network node (e.g., the gNB 105) .
  • the method 1300 may comprise steps S1310, S1320, S1330, and S1340.
  • the present disclosure is not limited thereto.
  • the method 1300 may comprise more steps, less steps, different steps, or any combination thereof.
  • the steps of the method 1300 may be performed in a different order than that described herein.
  • a step in the method 1300 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1300 may be combined into a single step.
  • the method 1300 may begin at step S1310 where a message indicating one or more RS report configurations may be transmitted to a UE, each of which being associated with a set of one or more RS ports in at least one of multiple modes.
  • At step S1320 at least a first of the one or more RS report configurations to be activated at the UE may be determined, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration.
  • one or more RSs may be transmitted over the first set of RS ports.
  • a report message indicating a measurement for the first set of RS ports may be received from the UE at least based on the first RS report configuration.
  • the method 1300 may further comprise: determining at least a second of the one or more RS report configurations to be deactivated at the UE, a second set of one or more RS ports associated with the second RS report configuration being not in any mode associated with the second RS report configuration; and transmitting, to the UE, a message explicitly or implicitly indicating that a measurement for the second set of RS ports is not to be reported by the UE based on the second RS report configuration.
  • Fig. 14 is a flow chart of an exemplary method 1400 at a network node for RS report adaptation according to an embodiment of the present disclosure.
  • the method 1400 may be performed at a network node (e.g., the gNB 105) .
  • the method 1400 may comprise steps S1410, S1420, S1430, and S1440.
  • the present disclosure is not limited thereto.
  • the method 1400 may comprise more steps, less steps, different steps, or any combination thereof.
  • the steps of the method 1400 may be performed in a different order than that described herein.
  • a step in the method 1400 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1400 may be combined into a single step.
  • the method 1400 may begin at step S1410 where a message indicating one or more RS report configuration variants associated with a same RS report configuration may be transmitted to a UE, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration.
  • one or more RSs may be transmitted over the first subset of RS ports.
  • a report message indicating a measurement for the first subset of RS ports may be received from the UE at least based on the first RS report configuration variant.
  • the method 1400 may further comprise: determining at least a second of the one or more RS report configuration variants to be deactivated at the UE, a second subset of one or more RS ports associated with the second RS report configuration variant being not in any mode associated with the second RS report configuration variant; and transmitting, to the UE, a message explicitly or implicitly indicating that a measurement for the second subset of RS ports is not to be reported based on the second RS report configuration variant.
  • the multiple modes may comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  • At least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants may indicate at least one of: the report message is to be transmitted periodically; the report message is to be transmitted semi-persistently; the report message is to be transmitted aperiodically; and the report message is to be transmitted only when a condition is fulfilled.
  • the condition when the first set of RS ports or the first subset of RS ports is in the second mode, the condition may comprise at least one of: whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode.
  • the measured link quality may comprise at least one of: RSRP; RSRQ; SINR; and BLER.
  • the reception of the report message may indicate that the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all other subsets of RS ports in the second mode.
  • at least one of the messages may be transmitted via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI.
  • an RS may comprise at least one of: a CSI-RS; and an SSB.
  • the method 1300 or 1400 may further comprise: utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS report configuration or the first RS report configuration variant, for reception and/or transmission sleep. In some embodiments, the method 1300 or 1400 may further comprise: transmitting at a lower output power in response to the first RS report configuration or the first RS report configuration variant indicating a lower bandwidth and/or a lower density.
  • the method 1300 or 1400 may further comprise: in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS, remapping the at least one of PDCCH, PDSCH, and DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
  • Fig. 15 schematically shows an embodiment of an arrangement 1500 which may be used in a user equipment (e.g., the UE 100) or a network node (e.g., the gNB 105) according to an embodiment of the present disclosure.
  • a processing unit 1506 e.g., with a Digital Signal Processor (DSP) or a Central Processing Unit (CPU) .
  • the processing unit 1506 may be a single unit or a plurality of units to perform different actions of procedures described herein.
  • the arrangement 1500 may also comprise an input unit 1502 for receiving signals from other entities, and an output unit 1504 for providing signal (s) to other entities.
  • the input unit 1502 and the output unit 1504 may be arranged as an integrated entity or as separate entities.
  • the arrangement 1500 may comprise at least one computer program product 1508 in the form of a non-volatile or volatile memory, e.g., an Electrically Erasable Programmable Read-Only Memory (EEPROM) , a flash memory and/or a hard drive.
  • the computer program product 1508 comprises a computer program 1510, which comprises code/computer readable instructions, which when executed by the processing unit 1506 in the arrangement 1500 causes the arrangement 1500 and/or the UE/network node in which it is comprised to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 7 to Fig. 14 or any other variant.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • the computer program 1510 may be configured as a computer program code structured in computer program modules 1510A, 1510B, and 1510C.
  • the code in the computer program of the arrangement 1500 includes: a module 1510A configured to receive, from a network node, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a module 1510B configured to determine at least a first of the one or more RS configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration; and a module 1510C configured to measure the first set of RS ports at least based on the first RS configuration.
  • the computer program 1510 may be configured as a computer program code structured in computer program modules 1510D, 1510E, and 1510F.
  • the code in the computer program of the arrangement 1500 includes: a module 1510D configured to receive, from a network node, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a module 1510E configured to determine at least a first of the one or more RS configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant; and a module 1510F configured to measure the first
  • the computer program 1510 may be configured as a computer program code structured in computer program modules 1510G, 1510H, and 1510I.
  • the code in the computer program of the arrangement 1500 includes: a module 1510G configured to receive, from the network node, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a module 1510H configured to determine at least a first of the one or more RS report configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration; and a module 15101 configured to transmit, to the network node, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
  • the computer program 1510 may be configured as a computer program code structured in computer program modules 1510J, 1510K, and 1510L.
  • the code in the computer program of the arrangement 1500 includes: a module 1510J configured to a receiving module configured to receive, from the network node, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a module 1510K configured to determine at least a first of the one or more RS report configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant
  • the computer program 1510 may be configured as a computer program code structured in computer program modules 1510M, 1510N, and 1510O.
  • the code in the computer program of the arrangement 1500 includes: a module 1510M configured to transmit, to a UE, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a module 1510N configured to determine at least a first of the one or more RS configurations to be activated at the UE, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration; and a module 1510O configured to transmit one or more RSs at least based on the first RS configuration.
  • the computer program 1510 may be configured as a computer program code structured in computer program modules 1510P, 1510Q, and 1510R.
  • the code in the computer program of the arrangement 1500 includes: a module 1510P configured to transmit, to a UE, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a module 1510Q configured to determine at least a first of the one or more RS configuration variants to be activated at the UE, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant; a module 1510R configured to transmit one
  • the computer program 1510 may be configured as a computer program code structured in computer program modules 1510S, 1510T, 1510U, and 1510V.
  • the code in the computer program of the arrangement 1500 includes: a module 1510S configured to transmit, to a UE, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a module 1510T configured to determine at least a first of the one or more RS report configurations to be activated at the UE, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration; a module 1510U configured to transmit one or more RSs over the first set of RS ports; and a module 1510V configured to receive, from the UE, a report message indicating a measurement for the first set of RS ports;
  • the computer program 1510 may be configured as a computer program code structured in computer program modules 1510W, 1510X, 1510Y, and 1510Z.
  • the code in the computer program of the arrangement 1500 includes: a module 1510W configured to transmit, to a UE, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a module 1510X configured to determine at least a first of the one or more RS report configuration variants to be activated at the UE, the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant;
  • the computer program modules could essentially perform the actions of the flow illustrated in Fig. 7 to Fig. 14, to emulate the UE or the network node.
  • the different computer program modules when executed in the processing unit 1506, they may correspond to different modules in the UE or the network node.
  • code means in the embodiments disclosed above in conjunction with Fig. 15 are implemented as computer program modules which when executed in the processing unit causes the arrangement to perform the actions described above in conjunction with the figures mentioned above, at least one of the code means may in alternative embodiments be implemented at least partly as hardware circuits.
  • the processor may be a single CPU (Central processing unit) , but could also comprise two or more processing units.
  • the processor may include general purpose microprocessors; instruction set processors and/or related chips sets and/or special purpose microprocessors such as Application Specific Integrated Circuit (ASICs) .
  • the processor may also comprise board memory for caching purposes.
  • the computer program may be carried by a computer program product connected to the processor.
  • the computer program product may comprise a computer readable medium on which the computer program is stored.
  • the computer program product may be a flash memory, a Random-access memory (RAM) , a Read-Only Memory (ROM) , or an EEPROM, and the computer program modules described above could in alternative embodiments be distributed on different computer program products in the form of memories within the UE and/or the network node.
  • RAM Random-access memory
  • ROM Read-Only Memory
  • EEPROM Electrically Erasable programmable read-only memory
  • FIG. 16 is a block diagram of a UE 1600 according to an embodiment of the present disclosure.
  • the UE 1600 may be, e.g., the UE 100 in some embodiments.
  • the UE 1600 may be configured to perform the method 700 as described above in connection with Fig. 7.
  • the UE 1600 may comprise a receiving module 1610 configured to receive, from a network node, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module 1620 configured to determine at least a first of the one or more RS configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration; and a measuring module 1630 configured to measure the first set of RS ports at least based on the first RS configuration.
  • the above modules 1610, 1620, and/or 1630 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 7. Further, the UE 1600 may comprise one or more further modules, each of which may perform any of the steps of the method 700 described with reference to Fig. 7.
  • PLD Programmable Logic Device
  • FIG. 17 is a block diagram of a UE 1700 according to an embodiment of the present disclosure.
  • the UE 1700 may be, e.g., the UE 100 in some embodiments.
  • the UE 1700 may be configured to perform the method 800 as described above in connection with Fig. 8. As shown in Fig. 17, the UE 1700 may comprise a receiving module 1710 configured to receive, from a network node, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a determining module 1720 configured to determine at least a first of the one or more RS configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant; and a measuring module 1730 configured to measure the first subset of RS ports at least based on the first RS configuration variant.
  • a receiving module 1710 configured to receive, from a
  • the above modules 1710, 1720, and/or 1730 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 8. Further, the UE 1700 may comprise one or more further modules, each of which may perform any of the steps of the method 800 described with reference to Fig. 8.
  • Fig. 18 is a block diagram of a UE 1800 according to an embodiment of the present disclosure.
  • the UE 1800 may be, e.g., the UE 100 in some embodiments.
  • the UE 1800 may be configured to perform the method 900 as described above in connection with Fig. 9.
  • the UE 1800 may comprise a receiving module 1810 configured to receive, from the network node, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module 1820 configured to determine at least a first of the one or more RS report configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration; and a transmitting module 1830 configured to transmit, to the network node, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
  • the above modules 1810, 1820, and/or 1830 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 9. Further, the UE 1800 may comprise one or more further modules, each of which may perform any of the steps of the method 900 described with reference to Fig. 9.
  • Fig. 19 is a block diagram of a UE 1900 according to an embodiment of the present disclosure.
  • the UE 1900 may be, e.g., the UE 100 in some embodiments.
  • the UE 1900 may be configured to perform the method 1000 as described above in connection with Fig. 10.
  • the UE 1900 may comprise a receiving module 1910 configured to a receiving module configured to receive, from the network node, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a determining module 1920 configured to determine at least a first of the one or more RS report configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant; and a transmitting module 1930 configured to transmit, to the network node, a report message indicating a measurement for the first subset of RS ports at least
  • the above modules 1910, 1920, and/or 1930 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of:a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 10. Further, the UE 1900 may comprise one or more further modules, each of which may perform any of the steps of the method 1000 described with reference to Fig. 10.
  • Fig. 20 is a block diagram of an exemplary network node 2000 according to an embodiment of the present disclosure.
  • the network node 2000 may be, e.g., the gNB 105 in some embodiments.
  • the network node 2000 may be configured to perform the method 1100 as described above in connection with Fig. 11. As shown in Fig. 20, the network node 2000 may comprise a first transmitting module 2010 configured to transmit, to a UE, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module 2020 configured to determine at least a first of the one or more RS configurations to be activated at the UE, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration; and a second transmitting module 2030 configured to transmit one or more RSs at least based on the first RS configuration.
  • a first transmitting module 2010 configured to transmit, to a UE, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes
  • a determining module 2020 configured to determine at least
  • the above modules 2010, 2020, and/or 2030 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 11.
  • the network node 2000 may comprise one or more further modules, each of which may perform any of the steps of the method 1100 described with reference to Fig. 11.
  • a network node is provided.
  • Fig. 21 is a block diagram of an exemplary network node 2100 according to an embodiment of the present disclosure.
  • the network node 2100 may be, e.g., the gNB 105 in some embodiments.
  • the network node 2100 may be configured to perform the method 1200 as described above in connection with Fig. 12. As shown in Fig. 21, the network node 2100 may comprise a first transmitting module 2110 configured to transmit, to a UE, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a determining module 2120 configured to determine at least a first of the one or more RS configuration variants to be activated at the UE, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant; a second transmitting module 2130 configured to transmit one or more RSs at least based on the first RS configuration variant.
  • a first transmitting module 2110
  • the above modules 2110, 2120, and/or 2130 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 12.
  • the network node 2100 may comprise one or more further modules, each of which may perform any of the steps of the method 1200 described with reference to Fig. 12.
  • a network node is provided.
  • Fig. 22 is a block diagram of an exemplary network node 2200 according to an embodiment of the present disclosure.
  • the network node 2200 may be, e.g., the gNB 105 in some embodiments.
  • the network node 2200 may be configured to perform the method 1300 as described above in connection with Fig. 13. As shown in Fig. 22, the network node 2200 may comprise a first transmitting module 2210 configured to transmit, to a UE, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module 2220 configured to determine at least a first of the one or more RS report configurations to be activated at the UE, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration; a second transmitting module 2230 configured to transmit one or more RSs over the first set of RS ports; and a receiving module 2240 configured to receive, from the UE, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
  • a first transmitting module 2210 configured to transmit, to a
  • the above modules 2210, 2220, 2230, and/or 2240 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 13.
  • the network node 2200 may comprise one or more further modules, each of which may perform any of the steps of the method 1300 described with reference to Fig. 13.
  • Fig. 23 is a block diagram of an exemplary network node 2300 according to an embodiment of the present disclosure.
  • the network node 2300 may be, e.g., the gNB 105 in some embodiments.
  • the network node 2300 may be configured to perform the method 1400 as described above in connection with Fig. 14.
  • the network node 2300 may comprise a first transmitting module 2310 configured to transmit, to a UE, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a determining module 2320 configured to determine at least a first of the one or more RS report configuration variants to be activated at the UE, the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant; a second transmitting module 2330 configured to transmit one or more RSs over the first subset of RS ports; and a receiving module 2340 configured
  • the above modules 2310, 2320, 2330, and/or 2340 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 14.
  • the network node 2300 may comprise one or more further modules, each of which may perform any of the steps of the method 1400 described with reference to Fig. 14.
  • a communication system includes a telecommunication network 3210, such as a 3GPP-type cellular network, which comprises an access network 3211, such as a radio access network, and a core network 3214.
  • the access network 3211 comprises a plurality of base stations 3212a, 3212b, 3212c, such as NBs, eNBs, gNBs or other types of wireless access points, each defining a corresponding coverage area 3213a, 3213b, 3213c.
  • Each base station 3212a, 3212b, 3212c is connectable to the core network 3214 over a wired or wireless connection 3215.
  • a first UE 3291 located in coverage area 3213c is configured to wirelessly connect to, or be paged by, the corresponding base station 3212c.
  • a second UE 3292 in coverage area 3213a is wirelessly connectable to the corresponding base station 3212a. While a plurality of UEs 3291, 3292 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station 3212.
  • the telecommunication network 3210 is itself connected to a host computer 3230, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm.
  • the host computer 3230 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider.
  • the connections 3221, 3222 between the telecommunication network 3210 and the host computer 3230 may extend directly from the core network 3214 to the host computer 3230 or may go via an optional intermediate network 3220.
  • the intermediate network 3220 may be one of, or a combination of more than one of, a public, private or hosted network; the intermediate network 3220, if any, may be a backbone network or the Internet; in particular, the intermediate network 3220 may comprise two or more sub-networks (not shown) .
  • the communication system of Fig. 24 as a whole enables connectivity between one of the connected UEs 3291, 3292 and the host computer 3230.
  • the connectivity may be described as an over-the-top (OTT) connection 3250.
  • the host computer 3230 and the connected UEs 3291, 3292 are configured to communicate data and/or signaling via the OTT connection 3250, using the access network 3211, the core network 3214, any intermediate network 3220 and possible further infrastructure (not shown) as intermediaries.
  • the OTT connection 3250 may be transparent in the sense that the participating communication devices through which the OTT connection 3250 passes are unaware of routing of uplink and downlink communications.
  • a base station 3212 may not or need not be informed about the past routing of an incoming downlink communication with data originating from a host computer 3230 to be forwarded (e.g., handed over) to a connected UE 3291. Similarly, the base station 3212 need not be aware of the future routing of an outgoing uplink communication originating from the UE 3291 towards the host computer 3230.
  • a host computer 3310 comprises hardware 3315 including a communication interface 3316 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of the communication system 3300.
  • the host computer 3310 further comprises processing circuitry 3318, which may have storage and/or processing capabilities.
  • the processing circuitry 3318 may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • the host computer 3310 further comprises software 3311, which is stored in or accessible by the host computer 3310 and executable by the processing circuitry 3318.
  • the software 3311 includes a host application 3312.
  • the host application 3312 may be operable to provide a service to a remote user, such as a UE 3330 connecting via an OTT connection 3350 terminating at the UE 3330 and the host computer 3310. In providing the service to the remote user, the host application 3312 may provide user data which is transmitted using the OTT connection 3350.
  • the communication system 3300 further includes a base station 3320 provided in a telecommunication system and comprising hardware 3325 enabling it to communicate with the host computer 3310 and with the UE 3330.
  • the hardware 3325 may include a communication interface 3326 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of the communication system 3300, as well as a radio interface 3327 for setting up and maintaining at least a wireless connection 3370 with a UE 3330 located in a coverage area (not shown in Fig. 25) served by the base station 3320.
  • the communication interface 3326 may be configured to facilitate a connection 3360 to the host computer 3310.
  • the connection 3360 may be direct or it may pass through a core network (not shown in Fig.
  • the hardware 3325 of the base station 3320 further includes processing circuitry 3328, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • the base station 3320 further has software 3321 stored internally or accessible via an external connection.
  • the communication system 3300 further includes the UE 3330 already referred to.
  • Its hardware 3335 may include a radio interface 3337 configured to set up and maintain a wireless connection 3370 with a base station serving a coverage area in which the UE 3330 is currently located.
  • the hardware 3335 of the UE 3330 further includes processing circuitry 3338, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • the UE 3330 further comprises software 3331, which is stored in or accessible by the UE 3330 and executable by the processing circuitry 3338.
  • the software 3331 includes a client application 3332.
  • the client application 3332 may be operable to provide a service to a human or non-human user via the UE 3330, with the support of the host computer 3310.
  • an executing host application 3312 may communicate with the executing client application 3332 via the OTT connection 3350 terminating at the UE 3330 and the host computer 3310.
  • the client application 3332 may receive request data from the host application 3312 and provide user data in response to the request data.
  • the OTT connection 3350 may transfer both the request data and the user data.
  • the client application 3332 may interact with the user to generate the user data that it provides.
  • the host computer 3310, base station 3320 and UE 3330 illustrated in Fig. 25 may be identical to the host computer 3230, one of the base stations 3212a, 3212b, 3212c and one of the UEs 3291, 3292 of Fig. 24, respectively.
  • the inner workings of these entities may be as shown in Fig. 25 and independently, the surrounding network topology may be that of Fig. 24.
  • the OTT connection 3350 has been drawn abstractly to illustrate the communication between the host computer 3310 and the use equipment 3330 via the base station 3320, without explicit reference to any intermediary devices and the precise routing of messages via these devices.
  • Network infrastructure may determine the routing, which it may be configured to hide from the UE 3330 or from the service provider operating the host computer 3310, or both. While the OTT connection 3350 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
  • the wireless connection 3370 between the UE 3330 and the base station 3320 is in accordance with the teachings of the embodiments described throughout this disclosure.
  • One or more of the various embodiments improve the performance of OTT services provided to the UE 3330 using the OTT connection 3350, in which the wireless connection 3370 forms the last segment. More precisely, the teachings of these embodiments may improve the latency and power consumption and thereby provide benefits such as reduced user waiting time, better responsiveness, extended battery lifetime.
  • a measurement procedure may be provided for the purpose of monitoring data rate, latency, and other factors on which the one or more embodiments improve.
  • the measurement procedure and/or the network functionality for reconfiguring the OTT connection 3350 may be implemented in the software 3311 of the host computer 3310 or in the software 3331 of the UE 3330, or both.
  • sensors (not shown) may be deployed in or in association with communication devices through which the OTT connection 3350 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software 3311, 3331 may compute or estimate the monitored quantities.
  • the reconfiguring of the OTT connection 3350 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not affect the base station 3320, and it may be unknown or imperceptible to the base station 3320. Such procedures and functionalities may be known and practiced in the art.
  • measurements may involve proprietary UE signaling facilitating the host computer′s 3310 measurements of throughput, propagation times, latency, and the like.
  • the measurements may be implemented in that the software 3311, 3331 causes messages to be transmitted, in particular empty or ′dummy′ messages, using the OTT connection 3350 while it monitors propagation times, errors etc.
  • Fig. 26 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 24 and Fig. 25. For simplicity of the present disclosure, only drawing references to Fig. 26 will be included in this section.
  • the host computer provides user data.
  • the host computer provides the user data by executing a host application.
  • the host computer initiates a transmission carrying the user data to the UE.
  • the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure.
  • the UE executes a client application associated with the host application executed by the host computer.
  • Fig. 27 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 24 and Fig. 25. For simplicity of the present disclosure, only drawing references to Fig. 27 will be included in this section.
  • the host computer provides user data.
  • the host computer provides the user data by executing a host application.
  • the host computer initiates a transmission carrying the user data to the UE. The transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure.
  • the UE receives the user data carried in the transmission.
  • Fig. 28 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 24 and Fig. 25. For simplicity of the present disclosure, only drawing references to Fig. 28 will be included in this section.
  • the UE receives input data provided by the host computer.
  • the UE provides user data.
  • the UE provides the user data by executing a client application.
  • the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer.
  • the executed client application may further consider user input received from the user.
  • the UE initiates, in an optional third substep 3630, transmission of the user data to the host computer.
  • the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
  • Fig. 29 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 24 and Fig. 25. For simplicity of the present disclosure, only drawing references to Fig. 29 will be included in this section.
  • the base station receives user data from the UE.
  • the base station initiates transmission of the received user data to the host computer.
  • the host computer receives the user data carried in the transmission initiated by the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure is related to a UE, a network node, and methods for RS measurement and/or report adaptation. A method at a UE for RS measurement adaptation comprises: receiving, from a network node, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; determining at least a first of the one or more RS configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration; and measuring the first set of RS ports at least based on the first RS configuration.

Description

REFERENCE SIGNAL (RS) MEASUREMENT AND REPORT ADAPTATION
CROSS-REFERENCE TO RELATED APPLICATION (S)
This application claims priority to the PCT International Application No. PCT/CN2022/084538, entitled "MEASURING AND/OR REPORTING FOR SUBSET OF REFERENCE SIGNAL (RS) PORTS" , filed on March 31, 2022, and the PCT International Application No. PCT/CN2022/087750, entitled "REFERENCE SIGNAL (RS) MEASURMENT AND REPORT ADAPTATION" , filed on April 19, 2022, which are incorporated herein by reference in their entireties.
Technical Field
The present disclosure is related to the field of telecommunication, and in particular, to a user equipment (UE) , a network node, and methods for reference signal (RS) measurement and/or report adaptation.
Background
With the development of the electronic and telecommunications technologies, mobile devices, such as a mobile phone, a smart phone, a laptop, a tablet, a vehicle mounted device, become an important part of our daily lives. To support a numerous number of mobile devices, a highly power-efficient Radio Access Network (RAN) , such as a fifth generation (5G) New Radio (NR) RAN, will be required.
The network (NW) power consumption for 5G NR is said to be less compared to Long Term Evolution (LTE) because of its lean design. In the current implementation, however, NR will most likely consume more power compared to LTE, e.g., due to the higher bandwidth, and more so due to introduction of additional elements such as 64 TX/RX ports with associated digital Radio Frequency (RF) chains. As the NW is expected to be able to support UEs with its maximum capability (e.g., throughput, coverage, etc. ) , the NW may need to use full configuration even when the maximum NW support is actually rarely needed by the UEs.
In addition, an increased number of TX/RX ports also leads to an increase to the number of reference signals (e.g., Channel State Information Reference Signal or CSI-RS) needed to be transmitted by the NW (and to be measured by the UEs) for a proper signal detection. Thus, the additional TX/RX ports may result in another additional  power consumption, i.e., to transmit a larger number of CSI-RSs to the UEs. Furthermore, it should also be noted that the larger number of CSI-RS transmissions may also consume the valuable NW resources.
Summary
According to a first aspect of the present disclosure, a method at a UE for RS measurement adaptation is provided. The method comprises: receiving, from a network node, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; determining at least a first of the one or more RS configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration; measuring the first set of RS ports at least based on the first RS configuration.
In some embodiments, the method further comprises: determining at least a second of the one or more RS configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS configuration is not in any mode associated with the second RS configuration; and preventing the second set of RS ports from being measured based on the second RS configuration.
According to a second aspect of the present disclosure, a method at a UE for RS measurement adaptation is provided. The method comprises: receiving, from a network node, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; determining at least a first of the one or more RS configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant; measuring the first subset of RS ports at least based on the first RS configuration variant.
In some embodiments, the method further comprises: determining at least a second of the one or more RS configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second  RS configuration variant is not in any mode associated with the second RS configuration variant; and preventing the second subset of RS ports from being measured based on the second RS configuration variant.
In some embodiments, the method further comprises: transmitting, to the network node, a report message indicating a measurement for the first set of RS ports or the first subset of RS ports. In some embodiments, the multiple modes comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of Physical Downlink Control Channel (PDCCH) , Physical Downlink Shared Channel (PDSCH) , and Demodulation Reference Signal (DMRS) ; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
In some embodiments, at least one of the one or more RS configurations or at least one of the one or more RS configuration variants indicates at least one of: time/frequency resources; a number of RS ports; one or more identifiers or indexes of one or more RS ports; a power offset compared to at least one of PDCCH, PDSCH, and Synchronous Signal (SS) and Physical Broadcast Channel (PBCH) Block (SSB) ; a rate; a bandwidth; and a density. In some embodiments, at least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode, when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, indicates at least one of: a lower rate; a lower bandwidth; a lower density; and a different power offset. In some embodiments, at least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration variants in the first mode, when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, indicates at least one of: a higher rate; a higher bandwidth; a higher density; and a different power offset. In some embodiments, an RS configuration or RS configuration variant in the second mode, which indicates a lower bandwidth than that indicated by another RS configuration or  RS configuration variant in the first mode, indicates a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode.
In some embodiments, the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated comprises: receiving, from the network node, a message indicating the first RS configuration or the first RS configuration variant to be activated. In some embodiments, the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated comprises: determining whether there is at least one RS configuration or RS configuration variant whose associated set of RS ports or associated subset of RS ports has a same state as that of another antenna port associated with at least one of PDCCH, PDSCH, and DMRS or not; and determining the at least one RS configuration or RS configuration variant, as the first RS configuration or the first RS configuration variant to be activated, in response to determining that there is the at least one RS configuration or RS configuration variant. In some embodiments, the state is a Transmission Configuration Indicator (TCI) state.
In some embodiments, before the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated, the method further comprises: receiving, from the network node, a message indicating that the UE is to determine an RS configuration or an RS configuration variant to be activated based on its own decision. In some embodiments, the message indicates at least one of: which RS port or RS ports are in which mode; which RS or RSs are in which mode; and whether the UE is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not. In some embodiments, before the step of transmitting, to the network node, a report message, the method further comprises: receiving, from the network node, a message indicating that the UE is to transmit the report message periodically or aperiodically, wherein the step of transmitting, to the network node, a report message is performed in response to the received message.
In some embodiments, the method further comprises: receiving, from the network node, a message indicating one or more conditions, wherein at least one of the step of measuring the first set of RS ports, the step of measuring the first subset of RS ports, and the step of transmitting, to the network node, a report message is performed only in response to at least one of the one or more conditions being fulfilled. In some  embodiments, the first RS configuration or the first RS configuration variant indicates that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed, wherein the method further comprises: performing power compensation during at least one of PDCCH reception, PDSCH reception, and channel assessment at least based on the changed power relationship. In some embodiments, the message comprises at least one of: a powerControlOffset Information Element (IE) ; a powerControlOffsetSS IE; and an IE indicating a UE position-specific power offset.
In some embodiments, the method further comprises at least one of: transmitting, to the network node, a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled; measuring the first set of RS ports or the first subset of RS ports excluding the one or more indicated RS occasions; and receiving, from the network node, a message indicating that the one or more indicated RS occasions are muted. In some embodiments, a set of RS ports or a subset of RS ports in the second mode is not measured for at least one of: pathloss estimation for power control; Precoding Matrix Index (PMI) determination; Channel Quality Information (CQI) determination; and Rank Indicator (RI) estimation. In some embodiments, a set of RS ports or a subset of RS ports in the second mode is measured for at least one of: Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) Reference Signal Received Power (CRI-RSRP) reporting; and SSB-Index-RSRP reporting. In some embodiments, which of one or more procedures that are exempt for RS ports in the second mode is determined by at least one of: a configuration from the network node; and a configuration hardcoded or pre-configured at the UE.
In some embodiments, at least one of the messages is received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; Medium Access Control (MAC) Control Element (CE) ; and Downlink Control Information (DCI) . In some embodiments, an RS comprises at least one of: a CSI-RS; and an SSB. In some embodiments, when the RS configurations or RS configuration variants comprise CSI-RS configurations or configuration variants in the second mode and SSB configurations or configuration variants in the second mode, both of which are associated with a same set or subset of RS ports, the CSI-RS configurations or configuration variants in the second  mode indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants. In some embodiments, when the RS configurations or RS configuration variants comprise SSB configurations or configuration variants, each of the SSB configurations or configuration variants is associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS. In some embodiments, at least one of the one or more RS configurations or at least one of the one or more RS configuration variants corresponds to an antenna muting pattern at the network node.
According to a third aspect of the present disclosure, a UE is provided. The UE comprises: a receiving module configured to receive, from a network node, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module configured to determine at least a first of the one or more RS configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration; and a measuring module configured to measure the first set of RS ports at least based on the first RS configuration.
According to a fourth aspect of the present disclosure, a UE is provided. The UE comprises: a receiving module configured to receive, from a network node, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a determining module configured to determine at least a first of the one or more RS configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant; and a measuring module configured to measure the first subset of RS ports at least based on the first RS configuration variant.
According to a fifth aspect of the present disclosure, a method at a UE for RS report adaptation is provided. The method comprises: receiving, from the network node, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes;  determining at least a first of the one or more RS report configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration; and transmitting, to the network node, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
In some embodiments, the method further comprises: determining at least a second of the one or more RS report configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS report configuration is not in any mode associated with the second RS report configuration; and preventing the second set of RS ports from being reported based on the second RS report configuration.
According to a sixth aspect of the present disclosure, a method at a UE for RS report adaptation is provided. The method comprises: receiving, from the network node, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; determining at least a first of the one or more RS report configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant; and transmitting, to the network node, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
In some embodiments, the method further comprises: determining at least a second of the one or more RS report configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second RS report configuration variant is not in any mode associated with the second RS report configuration variant; and preventing the second subset of RS ports from being reported based on the second RS report configuration variant.
In some embodiments, the multiple modes comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least  one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
In some embodiments, at least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants indicates at least one of: the report message is to be transmitted periodically; the report message is to be transmitted semi-persistently; the report message is to be transmitted aperiodically; and the report message is to be transmitted only when a condition is fulfilled. In some embodiments, when the first set of RS ports or the first subset of RS ports is in the second mode, the condition comprises at least one of: whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode. In some embodiments, the measured link quality comprises at least one of: RSRP; Reference Signal Received Quality (RSRQ) ; Signal to Interference plus Noise Ratio (SINR) ; and Block Error Rate (BLER) .
In some embodiments, before the step of transmitting, to the network node, a report message, the method further comprises: determining whether the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all the other subsets of RS ports in the second mode, wherein the step of transmitting, to the network node, a report message comprises: transmitting, to the network node, the report message only in response to determining that the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than the measurements for all the other sets of RS ports or all the other subsets of RS ports in the second mode. In some embodiments, for each RS report configuration, there is one associated RS report configuration variant at most. In some embodiments, at least one of the messages is received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the  network node; MAC CE; and DCI. In some embodiments, an RS comprises at least one of: a CSI-RS; and an SSB.
According to a seventh aspect of the present disclosure, a UE is provided. The UE comprises: a receiving module configured to receive, from the network node, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module configured to determine at least a first of the one or more RS report configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration; and a transmitting module configured to transmit, to the network node, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
According to an eighth aspect of the present disclosure, a UE is provided. The UE comprises: a receiving module configured to a receiving module configured to receive, from the network node, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a determining module configured to determine at least a first of the one or more RS report configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant; and a transmitting module configured to transmit, to the network node, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
According to a ninth aspect of the present disclosure, a UE is provided. The UE comprises: a processor; a memory storing instructions which, when executed by the processor, cause the processor to perform the method of any of the first, second, fifth, and sixth aspects.
According to a tenth aspect of the present disclosure, a method at a network node for RS measurement adaptation is provided. The method comprises: transmitting, to a UE, a message indicating one or more RS configurations, each of which being  associated with a set of one or more RS ports in at least one of multiple modes; determining at least a first of the one or more RS configurations to be activated at the UE, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration; and transmitting one or more RSs at least based on the first RS configuration.
In some embodiments, the method further comprises: determining at least a second of the one or more RS configurations to be deactivated at the UE, a second set of one or more RS ports associated with the second RS configuration being not in any mode associated with the second RS configuration; and preventing one or more RSs from being transmitted based on the second RS configuration.
According to an eleventh aspect of the present disclosure, a method at a network node for RS measurement adaptation is provided. The method comprises: transmitting, to a UE, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; determining at least a first of the one or more RS configuration variants to be activated at the UE, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant; transmitting one or more RSs at least based on the first RS configuration variant.
In some embodiments, the method further comprises: determining at least a second of the one or more RS configuration variants to be deactivated at the UE, a second subset of one or more RS ports associated with the second RS configuration variant being not in any mode associated with the second RS configuration variant; and preventing one or more RSs from being transmitted based on the second RS configuration variant.
In some embodiments, the method further comprises: receiving, from the UE, a report message indicating a measurement for the first set of RS ports or the first subset of RS ports. In some embodiments, the multiple modes comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co- located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
In some embodiments, at least one of the one or more RS configurations or at least one of the one or more RS configuration variants indicates at least one of: time/frequency resources; a number of RS ports; one or more identifiers or indexes of one or more RS ports; a power offset compared to at least one of PDCCH, PDSCH, and SSB; a rate; a bandwidth; and a density. In some embodiments, at least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode, when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, indicates at least one of: a lower rate; a lower bandwidth; a lower density; and a different power offset. In some embodiments, at least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration variants in the first mode, when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, indicates at least one of: a higher rate; a higher bandwidth; a higher density; and a different power offset.
In some embodiments, an RS configuration or RS configuration variant in the second mode, which indicates a lower bandwidth than that indicated by another RS configuration or RS configuration variant in the first mode, indicates a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode. In some embodiments, before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method further comprises: transmitting, to the UE, a message indicating the first RS configuration or the first RS configuration variant to be activated. In some embodiments, before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method further comprises at least one of: transmitting, to the UE, a message indicating a state for at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; transmitting, to the UE, a message indicating a state for the first set or subset of RS ports; and transmitting, to  the UE, a message indicating a state for the second set or subset of RS ports. In some embodiments, the state is a TCI state.
In some embodiments, before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method further comprises: transmitting, to the UE, a message indicating that the UE is to determine an RS configuration or an RS configuration variant to be activated based on its own decision. In some embodiments, the message indicates at least one of: which RS port or RS ports are in which mode; which RS or RSs are in which mode; and whether the UE is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not. In some embodiments, before the step of receiving, from the UE, a report message, the method further comprises: transmitting, to the UE, a message indicating that the UE is to transmit the report message periodically or aperiodically, wherein the step of receiving, from the UE, a report message is performed in response to the transmitted message.
In some embodiments, the method further comprises: transmitting, to the UE, a message indicating one or more conditions, wherein the step of receiving, from the UE, a report message is performed only in response to at least one of the one or more conditions being fulfilled at the UE. In some embodiments, the first RS configuration or the first RS configuration variant indicates that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed. In some embodiments, the message comprises at least one of: a powerControlOffset Information Element (IE) ; a powerControlOffsetSSIE; and an IE indicating a UE position-specific power offset.
In some embodiments, the method further comprises at least one of: receiving, from the UE, a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled; muting the one or more indicated RS occasions while transmitting the first set of RS ports or the first subset of RS ports; transmitting, to the UE, a message indicating that the one or more indicated RS occasions are muted. In some embodiments, a set of RS ports or a subset of RS ports in the second mode is not used for at least one of: pathloss estimation for power control; PMI determination; CQI determination; and RI estimation. In some  embodiments, a set of RS ports or a subset of RS ports in the second mode is used for at least one of: CRI-RSRP reporting; and SSB-Index-RSRP reporting.
In some embodiments, which of one or more procedures that are exempt for RS ports in the second mode is determined by at least one of: a configuration from another node; and a configuration hardcoded or pre-configured at the network node. In some embodiments, at least one of the messages is received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI. In some embodiments, an RS comprises at least one of: a CSI-RS; and an SSB.
In some embodiments, when the RS configurations or RS configuration variants comprise CSI-RS configurations or configuration variants in the second mode and SSB configurations or configuration variants in the second mode, both of which are associated with a same set or subset of RS ports, the CSI-RS configurations or configuration variants in the second mode indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants. In some embodiments, when the RS configurations or RS configuration variants comprise SSB configurations or configuration variants, each of the SSB configurations or configuration variants is associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS. In some embodiments, at least one of the one or more RS configurations or at least one of the one or more RS configuration variants corresponds to an antenna muting pattern at the network node.
In some embodiments, the method further comprises: utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS configuration or the first RS configuration variant, for reception and/or transmission sleep. In some embodiments, the method further comprises: transmitting at a lower output power in response to the first RS configuration or the first RS configuration variant indicating a lower bandwidth and/or a lower density. In some embodiments, the method further comprises: in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS, remapping the at least one of PDCCH, PDSCH, and DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
According to a twelfth aspect of the present disclosure, a network node is provided. The network node comprises: a first transmitting module configured to transmit, to a UE, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module configured to determine at least a first of the one or more RS configurations to be activated at the UE, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration; and a second transmitting module configured to transmit one or more RSs at least based on the first RS configuration.
According to a thirteenth aspect of the present disclosure, a network node is provided. The network node comprises: a first transmitting module configured to transmit, to a UE, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a determining module configured to determine at least a first of the one or more RS configuration variants to be activated at the UE, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant; a second transmitting module configured to transmit one or more RSs at least based on the first RS configuration variant.
According to a fourteenth aspect of the present disclosure, a method at a network node for RS report adaptation is provided. The method comprises: transmitting, to a UE, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; determining at least a first of the one or more RS report configurations to be activated at the UE, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration; transmitting one or more RSs over the first set of RS ports; and receiving, from the UE, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
In some embodiments, the method further comprises: determining at least a second of the one or more RS report configurations to be deactivated at the UE, a  second set of one or more RS ports associated with the second RS report configuration being not in any mode associated with the second RS report configuration; and transmitting, to the UE, a message explicitly or implicitly indicating that a measurement for the second set of RS ports is not to be reported by the UE based on the second RS report configuration.
According to a fifteenth aspect of the present disclosure, a method at a network node for RS report adaptation is provided. The method comprises: transmitting, to a UE, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; determining at least a first of the one or more RS report configuration variants to be activated at the UE, the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant; transmitting one or more RSs over the first subset of RS ports; and receiving, from the UE, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
In some embodiments, the method further comprises: determining at least a second of the one or more RS report configuration variants to be deactivated at the UE, a second subset of one or more RS ports associated with the second RS report configuration variant being not in any mode associated with the second RS report configuration variant; and transmitting, to the UE, a message explicitly or implicitly indicating that a measurement for the second subset of RS ports is not to be reported based on the second RS report configuration variant.
In some embodiments, the multiple modes comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH,  and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
In some embodiments, at least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants indicates at least one of:the report message is to be transmitted periodically; the report message is to be transmitted semi-persistently; the report message is to be transmitted aperiodically; and the report message is to be transmitted only when a condition is fulfilled. In some embodiments, when the first set of RS ports or the first subset of RS ports is in the second mode, the condition comprises at least one of: whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode. In some embodiments, the measured link quality comprises at least one of: RSRP; RSRQ; SINR; and BLER.
In some embodiments, the reception of the report message indicates that the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all other subsets of RS ports in the second mode. In some embodiments, for each RS report configuration, there is one associated RS report configuration variant at most. In some embodiments, at least one of the messages is transmitted via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI. In some embodiments, an RS comprises at least one of: a CSI-RS; and an SSB.
In some embodiments, the method further comprises: utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS report configuration or the first RS report configuration variant, for reception and/or transmission sleep. In some embodiments, the method further comprises: transmitting at a lower output power in response to the first RS report configuration or the first RS report configuration variant indicating a lower bandwidth and/or a lower density. In some embodiments, the method further comprises: in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS, remapping the at least one of PDCCH, PDSCH, and  DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
According to a sixteenth aspect of the present disclosure, a network node is provided. The network node comprises: a first transmitting module configured to transmit, to a UE, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module configured to determine at least a first of the one or more RS report configurations to be activated at the UE, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration; a second transmitting module configured to transmit one or more RSs over the first set of RS ports; and a receiving module configured to receive, from the UE, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
According to a seventeenth aspect of the present disclosure, a network node is provided. The network node comprises: a first transmitting module configured to transmit, to a UE, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a determining module configured to determine at least a first of the one or more RS report configuration variants to be activated at the UE, the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant; a second transmitting module configured to transmit one or more RSs over the first subset of RS ports; and a receiving module configured to received, from the UE, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
According to an eighteenth aspect of the present disclosure, a network node is provided. The network node comprises: a processor; a memory storing instructions which, when executed by the processor, cause the processor to perform the method of any of the tenth, eleventh, fourteenth, and fifteenth aspects.
According to a nineteenth aspect of the present disclosure, a computer program comprising instructions is provided. The instructions, when executed by at least one processor, cause the at least one processor to carry out the method of any of the first, second, fifth, sixth, tenth, eleventh, fourteenth, and fifteenth aspects.
According to a twentieth aspect of the present disclosure, a carrier containing the computer program of the nineteenth aspect is provided. In some embodiments, the carrier is one of an electronic signal, optical signal, radio signal, or computer readable storage medium.
According to a twenty first aspect of the present disclosure, a telecommunications system is provided. The telecommunications network comprises: one or more UEs of any of the third, the fourth, seventh, eighth, ninth aspects; and at least one network node of any of the twelfth, thirteenth, sixteenth, seventeenth, and eighteenth aspects.
Brief Description of the Drawings
Fig. 1 is a diagram illustrating an exemplary telecommunications network in which UEs and gNB may be operated according to an embodiment of the present disclosure.
Fig. 2 is a diagram illustrating an exemplary overview of CSI-RS parameters and its configurations with which RS measurement and/or report adaptation may be applicable according to an embodiment of the present disclosure.
Fig. 3 is a diagram illustrating an exemplary scenario where RS measurement and/or report adaptation may be applicable according to an embodiment of the present disclosure.
Fig. 4 is a diagram illustrating an exemplary scenario where RS measurement and/or report adaptation are applied according to an embodiment of the present disclosure.
Fig. 5 is a diagram illustrating another exemplary scenario where RS measurement and/or report adaptation are applied according to another embodiment of the present disclosure.
Fig. 6 is a diagram illustrating yet another exemplary scenario where RS measurement and/or report adaptation are applied according to yet another embodiment of the present disclosure.
Fig. 7 is a flow chart illustrating an exemplary method at a UE for RS measurement adaptation according to an embodiment of the present disclosure.
Fig. 8 is a flow chart illustrating another exemplary method at a UE for RS measurement adaptation according to another embodiment of the present disclosure.
Fig. 9 is a flow chart illustrating an exemplary method at a UE for RS report adaptation according to an embodiment of the present disclosure.
Fig. 10 is a flow chart illustrating another exemplary method at a UE for RS report adaptation according to another embodiment of the present disclosure.
Fig. 11 is a flow chart illustrating an exemplary method at a network node for RS measurement adaptation according to an embodiment of the present disclosure.
Fig. 12 is a flow chart illustrating another exemplary method at a network node for RS measurement adaptation according to another embodiment of the present disclosure.
Fig. 13 is a flow chart illustrating an exemplary method at a network node for RS report adaptation according to an embodiment of the present disclosure.
Fig. 14 is a flow chart illustrating another exemplary method at a network node for RS report adaptation according to another embodiment of the present disclosure.
Fig. 15 schematically shows an embodiment of an arrangement which may be used in a UE or a network node according to an embodiment of the present disclosure.
Fig. 16 through Fig. 19 are block diagrams of exemplary UEs according to some embodiment of the present disclosure.
Fig. 20 through Fig. 23 are block diagrams of exemplary network nodes according to some embodiment of the present disclosure.
Fig. 24 schematically illustrates a telecommunication network connected via an intermediate network to a host computer according to an embodiment of the present disclosure.
Fig. 25 is a generalized block diagram of a host computer communicating via a base station with a user equipment over a partially wireless connection according to an embodiment of the present disclosure.
Fig. 26 to Fig. 29 are flowcharts illustrating methods implemented in a communication system including a host computer, a base station, and a user equipment according to an embodiment of the present disclosure.
Detailed Description
Hereinafter, the present disclosure is described with reference to embodiments shown in the attached drawings. However, it is to be understood that those descriptions are just provided for illustrative purpose, rather than limiting the present disclosure. Further, in the following, descriptions of known structures and techniques are omitted so as not to unnecessarily obscure the concept of the present disclosure.
Those skilled in the art will appreciate that the term "exemplary" is used herein to mean "illustrative, " or "serving as an example, " and is not intended to imply that a particular embodiment is preferred over another or that a particular feature is essential. Likewise, the terms "first" , "second" , "third" , "fourth, " and similar terms, are used simply to distinguish one particular instance of an item or feature from another, and do not indicate a particular order or arrangement, unless the context clearly indicates otherwise. Further, the term "step, " as used herein, is meant to be synonymous with "operation" or "action. " Any description herein of a sequence of steps does not imply that these operations must be carried out in a particular order, or even that these operations are carried out in any order at all, unless the context or the details of the described operation clearly indicates otherwise.
Conditional language used herein, such as "can, " "might, " "may, " "e.g., " and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. Also, the term "or" is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term "or" means one, some, or all of the elements in the list. Further, the term "each, " as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term "each" is applied.
The term "based on" is to be read as "based at least in part on. " The term "one embodiment" and "an embodiment" are to be read as "at least one embodiment. " The term "another embodiment" is to be read as "at least one other embodiment. " Other  definitions, explicit and implicit, may be included below. In addition, language such as the phrase "at least one of X, Y and Z, " unless specifically stated otherwise, is to be understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z, or a combination thereof.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limitation of example embodiments. As used herein, the singular forms "a" , "an" , and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" , "comprising" , "has" , "having" , "includes" and/or "including" , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. It will be also understood that the terms "connect (s) , " "connecting" , "connected" , etc. when used herein, just mean that there is an electrical or communicative connection between two elements and they can be connected either directly or indirectly, unless explicitly stated to the contrary.
Of course, the present disclosure may be carried out in other specific ways than those set forth herein without departing from the scope and essential characteristics of the disclosure. One or more of the specific processes discussed below may be carried out in any electronic device comprising one or more appropriately configured processing circuits, which may in some embodiments be embodied in one or more application-specific integrated circuits (ASICs) . In some embodiments, these processing circuits may comprise one or more microprocessors, microcontrollers, and/or digital signal processors programmed with appropriate software and/or firmware to carry out one or more of the operations described above, or variants thereof. In some embodiments, these processing circuits may comprise customized hardware to carry out one or more of the functions described above. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Although multiple embodiments of the present disclosure will be illustrated in the accompanying Drawings and described in the following Detailed Description, it should be understood that the disclosure is not limited to the disclosed embodiments, but instead is also capable of numerous rearrangements, modifications, and substitutions  without departing from the present disclosure that as will be set forth and defined within the claims.
Further, please note that although the following description of some embodiments of the present disclosure is given in the context of 5G NR, the present disclosure is not limited thereto. In fact, as long as a RS measurement and/or report adaptation is involved, the inventive concept of the present disclosure may be applicable to any appropriate communication architecture, for example, to Global System for Mobile Communications (GSM) /General Packet Radio Service (GPRS) , Enhanced Data Rates for GSM Evolution (EDGE) , Code Division Multiple Access (CDMA) , Wideband CDMA (WCDMA) , Time Division -Synchronous CDMA (TD-SCDMA) , CDMA2000, Worldwide Interoperability for Microwave Access (WiMAX) , Wireless Fidelity (Wi-Fi) , 4th Generation Long Term Evolution (LTE) , LTE-Advance (LTE-A) , or 5G NR, etc. Therefore, one skilled in the arts could readily understand that the terms used herein may also refer to their equivalents in any other infrastructure. For example, the term "User Equipment" or "UE" used herein may refer to a terminal device, a mobile device, a mobile terminal, a mobile station, a user device, a user terminal, a wireless device, a wireless terminal, or any other equivalents. For another example, the term "gNB" used herein may refer to a network node, a base station, a base transceiver station, an access point, a hot spot, a NodeB, an Evolved NodeB, a network element, or any other equivalents. Further, please note that the term "indicator" used herein may refer to a parameter, a coefficient, an attribute, a property, a setting, a configuration, a profile, an identifier, a field, one or more bits/octets, an information element, or any data by which information of interest may be indicated directly or indirectly.
Further, although some embodiments are described in the context of "CSI-RS" , the present disclosure is not limited thereto. In some other embodiments, another type of reference signal may be involved, for example SSB, Sounding Reference Signal (SRS) , Demodulation Reference Signal (DMRS) , Phase Tracking Reference Signal (PT-RS) or any other reference signals that are applicable to the teaching of the present disclosure.
Further, following 3GPP documents are incorporated herein by reference in their entireties:
- 3GPP TS 38.211 V17.0.0 (2021-12) , Technical Specification, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical channels and modulation (Release 17) ;
- 3GPP TS 38.214 V17.0.0 (2021-12) , Technical Specification, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 17) ;
- 3GPP TS 38.321 V16.7.0 (2021-12) , Technical Specification, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Medium Access Control (MAC) protocol specification (Release 16) ; and
- 3GPP TS 38.331 V16.7.0 (2021-12) , Technical Specification, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification (Release 16) .
Fig. 1 is a diagram illustrating an exemplary telecommunications network 10 in which UE #1 100-1, UE #2 100-2, and gNB 105 may be operated according to an embodiment of the present disclosure. Although the telecommunications network 10 is a network defined in the context of 5G NR, the present disclosure is not limited thereto.
As shown in Fig. 1, the network 10 may comprise one or more UEs 100-1 and 100-2 (collectively, UE (s) 100) and a RAN node 105, which could be a base station, a Node B, an evolved NodeB (eNB) , a gNB, or an AN node which provides the UEs 100 with access to the network. Further, the network 10 may comprise its core network portion that is not shown in Fig. 1.
However, the present disclosure is not limited thereto. In some other embodiments, the network 10 may comprise additional nodes, less nodes, or some variants of the existing nodes shown in Fig. 1. For example, in a network with the 4G architecture, the entities (e.g., an eNB) which perform these functions may be different from those (e.g., the gNB 105) shown in Fig. 1. For another example, in a network with a mixed 4G/5G architecture, some of the entities may be same as those shown in Fig. 1, and others may be different.
Further, although two UEs 100 and one gNB 105 are shown in Fig. 1, the present disclosure is not limited thereto. In some other embodiments, any number of UEs and/or any number of gNBs may be comprised in the network 10.
As shown in Fig. 1, the UEs 100 may be communicatively connected to the gNB 105 which in turn may be communicatively connected to a corresponding Core Network (CN) and then the Internet, such that the UEs 100 may finally communicate its user plane data with other devices outside the network 10, for example, via the gNB 105.
As mentioned above, CSI-RS reporting is one of crucial features that enable a power efficient RAN. In NR, the CSI-RS generation procedures are defined in 3GPP TS 38.211 Section 7.4.1.5. The CSI-RS may be used for time/frequency tracking, CSI computation, L1 -Reference Signal Received Power (L1-RSRP) computation, L1 -Signal to Interference plus Noise Ratio (L1-SINR) computation and mobility. Configured with CSI-RS, the UE then needs to follow the procedures described in 3GPP TS 38.214 Section 5.1.6.1.
For a CSI-RS resource associated with an NZP-CSI-RS-ResourceSet with the higher layer parameter repetition set to "on" , the UE shall not expect to be configured with CSI-RS over the symbols during which the UE is also configured to monitor the Control Resource Set (CORESET) , while for other NZP-CSI-RS-ResourceSet configurations, if the UE is configured with a CSI-RS resource and a search space set associated with a CORESET in the same Orthogonal Frequency Division Multiplexing (OFDM) symbol (s) , the UE may assume that the CSI-RS and a PDCCH DM-RS transmitted in all the search space sets associated with CORESET are quasi co-located with 'typeD' , if 'typeD' is applicable. This also applies to the case when CSI-RS and the CORESET are in different intra-band component carriers, if 'typeD' is applicable. Furthermore, the UE shall not expect to be configured with the CSI-RS in Physical Resource Blocks (PRBs) that overlap those of the CORESET in the OFDM symbols occupied by the search space set (s) .
The UE is not expected to receive CSI-RS and SIB1 message in the overlapping PRBs in the OFDM symbols where SIB1 is transmitted.
If the UE is configured with Discontinuous Reception (DRX) ,
- if the UE is configured to monitor DCI format 2_6 and configured by higher layer parameter ps-TransmitOtherPeriodicCSI to report CSI with the higher layer parameter reportConfigType set to 'periodic' and reportQuantity set to quantities other than 'cri-RSRP' and 'ssb-Index-RSRP' when drx-onDurationTimer in DRX-Config is not started, the most recent CSI measurement occasion occurs in DRX active time or during the time duration indicated by drx-onDurationTimer in DRX-Config also outside DRX active time for CSI to be reported;
- if the UE is configured to monitor DCI format 2_6 and configured by higher layer parameter ps-TransmitPteriodicL1-RSRP to report L1-RSRP with the higher layer parameter reportConfigType set to 'periodic' and reportQuantity set to cri-RSRP when  drx-onDurationTimer in DRX-Config is not started, the most recent CSI measurement occasion occurs in DRX active time or during the time duration indicated by drx-onDurationTimer in DRX-Config also outside DRX active time for CSI to be reported;
- otherwise, the most recent CSI measurement occasion occurs in DRX active time for CSI to be reported.
According to the specification of NR, i.e., 3GPP TS 38.214 section 5.2.2.3.1, a UE can be configured with one or more NZP CSI-RS resource set configuration (s) as indicated by the higher layer parameters CSI-ResourceConfig, and NZP-CSI-RS-ResourceSet. Each NZP CSI-RS resource set consists of K≥ 1 NZP CSI-RS resource (s) . The following is captured from TS 38.331 regarding CSI-ResourceConfig.
CSI-ResourceConfig information element
While below is the NZP-CSI-RS-ResourceSet.
NZP-CSI-RS-ResourceSet information element

In each NZP CSI-RS resources, the NW can set the CSI-RS resource with different powerControlOffset, scramblingID, etc. The following is captured from TS 38.331.
NZP-CSI-RS-Resource information element
Before transmitted, the CSI-RS is mapped according to the configured CSI-RS-ResourceMapping. There, the NW could set the configuration of the cdm-Type, frequencyDomainAllocation, nrofPorts, etc.
CSI-RS-ResourceMapping information element
The explanation of the CSI-RS parameters can be found in TS. 38.214 section 5.2.2.3.1:
- nzp-CSI-RS-ResourceId determines CSI-RS resource configuration identity.
- periodicityAndOffset defines the CSI-RS periodicity and slot offset for periodic/semi-persistent CSI-RS. All the CSI-RS resources within one set are configured with the same periodicity, while the slot offset can be same or different for different CSI-RS resources.
- resourceMapping defines the number of ports, CDM-type, and OFDM symbol and subcarrier occupancy of the CSI-RS resource within a slot that are given in Clause 7.4.1.5 of TS 38.211.
- nrofPorts in resourceMapping defines the number of CSI-RS ports, where the allowable values are given in Clause 7.4.1.5 of TS 38.211.
- density in resourceMapping defines CSI-RS frequency density of each CSI-RS port per PRB, and CSI-RS PRB offset in case of the density value of 1/2, where the allowable values are given in Clause 7.4.1.5 of TS 38.211. For density 1/2, the odd/even PRB allocation indicated in density is with respect to the common resource block grid.
- cdm-Type in resourceMapping defines CDM values and pattern, where the allowable values are given in Clause 7.4.1.5 of TS 38.211.
- powerControlOffset. which is the assumed ratio of Physical Downlink Shared Channel (PDSCH) Energy Per Resource Element (EPRE) to NZP CSI-RS EPRE when UE derives CSI feedback and takes values in the range of [-8, 15] dB with 1 dB step size.
- powerControlOffsetSS: which is the assumed ratio of NZP CSI-RS EPRE to Synchronous Signal (SS) /Physical Broadcast Channel (PBCH) block EPRE.
- scramblingID defines scrambling ID of CSI-RS with length of 10 bits.
- BWP-Id in CSI-ResourceConfig defines which bandwidth part the configured CSI-RS is located in.
- qcl-InfoPeriodicCSI-RS contains a reference to a Transmission Configuration Indicator (TCI) -State indicating Quasi co-location (QCL) source RS (s) and QCL type (s) . If the TCI-State is configured with a reference to an RS configured with qcl-Type set to 'typeD' association, that RS may be an SS/PBCH block located in the same or different component carrier (CC) /DL Bandwidth Part (BWP) or a CSI-RS resource configured as periodic located in the same or different CC/DL BWP.
The CSI-RS resource (or the CSI-RS resource-set) that the UE needs to measure is configured in RRC configuration, e.g., in the CSI-MeasConfig information element (IE) . In that mentioned IE, the NW, based on its certain consideration, may add, or remove  (release) the CSI-RS or the (CSI-RS resource-set) that UE needs to measure. The following is captured from 3GPP TS 38.331.
Fig. 2 shows the overview of CSI-RS parameters that was discussed above. Each parameter may be composed of several configurations, e.g., CSI-RS-ResourceMapping may be composed of nrofPorts, or NZP-CSI-RS-Resource may be composed of resourceMapping and powerControlOffsetsSS parameters. For simplicity, Fig. 2 does not include all the configurations for each parameter. It can be observed in Fig. 2 that parameters are simply a mapping with each other using its different configurations. Most of them are mapped to CSI-MeasConfig.
After receiving the CSI-RS, the UE may then report its measurement back to the NW.The reporting configuration for CSI can be aperiodic (using Physical Uplink Shared Channel, or PUSCH) , periodic (using Physical Uplink Control Channel, or PUCCH) or semi-persistent (using PUCCH, and DCI activated PUSCH) . The CSI-RS Resources can be  periodic, semi-persistent, or aperiodic. Table 5.2.1.4-1 in TS 38.214 (rewritten below) shows the supported combinations of CSI Reporting configurations and CSI-RS Resource configurations and how the CSI Reporting is triggered for each CSI-RS Resource configuration.

Table 1. Triggering/Activation of CSI Reporting for the possible CSI-RS Configurations 
In some embodiments, methods and mechanisms are disclosed that allow for a faster and resource-efficient dynamic CSI-RS configuration adaptation, by using the following alternatives:
- Configuring multiple resource mappings, or multiple configurations per parameter within a CSI-RS resource, e.g., different number of ports, power control offset, QCL info, etc., and using MAC CE or DCI to activate/deactivate a certain configuration (or switch between those configurations) .
- Configuring multiple CSI-RS resources within one CSI-RS resource set and using MAC CE or DCI to activate/deactivate the configured CSI-RS resources (or switching between CSI-RS resources) .
- Configuring multiple CSI-RS resource sets and using MAC CE or DCI to activate/deactivate one or more configured CSI-RS resource set (or switching between CSI-RS resource sets) .
- Other CSI-RS parameters included in CSI-MeasConfig can have multiple CSI-RS configurations and using MAC CE or DCI to activate/deactivate one or more configured CSI-RS resource set (or switching between CSI-RS resource sets) .
In some embodiments, it may be assumed that the UE is configured with more than one CSI-RS configuration. These embodiments aim to provide a fast dynamic adaptation mechanism, in which the UE can be indicated to switch between different CSI-RS configurations. The switching, can be for example, done by the NW during the port adaptation, i.e., where the NW determines to change the number of ports that will be used to serve the respective UE.
In some embodiments, the term "multiple CSI-RS configurations" may refer to multiple CSI-RS configurations that can be activated/deactivated or switched through MAC-CE or DCI signaling.
In one example, a bitfield in a DCI can indicate if the default configuration or another one is activated. For example, the UE may be configured with a first CSI-RS configuration and a second CSI-RS configuration with the first one as the default. An additional bit in the DCI, e.g., DCI 1_1 and/or DCI 1_2 can be configured where if the bit status is "1" , the UE receives the bit and thereby considers the second CSI-RS configuration as activated and the default one as deactivated. A bit "0" can be considered as reserved, or that the UE should consider the default CSI-RS configuration as the active one. In another example, the number of bits in the DCI may depend on the number of CSI-RS configurations. For example, 2 bits may correspond to four CSI-RS configurations where 00 may refer to the default CSI-RS configuration.
In some embodiments below, when multiple configurations are not set for the UE, a legacy behavior may apply. For example, the UE needs to monitor all of the CSI-RS, which is included in, e.g., CSI-MeasConfig. In some embodiments, the additional bitfield in the DCI used for adaptation indication may not be included in the DCI transmitted to the UE.
By configuring the UE with multiple CSI-RS configurations that can be activated/deactivated or switched (through MAC-CE or DCI) , the NW may have flexibility on which CSI-RS should be used at one time instance. The active CSI-RS configurations can be selected by the NW based on, e.g., the state of the port adaptation. For example, the following mechanism can be used by the NW to exploit the multiple CSI-RS configurations.
1. Configuring the UE with multiple CSI-RS configurations.
Here, the multiple CSI-RS configurations can be obtained by one of several approaches mentioned above, for example, by configuring the UE to have more than one parameter configuration, for example, parameters inside the CSI-RS-ResourceMapping IE.
2. Indicating the UE to switch from the first CSI-RS configuration to the second CSI-RS configuration.
The NW may decide to change the CSI-RS configuration, for example, when there is no more UEs active in the cell, or no UEs are active that require or can take advantage of transmission with a large number of ports, e.g., sustained transmission with multiple layers and narrow beams. In this situation, the NW may decide to switch from the first CSI-RS configuration suitable for a larger number of ports transmission to  the second CSI-RS configuration suitable for a smaller number of ports transmission. As described above, the indication can be done, e.g., via DCI and/or MAC-CE.
3. After sending the switching indication, the NW may then transmit the CSI-RS according to the second CSI-RS configuration.
In all the examples above, the NW can configure the UE through higher layer signaling e.g., RRC signaling if the activation/deactivation mechanism is DCI based, MAC CE based and also the underlying configuration, e.g., bitfield and its interpretation in the DCI. Alternatively, the UE can be pre-configured e.g., as in standardization documentations, e.g., if there are two fields configured for a parameter, e.g., number of ports, then the UE automatically expects a MAC CE or DCI to be able to activate or deactivate the configurations, as determined in the standards for example.
On the UE side, the UE may receive a first CSI-RS configuration and a second CSI-RS configuration according to the example embodiments described herein, for example, through RRC signaling. The UE then may start measuring or report based on the first configuration as the default one, and at one time instant, the UE may receive a MAC CE command or a DCI indicating that the UE should perform measurements or reporting based on the second configuration, and thus the UE measures the CSI-RS based on the second configuration or report CSI based on measuring the second CSI-RS configuration.
In some embodiments, a group of UEs may receive command to switch to a second configuration. This may for example be implemented as a group MAC or a DCI using group common search space. Then a group of UEs can be configured to, using low signaling overhead and low latency, switch CSI-RS configurations. The individual CSI-RS configurations may still be configured per-UE. The group switching command can for example be formulated as:
- all UEs in group switch to specific configuration index, for example, switch to nzp-CSI-RS-ResourcesDefault or nzp-CSI-RS-ResourcesB.
- all UEs in group switch to an implicitly indicated configuration, for example, switch to CSI-RS configuration with shortest periodicity, densest allocation in time/frequency, largest number of ports, etc.
In some embodiments, one or more subsets of RS ports may be measured and/or reported. For example, an RS configuration and/or one or more its variants may be provided at the UE, and the UE may determine which one of the RS configuration  and/or the one or more its variants shall be activated/deactivated. In some embodiments, an RS configuration itself can be regarded as one of its variants.
As mentioned above, a gNB with multiple antennas being active during transmission wastes energy in case UEs in the cell are not in need of the beam forming gain formed by the multiple antennas. The gNB may therefore be interested in lowering its energy consumption by employing just enough antennas necessary to maintain a good link towards the UE. Problem is that if the gNB chooses to turn off antennas, it does not have good information about when and/or which antennas to be reactivated as the UE moves around.
For any activated antenna set, the UE also needs to be ensured that it knows how to compensate for the power difference between measured CSI-RS and its PDCCH/PDSCH reception or SSBs.
Therefore, some embodiments of the present disclosure describe methods in which the gNB separates the port-to-antenna mapping of data-related ports (e.g., PDCCH/PDSCH/DMRS) from reference signal related ports (e.g., CSI-RS/SSB) . Then certain transceiver chains (herein called the background ports) are muted for data-related ports but the reference signals (such as CSI-RS) are still transmitted through these. The CSI-RSs for some of these background ports may be transmitted at lower rates and potentially over fewer PRBs thereby allowing the gNB to utilize energy saving schemes.
In some embodiments, the UEs may be informed about the changes. Methods such as those mentioned above may be used to inform the UE about changes in the CSI-RS configurations in a timely and efficient manner. Other methods are however not precluded (such as RRC reconfigurations, broadcast changes, stepping between predefined configurations, or alike) . Also, methods such as those mentioned above may be used for receiving relevant measurements from the UE on the so-called foreground (data-related) and background ports.
Furthermore, the power offset between CSI-RS and PDCCH/PDSCH or SSBs can be changed in a dynamic way. All possible power offsets may be first defined in a set by RRC or spec, and then DCI or MAC CE may be used to indicate which specific power offset to apply. Either the power offset for all CSI-RS transmitted over all transceiver chain can change dynamically, or the power offset for those CSI-RS transmitted at those background ports changes dynamically.
Further, some methods are also introduced for configuring conditions/events such that UE may measure and/or report on the so-called background ports only when necessary. As such the UE may also save energy as result of less measurement effort on the background ports.
In some embodiments, the UE may be configured with one or more reference signal (e.g., CSI-RS, or SSB) configurations that may take effect depending on NW antenna muting pattern. In some embodiments, each said configuration/variant of the reference signal may specify how many reference signal ports, and/or which reference signal ports, and/or with what associated time/frequency resources, and/or with what associated power offset compared to PDCCH/PDSCH or SSBs within the configured reference signal resource need to be measured and/or reported by the UE to the NW. In some embodiments, the said variants may become active depending on whether the NW uses the associated antennas for background or foreground purposes.
In some embodiments, the gNB may map the said reference signal resources to a first set of antennas (so-called background antennas) , potentially at low rate and over lower bandwidth and/or lower density and/or with different power offset (compared to that typically used for CSI-RSs used for data channel estimation on so-called foreground antennas) .
In some embodiments, the gNB may map the data-related antenna ports (e.g., PDCCH, PDSCH, DMRS) to a second set of antennas, so-called foreground antennas (could be partially overlapping with first set of antennas) . On these foreground antennas, there may be other reference signals (e.g., CSI-RS, SSB resources) configured at high rate over higher BW and/or higher density (than that for "background antennas" ) or with different power offset.
In some embodiments, the gNB may inform the UE which of the configuration variants are activated, and the UE adapts its reference signal measurements and channel estimates accordingly.
In some embodiments, the UE may "implicitly" activate a variant of the configuration based on TCI states of the different ports (i.e., the UE would have knowledge of foreground Vs background configuration variants) .
In some embodiments, the "implicit" activation by the UE may be carried out by the UE if NW has configured the UE to do so, e.g. by providing foreground/background  configuration for an RS, or by another indicator such as a Boolean or alike informing the UE that based on TCI state change, the UE applies another variant/configuration.
In some embodiments, the gNB may achieve time gaps created on non-overlapping first and second set of antennas (since the reference signals are transmitted more seldom) and utilizes them for Rx/Tx sleep.
In some embodiments, the gNB can transmit at lower output power in case the reference signals are transmitted over smaller BW or at lower density.
In some embodiments, the gNB may order the UE (periodically or aperiodically) to transmit measurement report on the various reference signals.
In some embodiments, the gNB may configure the UE with conditions based on which the UE only measures/reports on the reference signals of the background antennas only if the conditions are fulfilled.
In some embodiments, based on received measurement reports from the UE, the gNB may remap the data-related ports to another set of antennas (i.e., the setup of foreground and the background antennas changes) .
With some embodiments of the present disclosure, less transmission power may be used when e.g., data is not transmitted through some of the antennas, or when CSI-RS resources are transmitted at a lower rate and/or over fewer RBs and/or with lower density through some of the antennas. Further, in some embodiments, once some antennas are in energy saving mode (so-called background antennas) , there are feedback mechanisms described through which the gNB can decide which antennas to reactivate (set to foreground) for optimal performance. Further, in some embodiments, depending on the time gap availability, the gNB may be able to adopt deeper sleep modes on one or more of the antennas/TRX chains, e.g., a light sleep compared to micro sleep.
It shall be noted that for the sake of simplicity, CSI-RS is chosen as the example for reference signals mapped to various antennas. However, the ideas herein are equally applicable to other reference signals such as SSB or alike. Also an antenna setup with two panels, or a panel divided into two halves, is exemplified for simplicity, but the ideas herein are equally relevant for other setups.
Typically, a UE that is configured with N CSI-RS ports will measure all N ports so that it can get a whole picture of the channel from gNB to UE. gNB uses the  measurement report from UE to determine how to transmit data to UE via these antenna ports.
Fig. 3 is a diagram illustrating an exemplary scenario where RS measurement and/or report adaptation may be applicable according to an embodiment of the present disclosure. As shown in Fig. 3, an antenna 300 of a gNB (e.g., the gNB 105 shown in Fig. 1) may comprise two panels, a left panel 301 and a right panel 302 on which multiple antenna elements 310 are provided.
Referring to Fig. 3, one or more PDCCH, PDSCH, and/or DMRS ports 320 and a CSI-RS port X 330 are mapped to the antenna elements 310 on both of the antenna panels 301 and 302. That is, both data-related transmissions (PDCCH/PDSCH/DMRS) and CSI-RS related transmission are mapped to all antenna elements. RF signals transmitted by the gNB 105 over these antenna ports/antenna elements form a PDCCH/PDSCH/DMRS beam 325 and a CSI-RS X beam 335, respectively.
In the embodiment shown in Fig. 3, assuming the PDCCH/PDSCH/DMRS ports 320 and the CSI-RS port X 330 are quasi co-located, and therefore their corresponding beams may have a substantially similar coverage, in which a UE (e.g., the UE 100 shown in Fig. 1) may be served by the gNB 105, as shown in Fig. 3.
Please note that although Fig. 3 shows an antenna with 2 panels, each with 32 antennas, the present disclosure is not limited thereto.
For energy saving scenario, sometimes it is not necessary for the gNB to turn on all N ports all the time or keep the same transmission rate and/or BW on all ports. However, it is not clear which CSI-RS ports, how many CSI-RS ports, with what frequency bandwidth and density, at what rate, and with what power offset compared to PDSCH/PDCCH or SSBs should be activated. Especially when some antennas are muted, the coverage of CSI-RS may be impacted, gNB may want to use power boosting to maintain the coverage of CSI-RS, therefore the power offset between CSI-RS and PDCCH/PDSCH might change after antenna muting. Therefore, it is necessary to let UE to measure and report channel status information which corresponds to CSI-RS power boosting case.
Some embodiments of the present disclosure may allow the gNB to utilize muting certain antennas temporarily, e.g., based on the time gap between two CSI-RS transmissions, e.g., 20ms, 40ms, and so on. This is done by not having user data transmitted on some antennas to a specific UE. User data is transmitted on a subset of  antennas (called foreground antennas herein) whereas CSI-RS (s) /SSBs could still be transmitted on all or another subset (called background antennas/CSI-RS resources herein) , perhaps at a lower rate and with a smaller BW, with lower density on some subsets, with different power offset. The term density here may refer to how many resource elements (REs) are occupied by a reference symbol per Resource Block (RB) . For example, a density of 2 means that 2 REs are occupied per RB whereas density of 0.5 means that a single RE is occupied in every other RB.
As a result of less REs consumed and lower rate of CSI-RS, the gNB can utilize the gap intervals to sleep (turning off involved transceivers partially/fully) . This is exemplified in Fig. 4 through Fig. 6, which will be described below. It shall be noted that it is only for simplicity that the examples depict two panels and 64 antennas.
In some embodiments, each configuration of the reference signal (RS e.g., CSI-RS) may have one or more variants (sub-configuration) configured in the UE. For example, one variant may become "active" when the RS is in foreground, and another variant may become active when the RS is used for background transmission. In some embodiments, the activation of a certain variant may be explicitly indicated to the UE by the gNB by the mechanism mentioned in prior art (e.g., as discussed in the above embodiments) . As such the UE is not necessarily aware of foreground/background status of the RSs. In some embodiments, as will be further explained below, the UE may "implicitly" activate a variant of the configuration based on TCI states of the different ports (i.e., the UE would have knowledge of foreground Vs background configuration variants) .
Fig. 4 is a diagram illustrating an exemplary scenario where RS measurement and/or report adaptation are applied according to an embodiment of the present disclosure. Fig. 4 shows an antenna configuration similar to that shown in Fig. 3, and a detailed description thereof is omitted for simplicity.
Fig. 4 shows an example in which 3 sets of CSI-RS ports (X 330, Y 340, and Z 350) are mapped to various antennas. As shown in Fig. 4, the CSI-RS port Z 350 is mapped to the same antennas as the PDCCH/PDSCH/DMRS ports 320′, that is, data-related transmissions (foreground antennas/panel) . Further, the CSI-RS port Y 340 is mapped to the left panel (background panel) 301, and the CSI-RS port X (even though a background reference signal) 330 is mapped to both panels 301 and 302.
In the embodiment shown in Fig. 4, the gNB may configure three sets of CSI-RS ports X 330, Y 340, and Z 350. Port Z 350 is mapped to the same set of antennas as used for user data transmission (PDCCH/PDSCH/DMRS) . These antennas may be called as foreground antennas herein. CSI-RS port Z 350 is Quasi Co-Located (QCL) with the port 320′used for user data transmission. QCL means that these transmissions share common large scale propagation channel characteristics (e.g., Doppler shift, Doppler spread, Delay spread, etc. ) . Transmissions with the same QCL may share the same Transmission Configuration Indication (TCI) state. This is indicated by the gNB to the UE through various mechanisms such as RRC signaling, MAC Control Element signaling and DCI. In some embodiments, the UE may, based on said TCI state knowledge, "implicitly" know that CSI-RS port Z 350 is a foreground reference signal as it is sharing the same TCI state as the user data related port 320′. As such the UE would know that the foreground configuration variant is applicable to this RS. For the RSs from the other ports (X 330 and Y 340 in the example) that do not share the same TCI state, the UE would know that the background configuration variant is applicable.
Compared to a foreground configuration variant (used for channel estimation and user data link maintenance) , a background configuration variant for an RS may be such that the transmission of it by the gNB would be more lightweight (energy friendly) for the NW and potentially also for the UE. The gNB could for example during often occurring transmission gaps on the background antennas be able to turn off the power amplifier on the transceivers associated with the antennas and thereby save energy. Furthermore, if the transmission is over a lower BW, the gNB would be able to turn off certain blocks that would have otherwise been needed for high BW associated with those antennas. The intention of such background variant is to keep track of UE coverage in the background while serving the UE with user-data on the foreground antennas. Based on UE reports from the background RSs, the gNB may change the foreground antennas if gNB decides that e.g., it would better serve services towards the UE.
In some embodiments, a background RS configuration variant may have a lower periodicity (transmitted at a lower rate) than a foreground variant. For example, the parameter periodicityAndOffsetfor the background variant may be 640 slots (every 640 ms in 15kHz SCS) whereas it may be every 4 slots for a foreground variant. The variant rate may be dependent on how good coverage the UE has, how data-active it is, and at  what speed it is moving while associated with the data panel. The better the coverage, the lower the speed, and the lower data activity (e.g., low bit rate) , the more relaxed the CSI-RS transmission on the background port can be.
In some embodiments, a background RS variant may have a lower density (e.g., 0.5) than a foreground variant (e.g., 3) .
In some embodiments, a background RS variant may have lower BW (e.g., 4 RBs) than a foreground variant (e.g., 40 RBs) . In a related embodiment, the background may have a lower BW, but to compensate for the very low BW, an increased density is used so that the UE can perform measurements on sufficient number of REs used for RS (in total the number of REs used would still be less than that for foreground variant) .
In some embodiments, the UE may measure and report status of the background ports. Depending on measurement reports from the UE, the gNB may know which ports to mute for data-related transmissions. In this example, the gNB may be initially transmitting the CSI-RS ports X 330, Y 340, and Z 350 at same rate on different panels and data may be provided on all antennas (both panels) ; i.e., everything is in foreground mode. Based on CSI report from UE reporting high quality measurements on CSI-RS Z 350, the gNB may decide to put the left panel 301 in background mode. Based on further reports from the UE, if the CSI-RS reports show better results on CSI-RS port Y 340, the gNB may hand over the data transmission to the left panel 301 instead. At this stage, the left panel 301 is now in foreground and the right panel 302 in background instead. Based on a TCI state change the UE may also know that a configuration variant swap has occurred. Similarly, if the UE reports that port X 330 is better, then the gNB could go back to transmitting on all antennas again.
As mentioned above, other RSs are not excluded from the present disclosure. For example, if SSBs are mapped to all those antennas including the data-muted port, in order to let gNB have the higher possibility to go into deep sleep mode, besides a longer period for CSI-RS, the periodicity of SSB could be extended as well to match that of CSI-RS, particularly if the associated cell is a Scell. Another variant is changing the mapping of SSB from mapping to all antennas to just mapping to those foreground antennas with data only. Then gNB can go to deep sleep mode on those background antennas.
In some embodiments, the gNB may additionally decide to mute some CSI-RS ports and not only antennas, e.g., if the load in the cell is low or the number of UEs are  limited, and this only keep the CSI-RS ports associated with the SSBs. As such the gNB can save additional power by lowering the number of CSI-RS transmissions even further. Note that other constellations may exist, e.g., as exemplified in Fig. 5 with a simpler setup including fewer CSI-RS ports.
Fig. 5 is a diagram illustrating another exemplary scenario where RS measurement and/or report adaptation are applied according to another embodiment of the present disclosure. Fig. 5 shows another example in which 2 sets of CSI-RS ports (X 330′, and Y 340) are each mapped to a separate panel. As shown in Fig. 5, CSI-RS port X 330′ is mapped to the same antennas as data-related transmissions (foreground) .
In some embodiments, some configuration variants may also include different power offset configurations. Fig. 6 is a diagram illustrating yet another exemplary scenario where RS measurement and/or report adaptation are applied according to yet another embodiment of the present disclosure. Fig. 6 shows an example in which the CSI-RS port is mapped to all antennas, whereas as data-related transmissions are only mapped to one panel. The CSI-RS and the data related beams may cover different areas of the cell as a result.
In the embodiment shown in Fig. 6, the gNB may stop data-related transmission on one panel (e.g., the left panel 301) . This could be as result of UE reporting very low quality CSI report including e.g., L1-RSRP (could be other quantities such as SINR, RSRQ or alike) on that panel. The gNB may maintain however the CSI-RS transmission on all antennas with same rate and BW. This might because there are other UEs that are currently using said CSI-RS. In some embodiments, however, the gNB may inform the UE that the power relationship between the CSI-RS and PDSCH REs or SSBs have changed (e.g., existing powerControlOffset, powerControlOffsetSS, or other newly introduced parameter indicating power relation to PDCCH/PDSCH) . An example of a new parameter may be UE position-specific power offset since here the power relation is not linear (accounting only for the total PA output power plus BF gain difference) but also depending on where in the beam coverage areas the UE is located. The NW may estimate the position-specific power offset based on multiple CSI-RS port measurements from the UE, where the inter-CSI-port relations may be used to determine the desired CSI-port-to-data-port power offset, e.g. by interpolation of based on previous measurements or automated learning. This information can be provided to UE by schemes described in some embodiments described above or any other scheme (e.g.,  RRC reconfiguration, broadcast, etc. ) . Based on the updated powerControlOffset, the UE may know that it has to compensate for the power difference during its PDCCH/PDSCH reception and channel assessment. This knowledge may be necessary for the UE to perform proper Automatic Gain Control (AGC) . Signal power offset knowledge is necessary to allow an appropriate scaling of the CSI Reference Signal measurements. The gNB may also keep track of this power difference so that it knows based on UE CSI-report when to re-map data-related ports to all antennas again. In other cases, if PDCCH/PDSCH on subset of ports is power boosted such that the power relation of PDCCH/PDSCH on single port is still valid for CSI-RS on multiple ports, the powerControlOffset may be kept unchanged.
In examples above, it is discussed that the NW is able to indicate the change in the associated power offsets, or other potential changes, e.g., QCL and so on. Nevertheless, this can be done on optional basis also, i.e., the NW can also still apply the example embodiments above without explicit indications to the UE such as power offset adaptation, particularly if such a mechanism is not available on dynamic basis (i.e., L1/L2 signaling for example) . In this case, either the NW can make sure the power offset or other conditions such as QCL are maintained, or alternatively, take that into account while analyzing the report from the UE and also in scheduling the UE with data based on the report.
In some embodiments, the UE may additionally relax the CSI-RS or SSB measurements, e.g., if specific conditions are met, and inform the NW accordingly. As such the NW can decide on turning off some more CSI-RS occasions such that it saves some energy knowing that the UE already has sufficient CSI-RS or SSBs to measure. The NW may optionally decide to indicate to the UE which of the CSI-RS or SSB occasions are not transmitted anymore, e.g., using lower layer signaling such as DCI or MAC-CE. In some embodiments, the specific conditions can be same or different from the conditions for determining whether RS measurement and/or report are to be performed or not. In some embodiments, the specific conditions may be (pre-) configured in the variants. Therefore, when in foreground there would be a certain powerCtrlOffsetthat would be applicable, whereas when in background another power offset would be relevant.
The UE may be configured by various reporting schemes/variants for the background CSI ports. In some embodiments, the UE may be configured to report on a  periodical/semi-persistent basis (potentially a different period compared to foreground) . In some embodiments, the gNB may completely control the rate of measurements and report aperiodically, i.e., the gNB may order the UE to specifically measure and report on the background RSs at specific occasions.
In some embodiments, the UE may be configured to measure/send the reports for the background RSs only if a certain condition is met, e.g., the UE may transmit the report to gNB when the measured link quality of that port is above a certain value. The certain value can be, for example, an absolute value. The absolute value can be, e.g., predetermined in the standard or configurable by the NW. In another example, the value can also be a relative value, e.g., compared to the measurement of the foreground RS. For example, the UE may report the measurement of the background port when it has a link quality better than the measurement of the foreground. In some embodiments, the UE may report the measurement of the background port when it has a link quality that is greater than Lforeground -Lthreshold or Lforeground + Lthreshold, where Lforeground is the link quality of the foreground CSI-RS port associated with the data transmission and Lthreshold is an absolute value that may be predetermined in the standard or configured by the NW. The qualities mentioned here could be either based on link measurements such as RSRP, RSRQ, SINR etc. Alternately the conditions could be based on block error rate of the foreground link, e.g., if the BLER of the foreground link exceeds a certain (pre-) configured level, the UE starts measuring/reporting on the background RSs. In some embodiments, the UE reports only the best background RS when reporting, whereas in other embodiment more than best is reported. It shall be noted that for this aspect it is not necessary to have more than one variant of each RS configuration.
In some embodiments, the UE can be configured, e.g., through higher layer signaling such as RRC signaling, e.g., as part of CSI-RS configuration, that which CSI-RS ports are background RSs, and which ones are foreground. Furthermore, the UE can be configured with the conditions as described above upon its validity, then the UE has to follow up some actions, examples of which are given in this invention. The actions can also be configurable by the NW or alternatively pre-configured e.g., as in the standardization documentations. In another possibility, DCI or MAC-CE signaling can be used in order to indicate dynamically to the UE which RSs are background and which ones are foreground RSs.
In some embodiments, while the RSs are in background, they may be exempt from certain procedures. For example, the background RSs shall not be used for pathloss estimation for at least one of power control, Precoding Matrix Index (PMI) , Channel Quality Information (CQI) , Rank Indicator (RI) estimation and alike. Instead, they are only used for at least one of CRI-RSRP, SSB-Index-RSRP reporting. In one embodiment, the gNB may configure which of the procedures that are exempt for background RSs, whereas in another embodiment, this may be pre-specified in specifications.
In some embodiments, if the background RSs are reported more seldom than when in foreground, the associated reporting resources (e.g., periodic/semi-persistent PUCCH/PUSCH configurations provided to the UE for reporting) for those RSs can be used for other purposes by the gNB while the RSs are in background mode.
Once the gNB has acquired measurements for various setups/variants, it can decide which transceivers are optimal or suitable enough for communication with the UE and based on the results choose to utilize energy saving states on the other transceiver chains. As a result, less energy is used by the gNB. The activation and deactivation of the ports (configurations/variants) may be signaled to the UE in a similar manner as for the measurement requests by the gNB and could be either periodic, semi-periodic, or aperiodic. In one aspect the measurement request and the configuration activation commands may be separately communicated to the UE.
Fig. 7 is a flow chart of an exemplary method 700 at a UE for RS measurement adaptation according to an embodiment of the present disclosure. The method 700 may be performed at a user equipment (e.g., the UE 100) . The method 700 may comprise step S710, S720, and S730. However, the present disclosure is not limited thereto. In some other embodiments, the method 700 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 700 may be performed in a different order than that described herein. Further, in some embodiments, a step in the method 700 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 700 may be combined into a single step.
The method 700 may begin at step S710 where a message indicating one or more RS configurations may be received from a network node, each of which being associated with a set of one or more RS ports in at least one of multiple modes.
At step S720, at least a first of the one or more RS configurations to be activated may be determined in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration.
At step S730, the first set of RS ports may be measured at least based on the first RS configuration.
In some embodiments, the method 700 may further comprise: determining at least a second of the one or more RS configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS configuration is not in any mode associated with the second RS configuration; and preventing the second set of RS ports from being measured based on the second RS configuration.
Fig. 8 is a flow chart of an exemplary method 800 at a UE for RS measurement adaptation according to an embodiment of the present disclosure. The method 800 may be performed at a user equipment (e.g., the UE 100) . The method 800 may comprise step S810, S820, and S830. However, the present disclosure is not limited thereto. In some other embodiments, the method 800 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 800 may be performed in a different order than that described herein. Further, in some embodiments, a step in the method 800 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 800 may be combined into a single step.
The method 800 may begin at step S810 where a message indicating one or more RS configuration variants associated with a same RS configuration may be received from a network node, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration.
At step S820, at least a first of the one or more RS configuration variants to be activated may be determined in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant.
At step S830, the first subset of RS ports may be measured at least based on the first RS configuration variant.
In some embodiments, the method 800 further comprise: determining at least a second of the one or more RS configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second RS configuration variant is not in any mode associated with the second RS configuration variant; and preventing the second subset of RS ports from being measured based on the second RS configuration variant.
Please note that the following embodiments may be applicable to Fig. 7, Fig. 8, or both.
In some embodiments, the method 700 or 800 may further comprise: transmitting, to the network node, a report message indicating a measurement for the first set of RS ports or the first subset of RS ports. In some embodiments, the multiple modes may comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
In some embodiments, at least one of the one or more RS configurations or at least one of the one or more RS configuration variants may indicate at least one of: time/frequency resources; a number of RS ports; one or more identifiers or indexes of one or more RS ports; a power offset compared to at least one of PDCCH, PDSCH, and SSB; a rate; a bandwidth; and a density. In some embodiments, at least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode, when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, may indicate at least one of: a lower rate; a lower bandwidth; a lower density; and a different power offset. In some embodiments, at least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration  variants in the first mode, when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, may indicate at least one of: a higher rate; a higher bandwidth; a higher density; and a different power offset. In some embodiments, an RS configuration or RS configuration variant in the second mode, which indicates a lower bandwidth than that indicated by another RS configuration or RS configuration variant in the first mode, may indicate a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode.
In some embodiments, the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated may comprise: receiving, from the network node, a message indicating the first RS configuration or the first RS configuration variant to be activated. In some embodiments, the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated may comprise: determining whether there is at least one RS configuration or RS configuration variant whose associated set of RS ports or associated subset of RS ports has a same state as that of another antenna port associated with at least one of PDCCH, PDSCH, and DMRS or not; and determining the at least one RS configuration or RS configuration variant, as the first RS configuration or the first RS configuration variant to be activated, in response to determining that there is the at least one RS configuration or RS configuration variant. In some embodiments, the state is a TCI state.
In some embodiments, before the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated, the method 700 or 800 may further comprise: receiving, from the network node, a message indicating that the UE is to determine an RS configuration or an RS configuration variant to be activated based on its own decision. In some embodiments, the message may indicate at least one of: which RS port or RS ports are in which mode; which RS or RSs are in which mode; and whether the UE is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not. In some embodiments, before the step of transmitting, to the network node, a report message, the method 700 or 800 may further comprise: receiving, from the network node, a message indicating that the UE is to transmit the report message  periodically or aperiodically, wherein the step of transmitting, to the network node, a report message may be performed in response to the received message.
In some embodiments, the method 700 or 800 may further comprise: receiving, from the network node, a message indicating one or more conditions, wherein at least one of the step of measuring the first set of RS ports, the step of measuring the first subset of RS ports, and the step of transmitting, to the network node, a report message may be performed only in response to at least one of the one or more conditions being fulfilled. In some embodiments, the first RS configuration or the first RS configuration variant may indicate that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed, wherein the method 700 or 800 may further comprise: performing power compensation during at least one of PDCCH reception, PDSCH reception, and channel assessment at least based on the changed power relationship. In some embodiments, the message may comprise at least one of: a powerControlOffset IE; a powerControlOffsetSS IE; and an IE indicating a UE position-specific power offset.
In some embodiments, the method 700 or 800 may further comprise at least one of: transmitting, to the network node, a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled; measuring the first set of RS ports or the first subset of RS ports excluding the one or more indicated RS occasions; and receiving, from the network node, a message indicating that the one or more indicated RS occasions are muted. In some embodiments, a set of RS ports or a subset of RS ports in the second mode may be not measured for at least one of: pathloss estimation for power control; PMI determination; CQI determination; and RI estimation. In some embodiments, a set of RS ports or a subset of RS ports in the second mode is measured for at least one of: CRI-RSRP reporting; and SSB-Index-RSRP reporting. In some embodiments, which of one or more procedures that are exempt for RS ports in the second mode may be determined by at least one of: a configuration from the network node; and a configuration hardcoded or pre-configured at the UE.
In some embodiments, at least one of the messages may be received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI. In some embodiments, an RS may comprise at least one of: a CSI-RS; and  an SSB. In some embodiments, when the RS configurations or RS configuration variants comprise CSI-RS configurations or configuration variants in the second mode and SSB configurations or configuration variants in the second mode, both of which are associated with a same set or subset of RS ports, the CSI-RS configurations or configuration variants in the second mode may indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants. In some embodiments, when the RS configurations or RS configuration variants comprise SSB configurations or configuration variants, each of the SSB configurations or configuration variants may be associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS. In some embodiments, at least one of the one or more RS configurations or at least one of the one or more RS configuration variants may correspond to an antenna muting pattern at the network node.
Fig. 9 is a flow chart of an exemplary method 900 at a UE for RS report adaptation according to an embodiment of the present disclosure. The method 900 may be performed at a user equipment (e.g., the UE 100) . The method 900 may comprise step S910, S920, and S930. However, the present disclosure is not limited thereto. In some other embodiments, the method 900 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 900 may be performed in a different order than that described herein. Further, in some embodiments, a step in the method 900 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 900 may be combined into a single step.
The method 900 may begin at step S910 where a message indicating one or more RS report configurations may be received from the network node, each of which being associated with a set of one or more RS ports in at least one of multiple modes.
At step S920, at least a first of the one or more RS report configurations to be activated may be determined in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration.
At step S930 a report message indicating a measurement for the first set of RS ports may be transmitted to the network node at least based on the first RS report configuration.
In some embodiments, the method 900 may further comprise: determining at least a second of the one or more RS report configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS report configuration is not in any mode associated with the second RS report configuration; and preventing the second set of RS ports from being reported based on the second RS report configuration.
Fig. 10 is a flow chart of an exemplary method 1000 at a UE for RS report adaptation according to an embodiment of the present disclosure. The method 1000 may be performed at a user equipment (e.g., the UE 100) . The method 1000 may comprise step S1010, S1020, and S1030. However, the present disclosure is not limited thereto. In some other embodiments, the method 1000 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 1000 may be performed in a different order than that described herein. Further, in some embodiments, a step in the method 1000 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1000 may be combined into a single step.
The method 1000 may begin at step S1010 where a message indicating one or more RS report configuration variants associated with a same RS report configuration may be received from the network node, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration.
At step S1020, at least a first of the one or more RS report configuration variants to be activated may be determined in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant.
At step S1030, a report message indicating a measurement for the first subset of RS ports may be transmitted to the network node at least based on the first RS report configuration variant.
In some embodiments, the method 1000 may further comprise: determining at least a second of the one or more RS report configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second RS report configuration variant is not in any mode associated with the  second RS report configuration variant; and preventing the second subset of RS ports from being reported based on the second RS report configuration variant.
Please note that the following embodiments may be applicable to Fig. 9, Fig. 10, or both.
In some embodiments, the multiple modes may comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
In some embodiments, at least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants may indicate at least one of: the report message is to be transmitted periodically; the report message is to be transmitted semi-persistently; the report message is to be transmitted aperiodically; and the report message is to be transmitted only when a condition is fulfilled. In some embodiments, when the first set of RS ports or the first subset of RS ports is in the second mode, the condition may comprise at least one of: whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode. In some embodiments, the measured link quality may comprise at least one of: RSRP; RSRQ; SINR; and BLER.
In some embodiments, before the step of transmitting, to the network node, a report message, the method 900 or 1000 may further comprise: determining whether the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all the other subsets of RS ports in the second mode, wherein the step of transmitting, to the network node, a report message may comprise: transmitting, to the network node, the report message only in response to determining that the measurement for the first set  of RS ports or the first subset of RS ports in the second mode is better than the measurements for all the other sets of RS ports or all the other subsets of RS ports in the second mode. In some embodiments, for each RS report configuration, there may be one associated RS report configuration variant at most. In some embodiments, at least one of the messages may be received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI. In some embodiments, an RS may comprise at least one of: a CSI-RS; and an SSB.
Fig. 11 is a flow chart of an exemplary method 1100 at a network node for RS measurement adaptation according to an embodiment of the present disclosure. The method 1100 may be performed at a network node (e.g., the gNB 105) . The method 1100 may comprise steps S1110, S1120, and S1130. However, the present disclosure is not limited thereto. In some other embodiments, the method 1100 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 1100 may be performed in a different order than that described herein. Further, in some embodiments, a step in the method 1100 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1100 may be combined into a single step.
The method 1100 may begin at step S1110 where a message indicating one or more RS configurations may be transmitted to a UE, each of which being associated with a set of one or more RS ports in at least one of multiple modes.
At step S1120, at least a first of the one or more RS configurations to be activated at the UE may be determined, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration.
At step S1130, one or more RSs may be transmitted at least based on the first RS configuration.
In some embodiments, the method 1100 may further comprise: determining at least a second of the one or more RS configurations to be deactivated at the UE, a second set of one or more RS ports associated with the second RS configuration being not in any mode associated with the second RS configuration; and preventing one or more RSs from being transmitted based on the second RS configuration.
Fig. 12 is a flow chart of an exemplary method 1200 at a network node for RS measurement adaptation according to an embodiment of the present disclosure. The  method 1200 may be performed at a network node (e.g., the gNB 105) . The method 1200 may comprise steps S1210, S1220, and S1230. However, the present disclosure is not limited thereto. In some other embodiments, the method 1200 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 1200 may be performed in a different order than that described herein. Further, in some embodiments, a step in the method 1200 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1200 may be combined into a single step.
The method 1200 may begin at step S1210 where a message indicating one or more RS configuration variants associated with a same RS configuration may be transmitted to a UE, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration.
At step S1220, at least a first of the one or more RS configuration variants to be activated at the UE may be determined, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant.
At step S1230, one or more RSs may be transmitted at least based on the first RS configuration variant.
In some embodiments, the method 1200 may further comprise: determining at least a second of the one or more RS configuration variants to be deactivated at the UE, a second subset of one or more RS ports associated with the second RS configuration variant being not in any mode associated with the second RS configuration variant; and preventing one or more RSs from being transmitted based on the second RS configuration variant.
Please note that the following embodiments may be applicable to Fig. 11, Fig. 12, or both.
In some embodiments, the method 1100 or 1200 may further comprise: receiving, from the UE, a report message indicating a measurement for the first set of RS ports or the first subset of RS ports. In some embodiments, the multiple modes may comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of  PDCCH, PDSCH, and DMRS; a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
In some embodiments, at least one of the one or more RS configurations or at least one of the one or more RS configuration variants may indicate at least one of: time/frequency resources; a number of RS ports; one or more identifiers or indexes of one or more RS ports; a power offset compared to at least one of PDCCH, PDSCH, and SSB; a rate; a bandwidth; and a density. In some embodiments, at least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode, when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, may indicate at least one of: a lower rate; a lower bandwidth; a lower density; and a different power offset. In some embodiments, at least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration variants in the first mode, when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, may indicate at least one of: a higher rate; a higher bandwidth; a higher density; and a different power offset.
In some embodiments, an RS configuration or RS configuration variant in the second mode, which indicates a lower bandwidth than that indicated by another RS configuration or RS configuration variant in the first mode, may indicate a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode. In some embodiments, before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method 1100 or 1200 may further comprise: transmitting, to the UE, a message indicating the first RS configuration or the first RS configuration variant to be activated. In some embodiments, before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method 1100 or 1200 may further comprise at least one of: transmitting, to the UE, a message indicating a  state for at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; transmitting, to the UE, a message indicating a state for the first set or subset of RS ports; and transmitting, to the UE, a message indicating a state for the second set or subset of RS ports. In some embodiments, the state may be a TCI state.
In some embodiments, before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method 1100 or 1200 may further comprise: transmitting, to the UE, a message indicating that the UE is to determine an RS configuration or an RS configuration variant to be activated based on its own decision. In some embodiments, the message may indicate at least one of: which RS port or RS ports are in which mode; which RS or RSs are in which mode; and whether the UE is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not. In some embodiments, before the step of receiving, from the UE, a report message, the method 1100 or 1200 may further comprise: transmitting, to the UE, a message indicating that the UE is to transmit the report message periodically or aperiodically, wherein the step of receiving, from the UE, a report message may be performed in response to the transmitted message.
In some embodiments, the method 1100 or 1200 may further comprise: transmitting, to the UE, a message indicating one or more conditions, wherein the step of receiving, from the UE, a report message may be performed only in response to at least one of the one or more conditions being fulfilled at the UE. In some embodiments, the first RS configuration or the first RS configuration variant may indicate that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed. In some embodiments, the message may comprise at least one of: a powerControlOffset Information Element (IE) ; a powerControlOffsetSS IE; and an IE indicating a UE position-specific power offset.
In some embodiments, the method 1100 or 1200 may further comprise at least one of: receiving, from the UE, a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled; muting the one or more indicated RS occasions while transmitting the first set of RS ports or the first subset of RS ports; transmitting, to the UE, a message indicating that the one or more indicated RS occasions are muted. In some embodiments, a set of RS ports or  a subset of RS ports in the second mode may be not used for at least one of: pathloss estimation for power control; PMI determination; CQI determination; and RI estimation. In some embodiments, a set of RS ports or a subset of RS ports in the second mode may be used for at least one of: CRI-RSRP reporting; and SSB-Index-RSRP reporting.
In some embodiments, which of one or more procedures that are exempt for RS ports in the second mode may be determined by at least one of: a configuration from another node; and a configuration hardcoded or pre-configured at the network node. In some embodiments, at least one of the messages may be received via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI. In some embodiments, an RS may comprise at least one of: a CSI-RS; and an SSB.
In some embodiments, when the RS configurations or RS configuration variants comprise CSI-RS configurations or configuration variants in the second mode and SSB configurations or configuration variants in the second mode, both of which are associated with a same set or subset of RS ports, the CSI-RS configurations or configuration variants in the second mode may indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants. In some embodiments, when the RS configurations or RS configuration variants comprise SSB configurations or configuration variants, each of the SSB configurations or configuration variants may be associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS. In some embodiments, at least one of the one or more RS configurations or at least one of the one or more RS configuration variants may correspond to an antenna muting pattern at the network node.
In some embodiments, the method 1100 or 1200 may further comprise: utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS configuration or the first RS configuration variant, for reception and/or transmission sleep. In some embodiments, the method 1100 or 1200 may further comprise: transmitting at a lower output power in response to the first RS configuration or the first RS configuration variant indicating a lower bandwidth and/or a lower density. In some embodiments, the method 1100 or 1200 may further comprise: in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS, remapping the at least one  of PDCCH, PDSCH, and DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
Fig. 13 is a flow chart of an exemplary method 1300 at a network node for RS report adaptation according to an embodiment of the present disclosure. The method 1300 may be performed at a network node (e.g., the gNB 105) . The method 1300 may comprise steps S1310, S1320, S1330, and S1340. However, the present disclosure is not limited thereto. In some other embodiments, the method 1300 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 1300 may be performed in a different order than that described herein. Further, in some embodiments, a step in the method 1300 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1300 may be combined into a single step.
The method 1300 may begin at step S1310 where a message indicating one or more RS report configurations may be transmitted to a UE, each of which being associated with a set of one or more RS ports in at least one of multiple modes.
At step S1320, at least a first of the one or more RS report configurations to be activated at the UE may be determined, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration.
At step S1330, one or more RSs may be transmitted over the first set of RS ports.
At step S1340, a report message indicating a measurement for the first set of RS ports may be received from the UE at least based on the first RS report configuration.
In some embodiments, the method 1300 may further comprise: determining at least a second of the one or more RS report configurations to be deactivated at the UE, a second set of one or more RS ports associated with the second RS report configuration being not in any mode associated with the second RS report configuration; and transmitting, to the UE, a message explicitly or implicitly indicating that a measurement for the second set of RS ports is not to be reported by the UE based on the second RS report configuration.
Fig. 14 is a flow chart of an exemplary method 1400 at a network node for RS report adaptation according to an embodiment of the present disclosure. The method 1400 may be performed at a network node (e.g., the gNB 105) . The method 1400 may comprise steps S1410, S1420, S1430, and S1440. However, the present disclosure is  not limited thereto. In some other embodiments, the method 1400 may comprise more steps, less steps, different steps, or any combination thereof. Further the steps of the method 1400 may be performed in a different order than that described herein. Further, in some embodiments, a step in the method 1400 may be split into multiple sub-steps and performed by different entities, and/or multiple steps in the method 1400 may be combined into a single step.
The method 1400 may begin at step S1410 where a message indicating one or more RS report configuration variants associated with a same RS report configuration may be transmitted to a UE, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration.
At step S1420, at least a first of the one or more RS report configuration variants to be activated at the UE may be determined, the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant.
At step S1430, one or more RSs may be transmitted over the first subset of RS ports.
At step S1440, a report message indicating a measurement for the first subset of RS ports may be received from the UE at least based on the first RS report configuration variant.
In some embodiments, the method 1400 may further comprise: determining at least a second of the one or more RS report configuration variants to be deactivated at the UE, a second subset of one or more RS ports associated with the second RS report configuration variant being not in any mode associated with the second RS report configuration variant; and transmitting, to the UE, a message explicitly or implicitly indicating that a measurement for the second subset of RS ports is not to be reported based on the second RS report configuration variant.
Please note that the following embodiments may be applicable to Fig. 13, Fig. 14, or both.
In some embodiments, the multiple modes may comprise at least one of: a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a  second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS; a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
In some embodiments, at least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants may indicate at least one of: the report message is to be transmitted periodically; the report message is to be transmitted semi-persistently; the report message is to be transmitted aperiodically; and the report message is to be transmitted only when a condition is fulfilled. In some embodiments, when the first set of RS ports or the first subset of RS ports is in the second mode, the condition may comprise at least one of: whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode. In some embodiments, the measured link quality may comprise at least one of: RSRP; RSRQ; SINR; and BLER.
In some embodiments, the reception of the report message may indicate that the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all other subsets of RS ports in the second mode. In some embodiments, for each RS report configuration, there may be one associated RS report configuration variant at most. In some embodiments, at least one of the messages may be transmitted via at least one of: RRC signaling dedicated to the UE; SI broadcasted by the network node; MAC CE; and DCI. In some embodiments, an RS may comprise at least one of: a CSI-RS; and an SSB.
In some embodiments, the method 1300 or 1400 may further comprise: utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS report configuration or the first RS report configuration variant, for reception and/or transmission sleep. In some embodiments, the method 1300 or 1400 may further comprise: transmitting at a lower output power in response to the first RS report configuration or the first RS report configuration variant indicating a lower bandwidth  and/or a lower density. In some embodiments, the method 1300 or 1400 may further comprise: in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS, remapping the at least one of PDCCH, PDSCH, and DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
Fig. 15 schematically shows an embodiment of an arrangement 1500 which may be used in a user equipment (e.g., the UE 100) or a network node (e.g., the gNB 105) according to an embodiment of the present disclosure. Comprised in the arrangement 1500 are a processing unit 1506, e.g., with a Digital Signal Processor (DSP) or a Central Processing Unit (CPU) . The processing unit 1506 may be a single unit or a plurality of units to perform different actions of procedures described herein. The arrangement 1500 may also comprise an input unit 1502 for receiving signals from other entities, and an output unit 1504 for providing signal (s) to other entities. The input unit 1502 and the output unit 1504 may be arranged as an integrated entity or as separate entities.
Furthermore, the arrangement 1500 may comprise at least one computer program product 1508 in the form of a non-volatile or volatile memory, e.g., an Electrically Erasable Programmable Read-Only Memory (EEPROM) , a flash memory and/or a hard drive. The computer program product 1508 comprises a computer program 1510, which comprises code/computer readable instructions, which when executed by the processing unit 1506 in the arrangement 1500 causes the arrangement 1500 and/or the UE/network node in which it is comprised to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 7 to Fig. 14 or any other variant.
The computer program 1510 may be configured as a computer program code structured in computer program modules 1510A, 1510B, and 1510C. Hence, in an exemplifying embodiment when the arrangement 1500 is used in a UE, the code in the computer program of the arrangement 1500 includes: a module 1510A configured to receive, from a network node, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a module 1510B configured to determine at least a first of the one or more RS configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with  the first RS configuration; and a module 1510C configured to measure the first set of RS ports at least based on the first RS configuration.
Additionally or alternatively, the computer program 1510 may be configured as a computer program code structured in computer program modules 1510D, 1510E, and 1510F. Hence, in an exemplifying embodiment when the arrangement 1500 is used in a UE, the code in the computer program of the arrangement 1500 includes: a module 1510D configured to receive, from a network node, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a module 1510E configured to determine at least a first of the one or more RS configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant; and a module 1510F configured to measure the first subset of RS ports at least based on the first RS configuration variant.
Additionally or alternatively, the computer program 1510 may be configured as a computer program code structured in computer program modules 1510G, 1510H, and 1510I. Hence, in an exemplifying embodiment when the arrangement 1500 is used in a UE, the code in the computer program of the arrangement 1500 includes: a module 1510G configured to receive, from the network node, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a module 1510H configured to determine at least a first of the one or more RS report configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration; and a module 15101 configured to transmit, to the network node, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
Additionally or alternatively, the computer program 1510 may be configured as a computer program code structured in computer program modules 1510J, 1510K, and 1510L. Hence, in an exemplifying embodiment when the arrangement 1500 is used in a UE, the code in the computer program of the arrangement 1500 includes: a module  1510J configured to a receiving module configured to receive, from the network node, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a module 1510K configured to determine at least a first of the one or more RS report configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant; and a module 1510L configured to transmit, to the network node, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
Additionally or alternatively, the computer program 1510 may be configured as a computer program code structured in computer program modules 1510M, 1510N, and 1510O. Hence, in an exemplifying embodiment when the arrangement 1500 is used in a network node, the code in the computer program of the arrangement 1500 includes: a module 1510M configured to transmit, to a UE, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a module 1510N configured to determine at least a first of the one or more RS configurations to be activated at the UE, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration; and a module 1510O configured to transmit one or more RSs at least based on the first RS configuration.
Additionally or alternatively, the computer program 1510 may be configured as a computer program code structured in computer program modules 1510P, 1510Q, and 1510R. Hence, in an exemplifying embodiment when the arrangement 1500 is used in a network node, the code in the computer program of the arrangement 1500 includes: a module 1510P configured to transmit, to a UE, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a module 1510Q configured to determine at least a first of the one or more RS configuration  variants to be activated at the UE, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant; a module 1510R configured to transmit one or more RSs at least based on the first RS configuration variant.
Additionally or alternatively, the computer program 1510 may be configured as a computer program code structured in computer program modules 1510S, 1510T, 1510U, and 1510V. Hence, in an exemplifying embodiment when the arrangement 1500 is used in a network node, the code in the computer program of the arrangement 1500 includes: a module 1510S configured to transmit, to a UE, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a module 1510T configured to determine at least a first of the one or more RS report configurations to be activated at the UE, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration; a module 1510U configured to transmit one or more RSs over the first set of RS ports; and a module 1510V configured to receive, from the UE, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
Additionally or alternatively, the computer program 1510 may be configured as a computer program code structured in computer program modules 1510W, 1510X, 1510Y, and 1510Z. Hence, in an exemplifying embodiment when the arrangement 1500 is used in a network node, the code in the computer program of the arrangement 1500 includes: a module 1510W configured to transmit, to a UE, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a module 1510X configured to determine at least a first of the one or more RS report configuration variants to be activated at the UE, the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant; a module 1510Y configured to transmit one or more RSs over the first subset of RS ports; and a module 1510Z configured to received, from the UE, a  report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
The computer program modules could essentially perform the actions of the flow illustrated in Fig. 7 to Fig. 14, to emulate the UE or the network node. In other words, when the different computer program modules are executed in the processing unit 1506, they may correspond to different modules in the UE or the network node.
Although the code means in the embodiments disclosed above in conjunction with Fig. 15 are implemented as computer program modules which when executed in the processing unit causes the arrangement to perform the actions described above in conjunction with the figures mentioned above, at least one of the code means may in alternative embodiments be implemented at least partly as hardware circuits.
The processor may be a single CPU (Central processing unit) , but could also comprise two or more processing units. For example, the processor may include general purpose microprocessors; instruction set processors and/or related chips sets and/or special purpose microprocessors such as Application Specific Integrated Circuit (ASICs) . The processor may also comprise board memory for caching purposes. The computer program may be carried by a computer program product connected to the processor. The computer program product may comprise a computer readable medium on which the computer program is stored. For example, the computer program product may be a flash memory, a Random-access memory (RAM) , a Read-Only Memory (ROM) , or an EEPROM, and the computer program modules described above could in alternative embodiments be distributed on different computer program products in the form of memories within the UE and/or the network node.
Correspondingly to the method 700 as described above, an exemplary user equipment is provided. Fig. 16 is a block diagram of a UE 1600 according to an embodiment of the present disclosure. The UE 1600 may be, e.g., the UE 100 in some embodiments.
The UE 1600 may be configured to perform the method 700 as described above in connection with Fig. 7. As shown in Fig. 16, the UE 1600 may comprise a receiving module 1610 configured to receive, from a network node, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module 1620 configured to determine at least a first of the one or more RS configurations to be activated in  response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration; and a measuring module 1630 configured to measure the first set of RS ports at least based on the first RS configuration.
The above modules 1610, 1620, and/or 1630 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 7. Further, the UE 1600 may comprise one or more further modules, each of which may perform any of the steps of the method 700 described with reference to Fig. 7.
Correspondingly to the method 800 as described above, an exemplary user equipment is provided. Fig. 17 is a block diagram of a UE 1700 according to an embodiment of the present disclosure. The UE 1700 may be, e.g., the UE 100 in some embodiments.
The UE 1700 may be configured to perform the method 800 as described above in connection with Fig. 8. As shown in Fig. 17, the UE 1700 may comprise a receiving module 1710 configured to receive, from a network node, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a determining module 1720 configured to determine at least a first of the one or more RS configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS configuration variant is in a mode associated with the first RS configuration variant; and a measuring module 1730 configured to measure the first subset of RS ports at least based on the first RS configuration variant.
The above modules 1710, 1720, and/or 1730 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured  to perform the actions described above, and illustrated, e.g., in Fig. 8. Further, the UE 1700 may comprise one or more further modules, each of which may perform any of the steps of the method 800 described with reference to Fig. 8.
Correspondingly to the method 900 as described above, an exemplary user equipment is provided. Fig. 18 is a block diagram of a UE 1800 according to an embodiment of the present disclosure. The UE 1800 may be, e.g., the UE 100 in some embodiments.
The UE 1800 may be configured to perform the method 900 as described above in connection with Fig. 9. As shown in Fig. 18, the UE 1800 may comprise a receiving module 1810 configured to receive, from the network node, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module 1820 configured to determine at least a first of the one or more RS report configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration; and a transmitting module 1830 configured to transmit, to the network node, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
The above modules 1810, 1820, and/or 1830 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 9. Further, the UE 1800 may comprise one or more further modules, each of which may perform any of the steps of the method 900 described with reference to Fig. 9.
Correspondingly to the method 1000 as described above, an exemplary user equipment is provided. Fig. 19 is a block diagram of a UE 1900 according to an embodiment of the present disclosure. The UE 1900 may be, e.g., the UE 100 in some embodiments.
The UE 1900 may be configured to perform the method 1000 as described above in connection with Fig. 10. As shown in Fig. 19, the UE 1900 may comprise a receiving module 1910 configured to a receiving module configured to receive, from the network node, a message indicating one or more RS report configuration variants associated  with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration; a determining module 1920 configured to determine at least a first of the one or more RS report configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant; and a transmitting module 1930 configured to transmit, to the network node, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
The above modules 1910, 1920, and/or 1930 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of:a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 10. Further, the UE 1900 may comprise one or more further modules, each of which may perform any of the steps of the method 1000 described with reference to Fig. 10.
Correspondingly to the method 1100 as described above, a network node is provided. Fig. 20 is a block diagram of an exemplary network node 2000 according to an embodiment of the present disclosure. The network node 2000 may be, e.g., the gNB 105 in some embodiments.
The network node 2000 may be configured to perform the method 1100 as described above in connection with Fig. 11. As shown in Fig. 20, the network node 2000 may comprise a first transmitting module 2010 configured to transmit, to a UE, a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module 2020 configured to determine at least a first of the one or more RS configurations to be activated at the UE, the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration; and a second transmitting module 2030 configured to transmit one or more RSs at least based on the first RS configuration.
The above modules 2010, 2020, and/or 2030 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 11. Further, the network node 2000 may comprise one or more further modules, each of which may perform any of the steps of the method 1100 described with reference to Fig. 11.
Correspondingly to the method 1200 as described above, a network node is provided. Fig. 21 is a block diagram of an exemplary network node 2100 according to an embodiment of the present disclosure. The network node 2100 may be, e.g., the gNB 105 in some embodiments.
The network node 2100 may be configured to perform the method 1200 as described above in connection with Fig. 12. As shown in Fig. 21, the network node 2100 may comprise a first transmitting module 2110 configured to transmit, to a UE, a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration; a determining module 2120 configured to determine at least a first of the one or more RS configuration variants to be activated at the UE, the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant; a second transmitting module 2130 configured to transmit one or more RSs at least based on the first RS configuration variant.
The above modules 2110, 2120, and/or 2130 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 12. Further, the network node 2100 may comprise one or more further modules, each of which may perform any of the steps of the method 1200 described with reference to Fig. 12.
Correspondingly to the method 1300 as described above, a network node is provided. Fig. 22 is a block diagram of an exemplary network node 2200 according to  an embodiment of the present disclosure. The network node 2200 may be, e.g., the gNB 105 in some embodiments.
The network node 2200 may be configured to perform the method 1300 as described above in connection with Fig. 13. As shown in Fig. 22, the network node 2200 may comprise a first transmitting module 2210 configured to transmit, to a UE, a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes; a determining module 2220 configured to determine at least a first of the one or more RS report configurations to be activated at the UE, the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration; a second transmitting module 2230 configured to transmit one or more RSs over the first set of RS ports; and a receiving module 2240 configured to receive, from the UE, a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
The above modules 2210, 2220, 2230, and/or 2240 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 13. Further, the network node 2200 may comprise one or more further modules, each of which may perform any of the steps of the method 1300 described with reference to Fig. 13.
Correspondingly to the method 1400 as described above, a network node is provided. Fig. 23 is a block diagram of an exemplary network node 2300 according to an embodiment of the present disclosure. The network node 2300 may be, e.g., the gNB 105 in some embodiments.
The network node 2300 may be configured to perform the method 1400 as described above in connection with Fig. 14. As shown in Fig. 23, the network node 2300 may comprise a first transmitting module 2310 configured to transmit, to a UE, a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS  ports associated with the same RS report configuration; a determining module 2320 configured to determine at least a first of the one or more RS report configuration variants to be activated at the UE, the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant; a second transmitting module 2330 configured to transmit one or more RSs over the first subset of RS ports; and a receiving module 2340 configured to received, from the UE, a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
The above modules 2310, 2320, 2330, and/or 2340 may be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a PLD or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 14. Further, the network node 2300 may comprise one or more further modules, each of which may perform any of the steps of the method 1400 described with reference to Fig. 14.
With reference to Fig. 24, in accordance with an embodiment, a communication system includes a telecommunication network 3210, such as a 3GPP-type cellular network, which comprises an access network 3211, such as a radio access network, and a core network 3214. The access network 3211 comprises a plurality of base stations 3212a, 3212b, 3212c, such as NBs, eNBs, gNBs or other types of wireless access points, each defining a corresponding coverage area 3213a, 3213b, 3213c. Each base station 3212a, 3212b, 3212c is connectable to the core network 3214 over a wired or wireless connection 3215. A first UE 3291 located in coverage area 3213c is configured to wirelessly connect to, or be paged by, the corresponding base station 3212c. A second UE 3292 in coverage area 3213a is wirelessly connectable to the corresponding base station 3212a. While a plurality of UEs 3291, 3292 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station 3212.
The telecommunication network 3210 is itself connected to a host computer 3230, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm. The host computer 3230 may be under the ownership or control of a service  provider, or may be operated by the service provider or on behalf of the service provider. The connections 3221, 3222 between the telecommunication network 3210 and the host computer 3230 may extend directly from the core network 3214 to the host computer 3230 or may go via an optional intermediate network 3220. The intermediate network 3220 may be one of, or a combination of more than one of, a public, private or hosted network; the intermediate network 3220, if any, may be a backbone network or the Internet; in particular, the intermediate network 3220 may comprise two or more sub-networks (not shown) .
The communication system of Fig. 24 as a whole enables connectivity between one of the connected UEs 3291, 3292 and the host computer 3230. The connectivity may be described as an over-the-top (OTT) connection 3250. The host computer 3230 and the connected UEs 3291, 3292 are configured to communicate data and/or signaling via the OTT connection 3250, using the access network 3211, the core network 3214, any intermediate network 3220 and possible further infrastructure (not shown) as intermediaries. The OTT connection 3250 may be transparent in the sense that the participating communication devices through which the OTT connection 3250 passes are unaware of routing of uplink and downlink communications. For example, a base station 3212 may not or need not be informed about the past routing of an incoming downlink communication with data originating from a host computer 3230 to be forwarded (e.g., handed over) to a connected UE 3291. Similarly, the base station 3212 need not be aware of the future routing of an outgoing uplink communication originating from the UE 3291 towards the host computer 3230.
Example implementations, in accordance with an embodiment, of the UE, base station and host computer discussed in the preceding paragraphs will now be described with reference to Fig. 25. In a communication system 3300, a host computer 3310 comprises hardware 3315 including a communication interface 3316 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of the communication system 3300. The host computer 3310 further comprises processing circuitry 3318, which may have storage and/or processing capabilities. In particular, the processing circuitry 3318 may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. The host computer 3310 further comprises software 3311, which is stored in or accessible  by the host computer 3310 and executable by the processing circuitry 3318. The software 3311 includes a host application 3312. The host application 3312 may be operable to provide a service to a remote user, such as a UE 3330 connecting via an OTT connection 3350 terminating at the UE 3330 and the host computer 3310. In providing the service to the remote user, the host application 3312 may provide user data which is transmitted using the OTT connection 3350.
The communication system 3300 further includes a base station 3320 provided in a telecommunication system and comprising hardware 3325 enabling it to communicate with the host computer 3310 and with the UE 3330. The hardware 3325 may include a communication interface 3326 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of the communication system 3300, as well as a radio interface 3327 for setting up and maintaining at least a wireless connection 3370 with a UE 3330 located in a coverage area (not shown in Fig. 25) served by the base station 3320. The communication interface 3326 may be configured to facilitate a connection 3360 to the host computer 3310. The connection 3360 may be direct or it may pass through a core network (not shown in Fig. 25) of the telecommunication system and/or through one or more intermediate networks outside the telecommunication system. In the embodiment shown, the hardware 3325 of the base station 3320 further includes processing circuitry 3328, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. The base station 3320 further has software 3321 stored internally or accessible via an external connection.
The communication system 3300 further includes the UE 3330 already referred to. Its hardware 3335 may include a radio interface 3337 configured to set up and maintain a wireless connection 3370 with a base station serving a coverage area in which the UE 3330 is currently located. The hardware 3335 of the UE 3330 further includes processing circuitry 3338, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. The UE 3330 further comprises software 3331, which is stored in or accessible by the UE 3330 and executable by the processing circuitry 3338. The software 3331 includes a client application 3332. The client application 3332 may be operable to provide a service to a human or non-human  user via the UE 3330, with the support of the host computer 3310. In the host computer 3310, an executing host application 3312 may communicate with the executing client application 3332 via the OTT connection 3350 terminating at the UE 3330 and the host computer 3310. In providing the service to the user, the client application 3332 may receive request data from the host application 3312 and provide user data in response to the request data. The OTT connection 3350 may transfer both the request data and the user data. The client application 3332 may interact with the user to generate the user data that it provides.
It is noted that the host computer 3310, base station 3320 and UE 3330 illustrated in Fig. 25 may be identical to the host computer 3230, one of the base stations 3212a, 3212b, 3212c and one of the UEs 3291, 3292 of Fig. 24, respectively. This is to say, the inner workings of these entities may be as shown in Fig. 25 and independently, the surrounding network topology may be that of Fig. 24.
In Fig. 25, the OTT connection 3350 has been drawn abstractly to illustrate the communication between the host computer 3310 and the use equipment 3330 via the base station 3320, without explicit reference to any intermediary devices and the precise routing of messages via these devices. Network infrastructure may determine the routing, which it may be configured to hide from the UE 3330 or from the service provider operating the host computer 3310, or both. While the OTT connection 3350 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
The wireless connection 3370 between the UE 3330 and the base station 3320 is in accordance with the teachings of the embodiments described throughout this disclosure One or more of the various embodiments improve the performance of OTT services provided to the UE 3330 using the OTT connection 3350, in which the wireless connection 3370 forms the last segment. More precisely, the teachings of these embodiments may improve the latency and power consumption and thereby provide benefits such as reduced user waiting time, better responsiveness, extended battery lifetime.
A measurement procedure may be provided for the purpose of monitoring data rate, latency, and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring the OTT connection  3350 between the host computer 3310 and UE 3330, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring the OTT connection 3350 may be implemented in the software 3311 of the host computer 3310 or in the software 3331 of the UE 3330, or both. In embodiments, sensors (not shown) may be deployed in or in association with communication devices through which the OTT connection 3350 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software 3311, 3331 may compute or estimate the monitored quantities. The reconfiguring of the OTT connection 3350 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not affect the base station 3320, and it may be unknown or imperceptible to the base station 3320. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling facilitating the host computer′s 3310 measurements of throughput, propagation times, latency, and the like. The measurements may be implemented in that the software 3311, 3331 causes messages to be transmitted, in particular empty or ′dummy′ messages, using the OTT connection 3350 while it monitors propagation times, errors etc.
Fig. 26 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 24 and Fig. 25. For simplicity of the present disclosure, only drawing references to Fig. 26 will be included in this section. In a first step 3410 of the method, the host computer provides user data. In an optional substep 3411 of the first step 3410, the host computer provides the user data by executing a host application. In a second step 3420, the host computer initiates a transmission carrying the user data to the UE. In an optional third step 3430, the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure. In an optional fourth step 3440, the UE executes a client application associated with the host application executed by the host computer.
Fig. 27 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a  host computer, a base station and a UE which may be those described with reference to Fig. 24 and Fig. 25. For simplicity of the present disclosure, only drawing references to Fig. 27 will be included in this section. In a first step 3510 of the method, the host computer provides user data. In an optional substep (not shown) the host computer provides the user data by executing a host application. In a second step 3520, the host computer initiates a transmission carrying the user data to the UE. The transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure. In an optional third step 3530, the UE receives the user data carried in the transmission.
Fig. 28 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 24 and Fig. 25. For simplicity of the present disclosure, only drawing references to Fig. 28 will be included in this section. In an optional first step 3610 of the method, the UE receives input data provided by the host computer. Additionally or alternatively, in an optional second step 3620, the UE provides user data. In an optional substep 3621 of the second step 3620, the UE provides the user data by executing a client application. In a further optional substep 3611 of the first step 3610, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer. In providing the user data, the executed client application may further consider user input received from the user. Regardless of the specific manner in which the user data was provided, the UE initiates, in an optional third substep 3630, transmission of the user data to the host computer. In a fourth step 3640 of the method, the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
Fig. 29 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 24 and Fig. 25. For simplicity of the present disclosure, only drawing references to Fig. 29 will be included in this section. In an optional first step 3710 of the method, in accordance with the teachings of the embodiments described throughout this disclosure, the base station receives user data from the UE. In an optional second step 3720, the base station initiates transmission of the received user data to the host computer. In a  third step 3730, the host computer receives the user data carried in the transmission initiated by the base station.
The present disclosure is described above with reference to the embodiments thereof. However, those embodiments are provided just for illustrative purpose, rather than limiting the present disclosure. The scope of the disclosure is defined by the attached claims as well as equivalents thereof. Those skilled in the art can make various alternations and modifications without departing from the scope of the disclosure, which all fall into the scope of the disclosure.

Claims (91)

  1. A method (700) at a User Equipment (UE) (100) for reference signal (RS) measurement adaptation, the method (700) comprising:
    receiving (S710) , from a network node (105) , a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes;
    determining (S720) at least a first of the one or more RS configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS configuration is in a mode associated with the first RS configuration; and
    measuring (S730) the first set of RS ports at least based on the first RS configuration.
  2. The method (700) of claim 1, further comprising:
    determining at least a second of the one or more RS configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS configuration is not in any mode associated with the second RS configuration; and
    preventing the second set of RS ports from being measured based on the second RS configuration.
  3. A method (800) at a UE (100) for RS measurement adaptation, the method (800) comprising:
    receiving (S810) , from a network node (105) , a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration;
    determining (S820) at least a first of the one or more RS configuration variants to be activated in response to determining that a first subset of one or more RS ports  associated with the first RS configuration variant is in a mode associated with the first RS configuration variant; and
    measuring (S830) the first subset of RS ports at least based on the first RS configuration variant.
  4. The method (800) of claim 3, further comprising:
    determining at least a second of the one or more RS configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second RS configuration variant is not in any mode associated with the second RS configuration variant; and
    preventing the second subset of RS ports from being measured based on the second RS configuration variant.
  5. The method (700, 800) of any of claims 1 to 4, further comprising:
    transmitting, to the network node (105) , a report message indicating a measurement for the first set of RS ports or the first subset of RS ports.
  6. The method (700, 800) of any of claims 1 to 5, wherein the multiple modes comprise at least one of:
    - a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of Physical Downlink Control Channel (PDCCH) , Physical Downlink Shared Channel (PDSCH) , and Demodulation Reference Signal (DMRS) ;
    - a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS;
    - a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  7. The method (700, 800) of any of claims 1 to 6, wherein at least one of the one or more RS configurations or at least one of the one or more RS configuration variants indicates at least one of:
    - time/frequency resources;
    - a number of RS ports;
    - one or more identifiers or indexes of one or more RS ports;
    - a power offset compared to at least one of PDCCH, PDSCH, and Synchronous Signal (SS) and Physical Broadcast Channel (PBCH) Block (SSB) ;
    - a rate;
    - a bandwidth; and
    - a density.
  8. The method (700, 800) of any of claims 1 to 7, wherein at least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode, when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, indicates at least one of:
    - a lower rate;
    - a lower bandwidth;
    - a lower density; and
    - a different power offset.
  9. The method (700, 800) of any of claims 1 to 8, wherein at least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration variants in the first mode, when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, indicates at least one of:
    - a higher rate;
    - a higher bandwidth;
    - a higher density; and
    - a different power offset.
  10. The method (700, 800) of claim 8 or 9, wherein an RS configuration or RS configuration variant in the second mode, which indicates a lower bandwidth than that indicated by another RS configuration or RS configuration variant in the first mode, indicates a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode.
  11. The method (700, 800) of any of claims 1 to 10, wherein the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated comprises:
    receiving, from the network node (105) , a message indicating the first RS configuration or the first RS configuration variant to be activated.
  12. The method (700, 800) of any of claims 1 to 11, wherein the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated comprises:
    determining whether there is at least one RS configuration or RS configuration variant whose associated set of RS ports or associated subset of RS ports has a same state as that of another antenna port associated with at least one of PDCCH, PDSCH, and DMRS or not; and
    determining the at least one RS configuration or RS configuration variant, as the first RS configuration or the first RS configuration variant to be activated, in response to determining that there is the at least one RS configuration or RS configuration variant.
  13. The method (700, 800) of claim 12, wherein the state is a Transmission Configuration Indicator (TCI) state.
  14. The method (700, 800) of any of claims 1 to 13, wherein before the step of determining the first RS configuration to be activated or the step of determining the first RS configuration variant to be activated, the method (700, 800) further comprises:
    receiving, from the network node (105) , a message indicating that the UE (100) is to determine an RS configuration or an RS configuration variant to be activated based on its own decision.
  15. The method (700, 800) of claim 14, wherein the message indicates at least one of:
    - which RS port or RS ports are in which mode;
    - which RS or RSs are in which mode; and
    - whether the UE (100) is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not.
  16. The method (700, 800) of any of claims 1 to 15, wherein before the step of transmitting, to the network node (105) , a report message, the method (700, 800) further comprises:
    receiving, from the network node (105) , a message indicating that the UE (100) is to transmit the report message periodically or aperiodically,
    wherein the step of transmitting, to the network node (105) , a report message is performed in response to the received message.
  17. The method (700, 800) of any of claims 1 to 16, further comprising:
    receiving, from the network node (105) , a message indicating one or more conditions,
    wherein at least one of the step of measuring the first set of RS ports, the step of measuring the first subset of RS ports, and the step of transmitting, to the network node (105) , a report message is performed only in response to at least one of the one or more conditions being fulfilled.
  18. The method (700, 800) of any of claims 1 to 17, wherein the first RS configuration or the first RS configuration variant indicates that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed,
    wherein the method (700, 800) further comprises: performing power compensation during at least one of PDCCH reception, PDSCH reception, and channel assessment at least based on the changed power relationship.
  19. The method (700, 800) of claim 18, wherein the message comprises at least one of:
    - a powerControlOffset Information Element (IE) ;
    - a powerControlOffsetSS IE; and
    - an IE indicating a UE position-specific power offset.
  20. The method (700, 800) of any of claims 1 to 19, further comprising at least one of:
    transmitting, to the network node (105) , a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled;
    measuring the first set of RS ports or the first subset of RS ports excluding the one or more indicated RS occasions; and
    receiving, from the network node (105) , a message indicating that the one or more indicated RS occasions are muted.
  21. The method (700, 800) of any of claims 1 to 20, wherein a set of RS ports or a subset of RS ports in the second mode is not measured for at least one of:
    - pathloss estimation for power control;
    - Precoding Matrix Index (pMI) determination;
    - Channel Quality Information (CQI) determination; and
    - Rank Indicator (RI) estimation.
  22. The method (700, 800) of any of claims 1 to 21, wherein a set of RS ports or a subset of RS ports in the second mode is measured for at least one of:
    - Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) Reference Signal Received Power (CRI-RSRP) reporting; and
    - SSB-Index-RSRP reporting.
  23. The method (700, 800) of any of claims 1 to 22, wherein which of one or more procedures that are exempt for RS ports in the second mode is determined by at least one of:
    - a configuration from the network node (105) ; and
    - a configuration hardcoded or pre-configured at the UE (100) .
  24. The method (700, 800) of any of claims 1 to 23, wherein at least one of the messages is received via at least one of:
    - RRC signaling dedicated to the UE (100) ;
    - SI broadcasted by the network node (105) ;
    - Medium Access Control (MAC) Control Element (CE) ; and
    - Downlink Control Information (DCI) .
  25. The method (700, 800) of any of claims 1 to 24, wherein an RS comprises at least one of:
    - a CSI-RS; and
    - an SSB.
  26. The method (700, 800) of any of claims 1 to 25, wherein when the RS configurations or RS configuration variants comprise CSI-RS configurations or configuration variants in the second mode and SSB configurations or configuration variants in the second mode, both of which are associated with a same set or subset of RS ports, the CSI-RS configurations or configuration variants in the second mode indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants.
  27. The method (700, 800) of any of claims 1 to 26, wherein when the RS configurations or RS configuration variants comprise SSB configurations or configuration variants, each of the SSB configurations or configuration variants is associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  28. The method (700, 800) of any of claims 1 to 27, wherein at least one of the one or more RS configurations or at least one of the one or more RS configuration variants corresponds to an antenna muting pattern at the network node (105) .
  29. A method (900) at a UE (100) for RS report adaptation, the method (900) comprising:
    receiving (S910) , from the network node (105) , a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes;
    determining (S920) at least a first of the one or more RS report configurations to be activated in response to determining that a first set of one or more RS ports associated with the first RS report configuration is in a mode associated with the first RS report configuration; and
    transmitting (S930) , to the network node (105) , a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
  30. The method (900) of claim 29, further comprising:
    determining at least a second of the one or more RS report configurations to be deactivated in response to determining that a second set of one or more RS ports associated with the second RS report configuration is not in any mode associated with the second RS report configuration; and
    preventing the second set of RS ports from being reported based on the second RS report configuration.
  31. A method (1000) at a UE (100) for RS report adaptation, the method (1000) comprising:
    receiving (S1010) , from the network node (105) , a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration;
    determining (S1020) at least a first of the one or more RS report configuration variants to be activated in response to determining that a first subset of one or more RS ports associated with the first RS report configuration variant is in a mode associated with the first RS report configuration variant; and
    transmitting (S1030) , to the network node (105) , a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
  32. The method (1000) of claim 31, further comprising:
    determining at least a second of the one or more RS report configuration variants to be deactivated in response to determining that a second subset of one or more RS ports associated with the second RS report configuration variant is not in any mode associated with the second RS report configuration variant; and
    preventing the second subset of RS ports from being reported based on the second RS report configuration variant.
  33. The method (900, 1000) of any of claims 29 to 32, wherein the multiple modes comprise at least one of:
    - a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS;
    - a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS;
    - a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  34. The method (900, 1000) of any of claims 29 to 33, wherein at least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants indicates at least one of:
    - the report message is to be transmitted periodically;
    - the report message is to be transmitted semi-persistently;
    - the report message is to be transmitted aperiodically; and
    - the report message is to be transmitted only when a condition is fulfilled.
  35. The method (900, 1000) of any of claims 29 to 34, wherein when the first set of RS ports or the first subset of RS ports is in the second mode, the condition comprises at least one of:
    - whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and
    - whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode.
  36. The method (900, 1000) of claim 35, wherein the measured link quality comprises at least one of:
    - RSRP;
    - Reference Signal Received Quality (RSRQ) ;
    - Signal to Interference plus Noise Ratio (SINR) ; and
    - Block Error Rate (BLER) .
  37. The method (900, 1000) of any of claims 29 to 36, wherein before the step of transmitting, to the network node (105) , a report message, the method (900, 1000) further comprises:
    determining whether the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all the other subsets of RS ports in the second mode,
    wherein the step of transmitting, to the network node (105) , a report message comprises:
    transmitting, to the network node (105) , the report message only in response to determining that the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than the measurements for all the other sets of RS ports or all the other subsets of RS ports in the second mode.
  38. The method (900, 1000) of claim 37, wherein for each RS report configuration, there is one associated RS report configuration variant at most.
  39. The method (900, 1000) of any of claims 29 to 38, wherein at least one of the messages is received via at least one of:
    - RRC signaling dedicated to the UE (100) ;
    - SI broadcasted by the network node (105) ;
    - MAC CE; and
    - DCI.
  40. The method (900, 1000) of any of claims 29 to 39, wherein an RS comprises at least one of:
    - a CSI-RS; and
    - an SSB.
  41. A UE (100, 1500) , comprising:
    a processor (1506) ;
    a memory (1508) storing instructions which, when executed by the processor (1506) , cause the processor to perform the method (700, 800, 900, 1000) of any of claims 1 to 40.
  42. A method (1100) at a network node (105) for RS measurement adaptation, the method (1100) comprising:
    transmitting (S1110) , to a UE (100) , a message indicating one or more RS configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes;
    determining (S1120) at least a first of the one or more RS configurations to be activated at the UE (100) , the first RS configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS configuration; and
    transmitting (S1130) one or more RSs at least based on the first RS configuration.
  43. The method (1100) of claim 42, further comprising:
    determining at least a second of the one or more RS configurations to be deactivated at the UE (100) , a second set of one or more RS ports associated with the  second RS configuration being not in any mode associated with the second RS configuration; and
    preventing one or more RSs from being transmitted based on the second RS configuration.
  44. A method (1200) at a network node (105) for RS measurement adaptation, the method (1200) comprising:
    transmitting (S1210) , to a UE (100) , a message indicating one or more RS configuration variants associated with a same RS configuration, each of the one or more RS configuration variants being an RS configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS configuration;
    determining (S1220) at least a first of the one or more RS configuration variants to be activated at the UE (100) , the first RS configuration variant being associated with a first subset of one or more RS ports to be operated in a mode associated with the first RS configuration variant;
    transmitting (S1230) one or more RSs at least based on the first RS configuration variant.
  45. The method (1200) of claim 44, further comprising:
    determining at least a second of the one or more RS configuration variants to be deactivated at the UE (100) , a second subset of one or more RS ports associated with the second RS configuration variant being not in any mode associated with the second RS configuration variant; and
    preventing one or more RSs from being transmitted based on the second RS configuration variant.
  46. The method (1100, 1200) of any of claims 42 to 45, further comprising:
    receiving, from the UE (100) , a report message indicating a measurement for the first set of RS ports or the first subset of RS ports.
  47. The method (1100, 1200) of any of claims 42 to 46, wherein the multiple modes comprise at least one of:
    - a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS;
    - a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS;
    - a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  48. The method (1100, 1200) of any of claims 42 to 47, wherein at least one of the one or more RS configurations or at least one of the one or more RS configuration variants indicates at least one of:
    - time/frequency resources;
    - a number of RS ports;
    - one or more identifiers or indexes of one or more RS ports;
    - a power offset compared to at least one of PDCCH, PDSCH, and SSB;
    - a rate;
    - a bandwidth; and
    - a density.
  49. The method (1100, 1200) of any of claims 42 to 48, wherein at least one of the one or more RS configurations in the second mode or at least one of the one or more RS configuration variants in the second mode, when compared with at least one other RS configuration in the first mode or at least one other RS configuration variant in the first mode, indicates at least one of:
    - a lower rate;
    - a lower bandwidth;
    - a lower density; and
    - a different power offset.
  50. The method (1100, 1200) of any of claims 42 to 49, wherein at least one of the one or more RS configurations in the first mode or at least one of the one or more RS configuration variants in the first mode, when compared with at least one other RS configuration in the second mode or at least one other RS configuration variant in the second mode, indicates at least one of:
    - a higher rate;
    - a higher bandwidth;
    - a higher density; and
    - a different power offset.
  51. The method (1100, 1200) of claim 49 or 50, wherein an RS configuration or RS configuration variant in the second mode, which indicates a lower bandwidth than that indicated by another RS configuration or RS configuration variant in the first mode, indicates a higher density than that indicated by the other RS configuration or RS configuration variant in the first mode.
  52. The method (1100, 1200) of any of claims 42 to 51, wherein before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method (1100, 1200) further comprises:
    transmitting, to the UE (100) , a message indicating the first RS configuration or the first RS configuration variant to be activated.
  53. The method (1100, 1200) of any of claims 42 to 52, wherein before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method (1100, 1200) further comprises at least one of:
    transmitting, to the UE (100) , a message indicating a state for at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS;
    transmitting, to the UE (100) , a message indicating a state for the first set or subset of RS ports; and
    transmitting, to the UE (100) , a message indicating a state for the second set or subset of RS ports.
  54. The method (1100, 1200) of claim 53, wherein the state is a TCI state.
  55. The method (1100, 1200) of any of claims 42 to 54, wherein before the step of transmitting one or more RSs at least based on the first RS configuration or the first RS configuration variant, the method (1100, 1200) further comprises:
    transmitting, to the UE (100) , a message indicating that the UE (100) is to determine an RS configuration or an RS configuration variant to be activated based on its own decision.
  56. The method (1100, 1200) of claim 55, wherein the message indicates at least one of:
    - which RS port or RS ports are in which mode;
    - which RS or RSs are in which mode; and
    - whether the UE (100) is to determine an RS configuration or an RS configuration variant to be activated based on TCI state change or not.
  57. The method (1100, 1200) of any of claims 42 to 56, wherein before the step of receiving, from the UE (100) , a report message, the method (1100, 1200) further comprises:
    transmitting, to the UE (100) , a message indicating that the UE (100) is to transmit the report message periodically or aperiodically,
    wherein the step of receiving, from the UE (100) , a report message is performed in response to the transmitted message.
  58. The method (1100, 1200) of any of claims 42 to 57, further comprising:
    transmitting, to the UE (100) , a message indicating one or more conditions,
    wherein the step of receiving, from the UE (100) , a report message is performed only in response to at least one of the one or more conditions being fulfilled at the UE (100) .
  59. The method (1100, 1200) of any of claims 42 to 58, wherein the first RS configuration or the first RS configuration variant indicates that a power relationship between an RS port and an antenna port associated with PDSCH and/or SSB is changed.
  60. The method (1100, 1200) of claim 59, wherein the message comprises at least one of:
    - a powerControlOffset Information Element (IE) ;
    - a powerControlOffsetSS IE; and
    - an IE indicating a UE position-specific power offset.
  61. The method (1100, 1200) of any of claims 42 to 60, further comprising at least one of:
    receiving, from the UE (100) , a message indicating that one or more RS occasions for at least one of the first set of RS ports or at least one of the first subset of RS ports can be muted in response to determining that one or more conditions are fulfilled;
    muting the one or more indicated RS occasions while transmitting the first set of RS ports or the first subset of RS ports;
    transmitting, to the UE (100) , a message indicating that the one or more indicated RS occasions are muted.
  62. The method (1100, 1200) of any of claims 42 to 61, wherein a set of RS ports or a subset of RS ports in the second mode is not used for at least one of:
    - pathloss estimation for power control;
    - PMI determination;
    - CQI determination; and
    - RI estimation.
  63. The method (1100, 1200) of any of claims 42 to 62, wherein a set of RS ports or a subset of RS ports in the second mode is used for at least one of:
    - CRI-RSRP reporting; and
    - SSB-Index-RSRP reporting.
  64. The method (1100, 1200) of any of claims 42 to 63, wherein which of one or more procedures that are exempt for RS ports in the second mode is determined by at least one of:
    - a configuration from another node; and
    - a configuration hardcoded or pre-configured at the network node (105) .
  65. The method (1100, 1200) of any of claims 42 to 64, wherein at least one of the messages is received via at least one of:
    - RRC signaling dedicated to the UE (100) ;
    - SI broadcasted by the network node (105) ;
    - MAC CE; and
    - DCI.
  66. The method (1100, 1200) of any of claims 42 to 65, wherein an RS comprises at least one of:
    - a CSI-RS; and
    - an SSB.
  67. The method (1100, 1200) of any of claims 42 to 66, wherein when the RS configurations or RS configuration variants comprise CSI-RS configurations or configuration variants in the second mode and SSB configurations or configuration variants in the second mode, both of which are associated with a same set or subset of RS ports, the CSI-RS configurations or configuration variants in the second mode indicate a periodicity that matches a periodicity indicated by the SSB configurations or configuration variants.
  68. The method (1100, 1200) of any of claims 42 to 67, wherein when the RS configurations or RS configuration variants comprise SSB configurations or configuration variants, each of the SSB configurations or configuration variants is associated with a set or subset of RS ports that is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  69. The method (1100, 1200) of any of claims 42 to 68, wherein at least one of the one or more RS configurations or at least one of the one or more RS configuration variants corresponds to an antenna muting pattern at the network node (105) .
  70. The method (1100, 1200) of any of claims 42 to 69, further comprising:
    utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS configuration or the first RS configuration variant, for reception and/or transmission sleep.
  71. The method (1100, 1200) of any of claims 42 to 70, further comprising:
    transmitting at a lower output power in response to the first RS configuration or the first RS configuration variant indicating a lower bandwidth and/or a lower density.
  72. The method (1100, 1200) of any of claims 42 to 71, wherein the method (1100, 1200) further comprises:
    in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS:
    remapping the at least one of PDCCH, PDSCH, and DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
  73. A method (1300) at a network node (105) for RS report adaptation, the method (1300) comprising:
    transmitting (S1310) , to a UE (100) , a message indicating one or more RS report configurations, each of which being associated with a set of one or more RS ports in at least one of multiple modes;
    determining (S1320) at least a first of the one or more RS report configurations to be activated at the UE (100) , the first RS report configuration being associated with a first set of one or more RS ports to be operated in a mode associated with the first RS report configuration;
    transmitting (S1330) one or more RSs over the first set of RS ports; and
    receiving (S1340) , from the UE (100) , a report message indicating a measurement for the first set of RS ports at least based on the first RS report configuration.
  74. The method (1300) of claim 73, further comprising:
    determining at least a second of the one or more RS report configurations to be deactivated at the UE (100) , a second set of one or more RS ports associated with the  second RS report configuration being not in any mode associated with the second RS report configuration; and
    transmitting, to the UE (100) , a message explicitly or implicitly indicating that a measurement for the second set of RS ports is not to be reported by the UE (100) based on the second RS report configuration.
  75. A method (1400) at a network node (105) for RS report adaptation, the method (1400) comprising:
    transmitting (S1410) , to a UE (100) , a message indicating one or more RS report configuration variants associated with a same RS report configuration, each of the one or more RS report configuration variants being an RS report configuration associated with a subset of one or more RS ports in at least one of multiple modes, the subset of RS ports belonging to a set of one or more RS ports associated with the same RS report configuration;
    determining (S1420) at least a first of the one or more RS report configuration variants to be activated at the UE (100) , the first RS report configuration variant being associated with a first subset of one or more RS ports in a mode associated with the first RS report configuration variant;
    transmitting (S1430) one or more RSs over the first subset of RS ports; and
    receiving (S1440) , from the UE (100) , a report message indicating a measurement for the first subset of RS ports at least based on the first RS report configuration variant.
  76. The method (1400) of claim 75, further comprising:
    determining at least a second of the one or more RS report configuration variants to be deactivated at the UE (100) , a second subset of one or more RS ports associated with the second RS report configuration variant being not in any mode associated with the second RS report configuration variant; and
    transmitting, to the UE (100) , a message explicitly or implicitly indicating that a measurement for the second subset of RS ports is not to be reported based on the second RS report configuration variant.
  77. The method (1300, 1400) of any of claims 73 to 76, wherein the multiple modes comprise at least one of:
    - a first mode, wherein a set or subset of RS ports in the first mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS;
    - a second mode, wherein a set or subset of RS ports in the second mode is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS;
    - a third mode, wherein a part of a set or subset of RS ports in the third mode is quasi co-located with at least one antenna port associated with at least one of PDCCH, PDSCH, and DMRS while the remaining part is not quasi co-located with any antenna port associated with at least one of PDCCH, PDSCH, and DMRS.
  78. The method (1300, 1400) of any of claims 73 to 77, wherein at least one of the one or more RS report configurations or at least one of the one or more RS report configuration variants indicates at least one of:
    - the report message is to be transmitted periodically;
    - the report message is to be transmitted semi-persistently;
    - the report message is to be transmitted aperiodically; and
    - the report message is to be transmitted only when a condition is fulfilled.
  79. The method (1300, 1400) of any of claims 73 to 78, wherein when the first set of RS ports or the first subset of RS ports is in the second mode, the condition comprises at least one of:
    - whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than an absolute threshold; and
    - whether a measured link quality for the first set of RS ports or the first subset of RS ports is higher than a relative threshold relative to a measured link quality for another set of RS ports or another subset of RS ports in the first mode.
  80. The method (1300, 1400) of claim 79, wherein the measured link quality comprises at least one of:
    - RSRP;
    - RSRQ;
    - SINR; and
    - BLER.
  81. The method (1300, 1400) of any of claims 73 to 80, wherein the reception of the report message indicates that the measurement for the first set of RS ports or the first subset of RS ports in the second mode is better than measurements for all other sets of RS ports or all other subsets of RS ports in the second mode.
  82. The method (1300, 1400) of claim 81, wherein for each RS report configuration, there is one associated RS report configuration variant at most.
  83. The method (1300, 1400) of any of claims 73 to 82, wherein at least one of the messages is transmitted via at least one of:
    - RRC signaling dedicated to the UE (100) ;
    - SI broadcasted by the network node (105) ;
    - MAC CE; and
    - DCI.
  84. The method (1300, 1400) of any of claims 73 to 83, wherein an RS comprises at least one of:
    - a CSI-RS; and
    - an SSB.
  85. The method (1300, 1400) of any of claims 73 to 84, further comprising:
    utilizing one or more time gaps created on the first set or subset of RS ports at least based on the first RS report configuration or the first RS report configuration variant, for reception and/or transmission sleep.
  86. The method (1300, 1400) of any of claims 73 to 85, further comprising:
    transmitting at a lower output power in response to the first RS report configuration or the first RS report configuration variant indicating a lower bandwidth and/or a lower density.
  87. The method (1300, 1400) of any of claims 73 to 86, wherein the method (1300, 1400) further comprises:
    in response to the received report message indicating a better link quality measured for the first set or subset of RS ports in the second mode than that measured for an antenna port associated with at least one of PDCCH, PDSCH, and DMRS:
    remapping the at least one of PDCCH, PDSCH, and DMRS to an antenna port that is quasi co-located with at least one of the first set or subset of RS ports.
  88. A network node (105, 1500) , comprising:
    a processor (1506) ;
    a memory (1508) storing instructions which, when executed by the processor (1506) , cause the processor (1506) to perform the method (1100, 1200, 1300, 1400) of any of claims 42 to 87.
  89. A computer program (1510) comprising instructions which, when executed by at least one processor (1506) , cause the at least one processor (1506) to carry out the method (700, 800, 900, 1000, 1100, 1200, 1300, 1400) of any of claims 1 to 40 and 42 to 87.
  90. A carrier (1508) containing the computer program (1510) of claim 89, wherein the carrier (1508) is one of an electronic signal, optical signal, radio signal, or computer readable storage medium.
  91. A telecommunications system (10) comprising:
    one or more UEs (100) of claim 41; and
    at least one network node (105) of claim 88.
PCT/CN2023/084989 2022-03-31 2023-03-30 Reference signal (rs) measurement and report adaptation WO2023185989A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2022084538 2022-03-31
CNPCT/CN2022/084538 2022-03-31
CN2022087750 2022-04-19
CNPCT/CN2022/087750 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023185989A1 true WO2023185989A1 (en) 2023-10-05

Family

ID=88199407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084989 WO2023185989A1 (en) 2022-03-31 2023-03-30 Reference signal (rs) measurement and report adaptation

Country Status (1)

Country Link
WO (1) WO2023185989A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789810A (en) * 2018-09-03 2021-05-11 三星电子株式会社 Method and apparatus for configuring terminal antenna in wireless communication system
WO2021147111A1 (en) * 2020-01-23 2021-07-29 华为技术有限公司 Communication method and communication apparatus
WO2022047759A1 (en) * 2020-09-05 2022-03-10 Qualcomm Incorporated Flexible csi-rs sharing for port selection csi feedback

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789810A (en) * 2018-09-03 2021-05-11 三星电子株式会社 Method and apparatus for configuring terminal antenna in wireless communication system
WO2021147111A1 (en) * 2020-01-23 2021-07-29 华为技术有限公司 Communication method and communication apparatus
WO2022047759A1 (en) * 2020-09-05 2022-03-10 Qualcomm Incorporated Flexible csi-rs sharing for port selection csi feedback

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Discussion on eMIMO UE features", 3GPP TSG RAN WG1 #101 R1-2004668, 26 May 2020 (2020-05-26), XP052346039 *

Similar Documents

Publication Publication Date Title
AU2018339746B2 (en) Power control method and apparatus
US11838236B2 (en) Uplink channel quality measurement using a subframe with high-intensity reference signal bursts
US11764922B2 (en) Wireless device, a network node and methods therein for enabling and determining reference signal configurations in a wireless communications network
US10700827B2 (en) Downlink power allocation when narrowband system is deployed within a wideband system
CN115989700A (en) Power control for uplink transmission towards multiple TRPs
US11271704B2 (en) Radio network node, wireless device and methods performed therein
JP2019519959A (en) RADIO NETWORK NODE, RADIO DEVICE, AND METHODS IN THEM FOR REFERENCE CONFIGURATION
JPWO2018052018A1 (en) User terminal and wireless communication method
US20230156608A1 (en) Method for performing, by ue, carrier aggregation via first carrier wave and second carrier wave, in wireless communication system, and apparatus therefor
WO2022155620A2 (en) Methods and apparatus for secondary cell (scell) activation and deactivation
US20240023026A1 (en) Determination of reference signal resources in multi-transmission reception point uplink schemes
WO2021090505A1 (en) Terminal and wireless communication method
US11063734B2 (en) Configuration of periodic signals in a time division duplex communication system
US20240155502A1 (en) Methods and apparatuses for uplink power control for small data transmission when in a non-connected state
US10609652B2 (en) User terminal, radio base station and radio communication method
WO2023185989A1 (en) Reference signal (rs) measurement and report adaptation
WO2023186007A1 (en) Measuring and/or reporting for subset of reference signal (rs) ports
CN116711406A (en) Apparatus and method for flexible spectrum
WO2023234838A1 (en) Reporting measurement of reference signal (rs) ports
US20230396380A1 (en) Wireless device, and methods performed thereby, for handling reception of one or more reference signals
US20240206006A1 (en) Reference signal and channel state information processing outside a discontinuous reception active time
US20240064529A1 (en) Wireless device, first node, and methods performed thereby, for handling a first indication
US20220386352A1 (en) Configuration of minimum scheduling offsets
WO2020029675A1 (en) Method and apparatus for sounding reference signal transmission
WO2022079310A1 (en) Configuration of wake up signal for new radio wireless device paging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778354

Country of ref document: EP

Kind code of ref document: A1